btrfs: tree-checker: check item_size for dev_item
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
602cbe91 13#include "misc.h"
79154b1b
CM
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
925baedd 17#include "locking.h"
e02119d5 18#include "tree-log.h"
733f4fbb 19#include "volumes.h"
8dabb742 20#include "dev-replace.h"
fcebe456 21#include "qgroup.h"
aac0023c 22#include "block-group.h"
9c343784 23#include "space-info.h"
d3575156 24#include "zoned.h"
79154b1b 25
0f7d52f4
CM
26#define BTRFS_ROOT_TRANS_TAG 0
27
61c047b5
QW
28/*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
e8c9f186 99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 100 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 103 __TRANS_ATTACH |
a6d155d2
FM
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
bcf3a3e7 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
a6d155d2
FM
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
bcf3a3e7 116 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
117 __TRANS_ATTACH |
118 __TRANS_JOIN |
a6d155d2
FM
119 __TRANS_JOIN_NOLOCK |
120 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
121};
122
724e2315 123void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 124{
9b64f57d
ER
125 WARN_ON(refcount_read(&transaction->use_count) == 0);
126 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 127 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
128 WARN_ON(!RB_EMPTY_ROOT(
129 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
130 WARN_ON(!RB_EMPTY_ROOT(
131 &transaction->delayed_refs.dirty_extent_root));
1262133b 132 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
133 btrfs_err(transaction->fs_info,
134 "pending csums is %llu",
135 transaction->delayed_refs.pending_csums);
7785a663
FM
136 /*
137 * If any block groups are found in ->deleted_bgs then it's
138 * because the transaction was aborted and a commit did not
139 * happen (things failed before writing the new superblock
140 * and calling btrfs_finish_extent_commit()), so we can not
141 * discard the physical locations of the block groups.
142 */
143 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 144 struct btrfs_block_group *cache;
7785a663
FM
145
146 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 147 struct btrfs_block_group,
7785a663
FM
148 bg_list);
149 list_del_init(&cache->bg_list);
6b7304af 150 btrfs_unfreeze_block_group(cache);
7785a663
FM
151 btrfs_put_block_group(cache);
152 }
bbbf7243 153 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 154 kfree(transaction);
78fae27e 155 }
79154b1b
CM
156}
157
889bfa39 158static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 159{
889bfa39 160 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 161 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8 162 struct btrfs_root *root, *tmp;
27d56e62 163 struct btrfs_caching_control *caching_ctl, *next;
9e351cc8 164
dfba78dc
FM
165 /*
166 * At this point no one can be using this transaction to modify any tree
167 * and no one can start another transaction to modify any tree either.
168 */
169 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
170
9e351cc8 171 down_write(&fs_info->commit_root_sem);
d96b3424
FM
172
173 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
174 fs_info->last_reloc_trans = trans->transid;
175
889bfa39 176 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
177 dirty_list) {
178 list_del_init(&root->dirty_list);
179 free_extent_buffer(root->commit_root);
180 root->commit_root = btrfs_root_node(root);
41e7acd3 181 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 182 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 183 }
2b9dbef2
JB
184
185 /* We can free old roots now. */
889bfa39
JB
186 spin_lock(&cur_trans->dropped_roots_lock);
187 while (!list_empty(&cur_trans->dropped_roots)) {
188 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
189 struct btrfs_root, root_list);
190 list_del_init(&root->root_list);
889bfa39
JB
191 spin_unlock(&cur_trans->dropped_roots_lock);
192 btrfs_free_log(trans, root);
2b9dbef2 193 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 194 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 195 }
889bfa39 196 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62
JB
197
198 /*
199 * We have to update the last_byte_to_unpin under the commit_root_sem,
200 * at the same time we swap out the commit roots.
201 *
202 * This is because we must have a real view of the last spot the caching
203 * kthreads were while caching. Consider the following views of the
204 * extent tree for a block group
205 *
206 * commit root
207 * +----+----+----+----+----+----+----+
208 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
209 * +----+----+----+----+----+----+----+
210 * 0 1 2 3 4 5 6 7
211 *
212 * new commit root
213 * +----+----+----+----+----+----+----+
214 * | | | |\\\\| | |\\\\|
215 * +----+----+----+----+----+----+----+
216 * 0 1 2 3 4 5 6 7
217 *
218 * If the cache_ctl->progress was at 3, then we are only allowed to
219 * unpin [0,1) and [2,3], because the caching thread has already
220 * processed those extents. We are not allowed to unpin [5,6), because
221 * the caching thread will re-start it's search from 3, and thus find
222 * the hole from [4,6) to add to the free space cache.
223 */
bbb86a37 224 spin_lock(&fs_info->block_group_cache_lock);
27d56e62
JB
225 list_for_each_entry_safe(caching_ctl, next,
226 &fs_info->caching_block_groups, list) {
227 struct btrfs_block_group *cache = caching_ctl->block_group;
228
229 if (btrfs_block_group_done(cache)) {
230 cache->last_byte_to_unpin = (u64)-1;
231 list_del_init(&caching_ctl->list);
232 btrfs_put_caching_control(caching_ctl);
233 } else {
234 cache->last_byte_to_unpin = caching_ctl->progress;
235 }
236 }
bbb86a37 237 spin_unlock(&fs_info->block_group_cache_lock);
9e351cc8 238 up_write(&fs_info->commit_root_sem);
817d52f8
JB
239}
240
0860adfd
MX
241static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
242 unsigned int type)
243{
244 if (type & TRANS_EXTWRITERS)
245 atomic_inc(&trans->num_extwriters);
246}
247
248static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
249 unsigned int type)
250{
251 if (type & TRANS_EXTWRITERS)
252 atomic_dec(&trans->num_extwriters);
253}
254
255static inline void extwriter_counter_init(struct btrfs_transaction *trans,
256 unsigned int type)
257{
258 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
259}
260
261static inline int extwriter_counter_read(struct btrfs_transaction *trans)
262{
263 return atomic_read(&trans->num_extwriters);
178260b2
MX
264}
265
fb6dea26 266/*
79bd3712
FM
267 * To be called after doing the chunk btree updates right after allocating a new
268 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
269 * chunk after all chunk btree updates and after finishing the second phase of
270 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
271 * group had its chunk item insertion delayed to the second phase.
fb6dea26
JB
272 */
273void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
274{
275 struct btrfs_fs_info *fs_info = trans->fs_info;
276
277 if (!trans->chunk_bytes_reserved)
278 return;
279
fb6dea26 280 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 281 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
282 trans->chunk_bytes_reserved = 0;
283}
284
d352ac68
CM
285/*
286 * either allocate a new transaction or hop into the existing one
287 */
2ff7e61e
JM
288static noinline int join_transaction(struct btrfs_fs_info *fs_info,
289 unsigned int type)
79154b1b
CM
290{
291 struct btrfs_transaction *cur_trans;
a4abeea4 292
19ae4e81 293 spin_lock(&fs_info->trans_lock);
d43317dc 294loop:
49b25e05 295 /* The file system has been taken offline. No new transactions. */
84961539 296 if (BTRFS_FS_ERROR(fs_info)) {
19ae4e81 297 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
298 return -EROFS;
299 }
300
19ae4e81 301 cur_trans = fs_info->running_transaction;
a4abeea4 302 if (cur_trans) {
bf31f87f 303 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 304 spin_unlock(&fs_info->trans_lock);
49b25e05 305 return cur_trans->aborted;
871383be 306 }
4a9d8bde 307 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
308 spin_unlock(&fs_info->trans_lock);
309 return -EBUSY;
310 }
9b64f57d 311 refcount_inc(&cur_trans->use_count);
13c5a93e 312 atomic_inc(&cur_trans->num_writers);
0860adfd 313 extwriter_counter_inc(cur_trans, type);
19ae4e81 314 spin_unlock(&fs_info->trans_lock);
a4abeea4 315 return 0;
79154b1b 316 }
19ae4e81 317 spin_unlock(&fs_info->trans_lock);
a4abeea4 318
354aa0fb
MX
319 /*
320 * If we are ATTACH, we just want to catch the current transaction,
321 * and commit it. If there is no transaction, just return ENOENT.
322 */
323 if (type == TRANS_ATTACH)
324 return -ENOENT;
325
4a9d8bde
MX
326 /*
327 * JOIN_NOLOCK only happens during the transaction commit, so
328 * it is impossible that ->running_transaction is NULL
329 */
330 BUG_ON(type == TRANS_JOIN_NOLOCK);
331
4b5faeac 332 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
333 if (!cur_trans)
334 return -ENOMEM;
d43317dc 335
19ae4e81
JS
336 spin_lock(&fs_info->trans_lock);
337 if (fs_info->running_transaction) {
d43317dc
CM
338 /*
339 * someone started a transaction after we unlocked. Make sure
4a9d8bde 340 * to redo the checks above
d43317dc 341 */
4b5faeac 342 kfree(cur_trans);
d43317dc 343 goto loop;
84961539 344 } else if (BTRFS_FS_ERROR(fs_info)) {
e4b50e14 345 spin_unlock(&fs_info->trans_lock);
4b5faeac 346 kfree(cur_trans);
7b8b92af 347 return -EROFS;
79154b1b 348 }
d43317dc 349
ab8d0fc4 350 cur_trans->fs_info = fs_info;
48778179
FM
351 atomic_set(&cur_trans->pending_ordered, 0);
352 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 353 atomic_set(&cur_trans->num_writers, 1);
0860adfd 354 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
355 init_waitqueue_head(&cur_trans->writer_wait);
356 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 357 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
358 /*
359 * One for this trans handle, one so it will live on until we
360 * commit the transaction.
361 */
9b64f57d 362 refcount_set(&cur_trans->use_count, 2);
3204d33c 363 cur_trans->flags = 0;
afd48513 364 cur_trans->start_time = ktime_get_seconds();
a4abeea4 365
a099d0fd
AM
366 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
367
5c9d028b 368 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 369 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 370 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
371
372 /*
373 * although the tree mod log is per file system and not per transaction,
374 * the log must never go across transaction boundaries.
375 */
376 smp_mb();
31b1a2bd 377 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 378 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 379 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 380 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 381 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 382
a4abeea4
JB
383 spin_lock_init(&cur_trans->delayed_refs.lock);
384
385 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 386 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 387 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 388 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 389 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 390 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 391 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 392 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 393 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 394 spin_lock_init(&cur_trans->dropped_roots_lock);
d3575156
NA
395 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
396 spin_lock_init(&cur_trans->releasing_ebs_lock);
19ae4e81 397 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 398 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
43eb5f29 399 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
fe119a6e
NB
400 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
401 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
402 fs_info->generation++;
403 cur_trans->transid = fs_info->generation;
404 fs_info->running_transaction = cur_trans;
49b25e05 405 cur_trans->aborted = 0;
19ae4e81 406 spin_unlock(&fs_info->trans_lock);
15ee9bc7 407
79154b1b
CM
408 return 0;
409}
410
d352ac68 411/*
92a7cc42
QW
412 * This does all the record keeping required to make sure that a shareable root
413 * is properly recorded in a given transaction. This is required to make sure
414 * the old root from before we joined the transaction is deleted when the
415 * transaction commits.
d352ac68 416 */
7585717f 417static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
418 struct btrfs_root *root,
419 int force)
6702ed49 420{
0b246afa 421 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 422 int ret = 0;
0b246afa 423
92a7cc42 424 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 425 root->last_trans < trans->transid) || force) {
4d31778a 426 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 427
7585717f 428 /*
27cdeb70 429 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
430 * we have the reloc mutex held now, so there
431 * is only one writer in this function
432 */
27cdeb70 433 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 434
27cdeb70 435 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
436 * they find our root->last_trans update
437 */
438 smp_wmb();
439
0b246afa 440 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 441 if (root->last_trans == trans->transid && !force) {
0b246afa 442 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
443 return 0;
444 }
0b246afa
JM
445 radix_tree_tag_set(&fs_info->fs_roots_radix,
446 (unsigned long)root->root_key.objectid,
447 BTRFS_ROOT_TRANS_TAG);
448 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
449 root->last_trans = trans->transid;
450
451 /* this is pretty tricky. We don't want to
452 * take the relocation lock in btrfs_record_root_in_trans
453 * unless we're really doing the first setup for this root in
454 * this transaction.
455 *
456 * Normally we'd use root->last_trans as a flag to decide
457 * if we want to take the expensive mutex.
458 *
459 * But, we have to set root->last_trans before we
460 * init the relocation root, otherwise, we trip over warnings
461 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 462 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
463 * fixing up the reloc trees and everyone must wait.
464 *
465 * When this is zero, they can trust root->last_trans and fly
466 * through btrfs_record_root_in_trans without having to take the
467 * lock. smp_wmb() makes sure that all the writes above are
468 * done before we pop in the zero below
469 */
03a7e111 470 ret = btrfs_init_reloc_root(trans, root);
c7548af6 471 smp_mb__before_atomic();
27cdeb70 472 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 473 }
03a7e111 474 return ret;
5d4f98a2 475}
bcc63abb 476
7585717f 477
2b9dbef2
JB
478void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
479 struct btrfs_root *root)
480{
0b246afa 481 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
482 struct btrfs_transaction *cur_trans = trans->transaction;
483
484 /* Add ourselves to the transaction dropped list */
485 spin_lock(&cur_trans->dropped_roots_lock);
486 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
487 spin_unlock(&cur_trans->dropped_roots_lock);
488
489 /* Make sure we don't try to update the root at commit time */
0b246afa
JM
490 spin_lock(&fs_info->fs_roots_radix_lock);
491 radix_tree_tag_clear(&fs_info->fs_roots_radix,
2b9dbef2
JB
492 (unsigned long)root->root_key.objectid,
493 BTRFS_ROOT_TRANS_TAG);
0b246afa 494 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
495}
496
7585717f
CM
497int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
498 struct btrfs_root *root)
499{
0b246afa 500 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 501 int ret;
0b246afa 502
92a7cc42 503 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
504 return 0;
505
506 /*
27cdeb70 507 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
508 * and barriers
509 */
510 smp_rmb();
511 if (root->last_trans == trans->transid &&
27cdeb70 512 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
513 return 0;
514
0b246afa 515 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 516 ret = record_root_in_trans(trans, root, 0);
0b246afa 517 mutex_unlock(&fs_info->reloc_mutex);
7585717f 518
1409e6cc 519 return ret;
7585717f
CM
520}
521
4a9d8bde
MX
522static inline int is_transaction_blocked(struct btrfs_transaction *trans)
523{
3296bf56 524 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 525 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 526 !TRANS_ABORTED(trans));
4a9d8bde
MX
527}
528
d352ac68
CM
529/* wait for commit against the current transaction to become unblocked
530 * when this is done, it is safe to start a new transaction, but the current
531 * transaction might not be fully on disk.
532 */
2ff7e61e 533static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 534{
f9295749 535 struct btrfs_transaction *cur_trans;
79154b1b 536
0b246afa
JM
537 spin_lock(&fs_info->trans_lock);
538 cur_trans = fs_info->running_transaction;
4a9d8bde 539 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 540 refcount_inc(&cur_trans->use_count);
0b246afa 541 spin_unlock(&fs_info->trans_lock);
72d63ed6 542
0b246afa 543 wait_event(fs_info->transaction_wait,
501407aa 544 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 545 TRANS_ABORTED(cur_trans));
724e2315 546 btrfs_put_transaction(cur_trans);
a4abeea4 547 } else {
0b246afa 548 spin_unlock(&fs_info->trans_lock);
f9295749 549 }
37d1aeee
CM
550}
551
2ff7e61e 552static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 553{
0b246afa 554 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
555 return 0;
556
92e2f7e3 557 if (type == TRANS_START)
a22285a6 558 return 1;
a4abeea4 559
a22285a6
YZ
560 return 0;
561}
562
20dd2cbf
MX
563static inline bool need_reserve_reloc_root(struct btrfs_root *root)
564{
0b246afa
JM
565 struct btrfs_fs_info *fs_info = root->fs_info;
566
567 if (!fs_info->reloc_ctl ||
92a7cc42 568 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
569 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
570 root->reloc_root)
571 return false;
572
573 return true;
574}
575
08e007d2 576static struct btrfs_trans_handle *
5aed1dd8 577start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
578 unsigned int type, enum btrfs_reserve_flush_enum flush,
579 bool enforce_qgroups)
37d1aeee 580{
0b246afa 581 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 582 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
583 struct btrfs_trans_handle *h;
584 struct btrfs_transaction *cur_trans;
b5009945 585 u64 num_bytes = 0;
c5567237 586 u64 qgroup_reserved = 0;
20dd2cbf 587 bool reloc_reserved = false;
9c343784 588 bool do_chunk_alloc = false;
20dd2cbf 589 int ret;
acce952b 590
84961539 591 if (BTRFS_FS_ERROR(fs_info))
acce952b 592 return ERR_PTR(-EROFS);
2a1eb461 593
46c4e71e 594 if (current->journal_info) {
0860adfd 595 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 596 h = current->journal_info;
b50fff81
DS
597 refcount_inc(&h->use_count);
598 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
599 h->orig_rsv = h->block_rsv;
600 h->block_rsv = NULL;
601 goto got_it;
602 }
b5009945
JB
603
604 /*
605 * Do the reservation before we join the transaction so we can do all
606 * the appropriate flushing if need be.
607 */
003d7c59 608 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
609 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
610 u64 delayed_refs_bytes = 0;
611
0b246afa 612 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
613 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
614 enforce_qgroups);
7174109c
QW
615 if (ret)
616 return ERR_PTR(ret);
c5567237 617
ba2c4d4e
JB
618 /*
619 * We want to reserve all the bytes we may need all at once, so
620 * we only do 1 enospc flushing cycle per transaction start. We
621 * accomplish this by simply assuming we'll do 2 x num_items
622 * worth of delayed refs updates in this trans handle, and
623 * refill that amount for whatever is missing in the reserve.
624 */
2bd36e7b 625 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614
JB
626 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
627 delayed_refs_rsv->full == 0) {
ba2c4d4e
JB
628 delayed_refs_bytes = num_bytes;
629 num_bytes <<= 1;
630 }
631
20dd2cbf
MX
632 /*
633 * Do the reservation for the relocation root creation
634 */
ee39b432 635 if (need_reserve_reloc_root(root)) {
0b246afa 636 num_bytes += fs_info->nodesize;
20dd2cbf
MX
637 reloc_reserved = true;
638 }
639
9270501c 640 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
ba2c4d4e
JB
641 if (ret)
642 goto reserve_fail;
643 if (delayed_refs_bytes) {
644 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
645 delayed_refs_bytes);
646 num_bytes -= delayed_refs_bytes;
647 }
9c343784
JB
648
649 if (rsv->space_info->force_alloc)
650 do_chunk_alloc = true;
ba2c4d4e
JB
651 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
652 !delayed_refs_rsv->full) {
653 /*
654 * Some people call with btrfs_start_transaction(root, 0)
655 * because they can be throttled, but have some other mechanism
656 * for reserving space. We still want these guys to refill the
657 * delayed block_rsv so just add 1 items worth of reservation
658 * here.
659 */
660 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 661 if (ret)
843fcf35 662 goto reserve_fail;
b5009945 663 }
a22285a6 664again:
f2f767e7 665 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
666 if (!h) {
667 ret = -ENOMEM;
668 goto alloc_fail;
669 }
37d1aeee 670
98114659
JB
671 /*
672 * If we are JOIN_NOLOCK we're already committing a transaction and
673 * waiting on this guy, so we don't need to do the sb_start_intwrite
674 * because we're already holding a ref. We need this because we could
675 * have raced in and did an fsync() on a file which can kick a commit
676 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
677 *
678 * If we are ATTACH, it means we just want to catch the current
679 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 680 */
0860adfd 681 if (type & __TRANS_FREEZABLE)
0b246afa 682 sb_start_intwrite(fs_info->sb);
b2b5ef5c 683
2ff7e61e
JM
684 if (may_wait_transaction(fs_info, type))
685 wait_current_trans(fs_info);
a22285a6 686
a4abeea4 687 do {
2ff7e61e 688 ret = join_transaction(fs_info, type);
178260b2 689 if (ret == -EBUSY) {
2ff7e61e 690 wait_current_trans(fs_info);
a6d155d2
FM
691 if (unlikely(type == TRANS_ATTACH ||
692 type == TRANS_JOIN_NOSTART))
178260b2
MX
693 ret = -ENOENT;
694 }
a4abeea4
JB
695 } while (ret == -EBUSY);
696
a43f7f82 697 if (ret < 0)
843fcf35 698 goto join_fail;
0f7d52f4 699
0b246afa 700 cur_trans = fs_info->running_transaction;
a22285a6
YZ
701
702 h->transid = cur_trans->transid;
703 h->transaction = cur_trans;
b50fff81 704 refcount_set(&h->use_count, 1);
64b63580 705 h->fs_info = root->fs_info;
7174109c 706
a698d075 707 h->type = type;
ea658bad 708 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 709
a22285a6 710 smp_mb();
3296bf56 711 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 712 may_wait_transaction(fs_info, type)) {
abdd2e80 713 current->journal_info = h;
3a45bb20 714 btrfs_commit_transaction(h);
a22285a6
YZ
715 goto again;
716 }
717
b5009945 718 if (num_bytes) {
0b246afa 719 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 720 h->transid, num_bytes, 1);
0b246afa 721 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 722 h->bytes_reserved = num_bytes;
20dd2cbf 723 h->reloc_reserved = reloc_reserved;
a22285a6 724 }
9ed74f2d 725
2a1eb461 726got_it:
bcf3a3e7 727 if (!current->journal_info)
a22285a6 728 current->journal_info = h;
fcc99734 729
9c343784
JB
730 /*
731 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
732 * ALLOC_FORCE the first run through, and then we won't allocate for
733 * anybody else who races in later. We don't care about the return
734 * value here.
735 */
736 if (do_chunk_alloc && num_bytes) {
737 u64 flags = h->block_rsv->space_info->flags;
738
739 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
740 CHUNK_ALLOC_NO_FORCE);
741 }
742
fcc99734
QW
743 /*
744 * btrfs_record_root_in_trans() needs to alloc new extents, and may
745 * call btrfs_join_transaction() while we're also starting a
746 * transaction.
747 *
748 * Thus it need to be called after current->journal_info initialized,
749 * or we can deadlock.
750 */
68075ea8
JB
751 ret = btrfs_record_root_in_trans(h, root);
752 if (ret) {
753 /*
754 * The transaction handle is fully initialized and linked with
755 * other structures so it needs to be ended in case of errors,
756 * not just freed.
757 */
758 btrfs_end_transaction(h);
759 return ERR_PTR(ret);
760 }
fcc99734 761
79154b1b 762 return h;
843fcf35
MX
763
764join_fail:
0860adfd 765 if (type & __TRANS_FREEZABLE)
0b246afa 766 sb_end_intwrite(fs_info->sb);
843fcf35
MX
767 kmem_cache_free(btrfs_trans_handle_cachep, h);
768alloc_fail:
769 if (num_bytes)
2ff7e61e 770 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 771 num_bytes, NULL);
843fcf35 772reserve_fail:
733e03a0 773 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 774 return ERR_PTR(ret);
79154b1b
CM
775}
776
f9295749 777struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 778 unsigned int num_items)
f9295749 779{
08e007d2 780 return start_transaction(root, num_items, TRANS_START,
003d7c59 781 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 782}
003d7c59 783
8eab77ff
FM
784struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
785 struct btrfs_root *root,
7f9fe614 786 unsigned int num_items)
8eab77ff 787{
7f9fe614
JB
788 return start_transaction(root, num_items, TRANS_START,
789 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 790}
8407aa46 791
7a7eaa40 792struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 793{
003d7c59
JM
794 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
795 true);
f9295749
CM
796}
797
8d510121 798struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 799{
575a75d6 800 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 801 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
802}
803
a6d155d2
FM
804/*
805 * Similar to regular join but it never starts a transaction when none is
806 * running or after waiting for the current one to finish.
807 */
808struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
809{
810 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
811 BTRFS_RESERVE_NO_FLUSH, true);
812}
813
d4edf39b
MX
814/*
815 * btrfs_attach_transaction() - catch the running transaction
816 *
817 * It is used when we want to commit the current the transaction, but
818 * don't want to start a new one.
819 *
820 * Note: If this function return -ENOENT, it just means there is no
821 * running transaction. But it is possible that the inactive transaction
822 * is still in the memory, not fully on disk. If you hope there is no
823 * inactive transaction in the fs when -ENOENT is returned, you should
824 * invoke
825 * btrfs_attach_transaction_barrier()
826 */
354aa0fb 827struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 828{
575a75d6 829 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 830 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
831}
832
d4edf39b 833/*
90b6d283 834 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 835 *
52042d8e 836 * It is similar to the above function, the difference is this one
d4edf39b
MX
837 * will wait for all the inactive transactions until they fully
838 * complete.
839 */
840struct btrfs_trans_handle *
841btrfs_attach_transaction_barrier(struct btrfs_root *root)
842{
843 struct btrfs_trans_handle *trans;
844
575a75d6 845 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 846 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 847 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 848 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
849
850 return trans;
851}
852
d0c2f4fa
FM
853/* Wait for a transaction commit to reach at least the given state. */
854static noinline void wait_for_commit(struct btrfs_transaction *commit,
855 const enum btrfs_trans_state min_state)
89ce8a63 856{
d0c2f4fa 857 wait_event(commit->commit_wait, commit->state >= min_state);
89ce8a63
CM
858}
859
2ff7e61e 860int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
861{
862 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 863 int ret = 0;
46204592 864
46204592 865 if (transid) {
0b246afa 866 if (transid <= fs_info->last_trans_committed)
a4abeea4 867 goto out;
46204592
SW
868
869 /* find specified transaction */
0b246afa
JM
870 spin_lock(&fs_info->trans_lock);
871 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
872 if (t->transid == transid) {
873 cur_trans = t;
9b64f57d 874 refcount_inc(&cur_trans->use_count);
8cd2807f 875 ret = 0;
46204592
SW
876 break;
877 }
8cd2807f
MX
878 if (t->transid > transid) {
879 ret = 0;
46204592 880 break;
8cd2807f 881 }
46204592 882 }
0b246afa 883 spin_unlock(&fs_info->trans_lock);
42383020
SW
884
885 /*
886 * The specified transaction doesn't exist, or we
887 * raced with btrfs_commit_transaction
888 */
889 if (!cur_trans) {
0b246afa 890 if (transid > fs_info->last_trans_committed)
42383020 891 ret = -EINVAL;
8cd2807f 892 goto out;
42383020 893 }
46204592
SW
894 } else {
895 /* find newest transaction that is committing | committed */
0b246afa
JM
896 spin_lock(&fs_info->trans_lock);
897 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 898 list) {
4a9d8bde
MX
899 if (t->state >= TRANS_STATE_COMMIT_START) {
900 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 901 break;
46204592 902 cur_trans = t;
9b64f57d 903 refcount_inc(&cur_trans->use_count);
46204592
SW
904 break;
905 }
906 }
0b246afa 907 spin_unlock(&fs_info->trans_lock);
46204592 908 if (!cur_trans)
a4abeea4 909 goto out; /* nothing committing|committed */
46204592
SW
910 }
911
d0c2f4fa 912 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 913 btrfs_put_transaction(cur_trans);
a4abeea4 914out:
46204592
SW
915 return ret;
916}
917
2ff7e61e 918void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 919{
92e2f7e3 920 wait_current_trans(fs_info);
37d1aeee
CM
921}
922
8a8f4dea 923static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 924{
2ff7e61e 925 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 926
64403612 927 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 928 return true;
36ba022a 929
2ff7e61e 930 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
931}
932
a2633b6a 933bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
934{
935 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 936
3296bf56 937 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 938 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 939 return true;
8929ecfa 940
2ff7e61e 941 return should_end_transaction(trans);
8929ecfa
YZ
942}
943
dc60c525
NB
944static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
945
0e34693f 946{
dc60c525
NB
947 struct btrfs_fs_info *fs_info = trans->fs_info;
948
0e34693f
NB
949 if (!trans->block_rsv) {
950 ASSERT(!trans->bytes_reserved);
951 return;
952 }
953
954 if (!trans->bytes_reserved)
955 return;
956
957 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
958 trace_btrfs_space_reservation(fs_info, "transaction",
959 trans->transid, trans->bytes_reserved, 0);
960 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 961 trans->bytes_reserved, NULL);
0e34693f
NB
962 trans->bytes_reserved = 0;
963}
964
89ce8a63 965static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 966 int throttle)
79154b1b 967{
3a45bb20 968 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 969 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 970 int err = 0;
c3e69d58 971
b50fff81
DS
972 if (refcount_read(&trans->use_count) > 1) {
973 refcount_dec(&trans->use_count);
2a1eb461
JB
974 trans->block_rsv = trans->orig_rsv;
975 return 0;
976 }
977
dc60c525 978 btrfs_trans_release_metadata(trans);
4c13d758 979 trans->block_rsv = NULL;
c5567237 980
119e80df 981 btrfs_create_pending_block_groups(trans);
ea658bad 982
4fbcdf66
FM
983 btrfs_trans_release_chunk_metadata(trans);
984
0860adfd 985 if (trans->type & __TRANS_FREEZABLE)
0b246afa 986 sb_end_intwrite(info->sb);
6df7881a 987
8929ecfa 988 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
989 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
990 atomic_dec(&cur_trans->num_writers);
0860adfd 991 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 992
093258e6 993 cond_wake_up(&cur_trans->writer_wait);
724e2315 994 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
995
996 if (current->journal_info == trans)
997 current->journal_info = NULL;
ab78c84d 998
24bbcf04 999 if (throttle)
2ff7e61e 1000 btrfs_run_delayed_iputs(info);
24bbcf04 1001
84961539 1002 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
4e121c06 1003 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1004 if (TRANS_ABORTED(trans))
1005 err = trans->aborted;
1006 else
1007 err = -EROFS;
4e121c06 1008 }
49b25e05 1009
4edc2ca3
DJ
1010 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1011 return err;
79154b1b
CM
1012}
1013
3a45bb20 1014int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1015{
3a45bb20 1016 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1017}
1018
3a45bb20 1019int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1020{
3a45bb20 1021 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1022}
1023
d352ac68
CM
1024/*
1025 * when btree blocks are allocated, they have some corresponding bits set for
1026 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1027 * those extents are sent to disk but does not wait on them
d352ac68 1028 */
2ff7e61e 1029int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1030 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1031{
777e6bd7 1032 int err = 0;
7c4452b9 1033 int werr = 0;
0b246afa 1034 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1035 struct extent_state *cached_state = NULL;
777e6bd7 1036 u64 start = 0;
5f39d397 1037 u64 end;
7c4452b9 1038
6300463b 1039 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1040 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1041 mark, &cached_state)) {
663dfbb0
FM
1042 bool wait_writeback = false;
1043
1044 err = convert_extent_bit(dirty_pages, start, end,
1045 EXTENT_NEED_WAIT,
210aa277 1046 mark, &cached_state);
663dfbb0
FM
1047 /*
1048 * convert_extent_bit can return -ENOMEM, which is most of the
1049 * time a temporary error. So when it happens, ignore the error
1050 * and wait for writeback of this range to finish - because we
1051 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1052 * to __btrfs_wait_marked_extents() would not know that
1053 * writeback for this range started and therefore wouldn't
1054 * wait for it to finish - we don't want to commit a
1055 * superblock that points to btree nodes/leafs for which
1056 * writeback hasn't finished yet (and without errors).
663dfbb0 1057 * We cleanup any entries left in the io tree when committing
41e7acd3 1058 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1059 */
1060 if (err == -ENOMEM) {
1061 err = 0;
1062 wait_writeback = true;
1063 }
1064 if (!err)
1065 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1066 if (err)
1067 werr = err;
663dfbb0
FM
1068 else if (wait_writeback)
1069 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1070 free_extent_state(cached_state);
663dfbb0 1071 cached_state = NULL;
1728366e
JB
1072 cond_resched();
1073 start = end + 1;
7c4452b9 1074 }
6300463b 1075 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1076 return werr;
1077}
1078
1079/*
1080 * when btree blocks are allocated, they have some corresponding bits set for
1081 * them in one of two extent_io trees. This is used to make sure all of
1082 * those extents are on disk for transaction or log commit. We wait
1083 * on all the pages and clear them from the dirty pages state tree
1084 */
bf89d38f
JM
1085static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1086 struct extent_io_tree *dirty_pages)
690587d1 1087{
690587d1
CM
1088 int err = 0;
1089 int werr = 0;
0b246afa 1090 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1091 struct extent_state *cached_state = NULL;
690587d1
CM
1092 u64 start = 0;
1093 u64 end;
777e6bd7 1094
1728366e 1095 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1096 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1097 /*
1098 * Ignore -ENOMEM errors returned by clear_extent_bit().
1099 * When committing the transaction, we'll remove any entries
1100 * left in the io tree. For a log commit, we don't remove them
1101 * after committing the log because the tree can be accessed
1102 * concurrently - we do it only at transaction commit time when
41e7acd3 1103 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1104 */
1105 err = clear_extent_bit(dirty_pages, start, end,
ae0f1625 1106 EXTENT_NEED_WAIT, 0, 0, &cached_state);
663dfbb0
FM
1107 if (err == -ENOMEM)
1108 err = 0;
1109 if (!err)
1110 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1111 if (err)
1112 werr = err;
e38e2ed7
FM
1113 free_extent_state(cached_state);
1114 cached_state = NULL;
1728366e
JB
1115 cond_resched();
1116 start = end + 1;
777e6bd7 1117 }
7c4452b9
CM
1118 if (err)
1119 werr = err;
bf89d38f
JM
1120 return werr;
1121}
656f30db 1122
b9fae2eb 1123static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1124 struct extent_io_tree *dirty_pages)
1125{
1126 bool errors = false;
1127 int err;
656f30db 1128
bf89d38f
JM
1129 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1130 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1131 errors = true;
1132
1133 if (errors && !err)
1134 err = -EIO;
1135 return err;
1136}
656f30db 1137
bf89d38f
JM
1138int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1139{
1140 struct btrfs_fs_info *fs_info = log_root->fs_info;
1141 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1142 bool errors = false;
1143 int err;
656f30db 1144
bf89d38f
JM
1145 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1146
1147 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1148 if ((mark & EXTENT_DIRTY) &&
1149 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1150 errors = true;
1151
1152 if ((mark & EXTENT_NEW) &&
1153 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1154 errors = true;
1155
1156 if (errors && !err)
1157 err = -EIO;
1158 return err;
79154b1b
CM
1159}
1160
690587d1 1161/*
c9b577c0
NB
1162 * When btree blocks are allocated the corresponding extents are marked dirty.
1163 * This function ensures such extents are persisted on disk for transaction or
1164 * log commit.
1165 *
1166 * @trans: transaction whose dirty pages we'd like to write
690587d1 1167 */
70458a58 1168static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1169{
1170 int ret;
1171 int ret2;
c9b577c0 1172 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1173 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1174 struct blk_plug plug;
690587d1 1175
c6adc9cc 1176 blk_start_plug(&plug);
c9b577c0 1177 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1178 blk_finish_plug(&plug);
bf89d38f 1179 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1180
41e7acd3 1181 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1182
bf0da8c1
CM
1183 if (ret)
1184 return ret;
c9b577c0 1185 else if (ret2)
bf0da8c1 1186 return ret2;
c9b577c0
NB
1187 else
1188 return 0;
d0c803c4
CM
1189}
1190
d352ac68
CM
1191/*
1192 * this is used to update the root pointer in the tree of tree roots.
1193 *
1194 * But, in the case of the extent allocation tree, updating the root
1195 * pointer may allocate blocks which may change the root of the extent
1196 * allocation tree.
1197 *
1198 * So, this loops and repeats and makes sure the cowonly root didn't
1199 * change while the root pointer was being updated in the metadata.
1200 */
0b86a832
CM
1201static int update_cowonly_root(struct btrfs_trans_handle *trans,
1202 struct btrfs_root *root)
79154b1b
CM
1203{
1204 int ret;
0b86a832 1205 u64 old_root_bytenr;
86b9f2ec 1206 u64 old_root_used;
0b246afa
JM
1207 struct btrfs_fs_info *fs_info = root->fs_info;
1208 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1209
86b9f2ec 1210 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1211
d397712b 1212 while (1) {
0b86a832 1213 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1214 if (old_root_bytenr == root->node->start &&
ea526d18 1215 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1216 break;
87ef2bb4 1217
5d4f98a2 1218 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1219 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1220 &root->root_key,
1221 &root->root_item);
49b25e05
JM
1222 if (ret)
1223 return ret;
56bec294 1224
86b9f2ec 1225 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1226 }
276e680d 1227
0b86a832
CM
1228 return 0;
1229}
1230
d352ac68
CM
1231/*
1232 * update all the cowonly tree roots on disk
49b25e05
JM
1233 *
1234 * The error handling in this function may not be obvious. Any of the
1235 * failures will cause the file system to go offline. We still need
1236 * to clean up the delayed refs.
d352ac68 1237 */
9386d8bc 1238static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1239{
9386d8bc 1240 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1241 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1242 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1243 struct list_head *next;
84234f3a 1244 struct extent_buffer *eb;
56bec294 1245 int ret;
84234f3a 1246
dfba78dc
FM
1247 /*
1248 * At this point no one can be using this transaction to modify any tree
1249 * and no one can start another transaction to modify any tree either.
1250 */
1251 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1252
84234f3a 1253 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1254 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1255 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1256 btrfs_tree_unlock(eb);
1257 free_extent_buffer(eb);
0b86a832 1258
49b25e05
JM
1259 if (ret)
1260 return ret;
87ef2bb4 1261
196c9d8d 1262 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1263 if (ret)
1264 return ret;
2b584c68 1265 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1266 if (ret)
1267 return ret;
280f8bd2 1268 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1269 if (ret)
1270 return ret;
546adb0d 1271
bbebb3e0 1272 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1273 if (ret)
1274 return ret;
1275
ea526d18 1276again:
d397712b 1277 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1278 struct btrfs_root *root;
0b86a832
CM
1279 next = fs_info->dirty_cowonly_roots.next;
1280 list_del_init(next);
1281 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1282 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1283
826582ca
JB
1284 list_add_tail(&root->dirty_list,
1285 &trans->transaction->switch_commits);
49b25e05
JM
1286 ret = update_cowonly_root(trans, root);
1287 if (ret)
1288 return ret;
79154b1b 1289 }
276e680d 1290
488bc2a2
JB
1291 /* Now flush any delayed refs generated by updating all of the roots */
1292 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1293 if (ret)
1294 return ret;
1295
1bbc621e 1296 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1297 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1298 if (ret)
1299 return ret;
488bc2a2
JB
1300
1301 /*
1302 * We're writing the dirty block groups, which could generate
1303 * delayed refs, which could generate more dirty block groups,
1304 * so we want to keep this flushing in this loop to make sure
1305 * everything gets run.
1306 */
c79a70b1 1307 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1308 if (ret)
1309 return ret;
1310 }
1311
1312 if (!list_empty(&fs_info->dirty_cowonly_roots))
1313 goto again;
1314
9f6cbcbb
DS
1315 /* Update dev-replace pointer once everything is committed */
1316 fs_info->dev_replace.committed_cursor_left =
1317 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1318
79154b1b
CM
1319 return 0;
1320}
1321
d352ac68
CM
1322/*
1323 * dead roots are old snapshots that need to be deleted. This allocates
1324 * a dirty root struct and adds it into the list of dead roots that need to
1325 * be deleted
1326 */
cfad392b 1327void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1328{
0b246afa
JM
1329 struct btrfs_fs_info *fs_info = root->fs_info;
1330
1331 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1332 if (list_empty(&root->root_list)) {
1333 btrfs_grab_root(root);
0b246afa 1334 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1335 }
0b246afa 1336 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1337}
1338
d352ac68 1339/*
dfba78dc
FM
1340 * Update each subvolume root and its relocation root, if it exists, in the tree
1341 * of tree roots. Also free log roots if they exist.
d352ac68 1342 */
7e4443d9 1343static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1344{
7e4443d9 1345 struct btrfs_fs_info *fs_info = trans->fs_info;
0f7d52f4 1346 struct btrfs_root *gang[8];
0f7d52f4
CM
1347 int i;
1348 int ret;
54aa1f4d 1349
dfba78dc
FM
1350 /*
1351 * At this point no one can be using this transaction to modify any tree
1352 * and no one can start another transaction to modify any tree either.
1353 */
1354 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1355
a4abeea4 1356 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 1357 while (1) {
5d4f98a2
YZ
1358 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1359 (void **)gang, 0,
0f7d52f4
CM
1360 ARRAY_SIZE(gang),
1361 BTRFS_ROOT_TRANS_TAG);
1362 if (ret == 0)
1363 break;
1364 for (i = 0; i < ret; i++) {
5b4aacef 1365 struct btrfs_root *root = gang[i];
4f4317c1
JB
1366 int ret2;
1367
dfba78dc
FM
1368 /*
1369 * At this point we can neither have tasks logging inodes
1370 * from a root nor trying to commit a log tree.
1371 */
1372 ASSERT(atomic_read(&root->log_writers) == 0);
1373 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1374 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1375
5d4f98a2
YZ
1376 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1377 (unsigned long)root->root_key.objectid,
1378 BTRFS_ROOT_TRANS_TAG);
a4abeea4 1379 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 1380
e02119d5 1381 btrfs_free_log(trans, root);
2dd8298e
JB
1382 ret2 = btrfs_update_reloc_root(trans, root);
1383 if (ret2)
1384 return ret2;
bcc63abb 1385
f1ebcc74 1386 /* see comments in should_cow_block() */
27cdeb70 1387 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
c7548af6 1388 smp_mb__after_atomic();
f1ebcc74 1389
978d910d 1390 if (root->commit_root != root->node) {
9e351cc8
JB
1391 list_add_tail(&root->dirty_list,
1392 &trans->transaction->switch_commits);
978d910d
YZ
1393 btrfs_set_root_node(&root->root_item,
1394 root->node);
1395 }
5d4f98a2 1396
4f4317c1 1397 ret2 = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
1398 &root->root_key,
1399 &root->root_item);
4f4317c1
JB
1400 if (ret2)
1401 return ret2;
a4abeea4 1402 spin_lock(&fs_info->fs_roots_radix_lock);
733e03a0 1403 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1404 }
1405 }
a4abeea4 1406 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1407 return 0;
0f7d52f4
CM
1408}
1409
d352ac68 1410/*
de78b51a
ES
1411 * defrag a given btree.
1412 * Every leaf in the btree is read and defragged.
d352ac68 1413 */
de78b51a 1414int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1415{
1416 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1417 struct btrfs_trans_handle *trans;
8929ecfa 1418 int ret;
e9d0b13b 1419
27cdeb70 1420 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1421 return 0;
8929ecfa 1422
6b80053d 1423 while (1) {
8929ecfa 1424 trans = btrfs_start_transaction(root, 0);
6819703f
DS
1425 if (IS_ERR(trans)) {
1426 ret = PTR_ERR(trans);
1427 break;
1428 }
8929ecfa 1429
de78b51a 1430 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1431
3a45bb20 1432 btrfs_end_transaction(trans);
2ff7e61e 1433 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1434 cond_resched();
1435
ab8d0fc4 1436 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1437 break;
210549eb 1438
ab8d0fc4
JM
1439 if (btrfs_defrag_cancelled(info)) {
1440 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1441 ret = -EAGAIN;
1442 break;
1443 }
e9d0b13b 1444 }
27cdeb70 1445 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1446 return ret;
e9d0b13b
CM
1447}
1448
6426c7ad
QW
1449/*
1450 * Do all special snapshot related qgroup dirty hack.
1451 *
1452 * Will do all needed qgroup inherit and dirty hack like switch commit
1453 * roots inside one transaction and write all btree into disk, to make
1454 * qgroup works.
1455 */
1456static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1457 struct btrfs_root *src,
1458 struct btrfs_root *parent,
1459 struct btrfs_qgroup_inherit *inherit,
1460 u64 dst_objectid)
1461{
1462 struct btrfs_fs_info *fs_info = src->fs_info;
1463 int ret;
1464
1465 /*
1466 * Save some performance in the case that qgroups are not
1467 * enabled. If this check races with the ioctl, rescan will
1468 * kick in anyway.
1469 */
9ea6e2b5 1470 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1471 return 0;
6426c7ad 1472
4d31778a 1473 /*
52042d8e 1474 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1475 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1476 * recorded root will never be updated again, causing an outdated root
1477 * item.
1478 */
1c442d22
JB
1479 ret = record_root_in_trans(trans, src, 1);
1480 if (ret)
1481 return ret;
4d31778a 1482
2a4d84c1
JB
1483 /*
1484 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1485 * src root, so we must run the delayed refs here.
1486 *
1487 * However this isn't particularly fool proof, because there's no
1488 * synchronization keeping us from changing the tree after this point
1489 * before we do the qgroup_inherit, or even from making changes while
1490 * we're doing the qgroup_inherit. But that's a problem for the future,
1491 * for now flush the delayed refs to narrow the race window where the
1492 * qgroup counters could end up wrong.
1493 */
1494 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1495 if (ret) {
1496 btrfs_abort_transaction(trans, ret);
44365827 1497 return ret;
2a4d84c1
JB
1498 }
1499
7e4443d9 1500 ret = commit_fs_roots(trans);
6426c7ad
QW
1501 if (ret)
1502 goto out;
460fb20a 1503 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1504 if (ret < 0)
1505 goto out;
1506
1507 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1508 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1509 inherit);
1510 if (ret < 0)
1511 goto out;
1512
1513 /*
1514 * Now we do a simplified commit transaction, which will:
1515 * 1) commit all subvolume and extent tree
1516 * To ensure all subvolume and extent tree have a valid
1517 * commit_root to accounting later insert_dir_item()
1518 * 2) write all btree blocks onto disk
1519 * This is to make sure later btree modification will be cowed
1520 * Or commit_root can be populated and cause wrong qgroup numbers
1521 * In this simplified commit, we don't really care about other trees
1522 * like chunk and root tree, as they won't affect qgroup.
1523 * And we don't write super to avoid half committed status.
1524 */
9386d8bc 1525 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1526 if (ret)
1527 goto out;
889bfa39 1528 switch_commit_roots(trans);
70458a58 1529 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1530 if (ret)
f7af3934 1531 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1532 "Error while writing out transaction for qgroup");
1533
1534out:
6426c7ad
QW
1535 /*
1536 * Force parent root to be updated, as we recorded it before so its
1537 * last_trans == cur_transid.
1538 * Or it won't be committed again onto disk after later
1539 * insert_dir_item()
1540 */
1541 if (!ret)
1c442d22 1542 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1543 return ret;
1544}
1545
d352ac68
CM
1546/*
1547 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1548 * transaction commit. This does the actual creation.
1549 *
1550 * Note:
1551 * If the error which may affect the commitment of the current transaction
1552 * happens, we should return the error number. If the error which just affect
1553 * the creation of the pending snapshots, just return 0.
d352ac68 1554 */
80b6794d 1555static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1556 struct btrfs_pending_snapshot *pending)
1557{
08d50ca3
NB
1558
1559 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1560 struct btrfs_key key;
80b6794d 1561 struct btrfs_root_item *new_root_item;
3063d29f
CM
1562 struct btrfs_root *tree_root = fs_info->tree_root;
1563 struct btrfs_root *root = pending->root;
6bdb72de 1564 struct btrfs_root *parent_root;
98c9942a 1565 struct btrfs_block_rsv *rsv;
6bdb72de 1566 struct inode *parent_inode;
42874b3d
MX
1567 struct btrfs_path *path;
1568 struct btrfs_dir_item *dir_item;
a22285a6 1569 struct dentry *dentry;
3063d29f 1570 struct extent_buffer *tmp;
925baedd 1571 struct extent_buffer *old;
95582b00 1572 struct timespec64 cur_time;
aec8030a 1573 int ret = 0;
d68fc57b 1574 u64 to_reserve = 0;
6bdb72de 1575 u64 index = 0;
a22285a6 1576 u64 objectid;
b83cc969 1577 u64 root_flags;
3063d29f 1578
8546b570
DS
1579 ASSERT(pending->path);
1580 path = pending->path;
42874b3d 1581
b0c0ea63
DS
1582 ASSERT(pending->root_item);
1583 new_root_item = pending->root_item;
a22285a6 1584
543068a2 1585 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1586 if (pending->error)
6fa9700e 1587 goto no_free_objectid;
3063d29f 1588
d6726335
QW
1589 /*
1590 * Make qgroup to skip current new snapshot's qgroupid, as it is
1591 * accounted by later btrfs_qgroup_inherit().
1592 */
1593 btrfs_set_skip_qgroup(trans, objectid);
1594
147d256e 1595 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1596
1597 if (to_reserve > 0) {
9270501c 1598 pending->error = btrfs_block_rsv_add(fs_info,
aec8030a
MX
1599 &pending->block_rsv,
1600 to_reserve,
1601 BTRFS_RESERVE_NO_FLUSH);
1602 if (pending->error)
d6726335 1603 goto clear_skip_qgroup;
d68fc57b
YZ
1604 }
1605
3063d29f 1606 key.objectid = objectid;
a22285a6
YZ
1607 key.offset = (u64)-1;
1608 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1609
6fa9700e 1610 rsv = trans->block_rsv;
a22285a6 1611 trans->block_rsv = &pending->block_rsv;
2382c5cc 1612 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1613 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1614 trans->transid,
1615 trans->bytes_reserved, 1);
a22285a6 1616 dentry = pending->dentry;
e9662f70 1617 parent_inode = pending->dir;
a22285a6 1618 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1619 ret = record_root_in_trans(trans, parent_root, 0);
1620 if (ret)
1621 goto fail;
c2050a45 1622 cur_time = current_time(parent_inode);
04b285f3 1623
3063d29f
CM
1624 /*
1625 * insert the directory item
1626 */
877574e2 1627 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1628 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1629
1630 /* check if there is a file/dir which has the same name. */
1631 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1632 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1633 dentry->d_name.name,
1634 dentry->d_name.len, 0);
1635 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1636 pending->error = -EEXIST;
aec8030a 1637 goto dir_item_existed;
42874b3d
MX
1638 } else if (IS_ERR(dir_item)) {
1639 ret = PTR_ERR(dir_item);
66642832 1640 btrfs_abort_transaction(trans, ret);
8732d44f 1641 goto fail;
79787eaa 1642 }
42874b3d 1643 btrfs_release_path(path);
52c26179 1644
e999376f
CM
1645 /*
1646 * pull in the delayed directory update
1647 * and the delayed inode item
1648 * otherwise we corrupt the FS during
1649 * snapshot
1650 */
e5c304e6 1651 ret = btrfs_run_delayed_items(trans);
8732d44f 1652 if (ret) { /* Transaction aborted */
66642832 1653 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1654 goto fail;
1655 }
e999376f 1656
f0118cb6
JB
1657 ret = record_root_in_trans(trans, root, 0);
1658 if (ret) {
1659 btrfs_abort_transaction(trans, ret);
1660 goto fail;
1661 }
6bdb72de
SW
1662 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1663 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1664 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1665
b83cc969
LZ
1666 root_flags = btrfs_root_flags(new_root_item);
1667 if (pending->readonly)
1668 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1669 else
1670 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1671 btrfs_set_root_flags(new_root_item, root_flags);
1672
8ea05e3a
AB
1673 btrfs_set_root_generation_v2(new_root_item,
1674 trans->transid);
807fc790 1675 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1676 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1677 BTRFS_UUID_SIZE);
70023da2
SB
1678 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1679 memset(new_root_item->received_uuid, 0,
1680 sizeof(new_root_item->received_uuid));
1681 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1682 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1683 btrfs_set_root_stransid(new_root_item, 0);
1684 btrfs_set_root_rtransid(new_root_item, 0);
1685 }
3cae210f
QW
1686 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1687 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1688 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1689
6bdb72de 1690 old = btrfs_lock_root_node(root);
9631e4cc
JB
1691 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1692 BTRFS_NESTING_COW);
79787eaa
JM
1693 if (ret) {
1694 btrfs_tree_unlock(old);
1695 free_extent_buffer(old);
66642832 1696 btrfs_abort_transaction(trans, ret);
8732d44f 1697 goto fail;
79787eaa 1698 }
49b25e05 1699
49b25e05 1700 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1701 /* clean up in any case */
6bdb72de
SW
1702 btrfs_tree_unlock(old);
1703 free_extent_buffer(old);
8732d44f 1704 if (ret) {
66642832 1705 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1706 goto fail;
1707 }
f1ebcc74 1708 /* see comments in should_cow_block() */
27cdeb70 1709 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1710 smp_wmb();
1711
6bdb72de 1712 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1713 /* record when the snapshot was created in key.offset */
1714 key.offset = trans->transid;
1715 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1716 btrfs_tree_unlock(tmp);
1717 free_extent_buffer(tmp);
8732d44f 1718 if (ret) {
66642832 1719 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1720 goto fail;
1721 }
6bdb72de 1722
a22285a6
YZ
1723 /*
1724 * insert root back/forward references
1725 */
6025c19f 1726 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1727 parent_root->root_key.objectid,
4a0cc7ca 1728 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1729 dentry->d_name.name, dentry->d_name.len);
8732d44f 1730 if (ret) {
66642832 1731 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1732 goto fail;
1733 }
0660b5af 1734
a22285a6 1735 key.offset = (u64)-1;
2dfb1e43 1736 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1737 if (IS_ERR(pending->snap)) {
1738 ret = PTR_ERR(pending->snap);
2d892ccd 1739 pending->snap = NULL;
66642832 1740 btrfs_abort_transaction(trans, ret);
8732d44f 1741 goto fail;
79787eaa 1742 }
d68fc57b 1743
49b25e05 1744 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1745 if (ret) {
66642832 1746 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1747 goto fail;
1748 }
361048f5 1749
6426c7ad
QW
1750 /*
1751 * Do special qgroup accounting for snapshot, as we do some qgroup
1752 * snapshot hack to do fast snapshot.
1753 * To co-operate with that hack, we do hack again.
1754 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1755 */
1756 ret = qgroup_account_snapshot(trans, root, parent_root,
1757 pending->inherit, objectid);
1758 if (ret < 0)
1759 goto fail;
1760
684572df
LF
1761 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1762 dentry->d_name.len, BTRFS_I(parent_inode),
1763 &key, BTRFS_FT_DIR, index);
42874b3d 1764 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1765 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1766 if (ret) {
66642832 1767 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1768 goto fail;
1769 }
42874b3d 1770
6ef06d27 1771 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1772 dentry->d_name.len * 2);
04b285f3 1773 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 1774 current_time(parent_inode);
729f7961 1775 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1776 if (ret) {
66642832 1777 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1778 goto fail;
1779 }
807fc790
AS
1780 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1781 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1782 objectid);
dd5f9615 1783 if (ret) {
66642832 1784 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1785 goto fail;
1786 }
1787 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1788 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1789 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1790 objectid);
1791 if (ret && ret != -EEXIST) {
66642832 1792 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1793 goto fail;
1794 }
1795 }
d6726335 1796
3063d29f 1797fail:
aec8030a
MX
1798 pending->error = ret;
1799dir_item_existed:
98c9942a 1800 trans->block_rsv = rsv;
2382c5cc 1801 trans->bytes_reserved = 0;
d6726335
QW
1802clear_skip_qgroup:
1803 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1804no_free_objectid:
1805 kfree(new_root_item);
b0c0ea63 1806 pending->root_item = NULL;
42874b3d 1807 btrfs_free_path(path);
8546b570
DS
1808 pending->path = NULL;
1809
49b25e05 1810 return ret;
3063d29f
CM
1811}
1812
d352ac68
CM
1813/*
1814 * create all the snapshots we've scheduled for creation
1815 */
08d50ca3 1816static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1817{
aec8030a 1818 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1819 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1820 int ret = 0;
3de4586c 1821
aec8030a
MX
1822 list_for_each_entry_safe(pending, next, head, list) {
1823 list_del(&pending->list);
08d50ca3 1824 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1825 if (ret)
1826 break;
1827 }
1828 return ret;
3de4586c
CM
1829}
1830
2ff7e61e 1831static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1832{
1833 struct btrfs_root_item *root_item;
1834 struct btrfs_super_block *super;
1835
0b246afa 1836 super = fs_info->super_copy;
5d4f98a2 1837
0b246afa 1838 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1839 super->chunk_root = root_item->bytenr;
1840 super->chunk_root_generation = root_item->generation;
1841 super->chunk_root_level = root_item->level;
5d4f98a2 1842
0b246afa 1843 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1844 super->root = root_item->bytenr;
1845 super->generation = root_item->generation;
1846 super->root_level = root_item->level;
0b246afa 1847 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1848 super->cache_generation = root_item->generation;
94846229
BB
1849 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1850 super->cache_generation = 0;
0b246afa 1851 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1852 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1853}
1854
f36f3042
CM
1855int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1856{
4a9d8bde 1857 struct btrfs_transaction *trans;
f36f3042 1858 int ret = 0;
4a9d8bde 1859
a4abeea4 1860 spin_lock(&info->trans_lock);
4a9d8bde
MX
1861 trans = info->running_transaction;
1862 if (trans)
1863 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1864 spin_unlock(&info->trans_lock);
f36f3042
CM
1865 return ret;
1866}
1867
8929ecfa
YZ
1868int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1869{
4a9d8bde 1870 struct btrfs_transaction *trans;
8929ecfa 1871 int ret = 0;
4a9d8bde 1872
a4abeea4 1873 spin_lock(&info->trans_lock);
4a9d8bde
MX
1874 trans = info->running_transaction;
1875 if (trans)
1876 ret = is_transaction_blocked(trans);
a4abeea4 1877 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1878 return ret;
1879}
1880
fdfbf020 1881void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 1882{
3a45bb20 1883 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1884 struct btrfs_transaction *cur_trans;
1885
fdfbf020
JB
1886 /* Kick the transaction kthread. */
1887 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1888 wake_up_process(fs_info->transaction_kthread);
bb9c12c9
SW
1889
1890 /* take transaction reference */
bb9c12c9 1891 cur_trans = trans->transaction;
9b64f57d 1892 refcount_inc(&cur_trans->use_count);
bb9c12c9 1893
3a45bb20 1894 btrfs_end_transaction(trans);
6fc4e354 1895
ae5d29d4
DS
1896 /*
1897 * Wait for the current transaction commit to start and block
1898 * subsequent transaction joins
1899 */
1900 wait_event(fs_info->transaction_blocked_wait,
1901 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1902 TRANS_ABORTED(cur_trans));
724e2315 1903 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1904}
1905
97cb39bb 1906static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1907{
97cb39bb 1908 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1909 struct btrfs_transaction *cur_trans = trans->transaction;
1910
b50fff81 1911 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1912
66642832 1913 btrfs_abort_transaction(trans, err);
7b8b92af 1914
0b246afa 1915 spin_lock(&fs_info->trans_lock);
66b6135b 1916
25d8c284
MX
1917 /*
1918 * If the transaction is removed from the list, it means this
1919 * transaction has been committed successfully, so it is impossible
1920 * to call the cleanup function.
1921 */
1922 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1923
0b246afa 1924 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1925 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1926 spin_unlock(&fs_info->trans_lock);
f094ac32
LB
1927 wait_event(cur_trans->writer_wait,
1928 atomic_read(&cur_trans->num_writers) == 1);
1929
0b246afa 1930 spin_lock(&fs_info->trans_lock);
d7096fc3 1931 }
061dde82
FM
1932
1933 /*
1934 * Now that we know no one else is still using the transaction we can
1935 * remove the transaction from the list of transactions. This avoids
1936 * the transaction kthread from cleaning up the transaction while some
1937 * other task is still using it, which could result in a use-after-free
1938 * on things like log trees, as it forces the transaction kthread to
1939 * wait for this transaction to be cleaned up by us.
1940 */
1941 list_del_init(&cur_trans->list);
1942
0b246afa 1943 spin_unlock(&fs_info->trans_lock);
49b25e05 1944
2ff7e61e 1945 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 1946
0b246afa
JM
1947 spin_lock(&fs_info->trans_lock);
1948 if (cur_trans == fs_info->running_transaction)
1949 fs_info->running_transaction = NULL;
1950 spin_unlock(&fs_info->trans_lock);
4a9d8bde 1951
e0228285 1952 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1953 sb_end_intwrite(fs_info->sb);
724e2315
JB
1954 btrfs_put_transaction(cur_trans);
1955 btrfs_put_transaction(cur_trans);
49b25e05 1956
2e4e97ab 1957 trace_btrfs_transaction_commit(fs_info);
49b25e05 1958
49b25e05
JM
1959 if (current->journal_info == trans)
1960 current->journal_info = NULL;
0b246afa 1961 btrfs_scrub_cancel(fs_info);
49b25e05
JM
1962
1963 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1964}
1965
c7cc64a9
DS
1966/*
1967 * Release reserved delayed ref space of all pending block groups of the
1968 * transaction and remove them from the list
1969 */
1970static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1971{
1972 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 1973 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
1974
1975 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1976 btrfs_delayed_refs_rsv_release(fs_info, 1);
1977 list_del_init(&block_group->bg_list);
1978 }
1979}
1980
88090ad3 1981static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 1982{
ce8ea7cc
JB
1983 /*
1984 * We use writeback_inodes_sb here because if we used
1985 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1986 * Currently are holding the fs freeze lock, if we do an async flush
1987 * we'll do btrfs_join_transaction() and deadlock because we need to
1988 * wait for the fs freeze lock. Using the direct flushing we benefit
1989 * from already being in a transaction and our join_transaction doesn't
1990 * have to re-take the fs freeze lock.
1991 */
88090ad3 1992 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
ce8ea7cc 1993 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
1994 return 0;
1995}
1996
88090ad3 1997static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 1998{
88090ad3 1999 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2000 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2001}
2002
3a45bb20 2003int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2004{
3a45bb20 2005 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2006 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2007 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2008 int ret;
79154b1b 2009
35b814f3
NB
2010 ASSERT(refcount_read(&trans->use_count) == 1);
2011
8d25a086 2012 /* Stop the commit early if ->aborted is set */
bf31f87f 2013 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2014 ret = cur_trans->aborted;
3a45bb20 2015 btrfs_end_transaction(trans);
e4a2bcac 2016 return ret;
25287e0a 2017 }
49b25e05 2018
f45c752b
JB
2019 btrfs_trans_release_metadata(trans);
2020 trans->block_rsv = NULL;
2021
56bec294 2022 /*
e19eb11f
JB
2023 * We only want one transaction commit doing the flushing so we do not
2024 * waste a bunch of time on lock contention on the extent root node.
56bec294 2025 */
e19eb11f
JB
2026 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2027 &cur_trans->delayed_refs.flags)) {
2028 /*
2029 * Make a pass through all the delayed refs we have so far.
2030 * Any running threads may add more while we are here.
2031 */
2032 ret = btrfs_run_delayed_refs(trans, 0);
2033 if (ret) {
2034 btrfs_end_transaction(trans);
2035 return ret;
2036 }
2037 }
56bec294 2038
119e80df 2039 btrfs_create_pending_block_groups(trans);
ea658bad 2040
3204d33c 2041 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2042 int run_it = 0;
2043
2044 /* this mutex is also taken before trying to set
2045 * block groups readonly. We need to make sure
2046 * that nobody has set a block group readonly
2047 * after a extents from that block group have been
2048 * allocated for cache files. btrfs_set_block_group_ro
2049 * will wait for the transaction to commit if it
3204d33c 2050 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2051 *
3204d33c
JB
2052 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2053 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2054 * hurt to have more than one go through, but there's no
2055 * real advantage to it either.
2056 */
0b246afa 2057 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2058 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2059 &cur_trans->flags))
1bbc621e 2060 run_it = 1;
0b246afa 2061 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2062
f9cacae3 2063 if (run_it) {
21217054 2064 ret = btrfs_start_dirty_block_groups(trans);
f9cacae3
NB
2065 if (ret) {
2066 btrfs_end_transaction(trans);
2067 return ret;
2068 }
2069 }
1bbc621e
CM
2070 }
2071
0b246afa 2072 spin_lock(&fs_info->trans_lock);
4a9d8bde 2073 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2074 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2075
0b246afa 2076 spin_unlock(&fs_info->trans_lock);
9b64f57d 2077 refcount_inc(&cur_trans->use_count);
ccd467d6 2078
d0c2f4fa
FM
2079 if (trans->in_fsync)
2080 want_state = TRANS_STATE_SUPER_COMMITTED;
2081 ret = btrfs_end_transaction(trans);
2082 wait_for_commit(cur_trans, want_state);
15ee9bc7 2083
bf31f87f 2084 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2085 ret = cur_trans->aborted;
2086
724e2315 2087 btrfs_put_transaction(cur_trans);
15ee9bc7 2088
49b25e05 2089 return ret;
79154b1b 2090 }
4313b399 2091
4a9d8bde 2092 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2093 wake_up(&fs_info->transaction_blocked_wait);
bb9c12c9 2094
0b246afa 2095 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2096 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2097
2098 if (trans->in_fsync)
2099 want_state = TRANS_STATE_SUPER_COMMITTED;
2100
ccd467d6
CM
2101 prev_trans = list_entry(cur_trans->list.prev,
2102 struct btrfs_transaction, list);
d0c2f4fa 2103 if (prev_trans->state < want_state) {
9b64f57d 2104 refcount_inc(&prev_trans->use_count);
0b246afa 2105 spin_unlock(&fs_info->trans_lock);
ccd467d6 2106
d0c2f4fa
FM
2107 wait_for_commit(prev_trans, want_state);
2108
bf31f87f 2109 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2110
724e2315 2111 btrfs_put_transaction(prev_trans);
1f9b8c8f
FM
2112 if (ret)
2113 goto cleanup_transaction;
a4abeea4 2114 } else {
0b246afa 2115 spin_unlock(&fs_info->trans_lock);
ccd467d6 2116 }
a4abeea4 2117 } else {
0b246afa 2118 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2119 /*
2120 * The previous transaction was aborted and was already removed
2121 * from the list of transactions at fs_info->trans_list. So we
2122 * abort to prevent writing a new superblock that reflects a
2123 * corrupt state (pointing to trees with unwritten nodes/leafs).
2124 */
84961539 2125 if (BTRFS_FS_ERROR(fs_info)) {
cb2d3dad
FM
2126 ret = -EROFS;
2127 goto cleanup_transaction;
2128 }
ccd467d6 2129 }
15ee9bc7 2130
0860adfd
MX
2131 extwriter_counter_dec(cur_trans, trans->type);
2132
88090ad3 2133 ret = btrfs_start_delalloc_flush(fs_info);
82436617
MX
2134 if (ret)
2135 goto cleanup_transaction;
2136
e5c304e6 2137 ret = btrfs_run_delayed_items(trans);
581227d0
MX
2138 if (ret)
2139 goto cleanup_transaction;
15ee9bc7 2140
581227d0
MX
2141 wait_event(cur_trans->writer_wait,
2142 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2143
581227d0 2144 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2145 ret = btrfs_run_delayed_items(trans);
ca469637
MX
2146 if (ret)
2147 goto cleanup_transaction;
2148
88090ad3 2149 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2150
48778179
FM
2151 /*
2152 * Wait for all ordered extents started by a fast fsync that joined this
2153 * transaction. Otherwise if this transaction commits before the ordered
2154 * extents complete we lose logged data after a power failure.
2155 */
2156 wait_event(cur_trans->pending_wait,
2157 atomic_read(&cur_trans->pending_ordered) == 0);
2158
2ff7e61e 2159 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2160 /*
2161 * Ok now we need to make sure to block out any other joins while we
2162 * commit the transaction. We could have started a join before setting
4a9d8bde 2163 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2164 */
0b246afa 2165 spin_lock(&fs_info->trans_lock);
4a9d8bde 2166 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2167 spin_unlock(&fs_info->trans_lock);
ed0ca140
JB
2168 wait_event(cur_trans->writer_wait,
2169 atomic_read(&cur_trans->num_writers) == 1);
2170
fdfbf020
JB
2171 /*
2172 * We've started the commit, clear the flag in case we were triggered to
2173 * do an async commit but somebody else started before the transaction
2174 * kthread could do the work.
2175 */
2176 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2177
bf31f87f 2178 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2179 ret = cur_trans->aborted;
6cf7f77e 2180 goto scrub_continue;
2cba30f1 2181 }
7585717f
CM
2182 /*
2183 * the reloc mutex makes sure that we stop
2184 * the balancing code from coming in and moving
2185 * extents around in the middle of the commit
2186 */
0b246afa 2187 mutex_lock(&fs_info->reloc_mutex);
7585717f 2188
42874b3d
MX
2189 /*
2190 * We needn't worry about the delayed items because we will
2191 * deal with them in create_pending_snapshot(), which is the
2192 * core function of the snapshot creation.
2193 */
08d50ca3 2194 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2195 if (ret)
2196 goto unlock_reloc;
3063d29f 2197
42874b3d
MX
2198 /*
2199 * We insert the dir indexes of the snapshots and update the inode
2200 * of the snapshots' parents after the snapshot creation, so there
2201 * are some delayed items which are not dealt with. Now deal with
2202 * them.
2203 *
2204 * We needn't worry that this operation will corrupt the snapshots,
2205 * because all the tree which are snapshoted will be forced to COW
2206 * the nodes and leaves.
2207 */
e5c304e6 2208 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2209 if (ret)
2210 goto unlock_reloc;
16cdcec7 2211
c79a70b1 2212 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2213 if (ret)
2214 goto unlock_reloc;
56bec294 2215
e999376f
CM
2216 /*
2217 * make sure none of the code above managed to slip in a
2218 * delayed item
2219 */
ccdf9b30 2220 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2221
2c90e5d6 2222 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2223
7e4443d9 2224 ret = commit_fs_roots(trans);
56e9f6ea 2225 if (ret)
dfba78dc 2226 goto unlock_reloc;
54aa1f4d 2227
3818aea2 2228 /*
7e1876ac
DS
2229 * Since the transaction is done, we can apply the pending changes
2230 * before the next transaction.
3818aea2 2231 */
0b246afa 2232 btrfs_apply_pending_changes(fs_info);
3818aea2 2233
5d4f98a2 2234 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2235 * safe to free the root of tree log roots
2236 */
0b246afa 2237 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2238
0ed4792a
QW
2239 /*
2240 * Since fs roots are all committed, we can get a quite accurate
2241 * new_roots. So let's do quota accounting.
2242 */
460fb20a 2243 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea 2244 if (ret < 0)
dfba78dc 2245 goto unlock_reloc;
0ed4792a 2246
9386d8bc 2247 ret = commit_cowonly_roots(trans);
56e9f6ea 2248 if (ret)
dfba78dc 2249 goto unlock_reloc;
54aa1f4d 2250
2cba30f1
MX
2251 /*
2252 * The tasks which save the space cache and inode cache may also
2253 * update ->aborted, check it.
2254 */
bf31f87f 2255 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2256 ret = cur_trans->aborted;
dfba78dc 2257 goto unlock_reloc;
2cba30f1
MX
2258 }
2259
0b246afa 2260 cur_trans = fs_info->running_transaction;
5d4f98a2 2261
0b246afa
JM
2262 btrfs_set_root_node(&fs_info->tree_root->root_item,
2263 fs_info->tree_root->node);
2264 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2265 &cur_trans->switch_commits);
5d4f98a2 2266
0b246afa
JM
2267 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2268 fs_info->chunk_root->node);
2269 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2270 &cur_trans->switch_commits);
2271
889bfa39 2272 switch_commit_roots(trans);
5d4f98a2 2273
ce93ec54 2274 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2275 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2276 update_super_roots(fs_info);
e02119d5 2277
0b246afa
JM
2278 btrfs_set_super_log_root(fs_info->super_copy, 0);
2279 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2280 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2281 sizeof(*fs_info->super_copy));
ccd467d6 2282
bbbf7243 2283 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2284
0b246afa
JM
2285 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2286 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2287
4fbcdf66
FM
2288 btrfs_trans_release_chunk_metadata(trans);
2289
dfba78dc
FM
2290 /*
2291 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2292 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2293 * make sure that before we commit our superblock, no other task can
2294 * start a new transaction and commit a log tree before we commit our
2295 * superblock. Anyone trying to commit a log tree locks this mutex before
2296 * writing its superblock.
2297 */
2298 mutex_lock(&fs_info->tree_log_mutex);
2299
0b246afa 2300 spin_lock(&fs_info->trans_lock);
4a9d8bde 2301 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2302 fs_info->running_transaction = NULL;
2303 spin_unlock(&fs_info->trans_lock);
2304 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2305
0b246afa 2306 wake_up(&fs_info->transaction_wait);
e6dcd2dc 2307
70458a58 2308 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2309 if (ret) {
0b246afa
JM
2310 btrfs_handle_fs_error(fs_info, ret,
2311 "Error while writing out transaction");
2312 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2313 goto scrub_continue;
49b25e05
JM
2314 }
2315
d3575156
NA
2316 /*
2317 * At this point, we should have written all the tree blocks allocated
2318 * in this transaction. So it's now safe to free the redirtyied extent
2319 * buffers.
2320 */
2321 btrfs_free_redirty_list(cur_trans);
2322
eece6a9c 2323 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2324 /*
2325 * the super is written, we can safely allow the tree-loggers
2326 * to go about their business
2327 */
0b246afa 2328 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2329 if (ret)
2330 goto scrub_continue;
e02119d5 2331
d0c2f4fa
FM
2332 /*
2333 * We needn't acquire the lock here because there is no other task
2334 * which can change it.
2335 */
2336 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2337 wake_up(&cur_trans->commit_wait);
2338
5ead2dd0 2339 btrfs_finish_extent_commit(trans);
4313b399 2340
3204d33c 2341 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2342 btrfs_clear_space_info_full(fs_info);
13212b54 2343
0b246afa 2344 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2345 /*
2346 * We needn't acquire the lock here because there is no other task
2347 * which can change it.
2348 */
2349 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2350 wake_up(&cur_trans->commit_wait);
3de4586c 2351
0b246afa 2352 spin_lock(&fs_info->trans_lock);
13c5a93e 2353 list_del_init(&cur_trans->list);
0b246afa 2354 spin_unlock(&fs_info->trans_lock);
a4abeea4 2355
724e2315
JB
2356 btrfs_put_transaction(cur_trans);
2357 btrfs_put_transaction(cur_trans);
58176a96 2358
0860adfd 2359 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2360 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2361
2e4e97ab 2362 trace_btrfs_transaction_commit(fs_info);
1abe9b8a 2363
2ff7e61e 2364 btrfs_scrub_continue(fs_info);
a2de733c 2365
9ed74f2d
JB
2366 if (current->journal_info == trans)
2367 current->journal_info = NULL;
2368
2c90e5d6 2369 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2370
79154b1b 2371 return ret;
49b25e05 2372
56e9f6ea
DS
2373unlock_reloc:
2374 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2375scrub_continue:
2ff7e61e 2376 btrfs_scrub_continue(fs_info);
49b25e05 2377cleanup_transaction:
dc60c525 2378 btrfs_trans_release_metadata(trans);
c7cc64a9 2379 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2380 btrfs_trans_release_chunk_metadata(trans);
0e721106 2381 trans->block_rsv = NULL;
0b246afa 2382 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2383 if (current->journal_info == trans)
2384 current->journal_info = NULL;
97cb39bb 2385 cleanup_transaction(trans, ret);
49b25e05
JM
2386
2387 return ret;
79154b1b
CM
2388}
2389
d352ac68 2390/*
9d1a2a3a
DS
2391 * return < 0 if error
2392 * 0 if there are no more dead_roots at the time of call
2393 * 1 there are more to be processed, call me again
2394 *
2395 * The return value indicates there are certainly more snapshots to delete, but
2396 * if there comes a new one during processing, it may return 0. We don't mind,
2397 * because btrfs_commit_super will poke cleaner thread and it will process it a
2398 * few seconds later.
d352ac68 2399 */
9d1a2a3a 2400int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
e9d0b13b 2401{
9d1a2a3a 2402 int ret;
5d4f98a2
YZ
2403 struct btrfs_fs_info *fs_info = root->fs_info;
2404
a4abeea4 2405 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2406 if (list_empty(&fs_info->dead_roots)) {
2407 spin_unlock(&fs_info->trans_lock);
2408 return 0;
2409 }
2410 root = list_first_entry(&fs_info->dead_roots,
2411 struct btrfs_root, root_list);
cfad392b 2412 list_del_init(&root->root_list);
a4abeea4 2413 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2414
4fd786e6 2415 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2416
9d1a2a3a 2417 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2418
9d1a2a3a
DS
2419 if (btrfs_header_backref_rev(root->node) <
2420 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2421 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2422 else
0078a9f9 2423 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2424
dc9492c1 2425 btrfs_put_root(root);
6596a928 2426 return (ret < 0) ? 0 : 1;
e9d0b13b 2427}
572d9ab7
DS
2428
2429void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2430{
2431 unsigned long prev;
2432 unsigned long bit;
2433
6c9fe14f 2434 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2435 if (!prev)
2436 return;
2437
d51033d0
DS
2438 bit = 1 << BTRFS_PENDING_COMMIT;
2439 if (prev & bit)
2440 btrfs_debug(fs_info, "pending commit done");
2441 prev &= ~bit;
2442
572d9ab7
DS
2443 if (prev)
2444 btrfs_warn(fs_info,
2445 "unknown pending changes left 0x%lx, ignoring", prev);
2446}