Btrfs: try to only do one btrfs_search_slot in do_setxattr
[linux-block.git] / fs / btrfs / transaction.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
79154b1b 19#include <linux/fs.h>
5a0e3ad6 20#include <linux/slab.h>
34088780 21#include <linux/sched.h>
d3c2fdcf 22#include <linux/writeback.h>
5f39d397 23#include <linux/pagemap.h>
5f2cc086 24#include <linux/blkdev.h>
79154b1b
CM
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
581bb050 30#include "inode-map.h"
79154b1b 31
0f7d52f4
CM
32#define BTRFS_ROOT_TRANS_TAG 0
33
80b6794d 34static noinline void put_transaction(struct btrfs_transaction *transaction)
79154b1b 35{
13c5a93e
JB
36 WARN_ON(atomic_read(&transaction->use_count) == 0);
37 if (atomic_dec_and_test(&transaction->use_count)) {
a4abeea4 38 BUG_ON(!list_empty(&transaction->list));
2c90e5d6
CM
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
78fae27e 41 }
79154b1b
CM
42}
43
817d52f8
JB
44static noinline void switch_commit_root(struct btrfs_root *root)
45{
817d52f8
JB
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
817d52f8
JB
48}
49
d352ac68
CM
50/*
51 * either allocate a new transaction or hop into the existing one
52 */
a4abeea4 53static noinline int join_transaction(struct btrfs_root *root, int nofail)
79154b1b
CM
54{
55 struct btrfs_transaction *cur_trans;
a4abeea4
JB
56
57 spin_lock(&root->fs_info->trans_lock);
58 if (root->fs_info->trans_no_join) {
59 if (!nofail) {
60 spin_unlock(&root->fs_info->trans_lock);
61 return -EBUSY;
62 }
63 }
64
79154b1b 65 cur_trans = root->fs_info->running_transaction;
a4abeea4
JB
66 if (cur_trans) {
67 atomic_inc(&cur_trans->use_count);
13c5a93e 68 atomic_inc(&cur_trans->num_writers);
15ee9bc7 69 cur_trans->num_joined++;
a4abeea4
JB
70 spin_unlock(&root->fs_info->trans_lock);
71 return 0;
79154b1b 72 }
a4abeea4
JB
73 spin_unlock(&root->fs_info->trans_lock);
74
75 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76 if (!cur_trans)
77 return -ENOMEM;
78 spin_lock(&root->fs_info->trans_lock);
79 if (root->fs_info->running_transaction) {
80 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81 cur_trans = root->fs_info->running_transaction;
82 atomic_inc(&cur_trans->use_count);
13c5a93e 83 atomic_inc(&cur_trans->num_writers);
15ee9bc7 84 cur_trans->num_joined++;
a4abeea4
JB
85 spin_unlock(&root->fs_info->trans_lock);
86 return 0;
79154b1b 87 }
a4abeea4
JB
88 atomic_set(&cur_trans->num_writers, 1);
89 cur_trans->num_joined = 0;
90 init_waitqueue_head(&cur_trans->writer_wait);
91 init_waitqueue_head(&cur_trans->commit_wait);
92 cur_trans->in_commit = 0;
93 cur_trans->blocked = 0;
94 /*
95 * One for this trans handle, one so it will live on until we
96 * commit the transaction.
97 */
98 atomic_set(&cur_trans->use_count, 2);
99 cur_trans->commit_done = 0;
100 cur_trans->start_time = get_seconds();
101
102 cur_trans->delayed_refs.root = RB_ROOT;
103 cur_trans->delayed_refs.num_entries = 0;
104 cur_trans->delayed_refs.num_heads_ready = 0;
105 cur_trans->delayed_refs.num_heads = 0;
106 cur_trans->delayed_refs.flushing = 0;
107 cur_trans->delayed_refs.run_delayed_start = 0;
108 spin_lock_init(&cur_trans->commit_lock);
109 spin_lock_init(&cur_trans->delayed_refs.lock);
110
111 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113 extent_io_tree_init(&cur_trans->dirty_pages,
ff5714cc 114 root->fs_info->btree_inode->i_mapping);
a4abeea4
JB
115 root->fs_info->generation++;
116 cur_trans->transid = root->fs_info->generation;
117 root->fs_info->running_transaction = cur_trans;
118 spin_unlock(&root->fs_info->trans_lock);
15ee9bc7 119
79154b1b
CM
120 return 0;
121}
122
d352ac68 123/*
d397712b
CM
124 * this does all the record keeping required to make sure that a reference
125 * counted root is properly recorded in a given transaction. This is required
126 * to make sure the old root from before we joined the transaction is deleted
127 * when the transaction commits
d352ac68 128 */
7585717f 129static int record_root_in_trans(struct btrfs_trans_handle *trans,
a4abeea4 130 struct btrfs_root *root)
6702ed49 131{
5d4f98a2 132 if (root->ref_cows && root->last_trans < trans->transid) {
6702ed49 133 WARN_ON(root == root->fs_info->extent_root);
5d4f98a2
YZ
134 WARN_ON(root->commit_root != root->node);
135
7585717f
CM
136 /*
137 * see below for in_trans_setup usage rules
138 * we have the reloc mutex held now, so there
139 * is only one writer in this function
140 */
141 root->in_trans_setup = 1;
142
143 /* make sure readers find in_trans_setup before
144 * they find our root->last_trans update
145 */
146 smp_wmb();
147
a4abeea4
JB
148 spin_lock(&root->fs_info->fs_roots_radix_lock);
149 if (root->last_trans == trans->transid) {
150 spin_unlock(&root->fs_info->fs_roots_radix_lock);
151 return 0;
152 }
5d4f98a2
YZ
153 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154 (unsigned long)root->root_key.objectid,
155 BTRFS_ROOT_TRANS_TAG);
a4abeea4 156 spin_unlock(&root->fs_info->fs_roots_radix_lock);
7585717f
CM
157 root->last_trans = trans->transid;
158
159 /* this is pretty tricky. We don't want to
160 * take the relocation lock in btrfs_record_root_in_trans
161 * unless we're really doing the first setup for this root in
162 * this transaction.
163 *
164 * Normally we'd use root->last_trans as a flag to decide
165 * if we want to take the expensive mutex.
166 *
167 * But, we have to set root->last_trans before we
168 * init the relocation root, otherwise, we trip over warnings
169 * in ctree.c. The solution used here is to flag ourselves
170 * with root->in_trans_setup. When this is 1, we're still
171 * fixing up the reloc trees and everyone must wait.
172 *
173 * When this is zero, they can trust root->last_trans and fly
174 * through btrfs_record_root_in_trans without having to take the
175 * lock. smp_wmb() makes sure that all the writes above are
176 * done before we pop in the zero below
177 */
5d4f98a2 178 btrfs_init_reloc_root(trans, root);
7585717f
CM
179 smp_wmb();
180 root->in_trans_setup = 0;
5d4f98a2
YZ
181 }
182 return 0;
183}
bcc63abb 184
7585717f
CM
185
186int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187 struct btrfs_root *root)
188{
189 if (!root->ref_cows)
190 return 0;
191
192 /*
193 * see record_root_in_trans for comments about in_trans_setup usage
194 * and barriers
195 */
196 smp_rmb();
197 if (root->last_trans == trans->transid &&
198 !root->in_trans_setup)
199 return 0;
200
201 mutex_lock(&root->fs_info->reloc_mutex);
202 record_root_in_trans(trans, root);
203 mutex_unlock(&root->fs_info->reloc_mutex);
204
205 return 0;
206}
207
d352ac68
CM
208/* wait for commit against the current transaction to become unblocked
209 * when this is done, it is safe to start a new transaction, but the current
210 * transaction might not be fully on disk.
211 */
37d1aeee 212static void wait_current_trans(struct btrfs_root *root)
79154b1b 213{
f9295749 214 struct btrfs_transaction *cur_trans;
79154b1b 215
a4abeea4 216 spin_lock(&root->fs_info->trans_lock);
f9295749 217 cur_trans = root->fs_info->running_transaction;
37d1aeee 218 if (cur_trans && cur_trans->blocked) {
f9295749 219 DEFINE_WAIT(wait);
13c5a93e 220 atomic_inc(&cur_trans->use_count);
a4abeea4 221 spin_unlock(&root->fs_info->trans_lock);
d397712b 222 while (1) {
f9295749
CM
223 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
224 TASK_UNINTERRUPTIBLE);
471fa17d 225 if (!cur_trans->blocked)
f9295749 226 break;
471fa17d 227 schedule();
f9295749 228 }
471fa17d 229 finish_wait(&root->fs_info->transaction_wait, &wait);
f9295749 230 put_transaction(cur_trans);
a4abeea4
JB
231 } else {
232 spin_unlock(&root->fs_info->trans_lock);
f9295749 233 }
37d1aeee
CM
234}
235
249ac1e5
JB
236enum btrfs_trans_type {
237 TRANS_START,
238 TRANS_JOIN,
239 TRANS_USERSPACE,
0af3d00b 240 TRANS_JOIN_NOLOCK,
249ac1e5
JB
241};
242
a22285a6
YZ
243static int may_wait_transaction(struct btrfs_root *root, int type)
244{
a4abeea4
JB
245 if (root->fs_info->log_root_recovering)
246 return 0;
247
248 if (type == TRANS_USERSPACE)
249 return 1;
250
251 if (type == TRANS_START &&
252 !atomic_read(&root->fs_info->open_ioctl_trans))
a22285a6 253 return 1;
a4abeea4 254
a22285a6
YZ
255 return 0;
256}
257
e02119d5 258static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
a22285a6 259 u64 num_items, int type)
37d1aeee 260{
a22285a6
YZ
261 struct btrfs_trans_handle *h;
262 struct btrfs_transaction *cur_trans;
06d5a589 263 int retries = 0;
37d1aeee 264 int ret;
acce952b 265
266 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
267 return ERR_PTR(-EROFS);
2a1eb461
JB
268
269 if (current->journal_info) {
270 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
271 h = current->journal_info;
272 h->use_count++;
273 h->orig_rsv = h->block_rsv;
274 h->block_rsv = NULL;
275 goto got_it;
276 }
a22285a6
YZ
277again:
278 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
279 if (!h)
280 return ERR_PTR(-ENOMEM);
37d1aeee 281
a22285a6 282 if (may_wait_transaction(root, type))
37d1aeee 283 wait_current_trans(root);
a22285a6 284
a4abeea4
JB
285 do {
286 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
287 if (ret == -EBUSY)
288 wait_current_trans(root);
289 } while (ret == -EBUSY);
290
db5b493a 291 if (ret < 0) {
6e8df2ae 292 kmem_cache_free(btrfs_trans_handle_cachep, h);
db5b493a
TI
293 return ERR_PTR(ret);
294 }
0f7d52f4 295
a22285a6 296 cur_trans = root->fs_info->running_transaction;
a22285a6
YZ
297
298 h->transid = cur_trans->transid;
299 h->transaction = cur_trans;
79154b1b 300 h->blocks_used = 0;
a22285a6 301 h->bytes_reserved = 0;
56bec294 302 h->delayed_ref_updates = 0;
2a1eb461 303 h->use_count = 1;
f0486c68 304 h->block_rsv = NULL;
2a1eb461 305 h->orig_rsv = NULL;
b7ec40d7 306
a22285a6
YZ
307 smp_mb();
308 if (cur_trans->blocked && may_wait_transaction(root, type)) {
309 btrfs_commit_transaction(h, root);
310 goto again;
311 }
312
313 if (num_items > 0) {
8bb8ab2e 314 ret = btrfs_trans_reserve_metadata(h, root, num_items);
06d5a589
JB
315 if (ret == -EAGAIN && !retries) {
316 retries++;
a22285a6
YZ
317 btrfs_commit_transaction(h, root);
318 goto again;
06d5a589
JB
319 } else if (ret == -EAGAIN) {
320 /*
321 * We have already retried and got EAGAIN, so really we
322 * don't have space, so set ret to -ENOSPC.
323 */
324 ret = -ENOSPC;
a22285a6 325 }
06d5a589 326
a22285a6
YZ
327 if (ret < 0) {
328 btrfs_end_transaction(h, root);
329 return ERR_PTR(ret);
330 }
331 }
9ed74f2d 332
2a1eb461 333got_it:
a4abeea4 334 btrfs_record_root_in_trans(h, root);
a22285a6
YZ
335
336 if (!current->journal_info && type != TRANS_USERSPACE)
337 current->journal_info = h;
79154b1b
CM
338 return h;
339}
340
f9295749 341struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
a22285a6 342 int num_items)
f9295749 343{
a22285a6 344 return start_transaction(root, num_items, TRANS_START);
f9295749 345}
7a7eaa40 346struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 347{
a22285a6 348 return start_transaction(root, 0, TRANS_JOIN);
f9295749
CM
349}
350
7a7eaa40 351struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
0af3d00b
JB
352{
353 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
354}
355
7a7eaa40 356struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
9ca9ee09 357{
7a7eaa40 358 return start_transaction(root, 0, TRANS_USERSPACE);
9ca9ee09
SW
359}
360
d352ac68 361/* wait for a transaction commit to be fully complete */
89ce8a63
CM
362static noinline int wait_for_commit(struct btrfs_root *root,
363 struct btrfs_transaction *commit)
364{
365 DEFINE_WAIT(wait);
d397712b 366 while (!commit->commit_done) {
89ce8a63
CM
367 prepare_to_wait(&commit->commit_wait, &wait,
368 TASK_UNINTERRUPTIBLE);
369 if (commit->commit_done)
370 break;
89ce8a63 371 schedule();
89ce8a63 372 }
89ce8a63
CM
373 finish_wait(&commit->commit_wait, &wait);
374 return 0;
375}
376
46204592
SW
377int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
378{
379 struct btrfs_transaction *cur_trans = NULL, *t;
380 int ret;
381
46204592
SW
382 ret = 0;
383 if (transid) {
384 if (transid <= root->fs_info->last_trans_committed)
a4abeea4 385 goto out;
46204592
SW
386
387 /* find specified transaction */
a4abeea4 388 spin_lock(&root->fs_info->trans_lock);
46204592
SW
389 list_for_each_entry(t, &root->fs_info->trans_list, list) {
390 if (t->transid == transid) {
391 cur_trans = t;
a4abeea4 392 atomic_inc(&cur_trans->use_count);
46204592
SW
393 break;
394 }
395 if (t->transid > transid)
396 break;
397 }
a4abeea4 398 spin_unlock(&root->fs_info->trans_lock);
46204592
SW
399 ret = -EINVAL;
400 if (!cur_trans)
a4abeea4 401 goto out; /* bad transid */
46204592
SW
402 } else {
403 /* find newest transaction that is committing | committed */
a4abeea4 404 spin_lock(&root->fs_info->trans_lock);
46204592
SW
405 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
406 list) {
407 if (t->in_commit) {
408 if (t->commit_done)
3473f3c0 409 break;
46204592 410 cur_trans = t;
a4abeea4 411 atomic_inc(&cur_trans->use_count);
46204592
SW
412 break;
413 }
414 }
a4abeea4 415 spin_unlock(&root->fs_info->trans_lock);
46204592 416 if (!cur_trans)
a4abeea4 417 goto out; /* nothing committing|committed */
46204592
SW
418 }
419
46204592
SW
420 wait_for_commit(root, cur_trans);
421
46204592
SW
422 put_transaction(cur_trans);
423 ret = 0;
a4abeea4 424out:
46204592
SW
425 return ret;
426}
427
37d1aeee
CM
428void btrfs_throttle(struct btrfs_root *root)
429{
a4abeea4 430 if (!atomic_read(&root->fs_info->open_ioctl_trans))
9ca9ee09 431 wait_current_trans(root);
37d1aeee
CM
432}
433
8929ecfa
YZ
434static int should_end_transaction(struct btrfs_trans_handle *trans,
435 struct btrfs_root *root)
436{
437 int ret;
438 ret = btrfs_block_rsv_check(trans, root,
439 &root->fs_info->global_block_rsv, 0, 5);
440 return ret ? 1 : 0;
441}
442
443int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
444 struct btrfs_root *root)
445{
446 struct btrfs_transaction *cur_trans = trans->transaction;
447 int updates;
448
a4abeea4 449 smp_mb();
8929ecfa
YZ
450 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
451 return 1;
452
453 updates = trans->delayed_ref_updates;
454 trans->delayed_ref_updates = 0;
455 if (updates)
456 btrfs_run_delayed_refs(trans, root, updates);
457
458 return should_end_transaction(trans, root);
459}
460
89ce8a63 461static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
0af3d00b 462 struct btrfs_root *root, int throttle, int lock)
79154b1b 463{
8929ecfa 464 struct btrfs_transaction *cur_trans = trans->transaction;
ab78c84d 465 struct btrfs_fs_info *info = root->fs_info;
c3e69d58
CM
466 int count = 0;
467
2a1eb461
JB
468 if (--trans->use_count) {
469 trans->block_rsv = trans->orig_rsv;
470 return 0;
471 }
472
c3e69d58
CM
473 while (count < 4) {
474 unsigned long cur = trans->delayed_ref_updates;
475 trans->delayed_ref_updates = 0;
476 if (cur &&
477 trans->transaction->delayed_refs.num_heads_ready > 64) {
478 trans->delayed_ref_updates = 0;
b7ec40d7
CM
479
480 /*
481 * do a full flush if the transaction is trying
482 * to close
483 */
484 if (trans->transaction->delayed_refs.flushing)
485 cur = 0;
c3e69d58
CM
486 btrfs_run_delayed_refs(trans, root, cur);
487 } else {
488 break;
489 }
490 count++;
56bec294
CM
491 }
492
a22285a6
YZ
493 btrfs_trans_release_metadata(trans, root);
494
a4abeea4
JB
495 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
496 should_end_transaction(trans, root)) {
8929ecfa 497 trans->transaction->blocked = 1;
a4abeea4
JB
498 smp_wmb();
499 }
8929ecfa 500
0af3d00b 501 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
8929ecfa
YZ
502 if (throttle)
503 return btrfs_commit_transaction(trans, root);
504 else
505 wake_up_process(info->transaction_kthread);
506 }
507
8929ecfa 508 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
509 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
510 atomic_dec(&cur_trans->num_writers);
89ce8a63 511
99d16cbc 512 smp_mb();
79154b1b
CM
513 if (waitqueue_active(&cur_trans->writer_wait))
514 wake_up(&cur_trans->writer_wait);
79154b1b 515 put_transaction(cur_trans);
9ed74f2d
JB
516
517 if (current->journal_info == trans)
518 current->journal_info = NULL;
d6025579 519 memset(trans, 0, sizeof(*trans));
2c90e5d6 520 kmem_cache_free(btrfs_trans_handle_cachep, trans);
ab78c84d 521
24bbcf04
YZ
522 if (throttle)
523 btrfs_run_delayed_iputs(root);
524
79154b1b
CM
525 return 0;
526}
527
89ce8a63
CM
528int btrfs_end_transaction(struct btrfs_trans_handle *trans,
529 struct btrfs_root *root)
530{
16cdcec7
MX
531 int ret;
532
533 ret = __btrfs_end_transaction(trans, root, 0, 1);
534 if (ret)
535 return ret;
536 return 0;
89ce8a63
CM
537}
538
539int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
540 struct btrfs_root *root)
541{
16cdcec7
MX
542 int ret;
543
544 ret = __btrfs_end_transaction(trans, root, 1, 1);
545 if (ret)
546 return ret;
547 return 0;
0af3d00b
JB
548}
549
550int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
551 struct btrfs_root *root)
552{
16cdcec7
MX
553 int ret;
554
555 ret = __btrfs_end_transaction(trans, root, 0, 0);
556 if (ret)
557 return ret;
558 return 0;
559}
560
561int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
562 struct btrfs_root *root)
563{
564 return __btrfs_end_transaction(trans, root, 1, 1);
89ce8a63
CM
565}
566
d352ac68
CM
567/*
568 * when btree blocks are allocated, they have some corresponding bits set for
569 * them in one of two extent_io trees. This is used to make sure all of
690587d1 570 * those extents are sent to disk but does not wait on them
d352ac68 571 */
690587d1 572int btrfs_write_marked_extents(struct btrfs_root *root,
8cef4e16 573 struct extent_io_tree *dirty_pages, int mark)
79154b1b 574{
7c4452b9 575 int ret;
777e6bd7 576 int err = 0;
7c4452b9
CM
577 int werr = 0;
578 struct page *page;
7c4452b9 579 struct inode *btree_inode = root->fs_info->btree_inode;
777e6bd7 580 u64 start = 0;
5f39d397
CM
581 u64 end;
582 unsigned long index;
7c4452b9 583
d397712b 584 while (1) {
777e6bd7 585 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
8cef4e16 586 mark);
5f39d397 587 if (ret)
7c4452b9 588 break;
d397712b 589 while (start <= end) {
777e6bd7
CM
590 cond_resched();
591
5f39d397 592 index = start >> PAGE_CACHE_SHIFT;
35ebb934 593 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
4bef0848 594 page = find_get_page(btree_inode->i_mapping, index);
7c4452b9
CM
595 if (!page)
596 continue;
4bef0848
CM
597
598 btree_lock_page_hook(page);
599 if (!page->mapping) {
600 unlock_page(page);
601 page_cache_release(page);
602 continue;
603 }
604
6702ed49
CM
605 if (PageWriteback(page)) {
606 if (PageDirty(page))
607 wait_on_page_writeback(page);
608 else {
609 unlock_page(page);
610 page_cache_release(page);
611 continue;
612 }
613 }
7c4452b9
CM
614 err = write_one_page(page, 0);
615 if (err)
616 werr = err;
617 page_cache_release(page);
618 }
619 }
690587d1
CM
620 if (err)
621 werr = err;
622 return werr;
623}
624
625/*
626 * when btree blocks are allocated, they have some corresponding bits set for
627 * them in one of two extent_io trees. This is used to make sure all of
628 * those extents are on disk for transaction or log commit. We wait
629 * on all the pages and clear them from the dirty pages state tree
630 */
631int btrfs_wait_marked_extents(struct btrfs_root *root,
8cef4e16 632 struct extent_io_tree *dirty_pages, int mark)
690587d1
CM
633{
634 int ret;
635 int err = 0;
636 int werr = 0;
637 struct page *page;
638 struct inode *btree_inode = root->fs_info->btree_inode;
639 u64 start = 0;
640 u64 end;
641 unsigned long index;
642
d397712b 643 while (1) {
8cef4e16
YZ
644 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
645 mark);
777e6bd7
CM
646 if (ret)
647 break;
648
8cef4e16 649 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
d397712b 650 while (start <= end) {
777e6bd7
CM
651 index = start >> PAGE_CACHE_SHIFT;
652 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
653 page = find_get_page(btree_inode->i_mapping, index);
654 if (!page)
655 continue;
656 if (PageDirty(page)) {
4bef0848
CM
657 btree_lock_page_hook(page);
658 wait_on_page_writeback(page);
777e6bd7
CM
659 err = write_one_page(page, 0);
660 if (err)
661 werr = err;
662 }
105d931d 663 wait_on_page_writeback(page);
777e6bd7
CM
664 page_cache_release(page);
665 cond_resched();
666 }
667 }
7c4452b9
CM
668 if (err)
669 werr = err;
670 return werr;
79154b1b
CM
671}
672
690587d1
CM
673/*
674 * when btree blocks are allocated, they have some corresponding bits set for
675 * them in one of two extent_io trees. This is used to make sure all of
676 * those extents are on disk for transaction or log commit
677 */
678int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
8cef4e16 679 struct extent_io_tree *dirty_pages, int mark)
690587d1
CM
680{
681 int ret;
682 int ret2;
683
8cef4e16
YZ
684 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
685 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
690587d1
CM
686 return ret || ret2;
687}
688
d0c803c4
CM
689int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
690 struct btrfs_root *root)
691{
692 if (!trans || !trans->transaction) {
693 struct inode *btree_inode;
694 btree_inode = root->fs_info->btree_inode;
695 return filemap_write_and_wait(btree_inode->i_mapping);
696 }
697 return btrfs_write_and_wait_marked_extents(root,
8cef4e16
YZ
698 &trans->transaction->dirty_pages,
699 EXTENT_DIRTY);
d0c803c4
CM
700}
701
d352ac68
CM
702/*
703 * this is used to update the root pointer in the tree of tree roots.
704 *
705 * But, in the case of the extent allocation tree, updating the root
706 * pointer may allocate blocks which may change the root of the extent
707 * allocation tree.
708 *
709 * So, this loops and repeats and makes sure the cowonly root didn't
710 * change while the root pointer was being updated in the metadata.
711 */
0b86a832
CM
712static int update_cowonly_root(struct btrfs_trans_handle *trans,
713 struct btrfs_root *root)
79154b1b
CM
714{
715 int ret;
0b86a832 716 u64 old_root_bytenr;
86b9f2ec 717 u64 old_root_used;
0b86a832 718 struct btrfs_root *tree_root = root->fs_info->tree_root;
79154b1b 719
86b9f2ec 720 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 721 btrfs_write_dirty_block_groups(trans, root);
56bec294 722
d397712b 723 while (1) {
0b86a832 724 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec
YZ
725 if (old_root_bytenr == root->node->start &&
726 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 727 break;
87ef2bb4 728
5d4f98a2 729 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 730 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
731 &root->root_key,
732 &root->root_item);
79154b1b 733 BUG_ON(ret);
56bec294 734
86b9f2ec 735 old_root_used = btrfs_root_used(&root->root_item);
4a8c9a62 736 ret = btrfs_write_dirty_block_groups(trans, root);
56bec294 737 BUG_ON(ret);
0b86a832 738 }
276e680d
YZ
739
740 if (root != root->fs_info->extent_root)
741 switch_commit_root(root);
742
0b86a832
CM
743 return 0;
744}
745
d352ac68
CM
746/*
747 * update all the cowonly tree roots on disk
748 */
5d4f98a2
YZ
749static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
750 struct btrfs_root *root)
0b86a832
CM
751{
752 struct btrfs_fs_info *fs_info = root->fs_info;
753 struct list_head *next;
84234f3a 754 struct extent_buffer *eb;
56bec294 755 int ret;
84234f3a 756
56bec294
CM
757 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
758 BUG_ON(ret);
87ef2bb4 759
84234f3a 760 eb = btrfs_lock_root_node(fs_info->tree_root);
9fa8cfe7 761 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
84234f3a
YZ
762 btrfs_tree_unlock(eb);
763 free_extent_buffer(eb);
0b86a832 764
56bec294
CM
765 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
766 BUG_ON(ret);
87ef2bb4 767
d397712b 768 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
0b86a832
CM
769 next = fs_info->dirty_cowonly_roots.next;
770 list_del_init(next);
771 root = list_entry(next, struct btrfs_root, dirty_list);
87ef2bb4 772
0b86a832 773 update_cowonly_root(trans, root);
79154b1b 774 }
276e680d
YZ
775
776 down_write(&fs_info->extent_commit_sem);
777 switch_commit_root(fs_info->extent_root);
778 up_write(&fs_info->extent_commit_sem);
779
79154b1b
CM
780 return 0;
781}
782
d352ac68
CM
783/*
784 * dead roots are old snapshots that need to be deleted. This allocates
785 * a dirty root struct and adds it into the list of dead roots that need to
786 * be deleted
787 */
5d4f98a2 788int btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 789{
a4abeea4 790 spin_lock(&root->fs_info->trans_lock);
5d4f98a2 791 list_add(&root->root_list, &root->fs_info->dead_roots);
a4abeea4 792 spin_unlock(&root->fs_info->trans_lock);
5eda7b5e
CM
793 return 0;
794}
795
d352ac68 796/*
5d4f98a2 797 * update all the cowonly tree roots on disk
d352ac68 798 */
5d4f98a2
YZ
799static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
800 struct btrfs_root *root)
0f7d52f4 801{
0f7d52f4 802 struct btrfs_root *gang[8];
5d4f98a2 803 struct btrfs_fs_info *fs_info = root->fs_info;
0f7d52f4
CM
804 int i;
805 int ret;
54aa1f4d
CM
806 int err = 0;
807
a4abeea4 808 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 809 while (1) {
5d4f98a2
YZ
810 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
811 (void **)gang, 0,
0f7d52f4
CM
812 ARRAY_SIZE(gang),
813 BTRFS_ROOT_TRANS_TAG);
814 if (ret == 0)
815 break;
816 for (i = 0; i < ret; i++) {
817 root = gang[i];
5d4f98a2
YZ
818 radix_tree_tag_clear(&fs_info->fs_roots_radix,
819 (unsigned long)root->root_key.objectid,
820 BTRFS_ROOT_TRANS_TAG);
a4abeea4 821 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 822
e02119d5 823 btrfs_free_log(trans, root);
5d4f98a2 824 btrfs_update_reloc_root(trans, root);
d68fc57b 825 btrfs_orphan_commit_root(trans, root);
bcc63abb 826
82d5902d
LZ
827 btrfs_save_ino_cache(root, trans);
828
978d910d 829 if (root->commit_root != root->node) {
581bb050 830 mutex_lock(&root->fs_commit_mutex);
817d52f8 831 switch_commit_root(root);
581bb050
LZ
832 btrfs_unpin_free_ino(root);
833 mutex_unlock(&root->fs_commit_mutex);
834
978d910d
YZ
835 btrfs_set_root_node(&root->root_item,
836 root->node);
837 }
5d4f98a2 838
5d4f98a2 839 err = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
840 &root->root_key,
841 &root->root_item);
a4abeea4 842 spin_lock(&fs_info->fs_roots_radix_lock);
54aa1f4d
CM
843 if (err)
844 break;
0f7d52f4
CM
845 }
846 }
a4abeea4 847 spin_unlock(&fs_info->fs_roots_radix_lock);
54aa1f4d 848 return err;
0f7d52f4
CM
849}
850
d352ac68
CM
851/*
852 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
853 * otherwise every leaf in the btree is read and defragged.
854 */
e9d0b13b
CM
855int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
856{
857 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 858 struct btrfs_trans_handle *trans;
8929ecfa 859 int ret;
d3c2fdcf 860 unsigned long nr;
e9d0b13b 861
8929ecfa 862 if (xchg(&root->defrag_running, 1))
e9d0b13b 863 return 0;
8929ecfa 864
6b80053d 865 while (1) {
8929ecfa
YZ
866 trans = btrfs_start_transaction(root, 0);
867 if (IS_ERR(trans))
868 return PTR_ERR(trans);
869
e9d0b13b 870 ret = btrfs_defrag_leaves(trans, root, cacheonly);
8929ecfa 871
d3c2fdcf 872 nr = trans->blocks_used;
e9d0b13b 873 btrfs_end_transaction(trans, root);
d3c2fdcf 874 btrfs_btree_balance_dirty(info->tree_root, nr);
e9d0b13b
CM
875 cond_resched();
876
7841cb28 877 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
e9d0b13b
CM
878 break;
879 }
880 root->defrag_running = 0;
8929ecfa 881 return ret;
e9d0b13b
CM
882}
883
d352ac68
CM
884/*
885 * new snapshots need to be created at a very specific time in the
886 * transaction commit. This does the actual creation
887 */
80b6794d 888static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
889 struct btrfs_fs_info *fs_info,
890 struct btrfs_pending_snapshot *pending)
891{
892 struct btrfs_key key;
80b6794d 893 struct btrfs_root_item *new_root_item;
3063d29f
CM
894 struct btrfs_root *tree_root = fs_info->tree_root;
895 struct btrfs_root *root = pending->root;
6bdb72de
SW
896 struct btrfs_root *parent_root;
897 struct inode *parent_inode;
6a912213 898 struct dentry *parent;
a22285a6 899 struct dentry *dentry;
3063d29f 900 struct extent_buffer *tmp;
925baedd 901 struct extent_buffer *old;
3063d29f 902 int ret;
d68fc57b 903 u64 to_reserve = 0;
6bdb72de 904 u64 index = 0;
a22285a6 905 u64 objectid;
b83cc969 906 u64 root_flags;
3063d29f 907
80b6794d
CM
908 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
909 if (!new_root_item) {
a22285a6 910 pending->error = -ENOMEM;
80b6794d
CM
911 goto fail;
912 }
a22285a6 913
581bb050 914 ret = btrfs_find_free_objectid(tree_root, &objectid);
a22285a6
YZ
915 if (ret) {
916 pending->error = ret;
3063d29f 917 goto fail;
a22285a6 918 }
3063d29f 919
3fd0a558 920 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
d68fc57b
YZ
921 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
922
923 if (to_reserve > 0) {
924 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
8bb8ab2e 925 to_reserve);
d68fc57b
YZ
926 if (ret) {
927 pending->error = ret;
928 goto fail;
929 }
930 }
931
3063d29f 932 key.objectid = objectid;
a22285a6
YZ
933 key.offset = (u64)-1;
934 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 935
a22285a6 936 trans->block_rsv = &pending->block_rsv;
3de4586c 937
a22285a6 938 dentry = pending->dentry;
6a912213
JB
939 parent = dget_parent(dentry);
940 parent_inode = parent->d_inode;
a22285a6 941 parent_root = BTRFS_I(parent_inode)->root;
7585717f 942 record_root_in_trans(trans, parent_root);
a22285a6 943
3063d29f
CM
944 /*
945 * insert the directory item
946 */
3de4586c 947 ret = btrfs_set_inode_index(parent_inode, &index);
6bdb72de 948 BUG_ON(ret);
0660b5af 949 ret = btrfs_insert_dir_item(trans, parent_root,
a22285a6 950 dentry->d_name.name, dentry->d_name.len,
16cdcec7 951 parent_inode, &key,
a22285a6 952 BTRFS_FT_DIR, index);
6bdb72de 953 BUG_ON(ret);
0660b5af 954
a22285a6
YZ
955 btrfs_i_size_write(parent_inode, parent_inode->i_size +
956 dentry->d_name.len * 2);
52c26179
YZ
957 ret = btrfs_update_inode(trans, parent_root, parent_inode);
958 BUG_ON(ret);
959
e999376f
CM
960 /*
961 * pull in the delayed directory update
962 * and the delayed inode item
963 * otherwise we corrupt the FS during
964 * snapshot
965 */
966 ret = btrfs_run_delayed_items(trans, root);
967 BUG_ON(ret);
968
7585717f 969 record_root_in_trans(trans, root);
6bdb72de
SW
970 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
971 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 972 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 973
b83cc969
LZ
974 root_flags = btrfs_root_flags(new_root_item);
975 if (pending->readonly)
976 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
977 else
978 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
979 btrfs_set_root_flags(new_root_item, root_flags);
980
6bdb72de
SW
981 old = btrfs_lock_root_node(root);
982 btrfs_cow_block(trans, root, old, NULL, 0, &old);
983 btrfs_set_lock_blocking(old);
984
985 btrfs_copy_root(trans, root, old, &tmp, objectid);
986 btrfs_tree_unlock(old);
987 free_extent_buffer(old);
988
989 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
990 /* record when the snapshot was created in key.offset */
991 key.offset = trans->transid;
992 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
993 btrfs_tree_unlock(tmp);
994 free_extent_buffer(tmp);
a22285a6 995 BUG_ON(ret);
6bdb72de 996
a22285a6
YZ
997 /*
998 * insert root back/forward references
999 */
1000 ret = btrfs_add_root_ref(trans, tree_root, objectid,
0660b5af 1001 parent_root->root_key.objectid,
33345d01 1002 btrfs_ino(parent_inode), index,
a22285a6 1003 dentry->d_name.name, dentry->d_name.len);
0660b5af 1004 BUG_ON(ret);
6a912213 1005 dput(parent);
0660b5af 1006
a22285a6
YZ
1007 key.offset = (u64)-1;
1008 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1009 BUG_ON(IS_ERR(pending->snap));
d68fc57b 1010
3fd0a558 1011 btrfs_reloc_post_snapshot(trans, pending);
d68fc57b 1012 btrfs_orphan_post_snapshot(trans, pending);
3063d29f 1013fail:
6bdb72de 1014 kfree(new_root_item);
a22285a6
YZ
1015 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1016 return 0;
3063d29f
CM
1017}
1018
d352ac68
CM
1019/*
1020 * create all the snapshots we've scheduled for creation
1021 */
80b6794d
CM
1022static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1023 struct btrfs_fs_info *fs_info)
3de4586c
CM
1024{
1025 struct btrfs_pending_snapshot *pending;
1026 struct list_head *head = &trans->transaction->pending_snapshots;
3de4586c
CM
1027 int ret;
1028
c6e30871 1029 list_for_each_entry(pending, head, list) {
3de4586c
CM
1030 ret = create_pending_snapshot(trans, fs_info, pending);
1031 BUG_ON(ret);
1032 }
1033 return 0;
1034}
1035
5d4f98a2
YZ
1036static void update_super_roots(struct btrfs_root *root)
1037{
1038 struct btrfs_root_item *root_item;
1039 struct btrfs_super_block *super;
1040
1041 super = &root->fs_info->super_copy;
1042
1043 root_item = &root->fs_info->chunk_root->root_item;
1044 super->chunk_root = root_item->bytenr;
1045 super->chunk_root_generation = root_item->generation;
1046 super->chunk_root_level = root_item->level;
1047
1048 root_item = &root->fs_info->tree_root->root_item;
1049 super->root = root_item->bytenr;
1050 super->generation = root_item->generation;
1051 super->root_level = root_item->level;
0af3d00b
JB
1052 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1053 super->cache_generation = root_item->generation;
5d4f98a2
YZ
1054}
1055
f36f3042
CM
1056int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1057{
1058 int ret = 0;
a4abeea4 1059 spin_lock(&info->trans_lock);
f36f3042
CM
1060 if (info->running_transaction)
1061 ret = info->running_transaction->in_commit;
a4abeea4 1062 spin_unlock(&info->trans_lock);
f36f3042
CM
1063 return ret;
1064}
1065
8929ecfa
YZ
1066int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1067{
1068 int ret = 0;
a4abeea4 1069 spin_lock(&info->trans_lock);
8929ecfa
YZ
1070 if (info->running_transaction)
1071 ret = info->running_transaction->blocked;
a4abeea4 1072 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1073 return ret;
1074}
1075
bb9c12c9
SW
1076/*
1077 * wait for the current transaction commit to start and block subsequent
1078 * transaction joins
1079 */
1080static void wait_current_trans_commit_start(struct btrfs_root *root,
1081 struct btrfs_transaction *trans)
1082{
1083 DEFINE_WAIT(wait);
1084
1085 if (trans->in_commit)
1086 return;
1087
1088 while (1) {
1089 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1090 TASK_UNINTERRUPTIBLE);
1091 if (trans->in_commit) {
1092 finish_wait(&root->fs_info->transaction_blocked_wait,
1093 &wait);
1094 break;
1095 }
bb9c12c9 1096 schedule();
bb9c12c9
SW
1097 finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1098 }
1099}
1100
1101/*
1102 * wait for the current transaction to start and then become unblocked.
1103 * caller holds ref.
1104 */
1105static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1106 struct btrfs_transaction *trans)
1107{
1108 DEFINE_WAIT(wait);
1109
1110 if (trans->commit_done || (trans->in_commit && !trans->blocked))
1111 return;
1112
1113 while (1) {
1114 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1115 TASK_UNINTERRUPTIBLE);
1116 if (trans->commit_done ||
1117 (trans->in_commit && !trans->blocked)) {
1118 finish_wait(&root->fs_info->transaction_wait,
1119 &wait);
1120 break;
1121 }
bb9c12c9 1122 schedule();
bb9c12c9
SW
1123 finish_wait(&root->fs_info->transaction_wait,
1124 &wait);
1125 }
1126}
1127
1128/*
1129 * commit transactions asynchronously. once btrfs_commit_transaction_async
1130 * returns, any subsequent transaction will not be allowed to join.
1131 */
1132struct btrfs_async_commit {
1133 struct btrfs_trans_handle *newtrans;
1134 struct btrfs_root *root;
1135 struct delayed_work work;
1136};
1137
1138static void do_async_commit(struct work_struct *work)
1139{
1140 struct btrfs_async_commit *ac =
1141 container_of(work, struct btrfs_async_commit, work.work);
1142
1143 btrfs_commit_transaction(ac->newtrans, ac->root);
1144 kfree(ac);
1145}
1146
1147int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1148 struct btrfs_root *root,
1149 int wait_for_unblock)
1150{
1151 struct btrfs_async_commit *ac;
1152 struct btrfs_transaction *cur_trans;
1153
1154 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1155 if (!ac)
1156 return -ENOMEM;
bb9c12c9
SW
1157
1158 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1159 ac->root = root;
7a7eaa40 1160 ac->newtrans = btrfs_join_transaction(root);
3612b495
TI
1161 if (IS_ERR(ac->newtrans)) {
1162 int err = PTR_ERR(ac->newtrans);
1163 kfree(ac);
1164 return err;
1165 }
bb9c12c9
SW
1166
1167 /* take transaction reference */
bb9c12c9 1168 cur_trans = trans->transaction;
13c5a93e 1169 atomic_inc(&cur_trans->use_count);
bb9c12c9
SW
1170
1171 btrfs_end_transaction(trans, root);
1172 schedule_delayed_work(&ac->work, 0);
1173
1174 /* wait for transaction to start and unblock */
bb9c12c9
SW
1175 if (wait_for_unblock)
1176 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1177 else
1178 wait_current_trans_commit_start(root, cur_trans);
bb9c12c9 1179
38e88054
SW
1180 if (current->journal_info == trans)
1181 current->journal_info = NULL;
1182
1183 put_transaction(cur_trans);
bb9c12c9
SW
1184 return 0;
1185}
1186
1187/*
1188 * btrfs_transaction state sequence:
1189 * in_commit = 0, blocked = 0 (initial)
1190 * in_commit = 1, blocked = 1
1191 * blocked = 0
1192 * commit_done = 1
1193 */
79154b1b
CM
1194int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1195 struct btrfs_root *root)
1196{
15ee9bc7 1197 unsigned long joined = 0;
79154b1b 1198 struct btrfs_transaction *cur_trans;
8fd17795 1199 struct btrfs_transaction *prev_trans = NULL;
79154b1b 1200 DEFINE_WAIT(wait);
15ee9bc7 1201 int ret;
89573b9c
CM
1202 int should_grow = 0;
1203 unsigned long now = get_seconds();
dccae999 1204 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
79154b1b 1205
5a3f23d5
CM
1206 btrfs_run_ordered_operations(root, 0);
1207
56bec294
CM
1208 /* make a pass through all the delayed refs we have so far
1209 * any runnings procs may add more while we are here
1210 */
1211 ret = btrfs_run_delayed_refs(trans, root, 0);
1212 BUG_ON(ret);
1213
a22285a6
YZ
1214 btrfs_trans_release_metadata(trans, root);
1215
b7ec40d7 1216 cur_trans = trans->transaction;
56bec294
CM
1217 /*
1218 * set the flushing flag so procs in this transaction have to
1219 * start sending their work down.
1220 */
b7ec40d7 1221 cur_trans->delayed_refs.flushing = 1;
56bec294 1222
c3e69d58 1223 ret = btrfs_run_delayed_refs(trans, root, 0);
56bec294
CM
1224 BUG_ON(ret);
1225
a4abeea4 1226 spin_lock(&cur_trans->commit_lock);
b7ec40d7 1227 if (cur_trans->in_commit) {
a4abeea4 1228 spin_unlock(&cur_trans->commit_lock);
13c5a93e 1229 atomic_inc(&cur_trans->use_count);
79154b1b 1230 btrfs_end_transaction(trans, root);
ccd467d6 1231
79154b1b
CM
1232 ret = wait_for_commit(root, cur_trans);
1233 BUG_ON(ret);
15ee9bc7 1234
79154b1b 1235 put_transaction(cur_trans);
15ee9bc7 1236
79154b1b
CM
1237 return 0;
1238 }
4313b399 1239
2c90e5d6 1240 trans->transaction->in_commit = 1;
f9295749 1241 trans->transaction->blocked = 1;
a4abeea4 1242 spin_unlock(&cur_trans->commit_lock);
bb9c12c9
SW
1243 wake_up(&root->fs_info->transaction_blocked_wait);
1244
a4abeea4 1245 spin_lock(&root->fs_info->trans_lock);
ccd467d6
CM
1246 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1247 prev_trans = list_entry(cur_trans->list.prev,
1248 struct btrfs_transaction, list);
1249 if (!prev_trans->commit_done) {
13c5a93e 1250 atomic_inc(&prev_trans->use_count);
a4abeea4 1251 spin_unlock(&root->fs_info->trans_lock);
ccd467d6
CM
1252
1253 wait_for_commit(root, prev_trans);
ccd467d6 1254
15ee9bc7 1255 put_transaction(prev_trans);
a4abeea4
JB
1256 } else {
1257 spin_unlock(&root->fs_info->trans_lock);
ccd467d6 1258 }
a4abeea4
JB
1259 } else {
1260 spin_unlock(&root->fs_info->trans_lock);
ccd467d6 1261 }
15ee9bc7 1262
89573b9c
CM
1263 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1264 should_grow = 1;
1265
15ee9bc7 1266 do {
7ea394f1 1267 int snap_pending = 0;
a4abeea4 1268
15ee9bc7 1269 joined = cur_trans->num_joined;
7ea394f1
YZ
1270 if (!list_empty(&trans->transaction->pending_snapshots))
1271 snap_pending = 1;
1272
2c90e5d6 1273 WARN_ON(cur_trans != trans->transaction);
15ee9bc7 1274
0bdb1db2 1275 if (flush_on_commit || snap_pending) {
24bbcf04
YZ
1276 btrfs_start_delalloc_inodes(root, 1);
1277 ret = btrfs_wait_ordered_extents(root, 0, 1);
ebecd3d9 1278 BUG_ON(ret);
7ea394f1
YZ
1279 }
1280
16cdcec7
MX
1281 ret = btrfs_run_delayed_items(trans, root);
1282 BUG_ON(ret);
1283
5a3f23d5
CM
1284 /*
1285 * rename don't use btrfs_join_transaction, so, once we
1286 * set the transaction to blocked above, we aren't going
1287 * to get any new ordered operations. We can safely run
1288 * it here and no for sure that nothing new will be added
1289 * to the list
1290 */
1291 btrfs_run_ordered_operations(root, 1);
1292
ed3b3d31
CM
1293 prepare_to_wait(&cur_trans->writer_wait, &wait,
1294 TASK_UNINTERRUPTIBLE);
1295
13c5a93e 1296 if (atomic_read(&cur_trans->num_writers) > 1)
99d16cbc
SW
1297 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1298 else if (should_grow)
1299 schedule_timeout(1);
15ee9bc7 1300
15ee9bc7 1301 finish_wait(&cur_trans->writer_wait, &wait);
13c5a93e 1302 } while (atomic_read(&cur_trans->num_writers) > 1 ||
89573b9c 1303 (should_grow && cur_trans->num_joined != joined));
15ee9bc7 1304
ed0ca140
JB
1305 /*
1306 * Ok now we need to make sure to block out any other joins while we
1307 * commit the transaction. We could have started a join before setting
1308 * no_join so make sure to wait for num_writers to == 1 again.
1309 */
1310 spin_lock(&root->fs_info->trans_lock);
1311 root->fs_info->trans_no_join = 1;
1312 spin_unlock(&root->fs_info->trans_lock);
1313 wait_event(cur_trans->writer_wait,
1314 atomic_read(&cur_trans->num_writers) == 1);
1315
7585717f
CM
1316 /*
1317 * the reloc mutex makes sure that we stop
1318 * the balancing code from coming in and moving
1319 * extents around in the middle of the commit
1320 */
1321 mutex_lock(&root->fs_info->reloc_mutex);
1322
e999376f 1323 ret = btrfs_run_delayed_items(trans, root);
3063d29f
CM
1324 BUG_ON(ret);
1325
e999376f 1326 ret = create_pending_snapshots(trans, root->fs_info);
16cdcec7
MX
1327 BUG_ON(ret);
1328
56bec294
CM
1329 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1330 BUG_ON(ret);
1331
e999376f
CM
1332 /*
1333 * make sure none of the code above managed to slip in a
1334 * delayed item
1335 */
1336 btrfs_assert_delayed_root_empty(root);
1337
2c90e5d6 1338 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 1339
a2de733c 1340 btrfs_scrub_pause(root);
e02119d5
CM
1341 /* btrfs_commit_tree_roots is responsible for getting the
1342 * various roots consistent with each other. Every pointer
1343 * in the tree of tree roots has to point to the most up to date
1344 * root for every subvolume and other tree. So, we have to keep
1345 * the tree logging code from jumping in and changing any
1346 * of the trees.
1347 *
1348 * At this point in the commit, there can't be any tree-log
1349 * writers, but a little lower down we drop the trans mutex
1350 * and let new people in. By holding the tree_log_mutex
1351 * from now until after the super is written, we avoid races
1352 * with the tree-log code.
1353 */
1354 mutex_lock(&root->fs_info->tree_log_mutex);
1355
5d4f98a2 1356 ret = commit_fs_roots(trans, root);
54aa1f4d
CM
1357 BUG_ON(ret);
1358
5d4f98a2 1359 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
1360 * safe to free the root of tree log roots
1361 */
1362 btrfs_free_log_root_tree(trans, root->fs_info);
1363
5d4f98a2 1364 ret = commit_cowonly_roots(trans, root);
79154b1b 1365 BUG_ON(ret);
54aa1f4d 1366
11833d66
YZ
1367 btrfs_prepare_extent_commit(trans, root);
1368
78fae27e 1369 cur_trans = root->fs_info->running_transaction;
5d4f98a2
YZ
1370
1371 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1372 root->fs_info->tree_root->node);
817d52f8 1373 switch_commit_root(root->fs_info->tree_root);
5d4f98a2
YZ
1374
1375 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1376 root->fs_info->chunk_root->node);
817d52f8 1377 switch_commit_root(root->fs_info->chunk_root);
5d4f98a2
YZ
1378
1379 update_super_roots(root);
e02119d5
CM
1380
1381 if (!root->fs_info->log_root_recovering) {
1382 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1383 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1384 }
1385
a061fc8d
CM
1386 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1387 sizeof(root->fs_info->super_copy));
ccd467d6 1388
f9295749 1389 trans->transaction->blocked = 0;
a4abeea4
JB
1390 spin_lock(&root->fs_info->trans_lock);
1391 root->fs_info->running_transaction = NULL;
1392 root->fs_info->trans_no_join = 0;
1393 spin_unlock(&root->fs_info->trans_lock);
7585717f 1394 mutex_unlock(&root->fs_info->reloc_mutex);
b7ec40d7 1395
f9295749 1396 wake_up(&root->fs_info->transaction_wait);
e6dcd2dc 1397
79154b1b
CM
1398 ret = btrfs_write_and_wait_transaction(trans, root);
1399 BUG_ON(ret);
a512bbf8 1400 write_ctree_super(trans, root, 0);
4313b399 1401
e02119d5
CM
1402 /*
1403 * the super is written, we can safely allow the tree-loggers
1404 * to go about their business
1405 */
1406 mutex_unlock(&root->fs_info->tree_log_mutex);
1407
11833d66 1408 btrfs_finish_extent_commit(trans, root);
4313b399 1409
2c90e5d6 1410 cur_trans->commit_done = 1;
b7ec40d7 1411
15ee9bc7 1412 root->fs_info->last_trans_committed = cur_trans->transid;
817d52f8 1413
2c90e5d6 1414 wake_up(&cur_trans->commit_wait);
3de4586c 1415
a4abeea4 1416 spin_lock(&root->fs_info->trans_lock);
13c5a93e 1417 list_del_init(&cur_trans->list);
a4abeea4
JB
1418 spin_unlock(&root->fs_info->trans_lock);
1419
78fae27e 1420 put_transaction(cur_trans);
79154b1b 1421 put_transaction(cur_trans);
58176a96 1422
1abe9b8a 1423 trace_btrfs_transaction_commit(root);
1424
a2de733c
AJ
1425 btrfs_scrub_continue(root);
1426
9ed74f2d
JB
1427 if (current->journal_info == trans)
1428 current->journal_info = NULL;
1429
2c90e5d6 1430 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04
YZ
1431
1432 if (current != root->fs_info->transaction_kthread)
1433 btrfs_run_delayed_iputs(root);
1434
79154b1b
CM
1435 return ret;
1436}
1437
d352ac68
CM
1438/*
1439 * interface function to delete all the snapshots we have scheduled for deletion
1440 */
e9d0b13b
CM
1441int btrfs_clean_old_snapshots(struct btrfs_root *root)
1442{
5d4f98a2
YZ
1443 LIST_HEAD(list);
1444 struct btrfs_fs_info *fs_info = root->fs_info;
1445
a4abeea4 1446 spin_lock(&fs_info->trans_lock);
5d4f98a2 1447 list_splice_init(&fs_info->dead_roots, &list);
a4abeea4 1448 spin_unlock(&fs_info->trans_lock);
e9d0b13b 1449
5d4f98a2
YZ
1450 while (!list_empty(&list)) {
1451 root = list_entry(list.next, struct btrfs_root, root_list);
76dda93c
YZ
1452 list_del(&root->root_list);
1453
16cdcec7
MX
1454 btrfs_kill_all_delayed_nodes(root);
1455
76dda93c
YZ
1456 if (btrfs_header_backref_rev(root->node) <
1457 BTRFS_MIXED_BACKREF_REV)
3fd0a558 1458 btrfs_drop_snapshot(root, NULL, 0);
76dda93c 1459 else
3fd0a558 1460 btrfs_drop_snapshot(root, NULL, 1);
e9d0b13b
CM
1461 }
1462 return 0;
1463}