Merge tag 'scmi-fixes-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/sudeep...
[linux-2.6-block.git] / fs / btrfs / tree-log.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
e02119d5
CM
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
e02119d5
CM
4 */
5
6#include <linux/sched.h>
5a0e3ad6 7#include <linux/slab.h>
c6adc9cc 8#include <linux/blkdev.h>
5dc562c5 9#include <linux/list_sort.h>
c7f88c4e 10#include <linux/iversion.h>
9678c543 11#include "ctree.h"
995946dd 12#include "tree-log.h"
e02119d5
CM
13#include "disk-io.h"
14#include "locking.h"
15#include "print-tree.h"
f186373f 16#include "backref.h"
ebb8765b 17#include "compression.h"
df2c95f3 18#include "qgroup.h"
900c9981 19#include "inode-map.h"
e02119d5
CM
20
21/* magic values for the inode_only field in btrfs_log_inode:
22 *
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
25 * during log replay
26 */
27#define LOG_INODE_ALL 0
28#define LOG_INODE_EXISTS 1
781feef7 29#define LOG_OTHER_INODE 2
a3baaf0d 30#define LOG_OTHER_INODE_ALL 3
e02119d5 31
12fcfd22
CM
32/*
33 * directory trouble cases
34 *
35 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
36 * log, we must force a full commit before doing an fsync of the directory
37 * where the unlink was done.
38 * ---> record transid of last unlink/rename per directory
39 *
40 * mkdir foo/some_dir
41 * normal commit
42 * rename foo/some_dir foo2/some_dir
43 * mkdir foo/some_dir
44 * fsync foo/some_dir/some_file
45 *
46 * The fsync above will unlink the original some_dir without recording
47 * it in its new location (foo2). After a crash, some_dir will be gone
48 * unless the fsync of some_file forces a full commit
49 *
50 * 2) we must log any new names for any file or dir that is in the fsync
51 * log. ---> check inode while renaming/linking.
52 *
53 * 2a) we must log any new names for any file or dir during rename
54 * when the directory they are being removed from was logged.
55 * ---> check inode and old parent dir during rename
56 *
57 * 2a is actually the more important variant. With the extra logging
58 * a crash might unlink the old name without recreating the new one
59 *
60 * 3) after a crash, we must go through any directories with a link count
61 * of zero and redo the rm -rf
62 *
63 * mkdir f1/foo
64 * normal commit
65 * rm -rf f1/foo
66 * fsync(f1)
67 *
68 * The directory f1 was fully removed from the FS, but fsync was never
69 * called on f1, only its parent dir. After a crash the rm -rf must
70 * be replayed. This must be able to recurse down the entire
71 * directory tree. The inode link count fixup code takes care of the
72 * ugly details.
73 */
74
e02119d5
CM
75/*
76 * stages for the tree walking. The first
77 * stage (0) is to only pin down the blocks we find
78 * the second stage (1) is to make sure that all the inodes
79 * we find in the log are created in the subvolume.
80 *
81 * The last stage is to deal with directories and links and extents
82 * and all the other fun semantics
83 */
84#define LOG_WALK_PIN_ONLY 0
85#define LOG_WALK_REPLAY_INODES 1
dd8e7217
JB
86#define LOG_WALK_REPLAY_DIR_INDEX 2
87#define LOG_WALK_REPLAY_ALL 3
e02119d5 88
12fcfd22 89static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 90 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
91 int inode_only,
92 const loff_t start,
8407f553
FM
93 const loff_t end,
94 struct btrfs_log_ctx *ctx);
ec051c0f
YZ
95static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
98static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
99 struct btrfs_root *root,
100 struct btrfs_root *log,
101 struct btrfs_path *path,
102 u64 dirid, int del_all);
e02119d5
CM
103
104/*
105 * tree logging is a special write ahead log used to make sure that
106 * fsyncs and O_SYNCs can happen without doing full tree commits.
107 *
108 * Full tree commits are expensive because they require commonly
109 * modified blocks to be recowed, creating many dirty pages in the
110 * extent tree an 4x-6x higher write load than ext3.
111 *
112 * Instead of doing a tree commit on every fsync, we use the
113 * key ranges and transaction ids to find items for a given file or directory
114 * that have changed in this transaction. Those items are copied into
115 * a special tree (one per subvolume root), that tree is written to disk
116 * and then the fsync is considered complete.
117 *
118 * After a crash, items are copied out of the log-tree back into the
119 * subvolume tree. Any file data extents found are recorded in the extent
120 * allocation tree, and the log-tree freed.
121 *
122 * The log tree is read three times, once to pin down all the extents it is
123 * using in ram and once, once to create all the inodes logged in the tree
124 * and once to do all the other items.
125 */
126
e02119d5
CM
127/*
128 * start a sub transaction and setup the log tree
129 * this increments the log tree writer count to make the people
130 * syncing the tree wait for us to finish
131 */
132static int start_log_trans(struct btrfs_trans_handle *trans,
8b050d35
MX
133 struct btrfs_root *root,
134 struct btrfs_log_ctx *ctx)
e02119d5 135{
0b246afa 136 struct btrfs_fs_info *fs_info = root->fs_info;
34eb2a52 137 int ret = 0;
7237f183
YZ
138
139 mutex_lock(&root->log_mutex);
34eb2a52 140
7237f183 141 if (root->log_root) {
4884b8e8 142 if (btrfs_need_log_full_commit(trans)) {
50471a38
MX
143 ret = -EAGAIN;
144 goto out;
145 }
34eb2a52 146
ff782e0a 147 if (!root->log_start_pid) {
27cdeb70 148 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
34eb2a52 149 root->log_start_pid = current->pid;
ff782e0a 150 } else if (root->log_start_pid != current->pid) {
27cdeb70 151 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
ff782e0a 152 }
34eb2a52 153 } else {
0b246afa
JM
154 mutex_lock(&fs_info->tree_log_mutex);
155 if (!fs_info->log_root_tree)
156 ret = btrfs_init_log_root_tree(trans, fs_info);
157 mutex_unlock(&fs_info->tree_log_mutex);
34eb2a52
Z
158 if (ret)
159 goto out;
ff782e0a 160
e02119d5 161 ret = btrfs_add_log_tree(trans, root);
4a500fd1 162 if (ret)
e87ac136 163 goto out;
34eb2a52
Z
164
165 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
166 root->log_start_pid = current->pid;
e02119d5 167 }
34eb2a52 168
2ecb7923 169 atomic_inc(&root->log_batch);
7237f183 170 atomic_inc(&root->log_writers);
8b050d35 171 if (ctx) {
34eb2a52 172 int index = root->log_transid % 2;
8b050d35 173 list_add_tail(&ctx->list, &root->log_ctxs[index]);
d1433deb 174 ctx->log_transid = root->log_transid;
8b050d35 175 }
34eb2a52 176
e87ac136 177out:
7237f183 178 mutex_unlock(&root->log_mutex);
e87ac136 179 return ret;
e02119d5
CM
180}
181
182/*
183 * returns 0 if there was a log transaction running and we were able
184 * to join, or returns -ENOENT if there were not transactions
185 * in progress
186 */
187static int join_running_log_trans(struct btrfs_root *root)
188{
189 int ret = -ENOENT;
190
191 smp_mb();
192 if (!root->log_root)
193 return -ENOENT;
194
7237f183 195 mutex_lock(&root->log_mutex);
e02119d5
CM
196 if (root->log_root) {
197 ret = 0;
7237f183 198 atomic_inc(&root->log_writers);
e02119d5 199 }
7237f183 200 mutex_unlock(&root->log_mutex);
e02119d5
CM
201 return ret;
202}
203
12fcfd22
CM
204/*
205 * This either makes the current running log transaction wait
206 * until you call btrfs_end_log_trans() or it makes any future
207 * log transactions wait until you call btrfs_end_log_trans()
208 */
45128b08 209void btrfs_pin_log_trans(struct btrfs_root *root)
12fcfd22 210{
12fcfd22
CM
211 mutex_lock(&root->log_mutex);
212 atomic_inc(&root->log_writers);
213 mutex_unlock(&root->log_mutex);
12fcfd22
CM
214}
215
e02119d5
CM
216/*
217 * indicate we're done making changes to the log tree
218 * and wake up anyone waiting to do a sync
219 */
143bede5 220void btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 221{
7237f183 222 if (atomic_dec_and_test(&root->log_writers)) {
093258e6
DS
223 /* atomic_dec_and_test implies a barrier */
224 cond_wake_up_nomb(&root->log_writer_wait);
7237f183 225 }
e02119d5
CM
226}
227
247462a5
DS
228static int btrfs_write_tree_block(struct extent_buffer *buf)
229{
230 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
231 buf->start + buf->len - 1);
232}
233
234static void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
235{
236 filemap_fdatawait_range(buf->pages[0]->mapping,
237 buf->start, buf->start + buf->len - 1);
238}
e02119d5
CM
239
240/*
241 * the walk control struct is used to pass state down the chain when
242 * processing the log tree. The stage field tells us which part
243 * of the log tree processing we are currently doing. The others
244 * are state fields used for that specific part
245 */
246struct walk_control {
247 /* should we free the extent on disk when done? This is used
248 * at transaction commit time while freeing a log tree
249 */
250 int free;
251
252 /* should we write out the extent buffer? This is used
253 * while flushing the log tree to disk during a sync
254 */
255 int write;
256
257 /* should we wait for the extent buffer io to finish? Also used
258 * while flushing the log tree to disk for a sync
259 */
260 int wait;
261
262 /* pin only walk, we record which extents on disk belong to the
263 * log trees
264 */
265 int pin;
266
267 /* what stage of the replay code we're currently in */
268 int stage;
269
f2d72f42
FM
270 /*
271 * Ignore any items from the inode currently being processed. Needs
272 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
273 * the LOG_WALK_REPLAY_INODES stage.
274 */
275 bool ignore_cur_inode;
276
e02119d5
CM
277 /* the root we are currently replaying */
278 struct btrfs_root *replay_dest;
279
280 /* the trans handle for the current replay */
281 struct btrfs_trans_handle *trans;
282
283 /* the function that gets used to process blocks we find in the
284 * tree. Note the extent_buffer might not be up to date when it is
285 * passed in, and it must be checked or read if you need the data
286 * inside it
287 */
288 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 289 struct walk_control *wc, u64 gen, int level);
e02119d5
CM
290};
291
292/*
293 * process_func used to pin down extents, write them or wait on them
294 */
295static int process_one_buffer(struct btrfs_root *log,
296 struct extent_buffer *eb,
581c1760 297 struct walk_control *wc, u64 gen, int level)
e02119d5 298{
0b246afa 299 struct btrfs_fs_info *fs_info = log->fs_info;
b50c6e25
JB
300 int ret = 0;
301
8c2a1a30
JB
302 /*
303 * If this fs is mixed then we need to be able to process the leaves to
304 * pin down any logged extents, so we have to read the block.
305 */
0b246afa 306 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
581c1760 307 ret = btrfs_read_buffer(eb, gen, level, NULL);
8c2a1a30
JB
308 if (ret)
309 return ret;
310 }
311
04018de5 312 if (wc->pin)
2ff7e61e
JM
313 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
314 eb->len);
e02119d5 315
b50c6e25 316 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
8c2a1a30 317 if (wc->pin && btrfs_header_level(eb) == 0)
bcdc428c 318 ret = btrfs_exclude_logged_extents(eb);
e02119d5
CM
319 if (wc->write)
320 btrfs_write_tree_block(eb);
321 if (wc->wait)
322 btrfs_wait_tree_block_writeback(eb);
323 }
b50c6e25 324 return ret;
e02119d5
CM
325}
326
327/*
328 * Item overwrite used by replay and tree logging. eb, slot and key all refer
329 * to the src data we are copying out.
330 *
331 * root is the tree we are copying into, and path is a scratch
332 * path for use in this function (it should be released on entry and
333 * will be released on exit).
334 *
335 * If the key is already in the destination tree the existing item is
336 * overwritten. If the existing item isn't big enough, it is extended.
337 * If it is too large, it is truncated.
338 *
339 * If the key isn't in the destination yet, a new item is inserted.
340 */
341static noinline int overwrite_item(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root,
343 struct btrfs_path *path,
344 struct extent_buffer *eb, int slot,
345 struct btrfs_key *key)
346{
347 int ret;
348 u32 item_size;
349 u64 saved_i_size = 0;
350 int save_old_i_size = 0;
351 unsigned long src_ptr;
352 unsigned long dst_ptr;
353 int overwrite_root = 0;
4bc4bee4 354 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
e02119d5
CM
355
356 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
357 overwrite_root = 1;
358
359 item_size = btrfs_item_size_nr(eb, slot);
360 src_ptr = btrfs_item_ptr_offset(eb, slot);
361
362 /* look for the key in the destination tree */
363 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
4bc4bee4
JB
364 if (ret < 0)
365 return ret;
366
e02119d5
CM
367 if (ret == 0) {
368 char *src_copy;
369 char *dst_copy;
370 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
371 path->slots[0]);
372 if (dst_size != item_size)
373 goto insert;
374
375 if (item_size == 0) {
b3b4aa74 376 btrfs_release_path(path);
e02119d5
CM
377 return 0;
378 }
379 dst_copy = kmalloc(item_size, GFP_NOFS);
380 src_copy = kmalloc(item_size, GFP_NOFS);
2a29edc6 381 if (!dst_copy || !src_copy) {
b3b4aa74 382 btrfs_release_path(path);
2a29edc6 383 kfree(dst_copy);
384 kfree(src_copy);
385 return -ENOMEM;
386 }
e02119d5
CM
387
388 read_extent_buffer(eb, src_copy, src_ptr, item_size);
389
390 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
391 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
392 item_size);
393 ret = memcmp(dst_copy, src_copy, item_size);
394
395 kfree(dst_copy);
396 kfree(src_copy);
397 /*
398 * they have the same contents, just return, this saves
399 * us from cowing blocks in the destination tree and doing
400 * extra writes that may not have been done by a previous
401 * sync
402 */
403 if (ret == 0) {
b3b4aa74 404 btrfs_release_path(path);
e02119d5
CM
405 return 0;
406 }
407
4bc4bee4
JB
408 /*
409 * We need to load the old nbytes into the inode so when we
410 * replay the extents we've logged we get the right nbytes.
411 */
412 if (inode_item) {
413 struct btrfs_inode_item *item;
414 u64 nbytes;
d555438b 415 u32 mode;
4bc4bee4
JB
416
417 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
418 struct btrfs_inode_item);
419 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
420 item = btrfs_item_ptr(eb, slot,
421 struct btrfs_inode_item);
422 btrfs_set_inode_nbytes(eb, item, nbytes);
d555438b
JB
423
424 /*
425 * If this is a directory we need to reset the i_size to
426 * 0 so that we can set it up properly when replaying
427 * the rest of the items in this log.
428 */
429 mode = btrfs_inode_mode(eb, item);
430 if (S_ISDIR(mode))
431 btrfs_set_inode_size(eb, item, 0);
4bc4bee4
JB
432 }
433 } else if (inode_item) {
434 struct btrfs_inode_item *item;
d555438b 435 u32 mode;
4bc4bee4
JB
436
437 /*
438 * New inode, set nbytes to 0 so that the nbytes comes out
439 * properly when we replay the extents.
440 */
441 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
442 btrfs_set_inode_nbytes(eb, item, 0);
d555438b
JB
443
444 /*
445 * If this is a directory we need to reset the i_size to 0 so
446 * that we can set it up properly when replaying the rest of
447 * the items in this log.
448 */
449 mode = btrfs_inode_mode(eb, item);
450 if (S_ISDIR(mode))
451 btrfs_set_inode_size(eb, item, 0);
e02119d5
CM
452 }
453insert:
b3b4aa74 454 btrfs_release_path(path);
e02119d5 455 /* try to insert the key into the destination tree */
df8d116f 456 path->skip_release_on_error = 1;
e02119d5
CM
457 ret = btrfs_insert_empty_item(trans, root, path,
458 key, item_size);
df8d116f 459 path->skip_release_on_error = 0;
e02119d5
CM
460
461 /* make sure any existing item is the correct size */
df8d116f 462 if (ret == -EEXIST || ret == -EOVERFLOW) {
e02119d5
CM
463 u32 found_size;
464 found_size = btrfs_item_size_nr(path->nodes[0],
465 path->slots[0]);
143bede5 466 if (found_size > item_size)
78ac4f9e 467 btrfs_truncate_item(path, item_size, 1);
143bede5 468 else if (found_size < item_size)
c71dd880 469 btrfs_extend_item(path, item_size - found_size);
e02119d5 470 } else if (ret) {
4a500fd1 471 return ret;
e02119d5
CM
472 }
473 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
474 path->slots[0]);
475
476 /* don't overwrite an existing inode if the generation number
477 * was logged as zero. This is done when the tree logging code
478 * is just logging an inode to make sure it exists after recovery.
479 *
480 * Also, don't overwrite i_size on directories during replay.
481 * log replay inserts and removes directory items based on the
482 * state of the tree found in the subvolume, and i_size is modified
483 * as it goes
484 */
485 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
486 struct btrfs_inode_item *src_item;
487 struct btrfs_inode_item *dst_item;
488
489 src_item = (struct btrfs_inode_item *)src_ptr;
490 dst_item = (struct btrfs_inode_item *)dst_ptr;
491
1a4bcf47
FM
492 if (btrfs_inode_generation(eb, src_item) == 0) {
493 struct extent_buffer *dst_eb = path->nodes[0];
2f2ff0ee 494 const u64 ino_size = btrfs_inode_size(eb, src_item);
1a4bcf47 495
2f2ff0ee
FM
496 /*
497 * For regular files an ino_size == 0 is used only when
498 * logging that an inode exists, as part of a directory
499 * fsync, and the inode wasn't fsynced before. In this
500 * case don't set the size of the inode in the fs/subvol
501 * tree, otherwise we would be throwing valid data away.
502 */
1a4bcf47 503 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
2f2ff0ee
FM
504 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
505 ino_size != 0) {
1a4bcf47 506 struct btrfs_map_token token;
1a4bcf47
FM
507
508 btrfs_init_map_token(&token);
509 btrfs_set_token_inode_size(dst_eb, dst_item,
510 ino_size, &token);
511 }
e02119d5 512 goto no_copy;
1a4bcf47 513 }
e02119d5
CM
514
515 if (overwrite_root &&
516 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
517 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
518 save_old_i_size = 1;
519 saved_i_size = btrfs_inode_size(path->nodes[0],
520 dst_item);
521 }
522 }
523
524 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
525 src_ptr, item_size);
526
527 if (save_old_i_size) {
528 struct btrfs_inode_item *dst_item;
529 dst_item = (struct btrfs_inode_item *)dst_ptr;
530 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
531 }
532
533 /* make sure the generation is filled in */
534 if (key->type == BTRFS_INODE_ITEM_KEY) {
535 struct btrfs_inode_item *dst_item;
536 dst_item = (struct btrfs_inode_item *)dst_ptr;
537 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
538 btrfs_set_inode_generation(path->nodes[0], dst_item,
539 trans->transid);
540 }
541 }
542no_copy:
543 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 544 btrfs_release_path(path);
e02119d5
CM
545 return 0;
546}
547
548/*
549 * simple helper to read an inode off the disk from a given root
550 * This can only be called for subvolume roots and not for the log
551 */
552static noinline struct inode *read_one_inode(struct btrfs_root *root,
553 u64 objectid)
554{
5d4f98a2 555 struct btrfs_key key;
e02119d5 556 struct inode *inode;
e02119d5 557
5d4f98a2
YZ
558 key.objectid = objectid;
559 key.type = BTRFS_INODE_ITEM_KEY;
560 key.offset = 0;
73f73415 561 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
2e19f1f9 562 if (IS_ERR(inode))
5d4f98a2 563 inode = NULL;
e02119d5
CM
564 return inode;
565}
566
567/* replays a single extent in 'eb' at 'slot' with 'key' into the
568 * subvolume 'root'. path is released on entry and should be released
569 * on exit.
570 *
571 * extents in the log tree have not been allocated out of the extent
572 * tree yet. So, this completes the allocation, taking a reference
573 * as required if the extent already exists or creating a new extent
574 * if it isn't in the extent allocation tree yet.
575 *
576 * The extent is inserted into the file, dropping any existing extents
577 * from the file that overlap the new one.
578 */
579static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
580 struct btrfs_root *root,
581 struct btrfs_path *path,
582 struct extent_buffer *eb, int slot,
583 struct btrfs_key *key)
584{
0b246afa 585 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 586 int found_type;
e02119d5 587 u64 extent_end;
e02119d5 588 u64 start = key->offset;
4bc4bee4 589 u64 nbytes = 0;
e02119d5
CM
590 struct btrfs_file_extent_item *item;
591 struct inode *inode = NULL;
592 unsigned long size;
593 int ret = 0;
594
595 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
596 found_type = btrfs_file_extent_type(eb, item);
597
d899e052 598 if (found_type == BTRFS_FILE_EXTENT_REG ||
4bc4bee4
JB
599 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
600 nbytes = btrfs_file_extent_num_bytes(eb, item);
601 extent_end = start + nbytes;
602
603 /*
604 * We don't add to the inodes nbytes if we are prealloc or a
605 * hole.
606 */
607 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
608 nbytes = 0;
609 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 610 size = btrfs_file_extent_ram_bytes(eb, item);
4bc4bee4 611 nbytes = btrfs_file_extent_ram_bytes(eb, item);
da17066c 612 extent_end = ALIGN(start + size,
0b246afa 613 fs_info->sectorsize);
e02119d5
CM
614 } else {
615 ret = 0;
616 goto out;
617 }
618
619 inode = read_one_inode(root, key->objectid);
620 if (!inode) {
621 ret = -EIO;
622 goto out;
623 }
624
625 /*
626 * first check to see if we already have this extent in the
627 * file. This must be done before the btrfs_drop_extents run
628 * so we don't try to drop this extent.
629 */
f85b7379
DS
630 ret = btrfs_lookup_file_extent(trans, root, path,
631 btrfs_ino(BTRFS_I(inode)), start, 0);
e02119d5 632
d899e052
YZ
633 if (ret == 0 &&
634 (found_type == BTRFS_FILE_EXTENT_REG ||
635 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
636 struct btrfs_file_extent_item cmp1;
637 struct btrfs_file_extent_item cmp2;
638 struct btrfs_file_extent_item *existing;
639 struct extent_buffer *leaf;
640
641 leaf = path->nodes[0];
642 existing = btrfs_item_ptr(leaf, path->slots[0],
643 struct btrfs_file_extent_item);
644
645 read_extent_buffer(eb, &cmp1, (unsigned long)item,
646 sizeof(cmp1));
647 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
648 sizeof(cmp2));
649
650 /*
651 * we already have a pointer to this exact extent,
652 * we don't have to do anything
653 */
654 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
b3b4aa74 655 btrfs_release_path(path);
e02119d5
CM
656 goto out;
657 }
658 }
b3b4aa74 659 btrfs_release_path(path);
e02119d5
CM
660
661 /* drop any overlapping extents */
2671485d 662 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
3650860b
JB
663 if (ret)
664 goto out;
e02119d5 665
07d400a6
YZ
666 if (found_type == BTRFS_FILE_EXTENT_REG ||
667 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 668 u64 offset;
07d400a6
YZ
669 unsigned long dest_offset;
670 struct btrfs_key ins;
671
3168021c
FM
672 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
673 btrfs_fs_incompat(fs_info, NO_HOLES))
674 goto update_inode;
675
07d400a6
YZ
676 ret = btrfs_insert_empty_item(trans, root, path, key,
677 sizeof(*item));
3650860b
JB
678 if (ret)
679 goto out;
07d400a6
YZ
680 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
681 path->slots[0]);
682 copy_extent_buffer(path->nodes[0], eb, dest_offset,
683 (unsigned long)item, sizeof(*item));
684
685 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
686 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
687 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 688 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6 689
df2c95f3
QW
690 /*
691 * Manually record dirty extent, as here we did a shallow
692 * file extent item copy and skip normal backref update,
693 * but modifying extent tree all by ourselves.
694 * So need to manually record dirty extent for qgroup,
695 * as the owner of the file extent changed from log tree
696 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
697 */
a95f3aaf 698 ret = btrfs_qgroup_trace_extent(trans,
df2c95f3
QW
699 btrfs_file_extent_disk_bytenr(eb, item),
700 btrfs_file_extent_disk_num_bytes(eb, item),
701 GFP_NOFS);
702 if (ret < 0)
703 goto out;
704
07d400a6 705 if (ins.objectid > 0) {
82fa113f 706 struct btrfs_ref ref = { 0 };
07d400a6
YZ
707 u64 csum_start;
708 u64 csum_end;
709 LIST_HEAD(ordered_sums);
82fa113f 710
07d400a6
YZ
711 /*
712 * is this extent already allocated in the extent
713 * allocation tree? If so, just add a reference
714 */
2ff7e61e 715 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
07d400a6
YZ
716 ins.offset);
717 if (ret == 0) {
82fa113f
QW
718 btrfs_init_generic_ref(&ref,
719 BTRFS_ADD_DELAYED_REF,
720 ins.objectid, ins.offset, 0);
721 btrfs_init_data_ref(&ref,
722 root->root_key.objectid,
b06c4bf5 723 key->objectid, offset);
82fa113f 724 ret = btrfs_inc_extent_ref(trans, &ref);
b50c6e25
JB
725 if (ret)
726 goto out;
07d400a6
YZ
727 } else {
728 /*
729 * insert the extent pointer in the extent
730 * allocation tree
731 */
5d4f98a2 732 ret = btrfs_alloc_logged_file_extent(trans,
2ff7e61e 733 root->root_key.objectid,
5d4f98a2 734 key->objectid, offset, &ins);
b50c6e25
JB
735 if (ret)
736 goto out;
07d400a6 737 }
b3b4aa74 738 btrfs_release_path(path);
07d400a6
YZ
739
740 if (btrfs_file_extent_compression(eb, item)) {
741 csum_start = ins.objectid;
742 csum_end = csum_start + ins.offset;
743 } else {
744 csum_start = ins.objectid +
745 btrfs_file_extent_offset(eb, item);
746 csum_end = csum_start +
747 btrfs_file_extent_num_bytes(eb, item);
748 }
749
750 ret = btrfs_lookup_csums_range(root->log_root,
751 csum_start, csum_end - 1,
a2de733c 752 &ordered_sums, 0);
3650860b
JB
753 if (ret)
754 goto out;
b84b8390
FM
755 /*
756 * Now delete all existing cums in the csum root that
757 * cover our range. We do this because we can have an
758 * extent that is completely referenced by one file
759 * extent item and partially referenced by another
760 * file extent item (like after using the clone or
761 * extent_same ioctls). In this case if we end up doing
762 * the replay of the one that partially references the
763 * extent first, and we do not do the csum deletion
764 * below, we can get 2 csum items in the csum tree that
765 * overlap each other. For example, imagine our log has
766 * the two following file extent items:
767 *
768 * key (257 EXTENT_DATA 409600)
769 * extent data disk byte 12845056 nr 102400
770 * extent data offset 20480 nr 20480 ram 102400
771 *
772 * key (257 EXTENT_DATA 819200)
773 * extent data disk byte 12845056 nr 102400
774 * extent data offset 0 nr 102400 ram 102400
775 *
776 * Where the second one fully references the 100K extent
777 * that starts at disk byte 12845056, and the log tree
778 * has a single csum item that covers the entire range
779 * of the extent:
780 *
781 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
782 *
783 * After the first file extent item is replayed, the
784 * csum tree gets the following csum item:
785 *
786 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
787 *
788 * Which covers the 20K sub-range starting at offset 20K
789 * of our extent. Now when we replay the second file
790 * extent item, if we do not delete existing csum items
791 * that cover any of its blocks, we end up getting two
792 * csum items in our csum tree that overlap each other:
793 *
794 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
795 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
796 *
797 * Which is a problem, because after this anyone trying
798 * to lookup up for the checksum of any block of our
799 * extent starting at an offset of 40K or higher, will
800 * end up looking at the second csum item only, which
801 * does not contain the checksum for any block starting
802 * at offset 40K or higher of our extent.
803 */
07d400a6
YZ
804 while (!list_empty(&ordered_sums)) {
805 struct btrfs_ordered_sum *sums;
806 sums = list_entry(ordered_sums.next,
807 struct btrfs_ordered_sum,
808 list);
b84b8390 809 if (!ret)
0b246afa 810 ret = btrfs_del_csums(trans, fs_info,
5b4aacef
JM
811 sums->bytenr,
812 sums->len);
3650860b
JB
813 if (!ret)
814 ret = btrfs_csum_file_blocks(trans,
0b246afa 815 fs_info->csum_root, sums);
07d400a6
YZ
816 list_del(&sums->list);
817 kfree(sums);
818 }
3650860b
JB
819 if (ret)
820 goto out;
07d400a6 821 } else {
b3b4aa74 822 btrfs_release_path(path);
07d400a6
YZ
823 }
824 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
825 /* inline extents are easy, we just overwrite them */
826 ret = overwrite_item(trans, root, path, eb, slot, key);
3650860b
JB
827 if (ret)
828 goto out;
07d400a6 829 }
e02119d5 830
4bc4bee4 831 inode_add_bytes(inode, nbytes);
3168021c 832update_inode:
b9959295 833 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
834out:
835 if (inode)
836 iput(inode);
837 return ret;
838}
839
840/*
841 * when cleaning up conflicts between the directory names in the
842 * subvolume, directory names in the log and directory names in the
843 * inode back references, we may have to unlink inodes from directories.
844 *
845 * This is a helper function to do the unlink of a specific directory
846 * item
847 */
848static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
849 struct btrfs_root *root,
850 struct btrfs_path *path,
207e7d92 851 struct btrfs_inode *dir,
e02119d5
CM
852 struct btrfs_dir_item *di)
853{
854 struct inode *inode;
855 char *name;
856 int name_len;
857 struct extent_buffer *leaf;
858 struct btrfs_key location;
859 int ret;
860
861 leaf = path->nodes[0];
862
863 btrfs_dir_item_key_to_cpu(leaf, di, &location);
864 name_len = btrfs_dir_name_len(leaf, di);
865 name = kmalloc(name_len, GFP_NOFS);
2a29edc6 866 if (!name)
867 return -ENOMEM;
868
e02119d5 869 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
b3b4aa74 870 btrfs_release_path(path);
e02119d5
CM
871
872 inode = read_one_inode(root, location.objectid);
c00e9493 873 if (!inode) {
3650860b
JB
874 ret = -EIO;
875 goto out;
c00e9493 876 }
e02119d5 877
ec051c0f 878 ret = link_to_fixup_dir(trans, root, path, location.objectid);
3650860b
JB
879 if (ret)
880 goto out;
12fcfd22 881
207e7d92
NB
882 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
883 name_len);
3650860b
JB
884 if (ret)
885 goto out;
ada9af21 886 else
e5c304e6 887 ret = btrfs_run_delayed_items(trans);
3650860b 888out:
e02119d5 889 kfree(name);
e02119d5
CM
890 iput(inode);
891 return ret;
892}
893
894/*
895 * helper function to see if a given name and sequence number found
896 * in an inode back reference are already in a directory and correctly
897 * point to this inode
898 */
899static noinline int inode_in_dir(struct btrfs_root *root,
900 struct btrfs_path *path,
901 u64 dirid, u64 objectid, u64 index,
902 const char *name, int name_len)
903{
904 struct btrfs_dir_item *di;
905 struct btrfs_key location;
906 int match = 0;
907
908 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
909 index, name, name_len, 0);
910 if (di && !IS_ERR(di)) {
911 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
912 if (location.objectid != objectid)
913 goto out;
914 } else
915 goto out;
b3b4aa74 916 btrfs_release_path(path);
e02119d5
CM
917
918 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
919 if (di && !IS_ERR(di)) {
920 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
921 if (location.objectid != objectid)
922 goto out;
923 } else
924 goto out;
925 match = 1;
926out:
b3b4aa74 927 btrfs_release_path(path);
e02119d5
CM
928 return match;
929}
930
931/*
932 * helper function to check a log tree for a named back reference in
933 * an inode. This is used to decide if a back reference that is
934 * found in the subvolume conflicts with what we find in the log.
935 *
936 * inode backreferences may have multiple refs in a single item,
937 * during replay we process one reference at a time, and we don't
938 * want to delete valid links to a file from the subvolume if that
939 * link is also in the log.
940 */
941static noinline int backref_in_log(struct btrfs_root *log,
942 struct btrfs_key *key,
f186373f 943 u64 ref_objectid,
df8d116f 944 const char *name, int namelen)
e02119d5
CM
945{
946 struct btrfs_path *path;
947 struct btrfs_inode_ref *ref;
948 unsigned long ptr;
949 unsigned long ptr_end;
950 unsigned long name_ptr;
951 int found_name_len;
952 int item_size;
953 int ret;
954 int match = 0;
955
956 path = btrfs_alloc_path();
2a29edc6 957 if (!path)
958 return -ENOMEM;
959
e02119d5
CM
960 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
961 if (ret != 0)
962 goto out;
963
e02119d5 964 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
f186373f
MF
965
966 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1f250e92
FM
967 if (btrfs_find_name_in_ext_backref(path->nodes[0],
968 path->slots[0],
969 ref_objectid,
f186373f
MF
970 name, namelen, NULL))
971 match = 1;
972
973 goto out;
974 }
975
976 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
e02119d5
CM
977 ptr_end = ptr + item_size;
978 while (ptr < ptr_end) {
979 ref = (struct btrfs_inode_ref *)ptr;
980 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
981 if (found_name_len == namelen) {
982 name_ptr = (unsigned long)(ref + 1);
983 ret = memcmp_extent_buffer(path->nodes[0], name,
984 name_ptr, namelen);
985 if (ret == 0) {
986 match = 1;
987 goto out;
988 }
989 }
990 ptr = (unsigned long)(ref + 1) + found_name_len;
991 }
992out:
993 btrfs_free_path(path);
994 return match;
995}
996
5a1d7843 997static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
e02119d5 998 struct btrfs_root *root,
e02119d5 999 struct btrfs_path *path,
5a1d7843 1000 struct btrfs_root *log_root,
94c91a1f
NB
1001 struct btrfs_inode *dir,
1002 struct btrfs_inode *inode,
f186373f
MF
1003 u64 inode_objectid, u64 parent_objectid,
1004 u64 ref_index, char *name, int namelen,
1005 int *search_done)
e02119d5 1006{
34f3e4f2 1007 int ret;
f186373f
MF
1008 char *victim_name;
1009 int victim_name_len;
1010 struct extent_buffer *leaf;
5a1d7843 1011 struct btrfs_dir_item *di;
f186373f
MF
1012 struct btrfs_key search_key;
1013 struct btrfs_inode_extref *extref;
c622ae60 1014
f186373f
MF
1015again:
1016 /* Search old style refs */
1017 search_key.objectid = inode_objectid;
1018 search_key.type = BTRFS_INODE_REF_KEY;
1019 search_key.offset = parent_objectid;
1020 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
e02119d5 1021 if (ret == 0) {
e02119d5
CM
1022 struct btrfs_inode_ref *victim_ref;
1023 unsigned long ptr;
1024 unsigned long ptr_end;
f186373f
MF
1025
1026 leaf = path->nodes[0];
e02119d5
CM
1027
1028 /* are we trying to overwrite a back ref for the root directory
1029 * if so, just jump out, we're done
1030 */
f186373f 1031 if (search_key.objectid == search_key.offset)
5a1d7843 1032 return 1;
e02119d5
CM
1033
1034 /* check all the names in this back reference to see
1035 * if they are in the log. if so, we allow them to stay
1036 * otherwise they must be unlinked as a conflict
1037 */
1038 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1039 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 1040 while (ptr < ptr_end) {
e02119d5
CM
1041 victim_ref = (struct btrfs_inode_ref *)ptr;
1042 victim_name_len = btrfs_inode_ref_name_len(leaf,
1043 victim_ref);
1044 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1045 if (!victim_name)
1046 return -ENOMEM;
e02119d5
CM
1047
1048 read_extent_buffer(leaf, victim_name,
1049 (unsigned long)(victim_ref + 1),
1050 victim_name_len);
1051
f186373f
MF
1052 if (!backref_in_log(log_root, &search_key,
1053 parent_objectid,
1054 victim_name,
e02119d5 1055 victim_name_len)) {
94c91a1f 1056 inc_nlink(&inode->vfs_inode);
b3b4aa74 1057 btrfs_release_path(path);
12fcfd22 1058
94c91a1f 1059 ret = btrfs_unlink_inode(trans, root, dir, inode,
4ec5934e 1060 victim_name, victim_name_len);
f186373f 1061 kfree(victim_name);
3650860b
JB
1062 if (ret)
1063 return ret;
e5c304e6 1064 ret = btrfs_run_delayed_items(trans);
ada9af21
FDBM
1065 if (ret)
1066 return ret;
f186373f
MF
1067 *search_done = 1;
1068 goto again;
e02119d5
CM
1069 }
1070 kfree(victim_name);
f186373f 1071
e02119d5
CM
1072 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1073 }
e02119d5 1074
c622ae60 1075 /*
1076 * NOTE: we have searched root tree and checked the
bb7ab3b9 1077 * corresponding ref, it does not need to check again.
c622ae60 1078 */
5a1d7843 1079 *search_done = 1;
e02119d5 1080 }
b3b4aa74 1081 btrfs_release_path(path);
e02119d5 1082
f186373f
MF
1083 /* Same search but for extended refs */
1084 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1085 inode_objectid, parent_objectid, 0,
1086 0);
1087 if (!IS_ERR_OR_NULL(extref)) {
1088 u32 item_size;
1089 u32 cur_offset = 0;
1090 unsigned long base;
1091 struct inode *victim_parent;
1092
1093 leaf = path->nodes[0];
1094
1095 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1096 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1097
1098 while (cur_offset < item_size) {
dd9ef135 1099 extref = (struct btrfs_inode_extref *)(base + cur_offset);
f186373f
MF
1100
1101 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1102
1103 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1104 goto next;
1105
1106 victim_name = kmalloc(victim_name_len, GFP_NOFS);
3650860b
JB
1107 if (!victim_name)
1108 return -ENOMEM;
f186373f
MF
1109 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1110 victim_name_len);
1111
1112 search_key.objectid = inode_objectid;
1113 search_key.type = BTRFS_INODE_EXTREF_KEY;
1114 search_key.offset = btrfs_extref_hash(parent_objectid,
1115 victim_name,
1116 victim_name_len);
1117 ret = 0;
1118 if (!backref_in_log(log_root, &search_key,
1119 parent_objectid, victim_name,
1120 victim_name_len)) {
1121 ret = -ENOENT;
1122 victim_parent = read_one_inode(root,
94c91a1f 1123 parent_objectid);
f186373f 1124 if (victim_parent) {
94c91a1f 1125 inc_nlink(&inode->vfs_inode);
f186373f
MF
1126 btrfs_release_path(path);
1127
1128 ret = btrfs_unlink_inode(trans, root,
4ec5934e 1129 BTRFS_I(victim_parent),
94c91a1f 1130 inode,
4ec5934e
NB
1131 victim_name,
1132 victim_name_len);
ada9af21
FDBM
1133 if (!ret)
1134 ret = btrfs_run_delayed_items(
e5c304e6 1135 trans);
f186373f 1136 }
f186373f
MF
1137 iput(victim_parent);
1138 kfree(victim_name);
3650860b
JB
1139 if (ret)
1140 return ret;
f186373f
MF
1141 *search_done = 1;
1142 goto again;
1143 }
1144 kfree(victim_name);
f186373f
MF
1145next:
1146 cur_offset += victim_name_len + sizeof(*extref);
1147 }
1148 *search_done = 1;
1149 }
1150 btrfs_release_path(path);
1151
34f3e4f2 1152 /* look for a conflicting sequence number */
94c91a1f 1153 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
f186373f 1154 ref_index, name, namelen, 0);
34f3e4f2 1155 if (di && !IS_ERR(di)) {
94c91a1f 1156 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1157 if (ret)
1158 return ret;
34f3e4f2 1159 }
1160 btrfs_release_path(path);
1161
52042d8e 1162 /* look for a conflicting name */
94c91a1f 1163 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
34f3e4f2 1164 name, namelen, 0);
1165 if (di && !IS_ERR(di)) {
94c91a1f 1166 ret = drop_one_dir_item(trans, root, path, dir, di);
3650860b
JB
1167 if (ret)
1168 return ret;
34f3e4f2 1169 }
1170 btrfs_release_path(path);
1171
5a1d7843
JS
1172 return 0;
1173}
e02119d5 1174
bae15d95
QW
1175static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1176 u32 *namelen, char **name, u64 *index,
1177 u64 *parent_objectid)
f186373f
MF
1178{
1179 struct btrfs_inode_extref *extref;
1180
1181 extref = (struct btrfs_inode_extref *)ref_ptr;
1182
1183 *namelen = btrfs_inode_extref_name_len(eb, extref);
1184 *name = kmalloc(*namelen, GFP_NOFS);
1185 if (*name == NULL)
1186 return -ENOMEM;
1187
1188 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1189 *namelen);
1190
1f250e92
FM
1191 if (index)
1192 *index = btrfs_inode_extref_index(eb, extref);
f186373f
MF
1193 if (parent_objectid)
1194 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1195
1196 return 0;
1197}
1198
bae15d95
QW
1199static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1200 u32 *namelen, char **name, u64 *index)
f186373f
MF
1201{
1202 struct btrfs_inode_ref *ref;
1203
1204 ref = (struct btrfs_inode_ref *)ref_ptr;
1205
1206 *namelen = btrfs_inode_ref_name_len(eb, ref);
1207 *name = kmalloc(*namelen, GFP_NOFS);
1208 if (*name == NULL)
1209 return -ENOMEM;
1210
1211 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1212
1f250e92
FM
1213 if (index)
1214 *index = btrfs_inode_ref_index(eb, ref);
f186373f
MF
1215
1216 return 0;
1217}
1218
1f250e92
FM
1219/*
1220 * Take an inode reference item from the log tree and iterate all names from the
1221 * inode reference item in the subvolume tree with the same key (if it exists).
1222 * For any name that is not in the inode reference item from the log tree, do a
1223 * proper unlink of that name (that is, remove its entry from the inode
1224 * reference item and both dir index keys).
1225 */
1226static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1227 struct btrfs_root *root,
1228 struct btrfs_path *path,
1229 struct btrfs_inode *inode,
1230 struct extent_buffer *log_eb,
1231 int log_slot,
1232 struct btrfs_key *key)
1233{
1234 int ret;
1235 unsigned long ref_ptr;
1236 unsigned long ref_end;
1237 struct extent_buffer *eb;
1238
1239again:
1240 btrfs_release_path(path);
1241 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1242 if (ret > 0) {
1243 ret = 0;
1244 goto out;
1245 }
1246 if (ret < 0)
1247 goto out;
1248
1249 eb = path->nodes[0];
1250 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1251 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1252 while (ref_ptr < ref_end) {
1253 char *name = NULL;
1254 int namelen;
1255 u64 parent_id;
1256
1257 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1258 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1259 NULL, &parent_id);
1260 } else {
1261 parent_id = key->offset;
1262 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1263 NULL);
1264 }
1265 if (ret)
1266 goto out;
1267
1268 if (key->type == BTRFS_INODE_EXTREF_KEY)
1269 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1270 parent_id, name,
1271 namelen, NULL);
1272 else
1273 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1274 namelen, NULL);
1275
1276 if (!ret) {
1277 struct inode *dir;
1278
1279 btrfs_release_path(path);
1280 dir = read_one_inode(root, parent_id);
1281 if (!dir) {
1282 ret = -ENOENT;
1283 kfree(name);
1284 goto out;
1285 }
1286 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1287 inode, name, namelen);
1288 kfree(name);
1289 iput(dir);
1290 if (ret)
1291 goto out;
1292 goto again;
1293 }
1294
1295 kfree(name);
1296 ref_ptr += namelen;
1297 if (key->type == BTRFS_INODE_EXTREF_KEY)
1298 ref_ptr += sizeof(struct btrfs_inode_extref);
1299 else
1300 ref_ptr += sizeof(struct btrfs_inode_ref);
1301 }
1302 ret = 0;
1303 out:
1304 btrfs_release_path(path);
1305 return ret;
1306}
1307
0d836392
FM
1308static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1309 const u8 ref_type, const char *name,
1310 const int namelen)
1311{
1312 struct btrfs_key key;
1313 struct btrfs_path *path;
1314 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1315 int ret;
1316
1317 path = btrfs_alloc_path();
1318 if (!path)
1319 return -ENOMEM;
1320
1321 key.objectid = btrfs_ino(BTRFS_I(inode));
1322 key.type = ref_type;
1323 if (key.type == BTRFS_INODE_REF_KEY)
1324 key.offset = parent_id;
1325 else
1326 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1327
1328 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1329 if (ret < 0)
1330 goto out;
1331 if (ret > 0) {
1332 ret = 0;
1333 goto out;
1334 }
1335 if (key.type == BTRFS_INODE_EXTREF_KEY)
1336 ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1337 path->slots[0], parent_id,
1338 name, namelen, NULL);
1339 else
1340 ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1341 name, namelen, NULL);
1342
1343out:
1344 btrfs_free_path(path);
1345 return ret;
1346}
1347
6b5fc433
FM
1348static int add_link(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1349 struct inode *dir, struct inode *inode, const char *name,
1350 int namelen, u64 ref_index)
1351{
1352 struct btrfs_dir_item *dir_item;
1353 struct btrfs_key key;
1354 struct btrfs_path *path;
1355 struct inode *other_inode = NULL;
1356 int ret;
1357
1358 path = btrfs_alloc_path();
1359 if (!path)
1360 return -ENOMEM;
1361
1362 dir_item = btrfs_lookup_dir_item(NULL, root, path,
1363 btrfs_ino(BTRFS_I(dir)),
1364 name, namelen, 0);
1365 if (!dir_item) {
1366 btrfs_release_path(path);
1367 goto add_link;
1368 } else if (IS_ERR(dir_item)) {
1369 ret = PTR_ERR(dir_item);
1370 goto out;
1371 }
1372
1373 /*
1374 * Our inode's dentry collides with the dentry of another inode which is
1375 * in the log but not yet processed since it has a higher inode number.
1376 * So delete that other dentry.
1377 */
1378 btrfs_dir_item_key_to_cpu(path->nodes[0], dir_item, &key);
1379 btrfs_release_path(path);
1380 other_inode = read_one_inode(root, key.objectid);
1381 if (!other_inode) {
1382 ret = -ENOENT;
1383 goto out;
1384 }
1385 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), BTRFS_I(other_inode),
1386 name, namelen);
1387 if (ret)
1388 goto out;
1389 /*
1390 * If we dropped the link count to 0, bump it so that later the iput()
1391 * on the inode will not free it. We will fixup the link count later.
1392 */
1393 if (other_inode->i_nlink == 0)
1394 inc_nlink(other_inode);
1395
1396 ret = btrfs_run_delayed_items(trans);
1397 if (ret)
1398 goto out;
1399add_link:
1400 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1401 name, namelen, 0, ref_index);
1402out:
1403 iput(other_inode);
1404 btrfs_free_path(path);
1405
1406 return ret;
1407}
1408
5a1d7843
JS
1409/*
1410 * replay one inode back reference item found in the log tree.
1411 * eb, slot and key refer to the buffer and key found in the log tree.
1412 * root is the destination we are replaying into, and path is for temp
1413 * use by this function. (it should be released on return).
1414 */
1415static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1416 struct btrfs_root *root,
1417 struct btrfs_root *log,
1418 struct btrfs_path *path,
1419 struct extent_buffer *eb, int slot,
1420 struct btrfs_key *key)
1421{
03b2f08b
GB
1422 struct inode *dir = NULL;
1423 struct inode *inode = NULL;
5a1d7843
JS
1424 unsigned long ref_ptr;
1425 unsigned long ref_end;
03b2f08b 1426 char *name = NULL;
5a1d7843
JS
1427 int namelen;
1428 int ret;
1429 int search_done = 0;
f186373f
MF
1430 int log_ref_ver = 0;
1431 u64 parent_objectid;
1432 u64 inode_objectid;
f46dbe3d 1433 u64 ref_index = 0;
f186373f
MF
1434 int ref_struct_size;
1435
1436 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1437 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1438
1439 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1440 struct btrfs_inode_extref *r;
1441
1442 ref_struct_size = sizeof(struct btrfs_inode_extref);
1443 log_ref_ver = 1;
1444 r = (struct btrfs_inode_extref *)ref_ptr;
1445 parent_objectid = btrfs_inode_extref_parent(eb, r);
1446 } else {
1447 ref_struct_size = sizeof(struct btrfs_inode_ref);
1448 parent_objectid = key->offset;
1449 }
1450 inode_objectid = key->objectid;
e02119d5 1451
5a1d7843
JS
1452 /*
1453 * it is possible that we didn't log all the parent directories
1454 * for a given inode. If we don't find the dir, just don't
1455 * copy the back ref in. The link count fixup code will take
1456 * care of the rest
1457 */
f186373f 1458 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1459 if (!dir) {
1460 ret = -ENOENT;
1461 goto out;
1462 }
5a1d7843 1463
f186373f 1464 inode = read_one_inode(root, inode_objectid);
5a1d7843 1465 if (!inode) {
03b2f08b
GB
1466 ret = -EIO;
1467 goto out;
5a1d7843
JS
1468 }
1469
5a1d7843 1470 while (ref_ptr < ref_end) {
f186373f 1471 if (log_ref_ver) {
bae15d95
QW
1472 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1473 &ref_index, &parent_objectid);
f186373f
MF
1474 /*
1475 * parent object can change from one array
1476 * item to another.
1477 */
1478 if (!dir)
1479 dir = read_one_inode(root, parent_objectid);
03b2f08b
GB
1480 if (!dir) {
1481 ret = -ENOENT;
1482 goto out;
1483 }
f186373f 1484 } else {
bae15d95
QW
1485 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1486 &ref_index);
f186373f
MF
1487 }
1488 if (ret)
03b2f08b 1489 goto out;
5a1d7843
JS
1490
1491 /* if we already have a perfect match, we're done */
f85b7379
DS
1492 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1493 btrfs_ino(BTRFS_I(inode)), ref_index,
1494 name, namelen)) {
5a1d7843
JS
1495 /*
1496 * look for a conflicting back reference in the
1497 * metadata. if we find one we have to unlink that name
1498 * of the file before we add our new link. Later on, we
1499 * overwrite any existing back reference, and we don't
1500 * want to create dangling pointers in the directory.
1501 */
1502
1503 if (!search_done) {
1504 ret = __add_inode_ref(trans, root, path, log,
94c91a1f 1505 BTRFS_I(dir),
d75eefdf 1506 BTRFS_I(inode),
f186373f
MF
1507 inode_objectid,
1508 parent_objectid,
1509 ref_index, name, namelen,
5a1d7843 1510 &search_done);
03b2f08b
GB
1511 if (ret) {
1512 if (ret == 1)
1513 ret = 0;
3650860b
JB
1514 goto out;
1515 }
5a1d7843
JS
1516 }
1517
0d836392
FM
1518 /*
1519 * If a reference item already exists for this inode
1520 * with the same parent and name, but different index,
1521 * drop it and the corresponding directory index entries
1522 * from the parent before adding the new reference item
1523 * and dir index entries, otherwise we would fail with
1524 * -EEXIST returned from btrfs_add_link() below.
1525 */
1526 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1527 name, namelen);
1528 if (ret > 0) {
1529 ret = btrfs_unlink_inode(trans, root,
1530 BTRFS_I(dir),
1531 BTRFS_I(inode),
1532 name, namelen);
1533 /*
1534 * If we dropped the link count to 0, bump it so
1535 * that later the iput() on the inode will not
1536 * free it. We will fixup the link count later.
1537 */
1538 if (!ret && inode->i_nlink == 0)
1539 inc_nlink(inode);
1540 }
1541 if (ret < 0)
1542 goto out;
1543
5a1d7843 1544 /* insert our name */
6b5fc433
FM
1545 ret = add_link(trans, root, dir, inode, name, namelen,
1546 ref_index);
3650860b
JB
1547 if (ret)
1548 goto out;
5a1d7843
JS
1549
1550 btrfs_update_inode(trans, root, inode);
1551 }
1552
f186373f 1553 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
5a1d7843 1554 kfree(name);
03b2f08b 1555 name = NULL;
f186373f
MF
1556 if (log_ref_ver) {
1557 iput(dir);
1558 dir = NULL;
1559 }
5a1d7843 1560 }
e02119d5 1561
1f250e92
FM
1562 /*
1563 * Before we overwrite the inode reference item in the subvolume tree
1564 * with the item from the log tree, we must unlink all names from the
1565 * parent directory that are in the subvolume's tree inode reference
1566 * item, otherwise we end up with an inconsistent subvolume tree where
1567 * dir index entries exist for a name but there is no inode reference
1568 * item with the same name.
1569 */
1570 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1571 key);
1572 if (ret)
1573 goto out;
1574
e02119d5
CM
1575 /* finally write the back reference in the inode */
1576 ret = overwrite_item(trans, root, path, eb, slot, key);
5a1d7843 1577out:
b3b4aa74 1578 btrfs_release_path(path);
03b2f08b 1579 kfree(name);
e02119d5
CM
1580 iput(dir);
1581 iput(inode);
3650860b 1582 return ret;
e02119d5
CM
1583}
1584
c71bf099 1585static int insert_orphan_item(struct btrfs_trans_handle *trans,
9c4f61f0 1586 struct btrfs_root *root, u64 ino)
c71bf099
YZ
1587{
1588 int ret;
381cf658 1589
9c4f61f0
DS
1590 ret = btrfs_insert_orphan_item(trans, root, ino);
1591 if (ret == -EEXIST)
1592 ret = 0;
381cf658 1593
c71bf099
YZ
1594 return ret;
1595}
1596
f186373f 1597static int count_inode_extrefs(struct btrfs_root *root,
36283658 1598 struct btrfs_inode *inode, struct btrfs_path *path)
f186373f
MF
1599{
1600 int ret = 0;
1601 int name_len;
1602 unsigned int nlink = 0;
1603 u32 item_size;
1604 u32 cur_offset = 0;
36283658 1605 u64 inode_objectid = btrfs_ino(inode);
f186373f
MF
1606 u64 offset = 0;
1607 unsigned long ptr;
1608 struct btrfs_inode_extref *extref;
1609 struct extent_buffer *leaf;
1610
1611 while (1) {
1612 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1613 &extref, &offset);
1614 if (ret)
1615 break;
c71bf099 1616
f186373f
MF
1617 leaf = path->nodes[0];
1618 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1619 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
2c2c452b 1620 cur_offset = 0;
f186373f
MF
1621
1622 while (cur_offset < item_size) {
1623 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1624 name_len = btrfs_inode_extref_name_len(leaf, extref);
1625
1626 nlink++;
1627
1628 cur_offset += name_len + sizeof(*extref);
1629 }
1630
1631 offset++;
1632 btrfs_release_path(path);
1633 }
1634 btrfs_release_path(path);
1635
2c2c452b 1636 if (ret < 0 && ret != -ENOENT)
f186373f
MF
1637 return ret;
1638 return nlink;
1639}
1640
1641static int count_inode_refs(struct btrfs_root *root,
f329e319 1642 struct btrfs_inode *inode, struct btrfs_path *path)
e02119d5 1643{
e02119d5
CM
1644 int ret;
1645 struct btrfs_key key;
f186373f 1646 unsigned int nlink = 0;
e02119d5
CM
1647 unsigned long ptr;
1648 unsigned long ptr_end;
1649 int name_len;
f329e319 1650 u64 ino = btrfs_ino(inode);
e02119d5 1651
33345d01 1652 key.objectid = ino;
e02119d5
CM
1653 key.type = BTRFS_INODE_REF_KEY;
1654 key.offset = (u64)-1;
1655
d397712b 1656 while (1) {
e02119d5
CM
1657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658 if (ret < 0)
1659 break;
1660 if (ret > 0) {
1661 if (path->slots[0] == 0)
1662 break;
1663 path->slots[0]--;
1664 }
e93ae26f 1665process_slot:
e02119d5
CM
1666 btrfs_item_key_to_cpu(path->nodes[0], &key,
1667 path->slots[0]);
33345d01 1668 if (key.objectid != ino ||
e02119d5
CM
1669 key.type != BTRFS_INODE_REF_KEY)
1670 break;
1671 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1672 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1673 path->slots[0]);
d397712b 1674 while (ptr < ptr_end) {
e02119d5
CM
1675 struct btrfs_inode_ref *ref;
1676
1677 ref = (struct btrfs_inode_ref *)ptr;
1678 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1679 ref);
1680 ptr = (unsigned long)(ref + 1) + name_len;
1681 nlink++;
1682 }
1683
1684 if (key.offset == 0)
1685 break;
e93ae26f
FDBM
1686 if (path->slots[0] > 0) {
1687 path->slots[0]--;
1688 goto process_slot;
1689 }
e02119d5 1690 key.offset--;
b3b4aa74 1691 btrfs_release_path(path);
e02119d5 1692 }
b3b4aa74 1693 btrfs_release_path(path);
f186373f
MF
1694
1695 return nlink;
1696}
1697
1698/*
1699 * There are a few corners where the link count of the file can't
1700 * be properly maintained during replay. So, instead of adding
1701 * lots of complexity to the log code, we just scan the backrefs
1702 * for any file that has been through replay.
1703 *
1704 * The scan will update the link count on the inode to reflect the
1705 * number of back refs found. If it goes down to zero, the iput
1706 * will free the inode.
1707 */
1708static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1709 struct btrfs_root *root,
1710 struct inode *inode)
1711{
1712 struct btrfs_path *path;
1713 int ret;
1714 u64 nlink = 0;
4a0cc7ca 1715 u64 ino = btrfs_ino(BTRFS_I(inode));
f186373f
MF
1716
1717 path = btrfs_alloc_path();
1718 if (!path)
1719 return -ENOMEM;
1720
f329e319 1721 ret = count_inode_refs(root, BTRFS_I(inode), path);
f186373f
MF
1722 if (ret < 0)
1723 goto out;
1724
1725 nlink = ret;
1726
36283658 1727 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
f186373f
MF
1728 if (ret < 0)
1729 goto out;
1730
1731 nlink += ret;
1732
1733 ret = 0;
1734
e02119d5 1735 if (nlink != inode->i_nlink) {
bfe86848 1736 set_nlink(inode, nlink);
e02119d5
CM
1737 btrfs_update_inode(trans, root, inode);
1738 }
8d5bf1cb 1739 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 1740
c71bf099
YZ
1741 if (inode->i_nlink == 0) {
1742 if (S_ISDIR(inode->i_mode)) {
1743 ret = replay_dir_deletes(trans, root, NULL, path,
33345d01 1744 ino, 1);
3650860b
JB
1745 if (ret)
1746 goto out;
c71bf099 1747 }
33345d01 1748 ret = insert_orphan_item(trans, root, ino);
12fcfd22 1749 }
12fcfd22 1750
f186373f
MF
1751out:
1752 btrfs_free_path(path);
1753 return ret;
e02119d5
CM
1754}
1755
1756static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1757 struct btrfs_root *root,
1758 struct btrfs_path *path)
1759{
1760 int ret;
1761 struct btrfs_key key;
1762 struct inode *inode;
1763
1764 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1765 key.type = BTRFS_ORPHAN_ITEM_KEY;
1766 key.offset = (u64)-1;
d397712b 1767 while (1) {
e02119d5
CM
1768 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1769 if (ret < 0)
1770 break;
1771
1772 if (ret == 1) {
1773 if (path->slots[0] == 0)
1774 break;
1775 path->slots[0]--;
1776 }
1777
1778 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1779 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1780 key.type != BTRFS_ORPHAN_ITEM_KEY)
1781 break;
1782
1783 ret = btrfs_del_item(trans, root, path);
65a246c5
TI
1784 if (ret)
1785 goto out;
e02119d5 1786
b3b4aa74 1787 btrfs_release_path(path);
e02119d5 1788 inode = read_one_inode(root, key.offset);
c00e9493
TI
1789 if (!inode)
1790 return -EIO;
e02119d5
CM
1791
1792 ret = fixup_inode_link_count(trans, root, inode);
e02119d5 1793 iput(inode);
3650860b
JB
1794 if (ret)
1795 goto out;
e02119d5 1796
12fcfd22
CM
1797 /*
1798 * fixup on a directory may create new entries,
1799 * make sure we always look for the highset possible
1800 * offset
1801 */
1802 key.offset = (u64)-1;
e02119d5 1803 }
65a246c5
TI
1804 ret = 0;
1805out:
b3b4aa74 1806 btrfs_release_path(path);
65a246c5 1807 return ret;
e02119d5
CM
1808}
1809
1810
1811/*
1812 * record a given inode in the fixup dir so we can check its link
1813 * count when replay is done. The link count is incremented here
1814 * so the inode won't go away until we check it
1815 */
1816static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1817 struct btrfs_root *root,
1818 struct btrfs_path *path,
1819 u64 objectid)
1820{
1821 struct btrfs_key key;
1822 int ret = 0;
1823 struct inode *inode;
1824
1825 inode = read_one_inode(root, objectid);
c00e9493
TI
1826 if (!inode)
1827 return -EIO;
e02119d5
CM
1828
1829 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
962a298f 1830 key.type = BTRFS_ORPHAN_ITEM_KEY;
e02119d5
CM
1831 key.offset = objectid;
1832
1833 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1834
b3b4aa74 1835 btrfs_release_path(path);
e02119d5 1836 if (ret == 0) {
9bf7a489
JB
1837 if (!inode->i_nlink)
1838 set_nlink(inode, 1);
1839 else
8b558c5f 1840 inc_nlink(inode);
b9959295 1841 ret = btrfs_update_inode(trans, root, inode);
e02119d5
CM
1842 } else if (ret == -EEXIST) {
1843 ret = 0;
1844 } else {
3650860b 1845 BUG(); /* Logic Error */
e02119d5
CM
1846 }
1847 iput(inode);
1848
1849 return ret;
1850}
1851
1852/*
1853 * when replaying the log for a directory, we only insert names
1854 * for inodes that actually exist. This means an fsync on a directory
1855 * does not implicitly fsync all the new files in it
1856 */
1857static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1858 struct btrfs_root *root,
e02119d5 1859 u64 dirid, u64 index,
60d53eb3 1860 char *name, int name_len,
e02119d5
CM
1861 struct btrfs_key *location)
1862{
1863 struct inode *inode;
1864 struct inode *dir;
1865 int ret;
1866
1867 inode = read_one_inode(root, location->objectid);
1868 if (!inode)
1869 return -ENOENT;
1870
1871 dir = read_one_inode(root, dirid);
1872 if (!dir) {
1873 iput(inode);
1874 return -EIO;
1875 }
d555438b 1876
db0a669f
NB
1877 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1878 name_len, 1, index);
e02119d5
CM
1879
1880 /* FIXME, put inode into FIXUP list */
1881
1882 iput(inode);
1883 iput(dir);
1884 return ret;
1885}
1886
df8d116f
FM
1887/*
1888 * Return true if an inode reference exists in the log for the given name,
1889 * inode and parent inode.
1890 */
1891static bool name_in_log_ref(struct btrfs_root *log_root,
1892 const char *name, const int name_len,
1893 const u64 dirid, const u64 ino)
1894{
1895 struct btrfs_key search_key;
1896
1897 search_key.objectid = ino;
1898 search_key.type = BTRFS_INODE_REF_KEY;
1899 search_key.offset = dirid;
1900 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1901 return true;
1902
1903 search_key.type = BTRFS_INODE_EXTREF_KEY;
1904 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1905 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1906 return true;
1907
1908 return false;
1909}
1910
e02119d5
CM
1911/*
1912 * take a single entry in a log directory item and replay it into
1913 * the subvolume.
1914 *
1915 * if a conflicting item exists in the subdirectory already,
1916 * the inode it points to is unlinked and put into the link count
1917 * fix up tree.
1918 *
1919 * If a name from the log points to a file or directory that does
1920 * not exist in the FS, it is skipped. fsyncs on directories
1921 * do not force down inodes inside that directory, just changes to the
1922 * names or unlinks in a directory.
bb53eda9
FM
1923 *
1924 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1925 * non-existing inode) and 1 if the name was replayed.
e02119d5
CM
1926 */
1927static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1928 struct btrfs_root *root,
1929 struct btrfs_path *path,
1930 struct extent_buffer *eb,
1931 struct btrfs_dir_item *di,
1932 struct btrfs_key *key)
1933{
1934 char *name;
1935 int name_len;
1936 struct btrfs_dir_item *dst_di;
1937 struct btrfs_key found_key;
1938 struct btrfs_key log_key;
1939 struct inode *dir;
e02119d5 1940 u8 log_type;
4bef0848 1941 int exists;
3650860b 1942 int ret = 0;
d555438b 1943 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bb53eda9 1944 bool name_added = false;
e02119d5
CM
1945
1946 dir = read_one_inode(root, key->objectid);
c00e9493
TI
1947 if (!dir)
1948 return -EIO;
e02119d5
CM
1949
1950 name_len = btrfs_dir_name_len(eb, di);
1951 name = kmalloc(name_len, GFP_NOFS);
2bac325e
FDBM
1952 if (!name) {
1953 ret = -ENOMEM;
1954 goto out;
1955 }
2a29edc6 1956
e02119d5
CM
1957 log_type = btrfs_dir_type(eb, di);
1958 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1959 name_len);
1960
1961 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1962 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1963 if (exists == 0)
1964 exists = 1;
1965 else
1966 exists = 0;
b3b4aa74 1967 btrfs_release_path(path);
4bef0848 1968
e02119d5
CM
1969 if (key->type == BTRFS_DIR_ITEM_KEY) {
1970 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1971 name, name_len, 1);
d397712b 1972 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1973 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1974 key->objectid,
1975 key->offset, name,
1976 name_len, 1);
1977 } else {
3650860b
JB
1978 /* Corruption */
1979 ret = -EINVAL;
1980 goto out;
e02119d5 1981 }
c704005d 1982 if (IS_ERR_OR_NULL(dst_di)) {
e02119d5
CM
1983 /* we need a sequence number to insert, so we only
1984 * do inserts for the BTRFS_DIR_INDEX_KEY types
1985 */
1986 if (key->type != BTRFS_DIR_INDEX_KEY)
1987 goto out;
1988 goto insert;
1989 }
1990
1991 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1992 /* the existing item matches the logged item */
1993 if (found_key.objectid == log_key.objectid &&
1994 found_key.type == log_key.type &&
1995 found_key.offset == log_key.offset &&
1996 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
a2cc11db 1997 update_size = false;
e02119d5
CM
1998 goto out;
1999 }
2000
2001 /*
2002 * don't drop the conflicting directory entry if the inode
2003 * for the new entry doesn't exist
2004 */
4bef0848 2005 if (!exists)
e02119d5
CM
2006 goto out;
2007
207e7d92 2008 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
3650860b
JB
2009 if (ret)
2010 goto out;
e02119d5
CM
2011
2012 if (key->type == BTRFS_DIR_INDEX_KEY)
2013 goto insert;
2014out:
b3b4aa74 2015 btrfs_release_path(path);
d555438b 2016 if (!ret && update_size) {
6ef06d27 2017 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
d555438b
JB
2018 ret = btrfs_update_inode(trans, root, dir);
2019 }
e02119d5
CM
2020 kfree(name);
2021 iput(dir);
bb53eda9
FM
2022 if (!ret && name_added)
2023 ret = 1;
3650860b 2024 return ret;
e02119d5
CM
2025
2026insert:
df8d116f
FM
2027 if (name_in_log_ref(root->log_root, name, name_len,
2028 key->objectid, log_key.objectid)) {
2029 /* The dentry will be added later. */
2030 ret = 0;
2031 update_size = false;
2032 goto out;
2033 }
b3b4aa74 2034 btrfs_release_path(path);
60d53eb3
Z
2035 ret = insert_one_name(trans, root, key->objectid, key->offset,
2036 name, name_len, &log_key);
df8d116f 2037 if (ret && ret != -ENOENT && ret != -EEXIST)
3650860b 2038 goto out;
bb53eda9
FM
2039 if (!ret)
2040 name_added = true;
d555438b 2041 update_size = false;
3650860b 2042 ret = 0;
e02119d5
CM
2043 goto out;
2044}
2045
2046/*
2047 * find all the names in a directory item and reconcile them into
2048 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2049 * one name in a directory item, but the same code gets used for
2050 * both directory index types
2051 */
2052static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
2053 struct btrfs_root *root,
2054 struct btrfs_path *path,
2055 struct extent_buffer *eb, int slot,
2056 struct btrfs_key *key)
2057{
bb53eda9 2058 int ret = 0;
e02119d5
CM
2059 u32 item_size = btrfs_item_size_nr(eb, slot);
2060 struct btrfs_dir_item *di;
2061 int name_len;
2062 unsigned long ptr;
2063 unsigned long ptr_end;
bb53eda9 2064 struct btrfs_path *fixup_path = NULL;
e02119d5
CM
2065
2066 ptr = btrfs_item_ptr_offset(eb, slot);
2067 ptr_end = ptr + item_size;
d397712b 2068 while (ptr < ptr_end) {
e02119d5
CM
2069 di = (struct btrfs_dir_item *)ptr;
2070 name_len = btrfs_dir_name_len(eb, di);
2071 ret = replay_one_name(trans, root, path, eb, di, key);
bb53eda9
FM
2072 if (ret < 0)
2073 break;
e02119d5
CM
2074 ptr = (unsigned long)(di + 1);
2075 ptr += name_len;
bb53eda9
FM
2076
2077 /*
2078 * If this entry refers to a non-directory (directories can not
2079 * have a link count > 1) and it was added in the transaction
2080 * that was not committed, make sure we fixup the link count of
2081 * the inode it the entry points to. Otherwise something like
2082 * the following would result in a directory pointing to an
2083 * inode with a wrong link that does not account for this dir
2084 * entry:
2085 *
2086 * mkdir testdir
2087 * touch testdir/foo
2088 * touch testdir/bar
2089 * sync
2090 *
2091 * ln testdir/bar testdir/bar_link
2092 * ln testdir/foo testdir/foo_link
2093 * xfs_io -c "fsync" testdir/bar
2094 *
2095 * <power failure>
2096 *
2097 * mount fs, log replay happens
2098 *
2099 * File foo would remain with a link count of 1 when it has two
2100 * entries pointing to it in the directory testdir. This would
2101 * make it impossible to ever delete the parent directory has
2102 * it would result in stale dentries that can never be deleted.
2103 */
2104 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2105 struct btrfs_key di_key;
2106
2107 if (!fixup_path) {
2108 fixup_path = btrfs_alloc_path();
2109 if (!fixup_path) {
2110 ret = -ENOMEM;
2111 break;
2112 }
2113 }
2114
2115 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2116 ret = link_to_fixup_dir(trans, root, fixup_path,
2117 di_key.objectid);
2118 if (ret)
2119 break;
2120 }
2121 ret = 0;
e02119d5 2122 }
bb53eda9
FM
2123 btrfs_free_path(fixup_path);
2124 return ret;
e02119d5
CM
2125}
2126
2127/*
2128 * directory replay has two parts. There are the standard directory
2129 * items in the log copied from the subvolume, and range items
2130 * created in the log while the subvolume was logged.
2131 *
2132 * The range items tell us which parts of the key space the log
2133 * is authoritative for. During replay, if a key in the subvolume
2134 * directory is in a logged range item, but not actually in the log
2135 * that means it was deleted from the directory before the fsync
2136 * and should be removed.
2137 */
2138static noinline int find_dir_range(struct btrfs_root *root,
2139 struct btrfs_path *path,
2140 u64 dirid, int key_type,
2141 u64 *start_ret, u64 *end_ret)
2142{
2143 struct btrfs_key key;
2144 u64 found_end;
2145 struct btrfs_dir_log_item *item;
2146 int ret;
2147 int nritems;
2148
2149 if (*start_ret == (u64)-1)
2150 return 1;
2151
2152 key.objectid = dirid;
2153 key.type = key_type;
2154 key.offset = *start_ret;
2155
2156 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2157 if (ret < 0)
2158 goto out;
2159 if (ret > 0) {
2160 if (path->slots[0] == 0)
2161 goto out;
2162 path->slots[0]--;
2163 }
2164 if (ret != 0)
2165 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2166
2167 if (key.type != key_type || key.objectid != dirid) {
2168 ret = 1;
2169 goto next;
2170 }
2171 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2172 struct btrfs_dir_log_item);
2173 found_end = btrfs_dir_log_end(path->nodes[0], item);
2174
2175 if (*start_ret >= key.offset && *start_ret <= found_end) {
2176 ret = 0;
2177 *start_ret = key.offset;
2178 *end_ret = found_end;
2179 goto out;
2180 }
2181 ret = 1;
2182next:
2183 /* check the next slot in the tree to see if it is a valid item */
2184 nritems = btrfs_header_nritems(path->nodes[0]);
2a7bf53f 2185 path->slots[0]++;
e02119d5
CM
2186 if (path->slots[0] >= nritems) {
2187 ret = btrfs_next_leaf(root, path);
2188 if (ret)
2189 goto out;
e02119d5
CM
2190 }
2191
2192 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2193
2194 if (key.type != key_type || key.objectid != dirid) {
2195 ret = 1;
2196 goto out;
2197 }
2198 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2199 struct btrfs_dir_log_item);
2200 found_end = btrfs_dir_log_end(path->nodes[0], item);
2201 *start_ret = key.offset;
2202 *end_ret = found_end;
2203 ret = 0;
2204out:
b3b4aa74 2205 btrfs_release_path(path);
e02119d5
CM
2206 return ret;
2207}
2208
2209/*
2210 * this looks for a given directory item in the log. If the directory
2211 * item is not in the log, the item is removed and the inode it points
2212 * to is unlinked
2213 */
2214static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2215 struct btrfs_root *root,
2216 struct btrfs_root *log,
2217 struct btrfs_path *path,
2218 struct btrfs_path *log_path,
2219 struct inode *dir,
2220 struct btrfs_key *dir_key)
2221{
2222 int ret;
2223 struct extent_buffer *eb;
2224 int slot;
2225 u32 item_size;
2226 struct btrfs_dir_item *di;
2227 struct btrfs_dir_item *log_di;
2228 int name_len;
2229 unsigned long ptr;
2230 unsigned long ptr_end;
2231 char *name;
2232 struct inode *inode;
2233 struct btrfs_key location;
2234
2235again:
2236 eb = path->nodes[0];
2237 slot = path->slots[0];
2238 item_size = btrfs_item_size_nr(eb, slot);
2239 ptr = btrfs_item_ptr_offset(eb, slot);
2240 ptr_end = ptr + item_size;
d397712b 2241 while (ptr < ptr_end) {
e02119d5
CM
2242 di = (struct btrfs_dir_item *)ptr;
2243 name_len = btrfs_dir_name_len(eb, di);
2244 name = kmalloc(name_len, GFP_NOFS);
2245 if (!name) {
2246 ret = -ENOMEM;
2247 goto out;
2248 }
2249 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2250 name_len);
2251 log_di = NULL;
12fcfd22 2252 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2253 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2254 dir_key->objectid,
2255 name, name_len, 0);
12fcfd22 2256 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
2257 log_di = btrfs_lookup_dir_index_item(trans, log,
2258 log_path,
2259 dir_key->objectid,
2260 dir_key->offset,
2261 name, name_len, 0);
2262 }
8d9e220c 2263 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
e02119d5 2264 btrfs_dir_item_key_to_cpu(eb, di, &location);
b3b4aa74
DS
2265 btrfs_release_path(path);
2266 btrfs_release_path(log_path);
e02119d5 2267 inode = read_one_inode(root, location.objectid);
c00e9493
TI
2268 if (!inode) {
2269 kfree(name);
2270 return -EIO;
2271 }
e02119d5
CM
2272
2273 ret = link_to_fixup_dir(trans, root,
2274 path, location.objectid);
3650860b
JB
2275 if (ret) {
2276 kfree(name);
2277 iput(inode);
2278 goto out;
2279 }
2280
8b558c5f 2281 inc_nlink(inode);
4ec5934e
NB
2282 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2283 BTRFS_I(inode), name, name_len);
3650860b 2284 if (!ret)
e5c304e6 2285 ret = btrfs_run_delayed_items(trans);
e02119d5
CM
2286 kfree(name);
2287 iput(inode);
3650860b
JB
2288 if (ret)
2289 goto out;
e02119d5
CM
2290
2291 /* there might still be more names under this key
2292 * check and repeat if required
2293 */
2294 ret = btrfs_search_slot(NULL, root, dir_key, path,
2295 0, 0);
2296 if (ret == 0)
2297 goto again;
2298 ret = 0;
2299 goto out;
269d040f
FDBM
2300 } else if (IS_ERR(log_di)) {
2301 kfree(name);
2302 return PTR_ERR(log_di);
e02119d5 2303 }
b3b4aa74 2304 btrfs_release_path(log_path);
e02119d5
CM
2305 kfree(name);
2306
2307 ptr = (unsigned long)(di + 1);
2308 ptr += name_len;
2309 }
2310 ret = 0;
2311out:
b3b4aa74
DS
2312 btrfs_release_path(path);
2313 btrfs_release_path(log_path);
e02119d5
CM
2314 return ret;
2315}
2316
4f764e51
FM
2317static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2318 struct btrfs_root *root,
2319 struct btrfs_root *log,
2320 struct btrfs_path *path,
2321 const u64 ino)
2322{
2323 struct btrfs_key search_key;
2324 struct btrfs_path *log_path;
2325 int i;
2326 int nritems;
2327 int ret;
2328
2329 log_path = btrfs_alloc_path();
2330 if (!log_path)
2331 return -ENOMEM;
2332
2333 search_key.objectid = ino;
2334 search_key.type = BTRFS_XATTR_ITEM_KEY;
2335 search_key.offset = 0;
2336again:
2337 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2338 if (ret < 0)
2339 goto out;
2340process_leaf:
2341 nritems = btrfs_header_nritems(path->nodes[0]);
2342 for (i = path->slots[0]; i < nritems; i++) {
2343 struct btrfs_key key;
2344 struct btrfs_dir_item *di;
2345 struct btrfs_dir_item *log_di;
2346 u32 total_size;
2347 u32 cur;
2348
2349 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2350 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2351 ret = 0;
2352 goto out;
2353 }
2354
2355 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2356 total_size = btrfs_item_size_nr(path->nodes[0], i);
2357 cur = 0;
2358 while (cur < total_size) {
2359 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2360 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2361 u32 this_len = sizeof(*di) + name_len + data_len;
2362 char *name;
2363
2364 name = kmalloc(name_len, GFP_NOFS);
2365 if (!name) {
2366 ret = -ENOMEM;
2367 goto out;
2368 }
2369 read_extent_buffer(path->nodes[0], name,
2370 (unsigned long)(di + 1), name_len);
2371
2372 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2373 name, name_len, 0);
2374 btrfs_release_path(log_path);
2375 if (!log_di) {
2376 /* Doesn't exist in log tree, so delete it. */
2377 btrfs_release_path(path);
2378 di = btrfs_lookup_xattr(trans, root, path, ino,
2379 name, name_len, -1);
2380 kfree(name);
2381 if (IS_ERR(di)) {
2382 ret = PTR_ERR(di);
2383 goto out;
2384 }
2385 ASSERT(di);
2386 ret = btrfs_delete_one_dir_name(trans, root,
2387 path, di);
2388 if (ret)
2389 goto out;
2390 btrfs_release_path(path);
2391 search_key = key;
2392 goto again;
2393 }
2394 kfree(name);
2395 if (IS_ERR(log_di)) {
2396 ret = PTR_ERR(log_di);
2397 goto out;
2398 }
2399 cur += this_len;
2400 di = (struct btrfs_dir_item *)((char *)di + this_len);
2401 }
2402 }
2403 ret = btrfs_next_leaf(root, path);
2404 if (ret > 0)
2405 ret = 0;
2406 else if (ret == 0)
2407 goto process_leaf;
2408out:
2409 btrfs_free_path(log_path);
2410 btrfs_release_path(path);
2411 return ret;
2412}
2413
2414
e02119d5
CM
2415/*
2416 * deletion replay happens before we copy any new directory items
2417 * out of the log or out of backreferences from inodes. It
2418 * scans the log to find ranges of keys that log is authoritative for,
2419 * and then scans the directory to find items in those ranges that are
2420 * not present in the log.
2421 *
2422 * Anything we don't find in the log is unlinked and removed from the
2423 * directory.
2424 */
2425static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2426 struct btrfs_root *root,
2427 struct btrfs_root *log,
2428 struct btrfs_path *path,
12fcfd22 2429 u64 dirid, int del_all)
e02119d5
CM
2430{
2431 u64 range_start;
2432 u64 range_end;
2433 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2434 int ret = 0;
2435 struct btrfs_key dir_key;
2436 struct btrfs_key found_key;
2437 struct btrfs_path *log_path;
2438 struct inode *dir;
2439
2440 dir_key.objectid = dirid;
2441 dir_key.type = BTRFS_DIR_ITEM_KEY;
2442 log_path = btrfs_alloc_path();
2443 if (!log_path)
2444 return -ENOMEM;
2445
2446 dir = read_one_inode(root, dirid);
2447 /* it isn't an error if the inode isn't there, that can happen
2448 * because we replay the deletes before we copy in the inode item
2449 * from the log
2450 */
2451 if (!dir) {
2452 btrfs_free_path(log_path);
2453 return 0;
2454 }
2455again:
2456 range_start = 0;
2457 range_end = 0;
d397712b 2458 while (1) {
12fcfd22
CM
2459 if (del_all)
2460 range_end = (u64)-1;
2461 else {
2462 ret = find_dir_range(log, path, dirid, key_type,
2463 &range_start, &range_end);
2464 if (ret != 0)
2465 break;
2466 }
e02119d5
CM
2467
2468 dir_key.offset = range_start;
d397712b 2469 while (1) {
e02119d5
CM
2470 int nritems;
2471 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2472 0, 0);
2473 if (ret < 0)
2474 goto out;
2475
2476 nritems = btrfs_header_nritems(path->nodes[0]);
2477 if (path->slots[0] >= nritems) {
2478 ret = btrfs_next_leaf(root, path);
b98def7c 2479 if (ret == 1)
e02119d5 2480 break;
b98def7c
LB
2481 else if (ret < 0)
2482 goto out;
e02119d5
CM
2483 }
2484 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2485 path->slots[0]);
2486 if (found_key.objectid != dirid ||
2487 found_key.type != dir_key.type)
2488 goto next_type;
2489
2490 if (found_key.offset > range_end)
2491 break;
2492
2493 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
2494 log_path, dir,
2495 &found_key);
3650860b
JB
2496 if (ret)
2497 goto out;
e02119d5
CM
2498 if (found_key.offset == (u64)-1)
2499 break;
2500 dir_key.offset = found_key.offset + 1;
2501 }
b3b4aa74 2502 btrfs_release_path(path);
e02119d5
CM
2503 if (range_end == (u64)-1)
2504 break;
2505 range_start = range_end + 1;
2506 }
2507
2508next_type:
2509 ret = 0;
2510 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2511 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2512 dir_key.type = BTRFS_DIR_INDEX_KEY;
b3b4aa74 2513 btrfs_release_path(path);
e02119d5
CM
2514 goto again;
2515 }
2516out:
b3b4aa74 2517 btrfs_release_path(path);
e02119d5
CM
2518 btrfs_free_path(log_path);
2519 iput(dir);
2520 return ret;
2521}
2522
2523/*
2524 * the process_func used to replay items from the log tree. This
2525 * gets called in two different stages. The first stage just looks
2526 * for inodes and makes sure they are all copied into the subvolume.
2527 *
2528 * The second stage copies all the other item types from the log into
2529 * the subvolume. The two stage approach is slower, but gets rid of
2530 * lots of complexity around inodes referencing other inodes that exist
2531 * only in the log (references come from either directory items or inode
2532 * back refs).
2533 */
2534static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
581c1760 2535 struct walk_control *wc, u64 gen, int level)
e02119d5
CM
2536{
2537 int nritems;
2538 struct btrfs_path *path;
2539 struct btrfs_root *root = wc->replay_dest;
2540 struct btrfs_key key;
e02119d5
CM
2541 int i;
2542 int ret;
2543
581c1760 2544 ret = btrfs_read_buffer(eb, gen, level, NULL);
018642a1
TI
2545 if (ret)
2546 return ret;
e02119d5
CM
2547
2548 level = btrfs_header_level(eb);
2549
2550 if (level != 0)
2551 return 0;
2552
2553 path = btrfs_alloc_path();
1e5063d0
MF
2554 if (!path)
2555 return -ENOMEM;
e02119d5
CM
2556
2557 nritems = btrfs_header_nritems(eb);
2558 for (i = 0; i < nritems; i++) {
2559 btrfs_item_key_to_cpu(eb, &key, i);
e02119d5
CM
2560
2561 /* inode keys are done during the first stage */
2562 if (key.type == BTRFS_INODE_ITEM_KEY &&
2563 wc->stage == LOG_WALK_REPLAY_INODES) {
e02119d5
CM
2564 struct btrfs_inode_item *inode_item;
2565 u32 mode;
2566
2567 inode_item = btrfs_item_ptr(eb, i,
2568 struct btrfs_inode_item);
f2d72f42
FM
2569 /*
2570 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2571 * and never got linked before the fsync, skip it, as
2572 * replaying it is pointless since it would be deleted
2573 * later. We skip logging tmpfiles, but it's always
2574 * possible we are replaying a log created with a kernel
2575 * that used to log tmpfiles.
2576 */
2577 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2578 wc->ignore_cur_inode = true;
2579 continue;
2580 } else {
2581 wc->ignore_cur_inode = false;
2582 }
4f764e51
FM
2583 ret = replay_xattr_deletes(wc->trans, root, log,
2584 path, key.objectid);
2585 if (ret)
2586 break;
e02119d5
CM
2587 mode = btrfs_inode_mode(eb, inode_item);
2588 if (S_ISDIR(mode)) {
2589 ret = replay_dir_deletes(wc->trans,
12fcfd22 2590 root, log, path, key.objectid, 0);
b50c6e25
JB
2591 if (ret)
2592 break;
e02119d5
CM
2593 }
2594 ret = overwrite_item(wc->trans, root, path,
2595 eb, i, &key);
b50c6e25
JB
2596 if (ret)
2597 break;
e02119d5 2598
471d557a
FM
2599 /*
2600 * Before replaying extents, truncate the inode to its
2601 * size. We need to do it now and not after log replay
2602 * because before an fsync we can have prealloc extents
2603 * added beyond the inode's i_size. If we did it after,
2604 * through orphan cleanup for example, we would drop
2605 * those prealloc extents just after replaying them.
e02119d5
CM
2606 */
2607 if (S_ISREG(mode)) {
471d557a
FM
2608 struct inode *inode;
2609 u64 from;
2610
2611 inode = read_one_inode(root, key.objectid);
2612 if (!inode) {
2613 ret = -EIO;
2614 break;
2615 }
2616 from = ALIGN(i_size_read(inode),
2617 root->fs_info->sectorsize);
2618 ret = btrfs_drop_extents(wc->trans, root, inode,
2619 from, (u64)-1, 1);
471d557a 2620 if (!ret) {
f2d72f42 2621 /* Update the inode's nbytes. */
471d557a
FM
2622 ret = btrfs_update_inode(wc->trans,
2623 root, inode);
2624 }
2625 iput(inode);
b50c6e25
JB
2626 if (ret)
2627 break;
e02119d5 2628 }
c71bf099 2629
e02119d5
CM
2630 ret = link_to_fixup_dir(wc->trans, root,
2631 path, key.objectid);
b50c6e25
JB
2632 if (ret)
2633 break;
e02119d5 2634 }
dd8e7217 2635
f2d72f42
FM
2636 if (wc->ignore_cur_inode)
2637 continue;
2638
dd8e7217
JB
2639 if (key.type == BTRFS_DIR_INDEX_KEY &&
2640 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2641 ret = replay_one_dir_item(wc->trans, root, path,
2642 eb, i, &key);
2643 if (ret)
2644 break;
2645 }
2646
e02119d5
CM
2647 if (wc->stage < LOG_WALK_REPLAY_ALL)
2648 continue;
2649
2650 /* these keys are simply copied */
2651 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2652 ret = overwrite_item(wc->trans, root, path,
2653 eb, i, &key);
b50c6e25
JB
2654 if (ret)
2655 break;
2da1c669
LB
2656 } else if (key.type == BTRFS_INODE_REF_KEY ||
2657 key.type == BTRFS_INODE_EXTREF_KEY) {
f186373f
MF
2658 ret = add_inode_ref(wc->trans, root, log, path,
2659 eb, i, &key);
b50c6e25
JB
2660 if (ret && ret != -ENOENT)
2661 break;
2662 ret = 0;
e02119d5
CM
2663 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2664 ret = replay_one_extent(wc->trans, root, path,
2665 eb, i, &key);
b50c6e25
JB
2666 if (ret)
2667 break;
dd8e7217 2668 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
2669 ret = replay_one_dir_item(wc->trans, root, path,
2670 eb, i, &key);
b50c6e25
JB
2671 if (ret)
2672 break;
e02119d5
CM
2673 }
2674 }
2675 btrfs_free_path(path);
b50c6e25 2676 return ret;
e02119d5
CM
2677}
2678
d397712b 2679static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2680 struct btrfs_root *root,
2681 struct btrfs_path *path, int *level,
2682 struct walk_control *wc)
2683{
0b246afa 2684 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2685 u64 root_owner;
e02119d5
CM
2686 u64 bytenr;
2687 u64 ptr_gen;
2688 struct extent_buffer *next;
2689 struct extent_buffer *cur;
2690 struct extent_buffer *parent;
2691 u32 blocksize;
2692 int ret = 0;
2693
2694 WARN_ON(*level < 0);
2695 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2696
d397712b 2697 while (*level > 0) {
581c1760
QW
2698 struct btrfs_key first_key;
2699
e02119d5
CM
2700 WARN_ON(*level < 0);
2701 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2702 cur = path->nodes[*level];
2703
fae7f21c 2704 WARN_ON(btrfs_header_level(cur) != *level);
e02119d5
CM
2705
2706 if (path->slots[*level] >=
2707 btrfs_header_nritems(cur))
2708 break;
2709
2710 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2711 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
581c1760 2712 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
0b246afa 2713 blocksize = fs_info->nodesize;
e02119d5
CM
2714
2715 parent = path->nodes[*level];
2716 root_owner = btrfs_header_owner(parent);
e02119d5 2717
2ff7e61e 2718 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
2719 if (IS_ERR(next))
2720 return PTR_ERR(next);
e02119d5 2721
e02119d5 2722 if (*level == 1) {
581c1760
QW
2723 ret = wc->process_func(root, next, wc, ptr_gen,
2724 *level - 1);
b50c6e25
JB
2725 if (ret) {
2726 free_extent_buffer(next);
1e5063d0 2727 return ret;
b50c6e25 2728 }
4a500fd1 2729
e02119d5
CM
2730 path->slots[*level]++;
2731 if (wc->free) {
581c1760
QW
2732 ret = btrfs_read_buffer(next, ptr_gen,
2733 *level - 1, &first_key);
018642a1
TI
2734 if (ret) {
2735 free_extent_buffer(next);
2736 return ret;
2737 }
e02119d5 2738
681ae509
JB
2739 if (trans) {
2740 btrfs_tree_lock(next);
8bead258 2741 btrfs_set_lock_blocking_write(next);
6a884d7d 2742 btrfs_clean_tree_block(next);
681ae509
JB
2743 btrfs_wait_tree_block_writeback(next);
2744 btrfs_tree_unlock(next);
1846430c
LB
2745 } else {
2746 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2747 clear_extent_buffer_dirty(next);
681ae509 2748 }
e02119d5 2749
e02119d5
CM
2750 WARN_ON(root_owner !=
2751 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2752 ret = btrfs_free_and_pin_reserved_extent(
2753 fs_info, bytenr,
2754 blocksize);
3650860b
JB
2755 if (ret) {
2756 free_extent_buffer(next);
2757 return ret;
2758 }
e02119d5
CM
2759 }
2760 free_extent_buffer(next);
2761 continue;
2762 }
581c1760 2763 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
018642a1
TI
2764 if (ret) {
2765 free_extent_buffer(next);
2766 return ret;
2767 }
e02119d5
CM
2768
2769 WARN_ON(*level <= 0);
2770 if (path->nodes[*level-1])
2771 free_extent_buffer(path->nodes[*level-1]);
2772 path->nodes[*level-1] = next;
2773 *level = btrfs_header_level(next);
2774 path->slots[*level] = 0;
2775 cond_resched();
2776 }
2777 WARN_ON(*level < 0);
2778 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2779
4a500fd1 2780 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
e02119d5
CM
2781
2782 cond_resched();
2783 return 0;
2784}
2785
d397712b 2786static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
2787 struct btrfs_root *root,
2788 struct btrfs_path *path, int *level,
2789 struct walk_control *wc)
2790{
0b246afa 2791 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 2792 u64 root_owner;
e02119d5
CM
2793 int i;
2794 int slot;
2795 int ret;
2796
d397712b 2797 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5 2798 slot = path->slots[i];
4a500fd1 2799 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
e02119d5
CM
2800 path->slots[i]++;
2801 *level = i;
2802 WARN_ON(*level == 0);
2803 return 0;
2804 } else {
31840ae1
ZY
2805 struct extent_buffer *parent;
2806 if (path->nodes[*level] == root->node)
2807 parent = path->nodes[*level];
2808 else
2809 parent = path->nodes[*level + 1];
2810
2811 root_owner = btrfs_header_owner(parent);
1e5063d0 2812 ret = wc->process_func(root, path->nodes[*level], wc,
581c1760
QW
2813 btrfs_header_generation(path->nodes[*level]),
2814 *level);
1e5063d0
MF
2815 if (ret)
2816 return ret;
2817
e02119d5
CM
2818 if (wc->free) {
2819 struct extent_buffer *next;
2820
2821 next = path->nodes[*level];
2822
681ae509
JB
2823 if (trans) {
2824 btrfs_tree_lock(next);
8bead258 2825 btrfs_set_lock_blocking_write(next);
6a884d7d 2826 btrfs_clean_tree_block(next);
681ae509
JB
2827 btrfs_wait_tree_block_writeback(next);
2828 btrfs_tree_unlock(next);
1846430c
LB
2829 } else {
2830 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2831 clear_extent_buffer_dirty(next);
681ae509 2832 }
e02119d5 2833
e02119d5 2834 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2835 ret = btrfs_free_and_pin_reserved_extent(
2836 fs_info,
e02119d5 2837 path->nodes[*level]->start,
d00aff00 2838 path->nodes[*level]->len);
3650860b
JB
2839 if (ret)
2840 return ret;
e02119d5
CM
2841 }
2842 free_extent_buffer(path->nodes[*level]);
2843 path->nodes[*level] = NULL;
2844 *level = i + 1;
2845 }
2846 }
2847 return 1;
2848}
2849
2850/*
2851 * drop the reference count on the tree rooted at 'snap'. This traverses
2852 * the tree freeing any blocks that have a ref count of zero after being
2853 * decremented.
2854 */
2855static int walk_log_tree(struct btrfs_trans_handle *trans,
2856 struct btrfs_root *log, struct walk_control *wc)
2857{
2ff7e61e 2858 struct btrfs_fs_info *fs_info = log->fs_info;
e02119d5
CM
2859 int ret = 0;
2860 int wret;
2861 int level;
2862 struct btrfs_path *path;
e02119d5
CM
2863 int orig_level;
2864
2865 path = btrfs_alloc_path();
db5b493a
TI
2866 if (!path)
2867 return -ENOMEM;
e02119d5
CM
2868
2869 level = btrfs_header_level(log->node);
2870 orig_level = level;
2871 path->nodes[level] = log->node;
2872 extent_buffer_get(log->node);
2873 path->slots[level] = 0;
2874
d397712b 2875 while (1) {
e02119d5
CM
2876 wret = walk_down_log_tree(trans, log, path, &level, wc);
2877 if (wret > 0)
2878 break;
79787eaa 2879 if (wret < 0) {
e02119d5 2880 ret = wret;
79787eaa
JM
2881 goto out;
2882 }
e02119d5
CM
2883
2884 wret = walk_up_log_tree(trans, log, path, &level, wc);
2885 if (wret > 0)
2886 break;
79787eaa 2887 if (wret < 0) {
e02119d5 2888 ret = wret;
79787eaa
JM
2889 goto out;
2890 }
e02119d5
CM
2891 }
2892
2893 /* was the root node processed? if not, catch it here */
2894 if (path->nodes[orig_level]) {
79787eaa 2895 ret = wc->process_func(log, path->nodes[orig_level], wc,
581c1760
QW
2896 btrfs_header_generation(path->nodes[orig_level]),
2897 orig_level);
79787eaa
JM
2898 if (ret)
2899 goto out;
e02119d5
CM
2900 if (wc->free) {
2901 struct extent_buffer *next;
2902
2903 next = path->nodes[orig_level];
2904
681ae509
JB
2905 if (trans) {
2906 btrfs_tree_lock(next);
8bead258 2907 btrfs_set_lock_blocking_write(next);
6a884d7d 2908 btrfs_clean_tree_block(next);
681ae509
JB
2909 btrfs_wait_tree_block_writeback(next);
2910 btrfs_tree_unlock(next);
1846430c
LB
2911 } else {
2912 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2913 clear_extent_buffer_dirty(next);
681ae509 2914 }
e02119d5 2915
e02119d5
CM
2916 WARN_ON(log->root_key.objectid !=
2917 BTRFS_TREE_LOG_OBJECTID);
2ff7e61e
JM
2918 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2919 next->start, next->len);
3650860b
JB
2920 if (ret)
2921 goto out;
e02119d5
CM
2922 }
2923 }
2924
79787eaa 2925out:
e02119d5 2926 btrfs_free_path(path);
e02119d5
CM
2927 return ret;
2928}
2929
7237f183
YZ
2930/*
2931 * helper function to update the item for a given subvolumes log root
2932 * in the tree of log roots
2933 */
2934static int update_log_root(struct btrfs_trans_handle *trans,
2935 struct btrfs_root *log)
2936{
0b246afa 2937 struct btrfs_fs_info *fs_info = log->fs_info;
7237f183
YZ
2938 int ret;
2939
2940 if (log->log_transid == 1) {
2941 /* insert root item on the first sync */
0b246afa 2942 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
7237f183
YZ
2943 &log->root_key, &log->root_item);
2944 } else {
0b246afa 2945 ret = btrfs_update_root(trans, fs_info->log_root_tree,
7237f183
YZ
2946 &log->root_key, &log->root_item);
2947 }
2948 return ret;
2949}
2950
60d53eb3 2951static void wait_log_commit(struct btrfs_root *root, int transid)
e02119d5
CM
2952{
2953 DEFINE_WAIT(wait);
7237f183 2954 int index = transid % 2;
e02119d5 2955
7237f183
YZ
2956 /*
2957 * we only allow two pending log transactions at a time,
2958 * so we know that if ours is more than 2 older than the
2959 * current transaction, we're done
2960 */
49e83f57 2961 for (;;) {
7237f183
YZ
2962 prepare_to_wait(&root->log_commit_wait[index],
2963 &wait, TASK_UNINTERRUPTIBLE);
12fcfd22 2964
49e83f57
LB
2965 if (!(root->log_transid_committed < transid &&
2966 atomic_read(&root->log_commit[index])))
2967 break;
12fcfd22 2968
49e83f57
LB
2969 mutex_unlock(&root->log_mutex);
2970 schedule();
7237f183 2971 mutex_lock(&root->log_mutex);
49e83f57
LB
2972 }
2973 finish_wait(&root->log_commit_wait[index], &wait);
7237f183
YZ
2974}
2975
60d53eb3 2976static void wait_for_writer(struct btrfs_root *root)
7237f183
YZ
2977{
2978 DEFINE_WAIT(wait);
8b050d35 2979
49e83f57
LB
2980 for (;;) {
2981 prepare_to_wait(&root->log_writer_wait, &wait,
2982 TASK_UNINTERRUPTIBLE);
2983 if (!atomic_read(&root->log_writers))
2984 break;
2985
7237f183 2986 mutex_unlock(&root->log_mutex);
49e83f57 2987 schedule();
575849ec 2988 mutex_lock(&root->log_mutex);
7237f183 2989 }
49e83f57 2990 finish_wait(&root->log_writer_wait, &wait);
e02119d5
CM
2991}
2992
8b050d35
MX
2993static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2994 struct btrfs_log_ctx *ctx)
2995{
2996 if (!ctx)
2997 return;
2998
2999 mutex_lock(&root->log_mutex);
3000 list_del_init(&ctx->list);
3001 mutex_unlock(&root->log_mutex);
3002}
3003
3004/*
3005 * Invoked in log mutex context, or be sure there is no other task which
3006 * can access the list.
3007 */
3008static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
3009 int index, int error)
3010{
3011 struct btrfs_log_ctx *ctx;
570dd450 3012 struct btrfs_log_ctx *safe;
8b050d35 3013
570dd450
CM
3014 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
3015 list_del_init(&ctx->list);
8b050d35 3016 ctx->log_ret = error;
570dd450 3017 }
8b050d35
MX
3018
3019 INIT_LIST_HEAD(&root->log_ctxs[index]);
3020}
3021
e02119d5
CM
3022/*
3023 * btrfs_sync_log does sends a given tree log down to the disk and
3024 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
3025 * you know that any inodes previously logged are safely on disk only
3026 * if it returns 0.
3027 *
3028 * Any other return value means you need to call btrfs_commit_transaction.
3029 * Some of the edge cases for fsyncing directories that have had unlinks
3030 * or renames done in the past mean that sometimes the only safe
3031 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3032 * that has happened.
e02119d5
CM
3033 */
3034int btrfs_sync_log(struct btrfs_trans_handle *trans,
8b050d35 3035 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
e02119d5 3036{
7237f183
YZ
3037 int index1;
3038 int index2;
8cef4e16 3039 int mark;
e02119d5 3040 int ret;
0b246afa 3041 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 3042 struct btrfs_root *log = root->log_root;
0b246afa 3043 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
bb14a59b 3044 int log_transid = 0;
8b050d35 3045 struct btrfs_log_ctx root_log_ctx;
c6adc9cc 3046 struct blk_plug plug;
e02119d5 3047
7237f183 3048 mutex_lock(&root->log_mutex);
d1433deb
MX
3049 log_transid = ctx->log_transid;
3050 if (root->log_transid_committed >= log_transid) {
3051 mutex_unlock(&root->log_mutex);
3052 return ctx->log_ret;
3053 }
3054
3055 index1 = log_transid % 2;
7237f183 3056 if (atomic_read(&root->log_commit[index1])) {
60d53eb3 3057 wait_log_commit(root, log_transid);
7237f183 3058 mutex_unlock(&root->log_mutex);
8b050d35 3059 return ctx->log_ret;
e02119d5 3060 }
d1433deb 3061 ASSERT(log_transid == root->log_transid);
7237f183
YZ
3062 atomic_set(&root->log_commit[index1], 1);
3063
3064 /* wait for previous tree log sync to complete */
3065 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
60d53eb3 3066 wait_log_commit(root, log_transid - 1);
48cab2e0 3067
86df7eb9 3068 while (1) {
2ecb7923 3069 int batch = atomic_read(&root->log_batch);
cd354ad6 3070 /* when we're on an ssd, just kick the log commit out */
0b246afa 3071 if (!btrfs_test_opt(fs_info, SSD) &&
27cdeb70 3072 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
86df7eb9
YZ
3073 mutex_unlock(&root->log_mutex);
3074 schedule_timeout_uninterruptible(1);
3075 mutex_lock(&root->log_mutex);
3076 }
60d53eb3 3077 wait_for_writer(root);
2ecb7923 3078 if (batch == atomic_read(&root->log_batch))
e02119d5
CM
3079 break;
3080 }
e02119d5 3081
12fcfd22 3082 /* bail out if we need to do a full commit */
4884b8e8 3083 if (btrfs_need_log_full_commit(trans)) {
12fcfd22
CM
3084 ret = -EAGAIN;
3085 mutex_unlock(&root->log_mutex);
3086 goto out;
3087 }
3088
8cef4e16
YZ
3089 if (log_transid % 2 == 0)
3090 mark = EXTENT_DIRTY;
3091 else
3092 mark = EXTENT_NEW;
3093
690587d1
CM
3094 /* we start IO on all the marked extents here, but we don't actually
3095 * wait for them until later.
3096 */
c6adc9cc 3097 blk_start_plug(&plug);
2ff7e61e 3098 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
79787eaa 3099 if (ret) {
c6adc9cc 3100 blk_finish_plug(&plug);
66642832 3101 btrfs_abort_transaction(trans, ret);
90787766 3102 btrfs_set_log_full_commit(trans);
79787eaa
JM
3103 mutex_unlock(&root->log_mutex);
3104 goto out;
3105 }
7237f183 3106
5d4f98a2 3107 btrfs_set_root_node(&log->root_item, log->node);
7237f183 3108
7237f183
YZ
3109 root->log_transid++;
3110 log->log_transid = root->log_transid;
ff782e0a 3111 root->log_start_pid = 0;
06989c79
FM
3112 /*
3113 * Update or create log root item under the root's log_mutex to prevent
3114 * races with concurrent log syncs that can lead to failure to update
3115 * log root item because it was not created yet.
3116 */
3117 ret = update_log_root(trans, log);
7237f183 3118 /*
8cef4e16
YZ
3119 * IO has been started, blocks of the log tree have WRITTEN flag set
3120 * in their headers. new modifications of the log will be written to
3121 * new positions. so it's safe to allow log writers to go in.
7237f183
YZ
3122 */
3123 mutex_unlock(&root->log_mutex);
3124
28a23593 3125 btrfs_init_log_ctx(&root_log_ctx, NULL);
d1433deb 3126
7237f183 3127 mutex_lock(&log_root_tree->log_mutex);
2ecb7923 3128 atomic_inc(&log_root_tree->log_batch);
7237f183 3129 atomic_inc(&log_root_tree->log_writers);
d1433deb
MX
3130
3131 index2 = log_root_tree->log_transid % 2;
3132 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3133 root_log_ctx.log_transid = log_root_tree->log_transid;
3134
7237f183
YZ
3135 mutex_unlock(&log_root_tree->log_mutex);
3136
7237f183
YZ
3137 mutex_lock(&log_root_tree->log_mutex);
3138 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
093258e6
DS
3139 /* atomic_dec_and_test implies a barrier */
3140 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
7237f183
YZ
3141 }
3142
4a500fd1 3143 if (ret) {
d1433deb
MX
3144 if (!list_empty(&root_log_ctx.list))
3145 list_del_init(&root_log_ctx.list);
3146
c6adc9cc 3147 blk_finish_plug(&plug);
90787766 3148 btrfs_set_log_full_commit(trans);
995946dd 3149
79787eaa 3150 if (ret != -ENOSPC) {
66642832 3151 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3152 mutex_unlock(&log_root_tree->log_mutex);
3153 goto out;
3154 }
bf89d38f 3155 btrfs_wait_tree_log_extents(log, mark);
4a500fd1
YZ
3156 mutex_unlock(&log_root_tree->log_mutex);
3157 ret = -EAGAIN;
3158 goto out;
3159 }
3160
d1433deb 3161 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3da5ab56 3162 blk_finish_plug(&plug);
cbd60aa7 3163 list_del_init(&root_log_ctx.list);
d1433deb
MX
3164 mutex_unlock(&log_root_tree->log_mutex);
3165 ret = root_log_ctx.log_ret;
3166 goto out;
3167 }
8b050d35 3168
d1433deb 3169 index2 = root_log_ctx.log_transid % 2;
7237f183 3170 if (atomic_read(&log_root_tree->log_commit[index2])) {
c6adc9cc 3171 blk_finish_plug(&plug);
bf89d38f 3172 ret = btrfs_wait_tree_log_extents(log, mark);
60d53eb3 3173 wait_log_commit(log_root_tree,
d1433deb 3174 root_log_ctx.log_transid);
7237f183 3175 mutex_unlock(&log_root_tree->log_mutex);
5ab5e44a
FM
3176 if (!ret)
3177 ret = root_log_ctx.log_ret;
7237f183
YZ
3178 goto out;
3179 }
d1433deb 3180 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
7237f183
YZ
3181 atomic_set(&log_root_tree->log_commit[index2], 1);
3182
12fcfd22 3183 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
60d53eb3 3184 wait_log_commit(log_root_tree,
d1433deb 3185 root_log_ctx.log_transid - 1);
12fcfd22
CM
3186 }
3187
60d53eb3 3188 wait_for_writer(log_root_tree);
7237f183 3189
12fcfd22
CM
3190 /*
3191 * now that we've moved on to the tree of log tree roots,
3192 * check the full commit flag again
3193 */
4884b8e8 3194 if (btrfs_need_log_full_commit(trans)) {
c6adc9cc 3195 blk_finish_plug(&plug);
bf89d38f 3196 btrfs_wait_tree_log_extents(log, mark);
12fcfd22
CM
3197 mutex_unlock(&log_root_tree->log_mutex);
3198 ret = -EAGAIN;
3199 goto out_wake_log_root;
3200 }
7237f183 3201
2ff7e61e 3202 ret = btrfs_write_marked_extents(fs_info,
c6adc9cc
MX
3203 &log_root_tree->dirty_log_pages,
3204 EXTENT_DIRTY | EXTENT_NEW);
3205 blk_finish_plug(&plug);
79787eaa 3206 if (ret) {
90787766 3207 btrfs_set_log_full_commit(trans);
66642832 3208 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3209 mutex_unlock(&log_root_tree->log_mutex);
3210 goto out_wake_log_root;
3211 }
bf89d38f 3212 ret = btrfs_wait_tree_log_extents(log, mark);
5ab5e44a 3213 if (!ret)
bf89d38f
JM
3214 ret = btrfs_wait_tree_log_extents(log_root_tree,
3215 EXTENT_NEW | EXTENT_DIRTY);
5ab5e44a 3216 if (ret) {
90787766 3217 btrfs_set_log_full_commit(trans);
5ab5e44a
FM
3218 mutex_unlock(&log_root_tree->log_mutex);
3219 goto out_wake_log_root;
3220 }
e02119d5 3221
0b246afa
JM
3222 btrfs_set_super_log_root(fs_info->super_for_commit,
3223 log_root_tree->node->start);
3224 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3225 btrfs_header_level(log_root_tree->node));
e02119d5 3226
7237f183 3227 log_root_tree->log_transid++;
7237f183
YZ
3228 mutex_unlock(&log_root_tree->log_mutex);
3229
3230 /*
52042d8e 3231 * Nobody else is going to jump in and write the ctree
7237f183
YZ
3232 * super here because the log_commit atomic below is protecting
3233 * us. We must be called with a transaction handle pinning
3234 * the running transaction open, so a full commit can't hop
3235 * in and cause problems either.
3236 */
eece6a9c 3237 ret = write_all_supers(fs_info, 1);
5af3e8cc 3238 if (ret) {
90787766 3239 btrfs_set_log_full_commit(trans);
66642832 3240 btrfs_abort_transaction(trans, ret);
5af3e8cc
SB
3241 goto out_wake_log_root;
3242 }
7237f183 3243
257c62e1
CM
3244 mutex_lock(&root->log_mutex);
3245 if (root->last_log_commit < log_transid)
3246 root->last_log_commit = log_transid;
3247 mutex_unlock(&root->log_mutex);
3248
12fcfd22 3249out_wake_log_root:
570dd450 3250 mutex_lock(&log_root_tree->log_mutex);
8b050d35
MX
3251 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3252
d1433deb 3253 log_root_tree->log_transid_committed++;
7237f183 3254 atomic_set(&log_root_tree->log_commit[index2], 0);
d1433deb
MX
3255 mutex_unlock(&log_root_tree->log_mutex);
3256
33a9eca7 3257 /*
093258e6
DS
3258 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3259 * all the updates above are seen by the woken threads. It might not be
3260 * necessary, but proving that seems to be hard.
33a9eca7 3261 */
093258e6 3262 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 3263out:
d1433deb 3264 mutex_lock(&root->log_mutex);
570dd450 3265 btrfs_remove_all_log_ctxs(root, index1, ret);
d1433deb 3266 root->log_transid_committed++;
7237f183 3267 atomic_set(&root->log_commit[index1], 0);
d1433deb 3268 mutex_unlock(&root->log_mutex);
8b050d35 3269
33a9eca7 3270 /*
093258e6
DS
3271 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3272 * all the updates above are seen by the woken threads. It might not be
3273 * necessary, but proving that seems to be hard.
33a9eca7 3274 */
093258e6 3275 cond_wake_up(&root->log_commit_wait[index1]);
b31eabd8 3276 return ret;
e02119d5
CM
3277}
3278
4a500fd1
YZ
3279static void free_log_tree(struct btrfs_trans_handle *trans,
3280 struct btrfs_root *log)
e02119d5
CM
3281{
3282 int ret;
e02119d5
CM
3283 struct walk_control wc = {
3284 .free = 1,
3285 .process_func = process_one_buffer
3286 };
3287
681ae509 3288 ret = walk_log_tree(trans, log, &wc);
374b0e2d
JM
3289 if (ret) {
3290 if (trans)
3291 btrfs_abort_transaction(trans, ret);
3292 else
3293 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3294 }
e02119d5 3295
59b0713a
FM
3296 clear_extent_bits(&log->dirty_log_pages, 0, (u64)-1,
3297 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
7237f183
YZ
3298 free_extent_buffer(log->node);
3299 kfree(log);
4a500fd1
YZ
3300}
3301
3302/*
3303 * free all the extents used by the tree log. This should be called
3304 * at commit time of the full transaction
3305 */
3306int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3307{
3308 if (root->log_root) {
3309 free_log_tree(trans, root->log_root);
3310 root->log_root = NULL;
3311 }
3312 return 0;
3313}
3314
3315int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3316 struct btrfs_fs_info *fs_info)
3317{
3318 if (fs_info->log_root_tree) {
3319 free_log_tree(trans, fs_info->log_root_tree);
3320 fs_info->log_root_tree = NULL;
3321 }
e02119d5
CM
3322 return 0;
3323}
3324
803f0f64
FM
3325/*
3326 * Check if an inode was logged in the current transaction. We can't always rely
3327 * on an inode's logged_trans value, because it's an in-memory only field and
3328 * therefore not persisted. This means that its value is lost if the inode gets
3329 * evicted and loaded again from disk (in which case it has a value of 0, and
3330 * certainly it is smaller then any possible transaction ID), when that happens
3331 * the full_sync flag is set in the inode's runtime flags, so on that case we
3332 * assume eviction happened and ignore the logged_trans value, assuming the
3333 * worst case, that the inode was logged before in the current transaction.
3334 */
3335static bool inode_logged(struct btrfs_trans_handle *trans,
3336 struct btrfs_inode *inode)
3337{
3338 if (inode->logged_trans == trans->transid)
3339 return true;
3340
3341 if (inode->last_trans == trans->transid &&
3342 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
3343 !test_bit(BTRFS_FS_LOG_RECOVERING, &trans->fs_info->flags))
3344 return true;
3345
3346 return false;
3347}
3348
e02119d5
CM
3349/*
3350 * If both a file and directory are logged, and unlinks or renames are
3351 * mixed in, we have a few interesting corners:
3352 *
3353 * create file X in dir Y
3354 * link file X to X.link in dir Y
3355 * fsync file X
3356 * unlink file X but leave X.link
3357 * fsync dir Y
3358 *
3359 * After a crash we would expect only X.link to exist. But file X
3360 * didn't get fsync'd again so the log has back refs for X and X.link.
3361 *
3362 * We solve this by removing directory entries and inode backrefs from the
3363 * log when a file that was logged in the current transaction is
3364 * unlinked. Any later fsync will include the updated log entries, and
3365 * we'll be able to reconstruct the proper directory items from backrefs.
3366 *
3367 * This optimizations allows us to avoid relogging the entire inode
3368 * or the entire directory.
3369 */
3370int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3371 struct btrfs_root *root,
3372 const char *name, int name_len,
49f34d1f 3373 struct btrfs_inode *dir, u64 index)
e02119d5
CM
3374{
3375 struct btrfs_root *log;
3376 struct btrfs_dir_item *di;
3377 struct btrfs_path *path;
3378 int ret;
4a500fd1 3379 int err = 0;
e02119d5 3380 int bytes_del = 0;
49f34d1f 3381 u64 dir_ino = btrfs_ino(dir);
e02119d5 3382
803f0f64 3383 if (!inode_logged(trans, dir))
3a5f1d45
CM
3384 return 0;
3385
e02119d5
CM
3386 ret = join_running_log_trans(root);
3387 if (ret)
3388 return 0;
3389
49f34d1f 3390 mutex_lock(&dir->log_mutex);
e02119d5
CM
3391
3392 log = root->log_root;
3393 path = btrfs_alloc_path();
a62f44a5
TI
3394 if (!path) {
3395 err = -ENOMEM;
3396 goto out_unlock;
3397 }
2a29edc6 3398
33345d01 3399 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
e02119d5 3400 name, name_len, -1);
4a500fd1
YZ
3401 if (IS_ERR(di)) {
3402 err = PTR_ERR(di);
3403 goto fail;
3404 }
3405 if (di) {
e02119d5
CM
3406 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3407 bytes_del += name_len;
3650860b
JB
3408 if (ret) {
3409 err = ret;
3410 goto fail;
3411 }
e02119d5 3412 }
b3b4aa74 3413 btrfs_release_path(path);
33345d01 3414 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
e02119d5 3415 index, name, name_len, -1);
4a500fd1
YZ
3416 if (IS_ERR(di)) {
3417 err = PTR_ERR(di);
3418 goto fail;
3419 }
3420 if (di) {
e02119d5
CM
3421 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3422 bytes_del += name_len;
3650860b
JB
3423 if (ret) {
3424 err = ret;
3425 goto fail;
3426 }
e02119d5
CM
3427 }
3428
3429 /* update the directory size in the log to reflect the names
3430 * we have removed
3431 */
3432 if (bytes_del) {
3433 struct btrfs_key key;
3434
33345d01 3435 key.objectid = dir_ino;
e02119d5
CM
3436 key.offset = 0;
3437 key.type = BTRFS_INODE_ITEM_KEY;
b3b4aa74 3438 btrfs_release_path(path);
e02119d5
CM
3439
3440 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4a500fd1
YZ
3441 if (ret < 0) {
3442 err = ret;
3443 goto fail;
3444 }
e02119d5
CM
3445 if (ret == 0) {
3446 struct btrfs_inode_item *item;
3447 u64 i_size;
3448
3449 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3450 struct btrfs_inode_item);
3451 i_size = btrfs_inode_size(path->nodes[0], item);
3452 if (i_size > bytes_del)
3453 i_size -= bytes_del;
3454 else
3455 i_size = 0;
3456 btrfs_set_inode_size(path->nodes[0], item, i_size);
3457 btrfs_mark_buffer_dirty(path->nodes[0]);
3458 } else
3459 ret = 0;
b3b4aa74 3460 btrfs_release_path(path);
e02119d5 3461 }
4a500fd1 3462fail:
e02119d5 3463 btrfs_free_path(path);
a62f44a5 3464out_unlock:
49f34d1f 3465 mutex_unlock(&dir->log_mutex);
4a500fd1 3466 if (ret == -ENOSPC) {
90787766 3467 btrfs_set_log_full_commit(trans);
4a500fd1 3468 ret = 0;
79787eaa 3469 } else if (ret < 0)
66642832 3470 btrfs_abort_transaction(trans, ret);
79787eaa 3471
12fcfd22 3472 btrfs_end_log_trans(root);
e02119d5 3473
411fc6bc 3474 return err;
e02119d5
CM
3475}
3476
3477/* see comments for btrfs_del_dir_entries_in_log */
3478int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3479 struct btrfs_root *root,
3480 const char *name, int name_len,
a491abb2 3481 struct btrfs_inode *inode, u64 dirid)
e02119d5
CM
3482{
3483 struct btrfs_root *log;
3484 u64 index;
3485 int ret;
3486
803f0f64 3487 if (!inode_logged(trans, inode))
3a5f1d45
CM
3488 return 0;
3489
e02119d5
CM
3490 ret = join_running_log_trans(root);
3491 if (ret)
3492 return 0;
3493 log = root->log_root;
a491abb2 3494 mutex_lock(&inode->log_mutex);
e02119d5 3495
a491abb2 3496 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
e02119d5 3497 dirid, &index);
a491abb2 3498 mutex_unlock(&inode->log_mutex);
4a500fd1 3499 if (ret == -ENOSPC) {
90787766 3500 btrfs_set_log_full_commit(trans);
4a500fd1 3501 ret = 0;
79787eaa 3502 } else if (ret < 0 && ret != -ENOENT)
66642832 3503 btrfs_abort_transaction(trans, ret);
12fcfd22 3504 btrfs_end_log_trans(root);
e02119d5 3505
e02119d5
CM
3506 return ret;
3507}
3508
3509/*
3510 * creates a range item in the log for 'dirid'. first_offset and
3511 * last_offset tell us which parts of the key space the log should
3512 * be considered authoritative for.
3513 */
3514static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3515 struct btrfs_root *log,
3516 struct btrfs_path *path,
3517 int key_type, u64 dirid,
3518 u64 first_offset, u64 last_offset)
3519{
3520 int ret;
3521 struct btrfs_key key;
3522 struct btrfs_dir_log_item *item;
3523
3524 key.objectid = dirid;
3525 key.offset = first_offset;
3526 if (key_type == BTRFS_DIR_ITEM_KEY)
3527 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3528 else
3529 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3530 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
4a500fd1
YZ
3531 if (ret)
3532 return ret;
e02119d5
CM
3533
3534 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3535 struct btrfs_dir_log_item);
3536 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3537 btrfs_mark_buffer_dirty(path->nodes[0]);
b3b4aa74 3538 btrfs_release_path(path);
e02119d5
CM
3539 return 0;
3540}
3541
3542/*
3543 * log all the items included in the current transaction for a given
3544 * directory. This also creates the range items in the log tree required
3545 * to replay anything deleted before the fsync
3546 */
3547static noinline int log_dir_items(struct btrfs_trans_handle *trans,
684a5773 3548 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5
CM
3549 struct btrfs_path *path,
3550 struct btrfs_path *dst_path, int key_type,
2f2ff0ee 3551 struct btrfs_log_ctx *ctx,
e02119d5
CM
3552 u64 min_offset, u64 *last_offset_ret)
3553{
3554 struct btrfs_key min_key;
e02119d5
CM
3555 struct btrfs_root *log = root->log_root;
3556 struct extent_buffer *src;
4a500fd1 3557 int err = 0;
e02119d5
CM
3558 int ret;
3559 int i;
3560 int nritems;
3561 u64 first_offset = min_offset;
3562 u64 last_offset = (u64)-1;
684a5773 3563 u64 ino = btrfs_ino(inode);
e02119d5
CM
3564
3565 log = root->log_root;
e02119d5 3566
33345d01 3567 min_key.objectid = ino;
e02119d5
CM
3568 min_key.type = key_type;
3569 min_key.offset = min_offset;
3570
6174d3cb 3571 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
e02119d5
CM
3572
3573 /*
3574 * we didn't find anything from this transaction, see if there
3575 * is anything at all
3576 */
33345d01
LZ
3577 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3578 min_key.objectid = ino;
e02119d5
CM
3579 min_key.type = key_type;
3580 min_key.offset = (u64)-1;
b3b4aa74 3581 btrfs_release_path(path);
e02119d5
CM
3582 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3583 if (ret < 0) {
b3b4aa74 3584 btrfs_release_path(path);
e02119d5
CM
3585 return ret;
3586 }
33345d01 3587 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3588
3589 /* if ret == 0 there are items for this type,
3590 * create a range to tell us the last key of this type.
3591 * otherwise, there are no items in this directory after
3592 * *min_offset, and we create a range to indicate that.
3593 */
3594 if (ret == 0) {
3595 struct btrfs_key tmp;
3596 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3597 path->slots[0]);
d397712b 3598 if (key_type == tmp.type)
e02119d5 3599 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
3600 }
3601 goto done;
3602 }
3603
3604 /* go backward to find any previous key */
33345d01 3605 ret = btrfs_previous_item(root, path, ino, key_type);
e02119d5
CM
3606 if (ret == 0) {
3607 struct btrfs_key tmp;
3608 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3609 if (key_type == tmp.type) {
3610 first_offset = tmp.offset;
3611 ret = overwrite_item(trans, log, dst_path,
3612 path->nodes[0], path->slots[0],
3613 &tmp);
4a500fd1
YZ
3614 if (ret) {
3615 err = ret;
3616 goto done;
3617 }
e02119d5
CM
3618 }
3619 }
b3b4aa74 3620 btrfs_release_path(path);
e02119d5 3621
2cc83342
JB
3622 /*
3623 * Find the first key from this transaction again. See the note for
3624 * log_new_dir_dentries, if we're logging a directory recursively we
3625 * won't be holding its i_mutex, which means we can modify the directory
3626 * while we're logging it. If we remove an entry between our first
3627 * search and this search we'll not find the key again and can just
3628 * bail.
3629 */
e02119d5 3630 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2cc83342 3631 if (ret != 0)
e02119d5 3632 goto done;
e02119d5
CM
3633
3634 /*
3635 * we have a block from this transaction, log every item in it
3636 * from our directory
3637 */
d397712b 3638 while (1) {
e02119d5
CM
3639 struct btrfs_key tmp;
3640 src = path->nodes[0];
3641 nritems = btrfs_header_nritems(src);
3642 for (i = path->slots[0]; i < nritems; i++) {
2f2ff0ee
FM
3643 struct btrfs_dir_item *di;
3644
e02119d5
CM
3645 btrfs_item_key_to_cpu(src, &min_key, i);
3646
33345d01 3647 if (min_key.objectid != ino || min_key.type != key_type)
e02119d5
CM
3648 goto done;
3649 ret = overwrite_item(trans, log, dst_path, src, i,
3650 &min_key);
4a500fd1
YZ
3651 if (ret) {
3652 err = ret;
3653 goto done;
3654 }
2f2ff0ee
FM
3655
3656 /*
3657 * We must make sure that when we log a directory entry,
3658 * the corresponding inode, after log replay, has a
3659 * matching link count. For example:
3660 *
3661 * touch foo
3662 * mkdir mydir
3663 * sync
3664 * ln foo mydir/bar
3665 * xfs_io -c "fsync" mydir
3666 * <crash>
3667 * <mount fs and log replay>
3668 *
3669 * Would result in a fsync log that when replayed, our
3670 * file inode would have a link count of 1, but we get
3671 * two directory entries pointing to the same inode.
3672 * After removing one of the names, it would not be
3673 * possible to remove the other name, which resulted
3674 * always in stale file handle errors, and would not
3675 * be possible to rmdir the parent directory, since
3676 * its i_size could never decrement to the value
3677 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3678 */
3679 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3680 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3681 if (ctx &&
3682 (btrfs_dir_transid(src, di) == trans->transid ||
3683 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3684 tmp.type != BTRFS_ROOT_ITEM_KEY)
3685 ctx->log_new_dentries = true;
e02119d5
CM
3686 }
3687 path->slots[0] = nritems;
3688
3689 /*
3690 * look ahead to the next item and see if it is also
3691 * from this directory and from this transaction
3692 */
3693 ret = btrfs_next_leaf(root, path);
80c0b421
LB
3694 if (ret) {
3695 if (ret == 1)
3696 last_offset = (u64)-1;
3697 else
3698 err = ret;
e02119d5
CM
3699 goto done;
3700 }
3701 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
33345d01 3702 if (tmp.objectid != ino || tmp.type != key_type) {
e02119d5
CM
3703 last_offset = (u64)-1;
3704 goto done;
3705 }
3706 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3707 ret = overwrite_item(trans, log, dst_path,
3708 path->nodes[0], path->slots[0],
3709 &tmp);
4a500fd1
YZ
3710 if (ret)
3711 err = ret;
3712 else
3713 last_offset = tmp.offset;
e02119d5
CM
3714 goto done;
3715 }
3716 }
3717done:
b3b4aa74
DS
3718 btrfs_release_path(path);
3719 btrfs_release_path(dst_path);
e02119d5 3720
4a500fd1
YZ
3721 if (err == 0) {
3722 *last_offset_ret = last_offset;
3723 /*
3724 * insert the log range keys to indicate where the log
3725 * is valid
3726 */
3727 ret = insert_dir_log_key(trans, log, path, key_type,
33345d01 3728 ino, first_offset, last_offset);
4a500fd1
YZ
3729 if (ret)
3730 err = ret;
3731 }
3732 return err;
e02119d5
CM
3733}
3734
3735/*
3736 * logging directories is very similar to logging inodes, We find all the items
3737 * from the current transaction and write them to the log.
3738 *
3739 * The recovery code scans the directory in the subvolume, and if it finds a
3740 * key in the range logged that is not present in the log tree, then it means
3741 * that dir entry was unlinked during the transaction.
3742 *
3743 * In order for that scan to work, we must include one key smaller than
3744 * the smallest logged by this transaction and one key larger than the largest
3745 * key logged by this transaction.
3746 */
3747static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
dbf39ea4 3748 struct btrfs_root *root, struct btrfs_inode *inode,
e02119d5 3749 struct btrfs_path *path,
2f2ff0ee
FM
3750 struct btrfs_path *dst_path,
3751 struct btrfs_log_ctx *ctx)
e02119d5
CM
3752{
3753 u64 min_key;
3754 u64 max_key;
3755 int ret;
3756 int key_type = BTRFS_DIR_ITEM_KEY;
3757
3758again:
3759 min_key = 0;
3760 max_key = 0;
d397712b 3761 while (1) {
dbf39ea4
NB
3762 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3763 ctx, min_key, &max_key);
4a500fd1
YZ
3764 if (ret)
3765 return ret;
e02119d5
CM
3766 if (max_key == (u64)-1)
3767 break;
3768 min_key = max_key + 1;
3769 }
3770
3771 if (key_type == BTRFS_DIR_ITEM_KEY) {
3772 key_type = BTRFS_DIR_INDEX_KEY;
3773 goto again;
3774 }
3775 return 0;
3776}
3777
3778/*
3779 * a helper function to drop items from the log before we relog an
3780 * inode. max_key_type indicates the highest item type to remove.
3781 * This cannot be run for file data extents because it does not
3782 * free the extents they point to.
3783 */
3784static int drop_objectid_items(struct btrfs_trans_handle *trans,
3785 struct btrfs_root *log,
3786 struct btrfs_path *path,
3787 u64 objectid, int max_key_type)
3788{
3789 int ret;
3790 struct btrfs_key key;
3791 struct btrfs_key found_key;
18ec90d6 3792 int start_slot;
e02119d5
CM
3793
3794 key.objectid = objectid;
3795 key.type = max_key_type;
3796 key.offset = (u64)-1;
3797
d397712b 3798 while (1) {
e02119d5 3799 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3650860b 3800 BUG_ON(ret == 0); /* Logic error */
4a500fd1 3801 if (ret < 0)
e02119d5
CM
3802 break;
3803
3804 if (path->slots[0] == 0)
3805 break;
3806
3807 path->slots[0]--;
3808 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3809 path->slots[0]);
3810
3811 if (found_key.objectid != objectid)
3812 break;
3813
18ec90d6
JB
3814 found_key.offset = 0;
3815 found_key.type = 0;
3816 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3817 &start_slot);
cbca7d59
FM
3818 if (ret < 0)
3819 break;
18ec90d6
JB
3820
3821 ret = btrfs_del_items(trans, log, path, start_slot,
3822 path->slots[0] - start_slot + 1);
3823 /*
3824 * If start slot isn't 0 then we don't need to re-search, we've
3825 * found the last guy with the objectid in this tree.
3826 */
3827 if (ret || start_slot != 0)
65a246c5 3828 break;
b3b4aa74 3829 btrfs_release_path(path);
e02119d5 3830 }
b3b4aa74 3831 btrfs_release_path(path);
5bdbeb21
JB
3832 if (ret > 0)
3833 ret = 0;
4a500fd1 3834 return ret;
e02119d5
CM
3835}
3836
94edf4ae
JB
3837static void fill_inode_item(struct btrfs_trans_handle *trans,
3838 struct extent_buffer *leaf,
3839 struct btrfs_inode_item *item,
1a4bcf47
FM
3840 struct inode *inode, int log_inode_only,
3841 u64 logged_isize)
94edf4ae 3842{
0b1c6cca
JB
3843 struct btrfs_map_token token;
3844
3845 btrfs_init_map_token(&token);
94edf4ae
JB
3846
3847 if (log_inode_only) {
3848 /* set the generation to zero so the recover code
3849 * can tell the difference between an logging
3850 * just to say 'this inode exists' and a logging
3851 * to say 'update this inode with these values'
3852 */
0b1c6cca 3853 btrfs_set_token_inode_generation(leaf, item, 0, &token);
1a4bcf47 3854 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
94edf4ae 3855 } else {
0b1c6cca
JB
3856 btrfs_set_token_inode_generation(leaf, item,
3857 BTRFS_I(inode)->generation,
3858 &token);
3859 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3860 }
3861
3862 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3863 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3864 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3865 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3866
a937b979 3867 btrfs_set_token_timespec_sec(leaf, &item->atime,
0b1c6cca 3868 inode->i_atime.tv_sec, &token);
a937b979 3869 btrfs_set_token_timespec_nsec(leaf, &item->atime,
0b1c6cca
JB
3870 inode->i_atime.tv_nsec, &token);
3871
a937b979 3872 btrfs_set_token_timespec_sec(leaf, &item->mtime,
0b1c6cca 3873 inode->i_mtime.tv_sec, &token);
a937b979 3874 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
0b1c6cca
JB
3875 inode->i_mtime.tv_nsec, &token);
3876
a937b979 3877 btrfs_set_token_timespec_sec(leaf, &item->ctime,
0b1c6cca 3878 inode->i_ctime.tv_sec, &token);
a937b979 3879 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
0b1c6cca
JB
3880 inode->i_ctime.tv_nsec, &token);
3881
3882 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3883 &token);
3884
c7f88c4e
JL
3885 btrfs_set_token_inode_sequence(leaf, item,
3886 inode_peek_iversion(inode), &token);
0b1c6cca
JB
3887 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3888 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3889 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3890 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
94edf4ae
JB
3891}
3892
a95249b3
JB
3893static int log_inode_item(struct btrfs_trans_handle *trans,
3894 struct btrfs_root *log, struct btrfs_path *path,
6d889a3b 3895 struct btrfs_inode *inode)
a95249b3
JB
3896{
3897 struct btrfs_inode_item *inode_item;
a95249b3
JB
3898 int ret;
3899
efd0c405 3900 ret = btrfs_insert_empty_item(trans, log, path,
6d889a3b 3901 &inode->location, sizeof(*inode_item));
a95249b3
JB
3902 if (ret && ret != -EEXIST)
3903 return ret;
3904 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3905 struct btrfs_inode_item);
6d889a3b
NB
3906 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3907 0, 0);
a95249b3
JB
3908 btrfs_release_path(path);
3909 return 0;
3910}
3911
31ff1cd2 3912static noinline int copy_items(struct btrfs_trans_handle *trans,
44d70e19 3913 struct btrfs_inode *inode,
31ff1cd2 3914 struct btrfs_path *dst_path,
16e7549f 3915 struct btrfs_path *src_path, u64 *last_extent,
1a4bcf47
FM
3916 int start_slot, int nr, int inode_only,
3917 u64 logged_isize)
31ff1cd2 3918{
3ffbd68c 3919 struct btrfs_fs_info *fs_info = trans->fs_info;
31ff1cd2
CM
3920 unsigned long src_offset;
3921 unsigned long dst_offset;
44d70e19 3922 struct btrfs_root *log = inode->root->log_root;
31ff1cd2
CM
3923 struct btrfs_file_extent_item *extent;
3924 struct btrfs_inode_item *inode_item;
16e7549f
JB
3925 struct extent_buffer *src = src_path->nodes[0];
3926 struct btrfs_key first_key, last_key, key;
31ff1cd2
CM
3927 int ret;
3928 struct btrfs_key *ins_keys;
3929 u32 *ins_sizes;
3930 char *ins_data;
3931 int i;
d20f7043 3932 struct list_head ordered_sums;
44d70e19 3933 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
16e7549f 3934 bool has_extents = false;
74121f7c 3935 bool need_find_last_extent = true;
16e7549f 3936 bool done = false;
d20f7043
CM
3937
3938 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
3939
3940 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3941 nr * sizeof(u32), GFP_NOFS);
2a29edc6 3942 if (!ins_data)
3943 return -ENOMEM;
3944
16e7549f
JB
3945 first_key.objectid = (u64)-1;
3946
31ff1cd2
CM
3947 ins_sizes = (u32 *)ins_data;
3948 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3949
3950 for (i = 0; i < nr; i++) {
3951 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3952 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3953 }
3954 ret = btrfs_insert_empty_items(trans, log, dst_path,
3955 ins_keys, ins_sizes, nr);
4a500fd1
YZ
3956 if (ret) {
3957 kfree(ins_data);
3958 return ret;
3959 }
31ff1cd2 3960
5d4f98a2 3961 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
3962 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3963 dst_path->slots[0]);
3964
3965 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3966
0dde10be 3967 if (i == nr - 1)
16e7549f
JB
3968 last_key = ins_keys[i];
3969
94edf4ae 3970 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
31ff1cd2
CM
3971 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3972 dst_path->slots[0],
3973 struct btrfs_inode_item);
94edf4ae 3974 fill_inode_item(trans, dst_path->nodes[0], inode_item,
f85b7379
DS
3975 &inode->vfs_inode,
3976 inode_only == LOG_INODE_EXISTS,
1a4bcf47 3977 logged_isize);
94edf4ae
JB
3978 } else {
3979 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3980 src_offset, ins_sizes[i]);
31ff1cd2 3981 }
94edf4ae 3982
16e7549f
JB
3983 /*
3984 * We set need_find_last_extent here in case we know we were
3985 * processing other items and then walk into the first extent in
3986 * the inode. If we don't hit an extent then nothing changes,
3987 * we'll do the last search the next time around.
3988 */
3989 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3990 has_extents = true;
74121f7c 3991 if (first_key.objectid == (u64)-1)
16e7549f
JB
3992 first_key = ins_keys[i];
3993 } else {
3994 need_find_last_extent = false;
3995 }
3996
31ff1cd2
CM
3997 /* take a reference on file data extents so that truncates
3998 * or deletes of this inode don't have to relog the inode
3999 * again
4000 */
962a298f 4001 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
d2794405 4002 !skip_csum) {
31ff1cd2
CM
4003 int found_type;
4004 extent = btrfs_item_ptr(src, start_slot + i,
4005 struct btrfs_file_extent_item);
4006
8e531cdf 4007 if (btrfs_file_extent_generation(src, extent) < trans->transid)
4008 continue;
4009
31ff1cd2 4010 found_type = btrfs_file_extent_type(src, extent);
6f1fed77 4011 if (found_type == BTRFS_FILE_EXTENT_REG) {
5d4f98a2
YZ
4012 u64 ds, dl, cs, cl;
4013 ds = btrfs_file_extent_disk_bytenr(src,
4014 extent);
4015 /* ds == 0 is a hole */
4016 if (ds == 0)
4017 continue;
4018
4019 dl = btrfs_file_extent_disk_num_bytes(src,
4020 extent);
4021 cs = btrfs_file_extent_offset(src, extent);
4022 cl = btrfs_file_extent_num_bytes(src,
a419aef8 4023 extent);
580afd76
CM
4024 if (btrfs_file_extent_compression(src,
4025 extent)) {
4026 cs = 0;
4027 cl = dl;
4028 }
5d4f98a2
YZ
4029
4030 ret = btrfs_lookup_csums_range(
0b246afa 4031 fs_info->csum_root,
5d4f98a2 4032 ds + cs, ds + cs + cl - 1,
a2de733c 4033 &ordered_sums, 0);
3650860b
JB
4034 if (ret) {
4035 btrfs_release_path(dst_path);
4036 kfree(ins_data);
4037 return ret;
4038 }
31ff1cd2
CM
4039 }
4040 }
31ff1cd2
CM
4041 }
4042
4043 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
b3b4aa74 4044 btrfs_release_path(dst_path);
31ff1cd2 4045 kfree(ins_data);
d20f7043
CM
4046
4047 /*
4048 * we have to do this after the loop above to avoid changing the
4049 * log tree while trying to change the log tree.
4050 */
4a500fd1 4051 ret = 0;
d397712b 4052 while (!list_empty(&ordered_sums)) {
d20f7043
CM
4053 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4054 struct btrfs_ordered_sum,
4055 list);
4a500fd1
YZ
4056 if (!ret)
4057 ret = btrfs_csum_file_blocks(trans, log, sums);
d20f7043
CM
4058 list_del(&sums->list);
4059 kfree(sums);
4060 }
16e7549f
JB
4061
4062 if (!has_extents)
4063 return ret;
4064
74121f7c
FM
4065 if (need_find_last_extent && *last_extent == first_key.offset) {
4066 /*
4067 * We don't have any leafs between our current one and the one
4068 * we processed before that can have file extent items for our
4069 * inode (and have a generation number smaller than our current
4070 * transaction id).
4071 */
4072 need_find_last_extent = false;
4073 }
4074
16e7549f
JB
4075 /*
4076 * Because we use btrfs_search_forward we could skip leaves that were
4077 * not modified and then assume *last_extent is valid when it really
4078 * isn't. So back up to the previous leaf and read the end of the last
4079 * extent before we go and fill in holes.
4080 */
4081 if (need_find_last_extent) {
4082 u64 len;
4083
44d70e19 4084 ret = btrfs_prev_leaf(inode->root, src_path);
16e7549f
JB
4085 if (ret < 0)
4086 return ret;
4087 if (ret)
4088 goto fill_holes;
4089 if (src_path->slots[0])
4090 src_path->slots[0]--;
4091 src = src_path->nodes[0];
4092 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
44d70e19 4093 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
4094 key.type != BTRFS_EXTENT_DATA_KEY)
4095 goto fill_holes;
4096 extent = btrfs_item_ptr(src, src_path->slots[0],
4097 struct btrfs_file_extent_item);
4098 if (btrfs_file_extent_type(src, extent) ==
4099 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 4100 len = btrfs_file_extent_ram_bytes(src, extent);
16e7549f 4101 *last_extent = ALIGN(key.offset + len,
0b246afa 4102 fs_info->sectorsize);
16e7549f
JB
4103 } else {
4104 len = btrfs_file_extent_num_bytes(src, extent);
4105 *last_extent = key.offset + len;
4106 }
4107 }
4108fill_holes:
4109 /* So we did prev_leaf, now we need to move to the next leaf, but a few
4110 * things could have happened
4111 *
4112 * 1) A merge could have happened, so we could currently be on a leaf
4113 * that holds what we were copying in the first place.
4114 * 2) A split could have happened, and now not all of the items we want
4115 * are on the same leaf.
4116 *
4117 * So we need to adjust how we search for holes, we need to drop the
4118 * path and re-search for the first extent key we found, and then walk
4119 * forward until we hit the last one we copied.
4120 */
4121 if (need_find_last_extent) {
4122 /* btrfs_prev_leaf could return 1 without releasing the path */
4123 btrfs_release_path(src_path);
f85b7379
DS
4124 ret = btrfs_search_slot(NULL, inode->root, &first_key,
4125 src_path, 0, 0);
16e7549f
JB
4126 if (ret < 0)
4127 return ret;
4128 ASSERT(ret == 0);
4129 src = src_path->nodes[0];
4130 i = src_path->slots[0];
4131 } else {
4132 i = start_slot;
4133 }
4134
4135 /*
4136 * Ok so here we need to go through and fill in any holes we may have
4137 * to make sure that holes are punched for those areas in case they had
4138 * extents previously.
4139 */
4140 while (!done) {
4141 u64 offset, len;
4142 u64 extent_end;
4143
4144 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
44d70e19 4145 ret = btrfs_next_leaf(inode->root, src_path);
16e7549f
JB
4146 if (ret < 0)
4147 return ret;
4148 ASSERT(ret == 0);
4149 src = src_path->nodes[0];
4150 i = 0;
8434ec46 4151 need_find_last_extent = true;
16e7549f
JB
4152 }
4153
4154 btrfs_item_key_to_cpu(src, &key, i);
4155 if (!btrfs_comp_cpu_keys(&key, &last_key))
4156 done = true;
44d70e19 4157 if (key.objectid != btrfs_ino(inode) ||
16e7549f
JB
4158 key.type != BTRFS_EXTENT_DATA_KEY) {
4159 i++;
4160 continue;
4161 }
4162 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4163 if (btrfs_file_extent_type(src, extent) ==
4164 BTRFS_FILE_EXTENT_INLINE) {
e41ca589 4165 len = btrfs_file_extent_ram_bytes(src, extent);
da17066c 4166 extent_end = ALIGN(key.offset + len,
0b246afa 4167 fs_info->sectorsize);
16e7549f
JB
4168 } else {
4169 len = btrfs_file_extent_num_bytes(src, extent);
4170 extent_end = key.offset + len;
4171 }
4172 i++;
4173
4174 if (*last_extent == key.offset) {
4175 *last_extent = extent_end;
4176 continue;
4177 }
4178 offset = *last_extent;
4179 len = key.offset - *last_extent;
44d70e19 4180 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
f85b7379 4181 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f
JB
4182 if (ret)
4183 break;
74121f7c 4184 *last_extent = extent_end;
16e7549f 4185 }
4ee3fad3
FM
4186
4187 /*
4188 * Check if there is a hole between the last extent found in our leaf
4189 * and the first extent in the next leaf. If there is one, we need to
4190 * log an explicit hole so that at replay time we can punch the hole.
4191 */
4192 if (ret == 0 &&
4193 key.objectid == btrfs_ino(inode) &&
4194 key.type == BTRFS_EXTENT_DATA_KEY &&
4195 i == btrfs_header_nritems(src_path->nodes[0])) {
4196 ret = btrfs_next_leaf(inode->root, src_path);
4197 need_find_last_extent = true;
4198 if (ret > 0) {
4199 ret = 0;
4200 } else if (ret == 0) {
4201 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4202 src_path->slots[0]);
4203 if (key.objectid == btrfs_ino(inode) &&
4204 key.type == BTRFS_EXTENT_DATA_KEY &&
4205 *last_extent < key.offset) {
4206 const u64 len = key.offset - *last_extent;
4207
4208 ret = btrfs_insert_file_extent(trans, log,
4209 btrfs_ino(inode),
4210 *last_extent, 0,
4211 0, len, 0, len,
4212 0, 0, 0);
ebb92906 4213 *last_extent += len;
4ee3fad3
FM
4214 }
4215 }
4216 }
16e7549f
JB
4217 /*
4218 * Need to let the callers know we dropped the path so they should
4219 * re-search.
4220 */
4221 if (!ret && need_find_last_extent)
4222 ret = 1;
4a500fd1 4223 return ret;
31ff1cd2
CM
4224}
4225
5dc562c5
JB
4226static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4227{
4228 struct extent_map *em1, *em2;
4229
4230 em1 = list_entry(a, struct extent_map, list);
4231 em2 = list_entry(b, struct extent_map, list);
4232
4233 if (em1->start < em2->start)
4234 return -1;
4235 else if (em1->start > em2->start)
4236 return 1;
4237 return 0;
4238}
4239
e7175a69
JB
4240static int log_extent_csums(struct btrfs_trans_handle *trans,
4241 struct btrfs_inode *inode,
a9ecb653 4242 struct btrfs_root *log_root,
e7175a69 4243 const struct extent_map *em)
5dc562c5 4244{
2ab28f32
JB
4245 u64 csum_offset;
4246 u64 csum_len;
8407f553
FM
4247 LIST_HEAD(ordered_sums);
4248 int ret = 0;
0aa4a17d 4249
e7175a69
JB
4250 if (inode->flags & BTRFS_INODE_NODATASUM ||
4251 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
8407f553 4252 em->block_start == EXTENT_MAP_HOLE)
70c8a91c 4253 return 0;
5dc562c5 4254
e7175a69 4255 /* If we're compressed we have to save the entire range of csums. */
488111aa
FDBM
4256 if (em->compress_type) {
4257 csum_offset = 0;
8407f553 4258 csum_len = max(em->block_len, em->orig_block_len);
488111aa 4259 } else {
e7175a69
JB
4260 csum_offset = em->mod_start - em->start;
4261 csum_len = em->mod_len;
488111aa 4262 }
2ab28f32 4263
70c8a91c 4264 /* block start is already adjusted for the file extent offset. */
a9ecb653 4265 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
70c8a91c
JB
4266 em->block_start + csum_offset,
4267 em->block_start + csum_offset +
4268 csum_len - 1, &ordered_sums, 0);
4269 if (ret)
4270 return ret;
5dc562c5 4271
70c8a91c
JB
4272 while (!list_empty(&ordered_sums)) {
4273 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4274 struct btrfs_ordered_sum,
4275 list);
4276 if (!ret)
a9ecb653 4277 ret = btrfs_csum_file_blocks(trans, log_root, sums);
70c8a91c
JB
4278 list_del(&sums->list);
4279 kfree(sums);
5dc562c5
JB
4280 }
4281
70c8a91c 4282 return ret;
5dc562c5
JB
4283}
4284
8407f553 4285static int log_one_extent(struct btrfs_trans_handle *trans,
9d122629 4286 struct btrfs_inode *inode, struct btrfs_root *root,
8407f553
FM
4287 const struct extent_map *em,
4288 struct btrfs_path *path,
8407f553
FM
4289 struct btrfs_log_ctx *ctx)
4290{
4291 struct btrfs_root *log = root->log_root;
4292 struct btrfs_file_extent_item *fi;
4293 struct extent_buffer *leaf;
4294 struct btrfs_map_token token;
4295 struct btrfs_key key;
4296 u64 extent_offset = em->start - em->orig_start;
4297 u64 block_len;
4298 int ret;
4299 int extent_inserted = 0;
8407f553 4300
a9ecb653 4301 ret = log_extent_csums(trans, inode, log, em);
8407f553
FM
4302 if (ret)
4303 return ret;
4304
8407f553
FM
4305 btrfs_init_map_token(&token);
4306
9d122629 4307 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
8407f553
FM
4308 em->start + em->len, NULL, 0, 1,
4309 sizeof(*fi), &extent_inserted);
4310 if (ret)
4311 return ret;
4312
4313 if (!extent_inserted) {
9d122629 4314 key.objectid = btrfs_ino(inode);
8407f553
FM
4315 key.type = BTRFS_EXTENT_DATA_KEY;
4316 key.offset = em->start;
4317
4318 ret = btrfs_insert_empty_item(trans, log, path, &key,
4319 sizeof(*fi));
4320 if (ret)
4321 return ret;
4322 }
4323 leaf = path->nodes[0];
4324 fi = btrfs_item_ptr(leaf, path->slots[0],
4325 struct btrfs_file_extent_item);
4326
50d9aa99 4327 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
8407f553
FM
4328 &token);
4329 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4330 btrfs_set_token_file_extent_type(leaf, fi,
4331 BTRFS_FILE_EXTENT_PREALLOC,
4332 &token);
4333 else
4334 btrfs_set_token_file_extent_type(leaf, fi,
4335 BTRFS_FILE_EXTENT_REG,
4336 &token);
4337
4338 block_len = max(em->block_len, em->orig_block_len);
4339 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4340 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4341 em->block_start,
4342 &token);
4343 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4344 &token);
4345 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4346 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4347 em->block_start -
4348 extent_offset, &token);
4349 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4350 &token);
4351 } else {
4352 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4353 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4354 &token);
4355 }
4356
4357 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4358 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4359 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4360 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4361 &token);
4362 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4363 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4364 btrfs_mark_buffer_dirty(leaf);
4365
4366 btrfs_release_path(path);
4367
4368 return ret;
4369}
4370
31d11b83
FM
4371/*
4372 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4373 * lose them after doing a fast fsync and replaying the log. We scan the
4374 * subvolume's root instead of iterating the inode's extent map tree because
4375 * otherwise we can log incorrect extent items based on extent map conversion.
4376 * That can happen due to the fact that extent maps are merged when they
4377 * are not in the extent map tree's list of modified extents.
4378 */
4379static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4380 struct btrfs_inode *inode,
4381 struct btrfs_path *path)
4382{
4383 struct btrfs_root *root = inode->root;
4384 struct btrfs_key key;
4385 const u64 i_size = i_size_read(&inode->vfs_inode);
4386 const u64 ino = btrfs_ino(inode);
4387 struct btrfs_path *dst_path = NULL;
4388 u64 last_extent = (u64)-1;
4389 int ins_nr = 0;
4390 int start_slot;
4391 int ret;
4392
4393 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4394 return 0;
4395
4396 key.objectid = ino;
4397 key.type = BTRFS_EXTENT_DATA_KEY;
4398 key.offset = i_size;
4399 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4400 if (ret < 0)
4401 goto out;
4402
4403 while (true) {
4404 struct extent_buffer *leaf = path->nodes[0];
4405 int slot = path->slots[0];
4406
4407 if (slot >= btrfs_header_nritems(leaf)) {
4408 if (ins_nr > 0) {
4409 ret = copy_items(trans, inode, dst_path, path,
4410 &last_extent, start_slot,
4411 ins_nr, 1, 0);
4412 if (ret < 0)
4413 goto out;
4414 ins_nr = 0;
4415 }
4416 ret = btrfs_next_leaf(root, path);
4417 if (ret < 0)
4418 goto out;
4419 if (ret > 0) {
4420 ret = 0;
4421 break;
4422 }
4423 continue;
4424 }
4425
4426 btrfs_item_key_to_cpu(leaf, &key, slot);
4427 if (key.objectid > ino)
4428 break;
4429 if (WARN_ON_ONCE(key.objectid < ino) ||
4430 key.type < BTRFS_EXTENT_DATA_KEY ||
4431 key.offset < i_size) {
4432 path->slots[0]++;
4433 continue;
4434 }
4435 if (last_extent == (u64)-1) {
4436 last_extent = key.offset;
4437 /*
4438 * Avoid logging extent items logged in past fsync calls
4439 * and leading to duplicate keys in the log tree.
4440 */
4441 do {
4442 ret = btrfs_truncate_inode_items(trans,
4443 root->log_root,
4444 &inode->vfs_inode,
4445 i_size,
4446 BTRFS_EXTENT_DATA_KEY);
4447 } while (ret == -EAGAIN);
4448 if (ret)
4449 goto out;
4450 }
4451 if (ins_nr == 0)
4452 start_slot = slot;
4453 ins_nr++;
4454 path->slots[0]++;
4455 if (!dst_path) {
4456 dst_path = btrfs_alloc_path();
4457 if (!dst_path) {
4458 ret = -ENOMEM;
4459 goto out;
4460 }
4461 }
4462 }
4463 if (ins_nr > 0) {
4464 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4465 start_slot, ins_nr, 1, 0);
4466 if (ret > 0)
4467 ret = 0;
4468 }
4469out:
4470 btrfs_release_path(path);
4471 btrfs_free_path(dst_path);
4472 return ret;
4473}
4474
5dc562c5
JB
4475static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4476 struct btrfs_root *root,
9d122629 4477 struct btrfs_inode *inode,
827463c4 4478 struct btrfs_path *path,
de0ee0ed
FM
4479 struct btrfs_log_ctx *ctx,
4480 const u64 start,
4481 const u64 end)
5dc562c5 4482{
5dc562c5
JB
4483 struct extent_map *em, *n;
4484 struct list_head extents;
9d122629 4485 struct extent_map_tree *tree = &inode->extent_tree;
5dc562c5
JB
4486 u64 test_gen;
4487 int ret = 0;
2ab28f32 4488 int num = 0;
5dc562c5
JB
4489
4490 INIT_LIST_HEAD(&extents);
4491
5dc562c5
JB
4492 write_lock(&tree->lock);
4493 test_gen = root->fs_info->last_trans_committed;
4494
4495 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
008c6753
FM
4496 /*
4497 * Skip extents outside our logging range. It's important to do
4498 * it for correctness because if we don't ignore them, we may
4499 * log them before their ordered extent completes, and therefore
4500 * we could log them without logging their respective checksums
4501 * (the checksum items are added to the csum tree at the very
4502 * end of btrfs_finish_ordered_io()). Also leave such extents
4503 * outside of our range in the list, since we may have another
4504 * ranged fsync in the near future that needs them. If an extent
4505 * outside our range corresponds to a hole, log it to avoid
4506 * leaving gaps between extents (fsck will complain when we are
4507 * not using the NO_HOLES feature).
4508 */
4509 if ((em->start > end || em->start + em->len <= start) &&
4510 em->block_start != EXTENT_MAP_HOLE)
4511 continue;
4512
5dc562c5 4513 list_del_init(&em->list);
2ab28f32
JB
4514 /*
4515 * Just an arbitrary number, this can be really CPU intensive
4516 * once we start getting a lot of extents, and really once we
4517 * have a bunch of extents we just want to commit since it will
4518 * be faster.
4519 */
4520 if (++num > 32768) {
4521 list_del_init(&tree->modified_extents);
4522 ret = -EFBIG;
4523 goto process;
4524 }
4525
5dc562c5
JB
4526 if (em->generation <= test_gen)
4527 continue;
8c6c5928 4528
31d11b83
FM
4529 /* We log prealloc extents beyond eof later. */
4530 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4531 em->start >= i_size_read(&inode->vfs_inode))
4532 continue;
4533
ff44c6e3 4534 /* Need a ref to keep it from getting evicted from cache */
490b54d6 4535 refcount_inc(&em->refs);
ff44c6e3 4536 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
5dc562c5 4537 list_add_tail(&em->list, &extents);
2ab28f32 4538 num++;
5dc562c5
JB
4539 }
4540
4541 list_sort(NULL, &extents, extent_cmp);
2ab28f32 4542process:
5dc562c5
JB
4543 while (!list_empty(&extents)) {
4544 em = list_entry(extents.next, struct extent_map, list);
4545
4546 list_del_init(&em->list);
4547
4548 /*
4549 * If we had an error we just need to delete everybody from our
4550 * private list.
4551 */
ff44c6e3 4552 if (ret) {
201a9038 4553 clear_em_logging(tree, em);
ff44c6e3 4554 free_extent_map(em);
5dc562c5 4555 continue;
ff44c6e3
JB
4556 }
4557
4558 write_unlock(&tree->lock);
5dc562c5 4559
a2120a47 4560 ret = log_one_extent(trans, inode, root, em, path, ctx);
ff44c6e3 4561 write_lock(&tree->lock);
201a9038
JB
4562 clear_em_logging(tree, em);
4563 free_extent_map(em);
5dc562c5 4564 }
ff44c6e3
JB
4565 WARN_ON(!list_empty(&extents));
4566 write_unlock(&tree->lock);
5dc562c5 4567
5dc562c5 4568 btrfs_release_path(path);
31d11b83
FM
4569 if (!ret)
4570 ret = btrfs_log_prealloc_extents(trans, inode, path);
4571
5dc562c5
JB
4572 return ret;
4573}
4574
481b01c0 4575static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
1a4bcf47
FM
4576 struct btrfs_path *path, u64 *size_ret)
4577{
4578 struct btrfs_key key;
4579 int ret;
4580
481b01c0 4581 key.objectid = btrfs_ino(inode);
1a4bcf47
FM
4582 key.type = BTRFS_INODE_ITEM_KEY;
4583 key.offset = 0;
4584
4585 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4586 if (ret < 0) {
4587 return ret;
4588 } else if (ret > 0) {
2f2ff0ee 4589 *size_ret = 0;
1a4bcf47
FM
4590 } else {
4591 struct btrfs_inode_item *item;
4592
4593 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4594 struct btrfs_inode_item);
4595 *size_ret = btrfs_inode_size(path->nodes[0], item);
bf504110
FM
4596 /*
4597 * If the in-memory inode's i_size is smaller then the inode
4598 * size stored in the btree, return the inode's i_size, so
4599 * that we get a correct inode size after replaying the log
4600 * when before a power failure we had a shrinking truncate
4601 * followed by addition of a new name (rename / new hard link).
4602 * Otherwise return the inode size from the btree, to avoid
4603 * data loss when replaying a log due to previously doing a
4604 * write that expands the inode's size and logging a new name
4605 * immediately after.
4606 */
4607 if (*size_ret > inode->vfs_inode.i_size)
4608 *size_ret = inode->vfs_inode.i_size;
1a4bcf47
FM
4609 }
4610
4611 btrfs_release_path(path);
4612 return 0;
4613}
4614
36283bf7
FM
4615/*
4616 * At the moment we always log all xattrs. This is to figure out at log replay
4617 * time which xattrs must have their deletion replayed. If a xattr is missing
4618 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4619 * because if a xattr is deleted, the inode is fsynced and a power failure
4620 * happens, causing the log to be replayed the next time the fs is mounted,
4621 * we want the xattr to not exist anymore (same behaviour as other filesystems
4622 * with a journal, ext3/4, xfs, f2fs, etc).
4623 */
4624static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4625 struct btrfs_root *root,
1a93c36a 4626 struct btrfs_inode *inode,
36283bf7
FM
4627 struct btrfs_path *path,
4628 struct btrfs_path *dst_path)
4629{
4630 int ret;
4631 struct btrfs_key key;
1a93c36a 4632 const u64 ino = btrfs_ino(inode);
36283bf7
FM
4633 int ins_nr = 0;
4634 int start_slot = 0;
4635
4636 key.objectid = ino;
4637 key.type = BTRFS_XATTR_ITEM_KEY;
4638 key.offset = 0;
4639
4640 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4641 if (ret < 0)
4642 return ret;
4643
4644 while (true) {
4645 int slot = path->slots[0];
4646 struct extent_buffer *leaf = path->nodes[0];
4647 int nritems = btrfs_header_nritems(leaf);
4648
4649 if (slot >= nritems) {
4650 if (ins_nr > 0) {
4651 u64 last_extent = 0;
4652
1a93c36a 4653 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4654 &last_extent, start_slot,
4655 ins_nr, 1, 0);
4656 /* can't be 1, extent items aren't processed */
4657 ASSERT(ret <= 0);
4658 if (ret < 0)
4659 return ret;
4660 ins_nr = 0;
4661 }
4662 ret = btrfs_next_leaf(root, path);
4663 if (ret < 0)
4664 return ret;
4665 else if (ret > 0)
4666 break;
4667 continue;
4668 }
4669
4670 btrfs_item_key_to_cpu(leaf, &key, slot);
4671 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4672 break;
4673
4674 if (ins_nr == 0)
4675 start_slot = slot;
4676 ins_nr++;
4677 path->slots[0]++;
4678 cond_resched();
4679 }
4680 if (ins_nr > 0) {
4681 u64 last_extent = 0;
4682
1a93c36a 4683 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
4684 &last_extent, start_slot,
4685 ins_nr, 1, 0);
4686 /* can't be 1, extent items aren't processed */
4687 ASSERT(ret <= 0);
4688 if (ret < 0)
4689 return ret;
4690 }
4691
4692 return 0;
4693}
4694
a89ca6f2
FM
4695/*
4696 * If the no holes feature is enabled we need to make sure any hole between the
4697 * last extent and the i_size of our inode is explicitly marked in the log. This
4698 * is to make sure that doing something like:
4699 *
4700 * 1) create file with 128Kb of data
4701 * 2) truncate file to 64Kb
4702 * 3) truncate file to 256Kb
4703 * 4) fsync file
4704 * 5) <crash/power failure>
4705 * 6) mount fs and trigger log replay
4706 *
4707 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4708 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4709 * file correspond to a hole. The presence of explicit holes in a log tree is
4710 * what guarantees that log replay will remove/adjust file extent items in the
4711 * fs/subvol tree.
4712 *
4713 * Here we do not need to care about holes between extents, that is already done
4714 * by copy_items(). We also only need to do this in the full sync path, where we
4715 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4716 * lookup the list of modified extent maps and if any represents a hole, we
4717 * insert a corresponding extent representing a hole in the log tree.
4718 */
4719static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4720 struct btrfs_root *root,
a0308dd7 4721 struct btrfs_inode *inode,
a89ca6f2
FM
4722 struct btrfs_path *path)
4723{
0b246afa 4724 struct btrfs_fs_info *fs_info = root->fs_info;
a89ca6f2
FM
4725 int ret;
4726 struct btrfs_key key;
4727 u64 hole_start;
4728 u64 hole_size;
4729 struct extent_buffer *leaf;
4730 struct btrfs_root *log = root->log_root;
a0308dd7
NB
4731 const u64 ino = btrfs_ino(inode);
4732 const u64 i_size = i_size_read(&inode->vfs_inode);
a89ca6f2 4733
0b246afa 4734 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
a89ca6f2
FM
4735 return 0;
4736
4737 key.objectid = ino;
4738 key.type = BTRFS_EXTENT_DATA_KEY;
4739 key.offset = (u64)-1;
4740
4741 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4742 ASSERT(ret != 0);
4743 if (ret < 0)
4744 return ret;
4745
4746 ASSERT(path->slots[0] > 0);
4747 path->slots[0]--;
4748 leaf = path->nodes[0];
4749 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4750
4751 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4752 /* inode does not have any extents */
4753 hole_start = 0;
4754 hole_size = i_size;
4755 } else {
4756 struct btrfs_file_extent_item *extent;
4757 u64 len;
4758
4759 /*
4760 * If there's an extent beyond i_size, an explicit hole was
4761 * already inserted by copy_items().
4762 */
4763 if (key.offset >= i_size)
4764 return 0;
4765
4766 extent = btrfs_item_ptr(leaf, path->slots[0],
4767 struct btrfs_file_extent_item);
4768
4769 if (btrfs_file_extent_type(leaf, extent) ==
0ccc3876 4770 BTRFS_FILE_EXTENT_INLINE)
a89ca6f2 4771 return 0;
a89ca6f2
FM
4772
4773 len = btrfs_file_extent_num_bytes(leaf, extent);
4774 /* Last extent goes beyond i_size, no need to log a hole. */
4775 if (key.offset + len > i_size)
4776 return 0;
4777 hole_start = key.offset + len;
4778 hole_size = i_size - hole_start;
4779 }
4780 btrfs_release_path(path);
4781
4782 /* Last extent ends at i_size. */
4783 if (hole_size == 0)
4784 return 0;
4785
0b246afa 4786 hole_size = ALIGN(hole_size, fs_info->sectorsize);
a89ca6f2
FM
4787 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4788 hole_size, 0, hole_size, 0, 0, 0);
4789 return ret;
4790}
4791
56f23fdb
FM
4792/*
4793 * When we are logging a new inode X, check if it doesn't have a reference that
4794 * matches the reference from some other inode Y created in a past transaction
4795 * and that was renamed in the current transaction. If we don't do this, then at
4796 * log replay time we can lose inode Y (and all its files if it's a directory):
4797 *
4798 * mkdir /mnt/x
4799 * echo "hello world" > /mnt/x/foobar
4800 * sync
4801 * mv /mnt/x /mnt/y
4802 * mkdir /mnt/x # or touch /mnt/x
4803 * xfs_io -c fsync /mnt/x
4804 * <power fail>
4805 * mount fs, trigger log replay
4806 *
4807 * After the log replay procedure, we would lose the first directory and all its
4808 * files (file foobar).
4809 * For the case where inode Y is not a directory we simply end up losing it:
4810 *
4811 * echo "123" > /mnt/foo
4812 * sync
4813 * mv /mnt/foo /mnt/bar
4814 * echo "abc" > /mnt/foo
4815 * xfs_io -c fsync /mnt/foo
4816 * <power fail>
4817 *
4818 * We also need this for cases where a snapshot entry is replaced by some other
4819 * entry (file or directory) otherwise we end up with an unreplayable log due to
4820 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4821 * if it were a regular entry:
4822 *
4823 * mkdir /mnt/x
4824 * btrfs subvolume snapshot /mnt /mnt/x/snap
4825 * btrfs subvolume delete /mnt/x/snap
4826 * rmdir /mnt/x
4827 * mkdir /mnt/x
4828 * fsync /mnt/x or fsync some new file inside it
4829 * <power fail>
4830 *
4831 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4832 * the same transaction.
4833 */
4834static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4835 const int slot,
4836 const struct btrfs_key *key,
4791c8f1 4837 struct btrfs_inode *inode,
a3baaf0d 4838 u64 *other_ino, u64 *other_parent)
56f23fdb
FM
4839{
4840 int ret;
4841 struct btrfs_path *search_path;
4842 char *name = NULL;
4843 u32 name_len = 0;
4844 u32 item_size = btrfs_item_size_nr(eb, slot);
4845 u32 cur_offset = 0;
4846 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4847
4848 search_path = btrfs_alloc_path();
4849 if (!search_path)
4850 return -ENOMEM;
4851 search_path->search_commit_root = 1;
4852 search_path->skip_locking = 1;
4853
4854 while (cur_offset < item_size) {
4855 u64 parent;
4856 u32 this_name_len;
4857 u32 this_len;
4858 unsigned long name_ptr;
4859 struct btrfs_dir_item *di;
4860
4861 if (key->type == BTRFS_INODE_REF_KEY) {
4862 struct btrfs_inode_ref *iref;
4863
4864 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4865 parent = key->offset;
4866 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4867 name_ptr = (unsigned long)(iref + 1);
4868 this_len = sizeof(*iref) + this_name_len;
4869 } else {
4870 struct btrfs_inode_extref *extref;
4871
4872 extref = (struct btrfs_inode_extref *)(ptr +
4873 cur_offset);
4874 parent = btrfs_inode_extref_parent(eb, extref);
4875 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4876 name_ptr = (unsigned long)&extref->name;
4877 this_len = sizeof(*extref) + this_name_len;
4878 }
4879
4880 if (this_name_len > name_len) {
4881 char *new_name;
4882
4883 new_name = krealloc(name, this_name_len, GFP_NOFS);
4884 if (!new_name) {
4885 ret = -ENOMEM;
4886 goto out;
4887 }
4888 name_len = this_name_len;
4889 name = new_name;
4890 }
4891
4892 read_extent_buffer(eb, name, name_ptr, this_name_len);
4791c8f1
NB
4893 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4894 parent, name, this_name_len, 0);
56f23fdb 4895 if (di && !IS_ERR(di)) {
44f714da
FM
4896 struct btrfs_key di_key;
4897
4898 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4899 di, &di_key);
4900 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
6b5fc433
FM
4901 if (di_key.objectid != key->objectid) {
4902 ret = 1;
4903 *other_ino = di_key.objectid;
a3baaf0d 4904 *other_parent = parent;
6b5fc433
FM
4905 } else {
4906 ret = 0;
4907 }
44f714da
FM
4908 } else {
4909 ret = -EAGAIN;
4910 }
56f23fdb
FM
4911 goto out;
4912 } else if (IS_ERR(di)) {
4913 ret = PTR_ERR(di);
4914 goto out;
4915 }
4916 btrfs_release_path(search_path);
4917
4918 cur_offset += this_len;
4919 }
4920 ret = 0;
4921out:
4922 btrfs_free_path(search_path);
4923 kfree(name);
4924 return ret;
4925}
4926
6b5fc433
FM
4927struct btrfs_ino_list {
4928 u64 ino;
a3baaf0d 4929 u64 parent;
6b5fc433
FM
4930 struct list_head list;
4931};
4932
4933static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
4934 struct btrfs_root *root,
4935 struct btrfs_path *path,
4936 struct btrfs_log_ctx *ctx,
a3baaf0d 4937 u64 ino, u64 parent)
6b5fc433
FM
4938{
4939 struct btrfs_ino_list *ino_elem;
4940 LIST_HEAD(inode_list);
4941 int ret = 0;
4942
4943 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
4944 if (!ino_elem)
4945 return -ENOMEM;
4946 ino_elem->ino = ino;
a3baaf0d 4947 ino_elem->parent = parent;
6b5fc433
FM
4948 list_add_tail(&ino_elem->list, &inode_list);
4949
4950 while (!list_empty(&inode_list)) {
4951 struct btrfs_fs_info *fs_info = root->fs_info;
4952 struct btrfs_key key;
4953 struct inode *inode;
4954
4955 ino_elem = list_first_entry(&inode_list, struct btrfs_ino_list,
4956 list);
4957 ino = ino_elem->ino;
a3baaf0d 4958 parent = ino_elem->parent;
6b5fc433
FM
4959 list_del(&ino_elem->list);
4960 kfree(ino_elem);
4961 if (ret)
4962 continue;
4963
4964 btrfs_release_path(path);
4965
4966 key.objectid = ino;
4967 key.type = BTRFS_INODE_ITEM_KEY;
4968 key.offset = 0;
4969 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4970 /*
4971 * If the other inode that had a conflicting dir entry was
a3baaf0d
FM
4972 * deleted in the current transaction, we need to log its parent
4973 * directory.
6b5fc433
FM
4974 */
4975 if (IS_ERR(inode)) {
4976 ret = PTR_ERR(inode);
a3baaf0d
FM
4977 if (ret == -ENOENT) {
4978 key.objectid = parent;
4979 inode = btrfs_iget(fs_info->sb, &key, root,
4980 NULL);
4981 if (IS_ERR(inode)) {
4982 ret = PTR_ERR(inode);
4983 } else {
4984 ret = btrfs_log_inode(trans, root,
4985 BTRFS_I(inode),
4986 LOG_OTHER_INODE_ALL,
4987 0, LLONG_MAX, ctx);
410f954c 4988 btrfs_add_delayed_iput(inode);
a3baaf0d
FM
4989 }
4990 }
6b5fc433
FM
4991 continue;
4992 }
4993 /*
4994 * We are safe logging the other inode without acquiring its
4995 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4996 * are safe against concurrent renames of the other inode as
4997 * well because during a rename we pin the log and update the
4998 * log with the new name before we unpin it.
4999 */
5000 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5001 LOG_OTHER_INODE, 0, LLONG_MAX, ctx);
5002 if (ret) {
410f954c 5003 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5004 continue;
5005 }
5006
5007 key.objectid = ino;
5008 key.type = BTRFS_INODE_REF_KEY;
5009 key.offset = 0;
5010 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5011 if (ret < 0) {
410f954c 5012 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5013 continue;
5014 }
5015
5016 while (true) {
5017 struct extent_buffer *leaf = path->nodes[0];
5018 int slot = path->slots[0];
5019 u64 other_ino = 0;
a3baaf0d 5020 u64 other_parent = 0;
6b5fc433
FM
5021
5022 if (slot >= btrfs_header_nritems(leaf)) {
5023 ret = btrfs_next_leaf(root, path);
5024 if (ret < 0) {
5025 break;
5026 } else if (ret > 0) {
5027 ret = 0;
5028 break;
5029 }
5030 continue;
5031 }
5032
5033 btrfs_item_key_to_cpu(leaf, &key, slot);
5034 if (key.objectid != ino ||
5035 (key.type != BTRFS_INODE_REF_KEY &&
5036 key.type != BTRFS_INODE_EXTREF_KEY)) {
5037 ret = 0;
5038 break;
5039 }
5040
5041 ret = btrfs_check_ref_name_override(leaf, slot, &key,
a3baaf0d
FM
5042 BTRFS_I(inode), &other_ino,
5043 &other_parent);
6b5fc433
FM
5044 if (ret < 0)
5045 break;
5046 if (ret > 0) {
5047 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5048 if (!ino_elem) {
5049 ret = -ENOMEM;
5050 break;
5051 }
5052 ino_elem->ino = other_ino;
a3baaf0d 5053 ino_elem->parent = other_parent;
6b5fc433
FM
5054 list_add_tail(&ino_elem->list, &inode_list);
5055 ret = 0;
5056 }
5057 path->slots[0]++;
5058 }
410f954c 5059 btrfs_add_delayed_iput(inode);
6b5fc433
FM
5060 }
5061
5062 return ret;
5063}
5064
e02119d5
CM
5065/* log a single inode in the tree log.
5066 * At least one parent directory for this inode must exist in the tree
5067 * or be logged already.
5068 *
5069 * Any items from this inode changed by the current transaction are copied
5070 * to the log tree. An extra reference is taken on any extents in this
5071 * file, allowing us to avoid a whole pile of corner cases around logging
5072 * blocks that have been removed from the tree.
5073 *
5074 * See LOG_INODE_ALL and related defines for a description of what inode_only
5075 * does.
5076 *
5077 * This handles both files and directories.
5078 */
12fcfd22 5079static int btrfs_log_inode(struct btrfs_trans_handle *trans,
a59108a7 5080 struct btrfs_root *root, struct btrfs_inode *inode,
49dae1bc
FM
5081 int inode_only,
5082 const loff_t start,
8407f553
FM
5083 const loff_t end,
5084 struct btrfs_log_ctx *ctx)
e02119d5 5085{
0b246afa 5086 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5
CM
5087 struct btrfs_path *path;
5088 struct btrfs_path *dst_path;
5089 struct btrfs_key min_key;
5090 struct btrfs_key max_key;
5091 struct btrfs_root *log = root->log_root;
16e7549f 5092 u64 last_extent = 0;
4a500fd1 5093 int err = 0;
e02119d5 5094 int ret;
3a5f1d45 5095 int nritems;
31ff1cd2
CM
5096 int ins_start_slot = 0;
5097 int ins_nr;
5dc562c5 5098 bool fast_search = false;
a59108a7
NB
5099 u64 ino = btrfs_ino(inode);
5100 struct extent_map_tree *em_tree = &inode->extent_tree;
1a4bcf47 5101 u64 logged_isize = 0;
e4545de5 5102 bool need_log_inode_item = true;
9a8fca62 5103 bool xattrs_logged = false;
a3baaf0d 5104 bool recursive_logging = false;
e02119d5 5105
e02119d5 5106 path = btrfs_alloc_path();
5df67083
TI
5107 if (!path)
5108 return -ENOMEM;
e02119d5 5109 dst_path = btrfs_alloc_path();
5df67083
TI
5110 if (!dst_path) {
5111 btrfs_free_path(path);
5112 return -ENOMEM;
5113 }
e02119d5 5114
33345d01 5115 min_key.objectid = ino;
e02119d5
CM
5116 min_key.type = BTRFS_INODE_ITEM_KEY;
5117 min_key.offset = 0;
5118
33345d01 5119 max_key.objectid = ino;
12fcfd22 5120
12fcfd22 5121
5dc562c5 5122 /* today the code can only do partial logging of directories */
a59108a7 5123 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5269b67e 5124 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5125 &inode->runtime_flags) &&
781feef7 5126 inode_only >= LOG_INODE_EXISTS))
e02119d5
CM
5127 max_key.type = BTRFS_XATTR_ITEM_KEY;
5128 else
5129 max_key.type = (u8)-1;
5130 max_key.offset = (u64)-1;
5131
2c2c452b
FM
5132 /*
5133 * Only run delayed items if we are a dir or a new file.
5134 * Otherwise commit the delayed inode only, which is needed in
5135 * order for the log replay code to mark inodes for link count
5136 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5137 */
a59108a7
NB
5138 if (S_ISDIR(inode->vfs_inode.i_mode) ||
5139 inode->generation > fs_info->last_trans_committed)
5140 ret = btrfs_commit_inode_delayed_items(trans, inode);
2c2c452b 5141 else
a59108a7 5142 ret = btrfs_commit_inode_delayed_inode(inode);
2c2c452b
FM
5143
5144 if (ret) {
5145 btrfs_free_path(path);
5146 btrfs_free_path(dst_path);
5147 return ret;
16cdcec7
MX
5148 }
5149
a3baaf0d
FM
5150 if (inode_only == LOG_OTHER_INODE || inode_only == LOG_OTHER_INODE_ALL) {
5151 recursive_logging = true;
5152 if (inode_only == LOG_OTHER_INODE)
5153 inode_only = LOG_INODE_EXISTS;
5154 else
5155 inode_only = LOG_INODE_ALL;
a59108a7 5156 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
781feef7 5157 } else {
a59108a7 5158 mutex_lock(&inode->log_mutex);
781feef7 5159 }
e02119d5
CM
5160
5161 /*
5162 * a brute force approach to making sure we get the most uptodate
5163 * copies of everything.
5164 */
a59108a7 5165 if (S_ISDIR(inode->vfs_inode.i_mode)) {
e02119d5
CM
5166 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
5167
4f764e51
FM
5168 if (inode_only == LOG_INODE_EXISTS)
5169 max_key_type = BTRFS_XATTR_ITEM_KEY;
33345d01 5170 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
e02119d5 5171 } else {
1a4bcf47
FM
5172 if (inode_only == LOG_INODE_EXISTS) {
5173 /*
5174 * Make sure the new inode item we write to the log has
5175 * the same isize as the current one (if it exists).
5176 * This is necessary to prevent data loss after log
5177 * replay, and also to prevent doing a wrong expanding
5178 * truncate - for e.g. create file, write 4K into offset
5179 * 0, fsync, write 4K into offset 4096, add hard link,
5180 * fsync some other file (to sync log), power fail - if
5181 * we use the inode's current i_size, after log replay
5182 * we get a 8Kb file, with the last 4Kb extent as a hole
5183 * (zeroes), as if an expanding truncate happened,
5184 * instead of getting a file of 4Kb only.
5185 */
a59108a7 5186 err = logged_inode_size(log, inode, path, &logged_isize);
1a4bcf47
FM
5187 if (err)
5188 goto out_unlock;
5189 }
a742994a 5190 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5191 &inode->runtime_flags)) {
a742994a 5192 if (inode_only == LOG_INODE_EXISTS) {
4f764e51 5193 max_key.type = BTRFS_XATTR_ITEM_KEY;
a742994a
FM
5194 ret = drop_objectid_items(trans, log, path, ino,
5195 max_key.type);
5196 } else {
5197 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a59108a7 5198 &inode->runtime_flags);
a742994a 5199 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5200 &inode->runtime_flags);
28ed1345
CM
5201 while(1) {
5202 ret = btrfs_truncate_inode_items(trans,
a59108a7 5203 log, &inode->vfs_inode, 0, 0);
28ed1345
CM
5204 if (ret != -EAGAIN)
5205 break;
5206 }
a742994a 5207 }
4f764e51 5208 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
a59108a7 5209 &inode->runtime_flags) ||
6cfab851 5210 inode_only == LOG_INODE_EXISTS) {
4f764e51 5211 if (inode_only == LOG_INODE_ALL)
183f37fa 5212 fast_search = true;
4f764e51 5213 max_key.type = BTRFS_XATTR_ITEM_KEY;
5dc562c5 5214 ret = drop_objectid_items(trans, log, path, ino,
e9976151 5215 max_key.type);
a95249b3
JB
5216 } else {
5217 if (inode_only == LOG_INODE_ALL)
5218 fast_search = true;
a95249b3 5219 goto log_extents;
5dc562c5 5220 }
a95249b3 5221
e02119d5 5222 }
4a500fd1
YZ
5223 if (ret) {
5224 err = ret;
5225 goto out_unlock;
5226 }
e02119d5 5227
d397712b 5228 while (1) {
31ff1cd2 5229 ins_nr = 0;
6174d3cb 5230 ret = btrfs_search_forward(root, &min_key,
de78b51a 5231 path, trans->transid);
fb770ae4
LB
5232 if (ret < 0) {
5233 err = ret;
5234 goto out_unlock;
5235 }
e02119d5
CM
5236 if (ret != 0)
5237 break;
3a5f1d45 5238again:
31ff1cd2 5239 /* note, ins_nr might be > 0 here, cleanup outside the loop */
33345d01 5240 if (min_key.objectid != ino)
e02119d5
CM
5241 break;
5242 if (min_key.type > max_key.type)
5243 break;
31ff1cd2 5244
e4545de5
FM
5245 if (min_key.type == BTRFS_INODE_ITEM_KEY)
5246 need_log_inode_item = false;
5247
56f23fdb
FM
5248 if ((min_key.type == BTRFS_INODE_REF_KEY ||
5249 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
6b5fc433
FM
5250 inode->generation == trans->transid &&
5251 !recursive_logging) {
44f714da 5252 u64 other_ino = 0;
a3baaf0d 5253 u64 other_parent = 0;
44f714da 5254
56f23fdb 5255 ret = btrfs_check_ref_name_override(path->nodes[0],
a59108a7 5256 path->slots[0], &min_key, inode,
a3baaf0d 5257 &other_ino, &other_parent);
56f23fdb
FM
5258 if (ret < 0) {
5259 err = ret;
5260 goto out_unlock;
28a23593 5261 } else if (ret > 0 && ctx &&
4a0cc7ca 5262 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
44f714da
FM
5263 if (ins_nr > 0) {
5264 ins_nr++;
5265 } else {
5266 ins_nr = 1;
5267 ins_start_slot = path->slots[0];
5268 }
a59108a7 5269 ret = copy_items(trans, inode, dst_path, path,
44f714da
FM
5270 &last_extent, ins_start_slot,
5271 ins_nr, inode_only,
5272 logged_isize);
5273 if (ret < 0) {
5274 err = ret;
5275 goto out_unlock;
5276 }
5277 ins_nr = 0;
6b5fc433
FM
5278
5279 err = log_conflicting_inodes(trans, root, path,
a3baaf0d 5280 ctx, other_ino, other_parent);
44f714da
FM
5281 if (err)
5282 goto out_unlock;
6b5fc433
FM
5283 btrfs_release_path(path);
5284 goto next_key;
56f23fdb
FM
5285 }
5286 }
5287
36283bf7
FM
5288 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5289 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5290 if (ins_nr == 0)
5291 goto next_slot;
a59108a7 5292 ret = copy_items(trans, inode, dst_path, path,
36283bf7
FM
5293 &last_extent, ins_start_slot,
5294 ins_nr, inode_only, logged_isize);
5295 if (ret < 0) {
5296 err = ret;
5297 goto out_unlock;
5298 }
5299 ins_nr = 0;
5300 if (ret) {
5301 btrfs_release_path(path);
5302 continue;
5303 }
5304 goto next_slot;
5305 }
5306
31ff1cd2
CM
5307 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5308 ins_nr++;
5309 goto next_slot;
5310 } else if (!ins_nr) {
5311 ins_start_slot = path->slots[0];
5312 ins_nr = 1;
5313 goto next_slot;
e02119d5
CM
5314 }
5315
a59108a7 5316 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5317 ins_start_slot, ins_nr, inode_only,
5318 logged_isize);
16e7549f 5319 if (ret < 0) {
4a500fd1
YZ
5320 err = ret;
5321 goto out_unlock;
a71db86e
RV
5322 }
5323 if (ret) {
16e7549f
JB
5324 ins_nr = 0;
5325 btrfs_release_path(path);
5326 continue;
4a500fd1 5327 }
31ff1cd2
CM
5328 ins_nr = 1;
5329 ins_start_slot = path->slots[0];
5330next_slot:
e02119d5 5331
3a5f1d45
CM
5332 nritems = btrfs_header_nritems(path->nodes[0]);
5333 path->slots[0]++;
5334 if (path->slots[0] < nritems) {
5335 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5336 path->slots[0]);
5337 goto again;
5338 }
31ff1cd2 5339 if (ins_nr) {
a59108a7 5340 ret = copy_items(trans, inode, dst_path, path,
16e7549f 5341 &last_extent, ins_start_slot,
1a4bcf47 5342 ins_nr, inode_only, logged_isize);
16e7549f 5343 if (ret < 0) {
4a500fd1
YZ
5344 err = ret;
5345 goto out_unlock;
5346 }
16e7549f 5347 ret = 0;
31ff1cd2
CM
5348 ins_nr = 0;
5349 }
b3b4aa74 5350 btrfs_release_path(path);
44f714da 5351next_key:
3d41d702 5352 if (min_key.offset < (u64)-1) {
e02119d5 5353 min_key.offset++;
3d41d702 5354 } else if (min_key.type < max_key.type) {
e02119d5 5355 min_key.type++;
3d41d702
FDBM
5356 min_key.offset = 0;
5357 } else {
e02119d5 5358 break;
3d41d702 5359 }
e02119d5 5360 }
31ff1cd2 5361 if (ins_nr) {
a59108a7 5362 ret = copy_items(trans, inode, dst_path, path, &last_extent,
1a4bcf47
FM
5363 ins_start_slot, ins_nr, inode_only,
5364 logged_isize);
16e7549f 5365 if (ret < 0) {
4a500fd1
YZ
5366 err = ret;
5367 goto out_unlock;
5368 }
16e7549f 5369 ret = 0;
31ff1cd2
CM
5370 ins_nr = 0;
5371 }
5dc562c5 5372
36283bf7
FM
5373 btrfs_release_path(path);
5374 btrfs_release_path(dst_path);
a59108a7 5375 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
36283bf7
FM
5376 if (err)
5377 goto out_unlock;
9a8fca62 5378 xattrs_logged = true;
a89ca6f2
FM
5379 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5380 btrfs_release_path(path);
5381 btrfs_release_path(dst_path);
a59108a7 5382 err = btrfs_log_trailing_hole(trans, root, inode, path);
a89ca6f2
FM
5383 if (err)
5384 goto out_unlock;
5385 }
a95249b3 5386log_extents:
f3b15ccd
JB
5387 btrfs_release_path(path);
5388 btrfs_release_path(dst_path);
e4545de5 5389 if (need_log_inode_item) {
a59108a7 5390 err = log_inode_item(trans, log, dst_path, inode);
9a8fca62
FM
5391 if (!err && !xattrs_logged) {
5392 err = btrfs_log_all_xattrs(trans, root, inode, path,
5393 dst_path);
5394 btrfs_release_path(path);
5395 }
e4545de5
FM
5396 if (err)
5397 goto out_unlock;
5398 }
5dc562c5 5399 if (fast_search) {
a59108a7 5400 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
a2120a47 5401 ctx, start, end);
5dc562c5
JB
5402 if (ret) {
5403 err = ret;
5404 goto out_unlock;
5405 }
d006a048 5406 } else if (inode_only == LOG_INODE_ALL) {
06d3d22b
LB
5407 struct extent_map *em, *n;
5408
49dae1bc
FM
5409 write_lock(&em_tree->lock);
5410 /*
5411 * We can't just remove every em if we're called for a ranged
5412 * fsync - that is, one that doesn't cover the whole possible
5413 * file range (0 to LLONG_MAX). This is because we can have
5414 * em's that fall outside the range we're logging and therefore
5415 * their ordered operations haven't completed yet
5416 * (btrfs_finish_ordered_io() not invoked yet). This means we
5417 * didn't get their respective file extent item in the fs/subvol
5418 * tree yet, and need to let the next fast fsync (one which
5419 * consults the list of modified extent maps) find the em so
5420 * that it logs a matching file extent item and waits for the
5421 * respective ordered operation to complete (if it's still
5422 * running).
5423 *
5424 * Removing every em outside the range we're logging would make
5425 * the next fast fsync not log their matching file extent items,
5426 * therefore making us lose data after a log replay.
5427 */
5428 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5429 list) {
5430 const u64 mod_end = em->mod_start + em->mod_len - 1;
5431
5432 if (em->mod_start >= start && mod_end <= end)
5433 list_del_init(&em->list);
5434 }
5435 write_unlock(&em_tree->lock);
5dc562c5
JB
5436 }
5437
a59108a7
NB
5438 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5439 ret = log_directory_changes(trans, root, inode, path, dst_path,
5440 ctx);
4a500fd1
YZ
5441 if (ret) {
5442 err = ret;
5443 goto out_unlock;
5444 }
e02119d5 5445 }
49dae1bc 5446
d1d832a0
FM
5447 /*
5448 * Don't update last_log_commit if we logged that an inode exists after
5449 * it was loaded to memory (full_sync bit set).
5450 * This is to prevent data loss when we do a write to the inode, then
5451 * the inode gets evicted after all delalloc was flushed, then we log
5452 * it exists (due to a rename for example) and then fsync it. This last
5453 * fsync would do nothing (not logging the extents previously written).
5454 */
a59108a7
NB
5455 spin_lock(&inode->lock);
5456 inode->logged_trans = trans->transid;
d1d832a0
FM
5457 if (inode_only != LOG_INODE_EXISTS ||
5458 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags))
5459 inode->last_log_commit = inode->last_sub_trans;
a59108a7 5460 spin_unlock(&inode->lock);
4a500fd1 5461out_unlock:
a59108a7 5462 mutex_unlock(&inode->log_mutex);
e02119d5
CM
5463
5464 btrfs_free_path(path);
5465 btrfs_free_path(dst_path);
4a500fd1 5466 return err;
e02119d5
CM
5467}
5468
2be63d5c
FM
5469/*
5470 * Check if we must fallback to a transaction commit when logging an inode.
5471 * This must be called after logging the inode and is used only in the context
5472 * when fsyncing an inode requires the need to log some other inode - in which
5473 * case we can't lock the i_mutex of each other inode we need to log as that
5474 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5475 * log inodes up or down in the hierarchy) or rename operations for example. So
5476 * we take the log_mutex of the inode after we have logged it and then check for
5477 * its last_unlink_trans value - this is safe because any task setting
5478 * last_unlink_trans must take the log_mutex and it must do this before it does
5479 * the actual unlink operation, so if we do this check before a concurrent task
5480 * sets last_unlink_trans it means we've logged a consistent version/state of
5481 * all the inode items, otherwise we are not sure and must do a transaction
01327610 5482 * commit (the concurrent task might have only updated last_unlink_trans before
2be63d5c
FM
5483 * we logged the inode or it might have also done the unlink).
5484 */
5485static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
ab1717b2 5486 struct btrfs_inode *inode)
2be63d5c 5487{
ab1717b2 5488 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2be63d5c
FM
5489 bool ret = false;
5490
ab1717b2
NB
5491 mutex_lock(&inode->log_mutex);
5492 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
2be63d5c
FM
5493 /*
5494 * Make sure any commits to the log are forced to be full
5495 * commits.
5496 */
90787766 5497 btrfs_set_log_full_commit(trans);
2be63d5c
FM
5498 ret = true;
5499 }
ab1717b2 5500 mutex_unlock(&inode->log_mutex);
2be63d5c
FM
5501
5502 return ret;
5503}
5504
12fcfd22
CM
5505/*
5506 * follow the dentry parent pointers up the chain and see if any
5507 * of the directories in it require a full commit before they can
5508 * be logged. Returns zero if nothing special needs to be done or 1 if
5509 * a full commit is required.
5510 */
5511static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
aefa6115 5512 struct btrfs_inode *inode,
12fcfd22
CM
5513 struct dentry *parent,
5514 struct super_block *sb,
5515 u64 last_committed)
e02119d5 5516{
12fcfd22 5517 int ret = 0;
6a912213 5518 struct dentry *old_parent = NULL;
e02119d5 5519
af4176b4
CM
5520 /*
5521 * for regular files, if its inode is already on disk, we don't
5522 * have to worry about the parents at all. This is because
5523 * we can use the last_unlink_trans field to record renames
5524 * and other fun in this file.
5525 */
aefa6115
NB
5526 if (S_ISREG(inode->vfs_inode.i_mode) &&
5527 inode->generation <= last_committed &&
5528 inode->last_unlink_trans <= last_committed)
5529 goto out;
af4176b4 5530
aefa6115 5531 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
fc64005c 5532 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22 5533 goto out;
aefa6115 5534 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5535 }
5536
5537 while (1) {
aefa6115 5538 if (btrfs_must_commit_transaction(trans, inode)) {
12fcfd22
CM
5539 ret = 1;
5540 break;
5541 }
5542
fc64005c 5543 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
12fcfd22
CM
5544 break;
5545
44f714da 5546 if (IS_ROOT(parent)) {
aefa6115
NB
5547 inode = BTRFS_I(d_inode(parent));
5548 if (btrfs_must_commit_transaction(trans, inode))
44f714da 5549 ret = 1;
12fcfd22 5550 break;
44f714da 5551 }
12fcfd22 5552
6a912213
JB
5553 parent = dget_parent(parent);
5554 dput(old_parent);
5555 old_parent = parent;
aefa6115 5556 inode = BTRFS_I(d_inode(parent));
12fcfd22
CM
5557
5558 }
6a912213 5559 dput(old_parent);
12fcfd22 5560out:
e02119d5
CM
5561 return ret;
5562}
5563
2f2ff0ee
FM
5564struct btrfs_dir_list {
5565 u64 ino;
5566 struct list_head list;
5567};
5568
5569/*
5570 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5571 * details about the why it is needed.
5572 * This is a recursive operation - if an existing dentry corresponds to a
5573 * directory, that directory's new entries are logged too (same behaviour as
5574 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5575 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5576 * complains about the following circular lock dependency / possible deadlock:
5577 *
5578 * CPU0 CPU1
5579 * ---- ----
5580 * lock(&type->i_mutex_dir_key#3/2);
5581 * lock(sb_internal#2);
5582 * lock(&type->i_mutex_dir_key#3/2);
5583 * lock(&sb->s_type->i_mutex_key#14);
5584 *
5585 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5586 * sb_start_intwrite() in btrfs_start_transaction().
5587 * Not locking i_mutex of the inodes is still safe because:
5588 *
5589 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5590 * that while logging the inode new references (names) are added or removed
5591 * from the inode, leaving the logged inode item with a link count that does
5592 * not match the number of logged inode reference items. This is fine because
5593 * at log replay time we compute the real number of links and correct the
5594 * link count in the inode item (see replay_one_buffer() and
5595 * link_to_fixup_dir());
5596 *
5597 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5598 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5599 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5600 * has a size that doesn't match the sum of the lengths of all the logged
5601 * names. This does not result in a problem because if a dir_item key is
5602 * logged but its matching dir_index key is not logged, at log replay time we
5603 * don't use it to replay the respective name (see replay_one_name()). On the
5604 * other hand if only the dir_index key ends up being logged, the respective
5605 * name is added to the fs/subvol tree with both the dir_item and dir_index
5606 * keys created (see replay_one_name()).
5607 * The directory's inode item with a wrong i_size is not a problem as well,
5608 * since we don't use it at log replay time to set the i_size in the inode
5609 * item of the fs/subvol tree (see overwrite_item()).
5610 */
5611static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5612 struct btrfs_root *root,
51cc0d32 5613 struct btrfs_inode *start_inode,
2f2ff0ee
FM
5614 struct btrfs_log_ctx *ctx)
5615{
0b246afa 5616 struct btrfs_fs_info *fs_info = root->fs_info;
2f2ff0ee
FM
5617 struct btrfs_root *log = root->log_root;
5618 struct btrfs_path *path;
5619 LIST_HEAD(dir_list);
5620 struct btrfs_dir_list *dir_elem;
5621 int ret = 0;
5622
5623 path = btrfs_alloc_path();
5624 if (!path)
5625 return -ENOMEM;
5626
5627 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5628 if (!dir_elem) {
5629 btrfs_free_path(path);
5630 return -ENOMEM;
5631 }
51cc0d32 5632 dir_elem->ino = btrfs_ino(start_inode);
2f2ff0ee
FM
5633 list_add_tail(&dir_elem->list, &dir_list);
5634
5635 while (!list_empty(&dir_list)) {
5636 struct extent_buffer *leaf;
5637 struct btrfs_key min_key;
5638 int nritems;
5639 int i;
5640
5641 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5642 list);
5643 if (ret)
5644 goto next_dir_inode;
5645
5646 min_key.objectid = dir_elem->ino;
5647 min_key.type = BTRFS_DIR_ITEM_KEY;
5648 min_key.offset = 0;
5649again:
5650 btrfs_release_path(path);
5651 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5652 if (ret < 0) {
5653 goto next_dir_inode;
5654 } else if (ret > 0) {
5655 ret = 0;
5656 goto next_dir_inode;
5657 }
5658
5659process_leaf:
5660 leaf = path->nodes[0];
5661 nritems = btrfs_header_nritems(leaf);
5662 for (i = path->slots[0]; i < nritems; i++) {
5663 struct btrfs_dir_item *di;
5664 struct btrfs_key di_key;
5665 struct inode *di_inode;
5666 struct btrfs_dir_list *new_dir_elem;
5667 int log_mode = LOG_INODE_EXISTS;
5668 int type;
5669
5670 btrfs_item_key_to_cpu(leaf, &min_key, i);
5671 if (min_key.objectid != dir_elem->ino ||
5672 min_key.type != BTRFS_DIR_ITEM_KEY)
5673 goto next_dir_inode;
5674
5675 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5676 type = btrfs_dir_type(leaf, di);
5677 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5678 type != BTRFS_FT_DIR)
5679 continue;
5680 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5681 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5682 continue;
5683
ec125cfb 5684 btrfs_release_path(path);
0b246afa 5685 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
2f2ff0ee
FM
5686 if (IS_ERR(di_inode)) {
5687 ret = PTR_ERR(di_inode);
5688 goto next_dir_inode;
5689 }
5690
0f8939b8 5691 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
410f954c 5692 btrfs_add_delayed_iput(di_inode);
ec125cfb 5693 break;
2f2ff0ee
FM
5694 }
5695
5696 ctx->log_new_dentries = false;
3f9749f6 5697 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
2f2ff0ee 5698 log_mode = LOG_INODE_ALL;
a59108a7 5699 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
2f2ff0ee 5700 log_mode, 0, LLONG_MAX, ctx);
2be63d5c 5701 if (!ret &&
ab1717b2 5702 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
2be63d5c 5703 ret = 1;
410f954c 5704 btrfs_add_delayed_iput(di_inode);
2f2ff0ee
FM
5705 if (ret)
5706 goto next_dir_inode;
5707 if (ctx->log_new_dentries) {
5708 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5709 GFP_NOFS);
5710 if (!new_dir_elem) {
5711 ret = -ENOMEM;
5712 goto next_dir_inode;
5713 }
5714 new_dir_elem->ino = di_key.objectid;
5715 list_add_tail(&new_dir_elem->list, &dir_list);
5716 }
5717 break;
5718 }
5719 if (i == nritems) {
5720 ret = btrfs_next_leaf(log, path);
5721 if (ret < 0) {
5722 goto next_dir_inode;
5723 } else if (ret > 0) {
5724 ret = 0;
5725 goto next_dir_inode;
5726 }
5727 goto process_leaf;
5728 }
5729 if (min_key.offset < (u64)-1) {
5730 min_key.offset++;
5731 goto again;
5732 }
5733next_dir_inode:
5734 list_del(&dir_elem->list);
5735 kfree(dir_elem);
5736 }
5737
5738 btrfs_free_path(path);
5739 return ret;
5740}
5741
18aa0922 5742static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
d0a0b78d 5743 struct btrfs_inode *inode,
18aa0922
FM
5744 struct btrfs_log_ctx *ctx)
5745{
3ffbd68c 5746 struct btrfs_fs_info *fs_info = trans->fs_info;
18aa0922
FM
5747 int ret;
5748 struct btrfs_path *path;
5749 struct btrfs_key key;
d0a0b78d
NB
5750 struct btrfs_root *root = inode->root;
5751 const u64 ino = btrfs_ino(inode);
18aa0922
FM
5752
5753 path = btrfs_alloc_path();
5754 if (!path)
5755 return -ENOMEM;
5756 path->skip_locking = 1;
5757 path->search_commit_root = 1;
5758
5759 key.objectid = ino;
5760 key.type = BTRFS_INODE_REF_KEY;
5761 key.offset = 0;
5762 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5763 if (ret < 0)
5764 goto out;
5765
5766 while (true) {
5767 struct extent_buffer *leaf = path->nodes[0];
5768 int slot = path->slots[0];
5769 u32 cur_offset = 0;
5770 u32 item_size;
5771 unsigned long ptr;
5772
5773 if (slot >= btrfs_header_nritems(leaf)) {
5774 ret = btrfs_next_leaf(root, path);
5775 if (ret < 0)
5776 goto out;
5777 else if (ret > 0)
5778 break;
5779 continue;
5780 }
5781
5782 btrfs_item_key_to_cpu(leaf, &key, slot);
5783 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5784 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5785 break;
5786
5787 item_size = btrfs_item_size_nr(leaf, slot);
5788 ptr = btrfs_item_ptr_offset(leaf, slot);
5789 while (cur_offset < item_size) {
5790 struct btrfs_key inode_key;
5791 struct inode *dir_inode;
5792
5793 inode_key.type = BTRFS_INODE_ITEM_KEY;
5794 inode_key.offset = 0;
5795
5796 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5797 struct btrfs_inode_extref *extref;
5798
5799 extref = (struct btrfs_inode_extref *)
5800 (ptr + cur_offset);
5801 inode_key.objectid = btrfs_inode_extref_parent(
5802 leaf, extref);
5803 cur_offset += sizeof(*extref);
5804 cur_offset += btrfs_inode_extref_name_len(leaf,
5805 extref);
5806 } else {
5807 inode_key.objectid = key.offset;
5808 cur_offset = item_size;
5809 }
5810
0b246afa 5811 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
18aa0922 5812 root, NULL);
0f375eed
FM
5813 /*
5814 * If the parent inode was deleted, return an error to
5815 * fallback to a transaction commit. This is to prevent
5816 * getting an inode that was moved from one parent A to
5817 * a parent B, got its former parent A deleted and then
5818 * it got fsync'ed, from existing at both parents after
5819 * a log replay (and the old parent still existing).
5820 * Example:
5821 *
5822 * mkdir /mnt/A
5823 * mkdir /mnt/B
5824 * touch /mnt/B/bar
5825 * sync
5826 * mv /mnt/B/bar /mnt/A/bar
5827 * mv -T /mnt/A /mnt/B
5828 * fsync /mnt/B/bar
5829 * <power fail>
5830 *
5831 * If we ignore the old parent B which got deleted,
5832 * after a log replay we would have file bar linked
5833 * at both parents and the old parent B would still
5834 * exist.
5835 */
5836 if (IS_ERR(dir_inode)) {
5837 ret = PTR_ERR(dir_inode);
5838 goto out;
5839 }
18aa0922 5840
657ed1aa
FM
5841 if (ctx)
5842 ctx->log_new_dentries = false;
a59108a7 5843 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
18aa0922 5844 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
2be63d5c 5845 if (!ret &&
ab1717b2 5846 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
2be63d5c 5847 ret = 1;
657ed1aa
FM
5848 if (!ret && ctx && ctx->log_new_dentries)
5849 ret = log_new_dir_dentries(trans, root,
f85b7379 5850 BTRFS_I(dir_inode), ctx);
410f954c 5851 btrfs_add_delayed_iput(dir_inode);
18aa0922
FM
5852 if (ret)
5853 goto out;
5854 }
5855 path->slots[0]++;
5856 }
5857 ret = 0;
5858out:
5859 btrfs_free_path(path);
5860 return ret;
5861}
5862
b8aa330d
FM
5863static int log_new_ancestors(struct btrfs_trans_handle *trans,
5864 struct btrfs_root *root,
5865 struct btrfs_path *path,
5866 struct btrfs_log_ctx *ctx)
5867{
5868 struct btrfs_key found_key;
5869
5870 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5871
5872 while (true) {
5873 struct btrfs_fs_info *fs_info = root->fs_info;
5874 const u64 last_committed = fs_info->last_trans_committed;
5875 struct extent_buffer *leaf = path->nodes[0];
5876 int slot = path->slots[0];
5877 struct btrfs_key search_key;
5878 struct inode *inode;
5879 int ret = 0;
5880
5881 btrfs_release_path(path);
5882
5883 search_key.objectid = found_key.offset;
5884 search_key.type = BTRFS_INODE_ITEM_KEY;
5885 search_key.offset = 0;
5886 inode = btrfs_iget(fs_info->sb, &search_key, root, NULL);
5887 if (IS_ERR(inode))
5888 return PTR_ERR(inode);
5889
5890 if (BTRFS_I(inode)->generation > last_committed)
5891 ret = btrfs_log_inode(trans, root, BTRFS_I(inode),
5892 LOG_INODE_EXISTS,
5893 0, LLONG_MAX, ctx);
410f954c 5894 btrfs_add_delayed_iput(inode);
b8aa330d
FM
5895 if (ret)
5896 return ret;
5897
5898 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
5899 break;
5900
5901 search_key.type = BTRFS_INODE_REF_KEY;
5902 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5903 if (ret < 0)
5904 return ret;
5905
5906 leaf = path->nodes[0];
5907 slot = path->slots[0];
5908 if (slot >= btrfs_header_nritems(leaf)) {
5909 ret = btrfs_next_leaf(root, path);
5910 if (ret < 0)
5911 return ret;
5912 else if (ret > 0)
5913 return -ENOENT;
5914 leaf = path->nodes[0];
5915 slot = path->slots[0];
5916 }
5917
5918 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5919 if (found_key.objectid != search_key.objectid ||
5920 found_key.type != BTRFS_INODE_REF_KEY)
5921 return -ENOENT;
5922 }
5923 return 0;
5924}
5925
5926static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
5927 struct btrfs_inode *inode,
5928 struct dentry *parent,
5929 struct btrfs_log_ctx *ctx)
5930{
5931 struct btrfs_root *root = inode->root;
5932 struct btrfs_fs_info *fs_info = root->fs_info;
5933 struct dentry *old_parent = NULL;
5934 struct super_block *sb = inode->vfs_inode.i_sb;
5935 int ret = 0;
5936
5937 while (true) {
5938 if (!parent || d_really_is_negative(parent) ||
5939 sb != parent->d_sb)
5940 break;
5941
5942 inode = BTRFS_I(d_inode(parent));
5943 if (root != inode->root)
5944 break;
5945
5946 if (inode->generation > fs_info->last_trans_committed) {
5947 ret = btrfs_log_inode(trans, root, inode,
5948 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5949 if (ret)
5950 break;
5951 }
5952 if (IS_ROOT(parent))
5953 break;
5954
5955 parent = dget_parent(parent);
5956 dput(old_parent);
5957 old_parent = parent;
5958 }
5959 dput(old_parent);
5960
5961 return ret;
5962}
5963
5964static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
5965 struct btrfs_inode *inode,
5966 struct dentry *parent,
5967 struct btrfs_log_ctx *ctx)
5968{
5969 struct btrfs_root *root = inode->root;
5970 const u64 ino = btrfs_ino(inode);
5971 struct btrfs_path *path;
5972 struct btrfs_key search_key;
5973 int ret;
5974
5975 /*
5976 * For a single hard link case, go through a fast path that does not
5977 * need to iterate the fs/subvolume tree.
5978 */
5979 if (inode->vfs_inode.i_nlink < 2)
5980 return log_new_ancestors_fast(trans, inode, parent, ctx);
5981
5982 path = btrfs_alloc_path();
5983 if (!path)
5984 return -ENOMEM;
5985
5986 search_key.objectid = ino;
5987 search_key.type = BTRFS_INODE_REF_KEY;
5988 search_key.offset = 0;
5989again:
5990 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5991 if (ret < 0)
5992 goto out;
5993 if (ret == 0)
5994 path->slots[0]++;
5995
5996 while (true) {
5997 struct extent_buffer *leaf = path->nodes[0];
5998 int slot = path->slots[0];
5999 struct btrfs_key found_key;
6000
6001 if (slot >= btrfs_header_nritems(leaf)) {
6002 ret = btrfs_next_leaf(root, path);
6003 if (ret < 0)
6004 goto out;
6005 else if (ret > 0)
6006 break;
6007 continue;
6008 }
6009
6010 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6011 if (found_key.objectid != ino ||
6012 found_key.type > BTRFS_INODE_EXTREF_KEY)
6013 break;
6014
6015 /*
6016 * Don't deal with extended references because they are rare
6017 * cases and too complex to deal with (we would need to keep
6018 * track of which subitem we are processing for each item in
6019 * this loop, etc). So just return some error to fallback to
6020 * a transaction commit.
6021 */
6022 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
6023 ret = -EMLINK;
6024 goto out;
6025 }
6026
6027 /*
6028 * Logging ancestors needs to do more searches on the fs/subvol
6029 * tree, so it releases the path as needed to avoid deadlocks.
6030 * Keep track of the last inode ref key and resume from that key
6031 * after logging all new ancestors for the current hard link.
6032 */
6033 memcpy(&search_key, &found_key, sizeof(search_key));
6034
6035 ret = log_new_ancestors(trans, root, path, ctx);
6036 if (ret)
6037 goto out;
6038 btrfs_release_path(path);
6039 goto again;
6040 }
6041 ret = 0;
6042out:
6043 btrfs_free_path(path);
6044 return ret;
6045}
6046
e02119d5
CM
6047/*
6048 * helper function around btrfs_log_inode to make sure newly created
6049 * parent directories also end up in the log. A minimal inode and backref
6050 * only logging is done of any parent directories that are older than
6051 * the last committed transaction
6052 */
48a3b636 6053static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
19df27a9 6054 struct btrfs_inode *inode,
49dae1bc
FM
6055 struct dentry *parent,
6056 const loff_t start,
6057 const loff_t end,
41a1eada 6058 int inode_only,
8b050d35 6059 struct btrfs_log_ctx *ctx)
e02119d5 6060{
f882274b 6061 struct btrfs_root *root = inode->root;
0b246afa 6062 struct btrfs_fs_info *fs_info = root->fs_info;
e02119d5 6063 struct super_block *sb;
12fcfd22 6064 int ret = 0;
0b246afa 6065 u64 last_committed = fs_info->last_trans_committed;
2f2ff0ee 6066 bool log_dentries = false;
12fcfd22 6067
19df27a9 6068 sb = inode->vfs_inode.i_sb;
12fcfd22 6069
0b246afa 6070 if (btrfs_test_opt(fs_info, NOTREELOG)) {
3a5e1404
SW
6071 ret = 1;
6072 goto end_no_trans;
6073 }
6074
995946dd
MX
6075 /*
6076 * The prev transaction commit doesn't complete, we need do
6077 * full commit by ourselves.
6078 */
0b246afa
JM
6079 if (fs_info->last_trans_log_full_commit >
6080 fs_info->last_trans_committed) {
12fcfd22
CM
6081 ret = 1;
6082 goto end_no_trans;
6083 }
6084
f882274b 6085 if (btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
6086 ret = 1;
6087 goto end_no_trans;
6088 }
6089
19df27a9
NB
6090 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
6091 last_committed);
12fcfd22
CM
6092 if (ret)
6093 goto end_no_trans;
e02119d5 6094
f2d72f42
FM
6095 /*
6096 * Skip already logged inodes or inodes corresponding to tmpfiles
6097 * (since logging them is pointless, a link count of 0 means they
6098 * will never be accessible).
6099 */
6100 if (btrfs_inode_in_log(inode, trans->transid) ||
6101 inode->vfs_inode.i_nlink == 0) {
257c62e1
CM
6102 ret = BTRFS_NO_LOG_SYNC;
6103 goto end_no_trans;
6104 }
6105
8b050d35 6106 ret = start_log_trans(trans, root, ctx);
4a500fd1 6107 if (ret)
e87ac136 6108 goto end_no_trans;
e02119d5 6109
19df27a9 6110 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
4a500fd1
YZ
6111 if (ret)
6112 goto end_trans;
12fcfd22 6113
af4176b4
CM
6114 /*
6115 * for regular files, if its inode is already on disk, we don't
6116 * have to worry about the parents at all. This is because
6117 * we can use the last_unlink_trans field to record renames
6118 * and other fun in this file.
6119 */
19df27a9
NB
6120 if (S_ISREG(inode->vfs_inode.i_mode) &&
6121 inode->generation <= last_committed &&
6122 inode->last_unlink_trans <= last_committed) {
4a500fd1
YZ
6123 ret = 0;
6124 goto end_trans;
6125 }
af4176b4 6126
19df27a9 6127 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
2f2ff0ee
FM
6128 log_dentries = true;
6129
18aa0922 6130 /*
01327610 6131 * On unlink we must make sure all our current and old parent directory
18aa0922
FM
6132 * inodes are fully logged. This is to prevent leaving dangling
6133 * directory index entries in directories that were our parents but are
6134 * not anymore. Not doing this results in old parent directory being
6135 * impossible to delete after log replay (rmdir will always fail with
6136 * error -ENOTEMPTY).
6137 *
6138 * Example 1:
6139 *
6140 * mkdir testdir
6141 * touch testdir/foo
6142 * ln testdir/foo testdir/bar
6143 * sync
6144 * unlink testdir/bar
6145 * xfs_io -c fsync testdir/foo
6146 * <power failure>
6147 * mount fs, triggers log replay
6148 *
6149 * If we don't log the parent directory (testdir), after log replay the
6150 * directory still has an entry pointing to the file inode using the bar
6151 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6152 * the file inode has a link count of 1.
6153 *
6154 * Example 2:
6155 *
6156 * mkdir testdir
6157 * touch foo
6158 * ln foo testdir/foo2
6159 * ln foo testdir/foo3
6160 * sync
6161 * unlink testdir/foo3
6162 * xfs_io -c fsync foo
6163 * <power failure>
6164 * mount fs, triggers log replay
6165 *
6166 * Similar as the first example, after log replay the parent directory
6167 * testdir still has an entry pointing to the inode file with name foo3
6168 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6169 * and has a link count of 2.
6170 */
19df27a9 6171 if (inode->last_unlink_trans > last_committed) {
b8aa330d 6172 ret = btrfs_log_all_parents(trans, inode, ctx);
18aa0922
FM
6173 if (ret)
6174 goto end_trans;
6175 }
6176
b8aa330d
FM
6177 ret = log_all_new_ancestors(trans, inode, parent, ctx);
6178 if (ret)
41bd6067 6179 goto end_trans;
76dda93c 6180
2f2ff0ee 6181 if (log_dentries)
b8aa330d 6182 ret = log_new_dir_dentries(trans, root, inode, ctx);
2f2ff0ee
FM
6183 else
6184 ret = 0;
4a500fd1
YZ
6185end_trans:
6186 if (ret < 0) {
90787766 6187 btrfs_set_log_full_commit(trans);
4a500fd1
YZ
6188 ret = 1;
6189 }
8b050d35
MX
6190
6191 if (ret)
6192 btrfs_remove_log_ctx(root, ctx);
12fcfd22
CM
6193 btrfs_end_log_trans(root);
6194end_no_trans:
6195 return ret;
e02119d5
CM
6196}
6197
6198/*
6199 * it is not safe to log dentry if the chunk root has added new
6200 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6201 * If this returns 1, you must commit the transaction to safely get your
6202 * data on disk.
6203 */
6204int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
e5b84f7a 6205 struct dentry *dentry,
49dae1bc
FM
6206 const loff_t start,
6207 const loff_t end,
8b050d35 6208 struct btrfs_log_ctx *ctx)
e02119d5 6209{
6a912213
JB
6210 struct dentry *parent = dget_parent(dentry);
6211 int ret;
6212
f882274b
NB
6213 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
6214 start, end, LOG_INODE_ALL, ctx);
6a912213
JB
6215 dput(parent);
6216
6217 return ret;
e02119d5
CM
6218}
6219
6220/*
6221 * should be called during mount to recover any replay any log trees
6222 * from the FS
6223 */
6224int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
6225{
6226 int ret;
6227 struct btrfs_path *path;
6228 struct btrfs_trans_handle *trans;
6229 struct btrfs_key key;
6230 struct btrfs_key found_key;
6231 struct btrfs_key tmp_key;
6232 struct btrfs_root *log;
6233 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
6234 struct walk_control wc = {
6235 .process_func = process_one_buffer,
6236 .stage = 0,
6237 };
6238
e02119d5 6239 path = btrfs_alloc_path();
db5b493a
TI
6240 if (!path)
6241 return -ENOMEM;
6242
afcdd129 6243 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6244
4a500fd1 6245 trans = btrfs_start_transaction(fs_info->tree_root, 0);
79787eaa
JM
6246 if (IS_ERR(trans)) {
6247 ret = PTR_ERR(trans);
6248 goto error;
6249 }
e02119d5
CM
6250
6251 wc.trans = trans;
6252 wc.pin = 1;
6253
db5b493a 6254 ret = walk_log_tree(trans, log_root_tree, &wc);
79787eaa 6255 if (ret) {
5d163e0e
JM
6256 btrfs_handle_fs_error(fs_info, ret,
6257 "Failed to pin buffers while recovering log root tree.");
79787eaa
JM
6258 goto error;
6259 }
e02119d5
CM
6260
6261again:
6262 key.objectid = BTRFS_TREE_LOG_OBJECTID;
6263 key.offset = (u64)-1;
962a298f 6264 key.type = BTRFS_ROOT_ITEM_KEY;
e02119d5 6265
d397712b 6266 while (1) {
e02119d5 6267 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
79787eaa
JM
6268
6269 if (ret < 0) {
34d97007 6270 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6271 "Couldn't find tree log root.");
6272 goto error;
6273 }
e02119d5
CM
6274 if (ret > 0) {
6275 if (path->slots[0] == 0)
6276 break;
6277 path->slots[0]--;
6278 }
6279 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
6280 path->slots[0]);
b3b4aa74 6281 btrfs_release_path(path);
e02119d5
CM
6282 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
6283 break;
6284
cb517eab 6285 log = btrfs_read_fs_root(log_root_tree, &found_key);
79787eaa
JM
6286 if (IS_ERR(log)) {
6287 ret = PTR_ERR(log);
34d97007 6288 btrfs_handle_fs_error(fs_info, ret,
79787eaa
JM
6289 "Couldn't read tree log root.");
6290 goto error;
6291 }
e02119d5
CM
6292
6293 tmp_key.objectid = found_key.offset;
6294 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
6295 tmp_key.offset = (u64)-1;
6296
6297 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
79787eaa
JM
6298 if (IS_ERR(wc.replay_dest)) {
6299 ret = PTR_ERR(wc.replay_dest);
b50c6e25
JB
6300 free_extent_buffer(log->node);
6301 free_extent_buffer(log->commit_root);
6302 kfree(log);
5d163e0e
JM
6303 btrfs_handle_fs_error(fs_info, ret,
6304 "Couldn't read target root for tree log recovery.");
79787eaa
JM
6305 goto error;
6306 }
e02119d5 6307
07d400a6 6308 wc.replay_dest->log_root = log;
5d4f98a2 6309 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5 6310 ret = walk_log_tree(trans, log, &wc);
e02119d5 6311
b50c6e25 6312 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
e02119d5
CM
6313 ret = fixup_inode_link_counts(trans, wc.replay_dest,
6314 path);
e02119d5
CM
6315 }
6316
900c9981
LB
6317 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
6318 struct btrfs_root *root = wc.replay_dest;
6319
6320 btrfs_release_path(path);
6321
6322 /*
6323 * We have just replayed everything, and the highest
6324 * objectid of fs roots probably has changed in case
6325 * some inode_item's got replayed.
6326 *
6327 * root->objectid_mutex is not acquired as log replay
6328 * could only happen during mount.
6329 */
6330 ret = btrfs_find_highest_objectid(root,
6331 &root->highest_objectid);
6332 }
6333
e02119d5 6334 key.offset = found_key.offset - 1;
07d400a6 6335 wc.replay_dest->log_root = NULL;
e02119d5 6336 free_extent_buffer(log->node);
b263c2c8 6337 free_extent_buffer(log->commit_root);
e02119d5
CM
6338 kfree(log);
6339
b50c6e25
JB
6340 if (ret)
6341 goto error;
6342
e02119d5
CM
6343 if (found_key.offset == 0)
6344 break;
6345 }
b3b4aa74 6346 btrfs_release_path(path);
e02119d5
CM
6347
6348 /* step one is to pin it all, step two is to replay just inodes */
6349 if (wc.pin) {
6350 wc.pin = 0;
6351 wc.process_func = replay_one_buffer;
6352 wc.stage = LOG_WALK_REPLAY_INODES;
6353 goto again;
6354 }
6355 /* step three is to replay everything */
6356 if (wc.stage < LOG_WALK_REPLAY_ALL) {
6357 wc.stage++;
6358 goto again;
6359 }
6360
6361 btrfs_free_path(path);
6362
abefa55a 6363 /* step 4: commit the transaction, which also unpins the blocks */
3a45bb20 6364 ret = btrfs_commit_transaction(trans);
abefa55a
JB
6365 if (ret)
6366 return ret;
6367
e02119d5
CM
6368 free_extent_buffer(log_root_tree->node);
6369 log_root_tree->log_root = NULL;
afcdd129 6370 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
e02119d5 6371 kfree(log_root_tree);
79787eaa 6372
abefa55a 6373 return 0;
79787eaa 6374error:
b50c6e25 6375 if (wc.trans)
3a45bb20 6376 btrfs_end_transaction(wc.trans);
79787eaa
JM
6377 btrfs_free_path(path);
6378 return ret;
e02119d5 6379}
12fcfd22
CM
6380
6381/*
6382 * there are some corner cases where we want to force a full
6383 * commit instead of allowing a directory to be logged.
6384 *
6385 * They revolve around files there were unlinked from the directory, and
6386 * this function updates the parent directory so that a full commit is
6387 * properly done if it is fsync'd later after the unlinks are done.
2be63d5c
FM
6388 *
6389 * Must be called before the unlink operations (updates to the subvolume tree,
6390 * inodes, etc) are done.
12fcfd22
CM
6391 */
6392void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
4176bdbf 6393 struct btrfs_inode *dir, struct btrfs_inode *inode,
12fcfd22
CM
6394 int for_rename)
6395{
af4176b4
CM
6396 /*
6397 * when we're logging a file, if it hasn't been renamed
6398 * or unlinked, and its inode is fully committed on disk,
6399 * we don't have to worry about walking up the directory chain
6400 * to log its parents.
6401 *
6402 * So, we use the last_unlink_trans field to put this transid
6403 * into the file. When the file is logged we check it and
6404 * don't log the parents if the file is fully on disk.
6405 */
4176bdbf
NB
6406 mutex_lock(&inode->log_mutex);
6407 inode->last_unlink_trans = trans->transid;
6408 mutex_unlock(&inode->log_mutex);
af4176b4 6409
12fcfd22
CM
6410 /*
6411 * if this directory was already logged any new
6412 * names for this file/dir will get recorded
6413 */
4176bdbf 6414 if (dir->logged_trans == trans->transid)
12fcfd22
CM
6415 return;
6416
6417 /*
6418 * if the inode we're about to unlink was logged,
6419 * the log will be properly updated for any new names
6420 */
4176bdbf 6421 if (inode->logged_trans == trans->transid)
12fcfd22
CM
6422 return;
6423
6424 /*
6425 * when renaming files across directories, if the directory
6426 * there we're unlinking from gets fsync'd later on, there's
6427 * no way to find the destination directory later and fsync it
6428 * properly. So, we have to be conservative and force commits
6429 * so the new name gets discovered.
6430 */
6431 if (for_rename)
6432 goto record;
6433
6434 /* we can safely do the unlink without any special recording */
6435 return;
6436
6437record:
4176bdbf
NB
6438 mutex_lock(&dir->log_mutex);
6439 dir->last_unlink_trans = trans->transid;
6440 mutex_unlock(&dir->log_mutex);
1ec9a1ae
FM
6441}
6442
6443/*
6444 * Make sure that if someone attempts to fsync the parent directory of a deleted
6445 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6446 * that after replaying the log tree of the parent directory's root we will not
6447 * see the snapshot anymore and at log replay time we will not see any log tree
6448 * corresponding to the deleted snapshot's root, which could lead to replaying
6449 * it after replaying the log tree of the parent directory (which would replay
6450 * the snapshot delete operation).
2be63d5c
FM
6451 *
6452 * Must be called before the actual snapshot destroy operation (updates to the
6453 * parent root and tree of tree roots trees, etc) are done.
1ec9a1ae
FM
6454 */
6455void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
43663557 6456 struct btrfs_inode *dir)
1ec9a1ae 6457{
43663557
NB
6458 mutex_lock(&dir->log_mutex);
6459 dir->last_unlink_trans = trans->transid;
6460 mutex_unlock(&dir->log_mutex);
12fcfd22
CM
6461}
6462
6463/*
6464 * Call this after adding a new name for a file and it will properly
6465 * update the log to reflect the new name.
6466 *
d4682ba0
FM
6467 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6468 * true (because it's not used).
6469 *
6470 * Return value depends on whether @sync_log is true or false.
6471 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6472 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6473 * otherwise.
6474 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6475 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6476 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6477 * committed (without attempting to sync the log).
12fcfd22
CM
6478 */
6479int btrfs_log_new_name(struct btrfs_trans_handle *trans,
9ca5fbfb 6480 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
d4682ba0
FM
6481 struct dentry *parent,
6482 bool sync_log, struct btrfs_log_ctx *ctx)
12fcfd22 6483{
3ffbd68c 6484 struct btrfs_fs_info *fs_info = trans->fs_info;
d4682ba0 6485 int ret;
12fcfd22 6486
af4176b4
CM
6487 /*
6488 * this will force the logging code to walk the dentry chain
6489 * up for the file
6490 */
9a6509c4 6491 if (!S_ISDIR(inode->vfs_inode.i_mode))
9ca5fbfb 6492 inode->last_unlink_trans = trans->transid;
af4176b4 6493
12fcfd22
CM
6494 /*
6495 * if this inode hasn't been logged and directory we're renaming it
6496 * from hasn't been logged, we don't need to log it
6497 */
9ca5fbfb
NB
6498 if (inode->logged_trans <= fs_info->last_trans_committed &&
6499 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
d4682ba0
FM
6500 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6501 BTRFS_DONT_NEED_LOG_SYNC;
6502
6503 if (sync_log) {
6504 struct btrfs_log_ctx ctx2;
6505
6506 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6507 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6508 LOG_INODE_EXISTS, &ctx2);
6509 if (ret == BTRFS_NO_LOG_SYNC)
6510 return BTRFS_DONT_NEED_TRANS_COMMIT;
6511 else if (ret)
6512 return BTRFS_NEED_TRANS_COMMIT;
6513
6514 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6515 if (ret)
6516 return BTRFS_NEED_TRANS_COMMIT;
6517 return BTRFS_DONT_NEED_TRANS_COMMIT;
6518 }
6519
6520 ASSERT(ctx);
6521 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6522 LOG_INODE_EXISTS, ctx);
6523 if (ret == BTRFS_NO_LOG_SYNC)
6524 return BTRFS_DONT_NEED_LOG_SYNC;
6525 else if (ret)
6526 return BTRFS_NEED_TRANS_COMMIT;
12fcfd22 6527
d4682ba0 6528 return BTRFS_NEED_LOG_SYNC;
12fcfd22
CM
6529}
6530