Btrfs: Introduce contexts for metadata reservation
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
79154b1b 19#include <linux/fs.h>
5a0e3ad6 20#include <linux/slab.h>
34088780 21#include <linux/sched.h>
d3c2fdcf 22#include <linux/writeback.h>
5f39d397 23#include <linux/pagemap.h>
5f2cc086 24#include <linux/blkdev.h>
79154b1b
CM
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
79154b1b 30
0f7d52f4
CM
31#define BTRFS_ROOT_TRANS_TAG 0
32
80b6794d 33static noinline void put_transaction(struct btrfs_transaction *transaction)
79154b1b 34{
2c90e5d6 35 WARN_ON(transaction->use_count == 0);
79154b1b 36 transaction->use_count--;
78fae27e 37 if (transaction->use_count == 0) {
8fd17795 38 list_del_init(&transaction->list);
2c90e5d6
CM
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
78fae27e 41 }
79154b1b
CM
42}
43
817d52f8
JB
44static noinline void switch_commit_root(struct btrfs_root *root)
45{
817d52f8
JB
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
817d52f8
JB
48}
49
d352ac68
CM
50/*
51 * either allocate a new transaction or hop into the existing one
52 */
80b6794d 53static noinline int join_transaction(struct btrfs_root *root)
79154b1b
CM
54{
55 struct btrfs_transaction *cur_trans;
56 cur_trans = root->fs_info->running_transaction;
57 if (!cur_trans) {
2c90e5d6
CM
58 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 GFP_NOFS);
79154b1b 60 BUG_ON(!cur_trans);
0f7d52f4 61 root->fs_info->generation++;
15ee9bc7
JB
62 cur_trans->num_writers = 1;
63 cur_trans->num_joined = 0;
0f7d52f4 64 cur_trans->transid = root->fs_info->generation;
79154b1b
CM
65 init_waitqueue_head(&cur_trans->writer_wait);
66 init_waitqueue_head(&cur_trans->commit_wait);
67 cur_trans->in_commit = 0;
f9295749 68 cur_trans->blocked = 0;
d5719762 69 cur_trans->use_count = 1;
79154b1b 70 cur_trans->commit_done = 0;
08607c1b 71 cur_trans->start_time = get_seconds();
56bec294 72
6bef4d31 73 cur_trans->delayed_refs.root = RB_ROOT;
56bec294 74 cur_trans->delayed_refs.num_entries = 0;
c3e69d58
CM
75 cur_trans->delayed_refs.num_heads_ready = 0;
76 cur_trans->delayed_refs.num_heads = 0;
56bec294 77 cur_trans->delayed_refs.flushing = 0;
c3e69d58 78 cur_trans->delayed_refs.run_delayed_start = 0;
56bec294
CM
79 spin_lock_init(&cur_trans->delayed_refs.lock);
80
3063d29f 81 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
8fd17795 82 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
d1310b2e 83 extent_io_tree_init(&cur_trans->dirty_pages,
5f39d397
CM
84 root->fs_info->btree_inode->i_mapping,
85 GFP_NOFS);
48ec2cf8
CM
86 spin_lock(&root->fs_info->new_trans_lock);
87 root->fs_info->running_transaction = cur_trans;
88 spin_unlock(&root->fs_info->new_trans_lock);
15ee9bc7
JB
89 } else {
90 cur_trans->num_writers++;
91 cur_trans->num_joined++;
79154b1b 92 }
15ee9bc7 93
79154b1b
CM
94 return 0;
95}
96
d352ac68 97/*
d397712b
CM
98 * this does all the record keeping required to make sure that a reference
99 * counted root is properly recorded in a given transaction. This is required
100 * to make sure the old root from before we joined the transaction is deleted
101 * when the transaction commits
d352ac68 102 */
5d4f98a2
YZ
103static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root)
6702ed49 105{
5d4f98a2 106 if (root->ref_cows && root->last_trans < trans->transid) {
6702ed49 107 WARN_ON(root == root->fs_info->extent_root);
5d4f98a2
YZ
108 WARN_ON(root->commit_root != root->node);
109
110 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 (unsigned long)root->root_key.objectid,
112 BTRFS_ROOT_TRANS_TAG);
113 root->last_trans = trans->transid;
114 btrfs_init_reloc_root(trans, root);
115 }
116 return 0;
117}
bcc63abb 118
5d4f98a2
YZ
119int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 struct btrfs_root *root)
121{
122 if (!root->ref_cows)
123 return 0;
bcc63abb 124
5d4f98a2
YZ
125 mutex_lock(&root->fs_info->trans_mutex);
126 if (root->last_trans == trans->transid) {
127 mutex_unlock(&root->fs_info->trans_mutex);
128 return 0;
6702ed49 129 }
5d4f98a2
YZ
130
131 record_root_in_trans(trans, root);
132 mutex_unlock(&root->fs_info->trans_mutex);
6702ed49
CM
133 return 0;
134}
135
d352ac68
CM
136/* wait for commit against the current transaction to become unblocked
137 * when this is done, it is safe to start a new transaction, but the current
138 * transaction might not be fully on disk.
139 */
37d1aeee 140static void wait_current_trans(struct btrfs_root *root)
79154b1b 141{
f9295749 142 struct btrfs_transaction *cur_trans;
79154b1b 143
f9295749 144 cur_trans = root->fs_info->running_transaction;
37d1aeee 145 if (cur_trans && cur_trans->blocked) {
f9295749
CM
146 DEFINE_WAIT(wait);
147 cur_trans->use_count++;
d397712b 148 while (1) {
f9295749
CM
149 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 TASK_UNINTERRUPTIBLE);
471fa17d 151 if (!cur_trans->blocked)
f9295749 152 break;
471fa17d
ZL
153 mutex_unlock(&root->fs_info->trans_mutex);
154 schedule();
155 mutex_lock(&root->fs_info->trans_mutex);
f9295749 156 }
471fa17d 157 finish_wait(&root->fs_info->transaction_wait, &wait);
f9295749
CM
158 put_transaction(cur_trans);
159 }
37d1aeee
CM
160}
161
249ac1e5
JB
162enum btrfs_trans_type {
163 TRANS_START,
164 TRANS_JOIN,
165 TRANS_USERSPACE,
166};
167
e02119d5 168static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
249ac1e5 169 int num_blocks, int type)
37d1aeee
CM
170{
171 struct btrfs_trans_handle *h =
172 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
173 int ret;
174
175 mutex_lock(&root->fs_info->trans_mutex);
4bef0848 176 if (!root->fs_info->log_root_recovering &&
249ac1e5
JB
177 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
178 type == TRANS_USERSPACE))
37d1aeee 179 wait_current_trans(root);
79154b1b
CM
180 ret = join_transaction(root);
181 BUG_ON(ret);
0f7d52f4 182
6702ed49 183 h->transid = root->fs_info->running_transaction->transid;
79154b1b
CM
184 h->transaction = root->fs_info->running_transaction;
185 h->blocks_reserved = num_blocks;
186 h->blocks_used = 0;
d2fb3437 187 h->block_group = 0;
56bec294 188 h->delayed_ref_updates = 0;
f0486c68 189 h->block_rsv = NULL;
b7ec40d7 190
249ac1e5 191 if (!current->journal_info && type != TRANS_USERSPACE)
9ed74f2d
JB
192 current->journal_info = h;
193
79154b1b 194 root->fs_info->running_transaction->use_count++;
5d4f98a2 195 record_root_in_trans(h, root);
79154b1b
CM
196 mutex_unlock(&root->fs_info->trans_mutex);
197 return h;
198}
199
f9295749
CM
200struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
201 int num_blocks)
202{
249ac1e5 203 return start_transaction(root, num_blocks, TRANS_START);
f9295749
CM
204}
205struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
206 int num_blocks)
207{
249ac1e5 208 return start_transaction(root, num_blocks, TRANS_JOIN);
f9295749
CM
209}
210
9ca9ee09
SW
211struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
212 int num_blocks)
213{
249ac1e5 214 return start_transaction(r, num_blocks, TRANS_USERSPACE);
9ca9ee09
SW
215}
216
d352ac68 217/* wait for a transaction commit to be fully complete */
89ce8a63
CM
218static noinline int wait_for_commit(struct btrfs_root *root,
219 struct btrfs_transaction *commit)
220{
221 DEFINE_WAIT(wait);
222 mutex_lock(&root->fs_info->trans_mutex);
d397712b 223 while (!commit->commit_done) {
89ce8a63
CM
224 prepare_to_wait(&commit->commit_wait, &wait,
225 TASK_UNINTERRUPTIBLE);
226 if (commit->commit_done)
227 break;
228 mutex_unlock(&root->fs_info->trans_mutex);
229 schedule();
230 mutex_lock(&root->fs_info->trans_mutex);
231 }
232 mutex_unlock(&root->fs_info->trans_mutex);
233 finish_wait(&commit->commit_wait, &wait);
234 return 0;
235}
236
5d4f98a2 237#if 0
d352ac68 238/*
d397712b
CM
239 * rate limit against the drop_snapshot code. This helps to slow down new
240 * operations if the drop_snapshot code isn't able to keep up.
d352ac68 241 */
37d1aeee 242static void throttle_on_drops(struct btrfs_root *root)
ab78c84d
CM
243{
244 struct btrfs_fs_info *info = root->fs_info;
2dd3e67b 245 int harder_count = 0;
ab78c84d 246
2dd3e67b 247harder:
ab78c84d
CM
248 if (atomic_read(&info->throttles)) {
249 DEFINE_WAIT(wait);
250 int thr;
ab78c84d
CM
251 thr = atomic_read(&info->throttle_gen);
252
253 do {
254 prepare_to_wait(&info->transaction_throttle,
255 &wait, TASK_UNINTERRUPTIBLE);
256 if (!atomic_read(&info->throttles)) {
257 finish_wait(&info->transaction_throttle, &wait);
258 break;
259 }
260 schedule();
261 finish_wait(&info->transaction_throttle, &wait);
262 } while (thr == atomic_read(&info->throttle_gen));
2dd3e67b
CM
263 harder_count++;
264
265 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
266 harder_count < 2)
267 goto harder;
268
269 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
270 harder_count < 10)
271 goto harder;
272
273 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
274 harder_count < 20)
275 goto harder;
ab78c84d
CM
276 }
277}
5d4f98a2 278#endif
ab78c84d 279
37d1aeee
CM
280void btrfs_throttle(struct btrfs_root *root)
281{
282 mutex_lock(&root->fs_info->trans_mutex);
9ca9ee09
SW
283 if (!root->fs_info->open_ioctl_trans)
284 wait_current_trans(root);
37d1aeee 285 mutex_unlock(&root->fs_info->trans_mutex);
37d1aeee
CM
286}
287
89ce8a63
CM
288static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
289 struct btrfs_root *root, int throttle)
79154b1b
CM
290{
291 struct btrfs_transaction *cur_trans;
ab78c84d 292 struct btrfs_fs_info *info = root->fs_info;
c3e69d58
CM
293 int count = 0;
294
295 while (count < 4) {
296 unsigned long cur = trans->delayed_ref_updates;
297 trans->delayed_ref_updates = 0;
298 if (cur &&
299 trans->transaction->delayed_refs.num_heads_ready > 64) {
300 trans->delayed_ref_updates = 0;
b7ec40d7
CM
301
302 /*
303 * do a full flush if the transaction is trying
304 * to close
305 */
306 if (trans->transaction->delayed_refs.flushing)
307 cur = 0;
c3e69d58
CM
308 btrfs_run_delayed_refs(trans, root, cur);
309 } else {
310 break;
311 }
312 count++;
56bec294
CM
313 }
314
ab78c84d
CM
315 mutex_lock(&info->trans_mutex);
316 cur_trans = info->running_transaction;
ccd467d6 317 WARN_ON(cur_trans != trans->transaction);
d5719762 318 WARN_ON(cur_trans->num_writers < 1);
ccd467d6 319 cur_trans->num_writers--;
89ce8a63 320
79154b1b
CM
321 if (waitqueue_active(&cur_trans->writer_wait))
322 wake_up(&cur_trans->writer_wait);
79154b1b 323 put_transaction(cur_trans);
ab78c84d 324 mutex_unlock(&info->trans_mutex);
9ed74f2d
JB
325
326 if (current->journal_info == trans)
327 current->journal_info = NULL;
d6025579 328 memset(trans, 0, sizeof(*trans));
2c90e5d6 329 kmem_cache_free(btrfs_trans_handle_cachep, trans);
ab78c84d 330
24bbcf04
YZ
331 if (throttle)
332 btrfs_run_delayed_iputs(root);
333
79154b1b
CM
334 return 0;
335}
336
89ce8a63
CM
337int btrfs_end_transaction(struct btrfs_trans_handle *trans,
338 struct btrfs_root *root)
339{
340 return __btrfs_end_transaction(trans, root, 0);
341}
342
343int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
344 struct btrfs_root *root)
345{
346 return __btrfs_end_transaction(trans, root, 1);
347}
348
d352ac68
CM
349/*
350 * when btree blocks are allocated, they have some corresponding bits set for
351 * them in one of two extent_io trees. This is used to make sure all of
690587d1 352 * those extents are sent to disk but does not wait on them
d352ac68 353 */
690587d1 354int btrfs_write_marked_extents(struct btrfs_root *root,
8cef4e16 355 struct extent_io_tree *dirty_pages, int mark)
79154b1b 356{
7c4452b9 357 int ret;
777e6bd7 358 int err = 0;
7c4452b9
CM
359 int werr = 0;
360 struct page *page;
7c4452b9 361 struct inode *btree_inode = root->fs_info->btree_inode;
777e6bd7 362 u64 start = 0;
5f39d397
CM
363 u64 end;
364 unsigned long index;
7c4452b9 365
d397712b 366 while (1) {
777e6bd7 367 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
8cef4e16 368 mark);
5f39d397 369 if (ret)
7c4452b9 370 break;
d397712b 371 while (start <= end) {
777e6bd7
CM
372 cond_resched();
373
5f39d397 374 index = start >> PAGE_CACHE_SHIFT;
35ebb934 375 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
4bef0848 376 page = find_get_page(btree_inode->i_mapping, index);
7c4452b9
CM
377 if (!page)
378 continue;
4bef0848
CM
379
380 btree_lock_page_hook(page);
381 if (!page->mapping) {
382 unlock_page(page);
383 page_cache_release(page);
384 continue;
385 }
386
6702ed49
CM
387 if (PageWriteback(page)) {
388 if (PageDirty(page))
389 wait_on_page_writeback(page);
390 else {
391 unlock_page(page);
392 page_cache_release(page);
393 continue;
394 }
395 }
7c4452b9
CM
396 err = write_one_page(page, 0);
397 if (err)
398 werr = err;
399 page_cache_release(page);
400 }
401 }
690587d1
CM
402 if (err)
403 werr = err;
404 return werr;
405}
406
407/*
408 * when btree blocks are allocated, they have some corresponding bits set for
409 * them in one of two extent_io trees. This is used to make sure all of
410 * those extents are on disk for transaction or log commit. We wait
411 * on all the pages and clear them from the dirty pages state tree
412 */
413int btrfs_wait_marked_extents(struct btrfs_root *root,
8cef4e16 414 struct extent_io_tree *dirty_pages, int mark)
690587d1
CM
415{
416 int ret;
417 int err = 0;
418 int werr = 0;
419 struct page *page;
420 struct inode *btree_inode = root->fs_info->btree_inode;
421 u64 start = 0;
422 u64 end;
423 unsigned long index;
424
d397712b 425 while (1) {
8cef4e16
YZ
426 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
427 mark);
777e6bd7
CM
428 if (ret)
429 break;
430
8cef4e16 431 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
d397712b 432 while (start <= end) {
777e6bd7
CM
433 index = start >> PAGE_CACHE_SHIFT;
434 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
435 page = find_get_page(btree_inode->i_mapping, index);
436 if (!page)
437 continue;
438 if (PageDirty(page)) {
4bef0848
CM
439 btree_lock_page_hook(page);
440 wait_on_page_writeback(page);
777e6bd7
CM
441 err = write_one_page(page, 0);
442 if (err)
443 werr = err;
444 }
105d931d 445 wait_on_page_writeback(page);
777e6bd7
CM
446 page_cache_release(page);
447 cond_resched();
448 }
449 }
7c4452b9
CM
450 if (err)
451 werr = err;
452 return werr;
79154b1b
CM
453}
454
690587d1
CM
455/*
456 * when btree blocks are allocated, they have some corresponding bits set for
457 * them in one of two extent_io trees. This is used to make sure all of
458 * those extents are on disk for transaction or log commit
459 */
460int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
8cef4e16 461 struct extent_io_tree *dirty_pages, int mark)
690587d1
CM
462{
463 int ret;
464 int ret2;
465
8cef4e16
YZ
466 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
467 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
690587d1
CM
468 return ret || ret2;
469}
470
d0c803c4
CM
471int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
472 struct btrfs_root *root)
473{
474 if (!trans || !trans->transaction) {
475 struct inode *btree_inode;
476 btree_inode = root->fs_info->btree_inode;
477 return filemap_write_and_wait(btree_inode->i_mapping);
478 }
479 return btrfs_write_and_wait_marked_extents(root,
8cef4e16
YZ
480 &trans->transaction->dirty_pages,
481 EXTENT_DIRTY);
d0c803c4
CM
482}
483
d352ac68
CM
484/*
485 * this is used to update the root pointer in the tree of tree roots.
486 *
487 * But, in the case of the extent allocation tree, updating the root
488 * pointer may allocate blocks which may change the root of the extent
489 * allocation tree.
490 *
491 * So, this loops and repeats and makes sure the cowonly root didn't
492 * change while the root pointer was being updated in the metadata.
493 */
0b86a832
CM
494static int update_cowonly_root(struct btrfs_trans_handle *trans,
495 struct btrfs_root *root)
79154b1b
CM
496{
497 int ret;
0b86a832 498 u64 old_root_bytenr;
86b9f2ec 499 u64 old_root_used;
0b86a832 500 struct btrfs_root *tree_root = root->fs_info->tree_root;
79154b1b 501
86b9f2ec 502 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 503 btrfs_write_dirty_block_groups(trans, root);
56bec294 504
d397712b 505 while (1) {
0b86a832 506 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec
YZ
507 if (old_root_bytenr == root->node->start &&
508 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 509 break;
87ef2bb4 510
5d4f98a2 511 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 512 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
513 &root->root_key,
514 &root->root_item);
79154b1b 515 BUG_ON(ret);
56bec294 516
86b9f2ec 517 old_root_used = btrfs_root_used(&root->root_item);
4a8c9a62 518 ret = btrfs_write_dirty_block_groups(trans, root);
56bec294 519 BUG_ON(ret);
0b86a832 520 }
276e680d
YZ
521
522 if (root != root->fs_info->extent_root)
523 switch_commit_root(root);
524
0b86a832
CM
525 return 0;
526}
527
d352ac68
CM
528/*
529 * update all the cowonly tree roots on disk
530 */
5d4f98a2
YZ
531static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
532 struct btrfs_root *root)
0b86a832
CM
533{
534 struct btrfs_fs_info *fs_info = root->fs_info;
535 struct list_head *next;
84234f3a 536 struct extent_buffer *eb;
56bec294 537 int ret;
84234f3a 538
56bec294
CM
539 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
540 BUG_ON(ret);
87ef2bb4 541
84234f3a 542 eb = btrfs_lock_root_node(fs_info->tree_root);
9fa8cfe7 543 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
84234f3a
YZ
544 btrfs_tree_unlock(eb);
545 free_extent_buffer(eb);
0b86a832 546
56bec294
CM
547 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
548 BUG_ON(ret);
87ef2bb4 549
d397712b 550 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
0b86a832
CM
551 next = fs_info->dirty_cowonly_roots.next;
552 list_del_init(next);
553 root = list_entry(next, struct btrfs_root, dirty_list);
87ef2bb4 554
0b86a832 555 update_cowonly_root(trans, root);
79154b1b 556 }
276e680d
YZ
557
558 down_write(&fs_info->extent_commit_sem);
559 switch_commit_root(fs_info->extent_root);
560 up_write(&fs_info->extent_commit_sem);
561
79154b1b
CM
562 return 0;
563}
564
d352ac68
CM
565/*
566 * dead roots are old snapshots that need to be deleted. This allocates
567 * a dirty root struct and adds it into the list of dead roots that need to
568 * be deleted
569 */
5d4f98a2 570int btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 571{
b48652c1 572 mutex_lock(&root->fs_info->trans_mutex);
5d4f98a2 573 list_add(&root->root_list, &root->fs_info->dead_roots);
b48652c1 574 mutex_unlock(&root->fs_info->trans_mutex);
5eda7b5e
CM
575 return 0;
576}
577
d352ac68 578/*
5d4f98a2 579 * update all the cowonly tree roots on disk
d352ac68 580 */
5d4f98a2
YZ
581static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
582 struct btrfs_root *root)
0f7d52f4 583{
0f7d52f4 584 struct btrfs_root *gang[8];
5d4f98a2 585 struct btrfs_fs_info *fs_info = root->fs_info;
0f7d52f4
CM
586 int i;
587 int ret;
54aa1f4d
CM
588 int err = 0;
589
d397712b 590 while (1) {
5d4f98a2
YZ
591 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
592 (void **)gang, 0,
0f7d52f4
CM
593 ARRAY_SIZE(gang),
594 BTRFS_ROOT_TRANS_TAG);
595 if (ret == 0)
596 break;
597 for (i = 0; i < ret; i++) {
598 root = gang[i];
5d4f98a2
YZ
599 radix_tree_tag_clear(&fs_info->fs_roots_radix,
600 (unsigned long)root->root_key.objectid,
601 BTRFS_ROOT_TRANS_TAG);
31153d81 602
e02119d5 603 btrfs_free_log(trans, root);
5d4f98a2 604 btrfs_update_reloc_root(trans, root);
bcc63abb 605
978d910d 606 if (root->commit_root != root->node) {
817d52f8 607 switch_commit_root(root);
978d910d
YZ
608 btrfs_set_root_node(&root->root_item,
609 root->node);
610 }
5d4f98a2 611
5d4f98a2 612 err = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
613 &root->root_key,
614 &root->root_item);
54aa1f4d
CM
615 if (err)
616 break;
0f7d52f4
CM
617 }
618 }
54aa1f4d 619 return err;
0f7d52f4
CM
620}
621
d352ac68
CM
622/*
623 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
624 * otherwise every leaf in the btree is read and defragged.
625 */
e9d0b13b
CM
626int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
627{
628 struct btrfs_fs_info *info = root->fs_info;
629 int ret;
630 struct btrfs_trans_handle *trans;
d3c2fdcf 631 unsigned long nr;
e9d0b13b 632
a2135011 633 smp_mb();
e9d0b13b
CM
634 if (root->defrag_running)
635 return 0;
e9d0b13b 636 trans = btrfs_start_transaction(root, 1);
6b80053d 637 while (1) {
e9d0b13b
CM
638 root->defrag_running = 1;
639 ret = btrfs_defrag_leaves(trans, root, cacheonly);
d3c2fdcf 640 nr = trans->blocks_used;
e9d0b13b 641 btrfs_end_transaction(trans, root);
d3c2fdcf 642 btrfs_btree_balance_dirty(info->tree_root, nr);
e9d0b13b
CM
643 cond_resched();
644
e9d0b13b 645 trans = btrfs_start_transaction(root, 1);
3f157a2f 646 if (root->fs_info->closing || ret != -EAGAIN)
e9d0b13b
CM
647 break;
648 }
649 root->defrag_running = 0;
a2135011 650 smp_mb();
e9d0b13b
CM
651 btrfs_end_transaction(trans, root);
652 return 0;
653}
654
2c47e605 655#if 0
b7ec40d7
CM
656/*
657 * when dropping snapshots, we generate a ton of delayed refs, and it makes
658 * sense not to join the transaction while it is trying to flush the current
659 * queue of delayed refs out.
660 *
661 * This is used by the drop snapshot code only
662 */
663static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
664{
665 DEFINE_WAIT(wait);
666
667 mutex_lock(&info->trans_mutex);
668 while (info->running_transaction &&
669 info->running_transaction->delayed_refs.flushing) {
670 prepare_to_wait(&info->transaction_wait, &wait,
671 TASK_UNINTERRUPTIBLE);
672 mutex_unlock(&info->trans_mutex);
59bc5c75 673
b7ec40d7 674 schedule();
59bc5c75 675
b7ec40d7
CM
676 mutex_lock(&info->trans_mutex);
677 finish_wait(&info->transaction_wait, &wait);
678 }
679 mutex_unlock(&info->trans_mutex);
680 return 0;
681}
682
d352ac68
CM
683/*
684 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
685 * all of them
686 */
5d4f98a2 687int btrfs_drop_dead_root(struct btrfs_root *root)
0f7d52f4 688{
0f7d52f4 689 struct btrfs_trans_handle *trans;
5d4f98a2 690 struct btrfs_root *tree_root = root->fs_info->tree_root;
d3c2fdcf 691 unsigned long nr;
5d4f98a2 692 int ret;
58176a96 693
5d4f98a2
YZ
694 while (1) {
695 /*
696 * we don't want to jump in and create a bunch of
697 * delayed refs if the transaction is starting to close
698 */
699 wait_transaction_pre_flush(tree_root->fs_info);
700 trans = btrfs_start_transaction(tree_root, 1);
a2135011 701
5d4f98a2
YZ
702 /*
703 * we've joined a transaction, make sure it isn't
704 * closing right now
705 */
706 if (trans->transaction->delayed_refs.flushing) {
707 btrfs_end_transaction(trans, tree_root);
708 continue;
9f3a7427 709 }
58176a96 710
5d4f98a2
YZ
711 ret = btrfs_drop_snapshot(trans, root);
712 if (ret != -EAGAIN)
713 break;
a2135011 714
5d4f98a2
YZ
715 ret = btrfs_update_root(trans, tree_root,
716 &root->root_key,
717 &root->root_item);
718 if (ret)
54aa1f4d 719 break;
bcc63abb 720
d3c2fdcf 721 nr = trans->blocks_used;
0f7d52f4
CM
722 ret = btrfs_end_transaction(trans, tree_root);
723 BUG_ON(ret);
5eda7b5e 724
d3c2fdcf 725 btrfs_btree_balance_dirty(tree_root, nr);
4dc11904 726 cond_resched();
0f7d52f4 727 }
5d4f98a2
YZ
728 BUG_ON(ret);
729
730 ret = btrfs_del_root(trans, tree_root, &root->root_key);
731 BUG_ON(ret);
732
733 nr = trans->blocks_used;
734 ret = btrfs_end_transaction(trans, tree_root);
735 BUG_ON(ret);
736
737 free_extent_buffer(root->node);
738 free_extent_buffer(root->commit_root);
739 kfree(root);
740
741 btrfs_btree_balance_dirty(tree_root, nr);
54aa1f4d 742 return ret;
0f7d52f4 743}
2c47e605 744#endif
0f7d52f4 745
d352ac68
CM
746/*
747 * new snapshots need to be created at a very specific time in the
748 * transaction commit. This does the actual creation
749 */
80b6794d 750static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
751 struct btrfs_fs_info *fs_info,
752 struct btrfs_pending_snapshot *pending)
753{
754 struct btrfs_key key;
80b6794d 755 struct btrfs_root_item *new_root_item;
3063d29f
CM
756 struct btrfs_root *tree_root = fs_info->tree_root;
757 struct btrfs_root *root = pending->root;
6bdb72de
SW
758 struct btrfs_root *parent_root;
759 struct inode *parent_inode;
3063d29f 760 struct extent_buffer *tmp;
925baedd 761 struct extent_buffer *old;
3063d29f
CM
762 int ret;
763 u64 objectid;
6bdb72de
SW
764 int namelen;
765 u64 index = 0;
766
767 parent_inode = pending->dentry->d_parent->d_inode;
768 parent_root = BTRFS_I(parent_inode)->root;
3063d29f 769
80b6794d
CM
770 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
771 if (!new_root_item) {
772 ret = -ENOMEM;
773 goto fail;
774 }
3063d29f
CM
775 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
776 if (ret)
777 goto fail;
778
3063d29f 779 key.objectid = objectid;
1c4850e2
YZ
780 /* record when the snapshot was created in key.offset */
781 key.offset = trans->transid;
3063d29f
CM
782 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
783
3de4586c 784 memcpy(&pending->root_key, &key, sizeof(key));
6bdb72de 785 pending->root_key.offset = (u64)-1;
3de4586c 786
6bdb72de 787 record_root_in_trans(trans, parent_root);
3063d29f
CM
788 /*
789 * insert the directory item
790 */
3b96362c 791 namelen = strlen(pending->name);
3de4586c 792 ret = btrfs_set_inode_index(parent_inode, &index);
6bdb72de 793 BUG_ON(ret);
0660b5af 794 ret = btrfs_insert_dir_item(trans, parent_root,
3de4586c
CM
795 pending->name, namelen,
796 parent_inode->i_ino,
797 &pending->root_key, BTRFS_FT_DIR, index);
6bdb72de 798 BUG_ON(ret);
0660b5af 799
52c26179
YZ
800 btrfs_i_size_write(parent_inode, parent_inode->i_size + namelen * 2);
801 ret = btrfs_update_inode(trans, parent_root, parent_inode);
802 BUG_ON(ret);
803
6bdb72de
SW
804 record_root_in_trans(trans, root);
805 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
806 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
807
808 old = btrfs_lock_root_node(root);
809 btrfs_cow_block(trans, root, old, NULL, 0, &old);
810 btrfs_set_lock_blocking(old);
811
812 btrfs_copy_root(trans, root, old, &tmp, objectid);
813 btrfs_tree_unlock(old);
814 free_extent_buffer(old);
815
816 btrfs_set_root_node(new_root_item, tmp);
817 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
818 new_root_item);
819 BUG_ON(ret);
820 btrfs_tree_unlock(tmp);
821 free_extent_buffer(tmp);
822
0660b5af
CM
823 ret = btrfs_add_root_ref(trans, parent_root->fs_info->tree_root,
824 pending->root_key.objectid,
0660b5af
CM
825 parent_root->root_key.objectid,
826 parent_inode->i_ino, index, pending->name,
827 namelen);
0660b5af
CM
828 BUG_ON(ret);
829
3063d29f 830fail:
6bdb72de 831 kfree(new_root_item);
3063d29f
CM
832 return ret;
833}
834
d352ac68
CM
835/*
836 * create all the snapshots we've scheduled for creation
837 */
80b6794d
CM
838static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
839 struct btrfs_fs_info *fs_info)
3de4586c
CM
840{
841 struct btrfs_pending_snapshot *pending;
842 struct list_head *head = &trans->transaction->pending_snapshots;
3de4586c
CM
843 int ret;
844
c6e30871 845 list_for_each_entry(pending, head, list) {
3de4586c
CM
846 ret = create_pending_snapshot(trans, fs_info, pending);
847 BUG_ON(ret);
848 }
849 return 0;
850}
851
5d4f98a2
YZ
852static void update_super_roots(struct btrfs_root *root)
853{
854 struct btrfs_root_item *root_item;
855 struct btrfs_super_block *super;
856
857 super = &root->fs_info->super_copy;
858
859 root_item = &root->fs_info->chunk_root->root_item;
860 super->chunk_root = root_item->bytenr;
861 super->chunk_root_generation = root_item->generation;
862 super->chunk_root_level = root_item->level;
863
864 root_item = &root->fs_info->tree_root->root_item;
865 super->root = root_item->bytenr;
866 super->generation = root_item->generation;
867 super->root_level = root_item->level;
868}
869
f36f3042
CM
870int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
871{
872 int ret = 0;
873 spin_lock(&info->new_trans_lock);
874 if (info->running_transaction)
875 ret = info->running_transaction->in_commit;
876 spin_unlock(&info->new_trans_lock);
877 return ret;
878}
879
79154b1b
CM
880int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
881 struct btrfs_root *root)
882{
15ee9bc7
JB
883 unsigned long joined = 0;
884 unsigned long timeout = 1;
79154b1b 885 struct btrfs_transaction *cur_trans;
8fd17795 886 struct btrfs_transaction *prev_trans = NULL;
79154b1b 887 DEFINE_WAIT(wait);
15ee9bc7 888 int ret;
89573b9c
CM
889 int should_grow = 0;
890 unsigned long now = get_seconds();
dccae999 891 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
79154b1b 892
5a3f23d5
CM
893 btrfs_run_ordered_operations(root, 0);
894
56bec294
CM
895 /* make a pass through all the delayed refs we have so far
896 * any runnings procs may add more while we are here
897 */
898 ret = btrfs_run_delayed_refs(trans, root, 0);
899 BUG_ON(ret);
900
b7ec40d7 901 cur_trans = trans->transaction;
56bec294
CM
902 /*
903 * set the flushing flag so procs in this transaction have to
904 * start sending their work down.
905 */
b7ec40d7 906 cur_trans->delayed_refs.flushing = 1;
56bec294 907
c3e69d58 908 ret = btrfs_run_delayed_refs(trans, root, 0);
56bec294
CM
909 BUG_ON(ret);
910
79154b1b 911 mutex_lock(&root->fs_info->trans_mutex);
b7ec40d7
CM
912 if (cur_trans->in_commit) {
913 cur_trans->use_count++;
ccd467d6 914 mutex_unlock(&root->fs_info->trans_mutex);
79154b1b 915 btrfs_end_transaction(trans, root);
ccd467d6 916
79154b1b
CM
917 ret = wait_for_commit(root, cur_trans);
918 BUG_ON(ret);
15ee9bc7
JB
919
920 mutex_lock(&root->fs_info->trans_mutex);
79154b1b 921 put_transaction(cur_trans);
15ee9bc7
JB
922 mutex_unlock(&root->fs_info->trans_mutex);
923
79154b1b
CM
924 return 0;
925 }
4313b399 926
2c90e5d6 927 trans->transaction->in_commit = 1;
f9295749 928 trans->transaction->blocked = 1;
ccd467d6
CM
929 if (cur_trans->list.prev != &root->fs_info->trans_list) {
930 prev_trans = list_entry(cur_trans->list.prev,
931 struct btrfs_transaction, list);
932 if (!prev_trans->commit_done) {
933 prev_trans->use_count++;
ccd467d6
CM
934 mutex_unlock(&root->fs_info->trans_mutex);
935
936 wait_for_commit(root, prev_trans);
ccd467d6 937
ccd467d6 938 mutex_lock(&root->fs_info->trans_mutex);
15ee9bc7 939 put_transaction(prev_trans);
ccd467d6
CM
940 }
941 }
15ee9bc7 942
89573b9c
CM
943 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
944 should_grow = 1;
945
15ee9bc7 946 do {
7ea394f1 947 int snap_pending = 0;
15ee9bc7 948 joined = cur_trans->num_joined;
7ea394f1
YZ
949 if (!list_empty(&trans->transaction->pending_snapshots))
950 snap_pending = 1;
951
2c90e5d6 952 WARN_ON(cur_trans != trans->transaction);
15ee9bc7 953 prepare_to_wait(&cur_trans->writer_wait, &wait,
79154b1b 954 TASK_UNINTERRUPTIBLE);
15ee9bc7
JB
955
956 if (cur_trans->num_writers > 1)
957 timeout = MAX_SCHEDULE_TIMEOUT;
89573b9c 958 else if (should_grow)
15ee9bc7
JB
959 timeout = 1;
960
79154b1b 961 mutex_unlock(&root->fs_info->trans_mutex);
15ee9bc7 962
0bdb1db2 963 if (flush_on_commit || snap_pending) {
24bbcf04
YZ
964 btrfs_start_delalloc_inodes(root, 1);
965 ret = btrfs_wait_ordered_extents(root, 0, 1);
ebecd3d9 966 BUG_ON(ret);
7ea394f1
YZ
967 }
968
5a3f23d5
CM
969 /*
970 * rename don't use btrfs_join_transaction, so, once we
971 * set the transaction to blocked above, we aren't going
972 * to get any new ordered operations. We can safely run
973 * it here and no for sure that nothing new will be added
974 * to the list
975 */
976 btrfs_run_ordered_operations(root, 1);
977
89573b9c
CM
978 smp_mb();
979 if (cur_trans->num_writers > 1 || should_grow)
980 schedule_timeout(timeout);
15ee9bc7 981
79154b1b 982 mutex_lock(&root->fs_info->trans_mutex);
15ee9bc7
JB
983 finish_wait(&cur_trans->writer_wait, &wait);
984 } while (cur_trans->num_writers > 1 ||
89573b9c 985 (should_grow && cur_trans->num_joined != joined));
15ee9bc7 986
3063d29f
CM
987 ret = create_pending_snapshots(trans, root->fs_info);
988 BUG_ON(ret);
989
56bec294
CM
990 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
991 BUG_ON(ret);
992
2c90e5d6 993 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 994
e02119d5
CM
995 /* btrfs_commit_tree_roots is responsible for getting the
996 * various roots consistent with each other. Every pointer
997 * in the tree of tree roots has to point to the most up to date
998 * root for every subvolume and other tree. So, we have to keep
999 * the tree logging code from jumping in and changing any
1000 * of the trees.
1001 *
1002 * At this point in the commit, there can't be any tree-log
1003 * writers, but a little lower down we drop the trans mutex
1004 * and let new people in. By holding the tree_log_mutex
1005 * from now until after the super is written, we avoid races
1006 * with the tree-log code.
1007 */
1008 mutex_lock(&root->fs_info->tree_log_mutex);
1009
5d4f98a2 1010 ret = commit_fs_roots(trans, root);
54aa1f4d
CM
1011 BUG_ON(ret);
1012
5d4f98a2 1013 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
1014 * safe to free the root of tree log roots
1015 */
1016 btrfs_free_log_root_tree(trans, root->fs_info);
1017
5d4f98a2 1018 ret = commit_cowonly_roots(trans, root);
79154b1b 1019 BUG_ON(ret);
54aa1f4d 1020
11833d66
YZ
1021 btrfs_prepare_extent_commit(trans, root);
1022
78fae27e 1023 cur_trans = root->fs_info->running_transaction;
cee36a03 1024 spin_lock(&root->fs_info->new_trans_lock);
78fae27e 1025 root->fs_info->running_transaction = NULL;
cee36a03 1026 spin_unlock(&root->fs_info->new_trans_lock);
5d4f98a2
YZ
1027
1028 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1029 root->fs_info->tree_root->node);
817d52f8 1030 switch_commit_root(root->fs_info->tree_root);
5d4f98a2
YZ
1031
1032 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1033 root->fs_info->chunk_root->node);
817d52f8 1034 switch_commit_root(root->fs_info->chunk_root);
5d4f98a2
YZ
1035
1036 update_super_roots(root);
e02119d5
CM
1037
1038 if (!root->fs_info->log_root_recovering) {
1039 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1040 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1041 }
1042
a061fc8d
CM
1043 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1044 sizeof(root->fs_info->super_copy));
ccd467d6 1045
f9295749 1046 trans->transaction->blocked = 0;
b7ec40d7 1047
f9295749 1048 wake_up(&root->fs_info->transaction_wait);
e6dcd2dc 1049
78fae27e 1050 mutex_unlock(&root->fs_info->trans_mutex);
79154b1b
CM
1051 ret = btrfs_write_and_wait_transaction(trans, root);
1052 BUG_ON(ret);
a512bbf8 1053 write_ctree_super(trans, root, 0);
4313b399 1054
e02119d5
CM
1055 /*
1056 * the super is written, we can safely allow the tree-loggers
1057 * to go about their business
1058 */
1059 mutex_unlock(&root->fs_info->tree_log_mutex);
1060
11833d66 1061 btrfs_finish_extent_commit(trans, root);
4313b399 1062
1a40e23b
ZY
1063 mutex_lock(&root->fs_info->trans_mutex);
1064
2c90e5d6 1065 cur_trans->commit_done = 1;
b7ec40d7 1066
15ee9bc7 1067 root->fs_info->last_trans_committed = cur_trans->transid;
817d52f8 1068
2c90e5d6 1069 wake_up(&cur_trans->commit_wait);
3de4586c 1070
78fae27e 1071 put_transaction(cur_trans);
79154b1b 1072 put_transaction(cur_trans);
58176a96 1073
78fae27e 1074 mutex_unlock(&root->fs_info->trans_mutex);
3de4586c 1075
9ed74f2d
JB
1076 if (current->journal_info == trans)
1077 current->journal_info = NULL;
1078
2c90e5d6 1079 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04
YZ
1080
1081 if (current != root->fs_info->transaction_kthread)
1082 btrfs_run_delayed_iputs(root);
1083
79154b1b
CM
1084 return ret;
1085}
1086
d352ac68
CM
1087/*
1088 * interface function to delete all the snapshots we have scheduled for deletion
1089 */
e9d0b13b
CM
1090int btrfs_clean_old_snapshots(struct btrfs_root *root)
1091{
5d4f98a2
YZ
1092 LIST_HEAD(list);
1093 struct btrfs_fs_info *fs_info = root->fs_info;
1094
1095 mutex_lock(&fs_info->trans_mutex);
1096 list_splice_init(&fs_info->dead_roots, &list);
1097 mutex_unlock(&fs_info->trans_mutex);
e9d0b13b 1098
5d4f98a2
YZ
1099 while (!list_empty(&list)) {
1100 root = list_entry(list.next, struct btrfs_root, root_list);
76dda93c
YZ
1101 list_del(&root->root_list);
1102
1103 if (btrfs_header_backref_rev(root->node) <
1104 BTRFS_MIXED_BACKREF_REV)
1105 btrfs_drop_snapshot(root, 0);
1106 else
1107 btrfs_drop_snapshot(root, 1);
e9d0b13b
CM
1108 }
1109 return 0;
1110}