btrfs: stop running all delayed refs during snapshot
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
602cbe91 13#include "misc.h"
79154b1b
CM
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
925baedd 17#include "locking.h"
e02119d5 18#include "tree-log.h"
733f4fbb 19#include "volumes.h"
8dabb742 20#include "dev-replace.h"
fcebe456 21#include "qgroup.h"
aac0023c 22#include "block-group.h"
9c343784 23#include "space-info.h"
79154b1b 24
0f7d52f4
CM
25#define BTRFS_ROOT_TRANS_TAG 0
26
61c047b5
QW
27/*
28 * Transaction states and transitions
29 *
30 * No running transaction (fs tree blocks are not modified)
31 * |
32 * | To next stage:
33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
34 * V
35 * Transaction N [[TRANS_STATE_RUNNING]]
36 * |
37 * | New trans handles can be attached to transaction N by calling all
38 * | start_transaction() variants.
39 * |
40 * | To next stage:
41 * | Call btrfs_commit_transaction() on any trans handle attached to
42 * | transaction N
43 * V
44 * Transaction N [[TRANS_STATE_COMMIT_START]]
45 * |
46 * | Will wait for previous running transaction to completely finish if there
47 * | is one
48 * |
49 * | Then one of the following happes:
50 * | - Wait for all other trans handle holders to release.
51 * | The btrfs_commit_transaction() caller will do the commit work.
52 * | - Wait for current transaction to be committed by others.
53 * | Other btrfs_commit_transaction() caller will do the commit work.
54 * |
55 * | At this stage, only btrfs_join_transaction*() variants can attach
56 * | to this running transaction.
57 * | All other variants will wait for current one to finish and attach to
58 * | transaction N+1.
59 * |
60 * | To next stage:
61 * | Caller is chosen to commit transaction N, and all other trans handle
62 * | haven been released.
63 * V
64 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
65 * |
66 * | The heavy lifting transaction work is started.
67 * | From running delayed refs (modifying extent tree) to creating pending
68 * | snapshots, running qgroups.
69 * | In short, modify supporting trees to reflect modifications of subvolume
70 * | trees.
71 * |
72 * | At this stage, all start_transaction() calls will wait for this
73 * | transaction to finish and attach to transaction N+1.
74 * |
75 * | To next stage:
76 * | Until all supporting trees are updated.
77 * V
78 * Transaction N [[TRANS_STATE_UNBLOCKED]]
79 * | Transaction N+1
80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
81 * | need to write them back to disk and update |
82 * | super blocks. |
83 * | |
84 * | At this stage, new transaction is allowed to |
85 * | start. |
86 * | All new start_transaction() calls will be |
87 * | attached to transid N+1. |
88 * | |
89 * | To next stage: |
90 * | Until all tree blocks are super blocks are |
91 * | written to block devices |
92 * V |
93 * Transaction N [[TRANS_STATE_COMPLETED]] V
94 * All tree blocks and super blocks are written. Transaction N+1
95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
96 * data structures will be cleaned up. | Life goes on
97 */
e8c9f186 98static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 99 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 102 __TRANS_ATTACH |
a6d155d2
FM
103 __TRANS_JOIN |
104 __TRANS_JOIN_NOSTART),
bcf3a3e7 105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
106 __TRANS_ATTACH |
107 __TRANS_JOIN |
a6d155d2
FM
108 __TRANS_JOIN_NOLOCK |
109 __TRANS_JOIN_NOSTART),
bcf3a3e7 110 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
111 __TRANS_ATTACH |
112 __TRANS_JOIN |
a6d155d2
FM
113 __TRANS_JOIN_NOLOCK |
114 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
115};
116
724e2315 117void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 118{
9b64f57d
ER
119 WARN_ON(refcount_read(&transaction->use_count) == 0);
120 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 121 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
122 WARN_ON(!RB_EMPTY_ROOT(
123 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
124 WARN_ON(!RB_EMPTY_ROOT(
125 &transaction->delayed_refs.dirty_extent_root));
1262133b 126 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
127 btrfs_err(transaction->fs_info,
128 "pending csums is %llu",
129 transaction->delayed_refs.pending_csums);
7785a663
FM
130 /*
131 * If any block groups are found in ->deleted_bgs then it's
132 * because the transaction was aborted and a commit did not
133 * happen (things failed before writing the new superblock
134 * and calling btrfs_finish_extent_commit()), so we can not
135 * discard the physical locations of the block groups.
136 */
137 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 138 struct btrfs_block_group *cache;
7785a663
FM
139
140 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 141 struct btrfs_block_group,
7785a663
FM
142 bg_list);
143 list_del_init(&cache->bg_list);
6b7304af 144 btrfs_unfreeze_block_group(cache);
7785a663
FM
145 btrfs_put_block_group(cache);
146 }
bbbf7243 147 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 148 kfree(transaction);
78fae27e 149 }
79154b1b
CM
150}
151
889bfa39 152static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 153{
889bfa39 154 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 155 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8 156 struct btrfs_root *root, *tmp;
27d56e62 157 struct btrfs_caching_control *caching_ctl, *next;
9e351cc8
JB
158
159 down_write(&fs_info->commit_root_sem);
889bfa39 160 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
161 dirty_list) {
162 list_del_init(&root->dirty_list);
163 free_extent_buffer(root->commit_root);
164 root->commit_root = btrfs_root_node(root);
41e7acd3 165 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 166 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 167 }
2b9dbef2
JB
168
169 /* We can free old roots now. */
889bfa39
JB
170 spin_lock(&cur_trans->dropped_roots_lock);
171 while (!list_empty(&cur_trans->dropped_roots)) {
172 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
173 struct btrfs_root, root_list);
174 list_del_init(&root->root_list);
889bfa39
JB
175 spin_unlock(&cur_trans->dropped_roots_lock);
176 btrfs_free_log(trans, root);
2b9dbef2 177 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 178 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 179 }
889bfa39 180 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62
JB
181
182 /*
183 * We have to update the last_byte_to_unpin under the commit_root_sem,
184 * at the same time we swap out the commit roots.
185 *
186 * This is because we must have a real view of the last spot the caching
187 * kthreads were while caching. Consider the following views of the
188 * extent tree for a block group
189 *
190 * commit root
191 * +----+----+----+----+----+----+----+
192 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
193 * +----+----+----+----+----+----+----+
194 * 0 1 2 3 4 5 6 7
195 *
196 * new commit root
197 * +----+----+----+----+----+----+----+
198 * | | | |\\\\| | |\\\\|
199 * +----+----+----+----+----+----+----+
200 * 0 1 2 3 4 5 6 7
201 *
202 * If the cache_ctl->progress was at 3, then we are only allowed to
203 * unpin [0,1) and [2,3], because the caching thread has already
204 * processed those extents. We are not allowed to unpin [5,6), because
205 * the caching thread will re-start it's search from 3, and thus find
206 * the hole from [4,6) to add to the free space cache.
207 */
bbb86a37 208 spin_lock(&fs_info->block_group_cache_lock);
27d56e62
JB
209 list_for_each_entry_safe(caching_ctl, next,
210 &fs_info->caching_block_groups, list) {
211 struct btrfs_block_group *cache = caching_ctl->block_group;
212
213 if (btrfs_block_group_done(cache)) {
214 cache->last_byte_to_unpin = (u64)-1;
215 list_del_init(&caching_ctl->list);
216 btrfs_put_caching_control(caching_ctl);
217 } else {
218 cache->last_byte_to_unpin = caching_ctl->progress;
219 }
220 }
bbb86a37 221 spin_unlock(&fs_info->block_group_cache_lock);
9e351cc8 222 up_write(&fs_info->commit_root_sem);
817d52f8
JB
223}
224
0860adfd
MX
225static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
226 unsigned int type)
227{
228 if (type & TRANS_EXTWRITERS)
229 atomic_inc(&trans->num_extwriters);
230}
231
232static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
233 unsigned int type)
234{
235 if (type & TRANS_EXTWRITERS)
236 atomic_dec(&trans->num_extwriters);
237}
238
239static inline void extwriter_counter_init(struct btrfs_transaction *trans,
240 unsigned int type)
241{
242 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
243}
244
245static inline int extwriter_counter_read(struct btrfs_transaction *trans)
246{
247 return atomic_read(&trans->num_extwriters);
178260b2
MX
248}
249
fb6dea26
JB
250/*
251 * To be called after all the new block groups attached to the transaction
252 * handle have been created (btrfs_create_pending_block_groups()).
253 */
254void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
255{
256 struct btrfs_fs_info *fs_info = trans->fs_info;
257
258 if (!trans->chunk_bytes_reserved)
259 return;
260
261 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
262
263 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 264 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
265 trans->chunk_bytes_reserved = 0;
266}
267
d352ac68
CM
268/*
269 * either allocate a new transaction or hop into the existing one
270 */
2ff7e61e
JM
271static noinline int join_transaction(struct btrfs_fs_info *fs_info,
272 unsigned int type)
79154b1b
CM
273{
274 struct btrfs_transaction *cur_trans;
a4abeea4 275
19ae4e81 276 spin_lock(&fs_info->trans_lock);
d43317dc 277loop:
49b25e05 278 /* The file system has been taken offline. No new transactions. */
87533c47 279 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
19ae4e81 280 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
281 return -EROFS;
282 }
283
19ae4e81 284 cur_trans = fs_info->running_transaction;
a4abeea4 285 if (cur_trans) {
bf31f87f 286 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 287 spin_unlock(&fs_info->trans_lock);
49b25e05 288 return cur_trans->aborted;
871383be 289 }
4a9d8bde 290 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
291 spin_unlock(&fs_info->trans_lock);
292 return -EBUSY;
293 }
9b64f57d 294 refcount_inc(&cur_trans->use_count);
13c5a93e 295 atomic_inc(&cur_trans->num_writers);
0860adfd 296 extwriter_counter_inc(cur_trans, type);
19ae4e81 297 spin_unlock(&fs_info->trans_lock);
a4abeea4 298 return 0;
79154b1b 299 }
19ae4e81 300 spin_unlock(&fs_info->trans_lock);
a4abeea4 301
354aa0fb
MX
302 /*
303 * If we are ATTACH, we just want to catch the current transaction,
304 * and commit it. If there is no transaction, just return ENOENT.
305 */
306 if (type == TRANS_ATTACH)
307 return -ENOENT;
308
4a9d8bde
MX
309 /*
310 * JOIN_NOLOCK only happens during the transaction commit, so
311 * it is impossible that ->running_transaction is NULL
312 */
313 BUG_ON(type == TRANS_JOIN_NOLOCK);
314
4b5faeac 315 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
316 if (!cur_trans)
317 return -ENOMEM;
d43317dc 318
19ae4e81
JS
319 spin_lock(&fs_info->trans_lock);
320 if (fs_info->running_transaction) {
d43317dc
CM
321 /*
322 * someone started a transaction after we unlocked. Make sure
4a9d8bde 323 * to redo the checks above
d43317dc 324 */
4b5faeac 325 kfree(cur_trans);
d43317dc 326 goto loop;
87533c47 327 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
e4b50e14 328 spin_unlock(&fs_info->trans_lock);
4b5faeac 329 kfree(cur_trans);
7b8b92af 330 return -EROFS;
79154b1b 331 }
d43317dc 332
ab8d0fc4 333 cur_trans->fs_info = fs_info;
48778179
FM
334 atomic_set(&cur_trans->pending_ordered, 0);
335 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 336 atomic_set(&cur_trans->num_writers, 1);
0860adfd 337 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
338 init_waitqueue_head(&cur_trans->writer_wait);
339 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 340 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
341 /*
342 * One for this trans handle, one so it will live on until we
343 * commit the transaction.
344 */
9b64f57d 345 refcount_set(&cur_trans->use_count, 2);
3204d33c 346 cur_trans->flags = 0;
afd48513 347 cur_trans->start_time = ktime_get_seconds();
a4abeea4 348
a099d0fd
AM
349 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
350
5c9d028b 351 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 352 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 353 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
354
355 /*
356 * although the tree mod log is per file system and not per transaction,
357 * the log must never go across transaction boundaries.
358 */
359 smp_mb();
31b1a2bd 360 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 361 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 362 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 363 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 364 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 365
a4abeea4
JB
366 spin_lock_init(&cur_trans->delayed_refs.lock);
367
368 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 369 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 370 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 371 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 372 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 373 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 374 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 375 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 376 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 377 spin_lock_init(&cur_trans->dropped_roots_lock);
19ae4e81 378 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 379 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
43eb5f29 380 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
fe119a6e
NB
381 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
382 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
383 fs_info->generation++;
384 cur_trans->transid = fs_info->generation;
385 fs_info->running_transaction = cur_trans;
49b25e05 386 cur_trans->aborted = 0;
19ae4e81 387 spin_unlock(&fs_info->trans_lock);
15ee9bc7 388
79154b1b
CM
389 return 0;
390}
391
d352ac68 392/*
92a7cc42
QW
393 * This does all the record keeping required to make sure that a shareable root
394 * is properly recorded in a given transaction. This is required to make sure
395 * the old root from before we joined the transaction is deleted when the
396 * transaction commits.
d352ac68 397 */
7585717f 398static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
399 struct btrfs_root *root,
400 int force)
6702ed49 401{
0b246afa
JM
402 struct btrfs_fs_info *fs_info = root->fs_info;
403
92a7cc42 404 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 405 root->last_trans < trans->transid) || force) {
0b246afa 406 WARN_ON(root == fs_info->extent_root);
4d31778a 407 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 408
7585717f 409 /*
27cdeb70 410 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
411 * we have the reloc mutex held now, so there
412 * is only one writer in this function
413 */
27cdeb70 414 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 415
27cdeb70 416 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
417 * they find our root->last_trans update
418 */
419 smp_wmb();
420
0b246afa 421 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 422 if (root->last_trans == trans->transid && !force) {
0b246afa 423 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
424 return 0;
425 }
0b246afa
JM
426 radix_tree_tag_set(&fs_info->fs_roots_radix,
427 (unsigned long)root->root_key.objectid,
428 BTRFS_ROOT_TRANS_TAG);
429 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
430 root->last_trans = trans->transid;
431
432 /* this is pretty tricky. We don't want to
433 * take the relocation lock in btrfs_record_root_in_trans
434 * unless we're really doing the first setup for this root in
435 * this transaction.
436 *
437 * Normally we'd use root->last_trans as a flag to decide
438 * if we want to take the expensive mutex.
439 *
440 * But, we have to set root->last_trans before we
441 * init the relocation root, otherwise, we trip over warnings
442 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 443 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
444 * fixing up the reloc trees and everyone must wait.
445 *
446 * When this is zero, they can trust root->last_trans and fly
447 * through btrfs_record_root_in_trans without having to take the
448 * lock. smp_wmb() makes sure that all the writes above are
449 * done before we pop in the zero below
450 */
5d4f98a2 451 btrfs_init_reloc_root(trans, root);
c7548af6 452 smp_mb__before_atomic();
27cdeb70 453 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2
YZ
454 }
455 return 0;
456}
bcc63abb 457
7585717f 458
2b9dbef2
JB
459void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
460 struct btrfs_root *root)
461{
0b246afa 462 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
463 struct btrfs_transaction *cur_trans = trans->transaction;
464
465 /* Add ourselves to the transaction dropped list */
466 spin_lock(&cur_trans->dropped_roots_lock);
467 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
468 spin_unlock(&cur_trans->dropped_roots_lock);
469
470 /* Make sure we don't try to update the root at commit time */
0b246afa
JM
471 spin_lock(&fs_info->fs_roots_radix_lock);
472 radix_tree_tag_clear(&fs_info->fs_roots_radix,
2b9dbef2
JB
473 (unsigned long)root->root_key.objectid,
474 BTRFS_ROOT_TRANS_TAG);
0b246afa 475 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
476}
477
7585717f
CM
478int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
479 struct btrfs_root *root)
480{
0b246afa
JM
481 struct btrfs_fs_info *fs_info = root->fs_info;
482
92a7cc42 483 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
484 return 0;
485
486 /*
27cdeb70 487 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
488 * and barriers
489 */
490 smp_rmb();
491 if (root->last_trans == trans->transid &&
27cdeb70 492 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
493 return 0;
494
0b246afa 495 mutex_lock(&fs_info->reloc_mutex);
6426c7ad 496 record_root_in_trans(trans, root, 0);
0b246afa 497 mutex_unlock(&fs_info->reloc_mutex);
7585717f
CM
498
499 return 0;
500}
501
4a9d8bde
MX
502static inline int is_transaction_blocked(struct btrfs_transaction *trans)
503{
3296bf56 504 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 505 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 506 !TRANS_ABORTED(trans));
4a9d8bde
MX
507}
508
d352ac68
CM
509/* wait for commit against the current transaction to become unblocked
510 * when this is done, it is safe to start a new transaction, but the current
511 * transaction might not be fully on disk.
512 */
2ff7e61e 513static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 514{
f9295749 515 struct btrfs_transaction *cur_trans;
79154b1b 516
0b246afa
JM
517 spin_lock(&fs_info->trans_lock);
518 cur_trans = fs_info->running_transaction;
4a9d8bde 519 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 520 refcount_inc(&cur_trans->use_count);
0b246afa 521 spin_unlock(&fs_info->trans_lock);
72d63ed6 522
0b246afa 523 wait_event(fs_info->transaction_wait,
501407aa 524 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 525 TRANS_ABORTED(cur_trans));
724e2315 526 btrfs_put_transaction(cur_trans);
a4abeea4 527 } else {
0b246afa 528 spin_unlock(&fs_info->trans_lock);
f9295749 529 }
37d1aeee
CM
530}
531
2ff7e61e 532static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 533{
0b246afa 534 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
535 return 0;
536
92e2f7e3 537 if (type == TRANS_START)
a22285a6 538 return 1;
a4abeea4 539
a22285a6
YZ
540 return 0;
541}
542
20dd2cbf
MX
543static inline bool need_reserve_reloc_root(struct btrfs_root *root)
544{
0b246afa
JM
545 struct btrfs_fs_info *fs_info = root->fs_info;
546
547 if (!fs_info->reloc_ctl ||
92a7cc42 548 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
549 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
550 root->reloc_root)
551 return false;
552
553 return true;
554}
555
08e007d2 556static struct btrfs_trans_handle *
5aed1dd8 557start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
558 unsigned int type, enum btrfs_reserve_flush_enum flush,
559 bool enforce_qgroups)
37d1aeee 560{
0b246afa 561 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 562 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
563 struct btrfs_trans_handle *h;
564 struct btrfs_transaction *cur_trans;
b5009945 565 u64 num_bytes = 0;
c5567237 566 u64 qgroup_reserved = 0;
20dd2cbf 567 bool reloc_reserved = false;
9c343784 568 bool do_chunk_alloc = false;
20dd2cbf 569 int ret;
acce952b 570
46c4e71e 571 /* Send isn't supposed to start transactions. */
2755a0de 572 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
46c4e71e 573
0b246afa 574 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
acce952b 575 return ERR_PTR(-EROFS);
2a1eb461 576
46c4e71e 577 if (current->journal_info) {
0860adfd 578 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 579 h = current->journal_info;
b50fff81
DS
580 refcount_inc(&h->use_count);
581 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
582 h->orig_rsv = h->block_rsv;
583 h->block_rsv = NULL;
584 goto got_it;
585 }
b5009945
JB
586
587 /*
588 * Do the reservation before we join the transaction so we can do all
589 * the appropriate flushing if need be.
590 */
003d7c59 591 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
592 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
593 u64 delayed_refs_bytes = 0;
594
0b246afa 595 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
596 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
597 enforce_qgroups);
7174109c
QW
598 if (ret)
599 return ERR_PTR(ret);
c5567237 600
ba2c4d4e
JB
601 /*
602 * We want to reserve all the bytes we may need all at once, so
603 * we only do 1 enospc flushing cycle per transaction start. We
604 * accomplish this by simply assuming we'll do 2 x num_items
605 * worth of delayed refs updates in this trans handle, and
606 * refill that amount for whatever is missing in the reserve.
607 */
2bd36e7b 608 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614
JB
609 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
610 delayed_refs_rsv->full == 0) {
ba2c4d4e
JB
611 delayed_refs_bytes = num_bytes;
612 num_bytes <<= 1;
613 }
614
20dd2cbf
MX
615 /*
616 * Do the reservation for the relocation root creation
617 */
ee39b432 618 if (need_reserve_reloc_root(root)) {
0b246afa 619 num_bytes += fs_info->nodesize;
20dd2cbf
MX
620 reloc_reserved = true;
621 }
622
ba2c4d4e
JB
623 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
624 if (ret)
625 goto reserve_fail;
626 if (delayed_refs_bytes) {
627 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
628 delayed_refs_bytes);
629 num_bytes -= delayed_refs_bytes;
630 }
9c343784
JB
631
632 if (rsv->space_info->force_alloc)
633 do_chunk_alloc = true;
ba2c4d4e
JB
634 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
635 !delayed_refs_rsv->full) {
636 /*
637 * Some people call with btrfs_start_transaction(root, 0)
638 * because they can be throttled, but have some other mechanism
639 * for reserving space. We still want these guys to refill the
640 * delayed block_rsv so just add 1 items worth of reservation
641 * here.
642 */
643 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 644 if (ret)
843fcf35 645 goto reserve_fail;
b5009945 646 }
a22285a6 647again:
f2f767e7 648 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
649 if (!h) {
650 ret = -ENOMEM;
651 goto alloc_fail;
652 }
37d1aeee 653
98114659
JB
654 /*
655 * If we are JOIN_NOLOCK we're already committing a transaction and
656 * waiting on this guy, so we don't need to do the sb_start_intwrite
657 * because we're already holding a ref. We need this because we could
658 * have raced in and did an fsync() on a file which can kick a commit
659 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
660 *
661 * If we are ATTACH, it means we just want to catch the current
662 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 663 */
0860adfd 664 if (type & __TRANS_FREEZABLE)
0b246afa 665 sb_start_intwrite(fs_info->sb);
b2b5ef5c 666
2ff7e61e
JM
667 if (may_wait_transaction(fs_info, type))
668 wait_current_trans(fs_info);
a22285a6 669
a4abeea4 670 do {
2ff7e61e 671 ret = join_transaction(fs_info, type);
178260b2 672 if (ret == -EBUSY) {
2ff7e61e 673 wait_current_trans(fs_info);
a6d155d2
FM
674 if (unlikely(type == TRANS_ATTACH ||
675 type == TRANS_JOIN_NOSTART))
178260b2
MX
676 ret = -ENOENT;
677 }
a4abeea4
JB
678 } while (ret == -EBUSY);
679
a43f7f82 680 if (ret < 0)
843fcf35 681 goto join_fail;
0f7d52f4 682
0b246afa 683 cur_trans = fs_info->running_transaction;
a22285a6
YZ
684
685 h->transid = cur_trans->transid;
686 h->transaction = cur_trans;
d13603ef 687 h->root = root;
b50fff81 688 refcount_set(&h->use_count, 1);
64b63580 689 h->fs_info = root->fs_info;
7174109c 690
a698d075 691 h->type = type;
d9a0540a 692 h->can_flush_pending_bgs = true;
ea658bad 693 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 694
a22285a6 695 smp_mb();
3296bf56 696 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 697 may_wait_transaction(fs_info, type)) {
abdd2e80 698 current->journal_info = h;
3a45bb20 699 btrfs_commit_transaction(h);
a22285a6
YZ
700 goto again;
701 }
702
b5009945 703 if (num_bytes) {
0b246afa 704 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 705 h->transid, num_bytes, 1);
0b246afa 706 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 707 h->bytes_reserved = num_bytes;
20dd2cbf 708 h->reloc_reserved = reloc_reserved;
a22285a6 709 }
9ed74f2d 710
2a1eb461 711got_it:
bcf3a3e7 712 if (!current->journal_info)
a22285a6 713 current->journal_info = h;
fcc99734 714
9c343784
JB
715 /*
716 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
717 * ALLOC_FORCE the first run through, and then we won't allocate for
718 * anybody else who races in later. We don't care about the return
719 * value here.
720 */
721 if (do_chunk_alloc && num_bytes) {
722 u64 flags = h->block_rsv->space_info->flags;
723
724 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
725 CHUNK_ALLOC_NO_FORCE);
726 }
727
fcc99734
QW
728 /*
729 * btrfs_record_root_in_trans() needs to alloc new extents, and may
730 * call btrfs_join_transaction() while we're also starting a
731 * transaction.
732 *
733 * Thus it need to be called after current->journal_info initialized,
734 * or we can deadlock.
735 */
736 btrfs_record_root_in_trans(h, root);
737
79154b1b 738 return h;
843fcf35
MX
739
740join_fail:
0860adfd 741 if (type & __TRANS_FREEZABLE)
0b246afa 742 sb_end_intwrite(fs_info->sb);
843fcf35
MX
743 kmem_cache_free(btrfs_trans_handle_cachep, h);
744alloc_fail:
745 if (num_bytes)
2ff7e61e 746 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 747 num_bytes, NULL);
843fcf35 748reserve_fail:
733e03a0 749 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 750 return ERR_PTR(ret);
79154b1b
CM
751}
752
f9295749 753struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 754 unsigned int num_items)
f9295749 755{
08e007d2 756 return start_transaction(root, num_items, TRANS_START,
003d7c59 757 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 758}
003d7c59 759
8eab77ff
FM
760struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
761 struct btrfs_root *root,
7f9fe614 762 unsigned int num_items)
8eab77ff 763{
7f9fe614
JB
764 return start_transaction(root, num_items, TRANS_START,
765 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 766}
8407aa46 767
7a7eaa40 768struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 769{
003d7c59
JM
770 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
771 true);
f9295749
CM
772}
773
8d510121 774struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 775{
575a75d6 776 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 777 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
778}
779
a6d155d2
FM
780/*
781 * Similar to regular join but it never starts a transaction when none is
782 * running or after waiting for the current one to finish.
783 */
784struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
785{
786 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
787 BTRFS_RESERVE_NO_FLUSH, true);
788}
789
d4edf39b
MX
790/*
791 * btrfs_attach_transaction() - catch the running transaction
792 *
793 * It is used when we want to commit the current the transaction, but
794 * don't want to start a new one.
795 *
796 * Note: If this function return -ENOENT, it just means there is no
797 * running transaction. But it is possible that the inactive transaction
798 * is still in the memory, not fully on disk. If you hope there is no
799 * inactive transaction in the fs when -ENOENT is returned, you should
800 * invoke
801 * btrfs_attach_transaction_barrier()
802 */
354aa0fb 803struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 804{
575a75d6 805 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 806 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
807}
808
d4edf39b 809/*
90b6d283 810 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 811 *
52042d8e 812 * It is similar to the above function, the difference is this one
d4edf39b
MX
813 * will wait for all the inactive transactions until they fully
814 * complete.
815 */
816struct btrfs_trans_handle *
817btrfs_attach_transaction_barrier(struct btrfs_root *root)
818{
819 struct btrfs_trans_handle *trans;
820
575a75d6 821 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 822 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 823 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 824 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
825
826 return trans;
827}
828
d352ac68 829/* wait for a transaction commit to be fully complete */
2ff7e61e 830static noinline void wait_for_commit(struct btrfs_transaction *commit)
89ce8a63 831{
4a9d8bde 832 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
89ce8a63
CM
833}
834
2ff7e61e 835int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
836{
837 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 838 int ret = 0;
46204592 839
46204592 840 if (transid) {
0b246afa 841 if (transid <= fs_info->last_trans_committed)
a4abeea4 842 goto out;
46204592
SW
843
844 /* find specified transaction */
0b246afa
JM
845 spin_lock(&fs_info->trans_lock);
846 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
847 if (t->transid == transid) {
848 cur_trans = t;
9b64f57d 849 refcount_inc(&cur_trans->use_count);
8cd2807f 850 ret = 0;
46204592
SW
851 break;
852 }
8cd2807f
MX
853 if (t->transid > transid) {
854 ret = 0;
46204592 855 break;
8cd2807f 856 }
46204592 857 }
0b246afa 858 spin_unlock(&fs_info->trans_lock);
42383020
SW
859
860 /*
861 * The specified transaction doesn't exist, or we
862 * raced with btrfs_commit_transaction
863 */
864 if (!cur_trans) {
0b246afa 865 if (transid > fs_info->last_trans_committed)
42383020 866 ret = -EINVAL;
8cd2807f 867 goto out;
42383020 868 }
46204592
SW
869 } else {
870 /* find newest transaction that is committing | committed */
0b246afa
JM
871 spin_lock(&fs_info->trans_lock);
872 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 873 list) {
4a9d8bde
MX
874 if (t->state >= TRANS_STATE_COMMIT_START) {
875 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 876 break;
46204592 877 cur_trans = t;
9b64f57d 878 refcount_inc(&cur_trans->use_count);
46204592
SW
879 break;
880 }
881 }
0b246afa 882 spin_unlock(&fs_info->trans_lock);
46204592 883 if (!cur_trans)
a4abeea4 884 goto out; /* nothing committing|committed */
46204592
SW
885 }
886
2ff7e61e 887 wait_for_commit(cur_trans);
724e2315 888 btrfs_put_transaction(cur_trans);
a4abeea4 889out:
46204592
SW
890 return ret;
891}
892
2ff7e61e 893void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 894{
92e2f7e3 895 wait_current_trans(fs_info);
37d1aeee
CM
896}
897
8a8f4dea 898static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 899{
2ff7e61e 900 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 901
64403612 902 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 903 return true;
36ba022a 904
2ff7e61e 905 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
906}
907
a2633b6a 908bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
909{
910 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 911
3296bf56 912 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 913 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 914 return true;
8929ecfa 915
2ff7e61e 916 return should_end_transaction(trans);
8929ecfa
YZ
917}
918
dc60c525
NB
919static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
920
0e34693f 921{
dc60c525
NB
922 struct btrfs_fs_info *fs_info = trans->fs_info;
923
0e34693f
NB
924 if (!trans->block_rsv) {
925 ASSERT(!trans->bytes_reserved);
926 return;
927 }
928
929 if (!trans->bytes_reserved)
930 return;
931
932 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
933 trace_btrfs_space_reservation(fs_info, "transaction",
934 trans->transid, trans->bytes_reserved, 0);
935 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 936 trans->bytes_reserved, NULL);
0e34693f
NB
937 trans->bytes_reserved = 0;
938}
939
89ce8a63 940static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 941 int throttle)
79154b1b 942{
3a45bb20 943 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 944 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 945 int err = 0;
c3e69d58 946
b50fff81
DS
947 if (refcount_read(&trans->use_count) > 1) {
948 refcount_dec(&trans->use_count);
2a1eb461
JB
949 trans->block_rsv = trans->orig_rsv;
950 return 0;
951 }
952
dc60c525 953 btrfs_trans_release_metadata(trans);
4c13d758 954 trans->block_rsv = NULL;
c5567237 955
119e80df 956 btrfs_create_pending_block_groups(trans);
ea658bad 957
4fbcdf66
FM
958 btrfs_trans_release_chunk_metadata(trans);
959
0860adfd 960 if (trans->type & __TRANS_FREEZABLE)
0b246afa 961 sb_end_intwrite(info->sb);
6df7881a 962
8929ecfa 963 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
964 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
965 atomic_dec(&cur_trans->num_writers);
0860adfd 966 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 967
093258e6 968 cond_wake_up(&cur_trans->writer_wait);
724e2315 969 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
970
971 if (current->journal_info == trans)
972 current->journal_info = NULL;
ab78c84d 973
24bbcf04 974 if (throttle)
2ff7e61e 975 btrfs_run_delayed_iputs(info);
24bbcf04 976
bf31f87f 977 if (TRANS_ABORTED(trans) ||
0b246afa 978 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
4e121c06 979 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
980 if (TRANS_ABORTED(trans))
981 err = trans->aborted;
982 else
983 err = -EROFS;
4e121c06 984 }
49b25e05 985
4edc2ca3
DJ
986 kmem_cache_free(btrfs_trans_handle_cachep, trans);
987 return err;
79154b1b
CM
988}
989
3a45bb20 990int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 991{
3a45bb20 992 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
993}
994
3a45bb20 995int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 996{
3a45bb20 997 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
998}
999
d352ac68
CM
1000/*
1001 * when btree blocks are allocated, they have some corresponding bits set for
1002 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1003 * those extents are sent to disk but does not wait on them
d352ac68 1004 */
2ff7e61e 1005int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1006 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1007{
777e6bd7 1008 int err = 0;
7c4452b9 1009 int werr = 0;
0b246afa 1010 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1011 struct extent_state *cached_state = NULL;
777e6bd7 1012 u64 start = 0;
5f39d397 1013 u64 end;
7c4452b9 1014
6300463b 1015 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1016 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1017 mark, &cached_state)) {
663dfbb0
FM
1018 bool wait_writeback = false;
1019
1020 err = convert_extent_bit(dirty_pages, start, end,
1021 EXTENT_NEED_WAIT,
210aa277 1022 mark, &cached_state);
663dfbb0
FM
1023 /*
1024 * convert_extent_bit can return -ENOMEM, which is most of the
1025 * time a temporary error. So when it happens, ignore the error
1026 * and wait for writeback of this range to finish - because we
1027 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1028 * to __btrfs_wait_marked_extents() would not know that
1029 * writeback for this range started and therefore wouldn't
1030 * wait for it to finish - we don't want to commit a
1031 * superblock that points to btree nodes/leafs for which
1032 * writeback hasn't finished yet (and without errors).
663dfbb0 1033 * We cleanup any entries left in the io tree when committing
41e7acd3 1034 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1035 */
1036 if (err == -ENOMEM) {
1037 err = 0;
1038 wait_writeback = true;
1039 }
1040 if (!err)
1041 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1042 if (err)
1043 werr = err;
663dfbb0
FM
1044 else if (wait_writeback)
1045 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1046 free_extent_state(cached_state);
663dfbb0 1047 cached_state = NULL;
1728366e
JB
1048 cond_resched();
1049 start = end + 1;
7c4452b9 1050 }
6300463b 1051 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1052 return werr;
1053}
1054
1055/*
1056 * when btree blocks are allocated, they have some corresponding bits set for
1057 * them in one of two extent_io trees. This is used to make sure all of
1058 * those extents are on disk for transaction or log commit. We wait
1059 * on all the pages and clear them from the dirty pages state tree
1060 */
bf89d38f
JM
1061static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1062 struct extent_io_tree *dirty_pages)
690587d1 1063{
690587d1
CM
1064 int err = 0;
1065 int werr = 0;
0b246afa 1066 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1067 struct extent_state *cached_state = NULL;
690587d1
CM
1068 u64 start = 0;
1069 u64 end;
777e6bd7 1070
1728366e 1071 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1072 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1073 /*
1074 * Ignore -ENOMEM errors returned by clear_extent_bit().
1075 * When committing the transaction, we'll remove any entries
1076 * left in the io tree. For a log commit, we don't remove them
1077 * after committing the log because the tree can be accessed
1078 * concurrently - we do it only at transaction commit time when
41e7acd3 1079 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1080 */
1081 err = clear_extent_bit(dirty_pages, start, end,
ae0f1625 1082 EXTENT_NEED_WAIT, 0, 0, &cached_state);
663dfbb0
FM
1083 if (err == -ENOMEM)
1084 err = 0;
1085 if (!err)
1086 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1087 if (err)
1088 werr = err;
e38e2ed7
FM
1089 free_extent_state(cached_state);
1090 cached_state = NULL;
1728366e
JB
1091 cond_resched();
1092 start = end + 1;
777e6bd7 1093 }
7c4452b9
CM
1094 if (err)
1095 werr = err;
bf89d38f
JM
1096 return werr;
1097}
656f30db 1098
b9fae2eb 1099static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1100 struct extent_io_tree *dirty_pages)
1101{
1102 bool errors = false;
1103 int err;
656f30db 1104
bf89d38f
JM
1105 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1106 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1107 errors = true;
1108
1109 if (errors && !err)
1110 err = -EIO;
1111 return err;
1112}
656f30db 1113
bf89d38f
JM
1114int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1115{
1116 struct btrfs_fs_info *fs_info = log_root->fs_info;
1117 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1118 bool errors = false;
1119 int err;
656f30db 1120
bf89d38f
JM
1121 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1122
1123 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1124 if ((mark & EXTENT_DIRTY) &&
1125 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1126 errors = true;
1127
1128 if ((mark & EXTENT_NEW) &&
1129 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1130 errors = true;
1131
1132 if (errors && !err)
1133 err = -EIO;
1134 return err;
79154b1b
CM
1135}
1136
690587d1 1137/*
c9b577c0
NB
1138 * When btree blocks are allocated the corresponding extents are marked dirty.
1139 * This function ensures such extents are persisted on disk for transaction or
1140 * log commit.
1141 *
1142 * @trans: transaction whose dirty pages we'd like to write
690587d1 1143 */
70458a58 1144static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1145{
1146 int ret;
1147 int ret2;
c9b577c0 1148 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1149 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1150 struct blk_plug plug;
690587d1 1151
c6adc9cc 1152 blk_start_plug(&plug);
c9b577c0 1153 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1154 blk_finish_plug(&plug);
bf89d38f 1155 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1156
41e7acd3 1157 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1158
bf0da8c1
CM
1159 if (ret)
1160 return ret;
c9b577c0 1161 else if (ret2)
bf0da8c1 1162 return ret2;
c9b577c0
NB
1163 else
1164 return 0;
d0c803c4
CM
1165}
1166
d352ac68
CM
1167/*
1168 * this is used to update the root pointer in the tree of tree roots.
1169 *
1170 * But, in the case of the extent allocation tree, updating the root
1171 * pointer may allocate blocks which may change the root of the extent
1172 * allocation tree.
1173 *
1174 * So, this loops and repeats and makes sure the cowonly root didn't
1175 * change while the root pointer was being updated in the metadata.
1176 */
0b86a832
CM
1177static int update_cowonly_root(struct btrfs_trans_handle *trans,
1178 struct btrfs_root *root)
79154b1b
CM
1179{
1180 int ret;
0b86a832 1181 u64 old_root_bytenr;
86b9f2ec 1182 u64 old_root_used;
0b246afa
JM
1183 struct btrfs_fs_info *fs_info = root->fs_info;
1184 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1185
86b9f2ec 1186 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1187
d397712b 1188 while (1) {
0b86a832 1189 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1190 if (old_root_bytenr == root->node->start &&
ea526d18 1191 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1192 break;
87ef2bb4 1193
5d4f98a2 1194 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1195 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1196 &root->root_key,
1197 &root->root_item);
49b25e05
JM
1198 if (ret)
1199 return ret;
56bec294 1200
86b9f2ec 1201 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1202 }
276e680d 1203
0b86a832
CM
1204 return 0;
1205}
1206
d352ac68
CM
1207/*
1208 * update all the cowonly tree roots on disk
49b25e05
JM
1209 *
1210 * The error handling in this function may not be obvious. Any of the
1211 * failures will cause the file system to go offline. We still need
1212 * to clean up the delayed refs.
d352ac68 1213 */
9386d8bc 1214static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1215{
9386d8bc 1216 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1217 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1218 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1219 struct list_head *next;
84234f3a 1220 struct extent_buffer *eb;
56bec294 1221 int ret;
84234f3a
YZ
1222
1223 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1224 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1225 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1226 btrfs_tree_unlock(eb);
1227 free_extent_buffer(eb);
0b86a832 1228
49b25e05
JM
1229 if (ret)
1230 return ret;
1231
c79a70b1 1232 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
49b25e05
JM
1233 if (ret)
1234 return ret;
87ef2bb4 1235
196c9d8d 1236 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1237 if (ret)
1238 return ret;
2b584c68 1239 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1240 if (ret)
1241 return ret;
280f8bd2 1242 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1243 if (ret)
1244 return ret;
546adb0d 1245
bbebb3e0 1246 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1247 if (ret)
1248 return ret;
1249
546adb0d 1250 /* run_qgroups might have added some more refs */
c79a70b1 1251 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
c16ce190
JB
1252 if (ret)
1253 return ret;
ea526d18 1254again:
d397712b 1255 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1256 struct btrfs_root *root;
0b86a832
CM
1257 next = fs_info->dirty_cowonly_roots.next;
1258 list_del_init(next);
1259 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1260 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1261
9e351cc8
JB
1262 if (root != fs_info->extent_root)
1263 list_add_tail(&root->dirty_list,
1264 &trans->transaction->switch_commits);
49b25e05
JM
1265 ret = update_cowonly_root(trans, root);
1266 if (ret)
1267 return ret;
c79a70b1 1268 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1269 if (ret)
1270 return ret;
79154b1b 1271 }
276e680d 1272
1bbc621e 1273 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1274 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1275 if (ret)
1276 return ret;
c79a70b1 1277 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1278 if (ret)
1279 return ret;
1280 }
1281
1282 if (!list_empty(&fs_info->dirty_cowonly_roots))
1283 goto again;
1284
9e351cc8
JB
1285 list_add_tail(&fs_info->extent_root->dirty_list,
1286 &trans->transaction->switch_commits);
9f6cbcbb
DS
1287
1288 /* Update dev-replace pointer once everything is committed */
1289 fs_info->dev_replace.committed_cursor_left =
1290 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1291
79154b1b
CM
1292 return 0;
1293}
1294
d352ac68
CM
1295/*
1296 * dead roots are old snapshots that need to be deleted. This allocates
1297 * a dirty root struct and adds it into the list of dead roots that need to
1298 * be deleted
1299 */
cfad392b 1300void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1301{
0b246afa
JM
1302 struct btrfs_fs_info *fs_info = root->fs_info;
1303
1304 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1305 if (list_empty(&root->root_list)) {
1306 btrfs_grab_root(root);
0b246afa 1307 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1308 }
0b246afa 1309 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1310}
1311
d352ac68 1312/*
5d4f98a2 1313 * update all the cowonly tree roots on disk
d352ac68 1314 */
7e4443d9 1315static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1316{
7e4443d9 1317 struct btrfs_fs_info *fs_info = trans->fs_info;
0f7d52f4 1318 struct btrfs_root *gang[8];
0f7d52f4
CM
1319 int i;
1320 int ret;
54aa1f4d 1321
a4abeea4 1322 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 1323 while (1) {
5d4f98a2
YZ
1324 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1325 (void **)gang, 0,
0f7d52f4
CM
1326 ARRAY_SIZE(gang),
1327 BTRFS_ROOT_TRANS_TAG);
1328 if (ret == 0)
1329 break;
1330 for (i = 0; i < ret; i++) {
5b4aacef 1331 struct btrfs_root *root = gang[i];
4f4317c1
JB
1332 int ret2;
1333
5d4f98a2
YZ
1334 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1335 (unsigned long)root->root_key.objectid,
1336 BTRFS_ROOT_TRANS_TAG);
a4abeea4 1337 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 1338
e02119d5 1339 btrfs_free_log(trans, root);
5d4f98a2 1340 btrfs_update_reloc_root(trans, root);
bcc63abb 1341
f1ebcc74 1342 /* see comments in should_cow_block() */
27cdeb70 1343 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
c7548af6 1344 smp_mb__after_atomic();
f1ebcc74 1345
978d910d 1346 if (root->commit_root != root->node) {
9e351cc8
JB
1347 list_add_tail(&root->dirty_list,
1348 &trans->transaction->switch_commits);
978d910d
YZ
1349 btrfs_set_root_node(&root->root_item,
1350 root->node);
1351 }
5d4f98a2 1352
4f4317c1 1353 ret2 = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
1354 &root->root_key,
1355 &root->root_item);
4f4317c1
JB
1356 if (ret2)
1357 return ret2;
a4abeea4 1358 spin_lock(&fs_info->fs_roots_radix_lock);
733e03a0 1359 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1360 }
1361 }
a4abeea4 1362 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1363 return 0;
0f7d52f4
CM
1364}
1365
d352ac68 1366/*
de78b51a
ES
1367 * defrag a given btree.
1368 * Every leaf in the btree is read and defragged.
d352ac68 1369 */
de78b51a 1370int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1371{
1372 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1373 struct btrfs_trans_handle *trans;
8929ecfa 1374 int ret;
e9d0b13b 1375
27cdeb70 1376 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1377 return 0;
8929ecfa 1378
6b80053d 1379 while (1) {
8929ecfa
YZ
1380 trans = btrfs_start_transaction(root, 0);
1381 if (IS_ERR(trans))
1382 return PTR_ERR(trans);
1383
de78b51a 1384 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1385
3a45bb20 1386 btrfs_end_transaction(trans);
2ff7e61e 1387 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1388 cond_resched();
1389
ab8d0fc4 1390 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1391 break;
210549eb 1392
ab8d0fc4
JM
1393 if (btrfs_defrag_cancelled(info)) {
1394 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1395 ret = -EAGAIN;
1396 break;
1397 }
e9d0b13b 1398 }
27cdeb70 1399 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1400 return ret;
e9d0b13b
CM
1401}
1402
6426c7ad
QW
1403/*
1404 * Do all special snapshot related qgroup dirty hack.
1405 *
1406 * Will do all needed qgroup inherit and dirty hack like switch commit
1407 * roots inside one transaction and write all btree into disk, to make
1408 * qgroup works.
1409 */
1410static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1411 struct btrfs_root *src,
1412 struct btrfs_root *parent,
1413 struct btrfs_qgroup_inherit *inherit,
1414 u64 dst_objectid)
1415{
1416 struct btrfs_fs_info *fs_info = src->fs_info;
1417 int ret;
1418
1419 /*
1420 * Save some performance in the case that qgroups are not
1421 * enabled. If this check races with the ioctl, rescan will
1422 * kick in anyway.
1423 */
9ea6e2b5 1424 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1425 return 0;
6426c7ad 1426
4d31778a 1427 /*
52042d8e 1428 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1429 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1430 * recorded root will never be updated again, causing an outdated root
1431 * item.
1432 */
1433 record_root_in_trans(trans, src, 1);
1434
2a4d84c1
JB
1435 /*
1436 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1437 * src root, so we must run the delayed refs here.
1438 *
1439 * However this isn't particularly fool proof, because there's no
1440 * synchronization keeping us from changing the tree after this point
1441 * before we do the qgroup_inherit, or even from making changes while
1442 * we're doing the qgroup_inherit. But that's a problem for the future,
1443 * for now flush the delayed refs to narrow the race window where the
1444 * qgroup counters could end up wrong.
1445 */
1446 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1447 if (ret) {
1448 btrfs_abort_transaction(trans, ret);
1449 goto out;
1450 }
1451
6426c7ad
QW
1452 /*
1453 * We are going to commit transaction, see btrfs_commit_transaction()
1454 * comment for reason locking tree_log_mutex
1455 */
1456 mutex_lock(&fs_info->tree_log_mutex);
1457
7e4443d9 1458 ret = commit_fs_roots(trans);
6426c7ad
QW
1459 if (ret)
1460 goto out;
460fb20a 1461 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1462 if (ret < 0)
1463 goto out;
1464
1465 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1466 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1467 inherit);
1468 if (ret < 0)
1469 goto out;
1470
1471 /*
1472 * Now we do a simplified commit transaction, which will:
1473 * 1) commit all subvolume and extent tree
1474 * To ensure all subvolume and extent tree have a valid
1475 * commit_root to accounting later insert_dir_item()
1476 * 2) write all btree blocks onto disk
1477 * This is to make sure later btree modification will be cowed
1478 * Or commit_root can be populated and cause wrong qgroup numbers
1479 * In this simplified commit, we don't really care about other trees
1480 * like chunk and root tree, as they won't affect qgroup.
1481 * And we don't write super to avoid half committed status.
1482 */
9386d8bc 1483 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1484 if (ret)
1485 goto out;
889bfa39 1486 switch_commit_roots(trans);
70458a58 1487 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1488 if (ret)
f7af3934 1489 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1490 "Error while writing out transaction for qgroup");
1491
1492out:
1493 mutex_unlock(&fs_info->tree_log_mutex);
1494
1495 /*
1496 * Force parent root to be updated, as we recorded it before so its
1497 * last_trans == cur_transid.
1498 * Or it won't be committed again onto disk after later
1499 * insert_dir_item()
1500 */
1501 if (!ret)
1502 record_root_in_trans(trans, parent, 1);
1503 return ret;
1504}
1505
d352ac68
CM
1506/*
1507 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1508 * transaction commit. This does the actual creation.
1509 *
1510 * Note:
1511 * If the error which may affect the commitment of the current transaction
1512 * happens, we should return the error number. If the error which just affect
1513 * the creation of the pending snapshots, just return 0.
d352ac68 1514 */
80b6794d 1515static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1516 struct btrfs_pending_snapshot *pending)
1517{
08d50ca3
NB
1518
1519 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1520 struct btrfs_key key;
80b6794d 1521 struct btrfs_root_item *new_root_item;
3063d29f
CM
1522 struct btrfs_root *tree_root = fs_info->tree_root;
1523 struct btrfs_root *root = pending->root;
6bdb72de 1524 struct btrfs_root *parent_root;
98c9942a 1525 struct btrfs_block_rsv *rsv;
6bdb72de 1526 struct inode *parent_inode;
42874b3d
MX
1527 struct btrfs_path *path;
1528 struct btrfs_dir_item *dir_item;
a22285a6 1529 struct dentry *dentry;
3063d29f 1530 struct extent_buffer *tmp;
925baedd 1531 struct extent_buffer *old;
95582b00 1532 struct timespec64 cur_time;
aec8030a 1533 int ret = 0;
d68fc57b 1534 u64 to_reserve = 0;
6bdb72de 1535 u64 index = 0;
a22285a6 1536 u64 objectid;
b83cc969 1537 u64 root_flags;
3063d29f 1538
8546b570
DS
1539 ASSERT(pending->path);
1540 path = pending->path;
42874b3d 1541
b0c0ea63
DS
1542 ASSERT(pending->root_item);
1543 new_root_item = pending->root_item;
a22285a6 1544
543068a2 1545 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1546 if (pending->error)
6fa9700e 1547 goto no_free_objectid;
3063d29f 1548
d6726335
QW
1549 /*
1550 * Make qgroup to skip current new snapshot's qgroupid, as it is
1551 * accounted by later btrfs_qgroup_inherit().
1552 */
1553 btrfs_set_skip_qgroup(trans, objectid);
1554
147d256e 1555 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1556
1557 if (to_reserve > 0) {
aec8030a
MX
1558 pending->error = btrfs_block_rsv_add(root,
1559 &pending->block_rsv,
1560 to_reserve,
1561 BTRFS_RESERVE_NO_FLUSH);
1562 if (pending->error)
d6726335 1563 goto clear_skip_qgroup;
d68fc57b
YZ
1564 }
1565
3063d29f 1566 key.objectid = objectid;
a22285a6
YZ
1567 key.offset = (u64)-1;
1568 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1569
6fa9700e 1570 rsv = trans->block_rsv;
a22285a6 1571 trans->block_rsv = &pending->block_rsv;
2382c5cc 1572 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1573 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1574 trans->transid,
1575 trans->bytes_reserved, 1);
a22285a6 1576 dentry = pending->dentry;
e9662f70 1577 parent_inode = pending->dir;
a22285a6 1578 parent_root = BTRFS_I(parent_inode)->root;
6426c7ad 1579 record_root_in_trans(trans, parent_root, 0);
a22285a6 1580
c2050a45 1581 cur_time = current_time(parent_inode);
04b285f3 1582
3063d29f
CM
1583 /*
1584 * insert the directory item
1585 */
877574e2 1586 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1587 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1588
1589 /* check if there is a file/dir which has the same name. */
1590 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1591 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1592 dentry->d_name.name,
1593 dentry->d_name.len, 0);
1594 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1595 pending->error = -EEXIST;
aec8030a 1596 goto dir_item_existed;
42874b3d
MX
1597 } else if (IS_ERR(dir_item)) {
1598 ret = PTR_ERR(dir_item);
66642832 1599 btrfs_abort_transaction(trans, ret);
8732d44f 1600 goto fail;
79787eaa 1601 }
42874b3d 1602 btrfs_release_path(path);
52c26179 1603
e999376f
CM
1604 /*
1605 * pull in the delayed directory update
1606 * and the delayed inode item
1607 * otherwise we corrupt the FS during
1608 * snapshot
1609 */
e5c304e6 1610 ret = btrfs_run_delayed_items(trans);
8732d44f 1611 if (ret) { /* Transaction aborted */
66642832 1612 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1613 goto fail;
1614 }
e999376f 1615
6426c7ad 1616 record_root_in_trans(trans, root, 0);
6bdb72de
SW
1617 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1618 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1619 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1620
b83cc969
LZ
1621 root_flags = btrfs_root_flags(new_root_item);
1622 if (pending->readonly)
1623 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1624 else
1625 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1626 btrfs_set_root_flags(new_root_item, root_flags);
1627
8ea05e3a
AB
1628 btrfs_set_root_generation_v2(new_root_item,
1629 trans->transid);
807fc790 1630 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1631 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1632 BTRFS_UUID_SIZE);
70023da2
SB
1633 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1634 memset(new_root_item->received_uuid, 0,
1635 sizeof(new_root_item->received_uuid));
1636 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1637 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1638 btrfs_set_root_stransid(new_root_item, 0);
1639 btrfs_set_root_rtransid(new_root_item, 0);
1640 }
3cae210f
QW
1641 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1642 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1643 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1644
6bdb72de 1645 old = btrfs_lock_root_node(root);
9631e4cc
JB
1646 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1647 BTRFS_NESTING_COW);
79787eaa
JM
1648 if (ret) {
1649 btrfs_tree_unlock(old);
1650 free_extent_buffer(old);
66642832 1651 btrfs_abort_transaction(trans, ret);
8732d44f 1652 goto fail;
79787eaa 1653 }
49b25e05 1654
49b25e05 1655 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1656 /* clean up in any case */
6bdb72de
SW
1657 btrfs_tree_unlock(old);
1658 free_extent_buffer(old);
8732d44f 1659 if (ret) {
66642832 1660 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1661 goto fail;
1662 }
f1ebcc74 1663 /* see comments in should_cow_block() */
27cdeb70 1664 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1665 smp_wmb();
1666
6bdb72de 1667 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1668 /* record when the snapshot was created in key.offset */
1669 key.offset = trans->transid;
1670 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1671 btrfs_tree_unlock(tmp);
1672 free_extent_buffer(tmp);
8732d44f 1673 if (ret) {
66642832 1674 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1675 goto fail;
1676 }
6bdb72de 1677
a22285a6
YZ
1678 /*
1679 * insert root back/forward references
1680 */
6025c19f 1681 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1682 parent_root->root_key.objectid,
4a0cc7ca 1683 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1684 dentry->d_name.name, dentry->d_name.len);
8732d44f 1685 if (ret) {
66642832 1686 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1687 goto fail;
1688 }
0660b5af 1689
a22285a6 1690 key.offset = (u64)-1;
2dfb1e43 1691 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1692 if (IS_ERR(pending->snap)) {
1693 ret = PTR_ERR(pending->snap);
2d892ccd 1694 pending->snap = NULL;
66642832 1695 btrfs_abort_transaction(trans, ret);
8732d44f 1696 goto fail;
79787eaa 1697 }
d68fc57b 1698
49b25e05 1699 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1700 if (ret) {
66642832 1701 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1702 goto fail;
1703 }
361048f5 1704
6426c7ad
QW
1705 /*
1706 * Do special qgroup accounting for snapshot, as we do some qgroup
1707 * snapshot hack to do fast snapshot.
1708 * To co-operate with that hack, we do hack again.
1709 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1710 */
1711 ret = qgroup_account_snapshot(trans, root, parent_root,
1712 pending->inherit, objectid);
1713 if (ret < 0)
1714 goto fail;
1715
684572df
LF
1716 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1717 dentry->d_name.len, BTRFS_I(parent_inode),
1718 &key, BTRFS_FT_DIR, index);
42874b3d 1719 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1720 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1721 if (ret) {
66642832 1722 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1723 goto fail;
1724 }
42874b3d 1725
6ef06d27 1726 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1727 dentry->d_name.len * 2);
04b285f3 1728 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 1729 current_time(parent_inode);
729f7961 1730 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1731 if (ret) {
66642832 1732 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1733 goto fail;
1734 }
807fc790
AS
1735 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1736 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1737 objectid);
dd5f9615 1738 if (ret) {
66642832 1739 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1740 goto fail;
1741 }
1742 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1743 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1744 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1745 objectid);
1746 if (ret && ret != -EEXIST) {
66642832 1747 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1748 goto fail;
1749 }
1750 }
d6726335 1751
3063d29f 1752fail:
aec8030a
MX
1753 pending->error = ret;
1754dir_item_existed:
98c9942a 1755 trans->block_rsv = rsv;
2382c5cc 1756 trans->bytes_reserved = 0;
d6726335
QW
1757clear_skip_qgroup:
1758 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1759no_free_objectid:
1760 kfree(new_root_item);
b0c0ea63 1761 pending->root_item = NULL;
42874b3d 1762 btrfs_free_path(path);
8546b570
DS
1763 pending->path = NULL;
1764
49b25e05 1765 return ret;
3063d29f
CM
1766}
1767
d352ac68
CM
1768/*
1769 * create all the snapshots we've scheduled for creation
1770 */
08d50ca3 1771static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1772{
aec8030a 1773 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1774 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1775 int ret = 0;
3de4586c 1776
aec8030a
MX
1777 list_for_each_entry_safe(pending, next, head, list) {
1778 list_del(&pending->list);
08d50ca3 1779 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1780 if (ret)
1781 break;
1782 }
1783 return ret;
3de4586c
CM
1784}
1785
2ff7e61e 1786static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1787{
1788 struct btrfs_root_item *root_item;
1789 struct btrfs_super_block *super;
1790
0b246afa 1791 super = fs_info->super_copy;
5d4f98a2 1792
0b246afa 1793 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1794 super->chunk_root = root_item->bytenr;
1795 super->chunk_root_generation = root_item->generation;
1796 super->chunk_root_level = root_item->level;
5d4f98a2 1797
0b246afa 1798 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1799 super->root = root_item->bytenr;
1800 super->generation = root_item->generation;
1801 super->root_level = root_item->level;
0b246afa 1802 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1803 super->cache_generation = root_item->generation;
94846229
BB
1804 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1805 super->cache_generation = 0;
0b246afa 1806 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1807 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1808}
1809
f36f3042
CM
1810int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1811{
4a9d8bde 1812 struct btrfs_transaction *trans;
f36f3042 1813 int ret = 0;
4a9d8bde 1814
a4abeea4 1815 spin_lock(&info->trans_lock);
4a9d8bde
MX
1816 trans = info->running_transaction;
1817 if (trans)
1818 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1819 spin_unlock(&info->trans_lock);
f36f3042
CM
1820 return ret;
1821}
1822
8929ecfa
YZ
1823int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1824{
4a9d8bde 1825 struct btrfs_transaction *trans;
8929ecfa 1826 int ret = 0;
4a9d8bde 1827
a4abeea4 1828 spin_lock(&info->trans_lock);
4a9d8bde
MX
1829 trans = info->running_transaction;
1830 if (trans)
1831 ret = is_transaction_blocked(trans);
a4abeea4 1832 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1833 return ret;
1834}
1835
bb9c12c9
SW
1836/*
1837 * wait for the current transaction commit to start and block subsequent
1838 * transaction joins
1839 */
2ff7e61e 1840static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
bb9c12c9
SW
1841 struct btrfs_transaction *trans)
1842{
2ff7e61e 1843 wait_event(fs_info->transaction_blocked_wait,
bf31f87f
DS
1844 trans->state >= TRANS_STATE_COMMIT_START ||
1845 TRANS_ABORTED(trans));
bb9c12c9
SW
1846}
1847
1848/*
1849 * wait for the current transaction to start and then become unblocked.
1850 * caller holds ref.
1851 */
2ff7e61e
JM
1852static void wait_current_trans_commit_start_and_unblock(
1853 struct btrfs_fs_info *fs_info,
1854 struct btrfs_transaction *trans)
bb9c12c9 1855{
2ff7e61e 1856 wait_event(fs_info->transaction_wait,
bf31f87f
DS
1857 trans->state >= TRANS_STATE_UNBLOCKED ||
1858 TRANS_ABORTED(trans));
bb9c12c9
SW
1859}
1860
1861/*
1862 * commit transactions asynchronously. once btrfs_commit_transaction_async
1863 * returns, any subsequent transaction will not be allowed to join.
1864 */
1865struct btrfs_async_commit {
1866 struct btrfs_trans_handle *newtrans;
7892b5af 1867 struct work_struct work;
bb9c12c9
SW
1868};
1869
1870static void do_async_commit(struct work_struct *work)
1871{
1872 struct btrfs_async_commit *ac =
7892b5af 1873 container_of(work, struct btrfs_async_commit, work);
bb9c12c9 1874
6fc4e354
SW
1875 /*
1876 * We've got freeze protection passed with the transaction.
1877 * Tell lockdep about it.
1878 */
b1a06a4b 1879 if (ac->newtrans->type & __TRANS_FREEZABLE)
3a45bb20 1880 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
6fc4e354 1881
e209db7a
SW
1882 current->journal_info = ac->newtrans;
1883
3a45bb20 1884 btrfs_commit_transaction(ac->newtrans);
bb9c12c9
SW
1885 kfree(ac);
1886}
1887
1888int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
bb9c12c9
SW
1889 int wait_for_unblock)
1890{
3a45bb20 1891 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1892 struct btrfs_async_commit *ac;
1893 struct btrfs_transaction *cur_trans;
1894
1895 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1896 if (!ac)
1897 return -ENOMEM;
bb9c12c9 1898
7892b5af 1899 INIT_WORK(&ac->work, do_async_commit);
3a45bb20 1900 ac->newtrans = btrfs_join_transaction(trans->root);
3612b495
TI
1901 if (IS_ERR(ac->newtrans)) {
1902 int err = PTR_ERR(ac->newtrans);
1903 kfree(ac);
1904 return err;
1905 }
bb9c12c9
SW
1906
1907 /* take transaction reference */
bb9c12c9 1908 cur_trans = trans->transaction;
9b64f57d 1909 refcount_inc(&cur_trans->use_count);
bb9c12c9 1910
3a45bb20 1911 btrfs_end_transaction(trans);
6fc4e354
SW
1912
1913 /*
1914 * Tell lockdep we've released the freeze rwsem, since the
1915 * async commit thread will be the one to unlock it.
1916 */
b1a06a4b 1917 if (ac->newtrans->type & __TRANS_FREEZABLE)
0b246afa 1918 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
6fc4e354 1919
7892b5af 1920 schedule_work(&ac->work);
bb9c12c9
SW
1921
1922 /* wait for transaction to start and unblock */
bb9c12c9 1923 if (wait_for_unblock)
2ff7e61e 1924 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
bb9c12c9 1925 else
2ff7e61e 1926 wait_current_trans_commit_start(fs_info, cur_trans);
bb9c12c9 1927
38e88054
SW
1928 if (current->journal_info == trans)
1929 current->journal_info = NULL;
1930
724e2315 1931 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1932 return 0;
1933}
1934
49b25e05 1935
97cb39bb 1936static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1937{
97cb39bb 1938 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1939 struct btrfs_transaction *cur_trans = trans->transaction;
1940
b50fff81 1941 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1942
66642832 1943 btrfs_abort_transaction(trans, err);
7b8b92af 1944
0b246afa 1945 spin_lock(&fs_info->trans_lock);
66b6135b 1946
25d8c284
MX
1947 /*
1948 * If the transaction is removed from the list, it means this
1949 * transaction has been committed successfully, so it is impossible
1950 * to call the cleanup function.
1951 */
1952 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1953
49b25e05 1954 list_del_init(&cur_trans->list);
0b246afa 1955 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1956 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1957 spin_unlock(&fs_info->trans_lock);
f094ac32
LB
1958 wait_event(cur_trans->writer_wait,
1959 atomic_read(&cur_trans->num_writers) == 1);
1960
0b246afa 1961 spin_lock(&fs_info->trans_lock);
d7096fc3 1962 }
0b246afa 1963 spin_unlock(&fs_info->trans_lock);
49b25e05 1964
2ff7e61e 1965 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 1966
0b246afa
JM
1967 spin_lock(&fs_info->trans_lock);
1968 if (cur_trans == fs_info->running_transaction)
1969 fs_info->running_transaction = NULL;
1970 spin_unlock(&fs_info->trans_lock);
4a9d8bde 1971
e0228285 1972 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1973 sb_end_intwrite(fs_info->sb);
724e2315
JB
1974 btrfs_put_transaction(cur_trans);
1975 btrfs_put_transaction(cur_trans);
49b25e05 1976
97cb39bb 1977 trace_btrfs_transaction_commit(trans->root);
49b25e05 1978
49b25e05
JM
1979 if (current->journal_info == trans)
1980 current->journal_info = NULL;
0b246afa 1981 btrfs_scrub_cancel(fs_info);
49b25e05
JM
1982
1983 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1984}
1985
c7cc64a9
DS
1986/*
1987 * Release reserved delayed ref space of all pending block groups of the
1988 * transaction and remove them from the list
1989 */
1990static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1991{
1992 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 1993 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
1994
1995 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1996 btrfs_delayed_refs_rsv_release(fs_info, 1);
1997 list_del_init(&block_group->bg_list);
1998 }
1999}
2000
88090ad3 2001static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2002{
ce8ea7cc
JB
2003 /*
2004 * We use writeback_inodes_sb here because if we used
2005 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2006 * Currently are holding the fs freeze lock, if we do an async flush
2007 * we'll do btrfs_join_transaction() and deadlock because we need to
2008 * wait for the fs freeze lock. Using the direct flushing we benefit
2009 * from already being in a transaction and our join_transaction doesn't
2010 * have to re-take the fs freeze lock.
2011 */
88090ad3 2012 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
ce8ea7cc 2013 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2014 return 0;
2015}
2016
88090ad3 2017static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2018{
88090ad3 2019 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2020 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2021}
2022
3a45bb20 2023int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2024{
3a45bb20 2025 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2026 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2027 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2028 int ret;
79154b1b 2029
35b814f3
NB
2030 ASSERT(refcount_read(&trans->use_count) == 1);
2031
d62b23c9
JB
2032 /*
2033 * Some places just start a transaction to commit it. We need to make
2034 * sure that if this commit fails that the abort code actually marks the
2035 * transaction as failed, so set trans->dirty to make the abort code do
2036 * the right thing.
2037 */
2038 trans->dirty = true;
2039
8d25a086 2040 /* Stop the commit early if ->aborted is set */
bf31f87f 2041 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2042 ret = cur_trans->aborted;
3a45bb20 2043 btrfs_end_transaction(trans);
e4a2bcac 2044 return ret;
25287e0a 2045 }
49b25e05 2046
f45c752b
JB
2047 btrfs_trans_release_metadata(trans);
2048 trans->block_rsv = NULL;
2049
56bec294 2050 /*
e19eb11f
JB
2051 * We only want one transaction commit doing the flushing so we do not
2052 * waste a bunch of time on lock contention on the extent root node.
56bec294 2053 */
e19eb11f
JB
2054 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2055 &cur_trans->delayed_refs.flags)) {
2056 /*
2057 * Make a pass through all the delayed refs we have so far.
2058 * Any running threads may add more while we are here.
2059 */
2060 ret = btrfs_run_delayed_refs(trans, 0);
2061 if (ret) {
2062 btrfs_end_transaction(trans);
2063 return ret;
2064 }
2065 }
56bec294 2066
119e80df 2067 btrfs_create_pending_block_groups(trans);
ea658bad 2068
3204d33c 2069 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2070 int run_it = 0;
2071
2072 /* this mutex is also taken before trying to set
2073 * block groups readonly. We need to make sure
2074 * that nobody has set a block group readonly
2075 * after a extents from that block group have been
2076 * allocated for cache files. btrfs_set_block_group_ro
2077 * will wait for the transaction to commit if it
3204d33c 2078 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2079 *
3204d33c
JB
2080 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2081 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2082 * hurt to have more than one go through, but there's no
2083 * real advantage to it either.
2084 */
0b246afa 2085 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2086 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2087 &cur_trans->flags))
1bbc621e 2088 run_it = 1;
0b246afa 2089 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2090
f9cacae3 2091 if (run_it) {
21217054 2092 ret = btrfs_start_dirty_block_groups(trans);
f9cacae3
NB
2093 if (ret) {
2094 btrfs_end_transaction(trans);
2095 return ret;
2096 }
2097 }
1bbc621e
CM
2098 }
2099
0b246afa 2100 spin_lock(&fs_info->trans_lock);
4a9d8bde 2101 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
0b246afa 2102 spin_unlock(&fs_info->trans_lock);
9b64f57d 2103 refcount_inc(&cur_trans->use_count);
3a45bb20 2104 ret = btrfs_end_transaction(trans);
ccd467d6 2105
2ff7e61e 2106 wait_for_commit(cur_trans);
15ee9bc7 2107
bf31f87f 2108 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2109 ret = cur_trans->aborted;
2110
724e2315 2111 btrfs_put_transaction(cur_trans);
15ee9bc7 2112
49b25e05 2113 return ret;
79154b1b 2114 }
4313b399 2115
4a9d8bde 2116 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2117 wake_up(&fs_info->transaction_blocked_wait);
bb9c12c9 2118
0b246afa 2119 if (cur_trans->list.prev != &fs_info->trans_list) {
ccd467d6
CM
2120 prev_trans = list_entry(cur_trans->list.prev,
2121 struct btrfs_transaction, list);
4a9d8bde 2122 if (prev_trans->state != TRANS_STATE_COMPLETED) {
9b64f57d 2123 refcount_inc(&prev_trans->use_count);
0b246afa 2124 spin_unlock(&fs_info->trans_lock);
ccd467d6 2125
2ff7e61e 2126 wait_for_commit(prev_trans);
bf31f87f 2127 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2128
724e2315 2129 btrfs_put_transaction(prev_trans);
1f9b8c8f
FM
2130 if (ret)
2131 goto cleanup_transaction;
a4abeea4 2132 } else {
0b246afa 2133 spin_unlock(&fs_info->trans_lock);
ccd467d6 2134 }
a4abeea4 2135 } else {
0b246afa 2136 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2137 /*
2138 * The previous transaction was aborted and was already removed
2139 * from the list of transactions at fs_info->trans_list. So we
2140 * abort to prevent writing a new superblock that reflects a
2141 * corrupt state (pointing to trees with unwritten nodes/leafs).
2142 */
2143 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2144 ret = -EROFS;
2145 goto cleanup_transaction;
2146 }
ccd467d6 2147 }
15ee9bc7 2148
0860adfd
MX
2149 extwriter_counter_dec(cur_trans, trans->type);
2150
88090ad3 2151 ret = btrfs_start_delalloc_flush(fs_info);
82436617
MX
2152 if (ret)
2153 goto cleanup_transaction;
2154
e5c304e6 2155 ret = btrfs_run_delayed_items(trans);
581227d0
MX
2156 if (ret)
2157 goto cleanup_transaction;
15ee9bc7 2158
581227d0
MX
2159 wait_event(cur_trans->writer_wait,
2160 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2161
581227d0 2162 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2163 ret = btrfs_run_delayed_items(trans);
ca469637
MX
2164 if (ret)
2165 goto cleanup_transaction;
2166
88090ad3 2167 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2168
48778179
FM
2169 /*
2170 * Wait for all ordered extents started by a fast fsync that joined this
2171 * transaction. Otherwise if this transaction commits before the ordered
2172 * extents complete we lose logged data after a power failure.
2173 */
2174 wait_event(cur_trans->pending_wait,
2175 atomic_read(&cur_trans->pending_ordered) == 0);
2176
2ff7e61e 2177 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2178 /*
2179 * Ok now we need to make sure to block out any other joins while we
2180 * commit the transaction. We could have started a join before setting
4a9d8bde 2181 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2182 */
0b246afa 2183 spin_lock(&fs_info->trans_lock);
4a9d8bde 2184 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2185 spin_unlock(&fs_info->trans_lock);
ed0ca140
JB
2186 wait_event(cur_trans->writer_wait,
2187 atomic_read(&cur_trans->num_writers) == 1);
2188
bf31f87f 2189 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2190 ret = cur_trans->aborted;
6cf7f77e 2191 goto scrub_continue;
2cba30f1 2192 }
7585717f
CM
2193 /*
2194 * the reloc mutex makes sure that we stop
2195 * the balancing code from coming in and moving
2196 * extents around in the middle of the commit
2197 */
0b246afa 2198 mutex_lock(&fs_info->reloc_mutex);
7585717f 2199
42874b3d
MX
2200 /*
2201 * We needn't worry about the delayed items because we will
2202 * deal with them in create_pending_snapshot(), which is the
2203 * core function of the snapshot creation.
2204 */
08d50ca3 2205 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2206 if (ret)
2207 goto unlock_reloc;
3063d29f 2208
42874b3d
MX
2209 /*
2210 * We insert the dir indexes of the snapshots and update the inode
2211 * of the snapshots' parents after the snapshot creation, so there
2212 * are some delayed items which are not dealt with. Now deal with
2213 * them.
2214 *
2215 * We needn't worry that this operation will corrupt the snapshots,
2216 * because all the tree which are snapshoted will be forced to COW
2217 * the nodes and leaves.
2218 */
e5c304e6 2219 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2220 if (ret)
2221 goto unlock_reloc;
16cdcec7 2222
c79a70b1 2223 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2224 if (ret)
2225 goto unlock_reloc;
56bec294 2226
e999376f
CM
2227 /*
2228 * make sure none of the code above managed to slip in a
2229 * delayed item
2230 */
ccdf9b30 2231 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2232
2c90e5d6 2233 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2234
e02119d5
CM
2235 /* btrfs_commit_tree_roots is responsible for getting the
2236 * various roots consistent with each other. Every pointer
2237 * in the tree of tree roots has to point to the most up to date
2238 * root for every subvolume and other tree. So, we have to keep
2239 * the tree logging code from jumping in and changing any
2240 * of the trees.
2241 *
2242 * At this point in the commit, there can't be any tree-log
2243 * writers, but a little lower down we drop the trans mutex
2244 * and let new people in. By holding the tree_log_mutex
2245 * from now until after the super is written, we avoid races
2246 * with the tree-log code.
2247 */
0b246afa 2248 mutex_lock(&fs_info->tree_log_mutex);
e02119d5 2249
7e4443d9 2250 ret = commit_fs_roots(trans);
56e9f6ea
DS
2251 if (ret)
2252 goto unlock_tree_log;
54aa1f4d 2253
3818aea2 2254 /*
7e1876ac
DS
2255 * Since the transaction is done, we can apply the pending changes
2256 * before the next transaction.
3818aea2 2257 */
0b246afa 2258 btrfs_apply_pending_changes(fs_info);
3818aea2 2259
5d4f98a2 2260 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2261 * safe to free the root of tree log roots
2262 */
0b246afa 2263 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2264
0ed4792a
QW
2265 /*
2266 * Since fs roots are all committed, we can get a quite accurate
2267 * new_roots. So let's do quota accounting.
2268 */
460fb20a 2269 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea
DS
2270 if (ret < 0)
2271 goto unlock_tree_log;
0ed4792a 2272
9386d8bc 2273 ret = commit_cowonly_roots(trans);
56e9f6ea
DS
2274 if (ret)
2275 goto unlock_tree_log;
54aa1f4d 2276
2cba30f1
MX
2277 /*
2278 * The tasks which save the space cache and inode cache may also
2279 * update ->aborted, check it.
2280 */
bf31f87f 2281 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2282 ret = cur_trans->aborted;
56e9f6ea 2283 goto unlock_tree_log;
2cba30f1
MX
2284 }
2285
0b246afa 2286 cur_trans = fs_info->running_transaction;
5d4f98a2 2287
0b246afa
JM
2288 btrfs_set_root_node(&fs_info->tree_root->root_item,
2289 fs_info->tree_root->node);
2290 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2291 &cur_trans->switch_commits);
5d4f98a2 2292
0b246afa
JM
2293 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2294 fs_info->chunk_root->node);
2295 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2296 &cur_trans->switch_commits);
2297
889bfa39 2298 switch_commit_roots(trans);
5d4f98a2 2299
ce93ec54 2300 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2301 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2302 update_super_roots(fs_info);
e02119d5 2303
0b246afa
JM
2304 btrfs_set_super_log_root(fs_info->super_copy, 0);
2305 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2306 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2307 sizeof(*fs_info->super_copy));
ccd467d6 2308
bbbf7243 2309 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2310
0b246afa
JM
2311 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2312 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2313
4fbcdf66
FM
2314 btrfs_trans_release_chunk_metadata(trans);
2315
0b246afa 2316 spin_lock(&fs_info->trans_lock);
4a9d8bde 2317 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2318 fs_info->running_transaction = NULL;
2319 spin_unlock(&fs_info->trans_lock);
2320 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2321
0b246afa 2322 wake_up(&fs_info->transaction_wait);
e6dcd2dc 2323
70458a58 2324 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2325 if (ret) {
0b246afa
JM
2326 btrfs_handle_fs_error(fs_info, ret,
2327 "Error while writing out transaction");
56e9f6ea
DS
2328 /*
2329 * reloc_mutex has been unlocked, tree_log_mutex is still held
2330 * but we can't jump to unlock_tree_log causing double unlock
2331 */
0b246afa 2332 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2333 goto scrub_continue;
49b25e05
JM
2334 }
2335
eece6a9c 2336 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2337 /*
2338 * the super is written, we can safely allow the tree-loggers
2339 * to go about their business
2340 */
0b246afa 2341 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2342 if (ret)
2343 goto scrub_continue;
e02119d5 2344
5ead2dd0 2345 btrfs_finish_extent_commit(trans);
4313b399 2346
3204d33c 2347 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2348 btrfs_clear_space_info_full(fs_info);
13212b54 2349
0b246afa 2350 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2351 /*
2352 * We needn't acquire the lock here because there is no other task
2353 * which can change it.
2354 */
2355 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2356 wake_up(&cur_trans->commit_wait);
3de4586c 2357
0b246afa 2358 spin_lock(&fs_info->trans_lock);
13c5a93e 2359 list_del_init(&cur_trans->list);
0b246afa 2360 spin_unlock(&fs_info->trans_lock);
a4abeea4 2361
724e2315
JB
2362 btrfs_put_transaction(cur_trans);
2363 btrfs_put_transaction(cur_trans);
58176a96 2364
0860adfd 2365 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2366 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2367
3a45bb20 2368 trace_btrfs_transaction_commit(trans->root);
1abe9b8a 2369
2ff7e61e 2370 btrfs_scrub_continue(fs_info);
a2de733c 2371
9ed74f2d
JB
2372 if (current->journal_info == trans)
2373 current->journal_info = NULL;
2374
2c90e5d6 2375 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2376
79154b1b 2377 return ret;
49b25e05 2378
56e9f6ea
DS
2379unlock_tree_log:
2380 mutex_unlock(&fs_info->tree_log_mutex);
2381unlock_reloc:
2382 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2383scrub_continue:
2ff7e61e 2384 btrfs_scrub_continue(fs_info);
49b25e05 2385cleanup_transaction:
dc60c525 2386 btrfs_trans_release_metadata(trans);
c7cc64a9 2387 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2388 btrfs_trans_release_chunk_metadata(trans);
0e721106 2389 trans->block_rsv = NULL;
0b246afa 2390 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2391 if (current->journal_info == trans)
2392 current->journal_info = NULL;
97cb39bb 2393 cleanup_transaction(trans, ret);
49b25e05
JM
2394
2395 return ret;
79154b1b
CM
2396}
2397
d352ac68 2398/*
9d1a2a3a
DS
2399 * return < 0 if error
2400 * 0 if there are no more dead_roots at the time of call
2401 * 1 there are more to be processed, call me again
2402 *
2403 * The return value indicates there are certainly more snapshots to delete, but
2404 * if there comes a new one during processing, it may return 0. We don't mind,
2405 * because btrfs_commit_super will poke cleaner thread and it will process it a
2406 * few seconds later.
d352ac68 2407 */
9d1a2a3a 2408int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
e9d0b13b 2409{
9d1a2a3a 2410 int ret;
5d4f98a2
YZ
2411 struct btrfs_fs_info *fs_info = root->fs_info;
2412
a4abeea4 2413 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2414 if (list_empty(&fs_info->dead_roots)) {
2415 spin_unlock(&fs_info->trans_lock);
2416 return 0;
2417 }
2418 root = list_first_entry(&fs_info->dead_roots,
2419 struct btrfs_root, root_list);
cfad392b 2420 list_del_init(&root->root_list);
a4abeea4 2421 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2422
4fd786e6 2423 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2424
9d1a2a3a 2425 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2426
9d1a2a3a
DS
2427 if (btrfs_header_backref_rev(root->node) <
2428 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2429 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2430 else
0078a9f9 2431 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2432
dc9492c1 2433 btrfs_put_root(root);
6596a928 2434 return (ret < 0) ? 0 : 1;
e9d0b13b 2435}
572d9ab7
DS
2436
2437void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2438{
2439 unsigned long prev;
2440 unsigned long bit;
2441
6c9fe14f 2442 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2443 if (!prev)
2444 return;
2445
d51033d0
DS
2446 bit = 1 << BTRFS_PENDING_COMMIT;
2447 if (prev & bit)
2448 btrfs_debug(fs_info, "pending commit done");
2449 prev &= ~bit;
2450
572d9ab7
DS
2451 if (prev)
2452 btrfs_warn(fs_info,
2453 "unknown pending changes left 0x%lx, ignoring", prev);
2454}