btrfs: remove BUG_ON()'s in add_new_free_space()
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
ab3c5c18 9#include <linux/sched/mm.h>
d3c2fdcf 10#include <linux/writeback.h>
5f39d397 11#include <linux/pagemap.h>
5f2cc086 12#include <linux/blkdev.h>
8ea05e3a 13#include <linux/uuid.h>
e55958c8 14#include <linux/timekeeping.h>
602cbe91 15#include "misc.h"
79154b1b
CM
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
925baedd 19#include "locking.h"
e02119d5 20#include "tree-log.h"
733f4fbb 21#include "volumes.h"
8dabb742 22#include "dev-replace.h"
fcebe456 23#include "qgroup.h"
aac0023c 24#include "block-group.h"
9c343784 25#include "space-info.h"
d3575156 26#include "zoned.h"
c7f13d42 27#include "fs.h"
07e81dc9 28#include "accessors.h"
a0231804 29#include "extent-tree.h"
45c40c8f 30#include "root-tree.h"
59b818e0 31#include "defrag.h"
f2b39277 32#include "dir-item.h"
c7a03b52 33#include "uuid-tree.h"
7572dec8 34#include "ioctl.h"
67707479 35#include "relocation.h"
2fc6822c 36#include "scrub.h"
79154b1b 37
956504a3
JB
38static struct kmem_cache *btrfs_trans_handle_cachep;
39
fc7cbcd4 40#define BTRFS_ROOT_TRANS_TAG 0
0f7d52f4 41
61c047b5
QW
42/*
43 * Transaction states and transitions
44 *
45 * No running transaction (fs tree blocks are not modified)
46 * |
47 * | To next stage:
48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49 * V
50 * Transaction N [[TRANS_STATE_RUNNING]]
51 * |
52 * | New trans handles can be attached to transaction N by calling all
53 * | start_transaction() variants.
54 * |
55 * | To next stage:
56 * | Call btrfs_commit_transaction() on any trans handle attached to
57 * | transaction N
58 * V
59 * Transaction N [[TRANS_STATE_COMMIT_START]]
60 * |
61 * | Will wait for previous running transaction to completely finish if there
62 * | is one
63 * |
64 * | Then one of the following happes:
65 * | - Wait for all other trans handle holders to release.
66 * | The btrfs_commit_transaction() caller will do the commit work.
67 * | - Wait for current transaction to be committed by others.
68 * | Other btrfs_commit_transaction() caller will do the commit work.
69 * |
70 * | At this stage, only btrfs_join_transaction*() variants can attach
71 * | to this running transaction.
72 * | All other variants will wait for current one to finish and attach to
73 * | transaction N+1.
74 * |
75 * | To next stage:
76 * | Caller is chosen to commit transaction N, and all other trans handle
77 * | haven been released.
78 * V
79 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
80 * |
81 * | The heavy lifting transaction work is started.
82 * | From running delayed refs (modifying extent tree) to creating pending
83 * | snapshots, running qgroups.
84 * | In short, modify supporting trees to reflect modifications of subvolume
85 * | trees.
86 * |
87 * | At this stage, all start_transaction() calls will wait for this
88 * | transaction to finish and attach to transaction N+1.
89 * |
90 * | To next stage:
91 * | Until all supporting trees are updated.
92 * V
93 * Transaction N [[TRANS_STATE_UNBLOCKED]]
94 * | Transaction N+1
95 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
96 * | need to write them back to disk and update |
97 * | super blocks. |
98 * | |
99 * | At this stage, new transaction is allowed to |
100 * | start. |
101 * | All new start_transaction() calls will be |
102 * | attached to transid N+1. |
103 * | |
104 * | To next stage: |
105 * | Until all tree blocks are super blocks are |
106 * | written to block devices |
107 * V |
108 * Transaction N [[TRANS_STATE_COMPLETED]] V
109 * All tree blocks and super blocks are written. Transaction N+1
110 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
111 * data structures will be cleaned up. | Life goes on
112 */
e8c9f186 113static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 114 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
115 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
116 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 117 __TRANS_ATTACH |
a6d155d2
FM
118 __TRANS_JOIN |
119 __TRANS_JOIN_NOSTART),
bcf3a3e7 120 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
121 __TRANS_ATTACH |
122 __TRANS_JOIN |
a6d155d2
FM
123 __TRANS_JOIN_NOLOCK |
124 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
125 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
126 __TRANS_ATTACH |
127 __TRANS_JOIN |
128 __TRANS_JOIN_NOLOCK |
129 __TRANS_JOIN_NOSTART),
bcf3a3e7 130 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
131 __TRANS_ATTACH |
132 __TRANS_JOIN |
a6d155d2
FM
133 __TRANS_JOIN_NOLOCK |
134 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
135};
136
724e2315 137void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 138{
9b64f57d
ER
139 WARN_ON(refcount_read(&transaction->use_count) == 0);
140 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 141 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
142 WARN_ON(!RB_EMPTY_ROOT(
143 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
144 WARN_ON(!RB_EMPTY_ROOT(
145 &transaction->delayed_refs.dirty_extent_root));
1262133b 146 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
7785a663
FM
150 /*
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
156 */
157 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 158 struct btrfs_block_group *cache;
7785a663
FM
159
160 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 161 struct btrfs_block_group,
7785a663
FM
162 bg_list);
163 list_del_init(&cache->bg_list);
6b7304af 164 btrfs_unfreeze_block_group(cache);
7785a663
FM
165 btrfs_put_block_group(cache);
166 }
bbbf7243 167 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 168 kfree(transaction);
78fae27e 169 }
79154b1b
CM
170}
171
889bfa39 172static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 173{
889bfa39 174 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 175 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
176 struct btrfs_root *root, *tmp;
177
dfba78dc
FM
178 /*
179 * At this point no one can be using this transaction to modify any tree
180 * and no one can start another transaction to modify any tree either.
181 */
182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183
9e351cc8 184 down_write(&fs_info->commit_root_sem);
d96b3424
FM
185
186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 fs_info->last_reloc_trans = trans->transid;
188
889bfa39 189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
190 dirty_list) {
191 list_del_init(&root->dirty_list);
192 free_extent_buffer(root->commit_root);
193 root->commit_root = btrfs_root_node(root);
41e7acd3 194 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 195 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 196 }
2b9dbef2
JB
197
198 /* We can free old roots now. */
889bfa39
JB
199 spin_lock(&cur_trans->dropped_roots_lock);
200 while (!list_empty(&cur_trans->dropped_roots)) {
201 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
202 struct btrfs_root, root_list);
203 list_del_init(&root->root_list);
889bfa39
JB
204 spin_unlock(&cur_trans->dropped_roots_lock);
205 btrfs_free_log(trans, root);
2b9dbef2 206 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 207 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 208 }
889bfa39 209 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62 210
9e351cc8 211 up_write(&fs_info->commit_root_sem);
817d52f8
JB
212}
213
0860adfd
MX
214static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215 unsigned int type)
216{
217 if (type & TRANS_EXTWRITERS)
218 atomic_inc(&trans->num_extwriters);
219}
220
221static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222 unsigned int type)
223{
224 if (type & TRANS_EXTWRITERS)
225 atomic_dec(&trans->num_extwriters);
226}
227
228static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229 unsigned int type)
230{
231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232}
233
234static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235{
236 return atomic_read(&trans->num_extwriters);
178260b2
MX
237}
238
fb6dea26 239/*
79bd3712
FM
240 * To be called after doing the chunk btree updates right after allocating a new
241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242 * chunk after all chunk btree updates and after finishing the second phase of
243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244 * group had its chunk item insertion delayed to the second phase.
fb6dea26
JB
245 */
246void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247{
248 struct btrfs_fs_info *fs_info = trans->fs_info;
249
250 if (!trans->chunk_bytes_reserved)
251 return;
252
fb6dea26 253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 254 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
255 trans->chunk_bytes_reserved = 0;
256}
257
d352ac68
CM
258/*
259 * either allocate a new transaction or hop into the existing one
260 */
2ff7e61e
JM
261static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262 unsigned int type)
79154b1b
CM
263{
264 struct btrfs_transaction *cur_trans;
a4abeea4 265
19ae4e81 266 spin_lock(&fs_info->trans_lock);
d43317dc 267loop:
49b25e05 268 /* The file system has been taken offline. No new transactions. */
84961539 269 if (BTRFS_FS_ERROR(fs_info)) {
19ae4e81 270 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
271 return -EROFS;
272 }
273
19ae4e81 274 cur_trans = fs_info->running_transaction;
a4abeea4 275 if (cur_trans) {
bf31f87f 276 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 277 spin_unlock(&fs_info->trans_lock);
49b25e05 278 return cur_trans->aborted;
871383be 279 }
4a9d8bde 280 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
281 spin_unlock(&fs_info->trans_lock);
282 return -EBUSY;
283 }
9b64f57d 284 refcount_inc(&cur_trans->use_count);
13c5a93e 285 atomic_inc(&cur_trans->num_writers);
0860adfd 286 extwriter_counter_inc(cur_trans, type);
19ae4e81 287 spin_unlock(&fs_info->trans_lock);
e1489b4f 288 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 289 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
a4abeea4 290 return 0;
79154b1b 291 }
19ae4e81 292 spin_unlock(&fs_info->trans_lock);
a4abeea4 293
354aa0fb
MX
294 /*
295 * If we are ATTACH, we just want to catch the current transaction,
296 * and commit it. If there is no transaction, just return ENOENT.
297 */
298 if (type == TRANS_ATTACH)
299 return -ENOENT;
300
4a9d8bde
MX
301 /*
302 * JOIN_NOLOCK only happens during the transaction commit, so
303 * it is impossible that ->running_transaction is NULL
304 */
305 BUG_ON(type == TRANS_JOIN_NOLOCK);
306
4b5faeac 307 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
308 if (!cur_trans)
309 return -ENOMEM;
d43317dc 310
e1489b4f 311 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 312 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
e1489b4f 313
19ae4e81
JS
314 spin_lock(&fs_info->trans_lock);
315 if (fs_info->running_transaction) {
d43317dc
CM
316 /*
317 * someone started a transaction after we unlocked. Make sure
4a9d8bde 318 * to redo the checks above
d43317dc 319 */
5a9ba670 320 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 321 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 322 kfree(cur_trans);
d43317dc 323 goto loop;
84961539 324 } else if (BTRFS_FS_ERROR(fs_info)) {
e4b50e14 325 spin_unlock(&fs_info->trans_lock);
5a9ba670 326 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 327 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 328 kfree(cur_trans);
7b8b92af 329 return -EROFS;
79154b1b 330 }
d43317dc 331
ab8d0fc4 332 cur_trans->fs_info = fs_info;
48778179
FM
333 atomic_set(&cur_trans->pending_ordered, 0);
334 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 335 atomic_set(&cur_trans->num_writers, 1);
0860adfd 336 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
337 init_waitqueue_head(&cur_trans->writer_wait);
338 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 339 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
340 /*
341 * One for this trans handle, one so it will live on until we
342 * commit the transaction.
343 */
9b64f57d 344 refcount_set(&cur_trans->use_count, 2);
3204d33c 345 cur_trans->flags = 0;
afd48513 346 cur_trans->start_time = ktime_get_seconds();
a4abeea4 347
a099d0fd
AM
348 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
349
5c9d028b 350 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 351 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 352 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
353
354 /*
355 * although the tree mod log is per file system and not per transaction,
356 * the log must never go across transaction boundaries.
357 */
358 smp_mb();
31b1a2bd 359 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 360 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 361 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 362 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 363 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 364
a4abeea4
JB
365 spin_lock_init(&cur_trans->delayed_refs.lock);
366
367 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 368 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 369 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 370 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 371 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 372 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 373 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 374 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 375 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 376 spin_lock_init(&cur_trans->dropped_roots_lock);
19ae4e81 377 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 378 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
35da5a7e 379 IO_TREE_TRANS_DIRTY_PAGES);
fe119a6e 380 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
35da5a7e 381 IO_TREE_FS_PINNED_EXTENTS);
19ae4e81
JS
382 fs_info->generation++;
383 cur_trans->transid = fs_info->generation;
384 fs_info->running_transaction = cur_trans;
49b25e05 385 cur_trans->aborted = 0;
19ae4e81 386 spin_unlock(&fs_info->trans_lock);
15ee9bc7 387
79154b1b
CM
388 return 0;
389}
390
d352ac68 391/*
92a7cc42
QW
392 * This does all the record keeping required to make sure that a shareable root
393 * is properly recorded in a given transaction. This is required to make sure
394 * the old root from before we joined the transaction is deleted when the
395 * transaction commits.
d352ac68 396 */
7585717f 397static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
398 struct btrfs_root *root,
399 int force)
6702ed49 400{
0b246afa 401 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 402 int ret = 0;
0b246afa 403
92a7cc42 404 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 405 root->last_trans < trans->transid) || force) {
4d31778a 406 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 407
7585717f 408 /*
27cdeb70 409 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
410 * we have the reloc mutex held now, so there
411 * is only one writer in this function
412 */
27cdeb70 413 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 414
27cdeb70 415 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
416 * they find our root->last_trans update
417 */
418 smp_wmb();
419
fc7cbcd4 420 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 421 if (root->last_trans == trans->transid && !force) {
fc7cbcd4 422 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
423 return 0;
424 }
fc7cbcd4
DS
425 radix_tree_tag_set(&fs_info->fs_roots_radix,
426 (unsigned long)root->root_key.objectid,
427 BTRFS_ROOT_TRANS_TAG);
428 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
429 root->last_trans = trans->transid;
430
431 /* this is pretty tricky. We don't want to
432 * take the relocation lock in btrfs_record_root_in_trans
433 * unless we're really doing the first setup for this root in
434 * this transaction.
435 *
436 * Normally we'd use root->last_trans as a flag to decide
437 * if we want to take the expensive mutex.
438 *
439 * But, we have to set root->last_trans before we
440 * init the relocation root, otherwise, we trip over warnings
441 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 442 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
443 * fixing up the reloc trees and everyone must wait.
444 *
445 * When this is zero, they can trust root->last_trans and fly
446 * through btrfs_record_root_in_trans without having to take the
447 * lock. smp_wmb() makes sure that all the writes above are
448 * done before we pop in the zero below
449 */
03a7e111 450 ret = btrfs_init_reloc_root(trans, root);
c7548af6 451 smp_mb__before_atomic();
27cdeb70 452 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 453 }
03a7e111 454 return ret;
5d4f98a2 455}
bcc63abb 456
7585717f 457
2b9dbef2
JB
458void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
459 struct btrfs_root *root)
460{
0b246afa 461 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
462 struct btrfs_transaction *cur_trans = trans->transaction;
463
464 /* Add ourselves to the transaction dropped list */
465 spin_lock(&cur_trans->dropped_roots_lock);
466 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
467 spin_unlock(&cur_trans->dropped_roots_lock);
468
469 /* Make sure we don't try to update the root at commit time */
fc7cbcd4
DS
470 spin_lock(&fs_info->fs_roots_radix_lock);
471 radix_tree_tag_clear(&fs_info->fs_roots_radix,
472 (unsigned long)root->root_key.objectid,
473 BTRFS_ROOT_TRANS_TAG);
474 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
475}
476
7585717f
CM
477int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
478 struct btrfs_root *root)
479{
0b246afa 480 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 481 int ret;
0b246afa 482
92a7cc42 483 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
484 return 0;
485
486 /*
27cdeb70 487 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
488 * and barriers
489 */
490 smp_rmb();
491 if (root->last_trans == trans->transid &&
27cdeb70 492 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
493 return 0;
494
0b246afa 495 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 496 ret = record_root_in_trans(trans, root, 0);
0b246afa 497 mutex_unlock(&fs_info->reloc_mutex);
7585717f 498
1409e6cc 499 return ret;
7585717f
CM
500}
501
4a9d8bde
MX
502static inline int is_transaction_blocked(struct btrfs_transaction *trans)
503{
3296bf56 504 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 505 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 506 !TRANS_ABORTED(trans));
4a9d8bde
MX
507}
508
d352ac68
CM
509/* wait for commit against the current transaction to become unblocked
510 * when this is done, it is safe to start a new transaction, but the current
511 * transaction might not be fully on disk.
512 */
2ff7e61e 513static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 514{
f9295749 515 struct btrfs_transaction *cur_trans;
79154b1b 516
0b246afa
JM
517 spin_lock(&fs_info->trans_lock);
518 cur_trans = fs_info->running_transaction;
4a9d8bde 519 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 520 refcount_inc(&cur_trans->use_count);
0b246afa 521 spin_unlock(&fs_info->trans_lock);
72d63ed6 522
3e738c53 523 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
0b246afa 524 wait_event(fs_info->transaction_wait,
501407aa 525 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 526 TRANS_ABORTED(cur_trans));
724e2315 527 btrfs_put_transaction(cur_trans);
a4abeea4 528 } else {
0b246afa 529 spin_unlock(&fs_info->trans_lock);
f9295749 530 }
37d1aeee
CM
531}
532
2ff7e61e 533static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 534{
0b246afa 535 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
536 return 0;
537
92e2f7e3 538 if (type == TRANS_START)
a22285a6 539 return 1;
a4abeea4 540
a22285a6
YZ
541 return 0;
542}
543
20dd2cbf
MX
544static inline bool need_reserve_reloc_root(struct btrfs_root *root)
545{
0b246afa
JM
546 struct btrfs_fs_info *fs_info = root->fs_info;
547
548 if (!fs_info->reloc_ctl ||
92a7cc42 549 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
550 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
551 root->reloc_root)
552 return false;
553
554 return true;
555}
556
08e007d2 557static struct btrfs_trans_handle *
5aed1dd8 558start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
559 unsigned int type, enum btrfs_reserve_flush_enum flush,
560 bool enforce_qgroups)
37d1aeee 561{
0b246afa 562 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 563 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
564 struct btrfs_trans_handle *h;
565 struct btrfs_transaction *cur_trans;
b5009945 566 u64 num_bytes = 0;
c5567237 567 u64 qgroup_reserved = 0;
20dd2cbf 568 bool reloc_reserved = false;
9c343784 569 bool do_chunk_alloc = false;
20dd2cbf 570 int ret;
acce952b 571
84961539 572 if (BTRFS_FS_ERROR(fs_info))
acce952b 573 return ERR_PTR(-EROFS);
2a1eb461 574
46c4e71e 575 if (current->journal_info) {
0860adfd 576 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 577 h = current->journal_info;
b50fff81
DS
578 refcount_inc(&h->use_count);
579 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
580 h->orig_rsv = h->block_rsv;
581 h->block_rsv = NULL;
582 goto got_it;
583 }
b5009945
JB
584
585 /*
586 * Do the reservation before we join the transaction so we can do all
587 * the appropriate flushing if need be.
588 */
003d7c59 589 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
590 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
591 u64 delayed_refs_bytes = 0;
592
0b246afa 593 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
594 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
595 enforce_qgroups);
7174109c
QW
596 if (ret)
597 return ERR_PTR(ret);
c5567237 598
ba2c4d4e
JB
599 /*
600 * We want to reserve all the bytes we may need all at once, so
601 * we only do 1 enospc flushing cycle per transaction start. We
0f69d1f4
FM
602 * accomplish this by simply assuming we'll do num_items worth
603 * of delayed refs updates in this trans handle, and refill that
604 * amount for whatever is missing in the reserve.
ba2c4d4e 605 */
2bd36e7b 606 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614 607 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
e4773b57 608 !btrfs_block_rsv_full(delayed_refs_rsv)) {
0f69d1f4
FM
609 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
610 num_items);
611 num_bytes += delayed_refs_bytes;
ba2c4d4e
JB
612 }
613
20dd2cbf
MX
614 /*
615 * Do the reservation for the relocation root creation
616 */
ee39b432 617 if (need_reserve_reloc_root(root)) {
0b246afa 618 num_bytes += fs_info->nodesize;
20dd2cbf
MX
619 reloc_reserved = true;
620 }
621
9270501c 622 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
ba2c4d4e
JB
623 if (ret)
624 goto reserve_fail;
625 if (delayed_refs_bytes) {
626 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
627 delayed_refs_bytes);
628 num_bytes -= delayed_refs_bytes;
629 }
9c343784
JB
630
631 if (rsv->space_info->force_alloc)
632 do_chunk_alloc = true;
ba2c4d4e 633 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 634 !btrfs_block_rsv_full(delayed_refs_rsv)) {
ba2c4d4e
JB
635 /*
636 * Some people call with btrfs_start_transaction(root, 0)
637 * because they can be throttled, but have some other mechanism
638 * for reserving space. We still want these guys to refill the
639 * delayed block_rsv so just add 1 items worth of reservation
640 * here.
641 */
642 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 643 if (ret)
843fcf35 644 goto reserve_fail;
b5009945 645 }
a22285a6 646again:
f2f767e7 647 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
648 if (!h) {
649 ret = -ENOMEM;
650 goto alloc_fail;
651 }
37d1aeee 652
98114659
JB
653 /*
654 * If we are JOIN_NOLOCK we're already committing a transaction and
655 * waiting on this guy, so we don't need to do the sb_start_intwrite
656 * because we're already holding a ref. We need this because we could
657 * have raced in and did an fsync() on a file which can kick a commit
658 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
659 *
660 * If we are ATTACH, it means we just want to catch the current
661 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 662 */
0860adfd 663 if (type & __TRANS_FREEZABLE)
0b246afa 664 sb_start_intwrite(fs_info->sb);
b2b5ef5c 665
2ff7e61e
JM
666 if (may_wait_transaction(fs_info, type))
667 wait_current_trans(fs_info);
a22285a6 668
a4abeea4 669 do {
2ff7e61e 670 ret = join_transaction(fs_info, type);
178260b2 671 if (ret == -EBUSY) {
2ff7e61e 672 wait_current_trans(fs_info);
a6d155d2
FM
673 if (unlikely(type == TRANS_ATTACH ||
674 type == TRANS_JOIN_NOSTART))
178260b2
MX
675 ret = -ENOENT;
676 }
a4abeea4
JB
677 } while (ret == -EBUSY);
678
a43f7f82 679 if (ret < 0)
843fcf35 680 goto join_fail;
0f7d52f4 681
0b246afa 682 cur_trans = fs_info->running_transaction;
a22285a6
YZ
683
684 h->transid = cur_trans->transid;
685 h->transaction = cur_trans;
b50fff81 686 refcount_set(&h->use_count, 1);
64b63580 687 h->fs_info = root->fs_info;
7174109c 688
a698d075 689 h->type = type;
ea658bad 690 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 691
a22285a6 692 smp_mb();
3296bf56 693 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 694 may_wait_transaction(fs_info, type)) {
abdd2e80 695 current->journal_info = h;
3a45bb20 696 btrfs_commit_transaction(h);
a22285a6
YZ
697 goto again;
698 }
699
b5009945 700 if (num_bytes) {
0b246afa 701 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 702 h->transid, num_bytes, 1);
0b246afa 703 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 704 h->bytes_reserved = num_bytes;
20dd2cbf 705 h->reloc_reserved = reloc_reserved;
a22285a6 706 }
9ed74f2d 707
2a1eb461 708got_it:
bcf3a3e7 709 if (!current->journal_info)
a22285a6 710 current->journal_info = h;
fcc99734 711
9c343784
JB
712 /*
713 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
714 * ALLOC_FORCE the first run through, and then we won't allocate for
715 * anybody else who races in later. We don't care about the return
716 * value here.
717 */
718 if (do_chunk_alloc && num_bytes) {
719 u64 flags = h->block_rsv->space_info->flags;
720
721 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
722 CHUNK_ALLOC_NO_FORCE);
723 }
724
fcc99734
QW
725 /*
726 * btrfs_record_root_in_trans() needs to alloc new extents, and may
727 * call btrfs_join_transaction() while we're also starting a
728 * transaction.
729 *
730 * Thus it need to be called after current->journal_info initialized,
731 * or we can deadlock.
732 */
68075ea8
JB
733 ret = btrfs_record_root_in_trans(h, root);
734 if (ret) {
735 /*
736 * The transaction handle is fully initialized and linked with
737 * other structures so it needs to be ended in case of errors,
738 * not just freed.
739 */
740 btrfs_end_transaction(h);
741 return ERR_PTR(ret);
742 }
fcc99734 743
79154b1b 744 return h;
843fcf35
MX
745
746join_fail:
0860adfd 747 if (type & __TRANS_FREEZABLE)
0b246afa 748 sb_end_intwrite(fs_info->sb);
843fcf35
MX
749 kmem_cache_free(btrfs_trans_handle_cachep, h);
750alloc_fail:
751 if (num_bytes)
2ff7e61e 752 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 753 num_bytes, NULL);
843fcf35 754reserve_fail:
733e03a0 755 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 756 return ERR_PTR(ret);
79154b1b
CM
757}
758
f9295749 759struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 760 unsigned int num_items)
f9295749 761{
08e007d2 762 return start_transaction(root, num_items, TRANS_START,
003d7c59 763 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 764}
003d7c59 765
8eab77ff
FM
766struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
767 struct btrfs_root *root,
7f9fe614 768 unsigned int num_items)
8eab77ff 769{
7f9fe614
JB
770 return start_transaction(root, num_items, TRANS_START,
771 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 772}
8407aa46 773
7a7eaa40 774struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 775{
003d7c59
JM
776 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
777 true);
f9295749
CM
778}
779
8d510121 780struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 781{
575a75d6 782 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 783 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
784}
785
a6d155d2
FM
786/*
787 * Similar to regular join but it never starts a transaction when none is
788 * running or after waiting for the current one to finish.
789 */
790struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
791{
792 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
793 BTRFS_RESERVE_NO_FLUSH, true);
794}
795
d4edf39b
MX
796/*
797 * btrfs_attach_transaction() - catch the running transaction
798 *
799 * It is used when we want to commit the current the transaction, but
800 * don't want to start a new one.
801 *
802 * Note: If this function return -ENOENT, it just means there is no
803 * running transaction. But it is possible that the inactive transaction
804 * is still in the memory, not fully on disk. If you hope there is no
805 * inactive transaction in the fs when -ENOENT is returned, you should
806 * invoke
807 * btrfs_attach_transaction_barrier()
808 */
354aa0fb 809struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 810{
575a75d6 811 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 812 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
813}
814
d4edf39b 815/*
90b6d283 816 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 817 *
52042d8e 818 * It is similar to the above function, the difference is this one
d4edf39b
MX
819 * will wait for all the inactive transactions until they fully
820 * complete.
821 */
822struct btrfs_trans_handle *
823btrfs_attach_transaction_barrier(struct btrfs_root *root)
824{
825 struct btrfs_trans_handle *trans;
826
575a75d6 827 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 828 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 829 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 830 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
831
832 return trans;
833}
834
d0c2f4fa
FM
835/* Wait for a transaction commit to reach at least the given state. */
836static noinline void wait_for_commit(struct btrfs_transaction *commit,
837 const enum btrfs_trans_state min_state)
89ce8a63 838{
5fd76bf3
OS
839 struct btrfs_fs_info *fs_info = commit->fs_info;
840 u64 transid = commit->transid;
841 bool put = false;
842
3e738c53
IA
843 /*
844 * At the moment this function is called with min_state either being
845 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
846 */
847 if (min_state == TRANS_STATE_COMPLETED)
848 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
849 else
850 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
851
5fd76bf3
OS
852 while (1) {
853 wait_event(commit->commit_wait, commit->state >= min_state);
854 if (put)
855 btrfs_put_transaction(commit);
856
857 if (min_state < TRANS_STATE_COMPLETED)
858 break;
859
860 /*
861 * A transaction isn't really completed until all of the
862 * previous transactions are completed, but with fsync we can
863 * end up with SUPER_COMMITTED transactions before a COMPLETED
864 * transaction. Wait for those.
865 */
866
867 spin_lock(&fs_info->trans_lock);
868 commit = list_first_entry_or_null(&fs_info->trans_list,
869 struct btrfs_transaction,
870 list);
871 if (!commit || commit->transid > transid) {
872 spin_unlock(&fs_info->trans_lock);
873 break;
874 }
875 refcount_inc(&commit->use_count);
876 put = true;
877 spin_unlock(&fs_info->trans_lock);
878 }
89ce8a63
CM
879}
880
2ff7e61e 881int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
882{
883 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 884 int ret = 0;
46204592 885
46204592 886 if (transid) {
0b246afa 887 if (transid <= fs_info->last_trans_committed)
a4abeea4 888 goto out;
46204592
SW
889
890 /* find specified transaction */
0b246afa
JM
891 spin_lock(&fs_info->trans_lock);
892 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
893 if (t->transid == transid) {
894 cur_trans = t;
9b64f57d 895 refcount_inc(&cur_trans->use_count);
8cd2807f 896 ret = 0;
46204592
SW
897 break;
898 }
8cd2807f
MX
899 if (t->transid > transid) {
900 ret = 0;
46204592 901 break;
8cd2807f 902 }
46204592 903 }
0b246afa 904 spin_unlock(&fs_info->trans_lock);
42383020
SW
905
906 /*
907 * The specified transaction doesn't exist, or we
908 * raced with btrfs_commit_transaction
909 */
910 if (!cur_trans) {
0b246afa 911 if (transid > fs_info->last_trans_committed)
42383020 912 ret = -EINVAL;
8cd2807f 913 goto out;
42383020 914 }
46204592
SW
915 } else {
916 /* find newest transaction that is committing | committed */
0b246afa
JM
917 spin_lock(&fs_info->trans_lock);
918 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 919 list) {
4a9d8bde
MX
920 if (t->state >= TRANS_STATE_COMMIT_START) {
921 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 922 break;
46204592 923 cur_trans = t;
9b64f57d 924 refcount_inc(&cur_trans->use_count);
46204592
SW
925 break;
926 }
927 }
0b246afa 928 spin_unlock(&fs_info->trans_lock);
46204592 929 if (!cur_trans)
a4abeea4 930 goto out; /* nothing committing|committed */
46204592
SW
931 }
932
d0c2f4fa 933 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 934 btrfs_put_transaction(cur_trans);
a4abeea4 935out:
46204592
SW
936 return ret;
937}
938
2ff7e61e 939void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 940{
92e2f7e3 941 wait_current_trans(fs_info);
37d1aeee
CM
942}
943
a2633b6a 944bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
945{
946 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 947
3296bf56 948 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 949 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 950 return true;
8929ecfa 951
04fb3285
FM
952 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
953 return true;
954
955 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
8929ecfa
YZ
956}
957
dc60c525
NB
958static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
959
0e34693f 960{
dc60c525
NB
961 struct btrfs_fs_info *fs_info = trans->fs_info;
962
0e34693f
NB
963 if (!trans->block_rsv) {
964 ASSERT(!trans->bytes_reserved);
965 return;
966 }
967
968 if (!trans->bytes_reserved)
969 return;
970
971 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
972 trace_btrfs_space_reservation(fs_info, "transaction",
973 trans->transid, trans->bytes_reserved, 0);
974 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 975 trans->bytes_reserved, NULL);
0e34693f
NB
976 trans->bytes_reserved = 0;
977}
978
89ce8a63 979static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 980 int throttle)
79154b1b 981{
3a45bb20 982 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 983 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 984 int err = 0;
c3e69d58 985
b50fff81
DS
986 if (refcount_read(&trans->use_count) > 1) {
987 refcount_dec(&trans->use_count);
2a1eb461
JB
988 trans->block_rsv = trans->orig_rsv;
989 return 0;
990 }
991
dc60c525 992 btrfs_trans_release_metadata(trans);
4c13d758 993 trans->block_rsv = NULL;
c5567237 994
119e80df 995 btrfs_create_pending_block_groups(trans);
ea658bad 996
4fbcdf66
FM
997 btrfs_trans_release_chunk_metadata(trans);
998
0860adfd 999 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1000 sb_end_intwrite(info->sb);
6df7881a 1001
8929ecfa 1002 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
1003 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1004 atomic_dec(&cur_trans->num_writers);
0860adfd 1005 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 1006
093258e6 1007 cond_wake_up(&cur_trans->writer_wait);
e1489b4f 1008
5a9ba670 1009 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
e1489b4f
IA
1010 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1011
724e2315 1012 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
1013
1014 if (current->journal_info == trans)
1015 current->journal_info = NULL;
ab78c84d 1016
24bbcf04 1017 if (throttle)
2ff7e61e 1018 btrfs_run_delayed_iputs(info);
24bbcf04 1019
84961539 1020 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
4e121c06 1021 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1022 if (TRANS_ABORTED(trans))
1023 err = trans->aborted;
1024 else
1025 err = -EROFS;
4e121c06 1026 }
49b25e05 1027
4edc2ca3
DJ
1028 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1029 return err;
79154b1b
CM
1030}
1031
3a45bb20 1032int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1033{
3a45bb20 1034 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1035}
1036
3a45bb20 1037int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1038{
3a45bb20 1039 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1040}
1041
d352ac68
CM
1042/*
1043 * when btree blocks are allocated, they have some corresponding bits set for
1044 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1045 * those extents are sent to disk but does not wait on them
d352ac68 1046 */
2ff7e61e 1047int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1048 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1049{
777e6bd7 1050 int err = 0;
7c4452b9 1051 int werr = 0;
0b246afa 1052 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1053 struct extent_state *cached_state = NULL;
777e6bd7 1054 u64 start = 0;
5f39d397 1055 u64 end;
7c4452b9 1056
1728366e 1057 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1058 mark, &cached_state)) {
663dfbb0
FM
1059 bool wait_writeback = false;
1060
1061 err = convert_extent_bit(dirty_pages, start, end,
1062 EXTENT_NEED_WAIT,
210aa277 1063 mark, &cached_state);
663dfbb0
FM
1064 /*
1065 * convert_extent_bit can return -ENOMEM, which is most of the
1066 * time a temporary error. So when it happens, ignore the error
1067 * and wait for writeback of this range to finish - because we
1068 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1069 * to __btrfs_wait_marked_extents() would not know that
1070 * writeback for this range started and therefore wouldn't
1071 * wait for it to finish - we don't want to commit a
1072 * superblock that points to btree nodes/leafs for which
1073 * writeback hasn't finished yet (and without errors).
663dfbb0 1074 * We cleanup any entries left in the io tree when committing
41e7acd3 1075 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1076 */
1077 if (err == -ENOMEM) {
1078 err = 0;
1079 wait_writeback = true;
1080 }
1081 if (!err)
1082 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1083 if (err)
1084 werr = err;
663dfbb0
FM
1085 else if (wait_writeback)
1086 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1087 free_extent_state(cached_state);
663dfbb0 1088 cached_state = NULL;
1728366e
JB
1089 cond_resched();
1090 start = end + 1;
7c4452b9 1091 }
690587d1
CM
1092 return werr;
1093}
1094
1095/*
1096 * when btree blocks are allocated, they have some corresponding bits set for
1097 * them in one of two extent_io trees. This is used to make sure all of
1098 * those extents are on disk for transaction or log commit. We wait
1099 * on all the pages and clear them from the dirty pages state tree
1100 */
bf89d38f
JM
1101static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1102 struct extent_io_tree *dirty_pages)
690587d1 1103{
690587d1
CM
1104 int err = 0;
1105 int werr = 0;
0b246afa 1106 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1107 struct extent_state *cached_state = NULL;
690587d1
CM
1108 u64 start = 0;
1109 u64 end;
777e6bd7 1110
1728366e 1111 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1112 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1113 /*
1114 * Ignore -ENOMEM errors returned by clear_extent_bit().
1115 * When committing the transaction, we'll remove any entries
1116 * left in the io tree. For a log commit, we don't remove them
1117 * after committing the log because the tree can be accessed
1118 * concurrently - we do it only at transaction commit time when
41e7acd3 1119 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1120 */
1121 err = clear_extent_bit(dirty_pages, start, end,
bd015294 1122 EXTENT_NEED_WAIT, &cached_state);
663dfbb0
FM
1123 if (err == -ENOMEM)
1124 err = 0;
1125 if (!err)
1126 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1127 if (err)
1128 werr = err;
e38e2ed7
FM
1129 free_extent_state(cached_state);
1130 cached_state = NULL;
1728366e
JB
1131 cond_resched();
1132 start = end + 1;
777e6bd7 1133 }
7c4452b9
CM
1134 if (err)
1135 werr = err;
bf89d38f
JM
1136 return werr;
1137}
656f30db 1138
b9fae2eb 1139static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1140 struct extent_io_tree *dirty_pages)
1141{
1142 bool errors = false;
1143 int err;
656f30db 1144
bf89d38f
JM
1145 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1146 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1147 errors = true;
1148
1149 if (errors && !err)
1150 err = -EIO;
1151 return err;
1152}
656f30db 1153
bf89d38f
JM
1154int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1155{
1156 struct btrfs_fs_info *fs_info = log_root->fs_info;
1157 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1158 bool errors = false;
1159 int err;
656f30db 1160
bf89d38f
JM
1161 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1162
1163 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1164 if ((mark & EXTENT_DIRTY) &&
1165 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1166 errors = true;
1167
1168 if ((mark & EXTENT_NEW) &&
1169 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1170 errors = true;
1171
1172 if (errors && !err)
1173 err = -EIO;
1174 return err;
79154b1b
CM
1175}
1176
690587d1 1177/*
c9b577c0
NB
1178 * When btree blocks are allocated the corresponding extents are marked dirty.
1179 * This function ensures such extents are persisted on disk for transaction or
1180 * log commit.
1181 *
1182 * @trans: transaction whose dirty pages we'd like to write
690587d1 1183 */
70458a58 1184static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1185{
1186 int ret;
1187 int ret2;
c9b577c0 1188 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1189 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1190 struct blk_plug plug;
690587d1 1191
c6adc9cc 1192 blk_start_plug(&plug);
c9b577c0 1193 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1194 blk_finish_plug(&plug);
bf89d38f 1195 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1196
41e7acd3 1197 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1198
bf0da8c1
CM
1199 if (ret)
1200 return ret;
c9b577c0 1201 else if (ret2)
bf0da8c1 1202 return ret2;
c9b577c0
NB
1203 else
1204 return 0;
d0c803c4
CM
1205}
1206
d352ac68
CM
1207/*
1208 * this is used to update the root pointer in the tree of tree roots.
1209 *
1210 * But, in the case of the extent allocation tree, updating the root
1211 * pointer may allocate blocks which may change the root of the extent
1212 * allocation tree.
1213 *
1214 * So, this loops and repeats and makes sure the cowonly root didn't
1215 * change while the root pointer was being updated in the metadata.
1216 */
0b86a832
CM
1217static int update_cowonly_root(struct btrfs_trans_handle *trans,
1218 struct btrfs_root *root)
79154b1b
CM
1219{
1220 int ret;
0b86a832 1221 u64 old_root_bytenr;
86b9f2ec 1222 u64 old_root_used;
0b246afa
JM
1223 struct btrfs_fs_info *fs_info = root->fs_info;
1224 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1225
86b9f2ec 1226 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1227
d397712b 1228 while (1) {
0b86a832 1229 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1230 if (old_root_bytenr == root->node->start &&
ea526d18 1231 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1232 break;
87ef2bb4 1233
5d4f98a2 1234 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1235 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1236 &root->root_key,
1237 &root->root_item);
49b25e05
JM
1238 if (ret)
1239 return ret;
56bec294 1240
86b9f2ec 1241 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1242 }
276e680d 1243
0b86a832
CM
1244 return 0;
1245}
1246
d352ac68
CM
1247/*
1248 * update all the cowonly tree roots on disk
49b25e05
JM
1249 *
1250 * The error handling in this function may not be obvious. Any of the
1251 * failures will cause the file system to go offline. We still need
1252 * to clean up the delayed refs.
d352ac68 1253 */
9386d8bc 1254static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1255{
9386d8bc 1256 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1257 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1258 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1259 struct list_head *next;
84234f3a 1260 struct extent_buffer *eb;
56bec294 1261 int ret;
84234f3a 1262
dfba78dc
FM
1263 /*
1264 * At this point no one can be using this transaction to modify any tree
1265 * and no one can start another transaction to modify any tree either.
1266 */
1267 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1268
84234f3a 1269 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1270 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1271 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1272 btrfs_tree_unlock(eb);
1273 free_extent_buffer(eb);
0b86a832 1274
49b25e05
JM
1275 if (ret)
1276 return ret;
87ef2bb4 1277
196c9d8d 1278 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1279 if (ret)
1280 return ret;
2b584c68 1281 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1282 if (ret)
1283 return ret;
280f8bd2 1284 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1285 if (ret)
1286 return ret;
546adb0d 1287
bbebb3e0 1288 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1289 if (ret)
1290 return ret;
1291
ea526d18 1292again:
d397712b 1293 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1294 struct btrfs_root *root;
0b86a832
CM
1295 next = fs_info->dirty_cowonly_roots.next;
1296 list_del_init(next);
1297 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1298 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1299
826582ca
JB
1300 list_add_tail(&root->dirty_list,
1301 &trans->transaction->switch_commits);
49b25e05
JM
1302 ret = update_cowonly_root(trans, root);
1303 if (ret)
1304 return ret;
79154b1b 1305 }
276e680d 1306
488bc2a2
JB
1307 /* Now flush any delayed refs generated by updating all of the roots */
1308 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1309 if (ret)
1310 return ret;
1311
1bbc621e 1312 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1313 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1314 if (ret)
1315 return ret;
488bc2a2
JB
1316
1317 /*
1318 * We're writing the dirty block groups, which could generate
1319 * delayed refs, which could generate more dirty block groups,
1320 * so we want to keep this flushing in this loop to make sure
1321 * everything gets run.
1322 */
c79a70b1 1323 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1324 if (ret)
1325 return ret;
1326 }
1327
1328 if (!list_empty(&fs_info->dirty_cowonly_roots))
1329 goto again;
1330
9f6cbcbb
DS
1331 /* Update dev-replace pointer once everything is committed */
1332 fs_info->dev_replace.committed_cursor_left =
1333 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1334
79154b1b
CM
1335 return 0;
1336}
1337
b4be6aef
JB
1338/*
1339 * If we had a pending drop we need to see if there are any others left in our
1340 * dead roots list, and if not clear our bit and wake any waiters.
1341 */
1342void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1343{
1344 /*
1345 * We put the drop in progress roots at the front of the list, so if the
1346 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1347 * up.
1348 */
1349 spin_lock(&fs_info->trans_lock);
1350 if (!list_empty(&fs_info->dead_roots)) {
1351 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1352 struct btrfs_root,
1353 root_list);
1354 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1355 spin_unlock(&fs_info->trans_lock);
1356 return;
1357 }
1358 }
1359 spin_unlock(&fs_info->trans_lock);
1360
1361 btrfs_wake_unfinished_drop(fs_info);
1362}
1363
d352ac68
CM
1364/*
1365 * dead roots are old snapshots that need to be deleted. This allocates
1366 * a dirty root struct and adds it into the list of dead roots that need to
1367 * be deleted
1368 */
cfad392b 1369void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1370{
0b246afa
JM
1371 struct btrfs_fs_info *fs_info = root->fs_info;
1372
1373 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1374 if (list_empty(&root->root_list)) {
1375 btrfs_grab_root(root);
b4be6aef
JB
1376
1377 /* We want to process the partially complete drops first. */
1378 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1379 list_add(&root->root_list, &fs_info->dead_roots);
1380 else
1381 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1382 }
0b246afa 1383 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1384}
1385
d352ac68 1386/*
dfba78dc
FM
1387 * Update each subvolume root and its relocation root, if it exists, in the tree
1388 * of tree roots. Also free log roots if they exist.
d352ac68 1389 */
7e4443d9 1390static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1391{
7e4443d9 1392 struct btrfs_fs_info *fs_info = trans->fs_info;
fc7cbcd4
DS
1393 struct btrfs_root *gang[8];
1394 int i;
1395 int ret;
54aa1f4d 1396
dfba78dc
FM
1397 /*
1398 * At this point no one can be using this transaction to modify any tree
1399 * and no one can start another transaction to modify any tree either.
1400 */
1401 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1402
fc7cbcd4
DS
1403 spin_lock(&fs_info->fs_roots_radix_lock);
1404 while (1) {
1405 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1406 (void **)gang, 0,
1407 ARRAY_SIZE(gang),
1408 BTRFS_ROOT_TRANS_TAG);
1409 if (ret == 0)
1410 break;
1411 for (i = 0; i < ret; i++) {
1412 struct btrfs_root *root = gang[i];
1413 int ret2;
1414
1415 /*
1416 * At this point we can neither have tasks logging inodes
1417 * from a root nor trying to commit a log tree.
1418 */
1419 ASSERT(atomic_read(&root->log_writers) == 0);
1420 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1421 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1422
1423 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1424 (unsigned long)root->root_key.objectid,
1425 BTRFS_ROOT_TRANS_TAG);
1426 spin_unlock(&fs_info->fs_roots_radix_lock);
1427
1428 btrfs_free_log(trans, root);
1429 ret2 = btrfs_update_reloc_root(trans, root);
1430 if (ret2)
1431 return ret2;
1432
1433 /* see comments in should_cow_block() */
1434 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1435 smp_mb__after_atomic();
1436
1437 if (root->commit_root != root->node) {
1438 list_add_tail(&root->dirty_list,
1439 &trans->transaction->switch_commits);
1440 btrfs_set_root_node(&root->root_item,
1441 root->node);
1442 }
48b36a60 1443
fc7cbcd4
DS
1444 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1445 &root->root_key,
1446 &root->root_item);
1447 if (ret2)
1448 return ret2;
1449 spin_lock(&fs_info->fs_roots_radix_lock);
1450 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1451 }
1452 }
fc7cbcd4 1453 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1454 return 0;
0f7d52f4
CM
1455}
1456
d352ac68 1457/*
de78b51a
ES
1458 * defrag a given btree.
1459 * Every leaf in the btree is read and defragged.
d352ac68 1460 */
de78b51a 1461int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1462{
1463 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1464 struct btrfs_trans_handle *trans;
8929ecfa 1465 int ret;
e9d0b13b 1466
27cdeb70 1467 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1468 return 0;
8929ecfa 1469
6b80053d 1470 while (1) {
8929ecfa 1471 trans = btrfs_start_transaction(root, 0);
6819703f
DS
1472 if (IS_ERR(trans)) {
1473 ret = PTR_ERR(trans);
1474 break;
1475 }
8929ecfa 1476
de78b51a 1477 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1478
3a45bb20 1479 btrfs_end_transaction(trans);
2ff7e61e 1480 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1481 cond_resched();
1482
ab8d0fc4 1483 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1484 break;
210549eb 1485
ab8d0fc4
JM
1486 if (btrfs_defrag_cancelled(info)) {
1487 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1488 ret = -EAGAIN;
1489 break;
1490 }
e9d0b13b 1491 }
27cdeb70 1492 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1493 return ret;
e9d0b13b
CM
1494}
1495
6426c7ad
QW
1496/*
1497 * Do all special snapshot related qgroup dirty hack.
1498 *
1499 * Will do all needed qgroup inherit and dirty hack like switch commit
1500 * roots inside one transaction and write all btree into disk, to make
1501 * qgroup works.
1502 */
1503static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1504 struct btrfs_root *src,
1505 struct btrfs_root *parent,
1506 struct btrfs_qgroup_inherit *inherit,
1507 u64 dst_objectid)
1508{
1509 struct btrfs_fs_info *fs_info = src->fs_info;
1510 int ret;
1511
1512 /*
1513 * Save some performance in the case that qgroups are not
1514 * enabled. If this check races with the ioctl, rescan will
1515 * kick in anyway.
1516 */
9ea6e2b5 1517 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1518 return 0;
6426c7ad 1519
4d31778a 1520 /*
52042d8e 1521 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1522 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1523 * recorded root will never be updated again, causing an outdated root
1524 * item.
1525 */
1c442d22
JB
1526 ret = record_root_in_trans(trans, src, 1);
1527 if (ret)
1528 return ret;
4d31778a 1529
2a4d84c1
JB
1530 /*
1531 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1532 * src root, so we must run the delayed refs here.
1533 *
1534 * However this isn't particularly fool proof, because there's no
1535 * synchronization keeping us from changing the tree after this point
1536 * before we do the qgroup_inherit, or even from making changes while
1537 * we're doing the qgroup_inherit. But that's a problem for the future,
1538 * for now flush the delayed refs to narrow the race window where the
1539 * qgroup counters could end up wrong.
1540 */
1541 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1542 if (ret) {
1543 btrfs_abort_transaction(trans, ret);
44365827 1544 return ret;
2a4d84c1
JB
1545 }
1546
7e4443d9 1547 ret = commit_fs_roots(trans);
6426c7ad
QW
1548 if (ret)
1549 goto out;
460fb20a 1550 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1551 if (ret < 0)
1552 goto out;
1553
1554 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1555 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1556 inherit);
1557 if (ret < 0)
1558 goto out;
1559
1560 /*
1561 * Now we do a simplified commit transaction, which will:
1562 * 1) commit all subvolume and extent tree
1563 * To ensure all subvolume and extent tree have a valid
1564 * commit_root to accounting later insert_dir_item()
1565 * 2) write all btree blocks onto disk
1566 * This is to make sure later btree modification will be cowed
1567 * Or commit_root can be populated and cause wrong qgroup numbers
1568 * In this simplified commit, we don't really care about other trees
1569 * like chunk and root tree, as they won't affect qgroup.
1570 * And we don't write super to avoid half committed status.
1571 */
9386d8bc 1572 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1573 if (ret)
1574 goto out;
889bfa39 1575 switch_commit_roots(trans);
70458a58 1576 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1577 if (ret)
f7af3934 1578 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1579 "Error while writing out transaction for qgroup");
1580
1581out:
6426c7ad
QW
1582 /*
1583 * Force parent root to be updated, as we recorded it before so its
1584 * last_trans == cur_transid.
1585 * Or it won't be committed again onto disk after later
1586 * insert_dir_item()
1587 */
1588 if (!ret)
1c442d22 1589 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1590 return ret;
1591}
1592
d352ac68
CM
1593/*
1594 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1595 * transaction commit. This does the actual creation.
1596 *
1597 * Note:
1598 * If the error which may affect the commitment of the current transaction
1599 * happens, we should return the error number. If the error which just affect
1600 * the creation of the pending snapshots, just return 0.
d352ac68 1601 */
80b6794d 1602static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1603 struct btrfs_pending_snapshot *pending)
1604{
08d50ca3
NB
1605
1606 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1607 struct btrfs_key key;
80b6794d 1608 struct btrfs_root_item *new_root_item;
3063d29f
CM
1609 struct btrfs_root *tree_root = fs_info->tree_root;
1610 struct btrfs_root *root = pending->root;
6bdb72de 1611 struct btrfs_root *parent_root;
98c9942a 1612 struct btrfs_block_rsv *rsv;
ab3c5c18 1613 struct inode *parent_inode = pending->dir;
42874b3d
MX
1614 struct btrfs_path *path;
1615 struct btrfs_dir_item *dir_item;
3063d29f 1616 struct extent_buffer *tmp;
925baedd 1617 struct extent_buffer *old;
95582b00 1618 struct timespec64 cur_time;
aec8030a 1619 int ret = 0;
d68fc57b 1620 u64 to_reserve = 0;
6bdb72de 1621 u64 index = 0;
a22285a6 1622 u64 objectid;
b83cc969 1623 u64 root_flags;
ab3c5c18
STD
1624 unsigned int nofs_flags;
1625 struct fscrypt_name fname;
3063d29f 1626
8546b570
DS
1627 ASSERT(pending->path);
1628 path = pending->path;
42874b3d 1629
b0c0ea63
DS
1630 ASSERT(pending->root_item);
1631 new_root_item = pending->root_item;
a22285a6 1632
ab3c5c18
STD
1633 /*
1634 * We're inside a transaction and must make sure that any potential
1635 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1636 * filesystem.
1637 */
1638 nofs_flags = memalloc_nofs_save();
1639 pending->error = fscrypt_setup_filename(parent_inode,
1640 &pending->dentry->d_name, 0,
1641 &fname);
1642 memalloc_nofs_restore(nofs_flags);
1643 if (pending->error)
1644 goto free_pending;
ab3c5c18 1645
543068a2 1646 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1647 if (pending->error)
ab3c5c18 1648 goto free_fname;
3063d29f 1649
d6726335
QW
1650 /*
1651 * Make qgroup to skip current new snapshot's qgroupid, as it is
1652 * accounted by later btrfs_qgroup_inherit().
1653 */
1654 btrfs_set_skip_qgroup(trans, objectid);
1655
147d256e 1656 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1657
1658 if (to_reserve > 0) {
9270501c 1659 pending->error = btrfs_block_rsv_add(fs_info,
aec8030a
MX
1660 &pending->block_rsv,
1661 to_reserve,
1662 BTRFS_RESERVE_NO_FLUSH);
1663 if (pending->error)
d6726335 1664 goto clear_skip_qgroup;
d68fc57b
YZ
1665 }
1666
3063d29f 1667 key.objectid = objectid;
a22285a6
YZ
1668 key.offset = (u64)-1;
1669 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1670
6fa9700e 1671 rsv = trans->block_rsv;
a22285a6 1672 trans->block_rsv = &pending->block_rsv;
2382c5cc 1673 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1674 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1675 trans->transid,
1676 trans->bytes_reserved, 1);
a22285a6 1677 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1678 ret = record_root_in_trans(trans, parent_root, 0);
1679 if (ret)
1680 goto fail;
c2050a45 1681 cur_time = current_time(parent_inode);
04b285f3 1682
3063d29f
CM
1683 /*
1684 * insert the directory item
1685 */
877574e2 1686 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
df9f2782
FM
1687 if (ret) {
1688 btrfs_abort_transaction(trans, ret);
1689 goto fail;
1690 }
42874b3d
MX
1691
1692 /* check if there is a file/dir which has the same name. */
1693 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1694 btrfs_ino(BTRFS_I(parent_inode)),
6db75318 1695 &fname.disk_name, 0);
42874b3d 1696 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1697 pending->error = -EEXIST;
aec8030a 1698 goto dir_item_existed;
42874b3d
MX
1699 } else if (IS_ERR(dir_item)) {
1700 ret = PTR_ERR(dir_item);
66642832 1701 btrfs_abort_transaction(trans, ret);
8732d44f 1702 goto fail;
79787eaa 1703 }
42874b3d 1704 btrfs_release_path(path);
52c26179 1705
e999376f
CM
1706 /*
1707 * pull in the delayed directory update
1708 * and the delayed inode item
1709 * otherwise we corrupt the FS during
1710 * snapshot
1711 */
e5c304e6 1712 ret = btrfs_run_delayed_items(trans);
8732d44f 1713 if (ret) { /* Transaction aborted */
66642832 1714 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1715 goto fail;
1716 }
e999376f 1717
f0118cb6
JB
1718 ret = record_root_in_trans(trans, root, 0);
1719 if (ret) {
1720 btrfs_abort_transaction(trans, ret);
1721 goto fail;
1722 }
6bdb72de
SW
1723 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1724 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1725 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1726
b83cc969
LZ
1727 root_flags = btrfs_root_flags(new_root_item);
1728 if (pending->readonly)
1729 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1730 else
1731 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1732 btrfs_set_root_flags(new_root_item, root_flags);
1733
8ea05e3a
AB
1734 btrfs_set_root_generation_v2(new_root_item,
1735 trans->transid);
807fc790 1736 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1737 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1738 BTRFS_UUID_SIZE);
70023da2
SB
1739 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1740 memset(new_root_item->received_uuid, 0,
1741 sizeof(new_root_item->received_uuid));
1742 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1743 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1744 btrfs_set_root_stransid(new_root_item, 0);
1745 btrfs_set_root_rtransid(new_root_item, 0);
1746 }
3cae210f
QW
1747 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1748 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1749 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1750
6bdb72de 1751 old = btrfs_lock_root_node(root);
9631e4cc
JB
1752 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1753 BTRFS_NESTING_COW);
79787eaa
JM
1754 if (ret) {
1755 btrfs_tree_unlock(old);
1756 free_extent_buffer(old);
66642832 1757 btrfs_abort_transaction(trans, ret);
8732d44f 1758 goto fail;
79787eaa 1759 }
49b25e05 1760
49b25e05 1761 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1762 /* clean up in any case */
6bdb72de
SW
1763 btrfs_tree_unlock(old);
1764 free_extent_buffer(old);
8732d44f 1765 if (ret) {
66642832 1766 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1767 goto fail;
1768 }
f1ebcc74 1769 /* see comments in should_cow_block() */
27cdeb70 1770 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1771 smp_wmb();
1772
6bdb72de 1773 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1774 /* record when the snapshot was created in key.offset */
1775 key.offset = trans->transid;
1776 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1777 btrfs_tree_unlock(tmp);
1778 free_extent_buffer(tmp);
8732d44f 1779 if (ret) {
66642832 1780 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1781 goto fail;
1782 }
6bdb72de 1783
a22285a6
YZ
1784 /*
1785 * insert root back/forward references
1786 */
6025c19f 1787 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1788 parent_root->root_key.objectid,
4a0cc7ca 1789 btrfs_ino(BTRFS_I(parent_inode)), index,
6db75318 1790 &fname.disk_name);
8732d44f 1791 if (ret) {
66642832 1792 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1793 goto fail;
1794 }
0660b5af 1795
a22285a6 1796 key.offset = (u64)-1;
2dfb1e43 1797 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1798 if (IS_ERR(pending->snap)) {
1799 ret = PTR_ERR(pending->snap);
2d892ccd 1800 pending->snap = NULL;
66642832 1801 btrfs_abort_transaction(trans, ret);
8732d44f 1802 goto fail;
79787eaa 1803 }
d68fc57b 1804
49b25e05 1805 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1806 if (ret) {
66642832 1807 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1808 goto fail;
1809 }
361048f5 1810
6426c7ad
QW
1811 /*
1812 * Do special qgroup accounting for snapshot, as we do some qgroup
1813 * snapshot hack to do fast snapshot.
1814 * To co-operate with that hack, we do hack again.
1815 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1816 */
1817 ret = qgroup_account_snapshot(trans, root, parent_root,
1818 pending->inherit, objectid);
1819 if (ret < 0)
1820 goto fail;
1821
6db75318
STD
1822 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1823 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1824 index);
42874b3d 1825 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1826 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1827 if (ret) {
66642832 1828 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1829 goto fail;
1830 }
42874b3d 1831
6ef06d27 1832 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
6db75318 1833 fname.disk_name.len * 2);
c1867eb3
DS
1834 parent_inode->i_mtime = current_time(parent_inode);
1835 parent_inode->i_ctime = parent_inode->i_mtime;
729f7961 1836 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1837 if (ret) {
66642832 1838 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1839 goto fail;
1840 }
807fc790
AS
1841 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1842 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1843 objectid);
dd5f9615 1844 if (ret) {
66642832 1845 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1846 goto fail;
1847 }
1848 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1849 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1850 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1851 objectid);
1852 if (ret && ret != -EEXIST) {
66642832 1853 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1854 goto fail;
1855 }
1856 }
d6726335 1857
3063d29f 1858fail:
aec8030a
MX
1859 pending->error = ret;
1860dir_item_existed:
98c9942a 1861 trans->block_rsv = rsv;
2382c5cc 1862 trans->bytes_reserved = 0;
d6726335
QW
1863clear_skip_qgroup:
1864 btrfs_clear_skip_qgroup(trans);
ab3c5c18
STD
1865free_fname:
1866 fscrypt_free_filename(&fname);
1867free_pending:
6fa9700e 1868 kfree(new_root_item);
b0c0ea63 1869 pending->root_item = NULL;
42874b3d 1870 btrfs_free_path(path);
8546b570
DS
1871 pending->path = NULL;
1872
49b25e05 1873 return ret;
3063d29f
CM
1874}
1875
d352ac68
CM
1876/*
1877 * create all the snapshots we've scheduled for creation
1878 */
08d50ca3 1879static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1880{
aec8030a 1881 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1882 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1883 int ret = 0;
3de4586c 1884
aec8030a
MX
1885 list_for_each_entry_safe(pending, next, head, list) {
1886 list_del(&pending->list);
08d50ca3 1887 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1888 if (ret)
1889 break;
1890 }
1891 return ret;
3de4586c
CM
1892}
1893
2ff7e61e 1894static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1895{
1896 struct btrfs_root_item *root_item;
1897 struct btrfs_super_block *super;
1898
0b246afa 1899 super = fs_info->super_copy;
5d4f98a2 1900
0b246afa 1901 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1902 super->chunk_root = root_item->bytenr;
1903 super->chunk_root_generation = root_item->generation;
1904 super->chunk_root_level = root_item->level;
5d4f98a2 1905
0b246afa 1906 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1907 super->root = root_item->bytenr;
1908 super->generation = root_item->generation;
1909 super->root_level = root_item->level;
0b246afa 1910 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1911 super->cache_generation = root_item->generation;
94846229
BB
1912 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1913 super->cache_generation = 0;
0b246afa 1914 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1915 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1916}
1917
f36f3042
CM
1918int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1919{
4a9d8bde 1920 struct btrfs_transaction *trans;
f36f3042 1921 int ret = 0;
4a9d8bde 1922
a4abeea4 1923 spin_lock(&info->trans_lock);
4a9d8bde
MX
1924 trans = info->running_transaction;
1925 if (trans)
1926 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1927 spin_unlock(&info->trans_lock);
f36f3042
CM
1928 return ret;
1929}
1930
8929ecfa
YZ
1931int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1932{
4a9d8bde 1933 struct btrfs_transaction *trans;
8929ecfa 1934 int ret = 0;
4a9d8bde 1935
a4abeea4 1936 spin_lock(&info->trans_lock);
4a9d8bde
MX
1937 trans = info->running_transaction;
1938 if (trans)
1939 ret = is_transaction_blocked(trans);
a4abeea4 1940 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1941 return ret;
1942}
1943
fdfbf020 1944void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 1945{
3a45bb20 1946 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1947 struct btrfs_transaction *cur_trans;
1948
fdfbf020
JB
1949 /* Kick the transaction kthread. */
1950 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1951 wake_up_process(fs_info->transaction_kthread);
bb9c12c9
SW
1952
1953 /* take transaction reference */
bb9c12c9 1954 cur_trans = trans->transaction;
9b64f57d 1955 refcount_inc(&cur_trans->use_count);
bb9c12c9 1956
3a45bb20 1957 btrfs_end_transaction(trans);
6fc4e354 1958
ae5d29d4
DS
1959 /*
1960 * Wait for the current transaction commit to start and block
1961 * subsequent transaction joins
1962 */
3e738c53 1963 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
ae5d29d4
DS
1964 wait_event(fs_info->transaction_blocked_wait,
1965 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1966 TRANS_ABORTED(cur_trans));
724e2315 1967 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1968}
1969
97cb39bb 1970static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1971{
97cb39bb 1972 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1973 struct btrfs_transaction *cur_trans = trans->transaction;
1974
b50fff81 1975 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1976
66642832 1977 btrfs_abort_transaction(trans, err);
7b8b92af 1978
0b246afa 1979 spin_lock(&fs_info->trans_lock);
66b6135b 1980
25d8c284
MX
1981 /*
1982 * If the transaction is removed from the list, it means this
1983 * transaction has been committed successfully, so it is impossible
1984 * to call the cleanup function.
1985 */
1986 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1987
0b246afa 1988 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1989 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1990 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
1991
1992 /*
1993 * The thread has already released the lockdep map as reader
1994 * already in btrfs_commit_transaction().
1995 */
1996 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
f094ac32
LB
1997 wait_event(cur_trans->writer_wait,
1998 atomic_read(&cur_trans->num_writers) == 1);
1999
0b246afa 2000 spin_lock(&fs_info->trans_lock);
d7096fc3 2001 }
061dde82
FM
2002
2003 /*
2004 * Now that we know no one else is still using the transaction we can
2005 * remove the transaction from the list of transactions. This avoids
2006 * the transaction kthread from cleaning up the transaction while some
2007 * other task is still using it, which could result in a use-after-free
2008 * on things like log trees, as it forces the transaction kthread to
2009 * wait for this transaction to be cleaned up by us.
2010 */
2011 list_del_init(&cur_trans->list);
2012
0b246afa 2013 spin_unlock(&fs_info->trans_lock);
49b25e05 2014
2ff7e61e 2015 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 2016
0b246afa
JM
2017 spin_lock(&fs_info->trans_lock);
2018 if (cur_trans == fs_info->running_transaction)
2019 fs_info->running_transaction = NULL;
2020 spin_unlock(&fs_info->trans_lock);
4a9d8bde 2021
e0228285 2022 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2023 sb_end_intwrite(fs_info->sb);
724e2315
JB
2024 btrfs_put_transaction(cur_trans);
2025 btrfs_put_transaction(cur_trans);
49b25e05 2026
2e4e97ab 2027 trace_btrfs_transaction_commit(fs_info);
49b25e05 2028
49b25e05
JM
2029 if (current->journal_info == trans)
2030 current->journal_info = NULL;
2d82a40a
FM
2031
2032 /*
2033 * If relocation is running, we can't cancel scrub because that will
2034 * result in a deadlock. Before relocating a block group, relocation
2035 * pauses scrub, then starts and commits a transaction before unpausing
2036 * scrub. If the transaction commit is being done by the relocation
2037 * task or triggered by another task and the relocation task is waiting
2038 * for the commit, and we end up here due to an error in the commit
2039 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2040 * asking for scrub to stop while having it asked to be paused higher
2041 * above in relocation code.
2042 */
2043 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2044 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2045
2046 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2047}
2048
c7cc64a9
DS
2049/*
2050 * Release reserved delayed ref space of all pending block groups of the
2051 * transaction and remove them from the list
2052 */
2053static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2054{
2055 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2056 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2057
2058 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2059 btrfs_delayed_refs_rsv_release(fs_info, 1);
2060 list_del_init(&block_group->bg_list);
2061 }
2062}
2063
88090ad3 2064static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2065{
ce8ea7cc 2066 /*
a0f0cf83 2067 * We use try_to_writeback_inodes_sb() here because if we used
ce8ea7cc
JB
2068 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2069 * Currently are holding the fs freeze lock, if we do an async flush
2070 * we'll do btrfs_join_transaction() and deadlock because we need to
2071 * wait for the fs freeze lock. Using the direct flushing we benefit
2072 * from already being in a transaction and our join_transaction doesn't
2073 * have to re-take the fs freeze lock.
a0f0cf83
FM
2074 *
2075 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2076 * if it can read lock sb->s_umount. It will always be able to lock it,
2077 * except when the filesystem is being unmounted or being frozen, but in
2078 * those cases sync_filesystem() is called, which results in calling
2079 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2080 * Note that we don't call writeback_inodes_sb() directly, because it
2081 * will emit a warning if sb->s_umount is not locked.
ce8ea7cc 2082 */
88090ad3 2083 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
a0f0cf83 2084 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2085 return 0;
2086}
2087
88090ad3 2088static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2089{
88090ad3 2090 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2091 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2092}
2093
28b21c55
FM
2094/*
2095 * Add a pending snapshot associated with the given transaction handle to the
2096 * respective handle. This must be called after the transaction commit started
2097 * and while holding fs_info->trans_lock.
2098 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2099 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2100 * returns an error.
2101 */
2102static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2103{
2104 struct btrfs_transaction *cur_trans = trans->transaction;
2105
2106 if (!trans->pending_snapshot)
2107 return;
2108
2109 lockdep_assert_held(&trans->fs_info->trans_lock);
2110 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2111
2112 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2113}
2114
e55958c8
IA
2115static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2116{
2117 fs_info->commit_stats.commit_count++;
2118 fs_info->commit_stats.last_commit_dur = interval;
2119 fs_info->commit_stats.max_commit_dur =
2120 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2121 fs_info->commit_stats.total_commit_dur += interval;
2122}
2123
3a45bb20 2124int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2125{
3a45bb20 2126 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2127 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2128 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2129 int ret;
e55958c8
IA
2130 ktime_t start_time;
2131 ktime_t interval;
79154b1b 2132
35b814f3 2133 ASSERT(refcount_read(&trans->use_count) == 1);
3e738c53 2134 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
35b814f3 2135
c52cc7b7
JB
2136 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2137
8d25a086 2138 /* Stop the commit early if ->aborted is set */
bf31f87f 2139 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2140 ret = cur_trans->aborted;
3e738c53 2141 goto lockdep_trans_commit_start_release;
25287e0a 2142 }
49b25e05 2143
f45c752b
JB
2144 btrfs_trans_release_metadata(trans);
2145 trans->block_rsv = NULL;
2146
56bec294 2147 /*
e19eb11f
JB
2148 * We only want one transaction commit doing the flushing so we do not
2149 * waste a bunch of time on lock contention on the extent root node.
56bec294 2150 */
e19eb11f
JB
2151 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2152 &cur_trans->delayed_refs.flags)) {
2153 /*
2154 * Make a pass through all the delayed refs we have so far.
2155 * Any running threads may add more while we are here.
2156 */
2157 ret = btrfs_run_delayed_refs(trans, 0);
3e738c53
IA
2158 if (ret)
2159 goto lockdep_trans_commit_start_release;
e19eb11f 2160 }
56bec294 2161
119e80df 2162 btrfs_create_pending_block_groups(trans);
ea658bad 2163
3204d33c 2164 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2165 int run_it = 0;
2166
2167 /* this mutex is also taken before trying to set
2168 * block groups readonly. We need to make sure
2169 * that nobody has set a block group readonly
2170 * after a extents from that block group have been
2171 * allocated for cache files. btrfs_set_block_group_ro
2172 * will wait for the transaction to commit if it
3204d33c 2173 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2174 *
3204d33c
JB
2175 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2176 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2177 * hurt to have more than one go through, but there's no
2178 * real advantage to it either.
2179 */
0b246afa 2180 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2181 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2182 &cur_trans->flags))
1bbc621e 2183 run_it = 1;
0b246afa 2184 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2185
f9cacae3 2186 if (run_it) {
21217054 2187 ret = btrfs_start_dirty_block_groups(trans);
3e738c53
IA
2188 if (ret)
2189 goto lockdep_trans_commit_start_release;
f9cacae3 2190 }
1bbc621e
CM
2191 }
2192
0b246afa 2193 spin_lock(&fs_info->trans_lock);
4a9d8bde 2194 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2195 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2196
28b21c55
FM
2197 add_pending_snapshot(trans);
2198
0b246afa 2199 spin_unlock(&fs_info->trans_lock);
9b64f57d 2200 refcount_inc(&cur_trans->use_count);
ccd467d6 2201
d0c2f4fa
FM
2202 if (trans->in_fsync)
2203 want_state = TRANS_STATE_SUPER_COMMITTED;
3e738c53
IA
2204
2205 btrfs_trans_state_lockdep_release(fs_info,
2206 BTRFS_LOCKDEP_TRANS_COMMIT_START);
d0c2f4fa
FM
2207 ret = btrfs_end_transaction(trans);
2208 wait_for_commit(cur_trans, want_state);
15ee9bc7 2209
bf31f87f 2210 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2211 ret = cur_trans->aborted;
2212
724e2315 2213 btrfs_put_transaction(cur_trans);
15ee9bc7 2214
49b25e05 2215 return ret;
79154b1b 2216 }
4313b399 2217
4a9d8bde 2218 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2219 wake_up(&fs_info->transaction_blocked_wait);
3e738c53 2220 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
bb9c12c9 2221
0b246afa 2222 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2223 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2224
2225 if (trans->in_fsync)
2226 want_state = TRANS_STATE_SUPER_COMMITTED;
2227
ccd467d6
CM
2228 prev_trans = list_entry(cur_trans->list.prev,
2229 struct btrfs_transaction, list);
d0c2f4fa 2230 if (prev_trans->state < want_state) {
9b64f57d 2231 refcount_inc(&prev_trans->use_count);
0b246afa 2232 spin_unlock(&fs_info->trans_lock);
ccd467d6 2233
d0c2f4fa
FM
2234 wait_for_commit(prev_trans, want_state);
2235
bf31f87f 2236 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2237
724e2315 2238 btrfs_put_transaction(prev_trans);
1f9b8c8f 2239 if (ret)
e1489b4f 2240 goto lockdep_release;
a4abeea4 2241 } else {
0b246afa 2242 spin_unlock(&fs_info->trans_lock);
ccd467d6 2243 }
a4abeea4 2244 } else {
0b246afa 2245 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2246 /*
2247 * The previous transaction was aborted and was already removed
2248 * from the list of transactions at fs_info->trans_list. So we
2249 * abort to prevent writing a new superblock that reflects a
2250 * corrupt state (pointing to trees with unwritten nodes/leafs).
2251 */
84961539 2252 if (BTRFS_FS_ERROR(fs_info)) {
cb2d3dad 2253 ret = -EROFS;
e1489b4f 2254 goto lockdep_release;
cb2d3dad 2255 }
ccd467d6 2256 }
15ee9bc7 2257
e55958c8
IA
2258 /*
2259 * Get the time spent on the work done by the commit thread and not
2260 * the time spent waiting on a previous commit
2261 */
2262 start_time = ktime_get_ns();
2263
0860adfd
MX
2264 extwriter_counter_dec(cur_trans, trans->type);
2265
88090ad3 2266 ret = btrfs_start_delalloc_flush(fs_info);
82436617 2267 if (ret)
e1489b4f 2268 goto lockdep_release;
82436617 2269
e5c304e6 2270 ret = btrfs_run_delayed_items(trans);
581227d0 2271 if (ret)
e1489b4f 2272 goto lockdep_release;
15ee9bc7 2273
5a9ba670
IA
2274 /*
2275 * The thread has started/joined the transaction thus it holds the
2276 * lockdep map as a reader. It has to release it before acquiring the
2277 * lockdep map as a writer.
2278 */
2279 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2280 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
581227d0
MX
2281 wait_event(cur_trans->writer_wait,
2282 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2283
581227d0 2284 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2285 ret = btrfs_run_delayed_items(trans);
e1489b4f
IA
2286 if (ret) {
2287 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
ca469637 2288 goto cleanup_transaction;
e1489b4f 2289 }
ca469637 2290
88090ad3 2291 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2292
48778179
FM
2293 /*
2294 * Wait for all ordered extents started by a fast fsync that joined this
2295 * transaction. Otherwise if this transaction commits before the ordered
2296 * extents complete we lose logged data after a power failure.
2297 */
8b53779e 2298 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
48778179
FM
2299 wait_event(cur_trans->pending_wait,
2300 atomic_read(&cur_trans->pending_ordered) == 0);
2301
2ff7e61e 2302 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2303 /*
2304 * Ok now we need to make sure to block out any other joins while we
2305 * commit the transaction. We could have started a join before setting
4a9d8bde 2306 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2307 */
0b246afa 2308 spin_lock(&fs_info->trans_lock);
28b21c55 2309 add_pending_snapshot(trans);
4a9d8bde 2310 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2311 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2312
2313 /*
2314 * The thread has started/joined the transaction thus it holds the
2315 * lockdep map as a reader. It has to release it before acquiring the
2316 * lockdep map as a writer.
2317 */
2318 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2319 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
ed0ca140
JB
2320 wait_event(cur_trans->writer_wait,
2321 atomic_read(&cur_trans->num_writers) == 1);
2322
3e738c53
IA
2323 /*
2324 * Make lockdep happy by acquiring the state locks after
2325 * btrfs_trans_num_writers is released. If we acquired the state locks
2326 * before releasing the btrfs_trans_num_writers lock then lockdep would
2327 * complain because we did not follow the reverse order unlocking rule.
2328 */
2329 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2330 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2331 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2332
fdfbf020
JB
2333 /*
2334 * We've started the commit, clear the flag in case we were triggered to
2335 * do an async commit but somebody else started before the transaction
2336 * kthread could do the work.
2337 */
2338 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2339
bf31f87f 2340 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2341 ret = cur_trans->aborted;
3e738c53 2342 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2343 goto scrub_continue;
2cba30f1 2344 }
7585717f
CM
2345 /*
2346 * the reloc mutex makes sure that we stop
2347 * the balancing code from coming in and moving
2348 * extents around in the middle of the commit
2349 */
0b246afa 2350 mutex_lock(&fs_info->reloc_mutex);
7585717f 2351
42874b3d
MX
2352 /*
2353 * We needn't worry about the delayed items because we will
2354 * deal with them in create_pending_snapshot(), which is the
2355 * core function of the snapshot creation.
2356 */
08d50ca3 2357 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2358 if (ret)
2359 goto unlock_reloc;
3063d29f 2360
42874b3d
MX
2361 /*
2362 * We insert the dir indexes of the snapshots and update the inode
2363 * of the snapshots' parents after the snapshot creation, so there
2364 * are some delayed items which are not dealt with. Now deal with
2365 * them.
2366 *
2367 * We needn't worry that this operation will corrupt the snapshots,
2368 * because all the tree which are snapshoted will be forced to COW
2369 * the nodes and leaves.
2370 */
e5c304e6 2371 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2372 if (ret)
2373 goto unlock_reloc;
16cdcec7 2374
c79a70b1 2375 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2376 if (ret)
2377 goto unlock_reloc;
56bec294 2378
e999376f
CM
2379 /*
2380 * make sure none of the code above managed to slip in a
2381 * delayed item
2382 */
ccdf9b30 2383 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2384
2c90e5d6 2385 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2386
7e4443d9 2387 ret = commit_fs_roots(trans);
56e9f6ea 2388 if (ret)
dfba78dc 2389 goto unlock_reloc;
54aa1f4d 2390
5d4f98a2 2391 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2392 * safe to free the root of tree log roots
2393 */
0b246afa 2394 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2395
0ed4792a
QW
2396 /*
2397 * Since fs roots are all committed, we can get a quite accurate
2398 * new_roots. So let's do quota accounting.
2399 */
460fb20a 2400 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea 2401 if (ret < 0)
dfba78dc 2402 goto unlock_reloc;
0ed4792a 2403
9386d8bc 2404 ret = commit_cowonly_roots(trans);
56e9f6ea 2405 if (ret)
dfba78dc 2406 goto unlock_reloc;
54aa1f4d 2407
2cba30f1
MX
2408 /*
2409 * The tasks which save the space cache and inode cache may also
2410 * update ->aborted, check it.
2411 */
bf31f87f 2412 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2413 ret = cur_trans->aborted;
dfba78dc 2414 goto unlock_reloc;
2cba30f1
MX
2415 }
2416
0b246afa 2417 cur_trans = fs_info->running_transaction;
5d4f98a2 2418
0b246afa
JM
2419 btrfs_set_root_node(&fs_info->tree_root->root_item,
2420 fs_info->tree_root->node);
2421 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2422 &cur_trans->switch_commits);
5d4f98a2 2423
0b246afa
JM
2424 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2425 fs_info->chunk_root->node);
2426 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2427 &cur_trans->switch_commits);
2428
f7238e50
JB
2429 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2430 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2431 fs_info->block_group_root->node);
2432 list_add_tail(&fs_info->block_group_root->dirty_list,
2433 &cur_trans->switch_commits);
2434 }
2435
889bfa39 2436 switch_commit_roots(trans);
5d4f98a2 2437
ce93ec54 2438 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2439 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2440 update_super_roots(fs_info);
e02119d5 2441
0b246afa
JM
2442 btrfs_set_super_log_root(fs_info->super_copy, 0);
2443 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2444 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2445 sizeof(*fs_info->super_copy));
ccd467d6 2446
bbbf7243 2447 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2448
0b246afa
JM
2449 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2450 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2451
4fbcdf66
FM
2452 btrfs_trans_release_chunk_metadata(trans);
2453
dfba78dc
FM
2454 /*
2455 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2456 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2457 * make sure that before we commit our superblock, no other task can
2458 * start a new transaction and commit a log tree before we commit our
2459 * superblock. Anyone trying to commit a log tree locks this mutex before
2460 * writing its superblock.
2461 */
2462 mutex_lock(&fs_info->tree_log_mutex);
2463
0b246afa 2464 spin_lock(&fs_info->trans_lock);
4a9d8bde 2465 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2466 fs_info->running_transaction = NULL;
2467 spin_unlock(&fs_info->trans_lock);
2468 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2469
0b246afa 2470 wake_up(&fs_info->transaction_wait);
3e738c53 2471 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
e6dcd2dc 2472
b7625f46
QW
2473 /* If we have features changed, wake up the cleaner to update sysfs. */
2474 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2475 fs_info->cleaner_kthread)
2476 wake_up_process(fs_info->cleaner_kthread);
2477
70458a58 2478 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2479 if (ret) {
0b246afa
JM
2480 btrfs_handle_fs_error(fs_info, ret,
2481 "Error while writing out transaction");
2482 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2483 goto scrub_continue;
49b25e05
JM
2484 }
2485
eece6a9c 2486 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2487 /*
2488 * the super is written, we can safely allow the tree-loggers
2489 * to go about their business
2490 */
0b246afa 2491 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2492 if (ret)
2493 goto scrub_continue;
e02119d5 2494
d0c2f4fa
FM
2495 /*
2496 * We needn't acquire the lock here because there is no other task
2497 * which can change it.
2498 */
2499 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2500 wake_up(&cur_trans->commit_wait);
3e738c53 2501 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
d0c2f4fa 2502
5ead2dd0 2503 btrfs_finish_extent_commit(trans);
4313b399 2504
3204d33c 2505 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2506 btrfs_clear_space_info_full(fs_info);
13212b54 2507
0b246afa 2508 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2509 /*
2510 * We needn't acquire the lock here because there is no other task
2511 * which can change it.
2512 */
2513 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2514 wake_up(&cur_trans->commit_wait);
3e738c53 2515 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
3de4586c 2516
0b246afa 2517 spin_lock(&fs_info->trans_lock);
13c5a93e 2518 list_del_init(&cur_trans->list);
0b246afa 2519 spin_unlock(&fs_info->trans_lock);
a4abeea4 2520
724e2315
JB
2521 btrfs_put_transaction(cur_trans);
2522 btrfs_put_transaction(cur_trans);
58176a96 2523
0860adfd 2524 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2525 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2526
2e4e97ab 2527 trace_btrfs_transaction_commit(fs_info);
1abe9b8a 2528
e55958c8
IA
2529 interval = ktime_get_ns() - start_time;
2530
2ff7e61e 2531 btrfs_scrub_continue(fs_info);
a2de733c 2532
9ed74f2d
JB
2533 if (current->journal_info == trans)
2534 current->journal_info = NULL;
2535
2c90e5d6 2536 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2537
e55958c8
IA
2538 update_commit_stats(fs_info, interval);
2539
79154b1b 2540 return ret;
49b25e05 2541
56e9f6ea
DS
2542unlock_reloc:
2543 mutex_unlock(&fs_info->reloc_mutex);
3e738c53 2544 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2545scrub_continue:
3e738c53
IA
2546 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2547 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2ff7e61e 2548 btrfs_scrub_continue(fs_info);
49b25e05 2549cleanup_transaction:
dc60c525 2550 btrfs_trans_release_metadata(trans);
c7cc64a9 2551 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2552 btrfs_trans_release_chunk_metadata(trans);
0e721106 2553 trans->block_rsv = NULL;
0b246afa 2554 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2555 if (current->journal_info == trans)
2556 current->journal_info = NULL;
97cb39bb 2557 cleanup_transaction(trans, ret);
49b25e05
JM
2558
2559 return ret;
e1489b4f
IA
2560
2561lockdep_release:
5a9ba670 2562 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f
IA
2563 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2564 goto cleanup_transaction;
3e738c53
IA
2565
2566lockdep_trans_commit_start_release:
2567 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2568 btrfs_end_transaction(trans);
2569 return ret;
79154b1b
CM
2570}
2571
d352ac68 2572/*
9d1a2a3a
DS
2573 * return < 0 if error
2574 * 0 if there are no more dead_roots at the time of call
2575 * 1 there are more to be processed, call me again
2576 *
2577 * The return value indicates there are certainly more snapshots to delete, but
2578 * if there comes a new one during processing, it may return 0. We don't mind,
2579 * because btrfs_commit_super will poke cleaner thread and it will process it a
2580 * few seconds later.
d352ac68 2581 */
33c44184 2582int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
e9d0b13b 2583{
33c44184 2584 struct btrfs_root *root;
9d1a2a3a 2585 int ret;
5d4f98a2 2586
a4abeea4 2587 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2588 if (list_empty(&fs_info->dead_roots)) {
2589 spin_unlock(&fs_info->trans_lock);
2590 return 0;
2591 }
2592 root = list_first_entry(&fs_info->dead_roots,
2593 struct btrfs_root, root_list);
cfad392b 2594 list_del_init(&root->root_list);
a4abeea4 2595 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2596
4fd786e6 2597 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2598
9d1a2a3a 2599 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2600
9d1a2a3a
DS
2601 if (btrfs_header_backref_rev(root->node) <
2602 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2603 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2604 else
0078a9f9 2605 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2606
dc9492c1 2607 btrfs_put_root(root);
6596a928 2608 return (ret < 0) ? 0 : 1;
e9d0b13b 2609}
572d9ab7 2610
fccf0c84
JB
2611/*
2612 * We only mark the transaction aborted and then set the file system read-only.
2613 * This will prevent new transactions from starting or trying to join this
2614 * one.
2615 *
2616 * This means that error recovery at the call site is limited to freeing
2617 * any local memory allocations and passing the error code up without
2618 * further cleanup. The transaction should complete as it normally would
2619 * in the call path but will return -EIO.
2620 *
2621 * We'll complete the cleanup in btrfs_end_transaction and
2622 * btrfs_commit_transaction.
2623 */
2624void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2625 const char *function,
2626 unsigned int line, int errno, bool first_hit)
2627{
2628 struct btrfs_fs_info *fs_info = trans->fs_info;
2629
2630 WRITE_ONCE(trans->aborted, errno);
2631 WRITE_ONCE(trans->transaction->aborted, errno);
2632 if (first_hit && errno == -ENOSPC)
2633 btrfs_dump_space_info_for_trans_abort(fs_info);
2634 /* Wake up anybody who may be waiting on this transaction */
2635 wake_up(&fs_info->transaction_wait);
2636 wake_up(&fs_info->transaction_blocked_wait);
2637 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2638}
2639
956504a3
JB
2640int __init btrfs_transaction_init(void)
2641{
2642 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2643 sizeof(struct btrfs_trans_handle), 0,
2644 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2645 if (!btrfs_trans_handle_cachep)
2646 return -ENOMEM;
2647 return 0;
2648}
2649
2650void __cold btrfs_transaction_exit(void)
2651{
2652 kmem_cache_destroy(btrfs_trans_handle_cachep);
2653}