Btrfs: avoid tree log commit when there are no changes
[linux-2.6-block.git] / fs / btrfs / tree-log.c
CommitLineData
e02119d5
CM
1/*
2 * Copyright (C) 2008 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/sched.h>
20#include "ctree.h"
21#include "transaction.h"
22#include "disk-io.h"
23#include "locking.h"
24#include "print-tree.h"
25#include "compat.h"
b2950863 26#include "tree-log.h"
e02119d5
CM
27
28/* magic values for the inode_only field in btrfs_log_inode:
29 *
30 * LOG_INODE_ALL means to log everything
31 * LOG_INODE_EXISTS means to log just enough to recreate the inode
32 * during log replay
33 */
34#define LOG_INODE_ALL 0
35#define LOG_INODE_EXISTS 1
36
12fcfd22
CM
37/*
38 * directory trouble cases
39 *
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
44 *
45 * mkdir foo/some_dir
46 * normal commit
47 * rename foo/some_dir foo2/some_dir
48 * mkdir foo/some_dir
49 * fsync foo/some_dir/some_file
50 *
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
54 *
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
57 *
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
61 *
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
64 *
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
67 *
68 * mkdir f1/foo
69 * normal commit
70 * rm -rf f1/foo
71 * fsync(f1)
72 *
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
77 * ugly details.
78 */
79
e02119d5
CM
80/*
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
85 *
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
88 */
89#define LOG_WALK_PIN_ONLY 0
90#define LOG_WALK_REPLAY_INODES 1
91#define LOG_WALK_REPLAY_ALL 2
92
12fcfd22 93static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
94 struct btrfs_root *root, struct inode *inode,
95 int inode_only);
ec051c0f
YZ
96static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
97 struct btrfs_root *root,
98 struct btrfs_path *path, u64 objectid);
12fcfd22
CM
99static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
100 struct btrfs_root *root,
101 struct btrfs_root *log,
102 struct btrfs_path *path,
103 u64 dirid, int del_all);
e02119d5
CM
104
105/*
106 * tree logging is a special write ahead log used to make sure that
107 * fsyncs and O_SYNCs can happen without doing full tree commits.
108 *
109 * Full tree commits are expensive because they require commonly
110 * modified blocks to be recowed, creating many dirty pages in the
111 * extent tree an 4x-6x higher write load than ext3.
112 *
113 * Instead of doing a tree commit on every fsync, we use the
114 * key ranges and transaction ids to find items for a given file or directory
115 * that have changed in this transaction. Those items are copied into
116 * a special tree (one per subvolume root), that tree is written to disk
117 * and then the fsync is considered complete.
118 *
119 * After a crash, items are copied out of the log-tree back into the
120 * subvolume tree. Any file data extents found are recorded in the extent
121 * allocation tree, and the log-tree freed.
122 *
123 * The log tree is read three times, once to pin down all the extents it is
124 * using in ram and once, once to create all the inodes logged in the tree
125 * and once to do all the other items.
126 */
127
e02119d5
CM
128/*
129 * start a sub transaction and setup the log tree
130 * this increments the log tree writer count to make the people
131 * syncing the tree wait for us to finish
132 */
133static int start_log_trans(struct btrfs_trans_handle *trans,
134 struct btrfs_root *root)
135{
136 int ret;
7237f183
YZ
137
138 mutex_lock(&root->log_mutex);
139 if (root->log_root) {
ff782e0a
JB
140 if (!root->log_start_pid) {
141 root->log_start_pid = current->pid;
142 root->log_multiple_pids = false;
143 } else if (root->log_start_pid != current->pid) {
144 root->log_multiple_pids = true;
145 }
146
7237f183
YZ
147 root->log_batch++;
148 atomic_inc(&root->log_writers);
149 mutex_unlock(&root->log_mutex);
150 return 0;
151 }
ff782e0a
JB
152 root->log_multiple_pids = false;
153 root->log_start_pid = current->pid;
e02119d5
CM
154 mutex_lock(&root->fs_info->tree_log_mutex);
155 if (!root->fs_info->log_root_tree) {
156 ret = btrfs_init_log_root_tree(trans, root->fs_info);
157 BUG_ON(ret);
158 }
159 if (!root->log_root) {
160 ret = btrfs_add_log_tree(trans, root);
161 BUG_ON(ret);
162 }
e02119d5 163 mutex_unlock(&root->fs_info->tree_log_mutex);
7237f183
YZ
164 root->log_batch++;
165 atomic_inc(&root->log_writers);
166 mutex_unlock(&root->log_mutex);
e02119d5
CM
167 return 0;
168}
169
170/*
171 * returns 0 if there was a log transaction running and we were able
172 * to join, or returns -ENOENT if there were not transactions
173 * in progress
174 */
175static int join_running_log_trans(struct btrfs_root *root)
176{
177 int ret = -ENOENT;
178
179 smp_mb();
180 if (!root->log_root)
181 return -ENOENT;
182
7237f183 183 mutex_lock(&root->log_mutex);
e02119d5
CM
184 if (root->log_root) {
185 ret = 0;
7237f183 186 atomic_inc(&root->log_writers);
e02119d5 187 }
7237f183 188 mutex_unlock(&root->log_mutex);
e02119d5
CM
189 return ret;
190}
191
12fcfd22
CM
192/*
193 * This either makes the current running log transaction wait
194 * until you call btrfs_end_log_trans() or it makes any future
195 * log transactions wait until you call btrfs_end_log_trans()
196 */
197int btrfs_pin_log_trans(struct btrfs_root *root)
198{
199 int ret = -ENOENT;
200
201 mutex_lock(&root->log_mutex);
202 atomic_inc(&root->log_writers);
203 mutex_unlock(&root->log_mutex);
204 return ret;
205}
206
e02119d5
CM
207/*
208 * indicate we're done making changes to the log tree
209 * and wake up anyone waiting to do a sync
210 */
12fcfd22 211int btrfs_end_log_trans(struct btrfs_root *root)
e02119d5 212{
7237f183
YZ
213 if (atomic_dec_and_test(&root->log_writers)) {
214 smp_mb();
215 if (waitqueue_active(&root->log_writer_wait))
216 wake_up(&root->log_writer_wait);
217 }
e02119d5
CM
218 return 0;
219}
220
221
222/*
223 * the walk control struct is used to pass state down the chain when
224 * processing the log tree. The stage field tells us which part
225 * of the log tree processing we are currently doing. The others
226 * are state fields used for that specific part
227 */
228struct walk_control {
229 /* should we free the extent on disk when done? This is used
230 * at transaction commit time while freeing a log tree
231 */
232 int free;
233
234 /* should we write out the extent buffer? This is used
235 * while flushing the log tree to disk during a sync
236 */
237 int write;
238
239 /* should we wait for the extent buffer io to finish? Also used
240 * while flushing the log tree to disk for a sync
241 */
242 int wait;
243
244 /* pin only walk, we record which extents on disk belong to the
245 * log trees
246 */
247 int pin;
248
249 /* what stage of the replay code we're currently in */
250 int stage;
251
252 /* the root we are currently replaying */
253 struct btrfs_root *replay_dest;
254
255 /* the trans handle for the current replay */
256 struct btrfs_trans_handle *trans;
257
258 /* the function that gets used to process blocks we find in the
259 * tree. Note the extent_buffer might not be up to date when it is
260 * passed in, and it must be checked or read if you need the data
261 * inside it
262 */
263 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
264 struct walk_control *wc, u64 gen);
265};
266
267/*
268 * process_func used to pin down extents, write them or wait on them
269 */
270static int process_one_buffer(struct btrfs_root *log,
271 struct extent_buffer *eb,
272 struct walk_control *wc, u64 gen)
273{
04018de5 274 if (wc->pin)
11833d66
YZ
275 btrfs_pin_extent(log->fs_info->extent_root,
276 eb->start, eb->len, 0);
e02119d5
CM
277
278 if (btrfs_buffer_uptodate(eb, gen)) {
279 if (wc->write)
280 btrfs_write_tree_block(eb);
281 if (wc->wait)
282 btrfs_wait_tree_block_writeback(eb);
283 }
284 return 0;
285}
286
287/*
288 * Item overwrite used by replay and tree logging. eb, slot and key all refer
289 * to the src data we are copying out.
290 *
291 * root is the tree we are copying into, and path is a scratch
292 * path for use in this function (it should be released on entry and
293 * will be released on exit).
294 *
295 * If the key is already in the destination tree the existing item is
296 * overwritten. If the existing item isn't big enough, it is extended.
297 * If it is too large, it is truncated.
298 *
299 * If the key isn't in the destination yet, a new item is inserted.
300 */
301static noinline int overwrite_item(struct btrfs_trans_handle *trans,
302 struct btrfs_root *root,
303 struct btrfs_path *path,
304 struct extent_buffer *eb, int slot,
305 struct btrfs_key *key)
306{
307 int ret;
308 u32 item_size;
309 u64 saved_i_size = 0;
310 int save_old_i_size = 0;
311 unsigned long src_ptr;
312 unsigned long dst_ptr;
313 int overwrite_root = 0;
314
315 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
316 overwrite_root = 1;
317
318 item_size = btrfs_item_size_nr(eb, slot);
319 src_ptr = btrfs_item_ptr_offset(eb, slot);
320
321 /* look for the key in the destination tree */
322 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
323 if (ret == 0) {
324 char *src_copy;
325 char *dst_copy;
326 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
327 path->slots[0]);
328 if (dst_size != item_size)
329 goto insert;
330
331 if (item_size == 0) {
332 btrfs_release_path(root, path);
333 return 0;
334 }
335 dst_copy = kmalloc(item_size, GFP_NOFS);
336 src_copy = kmalloc(item_size, GFP_NOFS);
337
338 read_extent_buffer(eb, src_copy, src_ptr, item_size);
339
340 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
341 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
342 item_size);
343 ret = memcmp(dst_copy, src_copy, item_size);
344
345 kfree(dst_copy);
346 kfree(src_copy);
347 /*
348 * they have the same contents, just return, this saves
349 * us from cowing blocks in the destination tree and doing
350 * extra writes that may not have been done by a previous
351 * sync
352 */
353 if (ret == 0) {
354 btrfs_release_path(root, path);
355 return 0;
356 }
357
358 }
359insert:
360 btrfs_release_path(root, path);
361 /* try to insert the key into the destination tree */
362 ret = btrfs_insert_empty_item(trans, root, path,
363 key, item_size);
364
365 /* make sure any existing item is the correct size */
366 if (ret == -EEXIST) {
367 u32 found_size;
368 found_size = btrfs_item_size_nr(path->nodes[0],
369 path->slots[0]);
370 if (found_size > item_size) {
371 btrfs_truncate_item(trans, root, path, item_size, 1);
372 } else if (found_size < item_size) {
87b29b20
YZ
373 ret = btrfs_extend_item(trans, root, path,
374 item_size - found_size);
e02119d5
CM
375 BUG_ON(ret);
376 }
377 } else if (ret) {
378 BUG();
379 }
380 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
381 path->slots[0]);
382
383 /* don't overwrite an existing inode if the generation number
384 * was logged as zero. This is done when the tree logging code
385 * is just logging an inode to make sure it exists after recovery.
386 *
387 * Also, don't overwrite i_size on directories during replay.
388 * log replay inserts and removes directory items based on the
389 * state of the tree found in the subvolume, and i_size is modified
390 * as it goes
391 */
392 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
393 struct btrfs_inode_item *src_item;
394 struct btrfs_inode_item *dst_item;
395
396 src_item = (struct btrfs_inode_item *)src_ptr;
397 dst_item = (struct btrfs_inode_item *)dst_ptr;
398
399 if (btrfs_inode_generation(eb, src_item) == 0)
400 goto no_copy;
401
402 if (overwrite_root &&
403 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
404 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
405 save_old_i_size = 1;
406 saved_i_size = btrfs_inode_size(path->nodes[0],
407 dst_item);
408 }
409 }
410
411 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
412 src_ptr, item_size);
413
414 if (save_old_i_size) {
415 struct btrfs_inode_item *dst_item;
416 dst_item = (struct btrfs_inode_item *)dst_ptr;
417 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
418 }
419
420 /* make sure the generation is filled in */
421 if (key->type == BTRFS_INODE_ITEM_KEY) {
422 struct btrfs_inode_item *dst_item;
423 dst_item = (struct btrfs_inode_item *)dst_ptr;
424 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
425 btrfs_set_inode_generation(path->nodes[0], dst_item,
426 trans->transid);
427 }
428 }
429no_copy:
430 btrfs_mark_buffer_dirty(path->nodes[0]);
431 btrfs_release_path(root, path);
432 return 0;
433}
434
435/*
436 * simple helper to read an inode off the disk from a given root
437 * This can only be called for subvolume roots and not for the log
438 */
439static noinline struct inode *read_one_inode(struct btrfs_root *root,
440 u64 objectid)
441{
5d4f98a2 442 struct btrfs_key key;
e02119d5 443 struct inode *inode;
e02119d5 444
5d4f98a2
YZ
445 key.objectid = objectid;
446 key.type = BTRFS_INODE_ITEM_KEY;
447 key.offset = 0;
448 inode = btrfs_iget(root->fs_info->sb, &key, root);
449 if (IS_ERR(inode)) {
450 inode = NULL;
451 } else if (is_bad_inode(inode)) {
e02119d5
CM
452 iput(inode);
453 inode = NULL;
454 }
455 return inode;
456}
457
458/* replays a single extent in 'eb' at 'slot' with 'key' into the
459 * subvolume 'root'. path is released on entry and should be released
460 * on exit.
461 *
462 * extents in the log tree have not been allocated out of the extent
463 * tree yet. So, this completes the allocation, taking a reference
464 * as required if the extent already exists or creating a new extent
465 * if it isn't in the extent allocation tree yet.
466 *
467 * The extent is inserted into the file, dropping any existing extents
468 * from the file that overlap the new one.
469 */
470static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
471 struct btrfs_root *root,
472 struct btrfs_path *path,
473 struct extent_buffer *eb, int slot,
474 struct btrfs_key *key)
475{
476 int found_type;
477 u64 mask = root->sectorsize - 1;
478 u64 extent_end;
479 u64 alloc_hint;
480 u64 start = key->offset;
07d400a6 481 u64 saved_nbytes;
e02119d5
CM
482 struct btrfs_file_extent_item *item;
483 struct inode *inode = NULL;
484 unsigned long size;
485 int ret = 0;
486
487 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
488 found_type = btrfs_file_extent_type(eb, item);
489
d899e052
YZ
490 if (found_type == BTRFS_FILE_EXTENT_REG ||
491 found_type == BTRFS_FILE_EXTENT_PREALLOC)
e02119d5
CM
492 extent_end = start + btrfs_file_extent_num_bytes(eb, item);
493 else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818 494 size = btrfs_file_extent_inline_len(eb, item);
e02119d5
CM
495 extent_end = (start + size + mask) & ~mask;
496 } else {
497 ret = 0;
498 goto out;
499 }
500
501 inode = read_one_inode(root, key->objectid);
502 if (!inode) {
503 ret = -EIO;
504 goto out;
505 }
506
507 /*
508 * first check to see if we already have this extent in the
509 * file. This must be done before the btrfs_drop_extents run
510 * so we don't try to drop this extent.
511 */
512 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
513 start, 0);
514
d899e052
YZ
515 if (ret == 0 &&
516 (found_type == BTRFS_FILE_EXTENT_REG ||
517 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
e02119d5
CM
518 struct btrfs_file_extent_item cmp1;
519 struct btrfs_file_extent_item cmp2;
520 struct btrfs_file_extent_item *existing;
521 struct extent_buffer *leaf;
522
523 leaf = path->nodes[0];
524 existing = btrfs_item_ptr(leaf, path->slots[0],
525 struct btrfs_file_extent_item);
526
527 read_extent_buffer(eb, &cmp1, (unsigned long)item,
528 sizeof(cmp1));
529 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
530 sizeof(cmp2));
531
532 /*
533 * we already have a pointer to this exact extent,
534 * we don't have to do anything
535 */
536 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
537 btrfs_release_path(root, path);
538 goto out;
539 }
540 }
541 btrfs_release_path(root, path);
542
07d400a6 543 saved_nbytes = inode_get_bytes(inode);
e02119d5
CM
544 /* drop any overlapping extents */
545 ret = btrfs_drop_extents(trans, root, inode,
a1ed835e 546 start, extent_end, extent_end, start, &alloc_hint, 1);
e02119d5
CM
547 BUG_ON(ret);
548
07d400a6
YZ
549 if (found_type == BTRFS_FILE_EXTENT_REG ||
550 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2 551 u64 offset;
07d400a6
YZ
552 unsigned long dest_offset;
553 struct btrfs_key ins;
554
555 ret = btrfs_insert_empty_item(trans, root, path, key,
556 sizeof(*item));
557 BUG_ON(ret);
558 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
559 path->slots[0]);
560 copy_extent_buffer(path->nodes[0], eb, dest_offset,
561 (unsigned long)item, sizeof(*item));
562
563 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
564 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
565 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2 566 offset = key->offset - btrfs_file_extent_offset(eb, item);
07d400a6
YZ
567
568 if (ins.objectid > 0) {
569 u64 csum_start;
570 u64 csum_end;
571 LIST_HEAD(ordered_sums);
572 /*
573 * is this extent already allocated in the extent
574 * allocation tree? If so, just add a reference
575 */
576 ret = btrfs_lookup_extent(root, ins.objectid,
577 ins.offset);
578 if (ret == 0) {
579 ret = btrfs_inc_extent_ref(trans, root,
580 ins.objectid, ins.offset,
5d4f98a2
YZ
581 0, root->root_key.objectid,
582 key->objectid, offset);
07d400a6
YZ
583 } else {
584 /*
585 * insert the extent pointer in the extent
586 * allocation tree
587 */
5d4f98a2
YZ
588 ret = btrfs_alloc_logged_file_extent(trans,
589 root, root->root_key.objectid,
590 key->objectid, offset, &ins);
07d400a6
YZ
591 BUG_ON(ret);
592 }
593 btrfs_release_path(root, path);
594
595 if (btrfs_file_extent_compression(eb, item)) {
596 csum_start = ins.objectid;
597 csum_end = csum_start + ins.offset;
598 } else {
599 csum_start = ins.objectid +
600 btrfs_file_extent_offset(eb, item);
601 csum_end = csum_start +
602 btrfs_file_extent_num_bytes(eb, item);
603 }
604
605 ret = btrfs_lookup_csums_range(root->log_root,
606 csum_start, csum_end - 1,
607 &ordered_sums);
608 BUG_ON(ret);
609 while (!list_empty(&ordered_sums)) {
610 struct btrfs_ordered_sum *sums;
611 sums = list_entry(ordered_sums.next,
612 struct btrfs_ordered_sum,
613 list);
614 ret = btrfs_csum_file_blocks(trans,
615 root->fs_info->csum_root,
616 sums);
617 BUG_ON(ret);
618 list_del(&sums->list);
619 kfree(sums);
620 }
621 } else {
622 btrfs_release_path(root, path);
623 }
624 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
625 /* inline extents are easy, we just overwrite them */
626 ret = overwrite_item(trans, root, path, eb, slot, key);
627 BUG_ON(ret);
628 }
e02119d5 629
07d400a6 630 inode_set_bytes(inode, saved_nbytes);
e02119d5
CM
631 btrfs_update_inode(trans, root, inode);
632out:
633 if (inode)
634 iput(inode);
635 return ret;
636}
637
638/*
639 * when cleaning up conflicts between the directory names in the
640 * subvolume, directory names in the log and directory names in the
641 * inode back references, we may have to unlink inodes from directories.
642 *
643 * This is a helper function to do the unlink of a specific directory
644 * item
645 */
646static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
647 struct btrfs_root *root,
648 struct btrfs_path *path,
649 struct inode *dir,
650 struct btrfs_dir_item *di)
651{
652 struct inode *inode;
653 char *name;
654 int name_len;
655 struct extent_buffer *leaf;
656 struct btrfs_key location;
657 int ret;
658
659 leaf = path->nodes[0];
660
661 btrfs_dir_item_key_to_cpu(leaf, di, &location);
662 name_len = btrfs_dir_name_len(leaf, di);
663 name = kmalloc(name_len, GFP_NOFS);
664 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
665 btrfs_release_path(root, path);
666
667 inode = read_one_inode(root, location.objectid);
668 BUG_ON(!inode);
669
ec051c0f
YZ
670 ret = link_to_fixup_dir(trans, root, path, location.objectid);
671 BUG_ON(ret);
12fcfd22 672
e02119d5 673 ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
ec051c0f 674 BUG_ON(ret);
e02119d5
CM
675 kfree(name);
676
677 iput(inode);
678 return ret;
679}
680
681/*
682 * helper function to see if a given name and sequence number found
683 * in an inode back reference are already in a directory and correctly
684 * point to this inode
685 */
686static noinline int inode_in_dir(struct btrfs_root *root,
687 struct btrfs_path *path,
688 u64 dirid, u64 objectid, u64 index,
689 const char *name, int name_len)
690{
691 struct btrfs_dir_item *di;
692 struct btrfs_key location;
693 int match = 0;
694
695 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
696 index, name, name_len, 0);
697 if (di && !IS_ERR(di)) {
698 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
699 if (location.objectid != objectid)
700 goto out;
701 } else
702 goto out;
703 btrfs_release_path(root, path);
704
705 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
706 if (di && !IS_ERR(di)) {
707 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
708 if (location.objectid != objectid)
709 goto out;
710 } else
711 goto out;
712 match = 1;
713out:
714 btrfs_release_path(root, path);
715 return match;
716}
717
718/*
719 * helper function to check a log tree for a named back reference in
720 * an inode. This is used to decide if a back reference that is
721 * found in the subvolume conflicts with what we find in the log.
722 *
723 * inode backreferences may have multiple refs in a single item,
724 * during replay we process one reference at a time, and we don't
725 * want to delete valid links to a file from the subvolume if that
726 * link is also in the log.
727 */
728static noinline int backref_in_log(struct btrfs_root *log,
729 struct btrfs_key *key,
730 char *name, int namelen)
731{
732 struct btrfs_path *path;
733 struct btrfs_inode_ref *ref;
734 unsigned long ptr;
735 unsigned long ptr_end;
736 unsigned long name_ptr;
737 int found_name_len;
738 int item_size;
739 int ret;
740 int match = 0;
741
742 path = btrfs_alloc_path();
743 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
744 if (ret != 0)
745 goto out;
746
747 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
748 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
749 ptr_end = ptr + item_size;
750 while (ptr < ptr_end) {
751 ref = (struct btrfs_inode_ref *)ptr;
752 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
753 if (found_name_len == namelen) {
754 name_ptr = (unsigned long)(ref + 1);
755 ret = memcmp_extent_buffer(path->nodes[0], name,
756 name_ptr, namelen);
757 if (ret == 0) {
758 match = 1;
759 goto out;
760 }
761 }
762 ptr = (unsigned long)(ref + 1) + found_name_len;
763 }
764out:
765 btrfs_free_path(path);
766 return match;
767}
768
769
770/*
771 * replay one inode back reference item found in the log tree.
772 * eb, slot and key refer to the buffer and key found in the log tree.
773 * root is the destination we are replaying into, and path is for temp
774 * use by this function. (it should be released on return).
775 */
776static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
777 struct btrfs_root *root,
778 struct btrfs_root *log,
779 struct btrfs_path *path,
780 struct extent_buffer *eb, int slot,
781 struct btrfs_key *key)
782{
783 struct inode *dir;
784 int ret;
785 struct btrfs_key location;
786 struct btrfs_inode_ref *ref;
787 struct btrfs_dir_item *di;
788 struct inode *inode;
789 char *name;
790 int namelen;
791 unsigned long ref_ptr;
792 unsigned long ref_end;
793
794 location.objectid = key->objectid;
795 location.type = BTRFS_INODE_ITEM_KEY;
796 location.offset = 0;
797
798 /*
799 * it is possible that we didn't log all the parent directories
800 * for a given inode. If we don't find the dir, just don't
801 * copy the back ref in. The link count fixup code will take
802 * care of the rest
803 */
804 dir = read_one_inode(root, key->offset);
805 if (!dir)
806 return -ENOENT;
807
808 inode = read_one_inode(root, key->objectid);
631c07c8 809 BUG_ON(!inode);
e02119d5
CM
810
811 ref_ptr = btrfs_item_ptr_offset(eb, slot);
812 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
813
814again:
815 ref = (struct btrfs_inode_ref *)ref_ptr;
816
817 namelen = btrfs_inode_ref_name_len(eb, ref);
818 name = kmalloc(namelen, GFP_NOFS);
819 BUG_ON(!name);
820
821 read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
822
823 /* if we already have a perfect match, we're done */
824 if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
825 btrfs_inode_ref_index(eb, ref),
826 name, namelen)) {
827 goto out;
828 }
829
830 /*
831 * look for a conflicting back reference in the metadata.
832 * if we find one we have to unlink that name of the file
833 * before we add our new link. Later on, we overwrite any
834 * existing back reference, and we don't want to create
835 * dangling pointers in the directory.
836 */
837conflict_again:
838 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
839 if (ret == 0) {
840 char *victim_name;
841 int victim_name_len;
842 struct btrfs_inode_ref *victim_ref;
843 unsigned long ptr;
844 unsigned long ptr_end;
845 struct extent_buffer *leaf = path->nodes[0];
846
847 /* are we trying to overwrite a back ref for the root directory
848 * if so, just jump out, we're done
849 */
850 if (key->objectid == key->offset)
851 goto out_nowrite;
852
853 /* check all the names in this back reference to see
854 * if they are in the log. if so, we allow them to stay
855 * otherwise they must be unlinked as a conflict
856 */
857 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
858 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
d397712b 859 while (ptr < ptr_end) {
e02119d5
CM
860 victim_ref = (struct btrfs_inode_ref *)ptr;
861 victim_name_len = btrfs_inode_ref_name_len(leaf,
862 victim_ref);
863 victim_name = kmalloc(victim_name_len, GFP_NOFS);
864 BUG_ON(!victim_name);
865
866 read_extent_buffer(leaf, victim_name,
867 (unsigned long)(victim_ref + 1),
868 victim_name_len);
869
870 if (!backref_in_log(log, key, victim_name,
871 victim_name_len)) {
872 btrfs_inc_nlink(inode);
873 btrfs_release_path(root, path);
12fcfd22 874
e02119d5
CM
875 ret = btrfs_unlink_inode(trans, root, dir,
876 inode, victim_name,
877 victim_name_len);
878 kfree(victim_name);
879 btrfs_release_path(root, path);
880 goto conflict_again;
881 }
882 kfree(victim_name);
883 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
884 }
885 BUG_ON(ret);
886 }
887 btrfs_release_path(root, path);
888
889 /* look for a conflicting sequence number */
890 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
891 btrfs_inode_ref_index(eb, ref),
892 name, namelen, 0);
893 if (di && !IS_ERR(di)) {
894 ret = drop_one_dir_item(trans, root, path, dir, di);
895 BUG_ON(ret);
896 }
897 btrfs_release_path(root, path);
898
899
900 /* look for a conflicting name */
901 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
902 name, namelen, 0);
903 if (di && !IS_ERR(di)) {
904 ret = drop_one_dir_item(trans, root, path, dir, di);
905 BUG_ON(ret);
906 }
907 btrfs_release_path(root, path);
908
909 /* insert our name */
910 ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
911 btrfs_inode_ref_index(eb, ref));
912 BUG_ON(ret);
913
914 btrfs_update_inode(trans, root, inode);
915
916out:
917 ref_ptr = (unsigned long)(ref + 1) + namelen;
918 kfree(name);
919 if (ref_ptr < ref_end)
920 goto again;
921
922 /* finally write the back reference in the inode */
923 ret = overwrite_item(trans, root, path, eb, slot, key);
924 BUG_ON(ret);
925
926out_nowrite:
927 btrfs_release_path(root, path);
928 iput(dir);
929 iput(inode);
930 return 0;
931}
932
e02119d5
CM
933/*
934 * There are a few corners where the link count of the file can't
935 * be properly maintained during replay. So, instead of adding
936 * lots of complexity to the log code, we just scan the backrefs
937 * for any file that has been through replay.
938 *
939 * The scan will update the link count on the inode to reflect the
940 * number of back refs found. If it goes down to zero, the iput
941 * will free the inode.
942 */
943static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
944 struct btrfs_root *root,
945 struct inode *inode)
946{
947 struct btrfs_path *path;
948 int ret;
949 struct btrfs_key key;
950 u64 nlink = 0;
951 unsigned long ptr;
952 unsigned long ptr_end;
953 int name_len;
954
955 key.objectid = inode->i_ino;
956 key.type = BTRFS_INODE_REF_KEY;
957 key.offset = (u64)-1;
958
959 path = btrfs_alloc_path();
960
d397712b 961 while (1) {
e02119d5
CM
962 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
963 if (ret < 0)
964 break;
965 if (ret > 0) {
966 if (path->slots[0] == 0)
967 break;
968 path->slots[0]--;
969 }
970 btrfs_item_key_to_cpu(path->nodes[0], &key,
971 path->slots[0]);
972 if (key.objectid != inode->i_ino ||
973 key.type != BTRFS_INODE_REF_KEY)
974 break;
975 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
976 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
977 path->slots[0]);
d397712b 978 while (ptr < ptr_end) {
e02119d5
CM
979 struct btrfs_inode_ref *ref;
980
981 ref = (struct btrfs_inode_ref *)ptr;
982 name_len = btrfs_inode_ref_name_len(path->nodes[0],
983 ref);
984 ptr = (unsigned long)(ref + 1) + name_len;
985 nlink++;
986 }
987
988 if (key.offset == 0)
989 break;
990 key.offset--;
991 btrfs_release_path(root, path);
992 }
12fcfd22 993 btrfs_release_path(root, path);
e02119d5
CM
994 if (nlink != inode->i_nlink) {
995 inode->i_nlink = nlink;
996 btrfs_update_inode(trans, root, inode);
997 }
8d5bf1cb 998 BTRFS_I(inode)->index_cnt = (u64)-1;
e02119d5 999
12fcfd22
CM
1000 if (inode->i_nlink == 0 && S_ISDIR(inode->i_mode)) {
1001 ret = replay_dir_deletes(trans, root, NULL, path,
1002 inode->i_ino, 1);
1003 BUG_ON(ret);
1004 }
1005 btrfs_free_path(path);
1006
e02119d5
CM
1007 return 0;
1008}
1009
1010static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1011 struct btrfs_root *root,
1012 struct btrfs_path *path)
1013{
1014 int ret;
1015 struct btrfs_key key;
1016 struct inode *inode;
1017
1018 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1019 key.type = BTRFS_ORPHAN_ITEM_KEY;
1020 key.offset = (u64)-1;
d397712b 1021 while (1) {
e02119d5
CM
1022 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1023 if (ret < 0)
1024 break;
1025
1026 if (ret == 1) {
1027 if (path->slots[0] == 0)
1028 break;
1029 path->slots[0]--;
1030 }
1031
1032 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1033 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1034 key.type != BTRFS_ORPHAN_ITEM_KEY)
1035 break;
1036
1037 ret = btrfs_del_item(trans, root, path);
1038 BUG_ON(ret);
1039
1040 btrfs_release_path(root, path);
1041 inode = read_one_inode(root, key.offset);
1042 BUG_ON(!inode);
1043
1044 ret = fixup_inode_link_count(trans, root, inode);
1045 BUG_ON(ret);
1046
1047 iput(inode);
1048
12fcfd22
CM
1049 /*
1050 * fixup on a directory may create new entries,
1051 * make sure we always look for the highset possible
1052 * offset
1053 */
1054 key.offset = (u64)-1;
e02119d5
CM
1055 }
1056 btrfs_release_path(root, path);
1057 return 0;
1058}
1059
1060
1061/*
1062 * record a given inode in the fixup dir so we can check its link
1063 * count when replay is done. The link count is incremented here
1064 * so the inode won't go away until we check it
1065 */
1066static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1067 struct btrfs_root *root,
1068 struct btrfs_path *path,
1069 u64 objectid)
1070{
1071 struct btrfs_key key;
1072 int ret = 0;
1073 struct inode *inode;
1074
1075 inode = read_one_inode(root, objectid);
1076 BUG_ON(!inode);
1077
1078 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1079 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1080 key.offset = objectid;
1081
1082 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1083
1084 btrfs_release_path(root, path);
1085 if (ret == 0) {
1086 btrfs_inc_nlink(inode);
1087 btrfs_update_inode(trans, root, inode);
1088 } else if (ret == -EEXIST) {
1089 ret = 0;
1090 } else {
1091 BUG();
1092 }
1093 iput(inode);
1094
1095 return ret;
1096}
1097
1098/*
1099 * when replaying the log for a directory, we only insert names
1100 * for inodes that actually exist. This means an fsync on a directory
1101 * does not implicitly fsync all the new files in it
1102 */
1103static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1104 struct btrfs_root *root,
1105 struct btrfs_path *path,
1106 u64 dirid, u64 index,
1107 char *name, int name_len, u8 type,
1108 struct btrfs_key *location)
1109{
1110 struct inode *inode;
1111 struct inode *dir;
1112 int ret;
1113
1114 inode = read_one_inode(root, location->objectid);
1115 if (!inode)
1116 return -ENOENT;
1117
1118 dir = read_one_inode(root, dirid);
1119 if (!dir) {
1120 iput(inode);
1121 return -EIO;
1122 }
1123 ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1124
1125 /* FIXME, put inode into FIXUP list */
1126
1127 iput(inode);
1128 iput(dir);
1129 return ret;
1130}
1131
1132/*
1133 * take a single entry in a log directory item and replay it into
1134 * the subvolume.
1135 *
1136 * if a conflicting item exists in the subdirectory already,
1137 * the inode it points to is unlinked and put into the link count
1138 * fix up tree.
1139 *
1140 * If a name from the log points to a file or directory that does
1141 * not exist in the FS, it is skipped. fsyncs on directories
1142 * do not force down inodes inside that directory, just changes to the
1143 * names or unlinks in a directory.
1144 */
1145static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1146 struct btrfs_root *root,
1147 struct btrfs_path *path,
1148 struct extent_buffer *eb,
1149 struct btrfs_dir_item *di,
1150 struct btrfs_key *key)
1151{
1152 char *name;
1153 int name_len;
1154 struct btrfs_dir_item *dst_di;
1155 struct btrfs_key found_key;
1156 struct btrfs_key log_key;
1157 struct inode *dir;
e02119d5 1158 u8 log_type;
4bef0848 1159 int exists;
e02119d5
CM
1160 int ret;
1161
1162 dir = read_one_inode(root, key->objectid);
1163 BUG_ON(!dir);
1164
1165 name_len = btrfs_dir_name_len(eb, di);
1166 name = kmalloc(name_len, GFP_NOFS);
1167 log_type = btrfs_dir_type(eb, di);
1168 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1169 name_len);
1170
1171 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
4bef0848
CM
1172 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1173 if (exists == 0)
1174 exists = 1;
1175 else
1176 exists = 0;
1177 btrfs_release_path(root, path);
1178
e02119d5
CM
1179 if (key->type == BTRFS_DIR_ITEM_KEY) {
1180 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1181 name, name_len, 1);
d397712b 1182 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1183 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1184 key->objectid,
1185 key->offset, name,
1186 name_len, 1);
1187 } else {
1188 BUG();
1189 }
1190 if (!dst_di || IS_ERR(dst_di)) {
1191 /* we need a sequence number to insert, so we only
1192 * do inserts for the BTRFS_DIR_INDEX_KEY types
1193 */
1194 if (key->type != BTRFS_DIR_INDEX_KEY)
1195 goto out;
1196 goto insert;
1197 }
1198
1199 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1200 /* the existing item matches the logged item */
1201 if (found_key.objectid == log_key.objectid &&
1202 found_key.type == log_key.type &&
1203 found_key.offset == log_key.offset &&
1204 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1205 goto out;
1206 }
1207
1208 /*
1209 * don't drop the conflicting directory entry if the inode
1210 * for the new entry doesn't exist
1211 */
4bef0848 1212 if (!exists)
e02119d5
CM
1213 goto out;
1214
e02119d5
CM
1215 ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1216 BUG_ON(ret);
1217
1218 if (key->type == BTRFS_DIR_INDEX_KEY)
1219 goto insert;
1220out:
1221 btrfs_release_path(root, path);
1222 kfree(name);
1223 iput(dir);
1224 return 0;
1225
1226insert:
1227 btrfs_release_path(root, path);
1228 ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1229 name, name_len, log_type, &log_key);
1230
c293498b 1231 BUG_ON(ret && ret != -ENOENT);
e02119d5
CM
1232 goto out;
1233}
1234
1235/*
1236 * find all the names in a directory item and reconcile them into
1237 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1238 * one name in a directory item, but the same code gets used for
1239 * both directory index types
1240 */
1241static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1242 struct btrfs_root *root,
1243 struct btrfs_path *path,
1244 struct extent_buffer *eb, int slot,
1245 struct btrfs_key *key)
1246{
1247 int ret;
1248 u32 item_size = btrfs_item_size_nr(eb, slot);
1249 struct btrfs_dir_item *di;
1250 int name_len;
1251 unsigned long ptr;
1252 unsigned long ptr_end;
1253
1254 ptr = btrfs_item_ptr_offset(eb, slot);
1255 ptr_end = ptr + item_size;
d397712b 1256 while (ptr < ptr_end) {
e02119d5
CM
1257 di = (struct btrfs_dir_item *)ptr;
1258 name_len = btrfs_dir_name_len(eb, di);
1259 ret = replay_one_name(trans, root, path, eb, di, key);
1260 BUG_ON(ret);
1261 ptr = (unsigned long)(di + 1);
1262 ptr += name_len;
1263 }
1264 return 0;
1265}
1266
1267/*
1268 * directory replay has two parts. There are the standard directory
1269 * items in the log copied from the subvolume, and range items
1270 * created in the log while the subvolume was logged.
1271 *
1272 * The range items tell us which parts of the key space the log
1273 * is authoritative for. During replay, if a key in the subvolume
1274 * directory is in a logged range item, but not actually in the log
1275 * that means it was deleted from the directory before the fsync
1276 * and should be removed.
1277 */
1278static noinline int find_dir_range(struct btrfs_root *root,
1279 struct btrfs_path *path,
1280 u64 dirid, int key_type,
1281 u64 *start_ret, u64 *end_ret)
1282{
1283 struct btrfs_key key;
1284 u64 found_end;
1285 struct btrfs_dir_log_item *item;
1286 int ret;
1287 int nritems;
1288
1289 if (*start_ret == (u64)-1)
1290 return 1;
1291
1292 key.objectid = dirid;
1293 key.type = key_type;
1294 key.offset = *start_ret;
1295
1296 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1297 if (ret < 0)
1298 goto out;
1299 if (ret > 0) {
1300 if (path->slots[0] == 0)
1301 goto out;
1302 path->slots[0]--;
1303 }
1304 if (ret != 0)
1305 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1306
1307 if (key.type != key_type || key.objectid != dirid) {
1308 ret = 1;
1309 goto next;
1310 }
1311 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1312 struct btrfs_dir_log_item);
1313 found_end = btrfs_dir_log_end(path->nodes[0], item);
1314
1315 if (*start_ret >= key.offset && *start_ret <= found_end) {
1316 ret = 0;
1317 *start_ret = key.offset;
1318 *end_ret = found_end;
1319 goto out;
1320 }
1321 ret = 1;
1322next:
1323 /* check the next slot in the tree to see if it is a valid item */
1324 nritems = btrfs_header_nritems(path->nodes[0]);
1325 if (path->slots[0] >= nritems) {
1326 ret = btrfs_next_leaf(root, path);
1327 if (ret)
1328 goto out;
1329 } else {
1330 path->slots[0]++;
1331 }
1332
1333 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1334
1335 if (key.type != key_type || key.objectid != dirid) {
1336 ret = 1;
1337 goto out;
1338 }
1339 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1340 struct btrfs_dir_log_item);
1341 found_end = btrfs_dir_log_end(path->nodes[0], item);
1342 *start_ret = key.offset;
1343 *end_ret = found_end;
1344 ret = 0;
1345out:
1346 btrfs_release_path(root, path);
1347 return ret;
1348}
1349
1350/*
1351 * this looks for a given directory item in the log. If the directory
1352 * item is not in the log, the item is removed and the inode it points
1353 * to is unlinked
1354 */
1355static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1356 struct btrfs_root *root,
1357 struct btrfs_root *log,
1358 struct btrfs_path *path,
1359 struct btrfs_path *log_path,
1360 struct inode *dir,
1361 struct btrfs_key *dir_key)
1362{
1363 int ret;
1364 struct extent_buffer *eb;
1365 int slot;
1366 u32 item_size;
1367 struct btrfs_dir_item *di;
1368 struct btrfs_dir_item *log_di;
1369 int name_len;
1370 unsigned long ptr;
1371 unsigned long ptr_end;
1372 char *name;
1373 struct inode *inode;
1374 struct btrfs_key location;
1375
1376again:
1377 eb = path->nodes[0];
1378 slot = path->slots[0];
1379 item_size = btrfs_item_size_nr(eb, slot);
1380 ptr = btrfs_item_ptr_offset(eb, slot);
1381 ptr_end = ptr + item_size;
d397712b 1382 while (ptr < ptr_end) {
e02119d5
CM
1383 di = (struct btrfs_dir_item *)ptr;
1384 name_len = btrfs_dir_name_len(eb, di);
1385 name = kmalloc(name_len, GFP_NOFS);
1386 if (!name) {
1387 ret = -ENOMEM;
1388 goto out;
1389 }
1390 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1391 name_len);
1392 log_di = NULL;
12fcfd22 1393 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
e02119d5
CM
1394 log_di = btrfs_lookup_dir_item(trans, log, log_path,
1395 dir_key->objectid,
1396 name, name_len, 0);
12fcfd22 1397 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
e02119d5
CM
1398 log_di = btrfs_lookup_dir_index_item(trans, log,
1399 log_path,
1400 dir_key->objectid,
1401 dir_key->offset,
1402 name, name_len, 0);
1403 }
1404 if (!log_di || IS_ERR(log_di)) {
1405 btrfs_dir_item_key_to_cpu(eb, di, &location);
1406 btrfs_release_path(root, path);
1407 btrfs_release_path(log, log_path);
1408 inode = read_one_inode(root, location.objectid);
1409 BUG_ON(!inode);
1410
1411 ret = link_to_fixup_dir(trans, root,
1412 path, location.objectid);
1413 BUG_ON(ret);
1414 btrfs_inc_nlink(inode);
1415 ret = btrfs_unlink_inode(trans, root, dir, inode,
1416 name, name_len);
1417 BUG_ON(ret);
1418 kfree(name);
1419 iput(inode);
1420
1421 /* there might still be more names under this key
1422 * check and repeat if required
1423 */
1424 ret = btrfs_search_slot(NULL, root, dir_key, path,
1425 0, 0);
1426 if (ret == 0)
1427 goto again;
1428 ret = 0;
1429 goto out;
1430 }
1431 btrfs_release_path(log, log_path);
1432 kfree(name);
1433
1434 ptr = (unsigned long)(di + 1);
1435 ptr += name_len;
1436 }
1437 ret = 0;
1438out:
1439 btrfs_release_path(root, path);
1440 btrfs_release_path(log, log_path);
1441 return ret;
1442}
1443
1444/*
1445 * deletion replay happens before we copy any new directory items
1446 * out of the log or out of backreferences from inodes. It
1447 * scans the log to find ranges of keys that log is authoritative for,
1448 * and then scans the directory to find items in those ranges that are
1449 * not present in the log.
1450 *
1451 * Anything we don't find in the log is unlinked and removed from the
1452 * directory.
1453 */
1454static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1455 struct btrfs_root *root,
1456 struct btrfs_root *log,
1457 struct btrfs_path *path,
12fcfd22 1458 u64 dirid, int del_all)
e02119d5
CM
1459{
1460 u64 range_start;
1461 u64 range_end;
1462 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1463 int ret = 0;
1464 struct btrfs_key dir_key;
1465 struct btrfs_key found_key;
1466 struct btrfs_path *log_path;
1467 struct inode *dir;
1468
1469 dir_key.objectid = dirid;
1470 dir_key.type = BTRFS_DIR_ITEM_KEY;
1471 log_path = btrfs_alloc_path();
1472 if (!log_path)
1473 return -ENOMEM;
1474
1475 dir = read_one_inode(root, dirid);
1476 /* it isn't an error if the inode isn't there, that can happen
1477 * because we replay the deletes before we copy in the inode item
1478 * from the log
1479 */
1480 if (!dir) {
1481 btrfs_free_path(log_path);
1482 return 0;
1483 }
1484again:
1485 range_start = 0;
1486 range_end = 0;
d397712b 1487 while (1) {
12fcfd22
CM
1488 if (del_all)
1489 range_end = (u64)-1;
1490 else {
1491 ret = find_dir_range(log, path, dirid, key_type,
1492 &range_start, &range_end);
1493 if (ret != 0)
1494 break;
1495 }
e02119d5
CM
1496
1497 dir_key.offset = range_start;
d397712b 1498 while (1) {
e02119d5
CM
1499 int nritems;
1500 ret = btrfs_search_slot(NULL, root, &dir_key, path,
1501 0, 0);
1502 if (ret < 0)
1503 goto out;
1504
1505 nritems = btrfs_header_nritems(path->nodes[0]);
1506 if (path->slots[0] >= nritems) {
1507 ret = btrfs_next_leaf(root, path);
1508 if (ret)
1509 break;
1510 }
1511 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1512 path->slots[0]);
1513 if (found_key.objectid != dirid ||
1514 found_key.type != dir_key.type)
1515 goto next_type;
1516
1517 if (found_key.offset > range_end)
1518 break;
1519
1520 ret = check_item_in_log(trans, root, log, path,
12fcfd22
CM
1521 log_path, dir,
1522 &found_key);
e02119d5
CM
1523 BUG_ON(ret);
1524 if (found_key.offset == (u64)-1)
1525 break;
1526 dir_key.offset = found_key.offset + 1;
1527 }
1528 btrfs_release_path(root, path);
1529 if (range_end == (u64)-1)
1530 break;
1531 range_start = range_end + 1;
1532 }
1533
1534next_type:
1535 ret = 0;
1536 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1537 key_type = BTRFS_DIR_LOG_INDEX_KEY;
1538 dir_key.type = BTRFS_DIR_INDEX_KEY;
1539 btrfs_release_path(root, path);
1540 goto again;
1541 }
1542out:
1543 btrfs_release_path(root, path);
1544 btrfs_free_path(log_path);
1545 iput(dir);
1546 return ret;
1547}
1548
1549/*
1550 * the process_func used to replay items from the log tree. This
1551 * gets called in two different stages. The first stage just looks
1552 * for inodes and makes sure they are all copied into the subvolume.
1553 *
1554 * The second stage copies all the other item types from the log into
1555 * the subvolume. The two stage approach is slower, but gets rid of
1556 * lots of complexity around inodes referencing other inodes that exist
1557 * only in the log (references come from either directory items or inode
1558 * back refs).
1559 */
1560static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1561 struct walk_control *wc, u64 gen)
1562{
1563 int nritems;
1564 struct btrfs_path *path;
1565 struct btrfs_root *root = wc->replay_dest;
1566 struct btrfs_key key;
1567 u32 item_size;
1568 int level;
1569 int i;
1570 int ret;
1571
1572 btrfs_read_buffer(eb, gen);
1573
1574 level = btrfs_header_level(eb);
1575
1576 if (level != 0)
1577 return 0;
1578
1579 path = btrfs_alloc_path();
1580 BUG_ON(!path);
1581
1582 nritems = btrfs_header_nritems(eb);
1583 for (i = 0; i < nritems; i++) {
1584 btrfs_item_key_to_cpu(eb, &key, i);
1585 item_size = btrfs_item_size_nr(eb, i);
1586
1587 /* inode keys are done during the first stage */
1588 if (key.type == BTRFS_INODE_ITEM_KEY &&
1589 wc->stage == LOG_WALK_REPLAY_INODES) {
1590 struct inode *inode;
1591 struct btrfs_inode_item *inode_item;
1592 u32 mode;
1593
1594 inode_item = btrfs_item_ptr(eb, i,
1595 struct btrfs_inode_item);
1596 mode = btrfs_inode_mode(eb, inode_item);
1597 if (S_ISDIR(mode)) {
1598 ret = replay_dir_deletes(wc->trans,
12fcfd22 1599 root, log, path, key.objectid, 0);
e02119d5
CM
1600 BUG_ON(ret);
1601 }
1602 ret = overwrite_item(wc->trans, root, path,
1603 eb, i, &key);
1604 BUG_ON(ret);
1605
1606 /* for regular files, truncate away
1607 * extents past the new EOF
1608 */
1609 if (S_ISREG(mode)) {
1610 inode = read_one_inode(root,
1611 key.objectid);
1612 BUG_ON(!inode);
1613
1614 ret = btrfs_truncate_inode_items(wc->trans,
1615 root, inode, inode->i_size,
1616 BTRFS_EXTENT_DATA_KEY);
1617 BUG_ON(ret);
a74ac322
CM
1618
1619 /* if the nlink count is zero here, the iput
1620 * will free the inode. We bump it to make
1621 * sure it doesn't get freed until the link
1622 * count fixup is done
1623 */
1624 if (inode->i_nlink == 0) {
1625 btrfs_inc_nlink(inode);
1626 btrfs_update_inode(wc->trans,
1627 root, inode);
1628 }
e02119d5
CM
1629 iput(inode);
1630 }
1631 ret = link_to_fixup_dir(wc->trans, root,
1632 path, key.objectid);
1633 BUG_ON(ret);
1634 }
1635 if (wc->stage < LOG_WALK_REPLAY_ALL)
1636 continue;
1637
1638 /* these keys are simply copied */
1639 if (key.type == BTRFS_XATTR_ITEM_KEY) {
1640 ret = overwrite_item(wc->trans, root, path,
1641 eb, i, &key);
1642 BUG_ON(ret);
1643 } else if (key.type == BTRFS_INODE_REF_KEY) {
1644 ret = add_inode_ref(wc->trans, root, log, path,
1645 eb, i, &key);
1646 BUG_ON(ret && ret != -ENOENT);
1647 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1648 ret = replay_one_extent(wc->trans, root, path,
1649 eb, i, &key);
1650 BUG_ON(ret);
e02119d5
CM
1651 } else if (key.type == BTRFS_DIR_ITEM_KEY ||
1652 key.type == BTRFS_DIR_INDEX_KEY) {
1653 ret = replay_one_dir_item(wc->trans, root, path,
1654 eb, i, &key);
1655 BUG_ON(ret);
1656 }
1657 }
1658 btrfs_free_path(path);
1659 return 0;
1660}
1661
d397712b 1662static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1663 struct btrfs_root *root,
1664 struct btrfs_path *path, int *level,
1665 struct walk_control *wc)
1666{
1667 u64 root_owner;
1668 u64 root_gen;
1669 u64 bytenr;
1670 u64 ptr_gen;
1671 struct extent_buffer *next;
1672 struct extent_buffer *cur;
1673 struct extent_buffer *parent;
1674 u32 blocksize;
1675 int ret = 0;
1676
1677 WARN_ON(*level < 0);
1678 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1679
d397712b 1680 while (*level > 0) {
e02119d5
CM
1681 WARN_ON(*level < 0);
1682 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1683 cur = path->nodes[*level];
1684
1685 if (btrfs_header_level(cur) != *level)
1686 WARN_ON(1);
1687
1688 if (path->slots[*level] >=
1689 btrfs_header_nritems(cur))
1690 break;
1691
1692 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1693 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1694 blocksize = btrfs_level_size(root, *level - 1);
1695
1696 parent = path->nodes[*level];
1697 root_owner = btrfs_header_owner(parent);
1698 root_gen = btrfs_header_generation(parent);
1699
1700 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1701
1702 wc->process_func(root, next, wc, ptr_gen);
1703
1704 if (*level == 1) {
1705 path->slots[*level]++;
1706 if (wc->free) {
1707 btrfs_read_buffer(next, ptr_gen);
1708
1709 btrfs_tree_lock(next);
1710 clean_tree_block(trans, root, next);
b4ce94de 1711 btrfs_set_lock_blocking(next);
e02119d5
CM
1712 btrfs_wait_tree_block_writeback(next);
1713 btrfs_tree_unlock(next);
1714
e02119d5
CM
1715 WARN_ON(root_owner !=
1716 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1717 ret = btrfs_free_reserved_extent(root,
1718 bytenr, blocksize);
e02119d5
CM
1719 BUG_ON(ret);
1720 }
1721 free_extent_buffer(next);
1722 continue;
1723 }
1724 btrfs_read_buffer(next, ptr_gen);
1725
1726 WARN_ON(*level <= 0);
1727 if (path->nodes[*level-1])
1728 free_extent_buffer(path->nodes[*level-1]);
1729 path->nodes[*level-1] = next;
1730 *level = btrfs_header_level(next);
1731 path->slots[*level] = 0;
1732 cond_resched();
1733 }
1734 WARN_ON(*level < 0);
1735 WARN_ON(*level >= BTRFS_MAX_LEVEL);
1736
d397712b 1737 if (path->nodes[*level] == root->node)
e02119d5 1738 parent = path->nodes[*level];
d397712b 1739 else
e02119d5 1740 parent = path->nodes[*level + 1];
d397712b 1741
e02119d5
CM
1742 bytenr = path->nodes[*level]->start;
1743
1744 blocksize = btrfs_level_size(root, *level);
1745 root_owner = btrfs_header_owner(parent);
1746 root_gen = btrfs_header_generation(parent);
1747
1748 wc->process_func(root, path->nodes[*level], wc,
1749 btrfs_header_generation(path->nodes[*level]));
1750
1751 if (wc->free) {
1752 next = path->nodes[*level];
1753 btrfs_tree_lock(next);
1754 clean_tree_block(trans, root, next);
b4ce94de 1755 btrfs_set_lock_blocking(next);
e02119d5
CM
1756 btrfs_wait_tree_block_writeback(next);
1757 btrfs_tree_unlock(next);
1758
e02119d5 1759 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1760 ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
e02119d5
CM
1761 BUG_ON(ret);
1762 }
1763 free_extent_buffer(path->nodes[*level]);
1764 path->nodes[*level] = NULL;
1765 *level += 1;
1766
1767 cond_resched();
1768 return 0;
1769}
1770
d397712b 1771static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
e02119d5
CM
1772 struct btrfs_root *root,
1773 struct btrfs_path *path, int *level,
1774 struct walk_control *wc)
1775{
1776 u64 root_owner;
1777 u64 root_gen;
1778 int i;
1779 int slot;
1780 int ret;
1781
d397712b 1782 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
e02119d5
CM
1783 slot = path->slots[i];
1784 if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1785 struct extent_buffer *node;
1786 node = path->nodes[i];
1787 path->slots[i]++;
1788 *level = i;
1789 WARN_ON(*level == 0);
1790 return 0;
1791 } else {
31840ae1
ZY
1792 struct extent_buffer *parent;
1793 if (path->nodes[*level] == root->node)
1794 parent = path->nodes[*level];
1795 else
1796 parent = path->nodes[*level + 1];
1797
1798 root_owner = btrfs_header_owner(parent);
1799 root_gen = btrfs_header_generation(parent);
e02119d5
CM
1800 wc->process_func(root, path->nodes[*level], wc,
1801 btrfs_header_generation(path->nodes[*level]));
1802 if (wc->free) {
1803 struct extent_buffer *next;
1804
1805 next = path->nodes[*level];
1806
1807 btrfs_tree_lock(next);
1808 clean_tree_block(trans, root, next);
b4ce94de 1809 btrfs_set_lock_blocking(next);
e02119d5
CM
1810 btrfs_wait_tree_block_writeback(next);
1811 btrfs_tree_unlock(next);
1812
e02119d5 1813 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
d00aff00 1814 ret = btrfs_free_reserved_extent(root,
e02119d5 1815 path->nodes[*level]->start,
d00aff00 1816 path->nodes[*level]->len);
e02119d5
CM
1817 BUG_ON(ret);
1818 }
1819 free_extent_buffer(path->nodes[*level]);
1820 path->nodes[*level] = NULL;
1821 *level = i + 1;
1822 }
1823 }
1824 return 1;
1825}
1826
1827/*
1828 * drop the reference count on the tree rooted at 'snap'. This traverses
1829 * the tree freeing any blocks that have a ref count of zero after being
1830 * decremented.
1831 */
1832static int walk_log_tree(struct btrfs_trans_handle *trans,
1833 struct btrfs_root *log, struct walk_control *wc)
1834{
1835 int ret = 0;
1836 int wret;
1837 int level;
1838 struct btrfs_path *path;
1839 int i;
1840 int orig_level;
1841
1842 path = btrfs_alloc_path();
1843 BUG_ON(!path);
1844
1845 level = btrfs_header_level(log->node);
1846 orig_level = level;
1847 path->nodes[level] = log->node;
1848 extent_buffer_get(log->node);
1849 path->slots[level] = 0;
1850
d397712b 1851 while (1) {
e02119d5
CM
1852 wret = walk_down_log_tree(trans, log, path, &level, wc);
1853 if (wret > 0)
1854 break;
1855 if (wret < 0)
1856 ret = wret;
1857
1858 wret = walk_up_log_tree(trans, log, path, &level, wc);
1859 if (wret > 0)
1860 break;
1861 if (wret < 0)
1862 ret = wret;
1863 }
1864
1865 /* was the root node processed? if not, catch it here */
1866 if (path->nodes[orig_level]) {
1867 wc->process_func(log, path->nodes[orig_level], wc,
1868 btrfs_header_generation(path->nodes[orig_level]));
1869 if (wc->free) {
1870 struct extent_buffer *next;
1871
1872 next = path->nodes[orig_level];
1873
1874 btrfs_tree_lock(next);
1875 clean_tree_block(trans, log, next);
b4ce94de 1876 btrfs_set_lock_blocking(next);
e02119d5
CM
1877 btrfs_wait_tree_block_writeback(next);
1878 btrfs_tree_unlock(next);
1879
e02119d5
CM
1880 WARN_ON(log->root_key.objectid !=
1881 BTRFS_TREE_LOG_OBJECTID);
d00aff00
CM
1882 ret = btrfs_free_reserved_extent(log, next->start,
1883 next->len);
e02119d5
CM
1884 BUG_ON(ret);
1885 }
1886 }
1887
1888 for (i = 0; i <= orig_level; i++) {
1889 if (path->nodes[i]) {
1890 free_extent_buffer(path->nodes[i]);
1891 path->nodes[i] = NULL;
1892 }
1893 }
1894 btrfs_free_path(path);
e02119d5
CM
1895 return ret;
1896}
1897
7237f183
YZ
1898/*
1899 * helper function to update the item for a given subvolumes log root
1900 * in the tree of log roots
1901 */
1902static int update_log_root(struct btrfs_trans_handle *trans,
1903 struct btrfs_root *log)
1904{
1905 int ret;
1906
1907 if (log->log_transid == 1) {
1908 /* insert root item on the first sync */
1909 ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
1910 &log->root_key, &log->root_item);
1911 } else {
1912 ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
1913 &log->root_key, &log->root_item);
1914 }
1915 return ret;
1916}
1917
12fcfd22
CM
1918static int wait_log_commit(struct btrfs_trans_handle *trans,
1919 struct btrfs_root *root, unsigned long transid)
e02119d5
CM
1920{
1921 DEFINE_WAIT(wait);
7237f183 1922 int index = transid % 2;
e02119d5 1923
7237f183
YZ
1924 /*
1925 * we only allow two pending log transactions at a time,
1926 * so we know that if ours is more than 2 older than the
1927 * current transaction, we're done
1928 */
e02119d5 1929 do {
7237f183
YZ
1930 prepare_to_wait(&root->log_commit_wait[index],
1931 &wait, TASK_UNINTERRUPTIBLE);
1932 mutex_unlock(&root->log_mutex);
12fcfd22
CM
1933
1934 if (root->fs_info->last_trans_log_full_commit !=
1935 trans->transid && root->log_transid < transid + 2 &&
7237f183
YZ
1936 atomic_read(&root->log_commit[index]))
1937 schedule();
12fcfd22 1938
7237f183
YZ
1939 finish_wait(&root->log_commit_wait[index], &wait);
1940 mutex_lock(&root->log_mutex);
1941 } while (root->log_transid < transid + 2 &&
1942 atomic_read(&root->log_commit[index]));
1943 return 0;
1944}
1945
12fcfd22
CM
1946static int wait_for_writer(struct btrfs_trans_handle *trans,
1947 struct btrfs_root *root)
7237f183
YZ
1948{
1949 DEFINE_WAIT(wait);
1950 while (atomic_read(&root->log_writers)) {
1951 prepare_to_wait(&root->log_writer_wait,
1952 &wait, TASK_UNINTERRUPTIBLE);
1953 mutex_unlock(&root->log_mutex);
12fcfd22
CM
1954 if (root->fs_info->last_trans_log_full_commit !=
1955 trans->transid && atomic_read(&root->log_writers))
e02119d5 1956 schedule();
7237f183
YZ
1957 mutex_lock(&root->log_mutex);
1958 finish_wait(&root->log_writer_wait, &wait);
1959 }
e02119d5
CM
1960 return 0;
1961}
1962
1963/*
1964 * btrfs_sync_log does sends a given tree log down to the disk and
1965 * updates the super blocks to record it. When this call is done,
12fcfd22
CM
1966 * you know that any inodes previously logged are safely on disk only
1967 * if it returns 0.
1968 *
1969 * Any other return value means you need to call btrfs_commit_transaction.
1970 * Some of the edge cases for fsyncing directories that have had unlinks
1971 * or renames done in the past mean that sometimes the only safe
1972 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1973 * that has happened.
e02119d5
CM
1974 */
1975int btrfs_sync_log(struct btrfs_trans_handle *trans,
1976 struct btrfs_root *root)
1977{
7237f183
YZ
1978 int index1;
1979 int index2;
e02119d5 1980 int ret;
e02119d5 1981 struct btrfs_root *log = root->log_root;
7237f183 1982 struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
257c62e1 1983 u64 log_transid = 0;
e02119d5 1984
7237f183
YZ
1985 mutex_lock(&root->log_mutex);
1986 index1 = root->log_transid % 2;
1987 if (atomic_read(&root->log_commit[index1])) {
12fcfd22 1988 wait_log_commit(trans, root, root->log_transid);
7237f183
YZ
1989 mutex_unlock(&root->log_mutex);
1990 return 0;
e02119d5 1991 }
7237f183
YZ
1992 atomic_set(&root->log_commit[index1], 1);
1993
1994 /* wait for previous tree log sync to complete */
1995 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
12fcfd22 1996 wait_log_commit(trans, root, root->log_transid - 1);
e02119d5 1997
ff782e0a 1998 while (root->log_multiple_pids) {
7237f183
YZ
1999 unsigned long batch = root->log_batch;
2000 mutex_unlock(&root->log_mutex);
e02119d5 2001 schedule_timeout_uninterruptible(1);
7237f183 2002 mutex_lock(&root->log_mutex);
12fcfd22
CM
2003
2004 wait_for_writer(trans, root);
7237f183 2005 if (batch == root->log_batch)
e02119d5
CM
2006 break;
2007 }
e02119d5 2008
12fcfd22
CM
2009 /* bail out if we need to do a full commit */
2010 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2011 ret = -EAGAIN;
2012 mutex_unlock(&root->log_mutex);
2013 goto out;
2014 }
2015
d0c803c4 2016 ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
e02119d5 2017 BUG_ON(ret);
7237f183 2018
5d4f98a2 2019 btrfs_set_root_node(&log->root_item, log->node);
7237f183
YZ
2020
2021 root->log_batch = 0;
257c62e1 2022 log_transid = root->log_transid;
7237f183
YZ
2023 root->log_transid++;
2024 log->log_transid = root->log_transid;
ff782e0a 2025 root->log_start_pid = 0;
7237f183
YZ
2026 smp_mb();
2027 /*
2028 * log tree has been flushed to disk, new modifications of
2029 * the log will be written to new positions. so it's safe to
2030 * allow log writers to go in.
2031 */
2032 mutex_unlock(&root->log_mutex);
2033
2034 mutex_lock(&log_root_tree->log_mutex);
2035 log_root_tree->log_batch++;
2036 atomic_inc(&log_root_tree->log_writers);
2037 mutex_unlock(&log_root_tree->log_mutex);
2038
2039 ret = update_log_root(trans, log);
2040 BUG_ON(ret);
2041
2042 mutex_lock(&log_root_tree->log_mutex);
2043 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
2044 smp_mb();
2045 if (waitqueue_active(&log_root_tree->log_writer_wait))
2046 wake_up(&log_root_tree->log_writer_wait);
2047 }
2048
2049 index2 = log_root_tree->log_transid % 2;
2050 if (atomic_read(&log_root_tree->log_commit[index2])) {
12fcfd22
CM
2051 wait_log_commit(trans, log_root_tree,
2052 log_root_tree->log_transid);
7237f183
YZ
2053 mutex_unlock(&log_root_tree->log_mutex);
2054 goto out;
2055 }
2056 atomic_set(&log_root_tree->log_commit[index2], 1);
2057
12fcfd22
CM
2058 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
2059 wait_log_commit(trans, log_root_tree,
2060 log_root_tree->log_transid - 1);
2061 }
2062
2063 wait_for_writer(trans, log_root_tree);
7237f183 2064
12fcfd22
CM
2065 /*
2066 * now that we've moved on to the tree of log tree roots,
2067 * check the full commit flag again
2068 */
2069 if (root->fs_info->last_trans_log_full_commit == trans->transid) {
2070 mutex_unlock(&log_root_tree->log_mutex);
2071 ret = -EAGAIN;
2072 goto out_wake_log_root;
2073 }
7237f183
YZ
2074
2075 ret = btrfs_write_and_wait_marked_extents(log_root_tree,
2076 &log_root_tree->dirty_log_pages);
e02119d5
CM
2077 BUG_ON(ret);
2078
2079 btrfs_set_super_log_root(&root->fs_info->super_for_commit,
7237f183 2080 log_root_tree->node->start);
e02119d5 2081 btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
7237f183 2082 btrfs_header_level(log_root_tree->node));
e02119d5 2083
7237f183
YZ
2084 log_root_tree->log_batch = 0;
2085 log_root_tree->log_transid++;
e02119d5 2086 smp_mb();
7237f183
YZ
2087
2088 mutex_unlock(&log_root_tree->log_mutex);
2089
2090 /*
2091 * nobody else is going to jump in and write the the ctree
2092 * super here because the log_commit atomic below is protecting
2093 * us. We must be called with a transaction handle pinning
2094 * the running transaction open, so a full commit can't hop
2095 * in and cause problems either.
2096 */
4722607d 2097 write_ctree_super(trans, root->fs_info->tree_root, 1);
12fcfd22 2098 ret = 0;
7237f183 2099
257c62e1
CM
2100 mutex_lock(&root->log_mutex);
2101 if (root->last_log_commit < log_transid)
2102 root->last_log_commit = log_transid;
2103 mutex_unlock(&root->log_mutex);
2104
12fcfd22 2105out_wake_log_root:
7237f183
YZ
2106 atomic_set(&log_root_tree->log_commit[index2], 0);
2107 smp_mb();
2108 if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
2109 wake_up(&log_root_tree->log_commit_wait[index2]);
e02119d5 2110out:
7237f183
YZ
2111 atomic_set(&root->log_commit[index1], 0);
2112 smp_mb();
2113 if (waitqueue_active(&root->log_commit_wait[index1]))
2114 wake_up(&root->log_commit_wait[index1]);
e02119d5 2115 return 0;
e02119d5
CM
2116}
2117
12fcfd22
CM
2118/*
2119 * free all the extents used by the tree log. This should be called
e02119d5
CM
2120 * at commit time of the full transaction
2121 */
2122int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
2123{
2124 int ret;
2125 struct btrfs_root *log;
2126 struct key;
d0c803c4
CM
2127 u64 start;
2128 u64 end;
e02119d5
CM
2129 struct walk_control wc = {
2130 .free = 1,
2131 .process_func = process_one_buffer
2132 };
2133
07d400a6 2134 if (!root->log_root || root->fs_info->log_root_recovering)
e02119d5
CM
2135 return 0;
2136
2137 log = root->log_root;
2138 ret = walk_log_tree(trans, log, &wc);
2139 BUG_ON(ret);
2140
d397712b 2141 while (1) {
d0c803c4
CM
2142 ret = find_first_extent_bit(&log->dirty_log_pages,
2143 0, &start, &end, EXTENT_DIRTY);
2144 if (ret)
2145 break;
2146
2147 clear_extent_dirty(&log->dirty_log_pages,
2148 start, end, GFP_NOFS);
2149 }
2150
7237f183
YZ
2151 if (log->log_transid > 0) {
2152 ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2153 &log->root_key);
2154 BUG_ON(ret);
2155 }
e02119d5 2156 root->log_root = NULL;
7237f183
YZ
2157 free_extent_buffer(log->node);
2158 kfree(log);
e02119d5
CM
2159 return 0;
2160}
2161
e02119d5
CM
2162/*
2163 * If both a file and directory are logged, and unlinks or renames are
2164 * mixed in, we have a few interesting corners:
2165 *
2166 * create file X in dir Y
2167 * link file X to X.link in dir Y
2168 * fsync file X
2169 * unlink file X but leave X.link
2170 * fsync dir Y
2171 *
2172 * After a crash we would expect only X.link to exist. But file X
2173 * didn't get fsync'd again so the log has back refs for X and X.link.
2174 *
2175 * We solve this by removing directory entries and inode backrefs from the
2176 * log when a file that was logged in the current transaction is
2177 * unlinked. Any later fsync will include the updated log entries, and
2178 * we'll be able to reconstruct the proper directory items from backrefs.
2179 *
2180 * This optimizations allows us to avoid relogging the entire inode
2181 * or the entire directory.
2182 */
2183int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2184 struct btrfs_root *root,
2185 const char *name, int name_len,
2186 struct inode *dir, u64 index)
2187{
2188 struct btrfs_root *log;
2189 struct btrfs_dir_item *di;
2190 struct btrfs_path *path;
2191 int ret;
2192 int bytes_del = 0;
2193
3a5f1d45
CM
2194 if (BTRFS_I(dir)->logged_trans < trans->transid)
2195 return 0;
2196
e02119d5
CM
2197 ret = join_running_log_trans(root);
2198 if (ret)
2199 return 0;
2200
2201 mutex_lock(&BTRFS_I(dir)->log_mutex);
2202
2203 log = root->log_root;
2204 path = btrfs_alloc_path();
2205 di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2206 name, name_len, -1);
2207 if (di && !IS_ERR(di)) {
2208 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2209 bytes_del += name_len;
2210 BUG_ON(ret);
2211 }
2212 btrfs_release_path(log, path);
2213 di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2214 index, name, name_len, -1);
2215 if (di && !IS_ERR(di)) {
2216 ret = btrfs_delete_one_dir_name(trans, log, path, di);
2217 bytes_del += name_len;
2218 BUG_ON(ret);
2219 }
2220
2221 /* update the directory size in the log to reflect the names
2222 * we have removed
2223 */
2224 if (bytes_del) {
2225 struct btrfs_key key;
2226
2227 key.objectid = dir->i_ino;
2228 key.offset = 0;
2229 key.type = BTRFS_INODE_ITEM_KEY;
2230 btrfs_release_path(log, path);
2231
2232 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2233 if (ret == 0) {
2234 struct btrfs_inode_item *item;
2235 u64 i_size;
2236
2237 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2238 struct btrfs_inode_item);
2239 i_size = btrfs_inode_size(path->nodes[0], item);
2240 if (i_size > bytes_del)
2241 i_size -= bytes_del;
2242 else
2243 i_size = 0;
2244 btrfs_set_inode_size(path->nodes[0], item, i_size);
2245 btrfs_mark_buffer_dirty(path->nodes[0]);
2246 } else
2247 ret = 0;
2248 btrfs_release_path(log, path);
2249 }
2250
2251 btrfs_free_path(path);
2252 mutex_unlock(&BTRFS_I(dir)->log_mutex);
12fcfd22 2253 btrfs_end_log_trans(root);
e02119d5
CM
2254
2255 return 0;
2256}
2257
2258/* see comments for btrfs_del_dir_entries_in_log */
2259int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2260 struct btrfs_root *root,
2261 const char *name, int name_len,
2262 struct inode *inode, u64 dirid)
2263{
2264 struct btrfs_root *log;
2265 u64 index;
2266 int ret;
2267
3a5f1d45
CM
2268 if (BTRFS_I(inode)->logged_trans < trans->transid)
2269 return 0;
2270
e02119d5
CM
2271 ret = join_running_log_trans(root);
2272 if (ret)
2273 return 0;
2274 log = root->log_root;
2275 mutex_lock(&BTRFS_I(inode)->log_mutex);
2276
2277 ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2278 dirid, &index);
2279 mutex_unlock(&BTRFS_I(inode)->log_mutex);
12fcfd22 2280 btrfs_end_log_trans(root);
e02119d5 2281
e02119d5
CM
2282 return ret;
2283}
2284
2285/*
2286 * creates a range item in the log for 'dirid'. first_offset and
2287 * last_offset tell us which parts of the key space the log should
2288 * be considered authoritative for.
2289 */
2290static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2291 struct btrfs_root *log,
2292 struct btrfs_path *path,
2293 int key_type, u64 dirid,
2294 u64 first_offset, u64 last_offset)
2295{
2296 int ret;
2297 struct btrfs_key key;
2298 struct btrfs_dir_log_item *item;
2299
2300 key.objectid = dirid;
2301 key.offset = first_offset;
2302 if (key_type == BTRFS_DIR_ITEM_KEY)
2303 key.type = BTRFS_DIR_LOG_ITEM_KEY;
2304 else
2305 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2306 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2307 BUG_ON(ret);
2308
2309 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2310 struct btrfs_dir_log_item);
2311 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2312 btrfs_mark_buffer_dirty(path->nodes[0]);
2313 btrfs_release_path(log, path);
2314 return 0;
2315}
2316
2317/*
2318 * log all the items included in the current transaction for a given
2319 * directory. This also creates the range items in the log tree required
2320 * to replay anything deleted before the fsync
2321 */
2322static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2323 struct btrfs_root *root, struct inode *inode,
2324 struct btrfs_path *path,
2325 struct btrfs_path *dst_path, int key_type,
2326 u64 min_offset, u64 *last_offset_ret)
2327{
2328 struct btrfs_key min_key;
2329 struct btrfs_key max_key;
2330 struct btrfs_root *log = root->log_root;
2331 struct extent_buffer *src;
2332 int ret;
2333 int i;
2334 int nritems;
2335 u64 first_offset = min_offset;
2336 u64 last_offset = (u64)-1;
2337
2338 log = root->log_root;
2339 max_key.objectid = inode->i_ino;
2340 max_key.offset = (u64)-1;
2341 max_key.type = key_type;
2342
2343 min_key.objectid = inode->i_ino;
2344 min_key.type = key_type;
2345 min_key.offset = min_offset;
2346
2347 path->keep_locks = 1;
2348
2349 ret = btrfs_search_forward(root, &min_key, &max_key,
2350 path, 0, trans->transid);
2351
2352 /*
2353 * we didn't find anything from this transaction, see if there
2354 * is anything at all
2355 */
2356 if (ret != 0 || min_key.objectid != inode->i_ino ||
2357 min_key.type != key_type) {
2358 min_key.objectid = inode->i_ino;
2359 min_key.type = key_type;
2360 min_key.offset = (u64)-1;
2361 btrfs_release_path(root, path);
2362 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2363 if (ret < 0) {
2364 btrfs_release_path(root, path);
2365 return ret;
2366 }
2367 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2368
2369 /* if ret == 0 there are items for this type,
2370 * create a range to tell us the last key of this type.
2371 * otherwise, there are no items in this directory after
2372 * *min_offset, and we create a range to indicate that.
2373 */
2374 if (ret == 0) {
2375 struct btrfs_key tmp;
2376 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2377 path->slots[0]);
d397712b 2378 if (key_type == tmp.type)
e02119d5 2379 first_offset = max(min_offset, tmp.offset) + 1;
e02119d5
CM
2380 }
2381 goto done;
2382 }
2383
2384 /* go backward to find any previous key */
2385 ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2386 if (ret == 0) {
2387 struct btrfs_key tmp;
2388 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2389 if (key_type == tmp.type) {
2390 first_offset = tmp.offset;
2391 ret = overwrite_item(trans, log, dst_path,
2392 path->nodes[0], path->slots[0],
2393 &tmp);
2394 }
2395 }
2396 btrfs_release_path(root, path);
2397
2398 /* find the first key from this transaction again */
2399 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2400 if (ret != 0) {
2401 WARN_ON(1);
2402 goto done;
2403 }
2404
2405 /*
2406 * we have a block from this transaction, log every item in it
2407 * from our directory
2408 */
d397712b 2409 while (1) {
e02119d5
CM
2410 struct btrfs_key tmp;
2411 src = path->nodes[0];
2412 nritems = btrfs_header_nritems(src);
2413 for (i = path->slots[0]; i < nritems; i++) {
2414 btrfs_item_key_to_cpu(src, &min_key, i);
2415
2416 if (min_key.objectid != inode->i_ino ||
2417 min_key.type != key_type)
2418 goto done;
2419 ret = overwrite_item(trans, log, dst_path, src, i,
2420 &min_key);
2421 BUG_ON(ret);
2422 }
2423 path->slots[0] = nritems;
2424
2425 /*
2426 * look ahead to the next item and see if it is also
2427 * from this directory and from this transaction
2428 */
2429 ret = btrfs_next_leaf(root, path);
2430 if (ret == 1) {
2431 last_offset = (u64)-1;
2432 goto done;
2433 }
2434 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2435 if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2436 last_offset = (u64)-1;
2437 goto done;
2438 }
2439 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2440 ret = overwrite_item(trans, log, dst_path,
2441 path->nodes[0], path->slots[0],
2442 &tmp);
2443
2444 BUG_ON(ret);
2445 last_offset = tmp.offset;
2446 goto done;
2447 }
2448 }
2449done:
2450 *last_offset_ret = last_offset;
2451 btrfs_release_path(root, path);
2452 btrfs_release_path(log, dst_path);
2453
2454 /* insert the log range keys to indicate where the log is valid */
2455 ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2456 first_offset, last_offset);
2457 BUG_ON(ret);
2458 return 0;
2459}
2460
2461/*
2462 * logging directories is very similar to logging inodes, We find all the items
2463 * from the current transaction and write them to the log.
2464 *
2465 * The recovery code scans the directory in the subvolume, and if it finds a
2466 * key in the range logged that is not present in the log tree, then it means
2467 * that dir entry was unlinked during the transaction.
2468 *
2469 * In order for that scan to work, we must include one key smaller than
2470 * the smallest logged by this transaction and one key larger than the largest
2471 * key logged by this transaction.
2472 */
2473static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2474 struct btrfs_root *root, struct inode *inode,
2475 struct btrfs_path *path,
2476 struct btrfs_path *dst_path)
2477{
2478 u64 min_key;
2479 u64 max_key;
2480 int ret;
2481 int key_type = BTRFS_DIR_ITEM_KEY;
2482
2483again:
2484 min_key = 0;
2485 max_key = 0;
d397712b 2486 while (1) {
e02119d5
CM
2487 ret = log_dir_items(trans, root, inode, path,
2488 dst_path, key_type, min_key,
2489 &max_key);
2490 BUG_ON(ret);
2491 if (max_key == (u64)-1)
2492 break;
2493 min_key = max_key + 1;
2494 }
2495
2496 if (key_type == BTRFS_DIR_ITEM_KEY) {
2497 key_type = BTRFS_DIR_INDEX_KEY;
2498 goto again;
2499 }
2500 return 0;
2501}
2502
2503/*
2504 * a helper function to drop items from the log before we relog an
2505 * inode. max_key_type indicates the highest item type to remove.
2506 * This cannot be run for file data extents because it does not
2507 * free the extents they point to.
2508 */
2509static int drop_objectid_items(struct btrfs_trans_handle *trans,
2510 struct btrfs_root *log,
2511 struct btrfs_path *path,
2512 u64 objectid, int max_key_type)
2513{
2514 int ret;
2515 struct btrfs_key key;
2516 struct btrfs_key found_key;
2517
2518 key.objectid = objectid;
2519 key.type = max_key_type;
2520 key.offset = (u64)-1;
2521
d397712b 2522 while (1) {
e02119d5
CM
2523 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2524
2525 if (ret != 1)
2526 break;
2527
2528 if (path->slots[0] == 0)
2529 break;
2530
2531 path->slots[0]--;
2532 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2533 path->slots[0]);
2534
2535 if (found_key.objectid != objectid)
2536 break;
2537
2538 ret = btrfs_del_item(trans, log, path);
2539 BUG_ON(ret);
2540 btrfs_release_path(log, path);
2541 }
2542 btrfs_release_path(log, path);
2543 return 0;
2544}
2545
31ff1cd2
CM
2546static noinline int copy_items(struct btrfs_trans_handle *trans,
2547 struct btrfs_root *log,
2548 struct btrfs_path *dst_path,
2549 struct extent_buffer *src,
2550 int start_slot, int nr, int inode_only)
2551{
2552 unsigned long src_offset;
2553 unsigned long dst_offset;
2554 struct btrfs_file_extent_item *extent;
2555 struct btrfs_inode_item *inode_item;
2556 int ret;
2557 struct btrfs_key *ins_keys;
2558 u32 *ins_sizes;
2559 char *ins_data;
2560 int i;
d20f7043
CM
2561 struct list_head ordered_sums;
2562
2563 INIT_LIST_HEAD(&ordered_sums);
31ff1cd2
CM
2564
2565 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2566 nr * sizeof(u32), GFP_NOFS);
2567 ins_sizes = (u32 *)ins_data;
2568 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2569
2570 for (i = 0; i < nr; i++) {
2571 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2572 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2573 }
2574 ret = btrfs_insert_empty_items(trans, log, dst_path,
2575 ins_keys, ins_sizes, nr);
2576 BUG_ON(ret);
2577
5d4f98a2 2578 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
31ff1cd2
CM
2579 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2580 dst_path->slots[0]);
2581
2582 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2583
2584 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2585 src_offset, ins_sizes[i]);
2586
2587 if (inode_only == LOG_INODE_EXISTS &&
2588 ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2589 inode_item = btrfs_item_ptr(dst_path->nodes[0],
2590 dst_path->slots[0],
2591 struct btrfs_inode_item);
2592 btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2593
2594 /* set the generation to zero so the recover code
2595 * can tell the difference between an logging
2596 * just to say 'this inode exists' and a logging
2597 * to say 'update this inode with these values'
2598 */
2599 btrfs_set_inode_generation(dst_path->nodes[0],
2600 inode_item, 0);
2601 }
2602 /* take a reference on file data extents so that truncates
2603 * or deletes of this inode don't have to relog the inode
2604 * again
2605 */
2606 if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2607 int found_type;
2608 extent = btrfs_item_ptr(src, start_slot + i,
2609 struct btrfs_file_extent_item);
2610
2611 found_type = btrfs_file_extent_type(src, extent);
d899e052
YZ
2612 if (found_type == BTRFS_FILE_EXTENT_REG ||
2613 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5d4f98a2
YZ
2614 u64 ds, dl, cs, cl;
2615 ds = btrfs_file_extent_disk_bytenr(src,
2616 extent);
2617 /* ds == 0 is a hole */
2618 if (ds == 0)
2619 continue;
2620
2621 dl = btrfs_file_extent_disk_num_bytes(src,
2622 extent);
2623 cs = btrfs_file_extent_offset(src, extent);
2624 cl = btrfs_file_extent_num_bytes(src,
2625 extent);;
580afd76
CM
2626 if (btrfs_file_extent_compression(src,
2627 extent)) {
2628 cs = 0;
2629 cl = dl;
2630 }
5d4f98a2
YZ
2631
2632 ret = btrfs_lookup_csums_range(
2633 log->fs_info->csum_root,
2634 ds + cs, ds + cs + cl - 1,
2635 &ordered_sums);
2636 BUG_ON(ret);
31ff1cd2
CM
2637 }
2638 }
31ff1cd2
CM
2639 }
2640
2641 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2642 btrfs_release_path(log, dst_path);
2643 kfree(ins_data);
d20f7043
CM
2644
2645 /*
2646 * we have to do this after the loop above to avoid changing the
2647 * log tree while trying to change the log tree.
2648 */
d397712b 2649 while (!list_empty(&ordered_sums)) {
d20f7043
CM
2650 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2651 struct btrfs_ordered_sum,
2652 list);
2653 ret = btrfs_csum_file_blocks(trans, log, sums);
2654 BUG_ON(ret);
2655 list_del(&sums->list);
2656 kfree(sums);
2657 }
31ff1cd2
CM
2658 return 0;
2659}
2660
e02119d5
CM
2661/* log a single inode in the tree log.
2662 * At least one parent directory for this inode must exist in the tree
2663 * or be logged already.
2664 *
2665 * Any items from this inode changed by the current transaction are copied
2666 * to the log tree. An extra reference is taken on any extents in this
2667 * file, allowing us to avoid a whole pile of corner cases around logging
2668 * blocks that have been removed from the tree.
2669 *
2670 * See LOG_INODE_ALL and related defines for a description of what inode_only
2671 * does.
2672 *
2673 * This handles both files and directories.
2674 */
12fcfd22 2675static int btrfs_log_inode(struct btrfs_trans_handle *trans,
e02119d5
CM
2676 struct btrfs_root *root, struct inode *inode,
2677 int inode_only)
2678{
2679 struct btrfs_path *path;
2680 struct btrfs_path *dst_path;
2681 struct btrfs_key min_key;
2682 struct btrfs_key max_key;
2683 struct btrfs_root *log = root->log_root;
31ff1cd2 2684 struct extent_buffer *src = NULL;
e02119d5
CM
2685 u32 size;
2686 int ret;
3a5f1d45 2687 int nritems;
31ff1cd2
CM
2688 int ins_start_slot = 0;
2689 int ins_nr;
e02119d5
CM
2690
2691 log = root->log_root;
2692
2693 path = btrfs_alloc_path();
2694 dst_path = btrfs_alloc_path();
2695
2696 min_key.objectid = inode->i_ino;
2697 min_key.type = BTRFS_INODE_ITEM_KEY;
2698 min_key.offset = 0;
2699
2700 max_key.objectid = inode->i_ino;
12fcfd22
CM
2701
2702 /* today the code can only do partial logging of directories */
2703 if (!S_ISDIR(inode->i_mode))
2704 inode_only = LOG_INODE_ALL;
2705
e02119d5
CM
2706 if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2707 max_key.type = BTRFS_XATTR_ITEM_KEY;
2708 else
2709 max_key.type = (u8)-1;
2710 max_key.offset = (u64)-1;
2711
e02119d5
CM
2712 mutex_lock(&BTRFS_I(inode)->log_mutex);
2713
2714 /*
2715 * a brute force approach to making sure we get the most uptodate
2716 * copies of everything.
2717 */
2718 if (S_ISDIR(inode->i_mode)) {
2719 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2720
2721 if (inode_only == LOG_INODE_EXISTS)
2722 max_key_type = BTRFS_XATTR_ITEM_KEY;
2723 ret = drop_objectid_items(trans, log, path,
2724 inode->i_ino, max_key_type);
2725 } else {
2726 ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2727 }
2728 BUG_ON(ret);
2729 path->keep_locks = 1;
2730
d397712b 2731 while (1) {
31ff1cd2 2732 ins_nr = 0;
e02119d5
CM
2733 ret = btrfs_search_forward(root, &min_key, &max_key,
2734 path, 0, trans->transid);
2735 if (ret != 0)
2736 break;
3a5f1d45 2737again:
31ff1cd2 2738 /* note, ins_nr might be > 0 here, cleanup outside the loop */
e02119d5
CM
2739 if (min_key.objectid != inode->i_ino)
2740 break;
2741 if (min_key.type > max_key.type)
2742 break;
31ff1cd2 2743
e02119d5
CM
2744 src = path->nodes[0];
2745 size = btrfs_item_size_nr(src, path->slots[0]);
31ff1cd2
CM
2746 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2747 ins_nr++;
2748 goto next_slot;
2749 } else if (!ins_nr) {
2750 ins_start_slot = path->slots[0];
2751 ins_nr = 1;
2752 goto next_slot;
e02119d5
CM
2753 }
2754
31ff1cd2
CM
2755 ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2756 ins_nr, inode_only);
2757 BUG_ON(ret);
2758 ins_nr = 1;
2759 ins_start_slot = path->slots[0];
2760next_slot:
e02119d5 2761
3a5f1d45
CM
2762 nritems = btrfs_header_nritems(path->nodes[0]);
2763 path->slots[0]++;
2764 if (path->slots[0] < nritems) {
2765 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2766 path->slots[0]);
2767 goto again;
2768 }
31ff1cd2
CM
2769 if (ins_nr) {
2770 ret = copy_items(trans, log, dst_path, src,
2771 ins_start_slot,
2772 ins_nr, inode_only);
2773 BUG_ON(ret);
2774 ins_nr = 0;
2775 }
3a5f1d45
CM
2776 btrfs_release_path(root, path);
2777
e02119d5
CM
2778 if (min_key.offset < (u64)-1)
2779 min_key.offset++;
2780 else if (min_key.type < (u8)-1)
2781 min_key.type++;
2782 else if (min_key.objectid < (u64)-1)
2783 min_key.objectid++;
2784 else
2785 break;
2786 }
31ff1cd2
CM
2787 if (ins_nr) {
2788 ret = copy_items(trans, log, dst_path, src,
2789 ins_start_slot,
2790 ins_nr, inode_only);
2791 BUG_ON(ret);
2792 ins_nr = 0;
2793 }
2794 WARN_ON(ins_nr);
9623f9a3 2795 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
e02119d5
CM
2796 btrfs_release_path(root, path);
2797 btrfs_release_path(log, dst_path);
2798 ret = log_directory_changes(trans, root, inode, path, dst_path);
2799 BUG_ON(ret);
2800 }
3a5f1d45 2801 BTRFS_I(inode)->logged_trans = trans->transid;
e02119d5
CM
2802 mutex_unlock(&BTRFS_I(inode)->log_mutex);
2803
2804 btrfs_free_path(path);
2805 btrfs_free_path(dst_path);
e02119d5
CM
2806 return 0;
2807}
2808
12fcfd22
CM
2809/*
2810 * follow the dentry parent pointers up the chain and see if any
2811 * of the directories in it require a full commit before they can
2812 * be logged. Returns zero if nothing special needs to be done or 1 if
2813 * a full commit is required.
2814 */
2815static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
2816 struct inode *inode,
2817 struct dentry *parent,
2818 struct super_block *sb,
2819 u64 last_committed)
e02119d5 2820{
12fcfd22
CM
2821 int ret = 0;
2822 struct btrfs_root *root;
e02119d5 2823
af4176b4
CM
2824 /*
2825 * for regular files, if its inode is already on disk, we don't
2826 * have to worry about the parents at all. This is because
2827 * we can use the last_unlink_trans field to record renames
2828 * and other fun in this file.
2829 */
2830 if (S_ISREG(inode->i_mode) &&
2831 BTRFS_I(inode)->generation <= last_committed &&
2832 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2833 goto out;
2834
12fcfd22
CM
2835 if (!S_ISDIR(inode->i_mode)) {
2836 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2837 goto out;
2838 inode = parent->d_inode;
2839 }
2840
2841 while (1) {
2842 BTRFS_I(inode)->logged_trans = trans->transid;
2843 smp_mb();
2844
2845 if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
2846 root = BTRFS_I(inode)->root;
2847
2848 /*
2849 * make sure any commits to the log are forced
2850 * to be full commits
2851 */
2852 root->fs_info->last_trans_log_full_commit =
2853 trans->transid;
2854 ret = 1;
2855 break;
2856 }
2857
2858 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
2859 break;
2860
76dda93c 2861 if (IS_ROOT(parent))
12fcfd22
CM
2862 break;
2863
2864 parent = parent->d_parent;
2865 inode = parent->d_inode;
2866
2867 }
2868out:
e02119d5
CM
2869 return ret;
2870}
2871
257c62e1
CM
2872static int inode_in_log(struct btrfs_trans_handle *trans,
2873 struct inode *inode)
2874{
2875 struct btrfs_root *root = BTRFS_I(inode)->root;
2876 int ret = 0;
2877
2878 mutex_lock(&root->log_mutex);
2879 if (BTRFS_I(inode)->logged_trans == trans->transid &&
2880 BTRFS_I(inode)->last_sub_trans <= root->last_log_commit)
2881 ret = 1;
2882 mutex_unlock(&root->log_mutex);
2883 return ret;
2884}
2885
2886
e02119d5
CM
2887/*
2888 * helper function around btrfs_log_inode to make sure newly created
2889 * parent directories also end up in the log. A minimal inode and backref
2890 * only logging is done of any parent directories that are older than
2891 * the last committed transaction
2892 */
12fcfd22
CM
2893int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
2894 struct btrfs_root *root, struct inode *inode,
2895 struct dentry *parent, int exists_only)
e02119d5 2896{
12fcfd22 2897 int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
e02119d5 2898 struct super_block *sb;
12fcfd22
CM
2899 int ret = 0;
2900 u64 last_committed = root->fs_info->last_trans_committed;
2901
2902 sb = inode->i_sb;
2903
3a5e1404
SW
2904 if (btrfs_test_opt(root, NOTREELOG)) {
2905 ret = 1;
2906 goto end_no_trans;
2907 }
2908
12fcfd22
CM
2909 if (root->fs_info->last_trans_log_full_commit >
2910 root->fs_info->last_trans_committed) {
2911 ret = 1;
2912 goto end_no_trans;
2913 }
2914
76dda93c
YZ
2915 if (root != BTRFS_I(inode)->root ||
2916 btrfs_root_refs(&root->root_item) == 0) {
2917 ret = 1;
2918 goto end_no_trans;
2919 }
2920
12fcfd22
CM
2921 ret = check_parent_dirs_for_sync(trans, inode, parent,
2922 sb, last_committed);
2923 if (ret)
2924 goto end_no_trans;
e02119d5 2925
257c62e1
CM
2926 if (inode_in_log(trans, inode)) {
2927 ret = BTRFS_NO_LOG_SYNC;
2928 goto end_no_trans;
2929 }
2930
e02119d5 2931 start_log_trans(trans, root);
e02119d5 2932
12fcfd22
CM
2933 ret = btrfs_log_inode(trans, root, inode, inode_only);
2934 BUG_ON(ret);
12fcfd22 2935
af4176b4
CM
2936 /*
2937 * for regular files, if its inode is already on disk, we don't
2938 * have to worry about the parents at all. This is because
2939 * we can use the last_unlink_trans field to record renames
2940 * and other fun in this file.
2941 */
2942 if (S_ISREG(inode->i_mode) &&
2943 BTRFS_I(inode)->generation <= last_committed &&
2944 BTRFS_I(inode)->last_unlink_trans <= last_committed)
2945 goto no_parent;
2946
2947 inode_only = LOG_INODE_EXISTS;
12fcfd22
CM
2948 while (1) {
2949 if (!parent || !parent->d_inode || sb != parent->d_inode->i_sb)
e02119d5
CM
2950 break;
2951
12fcfd22 2952 inode = parent->d_inode;
76dda93c
YZ
2953 if (root != BTRFS_I(inode)->root)
2954 break;
2955
12fcfd22
CM
2956 if (BTRFS_I(inode)->generation >
2957 root->fs_info->last_trans_committed) {
2958 ret = btrfs_log_inode(trans, root, inode, inode_only);
2959 BUG_ON(ret);
2960 }
76dda93c 2961 if (IS_ROOT(parent))
e02119d5 2962 break;
12fcfd22
CM
2963
2964 parent = parent->d_parent;
e02119d5 2965 }
af4176b4 2966no_parent:
12fcfd22
CM
2967 ret = 0;
2968 btrfs_end_log_trans(root);
2969end_no_trans:
2970 return ret;
e02119d5
CM
2971}
2972
2973/*
2974 * it is not safe to log dentry if the chunk root has added new
2975 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
2976 * If this returns 1, you must commit the transaction to safely get your
2977 * data on disk.
2978 */
2979int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2980 struct btrfs_root *root, struct dentry *dentry)
2981{
12fcfd22
CM
2982 return btrfs_log_inode_parent(trans, root, dentry->d_inode,
2983 dentry->d_parent, 0);
e02119d5
CM
2984}
2985
2986/*
2987 * should be called during mount to recover any replay any log trees
2988 * from the FS
2989 */
2990int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2991{
2992 int ret;
2993 struct btrfs_path *path;
2994 struct btrfs_trans_handle *trans;
2995 struct btrfs_key key;
2996 struct btrfs_key found_key;
2997 struct btrfs_key tmp_key;
2998 struct btrfs_root *log;
2999 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
3000 struct walk_control wc = {
3001 .process_func = process_one_buffer,
3002 .stage = 0,
3003 };
3004
3005 fs_info->log_root_recovering = 1;
3006 path = btrfs_alloc_path();
3007 BUG_ON(!path);
3008
3009 trans = btrfs_start_transaction(fs_info->tree_root, 1);
3010
3011 wc.trans = trans;
3012 wc.pin = 1;
3013
3014 walk_log_tree(trans, log_root_tree, &wc);
3015
3016again:
3017 key.objectid = BTRFS_TREE_LOG_OBJECTID;
3018 key.offset = (u64)-1;
3019 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
3020
d397712b 3021 while (1) {
e02119d5
CM
3022 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
3023 if (ret < 0)
3024 break;
3025 if (ret > 0) {
3026 if (path->slots[0] == 0)
3027 break;
3028 path->slots[0]--;
3029 }
3030 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3031 path->slots[0]);
3032 btrfs_release_path(log_root_tree, path);
3033 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
3034 break;
3035
3036 log = btrfs_read_fs_root_no_radix(log_root_tree,
3037 &found_key);
3038 BUG_ON(!log);
3039
3040
3041 tmp_key.objectid = found_key.offset;
3042 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
3043 tmp_key.offset = (u64)-1;
3044
3045 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
e02119d5
CM
3046 BUG_ON(!wc.replay_dest);
3047
07d400a6 3048 wc.replay_dest->log_root = log;
5d4f98a2 3049 btrfs_record_root_in_trans(trans, wc.replay_dest);
e02119d5
CM
3050 ret = walk_log_tree(trans, log, &wc);
3051 BUG_ON(ret);
3052
3053 if (wc.stage == LOG_WALK_REPLAY_ALL) {
3054 ret = fixup_inode_link_counts(trans, wc.replay_dest,
3055 path);
3056 BUG_ON(ret);
3057 }
3058
3059 key.offset = found_key.offset - 1;
07d400a6 3060 wc.replay_dest->log_root = NULL;
e02119d5 3061 free_extent_buffer(log->node);
b263c2c8 3062 free_extent_buffer(log->commit_root);
e02119d5
CM
3063 kfree(log);
3064
3065 if (found_key.offset == 0)
3066 break;
3067 }
3068 btrfs_release_path(log_root_tree, path);
3069
3070 /* step one is to pin it all, step two is to replay just inodes */
3071 if (wc.pin) {
3072 wc.pin = 0;
3073 wc.process_func = replay_one_buffer;
3074 wc.stage = LOG_WALK_REPLAY_INODES;
3075 goto again;
3076 }
3077 /* step three is to replay everything */
3078 if (wc.stage < LOG_WALK_REPLAY_ALL) {
3079 wc.stage++;
3080 goto again;
3081 }
3082
3083 btrfs_free_path(path);
3084
3085 free_extent_buffer(log_root_tree->node);
3086 log_root_tree->log_root = NULL;
3087 fs_info->log_root_recovering = 0;
3088
3089 /* step 4: commit the transaction, which also unpins the blocks */
3090 btrfs_commit_transaction(trans, fs_info->tree_root);
3091
3092 kfree(log_root_tree);
3093 return 0;
3094}
12fcfd22
CM
3095
3096/*
3097 * there are some corner cases where we want to force a full
3098 * commit instead of allowing a directory to be logged.
3099 *
3100 * They revolve around files there were unlinked from the directory, and
3101 * this function updates the parent directory so that a full commit is
3102 * properly done if it is fsync'd later after the unlinks are done.
3103 */
3104void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
3105 struct inode *dir, struct inode *inode,
3106 int for_rename)
3107{
af4176b4
CM
3108 /*
3109 * when we're logging a file, if it hasn't been renamed
3110 * or unlinked, and its inode is fully committed on disk,
3111 * we don't have to worry about walking up the directory chain
3112 * to log its parents.
3113 *
3114 * So, we use the last_unlink_trans field to put this transid
3115 * into the file. When the file is logged we check it and
3116 * don't log the parents if the file is fully on disk.
3117 */
3118 if (S_ISREG(inode->i_mode))
3119 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3120
12fcfd22
CM
3121 /*
3122 * if this directory was already logged any new
3123 * names for this file/dir will get recorded
3124 */
3125 smp_mb();
3126 if (BTRFS_I(dir)->logged_trans == trans->transid)
3127 return;
3128
3129 /*
3130 * if the inode we're about to unlink was logged,
3131 * the log will be properly updated for any new names
3132 */
3133 if (BTRFS_I(inode)->logged_trans == trans->transid)
3134 return;
3135
3136 /*
3137 * when renaming files across directories, if the directory
3138 * there we're unlinking from gets fsync'd later on, there's
3139 * no way to find the destination directory later and fsync it
3140 * properly. So, we have to be conservative and force commits
3141 * so the new name gets discovered.
3142 */
3143 if (for_rename)
3144 goto record;
3145
3146 /* we can safely do the unlink without any special recording */
3147 return;
3148
3149record:
3150 BTRFS_I(dir)->last_unlink_trans = trans->transid;
3151}
3152
3153/*
3154 * Call this after adding a new name for a file and it will properly
3155 * update the log to reflect the new name.
3156 *
3157 * It will return zero if all goes well, and it will return 1 if a
3158 * full transaction commit is required.
3159 */
3160int btrfs_log_new_name(struct btrfs_trans_handle *trans,
3161 struct inode *inode, struct inode *old_dir,
3162 struct dentry *parent)
3163{
3164 struct btrfs_root * root = BTRFS_I(inode)->root;
3165
af4176b4
CM
3166 /*
3167 * this will force the logging code to walk the dentry chain
3168 * up for the file
3169 */
3170 if (S_ISREG(inode->i_mode))
3171 BTRFS_I(inode)->last_unlink_trans = trans->transid;
3172
12fcfd22
CM
3173 /*
3174 * if this inode hasn't been logged and directory we're renaming it
3175 * from hasn't been logged, we don't need to log it
3176 */
3177 if (BTRFS_I(inode)->logged_trans <=
3178 root->fs_info->last_trans_committed &&
3179 (!old_dir || BTRFS_I(old_dir)->logged_trans <=
3180 root->fs_info->last_trans_committed))
3181 return 0;
3182
3183 return btrfs_log_inode_parent(trans, root, inode, parent, 1);
3184}
3185