media: staging: media: use relevant lock
[linux-2.6-block.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
9678c543 11#include "ctree.h"
995946dd 12#include "tree-log.h"
e02119d5
CM
13#include "disk-io.h"
14#include "locking.h"
15#include "print-tree.h"
f186373f 16#include "backref.h"
ebb8765b 17#include "compression.h"
df2c95f3 18#include "qgroup.h"
900c9981 19#include "inode-map.h"
e02119d5
CM
20
21/* magic values for the inode_only field in btrfs_log_inode:
22 *
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
25 * during log replay
26 */
27#define LOG_INODE_ALL 0
28#define LOG_INODE_EXISTS 1
781feef7 29#define LOG_OTHER_INODE 2
e02119d5 30
12fcfd22
CM
31/*
32 * directory trouble cases
33 *
34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35 * log, we must force a full commit before doing an fsync of the directory
36 * where the unlink was done.
37 * ---> record transid of last unlink/rename per directory
38 *
39 * mkdir foo/some_dir
40 * normal commit
41 * rename foo/some_dir foo2/some_dir
42 * mkdir foo/some_dir
43 * fsync foo/some_dir/some_file
44 *
45 * The fsync above will unlink the original some_dir without recording
46 * it in its new location (foo2). After a crash, some_dir will be gone
47 * unless the fsync of some_file forces a full commit
48 *
49 * 2) we must log any new names for any file or dir that is in the fsync
50 * log. ---> check inode while renaming/linking.
51 *
52 * 2a) we must log any new names for any file or dir during rename
53 * when the directory they are being removed from was logged.
54 * ---> check inode and old parent dir during rename
55 *
56 * 2a is actually the more important variant. With the extra logging
57 * a crash might unlink the old name without recreating the new one
58 *
59 * 3) after a crash, we must go through any directories with a link count
60 * of zero and redo the rm -rf
61 *
62 * mkdir f1/foo
63 * normal commit
64 * rm -rf f1/foo
65 * fsync(f1)
66 *
67 * The directory f1 was fully removed from the FS, but fsync was never
68 * called on f1, only its parent dir. After a crash the rm -rf must
69 * be replayed. This must be able to recurse down the entire
70 * directory tree. The inode link count fixup code takes care of the
71 * ugly details.
72 */
73
e02119d5
CM
74/*
75 * stages for the tree walking. The first
76 * stage (0) is to only pin down the blocks we find
77 * the second stage (1) is to make sure that all the inodes
78 * we find in the log are created in the subvolume.
79 *
80 * The last stage is to deal with directories and links and extents
81 * and all the other fun semantics
82 */
83#define LOG_WALK_PIN_ONLY 0
84#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
85#define LOG_WALK_REPLAY_DIR_INDEX 2
86#define LOG_WALK_REPLAY_ALL 3
e02119d5 87
12fcfd22 88static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 89 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
90 int inode_only,
91 const loff_t start,
8407f553
FM
92 const loff_t end,
93 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
94static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
97static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_root *log,
100 struct btrfs_path *path,
101 u64 dirid, int del_all);
e02119d5
CM
102
103/*
104 * tree logging is a special write ahead log used to make sure that
105 * fsyncs and O_SYNCs can happen without doing full tree commits.
106 *
107 * Full tree commits are expensive because they require commonly
108 * modified blocks to be recowed, creating many dirty pages in the
109 * extent tree an 4x-6x higher write load than ext3.
110 *
111 * Instead of doing a tree commit on every fsync, we use the
112 * key ranges and transaction ids to find items for a given file or directory
113 * that have changed in this transaction. Those items are copied into
114 * a special tree (one per subvolume root), that tree is written to disk
115 * and then the fsync is considered complete.
116 *
117 * After a crash, items are copied out of the log-tree back into the
118 * subvolume tree. Any file data extents found are recorded in the extent
119 * allocation tree, and the log-tree freed.
120 *
121 * The log tree is read three times, once to pin down all the extents it is
122 * using in ram and once, once to create all the inodes logged in the tree
123 * and once to do all the other items.
124 */
125
e02119d5
CM
126/*
127 * start a sub transaction and setup the log tree
128 * this increments the log tree writer count to make the people
129 * syncing the tree wait for us to finish
130 */
131static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
132 struct btrfs_root *root,
133 struct btrfs_log_ctx *ctx)
e02119d5 134{
0b246afa 135 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 136 int ret = 0;
7237f183
YZ
137
138 mutex_lock(&root->log_mutex);
34eb2a52 139
7237f183 140 if (root->log_root) {
0b246afa 141 if (btrfs_need_log_full_commit(fs_info, trans)) {
50471a38
MX
142 ret = -EAGAIN;
143 goto out;
144 }
34eb2a52 145
ff782e0a 146 if (!root->log_start_pid) {
27cdeb70 147 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 148 root->log_start_pid = current->pid;
ff782e0a 149 } else if (root->log_start_pid != current->pid) {
27cdeb70 150 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 151 }
34eb2a52 152 } else {
0b246afa
JM
153 mutex_lock(&fs_info->tree_log_mutex);
154 if (!fs_info->log_root_tree)
155 ret = btrfs_init_log_root_tree(trans, fs_info);
156 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
157 if (ret)
158 goto out;
ff782e0a 159
e02119d5 160 ret = btrfs_add_log_tree(trans, root);
4a500fd1 161 if (ret)
e87ac136 162 goto out;
34eb2a52
Z
163
164 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 root->log_start_pid = current->pid;
e02119d5 166 }
34eb2a52 167
2ecb7923 168 atomic_inc(&root->log_batch);
7237f183 169 atomic_inc(&root->log_writers);
8b050d35 170 if (ctx) {
34eb2a52 171 int index = root->log_transid % 2;
8b050d35 172 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 173 ctx->log_transid = root->log_transid;
8b050d35 174 }
34eb2a52 175
e87ac136 176out:
7237f183 177 mutex_unlock(&root->log_mutex);
e87ac136 178 return ret;
e02119d5
CM
179}
180
181/*
182 * returns 0 if there was a log transaction running and we were able
183 * to join, or returns -ENOENT if there were not transactions
184 * in progress
185 */
186static int join_running_log_trans(struct btrfs_root *root)
187{
188 int ret = -ENOENT;
189
190 smp_mb();
191 if (!root->log_root)
192 return -ENOENT;
193
7237f183 194 mutex_lock(&root->log_mutex);
e02119d5
CM
195 if (root->log_root) {
196 ret = 0;
7237f183 197 atomic_inc(&root->log_writers);
e02119d5 198 }
7237f183 199 mutex_unlock(&root->log_mutex);
e02119d5
CM
200 return ret;
201}
202
12fcfd22
CM
203/*
204 * This either makes the current running log transaction wait
205 * until you call btrfs_end_log_trans() or it makes any future
206 * log transactions wait until you call btrfs_end_log_trans()
207 */
208int btrfs_pin_log_trans(struct btrfs_root *root)
209{
210 int ret = -ENOENT;
211
212 mutex_lock(&root->log_mutex);
213 atomic_inc(&root->log_writers);
214 mutex_unlock(&root->log_mutex);
215 return ret;
216}
217
e02119d5
CM
218/*
219 * indicate we're done making changes to the log tree
220 * and wake up anyone waiting to do a sync
221 */
143bede5 222void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 223{
7237f183 224 if (atomic_dec_and_test(&root->log_writers)) {
779adf0f
DS
225 /*
226 * Implicit memory barrier after atomic_dec_and_test
227 */
7237f183
YZ
228 if (waitqueue_active(&root->log_writer_wait))
229 wake_up(&root->log_writer_wait);
230 }
e02119d5
CM
231}
232
233
234/*
235 * the walk control struct is used to pass state down the chain when
236 * processing the log tree. The stage field tells us which part
237 * of the log tree processing we are currently doing. The others
238 * are state fields used for that specific part
239 */
240struct walk_control {
241 /* should we free the extent on disk when done? This is used
242 * at transaction commit time while freeing a log tree
243 */
244 int free;
245
246 /* should we write out the extent buffer? This is used
247 * while flushing the log tree to disk during a sync
248 */
249 int write;
250
251 /* should we wait for the extent buffer io to finish? Also used
252 * while flushing the log tree to disk for a sync
253 */
254 int wait;
255
256 /* pin only walk, we record which extents on disk belong to the
257 * log trees
258 */
259 int pin;
260
261 /* what stage of the replay code we're currently in */
262 int stage;
263
264 /* the root we are currently replaying */
265 struct btrfs_root *replay_dest;
266
267 /* the trans handle for the current replay */
268 struct btrfs_trans_handle *trans;
269
270 /* the function that gets used to process blocks we find in the
271 * tree. Note the extent_buffer might not be up to date when it is
272 * passed in, and it must be checked or read if you need the data
273 * inside it
274 */
275 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 276 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
277};
278
279/*
280 * process_func used to pin down extents, write them or wait on them
281 */
282static int process_one_buffer(struct btrfs_root *log,
283 struct extent_buffer *eb,
581c1760 284 struct walk_control *wc, u64 gen, int level)
e02119d5 285{
0b246afa 286 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
287 int ret = 0;
288
8c2a1a30
JB
289 /*
290 * If this fs is mixed then we need to be able to process the leaves to
291 * pin down any logged extents, so we have to read the block.
292 */
0b246afa 293 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 294 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
295 if (ret)
296 return ret;
297 }
298
04018de5 299 if (wc->pin)
2ff7e61e
JM
300 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
301 eb->len);
e02119d5 302
b50c6e25 303 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 304 if (wc->pin && btrfs_header_level(eb) == 0)
2ff7e61e 305 ret = btrfs_exclude_logged_extents(fs_info, eb);
e02119d5
CM
306 if (wc->write)
307 btrfs_write_tree_block(eb);
308 if (wc->wait)
309 btrfs_wait_tree_block_writeback(eb);
310 }
b50c6e25 311 return ret;
e02119d5
CM
312}
313
314/*
315 * Item overwrite used by replay and tree logging. eb, slot and key all refer
316 * to the src data we are copying out.
317 *
318 * root is the tree we are copying into, and path is a scratch
319 * path for use in this function (it should be released on entry and
320 * will be released on exit).
321 *
322 * If the key is already in the destination tree the existing item is
323 * overwritten. If the existing item isn't big enough, it is extended.
324 * If it is too large, it is truncated.
325 *
326 * If the key isn't in the destination yet, a new item is inserted.
327 */
328static noinline int overwrite_item(struct btrfs_trans_handle *trans,
329 struct btrfs_root *root,
330 struct btrfs_path *path,
331 struct extent_buffer *eb, int slot,
332 struct btrfs_key *key)
333{
2ff7e61e 334 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
335 int ret;
336 u32 item_size;
337 u64 saved_i_size = 0;
338 int save_old_i_size = 0;
339 unsigned long src_ptr;
340 unsigned long dst_ptr;
341 int overwrite_root = 0;
4bc4bee4 342 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
343
344 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
345 overwrite_root = 1;
346
347 item_size = btrfs_item_size_nr(eb, slot);
348 src_ptr = btrfs_item_ptr_offset(eb, slot);
349
350 /* look for the key in the destination tree */
351 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
352 if (ret < 0)
353 return ret;
354
e02119d5
CM
355 if (ret == 0) {
356 char *src_copy;
357 char *dst_copy;
358 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
359 path->slots[0]);
360 if (dst_size != item_size)
361 goto insert;
362
363 if (item_size == 0) {
b3b4aa74 364 btrfs_release_path(path);
e02119d5
CM
365 return 0;
366 }
367 dst_copy = kmalloc(item_size, GFP_NOFS);
368 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 369 if (!dst_copy || !src_copy) {
b3b4aa74 370 btrfs_release_path(path);
2a29edc6 371 kfree(dst_copy);
372 kfree(src_copy);
373 return -ENOMEM;
374 }
e02119d5
CM
375
376 read_extent_buffer(eb, src_copy, src_ptr, item_size);
377
378 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
379 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
380 item_size);
381 ret = memcmp(dst_copy, src_copy, item_size);
382
383 kfree(dst_copy);
384 kfree(src_copy);
385 /*
386 * they have the same contents, just return, this saves
387 * us from cowing blocks in the destination tree and doing
388 * extra writes that may not have been done by a previous
389 * sync
390 */
391 if (ret == 0) {
b3b4aa74 392 btrfs_release_path(path);
e02119d5
CM
393 return 0;
394 }
395
4bc4bee4
JB
396 /*
397 * We need to load the old nbytes into the inode so when we
398 * replay the extents we've logged we get the right nbytes.
399 */
400 if (inode_item) {
401 struct btrfs_inode_item *item;
402 u64 nbytes;
d555438b 403 u32 mode;
4bc4bee4
JB
404
405 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
406 struct btrfs_inode_item);
407 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
408 item = btrfs_item_ptr(eb, slot,
409 struct btrfs_inode_item);
410 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
411
412 /*
413 * If this is a directory we need to reset the i_size to
414 * 0 so that we can set it up properly when replaying
415 * the rest of the items in this log.
416 */
417 mode = btrfs_inode_mode(eb, item);
418 if (S_ISDIR(mode))
419 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
420 }
421 } else if (inode_item) {
422 struct btrfs_inode_item *item;
d555438b 423 u32 mode;
4bc4bee4
JB
424
425 /*
426 * New inode, set nbytes to 0 so that the nbytes comes out
427 * properly when we replay the extents.
428 */
429 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
430 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
431
432 /*
433 * If this is a directory we need to reset the i_size to 0 so
434 * that we can set it up properly when replaying the rest of
435 * the items in this log.
436 */
437 mode = btrfs_inode_mode(eb, item);
438 if (S_ISDIR(mode))
439 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
440 }
441insert:
b3b4aa74 442 btrfs_release_path(path);
e02119d5 443 /* try to insert the key into the destination tree */
df8d116f 444 path->skip_release_on_error = 1;
e02119d5
CM
445 ret = btrfs_insert_empty_item(trans, root, path,
446 key, item_size);
df8d116f 447 path->skip_release_on_error = 0;
e02119d5
CM
448
449 /* make sure any existing item is the correct size */
df8d116f 450 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
451 u32 found_size;
452 found_size = btrfs_item_size_nr(path->nodes[0],
453 path->slots[0]);
143bede5 454 if (found_size > item_size)
2ff7e61e 455 btrfs_truncate_item(fs_info, path, item_size, 1);
143bede5 456 else if (found_size < item_size)
2ff7e61e 457 btrfs_extend_item(fs_info, path,
143bede5 458 item_size - found_size);
e02119d5 459 } else if (ret) {
4a500fd1 460 return ret;
e02119d5
CM
461 }
462 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
463 path->slots[0]);
464
465 /* don't overwrite an existing inode if the generation number
466 * was logged as zero. This is done when the tree logging code
467 * is just logging an inode to make sure it exists after recovery.
468 *
469 * Also, don't overwrite i_size on directories during replay.
470 * log replay inserts and removes directory items based on the
471 * state of the tree found in the subvolume, and i_size is modified
472 * as it goes
473 */
474 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
475 struct btrfs_inode_item *src_item;
476 struct btrfs_inode_item *dst_item;
477
478 src_item = (struct btrfs_inode_item *)src_ptr;
479 dst_item = (struct btrfs_inode_item *)dst_ptr;
480
1a4bcf47
FM
481 if (btrfs_inode_generation(eb, src_item) == 0) {
482 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 483 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 484
2f2ff0ee
FM
485 /*
486 * For regular files an ino_size == 0 is used only when
487 * logging that an inode exists, as part of a directory
488 * fsync, and the inode wasn't fsynced before. In this
489 * case don't set the size of the inode in the fs/subvol
490 * tree, otherwise we would be throwing valid data away.
491 */
1a4bcf47 492 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
493 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
494 ino_size != 0) {
1a4bcf47 495 struct btrfs_map_token token;
1a4bcf47
FM
496
497 btrfs_init_map_token(&token);
498 btrfs_set_token_inode_size(dst_eb, dst_item,
499 ino_size, &token);
500 }
e02119d5 501 goto no_copy;
1a4bcf47 502 }
e02119d5
CM
503
504 if (overwrite_root &&
505 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
506 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
507 save_old_i_size = 1;
508 saved_i_size = btrfs_inode_size(path->nodes[0],
509 dst_item);
510 }
511 }
512
513 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
514 src_ptr, item_size);
515
516 if (save_old_i_size) {
517 struct btrfs_inode_item *dst_item;
518 dst_item = (struct btrfs_inode_item *)dst_ptr;
519 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
520 }
521
522 /* make sure the generation is filled in */
523 if (key->type == BTRFS_INODE_ITEM_KEY) {
524 struct btrfs_inode_item *dst_item;
525 dst_item = (struct btrfs_inode_item *)dst_ptr;
526 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
527 btrfs_set_inode_generation(path->nodes[0], dst_item,
528 trans->transid);
529 }
530 }
531no_copy:
532 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 533 btrfs_release_path(path);
e02119d5
CM
534 return 0;
535}
536
537/*
538 * simple helper to read an inode off the disk from a given root
539 * This can only be called for subvolume roots and not for the log
540 */
541static noinline struct inode *read_one_inode(struct btrfs_root *root,
542 u64 objectid)
543{
5d4f98a2 544 struct btrfs_key key;
e02119d5 545 struct inode *inode;
e02119d5 546
5d4f98a2
YZ
547 key.objectid = objectid;
548 key.type = BTRFS_INODE_ITEM_KEY;
549 key.offset = 0;
73f73415 550 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
5d4f98a2
YZ
551 if (IS_ERR(inode)) {
552 inode = NULL;
553 } else if (is_bad_inode(inode)) {
e02119d5
CM
554 iput(inode);
555 inode = NULL;
556 }
557 return inode;
558}
559
560/* replays a single extent in 'eb' at 'slot' with 'key' into the
561 * subvolume 'root'. path is released on entry and should be released
562 * on exit.
563 *
564 * extents in the log tree have not been allocated out of the extent
565 * tree yet. So, this completes the allocation, taking a reference
566 * as required if the extent already exists or creating a new extent
567 * if it isn't in the extent allocation tree yet.
568 *
569 * The extent is inserted into the file, dropping any existing extents
570 * from the file that overlap the new one.
571 */
572static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
573 struct btrfs_root *root,
574 struct btrfs_path *path,
575 struct extent_buffer *eb, int slot,
576 struct btrfs_key *key)
577{
0b246afa 578 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 579 int found_type;
e02119d5 580 u64 extent_end;
e02119d5 581 u64 start = key->offset;
4bc4bee4 582 u64 nbytes = 0;
e02119d5
CM
583 struct btrfs_file_extent_item *item;
584 struct inode *inode = NULL;
585 unsigned long size;
586 int ret = 0;
587
588 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
589 found_type = btrfs_file_extent_type(eb, item);
590
d899e052 591 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
592 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
593 nbytes = btrfs_file_extent_num_bytes(eb, item);
594 extent_end = start + nbytes;
595
596 /*
597 * We don't add to the inodes nbytes if we are prealloc or a
598 * hole.
599 */
600 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
601 nbytes = 0;
602 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 603 size = btrfs_file_extent_inline_len(eb, slot, item);
4bc4bee4 604 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 605 extent_end = ALIGN(start + size,
0b246afa 606 fs_info->sectorsize);
e02119d5
CM
607 } else {
608 ret = 0;
609 goto out;
610 }
611
612 inode = read_one_inode(root, key->objectid);
613 if (!inode) {
614 ret = -EIO;
615 goto out;
616 }
617
618 /*
619 * first check to see if we already have this extent in the
620 * file. This must be done before the btrfs_drop_extents run
621 * so we don't try to drop this extent.
622 */
f85b7379
DS
623 ret = btrfs_lookup_file_extent(trans, root, path,
624 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 625
d899e052
YZ
626 if (ret == 0 &&
627 (found_type == BTRFS_FILE_EXTENT_REG ||
628 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
629 struct btrfs_file_extent_item cmp1;
630 struct btrfs_file_extent_item cmp2;
631 struct btrfs_file_extent_item *existing;
632 struct extent_buffer *leaf;
633
634 leaf = path->nodes[0];
635 existing = btrfs_item_ptr(leaf, path->slots[0],
636 struct btrfs_file_extent_item);
637
638 read_extent_buffer(eb, &cmp1, (unsigned long)item,
639 sizeof(cmp1));
640 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
641 sizeof(cmp2));
642
643 /*
644 * we already have a pointer to this exact extent,
645 * we don't have to do anything
646 */
647 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 648 btrfs_release_path(path);
e02119d5
CM
649 goto out;
650 }
651 }
b3b4aa74 652 btrfs_release_path(path);
e02119d5
CM
653
654 /* drop any overlapping extents */
2671485d 655 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
656 if (ret)
657 goto out;
e02119d5 658
07d400a6
YZ
659 if (found_type == BTRFS_FILE_EXTENT_REG ||
660 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 661 u64 offset;
07d400a6
YZ
662 unsigned long dest_offset;
663 struct btrfs_key ins;
664
3168021c
FM
665 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
666 btrfs_fs_incompat(fs_info, NO_HOLES))
667 goto update_inode;
668
07d400a6
YZ
669 ret = btrfs_insert_empty_item(trans, root, path, key,
670 sizeof(*item));
3650860b
JB
671 if (ret)
672 goto out;
07d400a6
YZ
673 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
674 path->slots[0]);
675 copy_extent_buffer(path->nodes[0], eb, dest_offset,
676 (unsigned long)item, sizeof(*item));
677
678 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
679 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
680 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 681 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 682
df2c95f3
QW
683 /*
684 * Manually record dirty extent, as here we did a shallow
685 * file extent item copy and skip normal backref update,
686 * but modifying extent tree all by ourselves.
687 * So need to manually record dirty extent for qgroup,
688 * as the owner of the file extent changed from log tree
689 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
690 */
0b246afa 691 ret = btrfs_qgroup_trace_extent(trans, fs_info,
df2c95f3
QW
692 btrfs_file_extent_disk_bytenr(eb, item),
693 btrfs_file_extent_disk_num_bytes(eb, item),
694 GFP_NOFS);
695 if (ret < 0)
696 goto out;
697
07d400a6
YZ
698 if (ins.objectid > 0) {
699 u64 csum_start;
700 u64 csum_end;
701 LIST_HEAD(ordered_sums);
702 /*
703 * is this extent already allocated in the extent
704 * allocation tree? If so, just add a reference
705 */
2ff7e61e 706 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
707 ins.offset);
708 if (ret == 0) {
84f7d8e6 709 ret = btrfs_inc_extent_ref(trans, root,
07d400a6 710 ins.objectid, ins.offset,
5d4f98a2 711 0, root->root_key.objectid,
b06c4bf5 712 key->objectid, offset);
b50c6e25
JB
713 if (ret)
714 goto out;
07d400a6
YZ
715 } else {
716 /*
717 * insert the extent pointer in the extent
718 * allocation tree
719 */
5d4f98a2 720 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e
JM
721 fs_info,
722 root->root_key.objectid,
5d4f98a2 723 key->objectid, offset, &ins);
b50c6e25
JB
724 if (ret)
725 goto out;
07d400a6 726 }
b3b4aa74 727 btrfs_release_path(path);
07d400a6
YZ
728
729 if (btrfs_file_extent_compression(eb, item)) {
730 csum_start = ins.objectid;
731 csum_end = csum_start + ins.offset;
732 } else {
733 csum_start = ins.objectid +
734 btrfs_file_extent_offset(eb, item);
735 csum_end = csum_start +
736 btrfs_file_extent_num_bytes(eb, item);
737 }
738
739 ret = btrfs_lookup_csums_range(root->log_root,
740 csum_start, csum_end - 1,
a2de733c 741 &ordered_sums, 0);
3650860b
JB
742 if (ret)
743 goto out;
b84b8390
FM
744 /*
745 * Now delete all existing cums in the csum root that
746 * cover our range. We do this because we can have an
747 * extent that is completely referenced by one file
748 * extent item and partially referenced by another
749 * file extent item (like after using the clone or
750 * extent_same ioctls). In this case if we end up doing
751 * the replay of the one that partially references the
752 * extent first, and we do not do the csum deletion
753 * below, we can get 2 csum items in the csum tree that
754 * overlap each other. For example, imagine our log has
755 * the two following file extent items:
756 *
757 * key (257 EXTENT_DATA 409600)
758 * extent data disk byte 12845056 nr 102400
759 * extent data offset 20480 nr 20480 ram 102400
760 *
761 * key (257 EXTENT_DATA 819200)
762 * extent data disk byte 12845056 nr 102400
763 * extent data offset 0 nr 102400 ram 102400
764 *
765 * Where the second one fully references the 100K extent
766 * that starts at disk byte 12845056, and the log tree
767 * has a single csum item that covers the entire range
768 * of the extent:
769 *
770 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
771 *
772 * After the first file extent item is replayed, the
773 * csum tree gets the following csum item:
774 *
775 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
776 *
777 * Which covers the 20K sub-range starting at offset 20K
778 * of our extent. Now when we replay the second file
779 * extent item, if we do not delete existing csum items
780 * that cover any of its blocks, we end up getting two
781 * csum items in our csum tree that overlap each other:
782 *
783 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
785 *
786 * Which is a problem, because after this anyone trying
787 * to lookup up for the checksum of any block of our
788 * extent starting at an offset of 40K or higher, will
789 * end up looking at the second csum item only, which
790 * does not contain the checksum for any block starting
791 * at offset 40K or higher of our extent.
792 */
07d400a6
YZ
793 while (!list_empty(&ordered_sums)) {
794 struct btrfs_ordered_sum *sums;
795 sums = list_entry(ordered_sums.next,
796 struct btrfs_ordered_sum,
797 list);
b84b8390 798 if (!ret)
0b246afa 799 ret = btrfs_del_csums(trans, fs_info,
5b4aacef
JM
800 sums->bytenr,
801 sums->len);
3650860b
JB
802 if (!ret)
803 ret = btrfs_csum_file_blocks(trans,
0b246afa 804 fs_info->csum_root, sums);
07d400a6
YZ
805 list_del(&sums->list);
806 kfree(sums);
807 }
3650860b
JB
808 if (ret)
809 goto out;
07d400a6 810 } else {
b3b4aa74 811 btrfs_release_path(path);
07d400a6
YZ
812 }
813 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
814 /* inline extents are easy, we just overwrite them */
815 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
816 if (ret)
817 goto out;
07d400a6 818 }
e02119d5 819
4bc4bee4 820 inode_add_bytes(inode, nbytes);
3168021c 821update_inode:
b9959295 822 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
823out:
824 if (inode)
825 iput(inode);
826 return ret;
827}
828
829/*
830 * when cleaning up conflicts between the directory names in the
831 * subvolume, directory names in the log and directory names in the
832 * inode back references, we may have to unlink inodes from directories.
833 *
834 * This is a helper function to do the unlink of a specific directory
835 * item
836 */
837static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
838 struct btrfs_root *root,
839 struct btrfs_path *path,
207e7d92 840 struct btrfs_inode *dir,
e02119d5
CM
841 struct btrfs_dir_item *di)
842{
843 struct inode *inode;
844 char *name;
845 int name_len;
846 struct extent_buffer *leaf;
847 struct btrfs_key location;
848 int ret;
849
850 leaf = path->nodes[0];
851
852 btrfs_dir_item_key_to_cpu(leaf, di, &location);
853 name_len = btrfs_dir_name_len(leaf, di);
854 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 855 if (!name)
856 return -ENOMEM;
857
e02119d5 858 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 859 btrfs_release_path(path);
e02119d5
CM
860
861 inode = read_one_inode(root, location.objectid);
c00e9493 862 if (!inode) {
3650860b
JB
863 ret = -EIO;
864 goto out;
c00e9493 865 }
e02119d5 866
ec051c0f 867 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
868 if (ret)
869 goto out;
12fcfd22 870
207e7d92
NB
871 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
872 name_len);
3650860b
JB
873 if (ret)
874 goto out;
ada9af21 875 else
e5c304e6 876 ret = btrfs_run_delayed_items(trans);
3650860b 877out:
e02119d5 878 kfree(name);
e02119d5
CM
879 iput(inode);
880 return ret;
881}
882
883/*
884 * helper function to see if a given name and sequence number found
885 * in an inode back reference are already in a directory and correctly
886 * point to this inode
887 */
888static noinline int inode_in_dir(struct btrfs_root *root,
889 struct btrfs_path *path,
890 u64 dirid, u64 objectid, u64 index,
891 const char *name, int name_len)
892{
893 struct btrfs_dir_item *di;
894 struct btrfs_key location;
895 int match = 0;
896
897 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
898 index, name, name_len, 0);
899 if (di && !IS_ERR(di)) {
900 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
901 if (location.objectid != objectid)
902 goto out;
903 } else
904 goto out;
b3b4aa74 905 btrfs_release_path(path);
e02119d5
CM
906
907 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
908 if (di && !IS_ERR(di)) {
909 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
910 if (location.objectid != objectid)
911 goto out;
912 } else
913 goto out;
914 match = 1;
915out:
b3b4aa74 916 btrfs_release_path(path);
e02119d5
CM
917 return match;
918}
919
920/*
921 * helper function to check a log tree for a named back reference in
922 * an inode. This is used to decide if a back reference that is
923 * found in the subvolume conflicts with what we find in the log.
924 *
925 * inode backreferences may have multiple refs in a single item,
926 * during replay we process one reference at a time, and we don't
927 * want to delete valid links to a file from the subvolume if that
928 * link is also in the log.
929 */
930static noinline int backref_in_log(struct btrfs_root *log,
931 struct btrfs_key *key,
f186373f 932 u64 ref_objectid,
df8d116f 933 const char *name, int namelen)
e02119d5
CM
934{
935 struct btrfs_path *path;
936 struct btrfs_inode_ref *ref;
937 unsigned long ptr;
938 unsigned long ptr_end;
939 unsigned long name_ptr;
940 int found_name_len;
941 int item_size;
942 int ret;
943 int match = 0;
944
945 path = btrfs_alloc_path();
2a29edc6 946 if (!path)
947 return -ENOMEM;
948
e02119d5
CM
949 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
950 if (ret != 0)
951 goto out;
952
e02119d5 953 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
954
955 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1f250e92
FM
956 if (btrfs_find_name_in_ext_backref(path->nodes[0],
957 path->slots[0],
958 ref_objectid,
f186373f
MF
959 name, namelen, NULL))
960 match = 1;
961
962 goto out;
963 }
964
965 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
966 ptr_end = ptr + item_size;
967 while (ptr < ptr_end) {
968 ref = (struct btrfs_inode_ref *)ptr;
969 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
970 if (found_name_len == namelen) {
971 name_ptr = (unsigned long)(ref + 1);
972 ret = memcmp_extent_buffer(path->nodes[0], name,
973 name_ptr, namelen);
974 if (ret == 0) {
975 match = 1;
976 goto out;
977 }
978 }
979 ptr = (unsigned long)(ref + 1) + found_name_len;
980 }
981out:
982 btrfs_free_path(path);
983 return match;
984}
985
5a1d7843 986static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 987 struct btrfs_root *root,
e02119d5 988 struct btrfs_path *path,
5a1d7843 989 struct btrfs_root *log_root,
94c91a1f
NB
990 struct btrfs_inode *dir,
991 struct btrfs_inode *inode,
f186373f
MF
992 u64 inode_objectid, u64 parent_objectid,
993 u64 ref_index, char *name, int namelen,
994 int *search_done)
e02119d5 995{
34f3e4f2 996 int ret;
f186373f
MF
997 char *victim_name;
998 int victim_name_len;
999 struct extent_buffer *leaf;
5a1d7843 1000 struct btrfs_dir_item *di;
f186373f
MF
1001 struct btrfs_key search_key;
1002 struct btrfs_inode_extref *extref;
c622ae60 1003
f186373f
MF
1004again:
1005 /* Search old style refs */
1006 search_key.objectid = inode_objectid;
1007 search_key.type = BTRFS_INODE_REF_KEY;
1008 search_key.offset = parent_objectid;
1009 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1010 if (ret == 0) {
e02119d5
CM
1011 struct btrfs_inode_ref *victim_ref;
1012 unsigned long ptr;
1013 unsigned long ptr_end;
f186373f
MF
1014
1015 leaf = path->nodes[0];
e02119d5
CM
1016
1017 /* are we trying to overwrite a back ref for the root directory
1018 * if so, just jump out, we're done
1019 */
f186373f 1020 if (search_key.objectid == search_key.offset)
5a1d7843 1021 return 1;
e02119d5
CM
1022
1023 /* check all the names in this back reference to see
1024 * if they are in the log. if so, we allow them to stay
1025 * otherwise they must be unlinked as a conflict
1026 */
1027 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1028 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1029 while (ptr < ptr_end) {
e02119d5
CM
1030 victim_ref = (struct btrfs_inode_ref *)ptr;
1031 victim_name_len = btrfs_inode_ref_name_len(leaf,
1032 victim_ref);
1033 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1034 if (!victim_name)
1035 return -ENOMEM;
e02119d5
CM
1036
1037 read_extent_buffer(leaf, victim_name,
1038 (unsigned long)(victim_ref + 1),
1039 victim_name_len);
1040
f186373f
MF
1041 if (!backref_in_log(log_root, &search_key,
1042 parent_objectid,
1043 victim_name,
e02119d5 1044 victim_name_len)) {
94c91a1f 1045 inc_nlink(&inode->vfs_inode);
b3b4aa74 1046 btrfs_release_path(path);
12fcfd22 1047
94c91a1f 1048 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1049 victim_name, victim_name_len);
f186373f 1050 kfree(victim_name);
3650860b
JB
1051 if (ret)
1052 return ret;
e5c304e6 1053 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1054 if (ret)
1055 return ret;
f186373f
MF
1056 *search_done = 1;
1057 goto again;
e02119d5
CM
1058 }
1059 kfree(victim_name);
f186373f 1060
e02119d5
CM
1061 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1062 }
e02119d5 1063
c622ae60 1064 /*
1065 * NOTE: we have searched root tree and checked the
bb7ab3b9 1066 * corresponding ref, it does not need to check again.
c622ae60 1067 */
5a1d7843 1068 *search_done = 1;
e02119d5 1069 }
b3b4aa74 1070 btrfs_release_path(path);
e02119d5 1071
f186373f
MF
1072 /* Same search but for extended refs */
1073 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1074 inode_objectid, parent_objectid, 0,
1075 0);
1076 if (!IS_ERR_OR_NULL(extref)) {
1077 u32 item_size;
1078 u32 cur_offset = 0;
1079 unsigned long base;
1080 struct inode *victim_parent;
1081
1082 leaf = path->nodes[0];
1083
1084 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1085 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1086
1087 while (cur_offset < item_size) {
dd9ef135 1088 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1089
1090 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1091
1092 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1093 goto next;
1094
1095 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1096 if (!victim_name)
1097 return -ENOMEM;
f186373f
MF
1098 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1099 victim_name_len);
1100
1101 search_key.objectid = inode_objectid;
1102 search_key.type = BTRFS_INODE_EXTREF_KEY;
1103 search_key.offset = btrfs_extref_hash(parent_objectid,
1104 victim_name,
1105 victim_name_len);
1106 ret = 0;
1107 if (!backref_in_log(log_root, &search_key,
1108 parent_objectid, victim_name,
1109 victim_name_len)) {
1110 ret = -ENOENT;
1111 victim_parent = read_one_inode(root,
94c91a1f 1112 parent_objectid);
f186373f 1113 if (victim_parent) {
94c91a1f 1114 inc_nlink(&inode->vfs_inode);
f186373f
MF
1115 btrfs_release_path(path);
1116
1117 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1118 BTRFS_I(victim_parent),
94c91a1f 1119 inode,
4ec5934e
NB
1120 victim_name,
1121 victim_name_len);
ada9af21
FDBM
1122 if (!ret)
1123 ret = btrfs_run_delayed_items(
e5c304e6 1124 trans);
f186373f 1125 }
f186373f
MF
1126 iput(victim_parent);
1127 kfree(victim_name);
3650860b
JB
1128 if (ret)
1129 return ret;
f186373f
MF
1130 *search_done = 1;
1131 goto again;
1132 }
1133 kfree(victim_name);
f186373f
MF
1134next:
1135 cur_offset += victim_name_len + sizeof(*extref);
1136 }
1137 *search_done = 1;
1138 }
1139 btrfs_release_path(path);
1140
34f3e4f2 1141 /* look for a conflicting sequence number */
94c91a1f 1142 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1143 ref_index, name, namelen, 0);
34f3e4f2 1144 if (di && !IS_ERR(di)) {
94c91a1f 1145 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1146 if (ret)
1147 return ret;
34f3e4f2 1148 }
1149 btrfs_release_path(path);
1150
1151 /* look for a conflicing name */
94c91a1f 1152 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1153 name, namelen, 0);
1154 if (di && !IS_ERR(di)) {
94c91a1f 1155 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1156 if (ret)
1157 return ret;
34f3e4f2 1158 }
1159 btrfs_release_path(path);
1160
5a1d7843
JS
1161 return 0;
1162}
e02119d5 1163
bae15d95
QW
1164static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1165 u32 *namelen, char **name, u64 *index,
1166 u64 *parent_objectid)
f186373f
MF
1167{
1168 struct btrfs_inode_extref *extref;
1169
1170 extref = (struct btrfs_inode_extref *)ref_ptr;
1171
1172 *namelen = btrfs_inode_extref_name_len(eb, extref);
1173 *name = kmalloc(*namelen, GFP_NOFS);
1174 if (*name == NULL)
1175 return -ENOMEM;
1176
1177 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1178 *namelen);
1179
1f250e92
FM
1180 if (index)
1181 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1182 if (parent_objectid)
1183 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1184
1185 return 0;
1186}
1187
bae15d95
QW
1188static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1189 u32 *namelen, char **name, u64 *index)
f186373f
MF
1190{
1191 struct btrfs_inode_ref *ref;
1192
1193 ref = (struct btrfs_inode_ref *)ref_ptr;
1194
1195 *namelen = btrfs_inode_ref_name_len(eb, ref);
1196 *name = kmalloc(*namelen, GFP_NOFS);
1197 if (*name == NULL)
1198 return -ENOMEM;
1199
1200 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1201
1f250e92
FM
1202 if (index)
1203 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1204
1205 return 0;
1206}
1207
1f250e92
FM
1208/*
1209 * Take an inode reference item from the log tree and iterate all names from the
1210 * inode reference item in the subvolume tree with the same key (if it exists).
1211 * For any name that is not in the inode reference item from the log tree, do a
1212 * proper unlink of that name (that is, remove its entry from the inode
1213 * reference item and both dir index keys).
1214 */
1215static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1216 struct btrfs_root *root,
1217 struct btrfs_path *path,
1218 struct btrfs_inode *inode,
1219 struct extent_buffer *log_eb,
1220 int log_slot,
1221 struct btrfs_key *key)
1222{
1223 int ret;
1224 unsigned long ref_ptr;
1225 unsigned long ref_end;
1226 struct extent_buffer *eb;
1227
1228again:
1229 btrfs_release_path(path);
1230 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1231 if (ret > 0) {
1232 ret = 0;
1233 goto out;
1234 }
1235 if (ret < 0)
1236 goto out;
1237
1238 eb = path->nodes[0];
1239 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1240 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1241 while (ref_ptr < ref_end) {
1242 char *name = NULL;
1243 int namelen;
1244 u64 parent_id;
1245
1246 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1247 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1248 NULL, &parent_id);
1249 } else {
1250 parent_id = key->offset;
1251 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1252 NULL);
1253 }
1254 if (ret)
1255 goto out;
1256
1257 if (key->type == BTRFS_INODE_EXTREF_KEY)
1258 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1259 parent_id, name,
1260 namelen, NULL);
1261 else
1262 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1263 namelen, NULL);
1264
1265 if (!ret) {
1266 struct inode *dir;
1267
1268 btrfs_release_path(path);
1269 dir = read_one_inode(root, parent_id);
1270 if (!dir) {
1271 ret = -ENOENT;
1272 kfree(name);
1273 goto out;
1274 }
1275 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1276 inode, name, namelen);
1277 kfree(name);
1278 iput(dir);
1279 if (ret)
1280 goto out;
1281 goto again;
1282 }
1283
1284 kfree(name);
1285 ref_ptr += namelen;
1286 if (key->type == BTRFS_INODE_EXTREF_KEY)
1287 ref_ptr += sizeof(struct btrfs_inode_extref);
1288 else
1289 ref_ptr += sizeof(struct btrfs_inode_ref);
1290 }
1291 ret = 0;
1292 out:
1293 btrfs_release_path(path);
1294 return ret;
1295}
1296
5a1d7843
JS
1297/*
1298 * replay one inode back reference item found in the log tree.
1299 * eb, slot and key refer to the buffer and key found in the log tree.
1300 * root is the destination we are replaying into, and path is for temp
1301 * use by this function. (it should be released on return).
1302 */
1303static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1304 struct btrfs_root *root,
1305 struct btrfs_root *log,
1306 struct btrfs_path *path,
1307 struct extent_buffer *eb, int slot,
1308 struct btrfs_key *key)
1309{
03b2f08b
GB
1310 struct inode *dir = NULL;
1311 struct inode *inode = NULL;
5a1d7843
JS
1312 unsigned long ref_ptr;
1313 unsigned long ref_end;
03b2f08b 1314 char *name = NULL;
5a1d7843
JS
1315 int namelen;
1316 int ret;
1317 int search_done = 0;
f186373f
MF
1318 int log_ref_ver = 0;
1319 u64 parent_objectid;
1320 u64 inode_objectid;
f46dbe3d 1321 u64 ref_index = 0;
f186373f
MF
1322 int ref_struct_size;
1323
1324 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1325 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1326
1327 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1328 struct btrfs_inode_extref *r;
1329
1330 ref_struct_size = sizeof(struct btrfs_inode_extref);
1331 log_ref_ver = 1;
1332 r = (struct btrfs_inode_extref *)ref_ptr;
1333 parent_objectid = btrfs_inode_extref_parent(eb, r);
1334 } else {
1335 ref_struct_size = sizeof(struct btrfs_inode_ref);
1336 parent_objectid = key->offset;
1337 }
1338 inode_objectid = key->objectid;
e02119d5 1339
5a1d7843
JS
1340 /*
1341 * it is possible that we didn't log all the parent directories
1342 * for a given inode. If we don't find the dir, just don't
1343 * copy the back ref in. The link count fixup code will take
1344 * care of the rest
1345 */
f186373f 1346 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1347 if (!dir) {
1348 ret = -ENOENT;
1349 goto out;
1350 }
5a1d7843 1351
f186373f 1352 inode = read_one_inode(root, inode_objectid);
5a1d7843 1353 if (!inode) {
03b2f08b
GB
1354 ret = -EIO;
1355 goto out;
5a1d7843
JS
1356 }
1357
5a1d7843 1358 while (ref_ptr < ref_end) {
f186373f 1359 if (log_ref_ver) {
bae15d95
QW
1360 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1361 &ref_index, &parent_objectid);
f186373f
MF
1362 /*
1363 * parent object can change from one array
1364 * item to another.
1365 */
1366 if (!dir)
1367 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1368 if (!dir) {
1369 ret = -ENOENT;
1370 goto out;
1371 }
f186373f 1372 } else {
bae15d95
QW
1373 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1374 &ref_index);
f186373f
MF
1375 }
1376 if (ret)
03b2f08b 1377 goto out;
5a1d7843
JS
1378
1379 /* if we already have a perfect match, we're done */
f85b7379
DS
1380 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1381 btrfs_ino(BTRFS_I(inode)), ref_index,
1382 name, namelen)) {
5a1d7843
JS
1383 /*
1384 * look for a conflicting back reference in the
1385 * metadata. if we find one we have to unlink that name
1386 * of the file before we add our new link. Later on, we
1387 * overwrite any existing back reference, and we don't
1388 * want to create dangling pointers in the directory.
1389 */
1390
1391 if (!search_done) {
1392 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1393 BTRFS_I(dir),
d75eefdf 1394 BTRFS_I(inode),
f186373f
MF
1395 inode_objectid,
1396 parent_objectid,
1397 ref_index, name, namelen,
5a1d7843 1398 &search_done);
03b2f08b
GB
1399 if (ret) {
1400 if (ret == 1)
1401 ret = 0;
3650860b
JB
1402 goto out;
1403 }
5a1d7843
JS
1404 }
1405
1406 /* insert our name */
db0a669f
NB
1407 ret = btrfs_add_link(trans, BTRFS_I(dir),
1408 BTRFS_I(inode),
1409 name, namelen, 0, ref_index);
3650860b
JB
1410 if (ret)
1411 goto out;
5a1d7843
JS
1412
1413 btrfs_update_inode(trans, root, inode);
1414 }
1415
f186373f 1416 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1417 kfree(name);
03b2f08b 1418 name = NULL;
f186373f
MF
1419 if (log_ref_ver) {
1420 iput(dir);
1421 dir = NULL;
1422 }
5a1d7843 1423 }
e02119d5 1424
1f250e92
FM
1425 /*
1426 * Before we overwrite the inode reference item in the subvolume tree
1427 * with the item from the log tree, we must unlink all names from the
1428 * parent directory that are in the subvolume's tree inode reference
1429 * item, otherwise we end up with an inconsistent subvolume tree where
1430 * dir index entries exist for a name but there is no inode reference
1431 * item with the same name.
1432 */
1433 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1434 key);
1435 if (ret)
1436 goto out;
1437
e02119d5
CM
1438 /* finally write the back reference in the inode */
1439 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1440out:
b3b4aa74 1441 btrfs_release_path(path);
03b2f08b 1442 kfree(name);
e02119d5
CM
1443 iput(dir);
1444 iput(inode);
3650860b 1445 return ret;
e02119d5
CM
1446}
1447
c71bf099 1448static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1449 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1450{
1451 int ret;
381cf658 1452
9c4f61f0
DS
1453 ret = btrfs_insert_orphan_item(trans, root, ino);
1454 if (ret == -EEXIST)
1455 ret = 0;
381cf658 1456
c71bf099
YZ
1457 return ret;
1458}
1459
f186373f 1460static int count_inode_extrefs(struct btrfs_root *root,
36283658 1461 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1462{
1463 int ret = 0;
1464 int name_len;
1465 unsigned int nlink = 0;
1466 u32 item_size;
1467 u32 cur_offset = 0;
36283658 1468 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1469 u64 offset = 0;
1470 unsigned long ptr;
1471 struct btrfs_inode_extref *extref;
1472 struct extent_buffer *leaf;
1473
1474 while (1) {
1475 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1476 &extref, &offset);
1477 if (ret)
1478 break;
c71bf099 1479
f186373f
MF
1480 leaf = path->nodes[0];
1481 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1482 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1483 cur_offset = 0;
f186373f
MF
1484
1485 while (cur_offset < item_size) {
1486 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1487 name_len = btrfs_inode_extref_name_len(leaf, extref);
1488
1489 nlink++;
1490
1491 cur_offset += name_len + sizeof(*extref);
1492 }
1493
1494 offset++;
1495 btrfs_release_path(path);
1496 }
1497 btrfs_release_path(path);
1498
2c2c452b 1499 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1500 return ret;
1501 return nlink;
1502}
1503
1504static int count_inode_refs(struct btrfs_root *root,
f329e319 1505 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1506{
e02119d5
CM
1507 int ret;
1508 struct btrfs_key key;
f186373f 1509 unsigned int nlink = 0;
e02119d5
CM
1510 unsigned long ptr;
1511 unsigned long ptr_end;
1512 int name_len;
f329e319 1513 u64 ino = btrfs_ino(inode);
e02119d5 1514
33345d01 1515 key.objectid = ino;
e02119d5
CM
1516 key.type = BTRFS_INODE_REF_KEY;
1517 key.offset = (u64)-1;
1518
d397712b 1519 while (1) {
e02119d5
CM
1520 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1521 if (ret < 0)
1522 break;
1523 if (ret > 0) {
1524 if (path->slots[0] == 0)
1525 break;
1526 path->slots[0]--;
1527 }
e93ae26f 1528process_slot:
e02119d5
CM
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
33345d01 1531 if (key.objectid != ino ||
e02119d5
CM
1532 key.type != BTRFS_INODE_REF_KEY)
1533 break;
1534 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1535 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1536 path->slots[0]);
d397712b 1537 while (ptr < ptr_end) {
e02119d5
CM
1538 struct btrfs_inode_ref *ref;
1539
1540 ref = (struct btrfs_inode_ref *)ptr;
1541 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1542 ref);
1543 ptr = (unsigned long)(ref + 1) + name_len;
1544 nlink++;
1545 }
1546
1547 if (key.offset == 0)
1548 break;
e93ae26f
FDBM
1549 if (path->slots[0] > 0) {
1550 path->slots[0]--;
1551 goto process_slot;
1552 }
e02119d5 1553 key.offset--;
b3b4aa74 1554 btrfs_release_path(path);
e02119d5 1555 }
b3b4aa74 1556 btrfs_release_path(path);
f186373f
MF
1557
1558 return nlink;
1559}
1560
1561/*
1562 * There are a few corners where the link count of the file can't
1563 * be properly maintained during replay. So, instead of adding
1564 * lots of complexity to the log code, we just scan the backrefs
1565 * for any file that has been through replay.
1566 *
1567 * The scan will update the link count on the inode to reflect the
1568 * number of back refs found. If it goes down to zero, the iput
1569 * will free the inode.
1570 */
1571static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1572 struct btrfs_root *root,
1573 struct inode *inode)
1574{
1575 struct btrfs_path *path;
1576 int ret;
1577 u64 nlink = 0;
4a0cc7ca 1578 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1579
1580 path = btrfs_alloc_path();
1581 if (!path)
1582 return -ENOMEM;
1583
f329e319 1584 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1585 if (ret < 0)
1586 goto out;
1587
1588 nlink = ret;
1589
36283658 1590 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1591 if (ret < 0)
1592 goto out;
1593
1594 nlink += ret;
1595
1596 ret = 0;
1597
e02119d5 1598 if (nlink != inode->i_nlink) {
bfe86848 1599 set_nlink(inode, nlink);
e02119d5
CM
1600 btrfs_update_inode(trans, root, inode);
1601 }
8d5bf1cb 1602 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1603
c71bf099
YZ
1604 if (inode->i_nlink == 0) {
1605 if (S_ISDIR(inode->i_mode)) {
1606 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1607 ino, 1);
3650860b
JB
1608 if (ret)
1609 goto out;
c71bf099 1610 }
33345d01 1611 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1612 }
12fcfd22 1613
f186373f
MF
1614out:
1615 btrfs_free_path(path);
1616 return ret;
e02119d5
CM
1617}
1618
1619static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1620 struct btrfs_root *root,
1621 struct btrfs_path *path)
1622{
1623 int ret;
1624 struct btrfs_key key;
1625 struct inode *inode;
1626
1627 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1628 key.type = BTRFS_ORPHAN_ITEM_KEY;
1629 key.offset = (u64)-1;
d397712b 1630 while (1) {
e02119d5
CM
1631 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1632 if (ret < 0)
1633 break;
1634
1635 if (ret == 1) {
1636 if (path->slots[0] == 0)
1637 break;
1638 path->slots[0]--;
1639 }
1640
1641 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1642 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1643 key.type != BTRFS_ORPHAN_ITEM_KEY)
1644 break;
1645
1646 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1647 if (ret)
1648 goto out;
e02119d5 1649
b3b4aa74 1650 btrfs_release_path(path);
e02119d5 1651 inode = read_one_inode(root, key.offset);
c00e9493
TI
1652 if (!inode)
1653 return -EIO;
e02119d5
CM
1654
1655 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1656 iput(inode);
3650860b
JB
1657 if (ret)
1658 goto out;
e02119d5 1659
12fcfd22
CM
1660 /*
1661 * fixup on a directory may create new entries,
1662 * make sure we always look for the highset possible
1663 * offset
1664 */
1665 key.offset = (u64)-1;
e02119d5 1666 }
65a246c5
TI
1667 ret = 0;
1668out:
b3b4aa74 1669 btrfs_release_path(path);
65a246c5 1670 return ret;
e02119d5
CM
1671}
1672
1673
1674/*
1675 * record a given inode in the fixup dir so we can check its link
1676 * count when replay is done. The link count is incremented here
1677 * so the inode won't go away until we check it
1678 */
1679static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1680 struct btrfs_root *root,
1681 struct btrfs_path *path,
1682 u64 objectid)
1683{
1684 struct btrfs_key key;
1685 int ret = 0;
1686 struct inode *inode;
1687
1688 inode = read_one_inode(root, objectid);
c00e9493
TI
1689 if (!inode)
1690 return -EIO;
e02119d5
CM
1691
1692 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1693 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1694 key.offset = objectid;
1695
1696 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1697
b3b4aa74 1698 btrfs_release_path(path);
e02119d5 1699 if (ret == 0) {
9bf7a489
JB
1700 if (!inode->i_nlink)
1701 set_nlink(inode, 1);
1702 else
8b558c5f 1703 inc_nlink(inode);
b9959295 1704 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1705 } else if (ret == -EEXIST) {
1706 ret = 0;
1707 } else {
3650860b 1708 BUG(); /* Logic Error */
e02119d5
CM
1709 }
1710 iput(inode);
1711
1712 return ret;
1713}
1714
1715/*
1716 * when replaying the log for a directory, we only insert names
1717 * for inodes that actually exist. This means an fsync on a directory
1718 * does not implicitly fsync all the new files in it
1719 */
1720static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1721 struct btrfs_root *root,
e02119d5 1722 u64 dirid, u64 index,
60d53eb3 1723 char *name, int name_len,
e02119d5
CM
1724 struct btrfs_key *location)
1725{
1726 struct inode *inode;
1727 struct inode *dir;
1728 int ret;
1729
1730 inode = read_one_inode(root, location->objectid);
1731 if (!inode)
1732 return -ENOENT;
1733
1734 dir = read_one_inode(root, dirid);
1735 if (!dir) {
1736 iput(inode);
1737 return -EIO;
1738 }
d555438b 1739
db0a669f
NB
1740 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1741 name_len, 1, index);
e02119d5
CM
1742
1743 /* FIXME, put inode into FIXUP list */
1744
1745 iput(inode);
1746 iput(dir);
1747 return ret;
1748}
1749
df8d116f
FM
1750/*
1751 * Return true if an inode reference exists in the log for the given name,
1752 * inode and parent inode.
1753 */
1754static bool name_in_log_ref(struct btrfs_root *log_root,
1755 const char *name, const int name_len,
1756 const u64 dirid, const u64 ino)
1757{
1758 struct btrfs_key search_key;
1759
1760 search_key.objectid = ino;
1761 search_key.type = BTRFS_INODE_REF_KEY;
1762 search_key.offset = dirid;
1763 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1764 return true;
1765
1766 search_key.type = BTRFS_INODE_EXTREF_KEY;
1767 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1768 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1769 return true;
1770
1771 return false;
1772}
1773
e02119d5
CM
1774/*
1775 * take a single entry in a log directory item and replay it into
1776 * the subvolume.
1777 *
1778 * if a conflicting item exists in the subdirectory already,
1779 * the inode it points to is unlinked and put into the link count
1780 * fix up tree.
1781 *
1782 * If a name from the log points to a file or directory that does
1783 * not exist in the FS, it is skipped. fsyncs on directories
1784 * do not force down inodes inside that directory, just changes to the
1785 * names or unlinks in a directory.
bb53eda9
FM
1786 *
1787 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1788 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1789 */
1790static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1791 struct btrfs_root *root,
1792 struct btrfs_path *path,
1793 struct extent_buffer *eb,
1794 struct btrfs_dir_item *di,
1795 struct btrfs_key *key)
1796{
1797 char *name;
1798 int name_len;
1799 struct btrfs_dir_item *dst_di;
1800 struct btrfs_key found_key;
1801 struct btrfs_key log_key;
1802 struct inode *dir;
e02119d5 1803 u8 log_type;
4bef0848 1804 int exists;
3650860b 1805 int ret = 0;
d555438b 1806 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1807 bool name_added = false;
e02119d5
CM
1808
1809 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1810 if (!dir)
1811 return -EIO;
e02119d5
CM
1812
1813 name_len = btrfs_dir_name_len(eb, di);
1814 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1815 if (!name) {
1816 ret = -ENOMEM;
1817 goto out;
1818 }
2a29edc6 1819
e02119d5
CM
1820 log_type = btrfs_dir_type(eb, di);
1821 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1822 name_len);
1823
1824 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1825 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1826 if (exists == 0)
1827 exists = 1;
1828 else
1829 exists = 0;
b3b4aa74 1830 btrfs_release_path(path);
4bef0848 1831
e02119d5
CM
1832 if (key->type == BTRFS_DIR_ITEM_KEY) {
1833 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1834 name, name_len, 1);
d397712b 1835 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1836 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1837 key->objectid,
1838 key->offset, name,
1839 name_len, 1);
1840 } else {
3650860b
JB
1841 /* Corruption */
1842 ret = -EINVAL;
1843 goto out;
e02119d5 1844 }
c704005d 1845 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1846 /* we need a sequence number to insert, so we only
1847 * do inserts for the BTRFS_DIR_INDEX_KEY types
1848 */
1849 if (key->type != BTRFS_DIR_INDEX_KEY)
1850 goto out;
1851 goto insert;
1852 }
1853
1854 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1855 /* the existing item matches the logged item */
1856 if (found_key.objectid == log_key.objectid &&
1857 found_key.type == log_key.type &&
1858 found_key.offset == log_key.offset &&
1859 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1860 update_size = false;
e02119d5
CM
1861 goto out;
1862 }
1863
1864 /*
1865 * don't drop the conflicting directory entry if the inode
1866 * for the new entry doesn't exist
1867 */
4bef0848 1868 if (!exists)
e02119d5
CM
1869 goto out;
1870
207e7d92 1871 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
1872 if (ret)
1873 goto out;
e02119d5
CM
1874
1875 if (key->type == BTRFS_DIR_INDEX_KEY)
1876 goto insert;
1877out:
b3b4aa74 1878 btrfs_release_path(path);
d555438b 1879 if (!ret && update_size) {
6ef06d27 1880 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
1881 ret = btrfs_update_inode(trans, root, dir);
1882 }
e02119d5
CM
1883 kfree(name);
1884 iput(dir);
bb53eda9
FM
1885 if (!ret && name_added)
1886 ret = 1;
3650860b 1887 return ret;
e02119d5
CM
1888
1889insert:
df8d116f
FM
1890 if (name_in_log_ref(root->log_root, name, name_len,
1891 key->objectid, log_key.objectid)) {
1892 /* The dentry will be added later. */
1893 ret = 0;
1894 update_size = false;
1895 goto out;
1896 }
b3b4aa74 1897 btrfs_release_path(path);
60d53eb3
Z
1898 ret = insert_one_name(trans, root, key->objectid, key->offset,
1899 name, name_len, &log_key);
df8d116f 1900 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 1901 goto out;
bb53eda9
FM
1902 if (!ret)
1903 name_added = true;
d555438b 1904 update_size = false;
3650860b 1905 ret = 0;
e02119d5
CM
1906 goto out;
1907}
1908
1909/*
1910 * find all the names in a directory item and reconcile them into
1911 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1912 * one name in a directory item, but the same code gets used for
1913 * both directory index types
1914 */
1915static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1916 struct btrfs_root *root,
1917 struct btrfs_path *path,
1918 struct extent_buffer *eb, int slot,
1919 struct btrfs_key *key)
1920{
bb53eda9 1921 int ret = 0;
e02119d5
CM
1922 u32 item_size = btrfs_item_size_nr(eb, slot);
1923 struct btrfs_dir_item *di;
1924 int name_len;
1925 unsigned long ptr;
1926 unsigned long ptr_end;
bb53eda9 1927 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
1928
1929 ptr = btrfs_item_ptr_offset(eb, slot);
1930 ptr_end = ptr + item_size;
d397712b 1931 while (ptr < ptr_end) {
e02119d5
CM
1932 di = (struct btrfs_dir_item *)ptr;
1933 name_len = btrfs_dir_name_len(eb, di);
1934 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
1935 if (ret < 0)
1936 break;
e02119d5
CM
1937 ptr = (unsigned long)(di + 1);
1938 ptr += name_len;
bb53eda9
FM
1939
1940 /*
1941 * If this entry refers to a non-directory (directories can not
1942 * have a link count > 1) and it was added in the transaction
1943 * that was not committed, make sure we fixup the link count of
1944 * the inode it the entry points to. Otherwise something like
1945 * the following would result in a directory pointing to an
1946 * inode with a wrong link that does not account for this dir
1947 * entry:
1948 *
1949 * mkdir testdir
1950 * touch testdir/foo
1951 * touch testdir/bar
1952 * sync
1953 *
1954 * ln testdir/bar testdir/bar_link
1955 * ln testdir/foo testdir/foo_link
1956 * xfs_io -c "fsync" testdir/bar
1957 *
1958 * <power failure>
1959 *
1960 * mount fs, log replay happens
1961 *
1962 * File foo would remain with a link count of 1 when it has two
1963 * entries pointing to it in the directory testdir. This would
1964 * make it impossible to ever delete the parent directory has
1965 * it would result in stale dentries that can never be deleted.
1966 */
1967 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
1968 struct btrfs_key di_key;
1969
1970 if (!fixup_path) {
1971 fixup_path = btrfs_alloc_path();
1972 if (!fixup_path) {
1973 ret = -ENOMEM;
1974 break;
1975 }
1976 }
1977
1978 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1979 ret = link_to_fixup_dir(trans, root, fixup_path,
1980 di_key.objectid);
1981 if (ret)
1982 break;
1983 }
1984 ret = 0;
e02119d5 1985 }
bb53eda9
FM
1986 btrfs_free_path(fixup_path);
1987 return ret;
e02119d5
CM
1988}
1989
1990/*
1991 * directory replay has two parts. There are the standard directory
1992 * items in the log copied from the subvolume, and range items
1993 * created in the log while the subvolume was logged.
1994 *
1995 * The range items tell us which parts of the key space the log
1996 * is authoritative for. During replay, if a key in the subvolume
1997 * directory is in a logged range item, but not actually in the log
1998 * that means it was deleted from the directory before the fsync
1999 * and should be removed.
2000 */
2001static noinline int find_dir_range(struct btrfs_root *root,
2002 struct btrfs_path *path,
2003 u64 dirid, int key_type,
2004 u64 *start_ret, u64 *end_ret)
2005{
2006 struct btrfs_key key;
2007 u64 found_end;
2008 struct btrfs_dir_log_item *item;
2009 int ret;
2010 int nritems;
2011
2012 if (*start_ret == (u64)-1)
2013 return 1;
2014
2015 key.objectid = dirid;
2016 key.type = key_type;
2017 key.offset = *start_ret;
2018
2019 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2020 if (ret < 0)
2021 goto out;
2022 if (ret > 0) {
2023 if (path->slots[0] == 0)
2024 goto out;
2025 path->slots[0]--;
2026 }
2027 if (ret != 0)
2028 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2029
2030 if (key.type != key_type || key.objectid != dirid) {
2031 ret = 1;
2032 goto next;
2033 }
2034 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2035 struct btrfs_dir_log_item);
2036 found_end = btrfs_dir_log_end(path->nodes[0], item);
2037
2038 if (*start_ret >= key.offset && *start_ret <= found_end) {
2039 ret = 0;
2040 *start_ret = key.offset;
2041 *end_ret = found_end;
2042 goto out;
2043 }
2044 ret = 1;
2045next:
2046 /* check the next slot in the tree to see if it is a valid item */
2047 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2048 path->slots[0]++;
e02119d5
CM
2049 if (path->slots[0] >= nritems) {
2050 ret = btrfs_next_leaf(root, path);
2051 if (ret)
2052 goto out;
e02119d5
CM
2053 }
2054
2055 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2056
2057 if (key.type != key_type || key.objectid != dirid) {
2058 ret = 1;
2059 goto out;
2060 }
2061 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 struct btrfs_dir_log_item);
2063 found_end = btrfs_dir_log_end(path->nodes[0], item);
2064 *start_ret = key.offset;
2065 *end_ret = found_end;
2066 ret = 0;
2067out:
b3b4aa74 2068 btrfs_release_path(path);
e02119d5
CM
2069 return ret;
2070}
2071
2072/*
2073 * this looks for a given directory item in the log. If the directory
2074 * item is not in the log, the item is removed and the inode it points
2075 * to is unlinked
2076 */
2077static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2078 struct btrfs_root *root,
2079 struct btrfs_root *log,
2080 struct btrfs_path *path,
2081 struct btrfs_path *log_path,
2082 struct inode *dir,
2083 struct btrfs_key *dir_key)
2084{
2085 int ret;
2086 struct extent_buffer *eb;
2087 int slot;
2088 u32 item_size;
2089 struct btrfs_dir_item *di;
2090 struct btrfs_dir_item *log_di;
2091 int name_len;
2092 unsigned long ptr;
2093 unsigned long ptr_end;
2094 char *name;
2095 struct inode *inode;
2096 struct btrfs_key location;
2097
2098again:
2099 eb = path->nodes[0];
2100 slot = path->slots[0];
2101 item_size = btrfs_item_size_nr(eb, slot);
2102 ptr = btrfs_item_ptr_offset(eb, slot);
2103 ptr_end = ptr + item_size;
d397712b 2104 while (ptr < ptr_end) {
e02119d5
CM
2105 di = (struct btrfs_dir_item *)ptr;
2106 name_len = btrfs_dir_name_len(eb, di);
2107 name = kmalloc(name_len, GFP_NOFS);
2108 if (!name) {
2109 ret = -ENOMEM;
2110 goto out;
2111 }
2112 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2113 name_len);
2114 log_di = NULL;
12fcfd22 2115 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2116 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2117 dir_key->objectid,
2118 name, name_len, 0);
12fcfd22 2119 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2120 log_di = btrfs_lookup_dir_index_item(trans, log,
2121 log_path,
2122 dir_key->objectid,
2123 dir_key->offset,
2124 name, name_len, 0);
2125 }
269d040f 2126 if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
e02119d5 2127 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2128 btrfs_release_path(path);
2129 btrfs_release_path(log_path);
e02119d5 2130 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2131 if (!inode) {
2132 kfree(name);
2133 return -EIO;
2134 }
e02119d5
CM
2135
2136 ret = link_to_fixup_dir(trans, root,
2137 path, location.objectid);
3650860b
JB
2138 if (ret) {
2139 kfree(name);
2140 iput(inode);
2141 goto out;
2142 }
2143
8b558c5f 2144 inc_nlink(inode);
4ec5934e
NB
2145 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2146 BTRFS_I(inode), name, name_len);
3650860b 2147 if (!ret)
e5c304e6 2148 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2149 kfree(name);
2150 iput(inode);
3650860b
JB
2151 if (ret)
2152 goto out;
e02119d5
CM
2153
2154 /* there might still be more names under this key
2155 * check and repeat if required
2156 */
2157 ret = btrfs_search_slot(NULL, root, dir_key, path,
2158 0, 0);
2159 if (ret == 0)
2160 goto again;
2161 ret = 0;
2162 goto out;
269d040f
FDBM
2163 } else if (IS_ERR(log_di)) {
2164 kfree(name);
2165 return PTR_ERR(log_di);
e02119d5 2166 }
b3b4aa74 2167 btrfs_release_path(log_path);
e02119d5
CM
2168 kfree(name);
2169
2170 ptr = (unsigned long)(di + 1);
2171 ptr += name_len;
2172 }
2173 ret = 0;
2174out:
b3b4aa74
DS
2175 btrfs_release_path(path);
2176 btrfs_release_path(log_path);
e02119d5
CM
2177 return ret;
2178}
2179
4f764e51
FM
2180static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root,
2182 struct btrfs_root *log,
2183 struct btrfs_path *path,
2184 const u64 ino)
2185{
2186 struct btrfs_key search_key;
2187 struct btrfs_path *log_path;
2188 int i;
2189 int nritems;
2190 int ret;
2191
2192 log_path = btrfs_alloc_path();
2193 if (!log_path)
2194 return -ENOMEM;
2195
2196 search_key.objectid = ino;
2197 search_key.type = BTRFS_XATTR_ITEM_KEY;
2198 search_key.offset = 0;
2199again:
2200 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2201 if (ret < 0)
2202 goto out;
2203process_leaf:
2204 nritems = btrfs_header_nritems(path->nodes[0]);
2205 for (i = path->slots[0]; i < nritems; i++) {
2206 struct btrfs_key key;
2207 struct btrfs_dir_item *di;
2208 struct btrfs_dir_item *log_di;
2209 u32 total_size;
2210 u32 cur;
2211
2212 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2213 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2214 ret = 0;
2215 goto out;
2216 }
2217
2218 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2219 total_size = btrfs_item_size_nr(path->nodes[0], i);
2220 cur = 0;
2221 while (cur < total_size) {
2222 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2223 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2224 u32 this_len = sizeof(*di) + name_len + data_len;
2225 char *name;
2226
2227 name = kmalloc(name_len, GFP_NOFS);
2228 if (!name) {
2229 ret = -ENOMEM;
2230 goto out;
2231 }
2232 read_extent_buffer(path->nodes[0], name,
2233 (unsigned long)(di + 1), name_len);
2234
2235 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2236 name, name_len, 0);
2237 btrfs_release_path(log_path);
2238 if (!log_di) {
2239 /* Doesn't exist in log tree, so delete it. */
2240 btrfs_release_path(path);
2241 di = btrfs_lookup_xattr(trans, root, path, ino,
2242 name, name_len, -1);
2243 kfree(name);
2244 if (IS_ERR(di)) {
2245 ret = PTR_ERR(di);
2246 goto out;
2247 }
2248 ASSERT(di);
2249 ret = btrfs_delete_one_dir_name(trans, root,
2250 path, di);
2251 if (ret)
2252 goto out;
2253 btrfs_release_path(path);
2254 search_key = key;
2255 goto again;
2256 }
2257 kfree(name);
2258 if (IS_ERR(log_di)) {
2259 ret = PTR_ERR(log_di);
2260 goto out;
2261 }
2262 cur += this_len;
2263 di = (struct btrfs_dir_item *)((char *)di + this_len);
2264 }
2265 }
2266 ret = btrfs_next_leaf(root, path);
2267 if (ret > 0)
2268 ret = 0;
2269 else if (ret == 0)
2270 goto process_leaf;
2271out:
2272 btrfs_free_path(log_path);
2273 btrfs_release_path(path);
2274 return ret;
2275}
2276
2277
e02119d5
CM
2278/*
2279 * deletion replay happens before we copy any new directory items
2280 * out of the log or out of backreferences from inodes. It
2281 * scans the log to find ranges of keys that log is authoritative for,
2282 * and then scans the directory to find items in those ranges that are
2283 * not present in the log.
2284 *
2285 * Anything we don't find in the log is unlinked and removed from the
2286 * directory.
2287 */
2288static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2289 struct btrfs_root *root,
2290 struct btrfs_root *log,
2291 struct btrfs_path *path,
12fcfd22 2292 u64 dirid, int del_all)
e02119d5
CM
2293{
2294 u64 range_start;
2295 u64 range_end;
2296 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2297 int ret = 0;
2298 struct btrfs_key dir_key;
2299 struct btrfs_key found_key;
2300 struct btrfs_path *log_path;
2301 struct inode *dir;
2302
2303 dir_key.objectid = dirid;
2304 dir_key.type = BTRFS_DIR_ITEM_KEY;
2305 log_path = btrfs_alloc_path();
2306 if (!log_path)
2307 return -ENOMEM;
2308
2309 dir = read_one_inode(root, dirid);
2310 /* it isn't an error if the inode isn't there, that can happen
2311 * because we replay the deletes before we copy in the inode item
2312 * from the log
2313 */
2314 if (!dir) {
2315 btrfs_free_path(log_path);
2316 return 0;
2317 }
2318again:
2319 range_start = 0;
2320 range_end = 0;
d397712b 2321 while (1) {
12fcfd22
CM
2322 if (del_all)
2323 range_end = (u64)-1;
2324 else {
2325 ret = find_dir_range(log, path, dirid, key_type,
2326 &range_start, &range_end);
2327 if (ret != 0)
2328 break;
2329 }
e02119d5
CM
2330
2331 dir_key.offset = range_start;
d397712b 2332 while (1) {
e02119d5
CM
2333 int nritems;
2334 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2335 0, 0);
2336 if (ret < 0)
2337 goto out;
2338
2339 nritems = btrfs_header_nritems(path->nodes[0]);
2340 if (path->slots[0] >= nritems) {
2341 ret = btrfs_next_leaf(root, path);
b98def7c 2342 if (ret == 1)
e02119d5 2343 break;
b98def7c
LB
2344 else if (ret < 0)
2345 goto out;
e02119d5
CM
2346 }
2347 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2348 path->slots[0]);
2349 if (found_key.objectid != dirid ||
2350 found_key.type != dir_key.type)
2351 goto next_type;
2352
2353 if (found_key.offset > range_end)
2354 break;
2355
2356 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2357 log_path, dir,
2358 &found_key);
3650860b
JB
2359 if (ret)
2360 goto out;
e02119d5
CM
2361 if (found_key.offset == (u64)-1)
2362 break;
2363 dir_key.offset = found_key.offset + 1;
2364 }
b3b4aa74 2365 btrfs_release_path(path);
e02119d5
CM
2366 if (range_end == (u64)-1)
2367 break;
2368 range_start = range_end + 1;
2369 }
2370
2371next_type:
2372 ret = 0;
2373 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2374 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2375 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2376 btrfs_release_path(path);
e02119d5
CM
2377 goto again;
2378 }
2379out:
b3b4aa74 2380 btrfs_release_path(path);
e02119d5
CM
2381 btrfs_free_path(log_path);
2382 iput(dir);
2383 return ret;
2384}
2385
2386/*
2387 * the process_func used to replay items from the log tree. This
2388 * gets called in two different stages. The first stage just looks
2389 * for inodes and makes sure they are all copied into the subvolume.
2390 *
2391 * The second stage copies all the other item types from the log into
2392 * the subvolume. The two stage approach is slower, but gets rid of
2393 * lots of complexity around inodes referencing other inodes that exist
2394 * only in the log (references come from either directory items or inode
2395 * back refs).
2396 */
2397static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2398 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2399{
2400 int nritems;
2401 struct btrfs_path *path;
2402 struct btrfs_root *root = wc->replay_dest;
2403 struct btrfs_key key;
e02119d5
CM
2404 int i;
2405 int ret;
2406
581c1760 2407 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2408 if (ret)
2409 return ret;
e02119d5
CM
2410
2411 level = btrfs_header_level(eb);
2412
2413 if (level != 0)
2414 return 0;
2415
2416 path = btrfs_alloc_path();
1e5063d0
MF
2417 if (!path)
2418 return -ENOMEM;
e02119d5
CM
2419
2420 nritems = btrfs_header_nritems(eb);
2421 for (i = 0; i < nritems; i++) {
2422 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2423
2424 /* inode keys are done during the first stage */
2425 if (key.type == BTRFS_INODE_ITEM_KEY &&
2426 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2427 struct btrfs_inode_item *inode_item;
2428 u32 mode;
2429
2430 inode_item = btrfs_item_ptr(eb, i,
2431 struct btrfs_inode_item);
4f764e51
FM
2432 ret = replay_xattr_deletes(wc->trans, root, log,
2433 path, key.objectid);
2434 if (ret)
2435 break;
e02119d5
CM
2436 mode = btrfs_inode_mode(eb, inode_item);
2437 if (S_ISDIR(mode)) {
2438 ret = replay_dir_deletes(wc->trans,
12fcfd22 2439 root, log, path, key.objectid, 0);
b50c6e25
JB
2440 if (ret)
2441 break;
e02119d5
CM
2442 }
2443 ret = overwrite_item(wc->trans, root, path,
2444 eb, i, &key);
b50c6e25
JB
2445 if (ret)
2446 break;
e02119d5 2447
471d557a
FM
2448 /*
2449 * Before replaying extents, truncate the inode to its
2450 * size. We need to do it now and not after log replay
2451 * because before an fsync we can have prealloc extents
2452 * added beyond the inode's i_size. If we did it after,
2453 * through orphan cleanup for example, we would drop
2454 * those prealloc extents just after replaying them.
e02119d5
CM
2455 */
2456 if (S_ISREG(mode)) {
471d557a
FM
2457 struct inode *inode;
2458 u64 from;
2459
2460 inode = read_one_inode(root, key.objectid);
2461 if (!inode) {
2462 ret = -EIO;
2463 break;
2464 }
2465 from = ALIGN(i_size_read(inode),
2466 root->fs_info->sectorsize);
2467 ret = btrfs_drop_extents(wc->trans, root, inode,
2468 from, (u64)-1, 1);
2469 /*
2470 * If the nlink count is zero here, the iput
2471 * will free the inode. We bump it to make
2472 * sure it doesn't get freed until the link
2473 * count fixup is done.
2474 */
2475 if (!ret) {
2476 if (inode->i_nlink == 0)
2477 inc_nlink(inode);
2478 /* Update link count and nbytes. */
2479 ret = btrfs_update_inode(wc->trans,
2480 root, inode);
2481 }
2482 iput(inode);
b50c6e25
JB
2483 if (ret)
2484 break;
e02119d5 2485 }
c71bf099 2486
e02119d5
CM
2487 ret = link_to_fixup_dir(wc->trans, root,
2488 path, key.objectid);
b50c6e25
JB
2489 if (ret)
2490 break;
e02119d5 2491 }
dd8e7217
JB
2492
2493 if (key.type == BTRFS_DIR_INDEX_KEY &&
2494 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2495 ret = replay_one_dir_item(wc->trans, root, path,
2496 eb, i, &key);
2497 if (ret)
2498 break;
2499 }
2500
e02119d5
CM
2501 if (wc->stage < LOG_WALK_REPLAY_ALL)
2502 continue;
2503
2504 /* these keys are simply copied */
2505 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2506 ret = overwrite_item(wc->trans, root, path,
2507 eb, i, &key);
b50c6e25
JB
2508 if (ret)
2509 break;
2da1c669
LB
2510 } else if (key.type == BTRFS_INODE_REF_KEY ||
2511 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2512 ret = add_inode_ref(wc->trans, root, log, path,
2513 eb, i, &key);
b50c6e25
JB
2514 if (ret && ret != -ENOENT)
2515 break;
2516 ret = 0;
e02119d5
CM
2517 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2518 ret = replay_one_extent(wc->trans, root, path,
2519 eb, i, &key);
b50c6e25
JB
2520 if (ret)
2521 break;
dd8e7217 2522 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2523 ret = replay_one_dir_item(wc->trans, root, path,
2524 eb, i, &key);
b50c6e25
JB
2525 if (ret)
2526 break;
e02119d5
CM
2527 }
2528 }
2529 btrfs_free_path(path);
b50c6e25 2530 return ret;
e02119d5
CM
2531}
2532
d397712b 2533static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2534 struct btrfs_root *root,
2535 struct btrfs_path *path, int *level,
2536 struct walk_control *wc)
2537{
0b246afa 2538 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2539 u64 root_owner;
e02119d5
CM
2540 u64 bytenr;
2541 u64 ptr_gen;
2542 struct extent_buffer *next;
2543 struct extent_buffer *cur;
2544 struct extent_buffer *parent;
2545 u32 blocksize;
2546 int ret = 0;
2547
2548 WARN_ON(*level < 0);
2549 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2550
d397712b 2551 while (*level > 0) {
581c1760
QW
2552 struct btrfs_key first_key;
2553
e02119d5
CM
2554 WARN_ON(*level < 0);
2555 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2556 cur = path->nodes[*level];
2557
fae7f21c 2558 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2559
2560 if (path->slots[*level] >=
2561 btrfs_header_nritems(cur))
2562 break;
2563
2564 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2565 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2566 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2567 blocksize = fs_info->nodesize;
e02119d5
CM
2568
2569 parent = path->nodes[*level];
2570 root_owner = btrfs_header_owner(parent);
e02119d5 2571
2ff7e61e 2572 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2573 if (IS_ERR(next))
2574 return PTR_ERR(next);
e02119d5 2575
e02119d5 2576 if (*level == 1) {
581c1760
QW
2577 ret = wc->process_func(root, next, wc, ptr_gen,
2578 *level - 1);
b50c6e25
JB
2579 if (ret) {
2580 free_extent_buffer(next);
1e5063d0 2581 return ret;
b50c6e25 2582 }
4a500fd1 2583
e02119d5
CM
2584 path->slots[*level]++;
2585 if (wc->free) {
581c1760
QW
2586 ret = btrfs_read_buffer(next, ptr_gen,
2587 *level - 1, &first_key);
018642a1
TI
2588 if (ret) {
2589 free_extent_buffer(next);
2590 return ret;
2591 }
e02119d5 2592
681ae509
JB
2593 if (trans) {
2594 btrfs_tree_lock(next);
2595 btrfs_set_lock_blocking(next);
7c302b49 2596 clean_tree_block(fs_info, next);
681ae509
JB
2597 btrfs_wait_tree_block_writeback(next);
2598 btrfs_tree_unlock(next);
1846430c
LB
2599 } else {
2600 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2601 clear_extent_buffer_dirty(next);
681ae509 2602 }
e02119d5 2603
e02119d5
CM
2604 WARN_ON(root_owner !=
2605 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2606 ret = btrfs_free_and_pin_reserved_extent(
2607 fs_info, bytenr,
2608 blocksize);
3650860b
JB
2609 if (ret) {
2610 free_extent_buffer(next);
2611 return ret;
2612 }
e02119d5
CM
2613 }
2614 free_extent_buffer(next);
2615 continue;
2616 }
581c1760 2617 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2618 if (ret) {
2619 free_extent_buffer(next);
2620 return ret;
2621 }
e02119d5
CM
2622
2623 WARN_ON(*level <= 0);
2624 if (path->nodes[*level-1])
2625 free_extent_buffer(path->nodes[*level-1]);
2626 path->nodes[*level-1] = next;
2627 *level = btrfs_header_level(next);
2628 path->slots[*level] = 0;
2629 cond_resched();
2630 }
2631 WARN_ON(*level < 0);
2632 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2633
4a500fd1 2634 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2635
2636 cond_resched();
2637 return 0;
2638}
2639
d397712b 2640static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2641 struct btrfs_root *root,
2642 struct btrfs_path *path, int *level,
2643 struct walk_control *wc)
2644{
0b246afa 2645 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2646 u64 root_owner;
e02119d5
CM
2647 int i;
2648 int slot;
2649 int ret;
2650
d397712b 2651 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2652 slot = path->slots[i];
4a500fd1 2653 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2654 path->slots[i]++;
2655 *level = i;
2656 WARN_ON(*level == 0);
2657 return 0;
2658 } else {
31840ae1
ZY
2659 struct extent_buffer *parent;
2660 if (path->nodes[*level] == root->node)
2661 parent = path->nodes[*level];
2662 else
2663 parent = path->nodes[*level + 1];
2664
2665 root_owner = btrfs_header_owner(parent);
1e5063d0 2666 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2667 btrfs_header_generation(path->nodes[*level]),
2668 *level);
1e5063d0
MF
2669 if (ret)
2670 return ret;
2671
e02119d5
CM
2672 if (wc->free) {
2673 struct extent_buffer *next;
2674
2675 next = path->nodes[*level];
2676
681ae509
JB
2677 if (trans) {
2678 btrfs_tree_lock(next);
2679 btrfs_set_lock_blocking(next);
7c302b49 2680 clean_tree_block(fs_info, next);
681ae509
JB
2681 btrfs_wait_tree_block_writeback(next);
2682 btrfs_tree_unlock(next);
1846430c
LB
2683 } else {
2684 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2685 clear_extent_buffer_dirty(next);
681ae509 2686 }
e02119d5 2687
e02119d5 2688 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2689 ret = btrfs_free_and_pin_reserved_extent(
2690 fs_info,
e02119d5 2691 path->nodes[*level]->start,
d00aff00 2692 path->nodes[*level]->len);
3650860b
JB
2693 if (ret)
2694 return ret;
e02119d5
CM
2695 }
2696 free_extent_buffer(path->nodes[*level]);
2697 path->nodes[*level] = NULL;
2698 *level = i + 1;
2699 }
2700 }
2701 return 1;
2702}
2703
2704/*
2705 * drop the reference count on the tree rooted at 'snap'. This traverses
2706 * the tree freeing any blocks that have a ref count of zero after being
2707 * decremented.
2708 */
2709static int walk_log_tree(struct btrfs_trans_handle *trans,
2710 struct btrfs_root *log, struct walk_control *wc)
2711{
2ff7e61e 2712 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2713 int ret = 0;
2714 int wret;
2715 int level;
2716 struct btrfs_path *path;
e02119d5
CM
2717 int orig_level;
2718
2719 path = btrfs_alloc_path();
db5b493a
TI
2720 if (!path)
2721 return -ENOMEM;
e02119d5
CM
2722
2723 level = btrfs_header_level(log->node);
2724 orig_level = level;
2725 path->nodes[level] = log->node;
2726 extent_buffer_get(log->node);
2727 path->slots[level] = 0;
2728
d397712b 2729 while (1) {
e02119d5
CM
2730 wret = walk_down_log_tree(trans, log, path, &level, wc);
2731 if (wret > 0)
2732 break;
79787eaa 2733 if (wret < 0) {
e02119d5 2734 ret = wret;
79787eaa
JM
2735 goto out;
2736 }
e02119d5
CM
2737
2738 wret = walk_up_log_tree(trans, log, path, &level, wc);
2739 if (wret > 0)
2740 break;
79787eaa 2741 if (wret < 0) {
e02119d5 2742 ret = wret;
79787eaa
JM
2743 goto out;
2744 }
e02119d5
CM
2745 }
2746
2747 /* was the root node processed? if not, catch it here */
2748 if (path->nodes[orig_level]) {
79787eaa 2749 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2750 btrfs_header_generation(path->nodes[orig_level]),
2751 orig_level);
79787eaa
JM
2752 if (ret)
2753 goto out;
e02119d5
CM
2754 if (wc->free) {
2755 struct extent_buffer *next;
2756
2757 next = path->nodes[orig_level];
2758
681ae509
JB
2759 if (trans) {
2760 btrfs_tree_lock(next);
2761 btrfs_set_lock_blocking(next);
7c302b49 2762 clean_tree_block(fs_info, next);
681ae509
JB
2763 btrfs_wait_tree_block_writeback(next);
2764 btrfs_tree_unlock(next);
1846430c
LB
2765 } else {
2766 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2767 clear_extent_buffer_dirty(next);
681ae509 2768 }
e02119d5 2769
e02119d5
CM
2770 WARN_ON(log->root_key.objectid !=
2771 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2772 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2773 next->start, next->len);
3650860b
JB
2774 if (ret)
2775 goto out;
e02119d5
CM
2776 }
2777 }
2778
79787eaa 2779out:
e02119d5 2780 btrfs_free_path(path);
e02119d5
CM
2781 return ret;
2782}
2783
7237f183
YZ
2784/*
2785 * helper function to update the item for a given subvolumes log root
2786 * in the tree of log roots
2787 */
2788static int update_log_root(struct btrfs_trans_handle *trans,
2789 struct btrfs_root *log)
2790{
0b246afa 2791 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2792 int ret;
2793
2794 if (log->log_transid == 1) {
2795 /* insert root item on the first sync */
0b246afa 2796 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
7237f183
YZ
2797 &log->root_key, &log->root_item);
2798 } else {
0b246afa 2799 ret = btrfs_update_root(trans, fs_info->log_root_tree,
7237f183
YZ
2800 &log->root_key, &log->root_item);
2801 }
2802 return ret;
2803}
2804
60d53eb3 2805static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2806{
2807 DEFINE_WAIT(wait);
7237f183 2808 int index = transid % 2;
e02119d5 2809
7237f183
YZ
2810 /*
2811 * we only allow two pending log transactions at a time,
2812 * so we know that if ours is more than 2 older than the
2813 * current transaction, we're done
2814 */
49e83f57 2815 for (;;) {
7237f183
YZ
2816 prepare_to_wait(&root->log_commit_wait[index],
2817 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2818
49e83f57
LB
2819 if (!(root->log_transid_committed < transid &&
2820 atomic_read(&root->log_commit[index])))
2821 break;
12fcfd22 2822
49e83f57
LB
2823 mutex_unlock(&root->log_mutex);
2824 schedule();
7237f183 2825 mutex_lock(&root->log_mutex);
49e83f57
LB
2826 }
2827 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2828}
2829
60d53eb3 2830static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2831{
2832 DEFINE_WAIT(wait);
8b050d35 2833
49e83f57
LB
2834 for (;;) {
2835 prepare_to_wait(&root->log_writer_wait, &wait,
2836 TASK_UNINTERRUPTIBLE);
2837 if (!atomic_read(&root->log_writers))
2838 break;
2839
7237f183 2840 mutex_unlock(&root->log_mutex);
49e83f57 2841 schedule();
575849ec 2842 mutex_lock(&root->log_mutex);
7237f183 2843 }
49e83f57 2844 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2845}
2846
8b050d35
MX
2847static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2848 struct btrfs_log_ctx *ctx)
2849{
2850 if (!ctx)
2851 return;
2852
2853 mutex_lock(&root->log_mutex);
2854 list_del_init(&ctx->list);
2855 mutex_unlock(&root->log_mutex);
2856}
2857
2858/*
2859 * Invoked in log mutex context, or be sure there is no other task which
2860 * can access the list.
2861 */
2862static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2863 int index, int error)
2864{
2865 struct btrfs_log_ctx *ctx;
570dd450 2866 struct btrfs_log_ctx *safe;
8b050d35 2867
570dd450
CM
2868 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2869 list_del_init(&ctx->list);
8b050d35 2870 ctx->log_ret = error;
570dd450 2871 }
8b050d35
MX
2872
2873 INIT_LIST_HEAD(&root->log_ctxs[index]);
2874}
2875
e02119d5
CM
2876/*
2877 * btrfs_sync_log does sends a given tree log down to the disk and
2878 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
2879 * you know that any inodes previously logged are safely on disk only
2880 * if it returns 0.
2881 *
2882 * Any other return value means you need to call btrfs_commit_transaction.
2883 * Some of the edge cases for fsyncing directories that have had unlinks
2884 * or renames done in the past mean that sometimes the only safe
2885 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2886 * that has happened.
e02119d5
CM
2887 */
2888int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 2889 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 2890{
7237f183
YZ
2891 int index1;
2892 int index2;
8cef4e16 2893 int mark;
e02119d5 2894 int ret;
0b246afa 2895 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2896 struct btrfs_root *log = root->log_root;
0b246afa 2897 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
bb14a59b 2898 int log_transid = 0;
8b050d35 2899 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 2900 struct blk_plug plug;
e02119d5 2901
7237f183 2902 mutex_lock(&root->log_mutex);
d1433deb
MX
2903 log_transid = ctx->log_transid;
2904 if (root->log_transid_committed >= log_transid) {
2905 mutex_unlock(&root->log_mutex);
2906 return ctx->log_ret;
2907 }
2908
2909 index1 = log_transid % 2;
7237f183 2910 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 2911 wait_log_commit(root, log_transid);
7237f183 2912 mutex_unlock(&root->log_mutex);
8b050d35 2913 return ctx->log_ret;
e02119d5 2914 }
d1433deb 2915 ASSERT(log_transid == root->log_transid);
7237f183
YZ
2916 atomic_set(&root->log_commit[index1], 1);
2917
2918 /* wait for previous tree log sync to complete */
2919 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 2920 wait_log_commit(root, log_transid - 1);
48cab2e0 2921
86df7eb9 2922 while (1) {
2ecb7923 2923 int batch = atomic_read(&root->log_batch);
cd354ad6 2924 /* when we're on an ssd, just kick the log commit out */
0b246afa 2925 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 2926 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
2927 mutex_unlock(&root->log_mutex);
2928 schedule_timeout_uninterruptible(1);
2929 mutex_lock(&root->log_mutex);
2930 }
60d53eb3 2931 wait_for_writer(root);
2ecb7923 2932 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
2933 break;
2934 }
e02119d5 2935
12fcfd22 2936 /* bail out if we need to do a full commit */
0b246afa 2937 if (btrfs_need_log_full_commit(fs_info, trans)) {
12fcfd22 2938 ret = -EAGAIN;
2ab28f32 2939 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
2940 mutex_unlock(&root->log_mutex);
2941 goto out;
2942 }
2943
8cef4e16
YZ
2944 if (log_transid % 2 == 0)
2945 mark = EXTENT_DIRTY;
2946 else
2947 mark = EXTENT_NEW;
2948
690587d1
CM
2949 /* we start IO on all the marked extents here, but we don't actually
2950 * wait for them until later.
2951 */
c6adc9cc 2952 blk_start_plug(&plug);
2ff7e61e 2953 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 2954 if (ret) {
c6adc9cc 2955 blk_finish_plug(&plug);
66642832 2956 btrfs_abort_transaction(trans, ret);
2ab28f32 2957 btrfs_free_logged_extents(log, log_transid);
0b246afa 2958 btrfs_set_log_full_commit(fs_info, trans);
79787eaa
JM
2959 mutex_unlock(&root->log_mutex);
2960 goto out;
2961 }
7237f183 2962
5d4f98a2 2963 btrfs_set_root_node(&log->root_item, log->node);
7237f183 2964
7237f183
YZ
2965 root->log_transid++;
2966 log->log_transid = root->log_transid;
ff782e0a 2967 root->log_start_pid = 0;
7237f183 2968 /*
8cef4e16
YZ
2969 * IO has been started, blocks of the log tree have WRITTEN flag set
2970 * in their headers. new modifications of the log will be written to
2971 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
2972 */
2973 mutex_unlock(&root->log_mutex);
2974
28a23593 2975 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 2976
7237f183 2977 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 2978 atomic_inc(&log_root_tree->log_batch);
7237f183 2979 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
2980
2981 index2 = log_root_tree->log_transid % 2;
2982 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
2983 root_log_ctx.log_transid = log_root_tree->log_transid;
2984
7237f183
YZ
2985 mutex_unlock(&log_root_tree->log_mutex);
2986
2987 ret = update_log_root(trans, log);
7237f183
YZ
2988
2989 mutex_lock(&log_root_tree->log_mutex);
2990 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
779adf0f
DS
2991 /*
2992 * Implicit memory barrier after atomic_dec_and_test
2993 */
7237f183
YZ
2994 if (waitqueue_active(&log_root_tree->log_writer_wait))
2995 wake_up(&log_root_tree->log_writer_wait);
2996 }
2997
4a500fd1 2998 if (ret) {
d1433deb
MX
2999 if (!list_empty(&root_log_ctx.list))
3000 list_del_init(&root_log_ctx.list);
3001
c6adc9cc 3002 blk_finish_plug(&plug);
0b246afa 3003 btrfs_set_log_full_commit(fs_info, trans);
995946dd 3004
79787eaa 3005 if (ret != -ENOSPC) {
66642832 3006 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3007 mutex_unlock(&log_root_tree->log_mutex);
3008 goto out;
3009 }
bf89d38f 3010 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 3011 btrfs_free_logged_extents(log, log_transid);
4a500fd1
YZ
3012 mutex_unlock(&log_root_tree->log_mutex);
3013 ret = -EAGAIN;
3014 goto out;
3015 }
3016
d1433deb 3017 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3018 blk_finish_plug(&plug);
cbd60aa7 3019 list_del_init(&root_log_ctx.list);
d1433deb
MX
3020 mutex_unlock(&log_root_tree->log_mutex);
3021 ret = root_log_ctx.log_ret;
3022 goto out;
3023 }
8b050d35 3024
d1433deb 3025 index2 = root_log_ctx.log_transid % 2;
7237f183 3026 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3027 blk_finish_plug(&plug);
bf89d38f 3028 ret = btrfs_wait_tree_log_extents(log, mark);
50d9aa99 3029 btrfs_wait_logged_extents(trans, log, log_transid);
60d53eb3 3030 wait_log_commit(log_root_tree,
d1433deb 3031 root_log_ctx.log_transid);
7237f183 3032 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3033 if (!ret)
3034 ret = root_log_ctx.log_ret;
7237f183
YZ
3035 goto out;
3036 }
d1433deb 3037 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3038 atomic_set(&log_root_tree->log_commit[index2], 1);
3039
12fcfd22 3040 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3041 wait_log_commit(log_root_tree,
d1433deb 3042 root_log_ctx.log_transid - 1);
12fcfd22
CM
3043 }
3044
60d53eb3 3045 wait_for_writer(log_root_tree);
7237f183 3046
12fcfd22
CM
3047 /*
3048 * now that we've moved on to the tree of log tree roots,
3049 * check the full commit flag again
3050 */
0b246afa 3051 if (btrfs_need_log_full_commit(fs_info, trans)) {
c6adc9cc 3052 blk_finish_plug(&plug);
bf89d38f 3053 btrfs_wait_tree_log_extents(log, mark);
2ab28f32 3054 btrfs_free_logged_extents(log, log_transid);
12fcfd22
CM
3055 mutex_unlock(&log_root_tree->log_mutex);
3056 ret = -EAGAIN;
3057 goto out_wake_log_root;
3058 }
7237f183 3059
2ff7e61e 3060 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3061 &log_root_tree->dirty_log_pages,
3062 EXTENT_DIRTY | EXTENT_NEW);
3063 blk_finish_plug(&plug);
79787eaa 3064 if (ret) {
0b246afa 3065 btrfs_set_log_full_commit(fs_info, trans);
66642832 3066 btrfs_abort_transaction(trans, ret);
2ab28f32 3067 btrfs_free_logged_extents(log, log_transid);
79787eaa
JM
3068 mutex_unlock(&log_root_tree->log_mutex);
3069 goto out_wake_log_root;
3070 }
bf89d38f 3071 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3072 if (!ret)
bf89d38f
JM
3073 ret = btrfs_wait_tree_log_extents(log_root_tree,
3074 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3075 if (ret) {
0b246afa 3076 btrfs_set_log_full_commit(fs_info, trans);
5ab5e44a
FM
3077 btrfs_free_logged_extents(log, log_transid);
3078 mutex_unlock(&log_root_tree->log_mutex);
3079 goto out_wake_log_root;
3080 }
50d9aa99 3081 btrfs_wait_logged_extents(trans, log, log_transid);
e02119d5 3082
0b246afa
JM
3083 btrfs_set_super_log_root(fs_info->super_for_commit,
3084 log_root_tree->node->start);
3085 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3086 btrfs_header_level(log_root_tree->node));
e02119d5 3087
7237f183 3088 log_root_tree->log_transid++;
7237f183
YZ
3089 mutex_unlock(&log_root_tree->log_mutex);
3090
3091 /*
3092 * nobody else is going to jump in and write the the ctree
3093 * super here because the log_commit atomic below is protecting
3094 * us. We must be called with a transaction handle pinning
3095 * the running transaction open, so a full commit can't hop
3096 * in and cause problems either.
3097 */
eece6a9c 3098 ret = write_all_supers(fs_info, 1);
5af3e8cc 3099 if (ret) {
0b246afa 3100 btrfs_set_log_full_commit(fs_info, trans);
66642832 3101 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3102 goto out_wake_log_root;
3103 }
7237f183 3104
257c62e1
CM
3105 mutex_lock(&root->log_mutex);
3106 if (root->last_log_commit < log_transid)
3107 root->last_log_commit = log_transid;
3108 mutex_unlock(&root->log_mutex);
3109
12fcfd22 3110out_wake_log_root:
570dd450 3111 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3112 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3113
d1433deb 3114 log_root_tree->log_transid_committed++;
7237f183 3115 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3116 mutex_unlock(&log_root_tree->log_mutex);
3117
33a9eca7
DS
3118 /*
3119 * The barrier before waitqueue_active is implied by mutex_unlock
3120 */
7237f183
YZ
3121 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
3122 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3123out:
d1433deb 3124 mutex_lock(&root->log_mutex);
570dd450 3125 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3126 root->log_transid_committed++;
7237f183 3127 atomic_set(&root->log_commit[index1], 0);
d1433deb 3128 mutex_unlock(&root->log_mutex);
8b050d35 3129
33a9eca7
DS
3130 /*
3131 * The barrier before waitqueue_active is implied by mutex_unlock
3132 */
7237f183
YZ
3133 if (waitqueue_active(&root->log_commit_wait[index1]))
3134 wake_up(&root->log_commit_wait[index1]);
b31eabd8 3135 return ret;
e02119d5
CM
3136}
3137
4a500fd1
YZ
3138static void free_log_tree(struct btrfs_trans_handle *trans,
3139 struct btrfs_root *log)
e02119d5
CM
3140{
3141 int ret;
d0c803c4
CM
3142 u64 start;
3143 u64 end;
e02119d5
CM
3144 struct walk_control wc = {
3145 .free = 1,
3146 .process_func = process_one_buffer
3147 };
3148
681ae509
JB
3149 ret = walk_log_tree(trans, log, &wc);
3150 /* I don't think this can happen but just in case */
3151 if (ret)
66642832 3152 btrfs_abort_transaction(trans, ret);
e02119d5 3153
d397712b 3154 while (1) {
d0c803c4 3155 ret = find_first_extent_bit(&log->dirty_log_pages,
55237a5f
LB
3156 0, &start, &end,
3157 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
e6138876 3158 NULL);
d0c803c4
CM
3159 if (ret)
3160 break;
3161
8cef4e16 3162 clear_extent_bits(&log->dirty_log_pages, start, end,
55237a5f 3163 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
d0c803c4
CM
3164 }
3165
2ab28f32
JB
3166 /*
3167 * We may have short-circuited the log tree with the full commit logic
3168 * and left ordered extents on our list, so clear these out to keep us
3169 * from leaking inodes and memory.
3170 */
3171 btrfs_free_logged_extents(log, 0);
3172 btrfs_free_logged_extents(log, 1);
3173
7237f183
YZ
3174 free_extent_buffer(log->node);
3175 kfree(log);
4a500fd1
YZ
3176}
3177
3178/*
3179 * free all the extents used by the tree log. This should be called
3180 * at commit time of the full transaction
3181 */
3182int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3183{
3184 if (root->log_root) {
3185 free_log_tree(trans, root->log_root);
3186 root->log_root = NULL;
3187 }
3188 return 0;
3189}
3190
3191int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3192 struct btrfs_fs_info *fs_info)
3193{
3194 if (fs_info->log_root_tree) {
3195 free_log_tree(trans, fs_info->log_root_tree);
3196 fs_info->log_root_tree = NULL;
3197 }
e02119d5
CM
3198 return 0;
3199}
3200
e02119d5
CM
3201/*
3202 * If both a file and directory are logged, and unlinks or renames are
3203 * mixed in, we have a few interesting corners:
3204 *
3205 * create file X in dir Y
3206 * link file X to X.link in dir Y
3207 * fsync file X
3208 * unlink file X but leave X.link
3209 * fsync dir Y
3210 *
3211 * After a crash we would expect only X.link to exist. But file X
3212 * didn't get fsync'd again so the log has back refs for X and X.link.
3213 *
3214 * We solve this by removing directory entries and inode backrefs from the
3215 * log when a file that was logged in the current transaction is
3216 * unlinked. Any later fsync will include the updated log entries, and
3217 * we'll be able to reconstruct the proper directory items from backrefs.
3218 *
3219 * This optimizations allows us to avoid relogging the entire inode
3220 * or the entire directory.
3221 */
3222int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3223 struct btrfs_root *root,
3224 const char *name, int name_len,
49f34d1f 3225 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3226{
3227 struct btrfs_root *log;
3228 struct btrfs_dir_item *di;
3229 struct btrfs_path *path;
3230 int ret;
4a500fd1 3231 int err = 0;
e02119d5 3232 int bytes_del = 0;
49f34d1f 3233 u64 dir_ino = btrfs_ino(dir);
e02119d5 3234
49f34d1f 3235 if (dir->logged_trans < trans->transid)
3a5f1d45
CM
3236 return 0;
3237
e02119d5
CM
3238 ret = join_running_log_trans(root);
3239 if (ret)
3240 return 0;
3241
49f34d1f 3242 mutex_lock(&dir->log_mutex);
e02119d5
CM
3243
3244 log = root->log_root;
3245 path = btrfs_alloc_path();
a62f44a5
TI
3246 if (!path) {
3247 err = -ENOMEM;
3248 goto out_unlock;
3249 }
2a29edc6 3250
33345d01 3251 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3252 name, name_len, -1);
4a500fd1
YZ
3253 if (IS_ERR(di)) {
3254 err = PTR_ERR(di);
3255 goto fail;
3256 }
3257 if (di) {
e02119d5
CM
3258 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3259 bytes_del += name_len;
3650860b
JB
3260 if (ret) {
3261 err = ret;
3262 goto fail;
3263 }
e02119d5 3264 }
b3b4aa74 3265 btrfs_release_path(path);
33345d01 3266 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3267 index, name, name_len, -1);
4a500fd1
YZ
3268 if (IS_ERR(di)) {
3269 err = PTR_ERR(di);
3270 goto fail;
3271 }
3272 if (di) {
e02119d5
CM
3273 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3274 bytes_del += name_len;
3650860b
JB
3275 if (ret) {
3276 err = ret;
3277 goto fail;
3278 }
e02119d5
CM
3279 }
3280
3281 /* update the directory size in the log to reflect the names
3282 * we have removed
3283 */
3284 if (bytes_del) {
3285 struct btrfs_key key;
3286
33345d01 3287 key.objectid = dir_ino;
e02119d5
CM
3288 key.offset = 0;
3289 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3290 btrfs_release_path(path);
e02119d5
CM
3291
3292 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3293 if (ret < 0) {
3294 err = ret;
3295 goto fail;
3296 }
e02119d5
CM
3297 if (ret == 0) {
3298 struct btrfs_inode_item *item;
3299 u64 i_size;
3300
3301 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3302 struct btrfs_inode_item);
3303 i_size = btrfs_inode_size(path->nodes[0], item);
3304 if (i_size > bytes_del)
3305 i_size -= bytes_del;
3306 else
3307 i_size = 0;
3308 btrfs_set_inode_size(path->nodes[0], item, i_size);
3309 btrfs_mark_buffer_dirty(path->nodes[0]);
3310 } else
3311 ret = 0;
b3b4aa74 3312 btrfs_release_path(path);
e02119d5 3313 }
4a500fd1 3314fail:
e02119d5 3315 btrfs_free_path(path);
a62f44a5 3316out_unlock:
49f34d1f 3317 mutex_unlock(&dir->log_mutex);
4a500fd1 3318 if (ret == -ENOSPC) {
995946dd 3319 btrfs_set_log_full_commit(root->fs_info, trans);
4a500fd1 3320 ret = 0;
79787eaa 3321 } else if (ret < 0)
66642832 3322 btrfs_abort_transaction(trans, ret);
79787eaa 3323
12fcfd22 3324 btrfs_end_log_trans(root);
e02119d5 3325
411fc6bc 3326 return err;
e02119d5
CM
3327}
3328
3329/* see comments for btrfs_del_dir_entries_in_log */
3330int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3331 struct btrfs_root *root,
3332 const char *name, int name_len,
a491abb2 3333 struct btrfs_inode *inode, u64 dirid)
e02119d5 3334{
0b246afa 3335 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
3336 struct btrfs_root *log;
3337 u64 index;
3338 int ret;
3339
a491abb2 3340 if (inode->logged_trans < trans->transid)
3a5f1d45
CM
3341 return 0;
3342
e02119d5
CM
3343 ret = join_running_log_trans(root);
3344 if (ret)
3345 return 0;
3346 log = root->log_root;
a491abb2 3347 mutex_lock(&inode->log_mutex);
e02119d5 3348
a491abb2 3349 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3350 dirid, &index);
a491abb2 3351 mutex_unlock(&inode->log_mutex);
4a500fd1 3352 if (ret == -ENOSPC) {
0b246afa 3353 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1 3354 ret = 0;
79787eaa 3355 } else if (ret < 0 && ret != -ENOENT)
66642832 3356 btrfs_abort_transaction(trans, ret);
12fcfd22 3357 btrfs_end_log_trans(root);
e02119d5 3358
e02119d5
CM
3359 return ret;
3360}
3361
3362/*
3363 * creates a range item in the log for 'dirid'. first_offset and
3364 * last_offset tell us which parts of the key space the log should
3365 * be considered authoritative for.
3366 */
3367static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3368 struct btrfs_root *log,
3369 struct btrfs_path *path,
3370 int key_type, u64 dirid,
3371 u64 first_offset, u64 last_offset)
3372{
3373 int ret;
3374 struct btrfs_key key;
3375 struct btrfs_dir_log_item *item;
3376
3377 key.objectid = dirid;
3378 key.offset = first_offset;
3379 if (key_type == BTRFS_DIR_ITEM_KEY)
3380 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3381 else
3382 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3383 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3384 if (ret)
3385 return ret;
e02119d5
CM
3386
3387 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3388 struct btrfs_dir_log_item);
3389 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3390 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3391 btrfs_release_path(path);
e02119d5
CM
3392 return 0;
3393}
3394
3395/*
3396 * log all the items included in the current transaction for a given
3397 * directory. This also creates the range items in the log tree required
3398 * to replay anything deleted before the fsync
3399 */
3400static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3401 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3402 struct btrfs_path *path,
3403 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3404 struct btrfs_log_ctx *ctx,
e02119d5
CM
3405 u64 min_offset, u64 *last_offset_ret)
3406{
3407 struct btrfs_key min_key;
e02119d5
CM
3408 struct btrfs_root *log = root->log_root;
3409 struct extent_buffer *src;
4a500fd1 3410 int err = 0;
e02119d5
CM
3411 int ret;
3412 int i;
3413 int nritems;
3414 u64 first_offset = min_offset;
3415 u64 last_offset = (u64)-1;
684a5773 3416 u64 ino = btrfs_ino(inode);
e02119d5
CM
3417
3418 log = root->log_root;
e02119d5 3419
33345d01 3420 min_key.objectid = ino;
e02119d5
CM
3421 min_key.type = key_type;
3422 min_key.offset = min_offset;
3423
6174d3cb 3424 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3425
3426 /*
3427 * we didn't find anything from this transaction, see if there
3428 * is anything at all
3429 */
33345d01
LZ
3430 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3431 min_key.objectid = ino;
e02119d5
CM
3432 min_key.type = key_type;
3433 min_key.offset = (u64)-1;
b3b4aa74 3434 btrfs_release_path(path);
e02119d5
CM
3435 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3436 if (ret < 0) {
b3b4aa74 3437 btrfs_release_path(path);
e02119d5
CM
3438 return ret;
3439 }
33345d01 3440 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3441
3442 /* if ret == 0 there are items for this type,
3443 * create a range to tell us the last key of this type.
3444 * otherwise, there are no items in this directory after
3445 * *min_offset, and we create a range to indicate that.
3446 */
3447 if (ret == 0) {
3448 struct btrfs_key tmp;
3449 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3450 path->slots[0]);
d397712b 3451 if (key_type == tmp.type)
e02119d5 3452 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3453 }
3454 goto done;
3455 }
3456
3457 /* go backward to find any previous key */
33345d01 3458 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3459 if (ret == 0) {
3460 struct btrfs_key tmp;
3461 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3462 if (key_type == tmp.type) {
3463 first_offset = tmp.offset;
3464 ret = overwrite_item(trans, log, dst_path,
3465 path->nodes[0], path->slots[0],
3466 &tmp);
4a500fd1
YZ
3467 if (ret) {
3468 err = ret;
3469 goto done;
3470 }
e02119d5
CM
3471 }
3472 }
b3b4aa74 3473 btrfs_release_path(path);
e02119d5
CM
3474
3475 /* find the first key from this transaction again */
3476 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
fae7f21c 3477 if (WARN_ON(ret != 0))
e02119d5 3478 goto done;
e02119d5
CM
3479
3480 /*
3481 * we have a block from this transaction, log every item in it
3482 * from our directory
3483 */
d397712b 3484 while (1) {
e02119d5
CM
3485 struct btrfs_key tmp;
3486 src = path->nodes[0];
3487 nritems = btrfs_header_nritems(src);
3488 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3489 struct btrfs_dir_item *di;
3490
e02119d5
CM
3491 btrfs_item_key_to_cpu(src, &min_key, i);
3492
33345d01 3493 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3494 goto done;
3495 ret = overwrite_item(trans, log, dst_path, src, i,
3496 &min_key);
4a500fd1
YZ
3497 if (ret) {
3498 err = ret;
3499 goto done;
3500 }
2f2ff0ee
FM
3501
3502 /*
3503 * We must make sure that when we log a directory entry,
3504 * the corresponding inode, after log replay, has a
3505 * matching link count. For example:
3506 *
3507 * touch foo
3508 * mkdir mydir
3509 * sync
3510 * ln foo mydir/bar
3511 * xfs_io -c "fsync" mydir
3512 * <crash>
3513 * <mount fs and log replay>
3514 *
3515 * Would result in a fsync log that when replayed, our
3516 * file inode would have a link count of 1, but we get
3517 * two directory entries pointing to the same inode.
3518 * After removing one of the names, it would not be
3519 * possible to remove the other name, which resulted
3520 * always in stale file handle errors, and would not
3521 * be possible to rmdir the parent directory, since
3522 * its i_size could never decrement to the value
3523 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3524 */
3525 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3526 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3527 if (ctx &&
3528 (btrfs_dir_transid(src, di) == trans->transid ||
3529 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3530 tmp.type != BTRFS_ROOT_ITEM_KEY)
3531 ctx->log_new_dentries = true;
e02119d5
CM
3532 }
3533 path->slots[0] = nritems;
3534
3535 /*
3536 * look ahead to the next item and see if it is also
3537 * from this directory and from this transaction
3538 */
3539 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3540 if (ret) {
3541 if (ret == 1)
3542 last_offset = (u64)-1;
3543 else
3544 err = ret;
e02119d5
CM
3545 goto done;
3546 }
3547 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3548 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3549 last_offset = (u64)-1;
3550 goto done;
3551 }
3552 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3553 ret = overwrite_item(trans, log, dst_path,
3554 path->nodes[0], path->slots[0],
3555 &tmp);
4a500fd1
YZ
3556 if (ret)
3557 err = ret;
3558 else
3559 last_offset = tmp.offset;
e02119d5
CM
3560 goto done;
3561 }
3562 }
3563done:
b3b4aa74
DS
3564 btrfs_release_path(path);
3565 btrfs_release_path(dst_path);
e02119d5 3566
4a500fd1
YZ
3567 if (err == 0) {
3568 *last_offset_ret = last_offset;
3569 /*
3570 * insert the log range keys to indicate where the log
3571 * is valid
3572 */
3573 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3574 ino, first_offset, last_offset);
4a500fd1
YZ
3575 if (ret)
3576 err = ret;
3577 }
3578 return err;
e02119d5
CM
3579}
3580
3581/*
3582 * logging directories is very similar to logging inodes, We find all the items
3583 * from the current transaction and write them to the log.
3584 *
3585 * The recovery code scans the directory in the subvolume, and if it finds a
3586 * key in the range logged that is not present in the log tree, then it means
3587 * that dir entry was unlinked during the transaction.
3588 *
3589 * In order for that scan to work, we must include one key smaller than
3590 * the smallest logged by this transaction and one key larger than the largest
3591 * key logged by this transaction.
3592 */
3593static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3594 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3595 struct btrfs_path *path,
2f2ff0ee
FM
3596 struct btrfs_path *dst_path,
3597 struct btrfs_log_ctx *ctx)
e02119d5
CM
3598{
3599 u64 min_key;
3600 u64 max_key;
3601 int ret;
3602 int key_type = BTRFS_DIR_ITEM_KEY;
3603
3604again:
3605 min_key = 0;
3606 max_key = 0;
d397712b 3607 while (1) {
dbf39ea4
NB
3608 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3609 ctx, min_key, &max_key);
4a500fd1
YZ
3610 if (ret)
3611 return ret;
e02119d5
CM
3612 if (max_key == (u64)-1)
3613 break;
3614 min_key = max_key + 1;
3615 }
3616
3617 if (key_type == BTRFS_DIR_ITEM_KEY) {
3618 key_type = BTRFS_DIR_INDEX_KEY;
3619 goto again;
3620 }
3621 return 0;
3622}
3623
3624/*
3625 * a helper function to drop items from the log before we relog an
3626 * inode. max_key_type indicates the highest item type to remove.
3627 * This cannot be run for file data extents because it does not
3628 * free the extents they point to.
3629 */
3630static int drop_objectid_items(struct btrfs_trans_handle *trans,
3631 struct btrfs_root *log,
3632 struct btrfs_path *path,
3633 u64 objectid, int max_key_type)
3634{
3635 int ret;
3636 struct btrfs_key key;
3637 struct btrfs_key found_key;
18ec90d6 3638 int start_slot;
e02119d5
CM
3639
3640 key.objectid = objectid;
3641 key.type = max_key_type;
3642 key.offset = (u64)-1;
3643
d397712b 3644 while (1) {
e02119d5 3645 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3646 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3647 if (ret < 0)
e02119d5
CM
3648 break;
3649
3650 if (path->slots[0] == 0)
3651 break;
3652
3653 path->slots[0]--;
3654 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3655 path->slots[0]);
3656
3657 if (found_key.objectid != objectid)
3658 break;
3659
18ec90d6
JB
3660 found_key.offset = 0;
3661 found_key.type = 0;
3662 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3663 &start_slot);
3664
3665 ret = btrfs_del_items(trans, log, path, start_slot,
3666 path->slots[0] - start_slot + 1);
3667 /*
3668 * If start slot isn't 0 then we don't need to re-search, we've
3669 * found the last guy with the objectid in this tree.
3670 */
3671 if (ret || start_slot != 0)
65a246c5 3672 break;
b3b4aa74 3673 btrfs_release_path(path);
e02119d5 3674 }
b3b4aa74 3675 btrfs_release_path(path);
5bdbeb21
JB
3676 if (ret > 0)
3677 ret = 0;
4a500fd1 3678 return ret;
e02119d5
CM
3679}
3680
94edf4ae
JB
3681static void fill_inode_item(struct btrfs_trans_handle *trans,
3682 struct extent_buffer *leaf,
3683 struct btrfs_inode_item *item,
1a4bcf47
FM
3684 struct inode *inode, int log_inode_only,
3685 u64 logged_isize)
94edf4ae 3686{
0b1c6cca
JB
3687 struct btrfs_map_token token;
3688
3689 btrfs_init_map_token(&token);
94edf4ae
JB
3690
3691 if (log_inode_only) {
3692 /* set the generation to zero so the recover code
3693 * can tell the difference between an logging
3694 * just to say 'this inode exists' and a logging
3695 * to say 'update this inode with these values'
3696 */
0b1c6cca 3697 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3698 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3699 } else {
0b1c6cca
JB
3700 btrfs_set_token_inode_generation(leaf, item,
3701 BTRFS_I(inode)->generation,
3702 &token);
3703 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3704 }
3705
3706 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3707 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3708 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3709 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3710
a937b979 3711 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3712 inode->i_atime.tv_sec, &token);
a937b979 3713 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3714 inode->i_atime.tv_nsec, &token);
3715
a937b979 3716 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3717 inode->i_mtime.tv_sec, &token);
a937b979 3718 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3719 inode->i_mtime.tv_nsec, &token);
3720
a937b979 3721 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3722 inode->i_ctime.tv_sec, &token);
a937b979 3723 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3724 inode->i_ctime.tv_nsec, &token);
3725
3726 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3727 &token);
3728
c7f88c4e
JL
3729 btrfs_set_token_inode_sequence(leaf, item,
3730 inode_peek_iversion(inode), &token);
0b1c6cca
JB
3731 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3732 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3733 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3734 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3735}
3736
a95249b3
JB
3737static int log_inode_item(struct btrfs_trans_handle *trans,
3738 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3739 struct btrfs_inode *inode)
a95249b3
JB
3740{
3741 struct btrfs_inode_item *inode_item;
a95249b3
JB
3742 int ret;
3743
efd0c405 3744 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3745 &inode->location, sizeof(*inode_item));
a95249b3
JB
3746 if (ret && ret != -EEXIST)
3747 return ret;
3748 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3749 struct btrfs_inode_item);
6d889a3b
NB
3750 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3751 0, 0);
a95249b3
JB
3752 btrfs_release_path(path);
3753 return 0;
3754}
3755
31ff1cd2 3756static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3757 struct btrfs_inode *inode,
31ff1cd2 3758 struct btrfs_path *dst_path,
16e7549f 3759 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3760 int start_slot, int nr, int inode_only,
3761 u64 logged_isize)
31ff1cd2 3762{
44d70e19 3763 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
31ff1cd2
CM
3764 unsigned long src_offset;
3765 unsigned long dst_offset;
44d70e19 3766 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3767 struct btrfs_file_extent_item *extent;
3768 struct btrfs_inode_item *inode_item;
16e7549f
JB
3769 struct extent_buffer *src = src_path->nodes[0];
3770 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3771 int ret;
3772 struct btrfs_key *ins_keys;
3773 u32 *ins_sizes;
3774 char *ins_data;
3775 int i;
d20f7043 3776 struct list_head ordered_sums;
44d70e19 3777 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
16e7549f 3778 bool has_extents = false;
74121f7c 3779 bool need_find_last_extent = true;
16e7549f 3780 bool done = false;
d20f7043
CM
3781
3782 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3783
3784 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3785 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3786 if (!ins_data)
3787 return -ENOMEM;
3788
16e7549f
JB
3789 first_key.objectid = (u64)-1;
3790
31ff1cd2
CM
3791 ins_sizes = (u32 *)ins_data;
3792 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3793
3794 for (i = 0; i < nr; i++) {
3795 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3796 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3797 }
3798 ret = btrfs_insert_empty_items(trans, log, dst_path,
3799 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3800 if (ret) {
3801 kfree(ins_data);
3802 return ret;
3803 }
31ff1cd2 3804
5d4f98a2 3805 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3806 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3807 dst_path->slots[0]);
3808
3809 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3810
0dde10be 3811 if (i == nr - 1)
16e7549f
JB
3812 last_key = ins_keys[i];
3813
94edf4ae 3814 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3815 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3816 dst_path->slots[0],
3817 struct btrfs_inode_item);
94edf4ae 3818 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3819 &inode->vfs_inode,
3820 inode_only == LOG_INODE_EXISTS,
1a4bcf47 3821 logged_isize);
94edf4ae
JB
3822 } else {
3823 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3824 src_offset, ins_sizes[i]);
31ff1cd2 3825 }
94edf4ae 3826
16e7549f
JB
3827 /*
3828 * We set need_find_last_extent here in case we know we were
3829 * processing other items and then walk into the first extent in
3830 * the inode. If we don't hit an extent then nothing changes,
3831 * we'll do the last search the next time around.
3832 */
3833 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3834 has_extents = true;
74121f7c 3835 if (first_key.objectid == (u64)-1)
16e7549f
JB
3836 first_key = ins_keys[i];
3837 } else {
3838 need_find_last_extent = false;
3839 }
3840
31ff1cd2
CM
3841 /* take a reference on file data extents so that truncates
3842 * or deletes of this inode don't have to relog the inode
3843 * again
3844 */
962a298f 3845 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 3846 !skip_csum) {
31ff1cd2
CM
3847 int found_type;
3848 extent = btrfs_item_ptr(src, start_slot + i,
3849 struct btrfs_file_extent_item);
3850
8e531cdf 3851 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3852 continue;
3853
31ff1cd2 3854 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 3855 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
3856 u64 ds, dl, cs, cl;
3857 ds = btrfs_file_extent_disk_bytenr(src,
3858 extent);
3859 /* ds == 0 is a hole */
3860 if (ds == 0)
3861 continue;
3862
3863 dl = btrfs_file_extent_disk_num_bytes(src,
3864 extent);
3865 cs = btrfs_file_extent_offset(src, extent);
3866 cl = btrfs_file_extent_num_bytes(src,
a419aef8 3867 extent);
580afd76
CM
3868 if (btrfs_file_extent_compression(src,
3869 extent)) {
3870 cs = 0;
3871 cl = dl;
3872 }
5d4f98a2
YZ
3873
3874 ret = btrfs_lookup_csums_range(
0b246afa 3875 fs_info->csum_root,
5d4f98a2 3876 ds + cs, ds + cs + cl - 1,
a2de733c 3877 &ordered_sums, 0);
3650860b
JB
3878 if (ret) {
3879 btrfs_release_path(dst_path);
3880 kfree(ins_data);
3881 return ret;
3882 }
31ff1cd2
CM
3883 }
3884 }
31ff1cd2
CM
3885 }
3886
3887 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 3888 btrfs_release_path(dst_path);
31ff1cd2 3889 kfree(ins_data);
d20f7043
CM
3890
3891 /*
3892 * we have to do this after the loop above to avoid changing the
3893 * log tree while trying to change the log tree.
3894 */
4a500fd1 3895 ret = 0;
d397712b 3896 while (!list_empty(&ordered_sums)) {
d20f7043
CM
3897 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3898 struct btrfs_ordered_sum,
3899 list);
4a500fd1
YZ
3900 if (!ret)
3901 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
3902 list_del(&sums->list);
3903 kfree(sums);
3904 }
16e7549f
JB
3905
3906 if (!has_extents)
3907 return ret;
3908
74121f7c
FM
3909 if (need_find_last_extent && *last_extent == first_key.offset) {
3910 /*
3911 * We don't have any leafs between our current one and the one
3912 * we processed before that can have file extent items for our
3913 * inode (and have a generation number smaller than our current
3914 * transaction id).
3915 */
3916 need_find_last_extent = false;
3917 }
3918
16e7549f
JB
3919 /*
3920 * Because we use btrfs_search_forward we could skip leaves that were
3921 * not modified and then assume *last_extent is valid when it really
3922 * isn't. So back up to the previous leaf and read the end of the last
3923 * extent before we go and fill in holes.
3924 */
3925 if (need_find_last_extent) {
3926 u64 len;
3927
44d70e19 3928 ret = btrfs_prev_leaf(inode->root, src_path);
16e7549f
JB
3929 if (ret < 0)
3930 return ret;
3931 if (ret)
3932 goto fill_holes;
3933 if (src_path->slots[0])
3934 src_path->slots[0]--;
3935 src = src_path->nodes[0];
3936 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
44d70e19 3937 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
3938 key.type != BTRFS_EXTENT_DATA_KEY)
3939 goto fill_holes;
3940 extent = btrfs_item_ptr(src, src_path->slots[0],
3941 struct btrfs_file_extent_item);
3942 if (btrfs_file_extent_type(src, extent) ==
3943 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad
CM
3944 len = btrfs_file_extent_inline_len(src,
3945 src_path->slots[0],
3946 extent);
16e7549f 3947 *last_extent = ALIGN(key.offset + len,
0b246afa 3948 fs_info->sectorsize);
16e7549f
JB
3949 } else {
3950 len = btrfs_file_extent_num_bytes(src, extent);
3951 *last_extent = key.offset + len;
3952 }
3953 }
3954fill_holes:
3955 /* So we did prev_leaf, now we need to move to the next leaf, but a few
3956 * things could have happened
3957 *
3958 * 1) A merge could have happened, so we could currently be on a leaf
3959 * that holds what we were copying in the first place.
3960 * 2) A split could have happened, and now not all of the items we want
3961 * are on the same leaf.
3962 *
3963 * So we need to adjust how we search for holes, we need to drop the
3964 * path and re-search for the first extent key we found, and then walk
3965 * forward until we hit the last one we copied.
3966 */
3967 if (need_find_last_extent) {
3968 /* btrfs_prev_leaf could return 1 without releasing the path */
3969 btrfs_release_path(src_path);
f85b7379
DS
3970 ret = btrfs_search_slot(NULL, inode->root, &first_key,
3971 src_path, 0, 0);
16e7549f
JB
3972 if (ret < 0)
3973 return ret;
3974 ASSERT(ret == 0);
3975 src = src_path->nodes[0];
3976 i = src_path->slots[0];
3977 } else {
3978 i = start_slot;
3979 }
3980
3981 /*
3982 * Ok so here we need to go through and fill in any holes we may have
3983 * to make sure that holes are punched for those areas in case they had
3984 * extents previously.
3985 */
3986 while (!done) {
3987 u64 offset, len;
3988 u64 extent_end;
3989
3990 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
44d70e19 3991 ret = btrfs_next_leaf(inode->root, src_path);
16e7549f
JB
3992 if (ret < 0)
3993 return ret;
3994 ASSERT(ret == 0);
3995 src = src_path->nodes[0];
3996 i = 0;
8434ec46 3997 need_find_last_extent = true;
16e7549f
JB
3998 }
3999
4000 btrfs_item_key_to_cpu(src, &key, i);
4001 if (!btrfs_comp_cpu_keys(&key, &last_key))
4002 done = true;
44d70e19 4003 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
4004 key.type != BTRFS_EXTENT_DATA_KEY) {
4005 i++;
4006 continue;
4007 }
4008 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4009 if (btrfs_file_extent_type(src, extent) ==
4010 BTRFS_FILE_EXTENT_INLINE) {
514ac8ad 4011 len = btrfs_file_extent_inline_len(src, i, extent);
da17066c 4012 extent_end = ALIGN(key.offset + len,
0b246afa 4013 fs_info->sectorsize);
16e7549f
JB
4014 } else {
4015 len = btrfs_file_extent_num_bytes(src, extent);
4016 extent_end = key.offset + len;
4017 }
4018 i++;
4019
4020 if (*last_extent == key.offset) {
4021 *last_extent = extent_end;
4022 continue;
4023 }
4024 offset = *last_extent;
4025 len = key.offset - *last_extent;
44d70e19 4026 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
f85b7379 4027 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f
JB
4028 if (ret)
4029 break;
74121f7c 4030 *last_extent = extent_end;
16e7549f 4031 }
4ee3fad3
FM
4032
4033 /*
4034 * Check if there is a hole between the last extent found in our leaf
4035 * and the first extent in the next leaf. If there is one, we need to
4036 * log an explicit hole so that at replay time we can punch the hole.
4037 */
4038 if (ret == 0 &&
4039 key.objectid == btrfs_ino(inode) &&
4040 key.type == BTRFS_EXTENT_DATA_KEY &&
4041 i == btrfs_header_nritems(src_path->nodes[0])) {
4042 ret = btrfs_next_leaf(inode->root, src_path);
4043 need_find_last_extent = true;
4044 if (ret > 0) {
4045 ret = 0;
4046 } else if (ret == 0) {
4047 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4048 src_path->slots[0]);
4049 if (key.objectid == btrfs_ino(inode) &&
4050 key.type == BTRFS_EXTENT_DATA_KEY &&
4051 *last_extent < key.offset) {
4052 const u64 len = key.offset - *last_extent;
4053
4054 ret = btrfs_insert_file_extent(trans, log,
4055 btrfs_ino(inode),
4056 *last_extent, 0,
4057 0, len, 0, len,
4058 0, 0, 0);
4059 }
4060 }
4061 }
16e7549f
JB
4062 /*
4063 * Need to let the callers know we dropped the path so they should
4064 * re-search.
4065 */
4066 if (!ret && need_find_last_extent)
4067 ret = 1;
4a500fd1 4068 return ret;
31ff1cd2
CM
4069}
4070
5dc562c5
JB
4071static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4072{
4073 struct extent_map *em1, *em2;
4074
4075 em1 = list_entry(a, struct extent_map, list);
4076 em2 = list_entry(b, struct extent_map, list);
4077
4078 if (em1->start < em2->start)
4079 return -1;
4080 else if (em1->start > em2->start)
4081 return 1;
4082 return 0;
4083}
4084
8407f553
FM
4085static int wait_ordered_extents(struct btrfs_trans_handle *trans,
4086 struct inode *inode,
4087 struct btrfs_root *root,
4088 const struct extent_map *em,
4089 const struct list_head *logged_list,
4090 bool *ordered_io_error)
5dc562c5 4091{
0b246afa 4092 struct btrfs_fs_info *fs_info = root->fs_info;
2ab28f32 4093 struct btrfs_ordered_extent *ordered;
8407f553 4094 struct btrfs_root *log = root->log_root;
2ab28f32
JB
4095 u64 mod_start = em->mod_start;
4096 u64 mod_len = em->mod_len;
8407f553 4097 const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2ab28f32
JB
4098 u64 csum_offset;
4099 u64 csum_len;
8407f553
FM
4100 LIST_HEAD(ordered_sums);
4101 int ret = 0;
0aa4a17d 4102
8407f553 4103 *ordered_io_error = false;
0aa4a17d 4104
8407f553
FM
4105 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4106 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4107 return 0;
5dc562c5 4108
2ab28f32 4109 /*
8407f553
FM
4110 * Wait far any ordered extent that covers our extent map. If it
4111 * finishes without an error, first check and see if our csums are on
4112 * our outstanding ordered extents.
2ab28f32 4113 */
827463c4 4114 list_for_each_entry(ordered, logged_list, log_list) {
2ab28f32
JB
4115 struct btrfs_ordered_sum *sum;
4116
4117 if (!mod_len)
4118 break;
4119
2ab28f32
JB
4120 if (ordered->file_offset + ordered->len <= mod_start ||
4121 mod_start + mod_len <= ordered->file_offset)
4122 continue;
4123
8407f553
FM
4124 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
4125 !test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
4126 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
4127 const u64 start = ordered->file_offset;
4128 const u64 end = ordered->file_offset + ordered->len - 1;
4129
4130 WARN_ON(ordered->inode != inode);
4131 filemap_fdatawrite_range(inode->i_mapping, start, end);
4132 }
4133
4134 wait_event(ordered->wait,
4135 (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
4136 test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
4137
4138 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
b38ef71c
FM
4139 /*
4140 * Clear the AS_EIO/AS_ENOSPC flags from the inode's
4141 * i_mapping flags, so that the next fsync won't get
4142 * an outdated io error too.
4143 */
f0312210 4144 filemap_check_errors(inode->i_mapping);
8407f553
FM
4145 *ordered_io_error = true;
4146 break;
4147 }
2ab28f32
JB
4148 /*
4149 * We are going to copy all the csums on this ordered extent, so
4150 * go ahead and adjust mod_start and mod_len in case this
4151 * ordered extent has already been logged.
4152 */
4153 if (ordered->file_offset > mod_start) {
4154 if (ordered->file_offset + ordered->len >=
4155 mod_start + mod_len)
4156 mod_len = ordered->file_offset - mod_start;
4157 /*
4158 * If we have this case
4159 *
4160 * |--------- logged extent ---------|
4161 * |----- ordered extent ----|
4162 *
4163 * Just don't mess with mod_start and mod_len, we'll
4164 * just end up logging more csums than we need and it
4165 * will be ok.
4166 */
4167 } else {
4168 if (ordered->file_offset + ordered->len <
4169 mod_start + mod_len) {
4170 mod_len = (mod_start + mod_len) -
4171 (ordered->file_offset + ordered->len);
4172 mod_start = ordered->file_offset +
4173 ordered->len;
4174 } else {
4175 mod_len = 0;
4176 }
4177 }
4178
8407f553
FM
4179 if (skip_csum)
4180 continue;
4181
2ab28f32
JB
4182 /*
4183 * To keep us from looping for the above case of an ordered
4184 * extent that falls inside of the logged extent.
4185 */
4186 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
4187 &ordered->flags))
4188 continue;
2ab28f32 4189
2ab28f32
JB
4190 list_for_each_entry(sum, &ordered->list, list) {
4191 ret = btrfs_csum_file_blocks(trans, log, sum);
827463c4 4192 if (ret)
8407f553 4193 break;
2ab28f32 4194 }
2ab28f32 4195 }
2ab28f32 4196
8407f553 4197 if (*ordered_io_error || !mod_len || ret || skip_csum)
2ab28f32
JB
4198 return ret;
4199
488111aa
FDBM
4200 if (em->compress_type) {
4201 csum_offset = 0;
8407f553 4202 csum_len = max(em->block_len, em->orig_block_len);
488111aa
FDBM
4203 } else {
4204 csum_offset = mod_start - em->start;
4205 csum_len = mod_len;
4206 }
2ab28f32 4207
70c8a91c 4208 /* block start is already adjusted for the file extent offset. */
0b246afa 4209 ret = btrfs_lookup_csums_range(fs_info->csum_root,
70c8a91c
JB
4210 em->block_start + csum_offset,
4211 em->block_start + csum_offset +
4212 csum_len - 1, &ordered_sums, 0);
4213 if (ret)
4214 return ret;
5dc562c5 4215
70c8a91c
JB
4216 while (!list_empty(&ordered_sums)) {
4217 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4218 struct btrfs_ordered_sum,
4219 list);
4220 if (!ret)
4221 ret = btrfs_csum_file_blocks(trans, log, sums);
4222 list_del(&sums->list);
4223 kfree(sums);
5dc562c5
JB
4224 }
4225
70c8a91c 4226 return ret;
5dc562c5
JB
4227}
4228
8407f553 4229static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4230 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4231 const struct extent_map *em,
4232 struct btrfs_path *path,
4233 const struct list_head *logged_list,
4234 struct btrfs_log_ctx *ctx)
4235{
4236 struct btrfs_root *log = root->log_root;
4237 struct btrfs_file_extent_item *fi;
4238 struct extent_buffer *leaf;
4239 struct btrfs_map_token token;
4240 struct btrfs_key key;
4241 u64 extent_offset = em->start - em->orig_start;
4242 u64 block_len;
4243 int ret;
4244 int extent_inserted = 0;
4245 bool ordered_io_err = false;
4246
f85b7379
DS
4247 ret = wait_ordered_extents(trans, &inode->vfs_inode, root, em,
4248 logged_list, &ordered_io_err);
8407f553
FM
4249 if (ret)
4250 return ret;
4251
4252 if (ordered_io_err) {
4253 ctx->io_err = -EIO;
ebb70442 4254 return ctx->io_err;
8407f553
FM
4255 }
4256
4257 btrfs_init_map_token(&token);
4258
9d122629 4259 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4260 em->start + em->len, NULL, 0, 1,
4261 sizeof(*fi), &extent_inserted);
4262 if (ret)
4263 return ret;
4264
4265 if (!extent_inserted) {
9d122629 4266 key.objectid = btrfs_ino(inode);
8407f553
FM
4267 key.type = BTRFS_EXTENT_DATA_KEY;
4268 key.offset = em->start;
4269
4270 ret = btrfs_insert_empty_item(trans, log, path, &key,
4271 sizeof(*fi));
4272 if (ret)
4273 return ret;
4274 }
4275 leaf = path->nodes[0];
4276 fi = btrfs_item_ptr(leaf, path->slots[0],
4277 struct btrfs_file_extent_item);
4278
50d9aa99 4279 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4280 &token);
4281 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4282 btrfs_set_token_file_extent_type(leaf, fi,
4283 BTRFS_FILE_EXTENT_PREALLOC,
4284 &token);
4285 else
4286 btrfs_set_token_file_extent_type(leaf, fi,
4287 BTRFS_FILE_EXTENT_REG,
4288 &token);
4289
4290 block_len = max(em->block_len, em->orig_block_len);
4291 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4292 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4293 em->block_start,
4294 &token);
4295 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4296 &token);
4297 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4298 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4299 em->block_start -
4300 extent_offset, &token);
4301 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4302 &token);
4303 } else {
4304 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4305 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4306 &token);
4307 }
4308
4309 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4310 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4311 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4312 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4313 &token);
4314 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4315 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4316 btrfs_mark_buffer_dirty(leaf);
4317
4318 btrfs_release_path(path);
4319
4320 return ret;
4321}
4322
5dc562c5
JB
4323static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4324 struct btrfs_root *root,
9d122629 4325 struct btrfs_inode *inode,
827463c4 4326 struct btrfs_path *path,
8407f553 4327 struct list_head *logged_list,
de0ee0ed
FM
4328 struct btrfs_log_ctx *ctx,
4329 const u64 start,
4330 const u64 end)
5dc562c5 4331{
5dc562c5
JB
4332 struct extent_map *em, *n;
4333 struct list_head extents;
9d122629 4334 struct extent_map_tree *tree = &inode->extent_tree;
8c6c5928 4335 u64 logged_start, logged_end;
5dc562c5
JB
4336 u64 test_gen;
4337 int ret = 0;
2ab28f32 4338 int num = 0;
5dc562c5
JB
4339
4340 INIT_LIST_HEAD(&extents);
4341
9d122629 4342 down_write(&inode->dio_sem);
5dc562c5
JB
4343 write_lock(&tree->lock);
4344 test_gen = root->fs_info->last_trans_committed;
8c6c5928
JB
4345 logged_start = start;
4346 logged_end = end;
5dc562c5
JB
4347
4348 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4349 list_del_init(&em->list);
2ab28f32
JB
4350 /*
4351 * Just an arbitrary number, this can be really CPU intensive
4352 * once we start getting a lot of extents, and really once we
4353 * have a bunch of extents we just want to commit since it will
4354 * be faster.
4355 */
4356 if (++num > 32768) {
4357 list_del_init(&tree->modified_extents);
4358 ret = -EFBIG;
4359 goto process;
4360 }
4361
5dc562c5
JB
4362 if (em->generation <= test_gen)
4363 continue;
8c6c5928
JB
4364
4365 if (em->start < logged_start)
4366 logged_start = em->start;
4367 if ((em->start + em->len - 1) > logged_end)
4368 logged_end = em->start + em->len - 1;
4369
ff44c6e3 4370 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4371 refcount_inc(&em->refs);
ff44c6e3 4372 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4373 list_add_tail(&em->list, &extents);
2ab28f32 4374 num++;
5dc562c5
JB
4375 }
4376
471d557a
FM
4377 /*
4378 * Add all prealloc extents beyond the inode's i_size to make sure we
4379 * don't lose them after doing a fast fsync and replaying the log.
4380 */
4381 if (inode->flags & BTRFS_INODE_PREALLOC) {
4382 struct rb_node *node;
4383
4384 for (node = rb_last(&tree->map); node; node = rb_prev(node)) {
4385 em = rb_entry(node, struct extent_map, rb_node);
4386 if (em->start < i_size_read(&inode->vfs_inode))
4387 break;
4388 if (!list_empty(&em->list))
4389 continue;
4390 /* Same as above loop. */
4391 if (++num > 32768) {
4392 list_del_init(&tree->modified_extents);
4393 ret = -EFBIG;
4394 goto process;
4395 }
4396 refcount_inc(&em->refs);
4397 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4398 list_add_tail(&em->list, &extents);
4399 }
4400 }
4401
5dc562c5 4402 list_sort(NULL, &extents, extent_cmp);
8c6c5928 4403 btrfs_get_logged_extents(inode, logged_list, logged_start, logged_end);
de0ee0ed 4404 /*
5f9a8a51
FM
4405 * Some ordered extents started by fsync might have completed
4406 * before we could collect them into the list logged_list, which
4407 * means they're gone, not in our logged_list nor in the inode's
4408 * ordered tree. We want the application/user space to know an
4409 * error happened while attempting to persist file data so that
4410 * it can take proper action. If such error happened, we leave
4411 * without writing to the log tree and the fsync must report the
4412 * file data write error and not commit the current transaction.
de0ee0ed 4413 */
9d122629 4414 ret = filemap_check_errors(inode->vfs_inode.i_mapping);
5f9a8a51
FM
4415 if (ret)
4416 ctx->io_err = ret;
2ab28f32 4417process:
5dc562c5
JB
4418 while (!list_empty(&extents)) {
4419 em = list_entry(extents.next, struct extent_map, list);
4420
4421 list_del_init(&em->list);
4422
4423 /*
4424 * If we had an error we just need to delete everybody from our
4425 * private list.
4426 */
ff44c6e3 4427 if (ret) {
201a9038 4428 clear_em_logging(tree, em);
ff44c6e3 4429 free_extent_map(em);
5dc562c5 4430 continue;
ff44c6e3
JB
4431 }
4432
4433 write_unlock(&tree->lock);
5dc562c5 4434
8407f553
FM
4435 ret = log_one_extent(trans, inode, root, em, path, logged_list,
4436 ctx);
ff44c6e3 4437 write_lock(&tree->lock);
201a9038
JB
4438 clear_em_logging(tree, em);
4439 free_extent_map(em);
5dc562c5 4440 }
ff44c6e3
JB
4441 WARN_ON(!list_empty(&extents));
4442 write_unlock(&tree->lock);
9d122629 4443 up_write(&inode->dio_sem);
5dc562c5 4444
5dc562c5 4445 btrfs_release_path(path);
5dc562c5
JB
4446 return ret;
4447}
4448
481b01c0 4449static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4450 struct btrfs_path *path, u64 *size_ret)
4451{
4452 struct btrfs_key key;
4453 int ret;
4454
481b01c0 4455 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4456 key.type = BTRFS_INODE_ITEM_KEY;
4457 key.offset = 0;
4458
4459 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4460 if (ret < 0) {
4461 return ret;
4462 } else if (ret > 0) {
2f2ff0ee 4463 *size_ret = 0;
1a4bcf47
FM
4464 } else {
4465 struct btrfs_inode_item *item;
4466
4467 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4468 struct btrfs_inode_item);
4469 *size_ret = btrfs_inode_size(path->nodes[0], item);
4470 }
4471
4472 btrfs_release_path(path);
4473 return 0;
4474}
4475
36283bf7
FM
4476/*
4477 * At the moment we always log all xattrs. This is to figure out at log replay
4478 * time which xattrs must have their deletion replayed. If a xattr is missing
4479 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4480 * because if a xattr is deleted, the inode is fsynced and a power failure
4481 * happens, causing the log to be replayed the next time the fs is mounted,
4482 * we want the xattr to not exist anymore (same behaviour as other filesystems
4483 * with a journal, ext3/4, xfs, f2fs, etc).
4484 */
4485static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4486 struct btrfs_root *root,
1a93c36a 4487 struct btrfs_inode *inode,
36283bf7
FM
4488 struct btrfs_path *path,
4489 struct btrfs_path *dst_path)
4490{
4491 int ret;
4492 struct btrfs_key key;
1a93c36a 4493 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4494 int ins_nr = 0;
4495 int start_slot = 0;
4496
4497 key.objectid = ino;
4498 key.type = BTRFS_XATTR_ITEM_KEY;
4499 key.offset = 0;
4500
4501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4502 if (ret < 0)
4503 return ret;
4504
4505 while (true) {
4506 int slot = path->slots[0];
4507 struct extent_buffer *leaf = path->nodes[0];
4508 int nritems = btrfs_header_nritems(leaf);
4509
4510 if (slot >= nritems) {
4511 if (ins_nr > 0) {
4512 u64 last_extent = 0;
4513
1a93c36a 4514 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4515 &last_extent, start_slot,
4516 ins_nr, 1, 0);
4517 /* can't be 1, extent items aren't processed */
4518 ASSERT(ret <= 0);
4519 if (ret < 0)
4520 return ret;
4521 ins_nr = 0;
4522 }
4523 ret = btrfs_next_leaf(root, path);
4524 if (ret < 0)
4525 return ret;
4526 else if (ret > 0)
4527 break;
4528 continue;
4529 }
4530
4531 btrfs_item_key_to_cpu(leaf, &key, slot);
4532 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4533 break;
4534
4535 if (ins_nr == 0)
4536 start_slot = slot;
4537 ins_nr++;
4538 path->slots[0]++;
4539 cond_resched();
4540 }
4541 if (ins_nr > 0) {
4542 u64 last_extent = 0;
4543
1a93c36a 4544 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4545 &last_extent, start_slot,
4546 ins_nr, 1, 0);
4547 /* can't be 1, extent items aren't processed */
4548 ASSERT(ret <= 0);
4549 if (ret < 0)
4550 return ret;
4551 }
4552
4553 return 0;
4554}
4555
a89ca6f2
FM
4556/*
4557 * If the no holes feature is enabled we need to make sure any hole between the
4558 * last extent and the i_size of our inode is explicitly marked in the log. This
4559 * is to make sure that doing something like:
4560 *
4561 * 1) create file with 128Kb of data
4562 * 2) truncate file to 64Kb
4563 * 3) truncate file to 256Kb
4564 * 4) fsync file
4565 * 5) <crash/power failure>
4566 * 6) mount fs and trigger log replay
4567 *
4568 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4569 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4570 * file correspond to a hole. The presence of explicit holes in a log tree is
4571 * what guarantees that log replay will remove/adjust file extent items in the
4572 * fs/subvol tree.
4573 *
4574 * Here we do not need to care about holes between extents, that is already done
4575 * by copy_items(). We also only need to do this in the full sync path, where we
4576 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4577 * lookup the list of modified extent maps and if any represents a hole, we
4578 * insert a corresponding extent representing a hole in the log tree.
4579 */
4580static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4581 struct btrfs_root *root,
a0308dd7 4582 struct btrfs_inode *inode,
a89ca6f2
FM
4583 struct btrfs_path *path)
4584{
0b246afa 4585 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4586 int ret;
4587 struct btrfs_key key;
4588 u64 hole_start;
4589 u64 hole_size;
4590 struct extent_buffer *leaf;
4591 struct btrfs_root *log = root->log_root;
a0308dd7
NB
4592 const u64 ino = btrfs_ino(inode);
4593 const u64 i_size = i_size_read(&inode->vfs_inode);
a89ca6f2 4594
0b246afa 4595 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4596 return 0;
4597
4598 key.objectid = ino;
4599 key.type = BTRFS_EXTENT_DATA_KEY;
4600 key.offset = (u64)-1;
4601
4602 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4603 ASSERT(ret != 0);
4604 if (ret < 0)
4605 return ret;
4606
4607 ASSERT(path->slots[0] > 0);
4608 path->slots[0]--;
4609 leaf = path->nodes[0];
4610 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4611
4612 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4613 /* inode does not have any extents */
4614 hole_start = 0;
4615 hole_size = i_size;
4616 } else {
4617 struct btrfs_file_extent_item *extent;
4618 u64 len;
4619
4620 /*
4621 * If there's an extent beyond i_size, an explicit hole was
4622 * already inserted by copy_items().
4623 */
4624 if (key.offset >= i_size)
4625 return 0;
4626
4627 extent = btrfs_item_ptr(leaf, path->slots[0],
4628 struct btrfs_file_extent_item);
4629
4630 if (btrfs_file_extent_type(leaf, extent) ==
4631 BTRFS_FILE_EXTENT_INLINE) {
4632 len = btrfs_file_extent_inline_len(leaf,
4633 path->slots[0],
4634 extent);
6399fb5a
FM
4635 ASSERT(len == i_size ||
4636 (len == fs_info->sectorsize &&
4637 btrfs_file_extent_compression(leaf, extent) !=
4638 BTRFS_COMPRESS_NONE));
a89ca6f2
FM
4639 return 0;
4640 }
4641
4642 len = btrfs_file_extent_num_bytes(leaf, extent);
4643 /* Last extent goes beyond i_size, no need to log a hole. */
4644 if (key.offset + len > i_size)
4645 return 0;
4646 hole_start = key.offset + len;
4647 hole_size = i_size - hole_start;
4648 }
4649 btrfs_release_path(path);
4650
4651 /* Last extent ends at i_size. */
4652 if (hole_size == 0)
4653 return 0;
4654
0b246afa 4655 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4656 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4657 hole_size, 0, hole_size, 0, 0, 0);
4658 return ret;
4659}
4660
56f23fdb
FM
4661/*
4662 * When we are logging a new inode X, check if it doesn't have a reference that
4663 * matches the reference from some other inode Y created in a past transaction
4664 * and that was renamed in the current transaction. If we don't do this, then at
4665 * log replay time we can lose inode Y (and all its files if it's a directory):
4666 *
4667 * mkdir /mnt/x
4668 * echo "hello world" > /mnt/x/foobar
4669 * sync
4670 * mv /mnt/x /mnt/y
4671 * mkdir /mnt/x # or touch /mnt/x
4672 * xfs_io -c fsync /mnt/x
4673 * <power fail>
4674 * mount fs, trigger log replay
4675 *
4676 * After the log replay procedure, we would lose the first directory and all its
4677 * files (file foobar).
4678 * For the case where inode Y is not a directory we simply end up losing it:
4679 *
4680 * echo "123" > /mnt/foo
4681 * sync
4682 * mv /mnt/foo /mnt/bar
4683 * echo "abc" > /mnt/foo
4684 * xfs_io -c fsync /mnt/foo
4685 * <power fail>
4686 *
4687 * We also need this for cases where a snapshot entry is replaced by some other
4688 * entry (file or directory) otherwise we end up with an unreplayable log due to
4689 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4690 * if it were a regular entry:
4691 *
4692 * mkdir /mnt/x
4693 * btrfs subvolume snapshot /mnt /mnt/x/snap
4694 * btrfs subvolume delete /mnt/x/snap
4695 * rmdir /mnt/x
4696 * mkdir /mnt/x
4697 * fsync /mnt/x or fsync some new file inside it
4698 * <power fail>
4699 *
4700 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4701 * the same transaction.
4702 */
4703static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4704 const int slot,
4705 const struct btrfs_key *key,
4791c8f1 4706 struct btrfs_inode *inode,
44f714da 4707 u64 *other_ino)
56f23fdb
FM
4708{
4709 int ret;
4710 struct btrfs_path *search_path;
4711 char *name = NULL;
4712 u32 name_len = 0;
4713 u32 item_size = btrfs_item_size_nr(eb, slot);
4714 u32 cur_offset = 0;
4715 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4716
4717 search_path = btrfs_alloc_path();
4718 if (!search_path)
4719 return -ENOMEM;
4720 search_path->search_commit_root = 1;
4721 search_path->skip_locking = 1;
4722
4723 while (cur_offset < item_size) {
4724 u64 parent;
4725 u32 this_name_len;
4726 u32 this_len;
4727 unsigned long name_ptr;
4728 struct btrfs_dir_item *di;
4729
4730 if (key->type == BTRFS_INODE_REF_KEY) {
4731 struct btrfs_inode_ref *iref;
4732
4733 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4734 parent = key->offset;
4735 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4736 name_ptr = (unsigned long)(iref + 1);
4737 this_len = sizeof(*iref) + this_name_len;
4738 } else {
4739 struct btrfs_inode_extref *extref;
4740
4741 extref = (struct btrfs_inode_extref *)(ptr +
4742 cur_offset);
4743 parent = btrfs_inode_extref_parent(eb, extref);
4744 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4745 name_ptr = (unsigned long)&extref->name;
4746 this_len = sizeof(*extref) + this_name_len;
4747 }
4748
4749 if (this_name_len > name_len) {
4750 char *new_name;
4751
4752 new_name = krealloc(name, this_name_len, GFP_NOFS);
4753 if (!new_name) {
4754 ret = -ENOMEM;
4755 goto out;
4756 }
4757 name_len = this_name_len;
4758 name = new_name;
4759 }
4760
4761 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4762 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4763 parent, name, this_name_len, 0);
56f23fdb 4764 if (di && !IS_ERR(di)) {
44f714da
FM
4765 struct btrfs_key di_key;
4766
4767 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4768 di, &di_key);
4769 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4770 ret = 1;
4771 *other_ino = di_key.objectid;
4772 } else {
4773 ret = -EAGAIN;
4774 }
56f23fdb
FM
4775 goto out;
4776 } else if (IS_ERR(di)) {
4777 ret = PTR_ERR(di);
4778 goto out;
4779 }
4780 btrfs_release_path(search_path);
4781
4782 cur_offset += this_len;
4783 }
4784 ret = 0;
4785out:
4786 btrfs_free_path(search_path);
4787 kfree(name);
4788 return ret;
4789}
4790
e02119d5
CM
4791/* log a single inode in the tree log.
4792 * At least one parent directory for this inode must exist in the tree
4793 * or be logged already.
4794 *
4795 * Any items from this inode changed by the current transaction are copied
4796 * to the log tree. An extra reference is taken on any extents in this
4797 * file, allowing us to avoid a whole pile of corner cases around logging
4798 * blocks that have been removed from the tree.
4799 *
4800 * See LOG_INODE_ALL and related defines for a description of what inode_only
4801 * does.
4802 *
4803 * This handles both files and directories.
4804 */
12fcfd22 4805static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 4806 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
4807 int inode_only,
4808 const loff_t start,
8407f553
FM
4809 const loff_t end,
4810 struct btrfs_log_ctx *ctx)
e02119d5 4811{
0b246afa 4812 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
4813 struct btrfs_path *path;
4814 struct btrfs_path *dst_path;
4815 struct btrfs_key min_key;
4816 struct btrfs_key max_key;
4817 struct btrfs_root *log = root->log_root;
827463c4 4818 LIST_HEAD(logged_list);
16e7549f 4819 u64 last_extent = 0;
4a500fd1 4820 int err = 0;
e02119d5 4821 int ret;
3a5f1d45 4822 int nritems;
31ff1cd2
CM
4823 int ins_start_slot = 0;
4824 int ins_nr;
5dc562c5 4825 bool fast_search = false;
a59108a7
NB
4826 u64 ino = btrfs_ino(inode);
4827 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 4828 u64 logged_isize = 0;
e4545de5 4829 bool need_log_inode_item = true;
e02119d5 4830
e02119d5 4831 path = btrfs_alloc_path();
5df67083
TI
4832 if (!path)
4833 return -ENOMEM;
e02119d5 4834 dst_path = btrfs_alloc_path();
5df67083
TI
4835 if (!dst_path) {
4836 btrfs_free_path(path);
4837 return -ENOMEM;
4838 }
e02119d5 4839
33345d01 4840 min_key.objectid = ino;
e02119d5
CM
4841 min_key.type = BTRFS_INODE_ITEM_KEY;
4842 min_key.offset = 0;
4843
33345d01 4844 max_key.objectid = ino;
12fcfd22 4845
12fcfd22 4846
5dc562c5 4847 /* today the code can only do partial logging of directories */
a59108a7 4848 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 4849 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4850 &inode->runtime_flags) &&
781feef7 4851 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
4852 max_key.type = BTRFS_XATTR_ITEM_KEY;
4853 else
4854 max_key.type = (u8)-1;
4855 max_key.offset = (u64)-1;
4856
2c2c452b
FM
4857 /*
4858 * Only run delayed items if we are a dir or a new file.
4859 * Otherwise commit the delayed inode only, which is needed in
4860 * order for the log replay code to mark inodes for link count
4861 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4862 */
a59108a7
NB
4863 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4864 inode->generation > fs_info->last_trans_committed)
4865 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 4866 else
a59108a7 4867 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
4868
4869 if (ret) {
4870 btrfs_free_path(path);
4871 btrfs_free_path(dst_path);
4872 return ret;
16cdcec7
MX
4873 }
4874
781feef7
LB
4875 if (inode_only == LOG_OTHER_INODE) {
4876 inode_only = LOG_INODE_EXISTS;
a59108a7 4877 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 4878 } else {
a59108a7 4879 mutex_lock(&inode->log_mutex);
781feef7 4880 }
e02119d5
CM
4881
4882 /*
4883 * a brute force approach to making sure we get the most uptodate
4884 * copies of everything.
4885 */
a59108a7 4886 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
4887 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4888
4f764e51
FM
4889 if (inode_only == LOG_INODE_EXISTS)
4890 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 4891 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 4892 } else {
1a4bcf47
FM
4893 if (inode_only == LOG_INODE_EXISTS) {
4894 /*
4895 * Make sure the new inode item we write to the log has
4896 * the same isize as the current one (if it exists).
4897 * This is necessary to prevent data loss after log
4898 * replay, and also to prevent doing a wrong expanding
4899 * truncate - for e.g. create file, write 4K into offset
4900 * 0, fsync, write 4K into offset 4096, add hard link,
4901 * fsync some other file (to sync log), power fail - if
4902 * we use the inode's current i_size, after log replay
4903 * we get a 8Kb file, with the last 4Kb extent as a hole
4904 * (zeroes), as if an expanding truncate happened,
4905 * instead of getting a file of 4Kb only.
4906 */
a59108a7 4907 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
4908 if (err)
4909 goto out_unlock;
4910 }
a742994a 4911 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4912 &inode->runtime_flags)) {
a742994a 4913 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 4914 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
4915 ret = drop_objectid_items(trans, log, path, ino,
4916 max_key.type);
4917 } else {
4918 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 4919 &inode->runtime_flags);
a742994a 4920 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 4921 &inode->runtime_flags);
28ed1345
CM
4922 while(1) {
4923 ret = btrfs_truncate_inode_items(trans,
a59108a7 4924 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
4925 if (ret != -EAGAIN)
4926 break;
4927 }
a742994a 4928 }
4f764e51 4929 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 4930 &inode->runtime_flags) ||
6cfab851 4931 inode_only == LOG_INODE_EXISTS) {
4f764e51 4932 if (inode_only == LOG_INODE_ALL)
183f37fa 4933 fast_search = true;
4f764e51 4934 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 4935 ret = drop_objectid_items(trans, log, path, ino,
e9976151 4936 max_key.type);
a95249b3
JB
4937 } else {
4938 if (inode_only == LOG_INODE_ALL)
4939 fast_search = true;
a95249b3 4940 goto log_extents;
5dc562c5 4941 }
a95249b3 4942
e02119d5 4943 }
4a500fd1
YZ
4944 if (ret) {
4945 err = ret;
4946 goto out_unlock;
4947 }
e02119d5 4948
d397712b 4949 while (1) {
31ff1cd2 4950 ins_nr = 0;
6174d3cb 4951 ret = btrfs_search_forward(root, &min_key,
de78b51a 4952 path, trans->transid);
fb770ae4
LB
4953 if (ret < 0) {
4954 err = ret;
4955 goto out_unlock;
4956 }
e02119d5
CM
4957 if (ret != 0)
4958 break;
3a5f1d45 4959again:
31ff1cd2 4960 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 4961 if (min_key.objectid != ino)
e02119d5
CM
4962 break;
4963 if (min_key.type > max_key.type)
4964 break;
31ff1cd2 4965
e4545de5
FM
4966 if (min_key.type == BTRFS_INODE_ITEM_KEY)
4967 need_log_inode_item = false;
4968
56f23fdb
FM
4969 if ((min_key.type == BTRFS_INODE_REF_KEY ||
4970 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
a59108a7 4971 inode->generation == trans->transid) {
44f714da
FM
4972 u64 other_ino = 0;
4973
56f23fdb 4974 ret = btrfs_check_ref_name_override(path->nodes[0],
a59108a7
NB
4975 path->slots[0], &min_key, inode,
4976 &other_ino);
56f23fdb
FM
4977 if (ret < 0) {
4978 err = ret;
4979 goto out_unlock;
28a23593 4980 } else if (ret > 0 && ctx &&
4a0cc7ca 4981 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
44f714da
FM
4982 struct btrfs_key inode_key;
4983 struct inode *other_inode;
4984
4985 if (ins_nr > 0) {
4986 ins_nr++;
4987 } else {
4988 ins_nr = 1;
4989 ins_start_slot = path->slots[0];
4990 }
a59108a7 4991 ret = copy_items(trans, inode, dst_path, path,
44f714da
FM
4992 &last_extent, ins_start_slot,
4993 ins_nr, inode_only,
4994 logged_isize);
4995 if (ret < 0) {
4996 err = ret;
4997 goto out_unlock;
4998 }
4999 ins_nr = 0;
5000 btrfs_release_path(path);
5001 inode_key.objectid = other_ino;
5002 inode_key.type = BTRFS_INODE_ITEM_KEY;
5003 inode_key.offset = 0;
0b246afa 5004 other_inode = btrfs_iget(fs_info->sb,
44f714da
FM
5005 &inode_key, root,
5006 NULL);
5007 /*
5008 * If the other inode that had a conflicting dir
5009 * entry was deleted in the current transaction,
5010 * we don't need to do more work nor fallback to
5011 * a transaction commit.
5012 */
5013 if (IS_ERR(other_inode) &&
5014 PTR_ERR(other_inode) == -ENOENT) {
5015 goto next_key;
5016 } else if (IS_ERR(other_inode)) {
5017 err = PTR_ERR(other_inode);
5018 goto out_unlock;
5019 }
5020 /*
5021 * We are safe logging the other inode without
5022 * acquiring its i_mutex as long as we log with
5023 * the LOG_INODE_EXISTS mode. We're safe against
5024 * concurrent renames of the other inode as well
5025 * because during a rename we pin the log and
5026 * update the log with the new name before we
5027 * unpin it.
5028 */
a59108a7
NB
5029 err = btrfs_log_inode(trans, root,
5030 BTRFS_I(other_inode),
5031 LOG_OTHER_INODE, 0, LLONG_MAX,
5032 ctx);
44f714da
FM
5033 iput(other_inode);
5034 if (err)
5035 goto out_unlock;
5036 else
5037 goto next_key;
56f23fdb
FM
5038 }
5039 }
5040
36283bf7
FM
5041 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5042 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5043 if (ins_nr == 0)
5044 goto next_slot;
a59108a7 5045 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
5046 &last_extent, ins_start_slot,
5047 ins_nr, inode_only, logged_isize);
5048 if (ret < 0) {
5049 err = ret;
5050 goto out_unlock;
5051 }
5052 ins_nr = 0;
5053 if (ret) {
5054 btrfs_release_path(path);
5055 continue;
5056 }
5057 goto next_slot;
5058 }
5059
31ff1cd2
CM
5060 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5061 ins_nr++;
5062 goto next_slot;
5063 } else if (!ins_nr) {
5064 ins_start_slot = path->slots[0];
5065 ins_nr = 1;
5066 goto next_slot;
e02119d5
CM
5067 }
5068
a59108a7 5069 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5070 ins_start_slot, ins_nr, inode_only,
5071 logged_isize);
16e7549f 5072 if (ret < 0) {
4a500fd1
YZ
5073 err = ret;
5074 goto out_unlock;
a71db86e
RV
5075 }
5076 if (ret) {
16e7549f
JB
5077 ins_nr = 0;
5078 btrfs_release_path(path);
5079 continue;
4a500fd1 5080 }
31ff1cd2
CM
5081 ins_nr = 1;
5082 ins_start_slot = path->slots[0];
5083next_slot:
e02119d5 5084
3a5f1d45
CM
5085 nritems = btrfs_header_nritems(path->nodes[0]);
5086 path->slots[0]++;
5087 if (path->slots[0] < nritems) {
5088 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5089 path->slots[0]);
5090 goto again;
5091 }
31ff1cd2 5092 if (ins_nr) {
a59108a7 5093 ret = copy_items(trans, inode, dst_path, path,
16e7549f 5094 &last_extent, ins_start_slot,
1a4bcf47 5095 ins_nr, inode_only, logged_isize);
16e7549f 5096 if (ret < 0) {
4a500fd1
YZ
5097 err = ret;
5098 goto out_unlock;
5099 }
16e7549f 5100 ret = 0;
31ff1cd2
CM
5101 ins_nr = 0;
5102 }
b3b4aa74 5103 btrfs_release_path(path);
44f714da 5104next_key:
3d41d702 5105 if (min_key.offset < (u64)-1) {
e02119d5 5106 min_key.offset++;
3d41d702 5107 } else if (min_key.type < max_key.type) {
e02119d5 5108 min_key.type++;
3d41d702
FDBM
5109 min_key.offset = 0;
5110 } else {
e02119d5 5111 break;
3d41d702 5112 }
e02119d5 5113 }
31ff1cd2 5114 if (ins_nr) {
a59108a7 5115 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5116 ins_start_slot, ins_nr, inode_only,
5117 logged_isize);
16e7549f 5118 if (ret < 0) {
4a500fd1
YZ
5119 err = ret;
5120 goto out_unlock;
5121 }
16e7549f 5122 ret = 0;
31ff1cd2
CM
5123 ins_nr = 0;
5124 }
5dc562c5 5125
36283bf7
FM
5126 btrfs_release_path(path);
5127 btrfs_release_path(dst_path);
a59108a7 5128 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5129 if (err)
5130 goto out_unlock;
a89ca6f2
FM
5131 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5132 btrfs_release_path(path);
5133 btrfs_release_path(dst_path);
a59108a7 5134 err = btrfs_log_trailing_hole(trans, root, inode, path);
a89ca6f2
FM
5135 if (err)
5136 goto out_unlock;
5137 }
a95249b3 5138log_extents:
f3b15ccd
JB
5139 btrfs_release_path(path);
5140 btrfs_release_path(dst_path);
e4545de5 5141 if (need_log_inode_item) {
a59108a7 5142 err = log_inode_item(trans, log, dst_path, inode);
e4545de5
FM
5143 if (err)
5144 goto out_unlock;
5145 }
5dc562c5 5146 if (fast_search) {
a59108a7 5147 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
de0ee0ed 5148 &logged_list, ctx, start, end);
5dc562c5
JB
5149 if (ret) {
5150 err = ret;
5151 goto out_unlock;
5152 }
d006a048 5153 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5154 struct extent_map *em, *n;
5155
49dae1bc
FM
5156 write_lock(&em_tree->lock);
5157 /*
5158 * We can't just remove every em if we're called for a ranged
5159 * fsync - that is, one that doesn't cover the whole possible
5160 * file range (0 to LLONG_MAX). This is because we can have
5161 * em's that fall outside the range we're logging and therefore
5162 * their ordered operations haven't completed yet
5163 * (btrfs_finish_ordered_io() not invoked yet). This means we
5164 * didn't get their respective file extent item in the fs/subvol
5165 * tree yet, and need to let the next fast fsync (one which
5166 * consults the list of modified extent maps) find the em so
5167 * that it logs a matching file extent item and waits for the
5168 * respective ordered operation to complete (if it's still
5169 * running).
5170 *
5171 * Removing every em outside the range we're logging would make
5172 * the next fast fsync not log their matching file extent items,
5173 * therefore making us lose data after a log replay.
5174 */
5175 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5176 list) {
5177 const u64 mod_end = em->mod_start + em->mod_len - 1;
5178
5179 if (em->mod_start >= start && mod_end <= end)
5180 list_del_init(&em->list);
5181 }
5182 write_unlock(&em_tree->lock);
5dc562c5
JB
5183 }
5184
a59108a7
NB
5185 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5186 ret = log_directory_changes(trans, root, inode, path, dst_path,
5187 ctx);
4a500fd1
YZ
5188 if (ret) {
5189 err = ret;
5190 goto out_unlock;
5191 }
e02119d5 5192 }
49dae1bc 5193
a59108a7
NB
5194 spin_lock(&inode->lock);
5195 inode->logged_trans = trans->transid;
5196 inode->last_log_commit = inode->last_sub_trans;
5197 spin_unlock(&inode->lock);
4a500fd1 5198out_unlock:
827463c4
MX
5199 if (unlikely(err))
5200 btrfs_put_logged_extents(&logged_list);
5201 else
5202 btrfs_submit_logged_extents(&logged_list, log);
a59108a7 5203 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5204
5205 btrfs_free_path(path);
5206 btrfs_free_path(dst_path);
4a500fd1 5207 return err;
e02119d5
CM
5208}
5209
2be63d5c
FM
5210/*
5211 * Check if we must fallback to a transaction commit when logging an inode.
5212 * This must be called after logging the inode and is used only in the context
5213 * when fsyncing an inode requires the need to log some other inode - in which
5214 * case we can't lock the i_mutex of each other inode we need to log as that
5215 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5216 * log inodes up or down in the hierarchy) or rename operations for example. So
5217 * we take the log_mutex of the inode after we have logged it and then check for
5218 * its last_unlink_trans value - this is safe because any task setting
5219 * last_unlink_trans must take the log_mutex and it must do this before it does
5220 * the actual unlink operation, so if we do this check before a concurrent task
5221 * sets last_unlink_trans it means we've logged a consistent version/state of
5222 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5223 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5224 * we logged the inode or it might have also done the unlink).
5225 */
5226static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5227 struct btrfs_inode *inode)
2be63d5c 5228{
ab1717b2 5229 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5230 bool ret = false;
5231
ab1717b2
NB
5232 mutex_lock(&inode->log_mutex);
5233 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5234 /*
5235 * Make sure any commits to the log are forced to be full
5236 * commits.
5237 */
5238 btrfs_set_log_full_commit(fs_info, trans);
5239 ret = true;
5240 }
ab1717b2 5241 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5242
5243 return ret;
5244}
5245
12fcfd22
CM
5246/*
5247 * follow the dentry parent pointers up the chain and see if any
5248 * of the directories in it require a full commit before they can
5249 * be logged. Returns zero if nothing special needs to be done or 1 if
5250 * a full commit is required.
5251 */
5252static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5253 struct btrfs_inode *inode,
12fcfd22
CM
5254 struct dentry *parent,
5255 struct super_block *sb,
5256 u64 last_committed)
e02119d5 5257{
12fcfd22 5258 int ret = 0;
6a912213 5259 struct dentry *old_parent = NULL;
aefa6115 5260 struct btrfs_inode *orig_inode = inode;
e02119d5 5261
af4176b4
CM
5262 /*
5263 * for regular files, if its inode is already on disk, we don't
5264 * have to worry about the parents at all. This is because
5265 * we can use the last_unlink_trans field to record renames
5266 * and other fun in this file.
5267 */
aefa6115
NB
5268 if (S_ISREG(inode->vfs_inode.i_mode) &&
5269 inode->generation <= last_committed &&
5270 inode->last_unlink_trans <= last_committed)
5271 goto out;
af4176b4 5272
aefa6115 5273 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5274 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5275 goto out;
aefa6115 5276 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5277 }
5278
5279 while (1) {
de2b530b
JB
5280 /*
5281 * If we are logging a directory then we start with our inode,
01327610 5282 * not our parent's inode, so we need to skip setting the
de2b530b
JB
5283 * logged_trans so that further down in the log code we don't
5284 * think this inode has already been logged.
5285 */
5286 if (inode != orig_inode)
aefa6115 5287 inode->logged_trans = trans->transid;
12fcfd22
CM
5288 smp_mb();
5289
aefa6115 5290 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5291 ret = 1;
5292 break;
5293 }
5294
fc64005c 5295 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5296 break;
5297
44f714da 5298 if (IS_ROOT(parent)) {
aefa6115
NB
5299 inode = BTRFS_I(d_inode(parent));
5300 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5301 ret = 1;
12fcfd22 5302 break;
44f714da 5303 }
12fcfd22 5304
6a912213
JB
5305 parent = dget_parent(parent);
5306 dput(old_parent);
5307 old_parent = parent;
aefa6115 5308 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5309
5310 }
6a912213 5311 dput(old_parent);
12fcfd22 5312out:
e02119d5
CM
5313 return ret;
5314}
5315
2f2ff0ee
FM
5316struct btrfs_dir_list {
5317 u64 ino;
5318 struct list_head list;
5319};
5320
5321/*
5322 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5323 * details about the why it is needed.
5324 * This is a recursive operation - if an existing dentry corresponds to a
5325 * directory, that directory's new entries are logged too (same behaviour as
5326 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5327 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5328 * complains about the following circular lock dependency / possible deadlock:
5329 *
5330 * CPU0 CPU1
5331 * ---- ----
5332 * lock(&type->i_mutex_dir_key#3/2);
5333 * lock(sb_internal#2);
5334 * lock(&type->i_mutex_dir_key#3/2);
5335 * lock(&sb->s_type->i_mutex_key#14);
5336 *
5337 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5338 * sb_start_intwrite() in btrfs_start_transaction().
5339 * Not locking i_mutex of the inodes is still safe because:
5340 *
5341 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5342 * that while logging the inode new references (names) are added or removed
5343 * from the inode, leaving the logged inode item with a link count that does
5344 * not match the number of logged inode reference items. This is fine because
5345 * at log replay time we compute the real number of links and correct the
5346 * link count in the inode item (see replay_one_buffer() and
5347 * link_to_fixup_dir());
5348 *
5349 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5350 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5351 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5352 * has a size that doesn't match the sum of the lengths of all the logged
5353 * names. This does not result in a problem because if a dir_item key is
5354 * logged but its matching dir_index key is not logged, at log replay time we
5355 * don't use it to replay the respective name (see replay_one_name()). On the
5356 * other hand if only the dir_index key ends up being logged, the respective
5357 * name is added to the fs/subvol tree with both the dir_item and dir_index
5358 * keys created (see replay_one_name()).
5359 * The directory's inode item with a wrong i_size is not a problem as well,
5360 * since we don't use it at log replay time to set the i_size in the inode
5361 * item of the fs/subvol tree (see overwrite_item()).
5362 */
5363static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5364 struct btrfs_root *root,
51cc0d32 5365 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5366 struct btrfs_log_ctx *ctx)
5367{
0b246afa 5368 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5369 struct btrfs_root *log = root->log_root;
5370 struct btrfs_path *path;
5371 LIST_HEAD(dir_list);
5372 struct btrfs_dir_list *dir_elem;
5373 int ret = 0;
5374
5375 path = btrfs_alloc_path();
5376 if (!path)
5377 return -ENOMEM;
5378
5379 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5380 if (!dir_elem) {
5381 btrfs_free_path(path);
5382 return -ENOMEM;
5383 }
51cc0d32 5384 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5385 list_add_tail(&dir_elem->list, &dir_list);
5386
5387 while (!list_empty(&dir_list)) {
5388 struct extent_buffer *leaf;
5389 struct btrfs_key min_key;
5390 int nritems;
5391 int i;
5392
5393 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5394 list);
5395 if (ret)
5396 goto next_dir_inode;
5397
5398 min_key.objectid = dir_elem->ino;
5399 min_key.type = BTRFS_DIR_ITEM_KEY;
5400 min_key.offset = 0;
5401again:
5402 btrfs_release_path(path);
5403 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5404 if (ret < 0) {
5405 goto next_dir_inode;
5406 } else if (ret > 0) {
5407 ret = 0;
5408 goto next_dir_inode;
5409 }
5410
5411process_leaf:
5412 leaf = path->nodes[0];
5413 nritems = btrfs_header_nritems(leaf);
5414 for (i = path->slots[0]; i < nritems; i++) {
5415 struct btrfs_dir_item *di;
5416 struct btrfs_key di_key;
5417 struct inode *di_inode;
5418 struct btrfs_dir_list *new_dir_elem;
5419 int log_mode = LOG_INODE_EXISTS;
5420 int type;
5421
5422 btrfs_item_key_to_cpu(leaf, &min_key, i);
5423 if (min_key.objectid != dir_elem->ino ||
5424 min_key.type != BTRFS_DIR_ITEM_KEY)
5425 goto next_dir_inode;
5426
5427 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5428 type = btrfs_dir_type(leaf, di);
5429 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5430 type != BTRFS_FT_DIR)
5431 continue;
5432 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5433 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5434 continue;
5435
ec125cfb 5436 btrfs_release_path(path);
0b246afa 5437 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
2f2ff0ee
FM
5438 if (IS_ERR(di_inode)) {
5439 ret = PTR_ERR(di_inode);
5440 goto next_dir_inode;
5441 }
5442
0f8939b8 5443 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
2f2ff0ee 5444 iput(di_inode);
ec125cfb 5445 break;
2f2ff0ee
FM
5446 }
5447
5448 ctx->log_new_dentries = false;
3f9749f6 5449 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5450 log_mode = LOG_INODE_ALL;
a59108a7 5451 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5452 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5453 if (!ret &&
ab1717b2 5454 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5455 ret = 1;
2f2ff0ee
FM
5456 iput(di_inode);
5457 if (ret)
5458 goto next_dir_inode;
5459 if (ctx->log_new_dentries) {
5460 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5461 GFP_NOFS);
5462 if (!new_dir_elem) {
5463 ret = -ENOMEM;
5464 goto next_dir_inode;
5465 }
5466 new_dir_elem->ino = di_key.objectid;
5467 list_add_tail(&new_dir_elem->list, &dir_list);
5468 }
5469 break;
5470 }
5471 if (i == nritems) {
5472 ret = btrfs_next_leaf(log, path);
5473 if (ret < 0) {
5474 goto next_dir_inode;
5475 } else if (ret > 0) {
5476 ret = 0;
5477 goto next_dir_inode;
5478 }
5479 goto process_leaf;
5480 }
5481 if (min_key.offset < (u64)-1) {
5482 min_key.offset++;
5483 goto again;
5484 }
5485next_dir_inode:
5486 list_del(&dir_elem->list);
5487 kfree(dir_elem);
5488 }
5489
5490 btrfs_free_path(path);
5491 return ret;
5492}
5493
18aa0922 5494static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5495 struct btrfs_inode *inode,
18aa0922
FM
5496 struct btrfs_log_ctx *ctx)
5497{
d0a0b78d 5498 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
18aa0922
FM
5499 int ret;
5500 struct btrfs_path *path;
5501 struct btrfs_key key;
d0a0b78d
NB
5502 struct btrfs_root *root = inode->root;
5503 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5504
5505 path = btrfs_alloc_path();
5506 if (!path)
5507 return -ENOMEM;
5508 path->skip_locking = 1;
5509 path->search_commit_root = 1;
5510
5511 key.objectid = ino;
5512 key.type = BTRFS_INODE_REF_KEY;
5513 key.offset = 0;
5514 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5515 if (ret < 0)
5516 goto out;
5517
5518 while (true) {
5519 struct extent_buffer *leaf = path->nodes[0];
5520 int slot = path->slots[0];
5521 u32 cur_offset = 0;
5522 u32 item_size;
5523 unsigned long ptr;
5524
5525 if (slot >= btrfs_header_nritems(leaf)) {
5526 ret = btrfs_next_leaf(root, path);
5527 if (ret < 0)
5528 goto out;
5529 else if (ret > 0)
5530 break;
5531 continue;
5532 }
5533
5534 btrfs_item_key_to_cpu(leaf, &key, slot);
5535 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5536 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5537 break;
5538
5539 item_size = btrfs_item_size_nr(leaf, slot);
5540 ptr = btrfs_item_ptr_offset(leaf, slot);
5541 while (cur_offset < item_size) {
5542 struct btrfs_key inode_key;
5543 struct inode *dir_inode;
5544
5545 inode_key.type = BTRFS_INODE_ITEM_KEY;
5546 inode_key.offset = 0;
5547
5548 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5549 struct btrfs_inode_extref *extref;
5550
5551 extref = (struct btrfs_inode_extref *)
5552 (ptr + cur_offset);
5553 inode_key.objectid = btrfs_inode_extref_parent(
5554 leaf, extref);
5555 cur_offset += sizeof(*extref);
5556 cur_offset += btrfs_inode_extref_name_len(leaf,
5557 extref);
5558 } else {
5559 inode_key.objectid = key.offset;
5560 cur_offset = item_size;
5561 }
5562
0b246afa 5563 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
18aa0922
FM
5564 root, NULL);
5565 /* If parent inode was deleted, skip it. */
5566 if (IS_ERR(dir_inode))
5567 continue;
5568
657ed1aa
FM
5569 if (ctx)
5570 ctx->log_new_dentries = false;
a59108a7 5571 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5572 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5573 if (!ret &&
ab1717b2 5574 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5575 ret = 1;
657ed1aa
FM
5576 if (!ret && ctx && ctx->log_new_dentries)
5577 ret = log_new_dir_dentries(trans, root,
f85b7379 5578 BTRFS_I(dir_inode), ctx);
18aa0922
FM
5579 iput(dir_inode);
5580 if (ret)
5581 goto out;
5582 }
5583 path->slots[0]++;
5584 }
5585 ret = 0;
5586out:
5587 btrfs_free_path(path);
5588 return ret;
5589}
5590
e02119d5
CM
5591/*
5592 * helper function around btrfs_log_inode to make sure newly created
5593 * parent directories also end up in the log. A minimal inode and backref
5594 * only logging is done of any parent directories that are older than
5595 * the last committed transaction
5596 */
48a3b636 5597static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 5598 struct btrfs_inode *inode,
49dae1bc
FM
5599 struct dentry *parent,
5600 const loff_t start,
5601 const loff_t end,
41a1eada 5602 int inode_only,
8b050d35 5603 struct btrfs_log_ctx *ctx)
e02119d5 5604{
f882274b 5605 struct btrfs_root *root = inode->root;
0b246afa 5606 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 5607 struct super_block *sb;
6a912213 5608 struct dentry *old_parent = NULL;
12fcfd22 5609 int ret = 0;
0b246afa 5610 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 5611 bool log_dentries = false;
19df27a9 5612 struct btrfs_inode *orig_inode = inode;
12fcfd22 5613
19df27a9 5614 sb = inode->vfs_inode.i_sb;
12fcfd22 5615
0b246afa 5616 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
5617 ret = 1;
5618 goto end_no_trans;
5619 }
5620
995946dd
MX
5621 /*
5622 * The prev transaction commit doesn't complete, we need do
5623 * full commit by ourselves.
5624 */
0b246afa
JM
5625 if (fs_info->last_trans_log_full_commit >
5626 fs_info->last_trans_committed) {
12fcfd22
CM
5627 ret = 1;
5628 goto end_no_trans;
5629 }
5630
f882274b 5631 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5632 ret = 1;
5633 goto end_no_trans;
5634 }
5635
19df27a9
NB
5636 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5637 last_committed);
12fcfd22
CM
5638 if (ret)
5639 goto end_no_trans;
e02119d5 5640
19df27a9 5641 if (btrfs_inode_in_log(inode, trans->transid)) {
257c62e1
CM
5642 ret = BTRFS_NO_LOG_SYNC;
5643 goto end_no_trans;
5644 }
5645
8b050d35 5646 ret = start_log_trans(trans, root, ctx);
4a500fd1 5647 if (ret)
e87ac136 5648 goto end_no_trans;
e02119d5 5649
19df27a9 5650 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
5651 if (ret)
5652 goto end_trans;
12fcfd22 5653
af4176b4
CM
5654 /*
5655 * for regular files, if its inode is already on disk, we don't
5656 * have to worry about the parents at all. This is because
5657 * we can use the last_unlink_trans field to record renames
5658 * and other fun in this file.
5659 */
19df27a9
NB
5660 if (S_ISREG(inode->vfs_inode.i_mode) &&
5661 inode->generation <= last_committed &&
5662 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
5663 ret = 0;
5664 goto end_trans;
5665 }
af4176b4 5666
19df27a9 5667 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
5668 log_dentries = true;
5669
18aa0922 5670 /*
01327610 5671 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
5672 * inodes are fully logged. This is to prevent leaving dangling
5673 * directory index entries in directories that were our parents but are
5674 * not anymore. Not doing this results in old parent directory being
5675 * impossible to delete after log replay (rmdir will always fail with
5676 * error -ENOTEMPTY).
5677 *
5678 * Example 1:
5679 *
5680 * mkdir testdir
5681 * touch testdir/foo
5682 * ln testdir/foo testdir/bar
5683 * sync
5684 * unlink testdir/bar
5685 * xfs_io -c fsync testdir/foo
5686 * <power failure>
5687 * mount fs, triggers log replay
5688 *
5689 * If we don't log the parent directory (testdir), after log replay the
5690 * directory still has an entry pointing to the file inode using the bar
5691 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5692 * the file inode has a link count of 1.
5693 *
5694 * Example 2:
5695 *
5696 * mkdir testdir
5697 * touch foo
5698 * ln foo testdir/foo2
5699 * ln foo testdir/foo3
5700 * sync
5701 * unlink testdir/foo3
5702 * xfs_io -c fsync foo
5703 * <power failure>
5704 * mount fs, triggers log replay
5705 *
5706 * Similar as the first example, after log replay the parent directory
5707 * testdir still has an entry pointing to the inode file with name foo3
5708 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5709 * and has a link count of 2.
5710 */
19df27a9 5711 if (inode->last_unlink_trans > last_committed) {
18aa0922
FM
5712 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5713 if (ret)
5714 goto end_trans;
5715 }
5716
12fcfd22 5717 while (1) {
fc64005c 5718 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
e02119d5
CM
5719 break;
5720
19df27a9
NB
5721 inode = BTRFS_I(d_inode(parent));
5722 if (root != inode->root)
76dda93c
YZ
5723 break;
5724
19df27a9
NB
5725 if (inode->generation > last_committed) {
5726 ret = btrfs_log_inode(trans, root, inode,
5727 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
4a500fd1
YZ
5728 if (ret)
5729 goto end_trans;
12fcfd22 5730 }
76dda93c 5731 if (IS_ROOT(parent))
e02119d5 5732 break;
12fcfd22 5733
6a912213
JB
5734 parent = dget_parent(parent);
5735 dput(old_parent);
5736 old_parent = parent;
e02119d5 5737 }
2f2ff0ee 5738 if (log_dentries)
19df27a9 5739 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
2f2ff0ee
FM
5740 else
5741 ret = 0;
4a500fd1 5742end_trans:
6a912213 5743 dput(old_parent);
4a500fd1 5744 if (ret < 0) {
0b246afa 5745 btrfs_set_log_full_commit(fs_info, trans);
4a500fd1
YZ
5746 ret = 1;
5747 }
8b050d35
MX
5748
5749 if (ret)
5750 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
5751 btrfs_end_log_trans(root);
5752end_no_trans:
5753 return ret;
e02119d5
CM
5754}
5755
5756/*
5757 * it is not safe to log dentry if the chunk root has added new
5758 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5759 * If this returns 1, you must commit the transaction to safely get your
5760 * data on disk.
5761 */
5762int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 5763 struct dentry *dentry,
49dae1bc
FM
5764 const loff_t start,
5765 const loff_t end,
8b050d35 5766 struct btrfs_log_ctx *ctx)
e02119d5 5767{
6a912213
JB
5768 struct dentry *parent = dget_parent(dentry);
5769 int ret;
5770
f882274b
NB
5771 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5772 start, end, LOG_INODE_ALL, ctx);
6a912213
JB
5773 dput(parent);
5774
5775 return ret;
e02119d5
CM
5776}
5777
5778/*
5779 * should be called during mount to recover any replay any log trees
5780 * from the FS
5781 */
5782int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5783{
5784 int ret;
5785 struct btrfs_path *path;
5786 struct btrfs_trans_handle *trans;
5787 struct btrfs_key key;
5788 struct btrfs_key found_key;
5789 struct btrfs_key tmp_key;
5790 struct btrfs_root *log;
5791 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5792 struct walk_control wc = {
5793 .process_func = process_one_buffer,
5794 .stage = 0,
5795 };
5796
e02119d5 5797 path = btrfs_alloc_path();
db5b493a
TI
5798 if (!path)
5799 return -ENOMEM;
5800
afcdd129 5801 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5802
4a500fd1 5803 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
5804 if (IS_ERR(trans)) {
5805 ret = PTR_ERR(trans);
5806 goto error;
5807 }
e02119d5
CM
5808
5809 wc.trans = trans;
5810 wc.pin = 1;
5811
db5b493a 5812 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 5813 if (ret) {
5d163e0e
JM
5814 btrfs_handle_fs_error(fs_info, ret,
5815 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
5816 goto error;
5817 }
e02119d5
CM
5818
5819again:
5820 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5821 key.offset = (u64)-1;
962a298f 5822 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 5823
d397712b 5824 while (1) {
e02119d5 5825 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
5826
5827 if (ret < 0) {
34d97007 5828 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5829 "Couldn't find tree log root.");
5830 goto error;
5831 }
e02119d5
CM
5832 if (ret > 0) {
5833 if (path->slots[0] == 0)
5834 break;
5835 path->slots[0]--;
5836 }
5837 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5838 path->slots[0]);
b3b4aa74 5839 btrfs_release_path(path);
e02119d5
CM
5840 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5841 break;
5842
cb517eab 5843 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
5844 if (IS_ERR(log)) {
5845 ret = PTR_ERR(log);
34d97007 5846 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
5847 "Couldn't read tree log root.");
5848 goto error;
5849 }
e02119d5
CM
5850
5851 tmp_key.objectid = found_key.offset;
5852 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5853 tmp_key.offset = (u64)-1;
5854
5855 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
5856 if (IS_ERR(wc.replay_dest)) {
5857 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
5858 free_extent_buffer(log->node);
5859 free_extent_buffer(log->commit_root);
5860 kfree(log);
5d163e0e
JM
5861 btrfs_handle_fs_error(fs_info, ret,
5862 "Couldn't read target root for tree log recovery.");
79787eaa
JM
5863 goto error;
5864 }
e02119d5 5865
07d400a6 5866 wc.replay_dest->log_root = log;
5d4f98a2 5867 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 5868 ret = walk_log_tree(trans, log, &wc);
e02119d5 5869
b50c6e25 5870 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
5871 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5872 path);
e02119d5
CM
5873 }
5874
900c9981
LB
5875 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5876 struct btrfs_root *root = wc.replay_dest;
5877
5878 btrfs_release_path(path);
5879
5880 /*
5881 * We have just replayed everything, and the highest
5882 * objectid of fs roots probably has changed in case
5883 * some inode_item's got replayed.
5884 *
5885 * root->objectid_mutex is not acquired as log replay
5886 * could only happen during mount.
5887 */
5888 ret = btrfs_find_highest_objectid(root,
5889 &root->highest_objectid);
5890 }
5891
e02119d5 5892 key.offset = found_key.offset - 1;
07d400a6 5893 wc.replay_dest->log_root = NULL;
e02119d5 5894 free_extent_buffer(log->node);
b263c2c8 5895 free_extent_buffer(log->commit_root);
e02119d5
CM
5896 kfree(log);
5897
b50c6e25
JB
5898 if (ret)
5899 goto error;
5900
e02119d5
CM
5901 if (found_key.offset == 0)
5902 break;
5903 }
b3b4aa74 5904 btrfs_release_path(path);
e02119d5
CM
5905
5906 /* step one is to pin it all, step two is to replay just inodes */
5907 if (wc.pin) {
5908 wc.pin = 0;
5909 wc.process_func = replay_one_buffer;
5910 wc.stage = LOG_WALK_REPLAY_INODES;
5911 goto again;
5912 }
5913 /* step three is to replay everything */
5914 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5915 wc.stage++;
5916 goto again;
5917 }
5918
5919 btrfs_free_path(path);
5920
abefa55a 5921 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 5922 ret = btrfs_commit_transaction(trans);
abefa55a
JB
5923 if (ret)
5924 return ret;
5925
e02119d5
CM
5926 free_extent_buffer(log_root_tree->node);
5927 log_root_tree->log_root = NULL;
afcdd129 5928 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 5929 kfree(log_root_tree);
79787eaa 5930
abefa55a 5931 return 0;
79787eaa 5932error:
b50c6e25 5933 if (wc.trans)
3a45bb20 5934 btrfs_end_transaction(wc.trans);
79787eaa
JM
5935 btrfs_free_path(path);
5936 return ret;
e02119d5 5937}
12fcfd22
CM
5938
5939/*
5940 * there are some corner cases where we want to force a full
5941 * commit instead of allowing a directory to be logged.
5942 *
5943 * They revolve around files there were unlinked from the directory, and
5944 * this function updates the parent directory so that a full commit is
5945 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
5946 *
5947 * Must be called before the unlink operations (updates to the subvolume tree,
5948 * inodes, etc) are done.
12fcfd22
CM
5949 */
5950void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 5951 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
5952 int for_rename)
5953{
af4176b4
CM
5954 /*
5955 * when we're logging a file, if it hasn't been renamed
5956 * or unlinked, and its inode is fully committed on disk,
5957 * we don't have to worry about walking up the directory chain
5958 * to log its parents.
5959 *
5960 * So, we use the last_unlink_trans field to put this transid
5961 * into the file. When the file is logged we check it and
5962 * don't log the parents if the file is fully on disk.
5963 */
4176bdbf
NB
5964 mutex_lock(&inode->log_mutex);
5965 inode->last_unlink_trans = trans->transid;
5966 mutex_unlock(&inode->log_mutex);
af4176b4 5967
12fcfd22
CM
5968 /*
5969 * if this directory was already logged any new
5970 * names for this file/dir will get recorded
5971 */
5972 smp_mb();
4176bdbf 5973 if (dir->logged_trans == trans->transid)
12fcfd22
CM
5974 return;
5975
5976 /*
5977 * if the inode we're about to unlink was logged,
5978 * the log will be properly updated for any new names
5979 */
4176bdbf 5980 if (inode->logged_trans == trans->transid)
12fcfd22
CM
5981 return;
5982
5983 /*
5984 * when renaming files across directories, if the directory
5985 * there we're unlinking from gets fsync'd later on, there's
5986 * no way to find the destination directory later and fsync it
5987 * properly. So, we have to be conservative and force commits
5988 * so the new name gets discovered.
5989 */
5990 if (for_rename)
5991 goto record;
5992
5993 /* we can safely do the unlink without any special recording */
5994 return;
5995
5996record:
4176bdbf
NB
5997 mutex_lock(&dir->log_mutex);
5998 dir->last_unlink_trans = trans->transid;
5999 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6000}
6001
6002/*
6003 * Make sure that if someone attempts to fsync the parent directory of a deleted
6004 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6005 * that after replaying the log tree of the parent directory's root we will not
6006 * see the snapshot anymore and at log replay time we will not see any log tree
6007 * corresponding to the deleted snapshot's root, which could lead to replaying
6008 * it after replaying the log tree of the parent directory (which would replay
6009 * the snapshot delete operation).
2be63d5c
FM
6010 *
6011 * Must be called before the actual snapshot destroy operation (updates to the
6012 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6013 */
6014void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6015 struct btrfs_inode *dir)
1ec9a1ae 6016{
43663557
NB
6017 mutex_lock(&dir->log_mutex);
6018 dir->last_unlink_trans = trans->transid;
6019 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6020}
6021
6022/*
6023 * Call this after adding a new name for a file and it will properly
6024 * update the log to reflect the new name.
6025 *
6026 * It will return zero if all goes well, and it will return 1 if a
6027 * full transaction commit is required.
6028 */
6029int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6030 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
12fcfd22
CM
6031 struct dentry *parent)
6032{
9ca5fbfb 6033 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
12fcfd22 6034
af4176b4
CM
6035 /*
6036 * this will force the logging code to walk the dentry chain
6037 * up for the file
6038 */
9a6509c4 6039 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6040 inode->last_unlink_trans = trans->transid;
af4176b4 6041
12fcfd22
CM
6042 /*
6043 * if this inode hasn't been logged and directory we're renaming it
6044 * from hasn't been logged, we don't need to log it
6045 */
9ca5fbfb
NB
6046 if (inode->logged_trans <= fs_info->last_trans_committed &&
6047 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
12fcfd22
CM
6048 return 0;
6049
f882274b
NB
6050 return btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6051 LOG_INODE_EXISTS, NULL);
12fcfd22
CM
6052}
6053