btrfs: qgroup: always free reserved space for extent records
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
ab3c5c18 9#include <linux/sched/mm.h>
d3c2fdcf 10#include <linux/writeback.h>
5f39d397 11#include <linux/pagemap.h>
5f2cc086 12#include <linux/blkdev.h>
8ea05e3a 13#include <linux/uuid.h>
e55958c8 14#include <linux/timekeeping.h>
602cbe91 15#include "misc.h"
79154b1b
CM
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
925baedd 19#include "locking.h"
e02119d5 20#include "tree-log.h"
733f4fbb 21#include "volumes.h"
8dabb742 22#include "dev-replace.h"
fcebe456 23#include "qgroup.h"
aac0023c 24#include "block-group.h"
9c343784 25#include "space-info.h"
c7f13d42 26#include "fs.h"
07e81dc9 27#include "accessors.h"
a0231804 28#include "extent-tree.h"
45c40c8f 29#include "root-tree.h"
f2b39277 30#include "dir-item.h"
c7a03b52 31#include "uuid-tree.h"
7572dec8 32#include "ioctl.h"
67707479 33#include "relocation.h"
2fc6822c 34#include "scrub.h"
79154b1b 35
956504a3
JB
36static struct kmem_cache *btrfs_trans_handle_cachep;
37
61c047b5
QW
38/*
39 * Transaction states and transitions
40 *
41 * No running transaction (fs tree blocks are not modified)
42 * |
43 * | To next stage:
44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45 * V
46 * Transaction N [[TRANS_STATE_RUNNING]]
47 * |
48 * | New trans handles can be attached to transaction N by calling all
49 * | start_transaction() variants.
50 * |
51 * | To next stage:
52 * | Call btrfs_commit_transaction() on any trans handle attached to
53 * | transaction N
54 * V
77d20c68
JB
55 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56 * |
57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58 * | the race and the rest will wait for the winner to commit the transaction.
59 * |
60 * | The winner will wait for previous running transaction to completely finish
61 * | if there is one.
61c047b5 62 * |
77d20c68 63 * Transaction N [[TRANS_STATE_COMMIT_START]]
61c047b5 64 * |
77d20c68 65 * | Then one of the following happens:
61c047b5
QW
66 * | - Wait for all other trans handle holders to release.
67 * | The btrfs_commit_transaction() caller will do the commit work.
68 * | - Wait for current transaction to be committed by others.
69 * | Other btrfs_commit_transaction() caller will do the commit work.
70 * |
71 * | At this stage, only btrfs_join_transaction*() variants can attach
72 * | to this running transaction.
73 * | All other variants will wait for current one to finish and attach to
74 * | transaction N+1.
75 * |
76 * | To next stage:
77 * | Caller is chosen to commit transaction N, and all other trans handle
78 * | haven been released.
79 * V
80 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81 * |
82 * | The heavy lifting transaction work is started.
83 * | From running delayed refs (modifying extent tree) to creating pending
84 * | snapshots, running qgroups.
85 * | In short, modify supporting trees to reflect modifications of subvolume
86 * | trees.
87 * |
88 * | At this stage, all start_transaction() calls will wait for this
89 * | transaction to finish and attach to transaction N+1.
90 * |
91 * | To next stage:
92 * | Until all supporting trees are updated.
93 * V
94 * Transaction N [[TRANS_STATE_UNBLOCKED]]
95 * | Transaction N+1
96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
97 * | need to write them back to disk and update |
98 * | super blocks. |
99 * | |
100 * | At this stage, new transaction is allowed to |
101 * | start. |
102 * | All new start_transaction() calls will be |
103 * | attached to transid N+1. |
104 * | |
105 * | To next stage: |
106 * | Until all tree blocks are super blocks are |
107 * | written to block devices |
108 * V |
109 * Transaction N [[TRANS_STATE_COMPLETED]] V
110 * All tree blocks and super blocks are written. Transaction N+1
111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
112 * data structures will be cleaned up. | Life goes on
113 */
e8c9f186 114static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 115 [TRANS_STATE_RUNNING] = 0U,
77d20c68 116 [TRANS_STATE_COMMIT_PREP] = 0U,
bcf3a3e7
NB
117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 119 __TRANS_ATTACH |
a6d155d2
FM
120 __TRANS_JOIN |
121 __TRANS_JOIN_NOSTART),
bcf3a3e7 122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
123 __TRANS_ATTACH |
124 __TRANS_JOIN |
a6d155d2
FM
125 __TRANS_JOIN_NOLOCK |
126 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
128 __TRANS_ATTACH |
129 __TRANS_JOIN |
130 __TRANS_JOIN_NOLOCK |
131 __TRANS_JOIN_NOSTART),
bcf3a3e7 132 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
133 __TRANS_ATTACH |
134 __TRANS_JOIN |
a6d155d2
FM
135 __TRANS_JOIN_NOLOCK |
136 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
137};
138
724e2315 139void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 140{
9b64f57d
ER
141 WARN_ON(refcount_read(&transaction->use_count) == 0);
142 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 143 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
144 WARN_ON(!RB_EMPTY_ROOT(
145 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
146 WARN_ON(!RB_EMPTY_ROOT(
147 &transaction->delayed_refs.dirty_extent_root));
1262133b 148 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
149 btrfs_err(transaction->fs_info,
150 "pending csums is %llu",
151 transaction->delayed_refs.pending_csums);
7785a663
FM
152 /*
153 * If any block groups are found in ->deleted_bgs then it's
154 * because the transaction was aborted and a commit did not
155 * happen (things failed before writing the new superblock
156 * and calling btrfs_finish_extent_commit()), so we can not
157 * discard the physical locations of the block groups.
158 */
159 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 160 struct btrfs_block_group *cache;
7785a663
FM
161
162 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 163 struct btrfs_block_group,
7785a663
FM
164 bg_list);
165 list_del_init(&cache->bg_list);
6b7304af 166 btrfs_unfreeze_block_group(cache);
7785a663
FM
167 btrfs_put_block_group(cache);
168 }
bbbf7243 169 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 170 kfree(transaction);
78fae27e 171 }
79154b1b
CM
172}
173
889bfa39 174static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 175{
889bfa39 176 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 177 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
178 struct btrfs_root *root, *tmp;
179
dfba78dc
FM
180 /*
181 * At this point no one can be using this transaction to modify any tree
182 * and no one can start another transaction to modify any tree either.
183 */
184 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
185
9e351cc8 186 down_write(&fs_info->commit_root_sem);
d96b3424
FM
187
188 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
189 fs_info->last_reloc_trans = trans->transid;
190
889bfa39 191 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
192 dirty_list) {
193 list_del_init(&root->dirty_list);
194 free_extent_buffer(root->commit_root);
195 root->commit_root = btrfs_root_node(root);
41e7acd3 196 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 197 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 198 }
2b9dbef2
JB
199
200 /* We can free old roots now. */
889bfa39
JB
201 spin_lock(&cur_trans->dropped_roots_lock);
202 while (!list_empty(&cur_trans->dropped_roots)) {
203 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
204 struct btrfs_root, root_list);
205 list_del_init(&root->root_list);
889bfa39
JB
206 spin_unlock(&cur_trans->dropped_roots_lock);
207 btrfs_free_log(trans, root);
2b9dbef2 208 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 209 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 210 }
889bfa39 211 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62 212
9e351cc8 213 up_write(&fs_info->commit_root_sem);
817d52f8
JB
214}
215
0860adfd
MX
216static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
217 unsigned int type)
218{
219 if (type & TRANS_EXTWRITERS)
220 atomic_inc(&trans->num_extwriters);
221}
222
223static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
224 unsigned int type)
225{
226 if (type & TRANS_EXTWRITERS)
227 atomic_dec(&trans->num_extwriters);
228}
229
230static inline void extwriter_counter_init(struct btrfs_transaction *trans,
231 unsigned int type)
232{
233 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
234}
235
236static inline int extwriter_counter_read(struct btrfs_transaction *trans)
237{
238 return atomic_read(&trans->num_extwriters);
178260b2
MX
239}
240
fb6dea26 241/*
79bd3712
FM
242 * To be called after doing the chunk btree updates right after allocating a new
243 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
244 * chunk after all chunk btree updates and after finishing the second phase of
245 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
246 * group had its chunk item insertion delayed to the second phase.
fb6dea26
JB
247 */
248void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
249{
250 struct btrfs_fs_info *fs_info = trans->fs_info;
251
252 if (!trans->chunk_bytes_reserved)
253 return;
254
fb6dea26 255 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 256 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
257 trans->chunk_bytes_reserved = 0;
258}
259
d352ac68
CM
260/*
261 * either allocate a new transaction or hop into the existing one
262 */
2ff7e61e
JM
263static noinline int join_transaction(struct btrfs_fs_info *fs_info,
264 unsigned int type)
79154b1b
CM
265{
266 struct btrfs_transaction *cur_trans;
a4abeea4 267
19ae4e81 268 spin_lock(&fs_info->trans_lock);
d43317dc 269loop:
49b25e05 270 /* The file system has been taken offline. No new transactions. */
84961539 271 if (BTRFS_FS_ERROR(fs_info)) {
19ae4e81 272 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
273 return -EROFS;
274 }
275
19ae4e81 276 cur_trans = fs_info->running_transaction;
a4abeea4 277 if (cur_trans) {
bf31f87f 278 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 279 spin_unlock(&fs_info->trans_lock);
49b25e05 280 return cur_trans->aborted;
871383be 281 }
4a9d8bde 282 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
283 spin_unlock(&fs_info->trans_lock);
284 return -EBUSY;
285 }
9b64f57d 286 refcount_inc(&cur_trans->use_count);
13c5a93e 287 atomic_inc(&cur_trans->num_writers);
0860adfd 288 extwriter_counter_inc(cur_trans, type);
19ae4e81 289 spin_unlock(&fs_info->trans_lock);
e1489b4f 290 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 291 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
a4abeea4 292 return 0;
79154b1b 293 }
19ae4e81 294 spin_unlock(&fs_info->trans_lock);
a4abeea4 295
354aa0fb 296 /*
4490e803
FM
297 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
298 * current transaction, and commit it. If there is no transaction, just
299 * return ENOENT.
354aa0fb 300 */
4490e803 301 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
354aa0fb
MX
302 return -ENOENT;
303
4a9d8bde
MX
304 /*
305 * JOIN_NOLOCK only happens during the transaction commit, so
306 * it is impossible that ->running_transaction is NULL
307 */
308 BUG_ON(type == TRANS_JOIN_NOLOCK);
309
4b5faeac 310 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
311 if (!cur_trans)
312 return -ENOMEM;
d43317dc 313
e1489b4f 314 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 315 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
e1489b4f 316
19ae4e81
JS
317 spin_lock(&fs_info->trans_lock);
318 if (fs_info->running_transaction) {
d43317dc
CM
319 /*
320 * someone started a transaction after we unlocked. Make sure
4a9d8bde 321 * to redo the checks above
d43317dc 322 */
5a9ba670 323 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 324 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 325 kfree(cur_trans);
d43317dc 326 goto loop;
84961539 327 } else if (BTRFS_FS_ERROR(fs_info)) {
e4b50e14 328 spin_unlock(&fs_info->trans_lock);
5a9ba670 329 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 331 kfree(cur_trans);
7b8b92af 332 return -EROFS;
79154b1b 333 }
d43317dc 334
ab8d0fc4 335 cur_trans->fs_info = fs_info;
48778179
FM
336 atomic_set(&cur_trans->pending_ordered, 0);
337 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 338 atomic_set(&cur_trans->num_writers, 1);
0860adfd 339 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
340 init_waitqueue_head(&cur_trans->writer_wait);
341 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 342 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
343 /*
344 * One for this trans handle, one so it will live on until we
345 * commit the transaction.
346 */
9b64f57d 347 refcount_set(&cur_trans->use_count, 2);
3204d33c 348 cur_trans->flags = 0;
afd48513 349 cur_trans->start_time = ktime_get_seconds();
a4abeea4 350
a099d0fd
AM
351 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
352
5c9d028b 353 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 354 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 355 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
356
357 /*
358 * although the tree mod log is per file system and not per transaction,
359 * the log must never go across transaction boundaries.
360 */
361 smp_mb();
31b1a2bd 362 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 363 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 364 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 365 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 366 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 367
a4abeea4
JB
368 spin_lock_init(&cur_trans->delayed_refs.lock);
369
370 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 371 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 372 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 373 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 374 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 375 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 376 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 377 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 378 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 379 spin_lock_init(&cur_trans->dropped_roots_lock);
19ae4e81 380 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 381 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
35da5a7e 382 IO_TREE_TRANS_DIRTY_PAGES);
fe119a6e 383 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
35da5a7e 384 IO_TREE_FS_PINNED_EXTENTS);
4a4f8fe2 385 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
19ae4e81
JS
386 cur_trans->transid = fs_info->generation;
387 fs_info->running_transaction = cur_trans;
49b25e05 388 cur_trans->aborted = 0;
19ae4e81 389 spin_unlock(&fs_info->trans_lock);
15ee9bc7 390
79154b1b
CM
391 return 0;
392}
393
d352ac68 394/*
92a7cc42
QW
395 * This does all the record keeping required to make sure that a shareable root
396 * is properly recorded in a given transaction. This is required to make sure
397 * the old root from before we joined the transaction is deleted when the
398 * transaction commits.
d352ac68 399 */
7585717f 400static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
401 struct btrfs_root *root,
402 int force)
6702ed49 403{
0b246afa 404 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 405 int ret = 0;
0b246afa 406
92a7cc42 407 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 408 root->last_trans < trans->transid) || force) {
4d31778a 409 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 410
7585717f 411 /*
27cdeb70 412 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
413 * we have the reloc mutex held now, so there
414 * is only one writer in this function
415 */
27cdeb70 416 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 417
27cdeb70 418 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
419 * they find our root->last_trans update
420 */
421 smp_wmb();
422
fc7cbcd4 423 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 424 if (root->last_trans == trans->transid && !force) {
fc7cbcd4 425 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
426 return 0;
427 }
fc7cbcd4
DS
428 radix_tree_tag_set(&fs_info->fs_roots_radix,
429 (unsigned long)root->root_key.objectid,
430 BTRFS_ROOT_TRANS_TAG);
431 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
432 root->last_trans = trans->transid;
433
434 /* this is pretty tricky. We don't want to
435 * take the relocation lock in btrfs_record_root_in_trans
436 * unless we're really doing the first setup for this root in
437 * this transaction.
438 *
439 * Normally we'd use root->last_trans as a flag to decide
440 * if we want to take the expensive mutex.
441 *
442 * But, we have to set root->last_trans before we
443 * init the relocation root, otherwise, we trip over warnings
444 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 445 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
446 * fixing up the reloc trees and everyone must wait.
447 *
448 * When this is zero, they can trust root->last_trans and fly
449 * through btrfs_record_root_in_trans without having to take the
450 * lock. smp_wmb() makes sure that all the writes above are
451 * done before we pop in the zero below
452 */
03a7e111 453 ret = btrfs_init_reloc_root(trans, root);
c7548af6 454 smp_mb__before_atomic();
27cdeb70 455 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 456 }
03a7e111 457 return ret;
5d4f98a2 458}
bcc63abb 459
7585717f 460
2b9dbef2
JB
461void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
462 struct btrfs_root *root)
463{
0b246afa 464 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
465 struct btrfs_transaction *cur_trans = trans->transaction;
466
467 /* Add ourselves to the transaction dropped list */
468 spin_lock(&cur_trans->dropped_roots_lock);
469 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
470 spin_unlock(&cur_trans->dropped_roots_lock);
471
472 /* Make sure we don't try to update the root at commit time */
fc7cbcd4
DS
473 spin_lock(&fs_info->fs_roots_radix_lock);
474 radix_tree_tag_clear(&fs_info->fs_roots_radix,
475 (unsigned long)root->root_key.objectid,
476 BTRFS_ROOT_TRANS_TAG);
477 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
478}
479
7585717f
CM
480int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root)
482{
0b246afa 483 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 484 int ret;
0b246afa 485
92a7cc42 486 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
487 return 0;
488
489 /*
27cdeb70 490 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
491 * and barriers
492 */
493 smp_rmb();
494 if (root->last_trans == trans->transid &&
27cdeb70 495 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
496 return 0;
497
0b246afa 498 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 499 ret = record_root_in_trans(trans, root, 0);
0b246afa 500 mutex_unlock(&fs_info->reloc_mutex);
7585717f 501
1409e6cc 502 return ret;
7585717f
CM
503}
504
4a9d8bde
MX
505static inline int is_transaction_blocked(struct btrfs_transaction *trans)
506{
3296bf56 507 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 508 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 509 !TRANS_ABORTED(trans));
4a9d8bde
MX
510}
511
d352ac68
CM
512/* wait for commit against the current transaction to become unblocked
513 * when this is done, it is safe to start a new transaction, but the current
514 * transaction might not be fully on disk.
515 */
2ff7e61e 516static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 517{
f9295749 518 struct btrfs_transaction *cur_trans;
79154b1b 519
0b246afa
JM
520 spin_lock(&fs_info->trans_lock);
521 cur_trans = fs_info->running_transaction;
4a9d8bde 522 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 523 refcount_inc(&cur_trans->use_count);
0b246afa 524 spin_unlock(&fs_info->trans_lock);
72d63ed6 525
3e738c53 526 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
0b246afa 527 wait_event(fs_info->transaction_wait,
501407aa 528 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 529 TRANS_ABORTED(cur_trans));
724e2315 530 btrfs_put_transaction(cur_trans);
a4abeea4 531 } else {
0b246afa 532 spin_unlock(&fs_info->trans_lock);
f9295749 533 }
37d1aeee
CM
534}
535
2ff7e61e 536static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 537{
0b246afa 538 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
539 return 0;
540
92e2f7e3 541 if (type == TRANS_START)
a22285a6 542 return 1;
a4abeea4 543
a22285a6
YZ
544 return 0;
545}
546
20dd2cbf
MX
547static inline bool need_reserve_reloc_root(struct btrfs_root *root)
548{
0b246afa
JM
549 struct btrfs_fs_info *fs_info = root->fs_info;
550
551 if (!fs_info->reloc_ctl ||
92a7cc42 552 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
553 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
554 root->reloc_root)
555 return false;
556
557 return true;
558}
559
28270e25
FM
560static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
561 enum btrfs_reserve_flush_enum flush,
562 u64 num_bytes,
563 u64 *delayed_refs_bytes)
564{
28270e25 565 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
2f6397e4 566 u64 bytes = num_bytes + *delayed_refs_bytes;
28270e25
FM
567 int ret;
568
28270e25
FM
569 /*
570 * We want to reserve all the bytes we may need all at once, so we only
571 * do 1 enospc flushing cycle per transaction start.
572 */
573 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
28270e25
FM
574
575 /*
576 * If we are an emergency flush, which can steal from the global block
577 * reserve, then attempt to not reserve space for the delayed refs, as
578 * we will consume space for them from the global block reserve.
579 */
2f6397e4 580 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
28270e25
FM
581 bytes -= *delayed_refs_bytes;
582 *delayed_refs_bytes = 0;
583 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
584 }
585
586 return ret;
587}
588
08e007d2 589static struct btrfs_trans_handle *
5aed1dd8 590start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
591 unsigned int type, enum btrfs_reserve_flush_enum flush,
592 bool enforce_qgroups)
37d1aeee 593{
0b246afa 594 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 595 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
28270e25 596 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
a22285a6
YZ
597 struct btrfs_trans_handle *h;
598 struct btrfs_transaction *cur_trans;
b5009945 599 u64 num_bytes = 0;
c5567237 600 u64 qgroup_reserved = 0;
28270e25 601 u64 delayed_refs_bytes = 0;
20dd2cbf 602 bool reloc_reserved = false;
9c343784 603 bool do_chunk_alloc = false;
20dd2cbf 604 int ret;
acce952b 605
84961539 606 if (BTRFS_FS_ERROR(fs_info))
acce952b 607 return ERR_PTR(-EROFS);
2a1eb461 608
46c4e71e 609 if (current->journal_info) {
0860adfd 610 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 611 h = current->journal_info;
b50fff81
DS
612 refcount_inc(&h->use_count);
613 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
614 h->orig_rsv = h->block_rsv;
615 h->block_rsv = NULL;
616 goto got_it;
617 }
b5009945
JB
618
619 /*
620 * Do the reservation before we join the transaction so we can do all
621 * the appropriate flushing if need be.
622 */
003d7c59 623 if (num_items && root != fs_info->chunk_root) {
0b246afa 624 qgroup_reserved = num_items * fs_info->nodesize;
a6496849
BB
625 /*
626 * Use prealloc for now, as there might be a currently running
627 * transaction that could free this reserved space prematurely
628 * by committing.
629 */
630 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
631 enforce_qgroups, false);
7174109c
QW
632 if (ret)
633 return ERR_PTR(ret);
c5567237 634
28270e25 635 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
ba2c4d4e 636 /*
28270e25
FM
637 * If we plan to insert/update/delete "num_items" from a btree,
638 * we will also generate delayed refs for extent buffers in the
639 * respective btree paths, so reserve space for the delayed refs
640 * that will be generated by the caller as it modifies btrees.
641 * Try to reserve them to avoid excessive use of the global
642 * block reserve.
ba2c4d4e 643 */
28270e25 644 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
ba2c4d4e 645
20dd2cbf
MX
646 /*
647 * Do the reservation for the relocation root creation
648 */
ee39b432 649 if (need_reserve_reloc_root(root)) {
0b246afa 650 num_bytes += fs_info->nodesize;
20dd2cbf
MX
651 reloc_reserved = true;
652 }
653
28270e25
FM
654 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
655 &delayed_refs_bytes);
ba2c4d4e
JB
656 if (ret)
657 goto reserve_fail;
9c343784 658
28270e25
FM
659 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
660
661 if (trans_rsv->space_info->force_alloc)
9c343784 662 do_chunk_alloc = true;
ba2c4d4e 663 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 664 !btrfs_block_rsv_full(delayed_refs_rsv)) {
ba2c4d4e
JB
665 /*
666 * Some people call with btrfs_start_transaction(root, 0)
667 * because they can be throttled, but have some other mechanism
668 * for reserving space. We still want these guys to refill the
669 * delayed block_rsv so just add 1 items worth of reservation
670 * here.
671 */
672 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 673 if (ret)
843fcf35 674 goto reserve_fail;
b5009945 675 }
a22285a6 676again:
f2f767e7 677 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
678 if (!h) {
679 ret = -ENOMEM;
680 goto alloc_fail;
681 }
37d1aeee 682
98114659
JB
683 /*
684 * If we are JOIN_NOLOCK we're already committing a transaction and
685 * waiting on this guy, so we don't need to do the sb_start_intwrite
686 * because we're already holding a ref. We need this because we could
687 * have raced in and did an fsync() on a file which can kick a commit
688 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
689 *
690 * If we are ATTACH, it means we just want to catch the current
691 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 692 */
0860adfd 693 if (type & __TRANS_FREEZABLE)
0b246afa 694 sb_start_intwrite(fs_info->sb);
b2b5ef5c 695
2ff7e61e
JM
696 if (may_wait_transaction(fs_info, type))
697 wait_current_trans(fs_info);
a22285a6 698
a4abeea4 699 do {
2ff7e61e 700 ret = join_transaction(fs_info, type);
178260b2 701 if (ret == -EBUSY) {
2ff7e61e 702 wait_current_trans(fs_info);
a6d155d2
FM
703 if (unlikely(type == TRANS_ATTACH ||
704 type == TRANS_JOIN_NOSTART))
178260b2
MX
705 ret = -ENOENT;
706 }
a4abeea4
JB
707 } while (ret == -EBUSY);
708
a43f7f82 709 if (ret < 0)
843fcf35 710 goto join_fail;
0f7d52f4 711
0b246afa 712 cur_trans = fs_info->running_transaction;
a22285a6
YZ
713
714 h->transid = cur_trans->transid;
715 h->transaction = cur_trans;
b50fff81 716 refcount_set(&h->use_count, 1);
64b63580 717 h->fs_info = root->fs_info;
7174109c 718
a698d075 719 h->type = type;
ea658bad 720 INIT_LIST_HEAD(&h->new_bgs);
28270e25 721 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
b7ec40d7 722
a22285a6 723 smp_mb();
3296bf56 724 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 725 may_wait_transaction(fs_info, type)) {
abdd2e80 726 current->journal_info = h;
3a45bb20 727 btrfs_commit_transaction(h);
a22285a6
YZ
728 goto again;
729 }
730
b5009945 731 if (num_bytes) {
0b246afa 732 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 733 h->transid, num_bytes, 1);
28270e25 734 h->block_rsv = trans_rsv;
b5009945 735 h->bytes_reserved = num_bytes;
28270e25
FM
736 if (delayed_refs_bytes > 0) {
737 trace_btrfs_space_reservation(fs_info,
738 "local_delayed_refs_rsv",
739 h->transid,
740 delayed_refs_bytes, 1);
741 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
742 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
743 delayed_refs_bytes = 0;
744 }
20dd2cbf 745 h->reloc_reserved = reloc_reserved;
a22285a6 746 }
9ed74f2d 747
a6496849
BB
748 /*
749 * Now that we have found a transaction to be a part of, convert the
750 * qgroup reservation from prealloc to pertrans. A different transaction
751 * can't race in and free our pertrans out from under us.
752 */
753 if (qgroup_reserved)
754 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
755
2a1eb461 756got_it:
bcf3a3e7 757 if (!current->journal_info)
a22285a6 758 current->journal_info = h;
fcc99734 759
9c343784
JB
760 /*
761 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
762 * ALLOC_FORCE the first run through, and then we won't allocate for
763 * anybody else who races in later. We don't care about the return
764 * value here.
765 */
766 if (do_chunk_alloc && num_bytes) {
767 u64 flags = h->block_rsv->space_info->flags;
768
769 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
770 CHUNK_ALLOC_NO_FORCE);
771 }
772
fcc99734
QW
773 /*
774 * btrfs_record_root_in_trans() needs to alloc new extents, and may
775 * call btrfs_join_transaction() while we're also starting a
776 * transaction.
777 *
778 * Thus it need to be called after current->journal_info initialized,
779 * or we can deadlock.
780 */
68075ea8
JB
781 ret = btrfs_record_root_in_trans(h, root);
782 if (ret) {
783 /*
784 * The transaction handle is fully initialized and linked with
785 * other structures so it needs to be ended in case of errors,
786 * not just freed.
787 */
788 btrfs_end_transaction(h);
789 return ERR_PTR(ret);
790 }
fcc99734 791
79154b1b 792 return h;
843fcf35
MX
793
794join_fail:
0860adfd 795 if (type & __TRANS_FREEZABLE)
0b246afa 796 sb_end_intwrite(fs_info->sb);
843fcf35
MX
797 kmem_cache_free(btrfs_trans_handle_cachep, h);
798alloc_fail:
799 if (num_bytes)
28270e25
FM
800 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
801 if (delayed_refs_bytes)
802 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
803 delayed_refs_bytes);
843fcf35 804reserve_fail:
a6496849 805 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
843fcf35 806 return ERR_PTR(ret);
79154b1b
CM
807}
808
f9295749 809struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 810 unsigned int num_items)
f9295749 811{
08e007d2 812 return start_transaction(root, num_items, TRANS_START,
003d7c59 813 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 814}
003d7c59 815
8eab77ff
FM
816struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
817 struct btrfs_root *root,
7f9fe614 818 unsigned int num_items)
8eab77ff 819{
7f9fe614
JB
820 return start_transaction(root, num_items, TRANS_START,
821 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 822}
8407aa46 823
7a7eaa40 824struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 825{
003d7c59
JM
826 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
827 true);
f9295749
CM
828}
829
8d510121 830struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 831{
575a75d6 832 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 833 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
834}
835
a6d155d2
FM
836/*
837 * Similar to regular join but it never starts a transaction when none is
19288951
FM
838 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
839 * This is similar to btrfs_attach_transaction() but it allows the join to
840 * happen if the transaction commit already started but it's not yet in the
841 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
a6d155d2
FM
842 */
843struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
844{
845 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
846 BTRFS_RESERVE_NO_FLUSH, true);
847}
848
d4edf39b 849/*
9580503b 850 * Catch the running transaction.
d4edf39b
MX
851 *
852 * It is used when we want to commit the current the transaction, but
853 * don't want to start a new one.
854 *
855 * Note: If this function return -ENOENT, it just means there is no
856 * running transaction. But it is possible that the inactive transaction
857 * is still in the memory, not fully on disk. If you hope there is no
858 * inactive transaction in the fs when -ENOENT is returned, you should
859 * invoke
860 * btrfs_attach_transaction_barrier()
861 */
354aa0fb 862struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 863{
575a75d6 864 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 865 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
866}
867
d4edf39b 868/*
9580503b 869 * Catch the running transaction.
d4edf39b 870 *
52042d8e 871 * It is similar to the above function, the difference is this one
d4edf39b
MX
872 * will wait for all the inactive transactions until they fully
873 * complete.
874 */
875struct btrfs_trans_handle *
876btrfs_attach_transaction_barrier(struct btrfs_root *root)
877{
878 struct btrfs_trans_handle *trans;
879
575a75d6 880 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 881 BTRFS_RESERVE_NO_FLUSH, true);
b28ff3a7
FM
882 if (trans == ERR_PTR(-ENOENT)) {
883 int ret;
884
885 ret = btrfs_wait_for_commit(root->fs_info, 0);
886 if (ret)
887 return ERR_PTR(ret);
888 }
d4edf39b
MX
889
890 return trans;
891}
892
d0c2f4fa
FM
893/* Wait for a transaction commit to reach at least the given state. */
894static noinline void wait_for_commit(struct btrfs_transaction *commit,
895 const enum btrfs_trans_state min_state)
89ce8a63 896{
5fd76bf3
OS
897 struct btrfs_fs_info *fs_info = commit->fs_info;
898 u64 transid = commit->transid;
899 bool put = false;
900
3e738c53
IA
901 /*
902 * At the moment this function is called with min_state either being
903 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
904 */
905 if (min_state == TRANS_STATE_COMPLETED)
906 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
907 else
908 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
909
5fd76bf3
OS
910 while (1) {
911 wait_event(commit->commit_wait, commit->state >= min_state);
912 if (put)
913 btrfs_put_transaction(commit);
914
915 if (min_state < TRANS_STATE_COMPLETED)
916 break;
917
918 /*
919 * A transaction isn't really completed until all of the
920 * previous transactions are completed, but with fsync we can
921 * end up with SUPER_COMMITTED transactions before a COMPLETED
922 * transaction. Wait for those.
923 */
924
925 spin_lock(&fs_info->trans_lock);
926 commit = list_first_entry_or_null(&fs_info->trans_list,
927 struct btrfs_transaction,
928 list);
929 if (!commit || commit->transid > transid) {
930 spin_unlock(&fs_info->trans_lock);
931 break;
932 }
933 refcount_inc(&commit->use_count);
934 put = true;
935 spin_unlock(&fs_info->trans_lock);
936 }
89ce8a63
CM
937}
938
2ff7e61e 939int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
940{
941 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 942 int ret = 0;
46204592 943
46204592 944 if (transid) {
0124855f 945 if (transid <= btrfs_get_last_trans_committed(fs_info))
a4abeea4 946 goto out;
46204592
SW
947
948 /* find specified transaction */
0b246afa
JM
949 spin_lock(&fs_info->trans_lock);
950 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
951 if (t->transid == transid) {
952 cur_trans = t;
9b64f57d 953 refcount_inc(&cur_trans->use_count);
8cd2807f 954 ret = 0;
46204592
SW
955 break;
956 }
8cd2807f
MX
957 if (t->transid > transid) {
958 ret = 0;
46204592 959 break;
8cd2807f 960 }
46204592 961 }
0b246afa 962 spin_unlock(&fs_info->trans_lock);
42383020
SW
963
964 /*
965 * The specified transaction doesn't exist, or we
966 * raced with btrfs_commit_transaction
967 */
968 if (!cur_trans) {
0124855f 969 if (transid > btrfs_get_last_trans_committed(fs_info))
42383020 970 ret = -EINVAL;
8cd2807f 971 goto out;
42383020 972 }
46204592
SW
973 } else {
974 /* find newest transaction that is committing | committed */
0b246afa
JM
975 spin_lock(&fs_info->trans_lock);
976 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 977 list) {
4a9d8bde
MX
978 if (t->state >= TRANS_STATE_COMMIT_START) {
979 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 980 break;
46204592 981 cur_trans = t;
9b64f57d 982 refcount_inc(&cur_trans->use_count);
46204592
SW
983 break;
984 }
985 }
0b246afa 986 spin_unlock(&fs_info->trans_lock);
46204592 987 if (!cur_trans)
a4abeea4 988 goto out; /* nothing committing|committed */
46204592
SW
989 }
990
d0c2f4fa 991 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
bf7ecbe9 992 ret = cur_trans->aborted;
724e2315 993 btrfs_put_transaction(cur_trans);
a4abeea4 994out:
46204592
SW
995 return ret;
996}
997
2ff7e61e 998void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 999{
92e2f7e3 1000 wait_current_trans(fs_info);
37d1aeee
CM
1001}
1002
a2633b6a 1003bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
1004{
1005 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 1006
3296bf56 1007 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 1008 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 1009 return true;
8929ecfa 1010
04fb3285
FM
1011 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1012 return true;
1013
1014 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
8929ecfa
YZ
1015}
1016
dc60c525
NB
1017static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1018
0e34693f 1019{
dc60c525
NB
1020 struct btrfs_fs_info *fs_info = trans->fs_info;
1021
0e34693f
NB
1022 if (!trans->block_rsv) {
1023 ASSERT(!trans->bytes_reserved);
28270e25 1024 ASSERT(!trans->delayed_refs_bytes_reserved);
0e34693f
NB
1025 return;
1026 }
1027
28270e25
FM
1028 if (!trans->bytes_reserved) {
1029 ASSERT(!trans->delayed_refs_bytes_reserved);
0e34693f 1030 return;
28270e25 1031 }
0e34693f
NB
1032
1033 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1034 trace_btrfs_space_reservation(fs_info, "transaction",
1035 trans->transid, trans->bytes_reserved, 0);
1036 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 1037 trans->bytes_reserved, NULL);
0e34693f 1038 trans->bytes_reserved = 0;
28270e25
FM
1039
1040 if (!trans->delayed_refs_bytes_reserved)
1041 return;
1042
1043 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1044 trans->transid,
1045 trans->delayed_refs_bytes_reserved, 0);
1046 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1047 trans->delayed_refs_bytes_reserved, NULL);
1048 trans->delayed_refs_bytes_reserved = 0;
0e34693f
NB
1049}
1050
89ce8a63 1051static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 1052 int throttle)
79154b1b 1053{
3a45bb20 1054 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 1055 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 1056 int err = 0;
c3e69d58 1057
b50fff81
DS
1058 if (refcount_read(&trans->use_count) > 1) {
1059 refcount_dec(&trans->use_count);
2a1eb461
JB
1060 trans->block_rsv = trans->orig_rsv;
1061 return 0;
1062 }
1063
dc60c525 1064 btrfs_trans_release_metadata(trans);
4c13d758 1065 trans->block_rsv = NULL;
c5567237 1066
119e80df 1067 btrfs_create_pending_block_groups(trans);
ea658bad 1068
4fbcdf66
FM
1069 btrfs_trans_release_chunk_metadata(trans);
1070
0860adfd 1071 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1072 sb_end_intwrite(info->sb);
6df7881a 1073
8929ecfa 1074 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
1075 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1076 atomic_dec(&cur_trans->num_writers);
0860adfd 1077 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 1078
093258e6 1079 cond_wake_up(&cur_trans->writer_wait);
e1489b4f 1080
5a9ba670 1081 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
e1489b4f
IA
1082 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1083
724e2315 1084 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
1085
1086 if (current->journal_info == trans)
1087 current->journal_info = NULL;
ab78c84d 1088
24bbcf04 1089 if (throttle)
2ff7e61e 1090 btrfs_run_delayed_iputs(info);
24bbcf04 1091
84961539 1092 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
4e121c06 1093 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1094 if (TRANS_ABORTED(trans))
1095 err = trans->aborted;
1096 else
1097 err = -EROFS;
4e121c06 1098 }
49b25e05 1099
4edc2ca3
DJ
1100 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1101 return err;
79154b1b
CM
1102}
1103
3a45bb20 1104int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1105{
3a45bb20 1106 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1107}
1108
3a45bb20 1109int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1110{
3a45bb20 1111 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1112}
1113
d352ac68
CM
1114/*
1115 * when btree blocks are allocated, they have some corresponding bits set for
1116 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1117 * those extents are sent to disk but does not wait on them
d352ac68 1118 */
2ff7e61e 1119int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1120 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1121{
777e6bd7 1122 int err = 0;
7c4452b9 1123 int werr = 0;
0b246afa 1124 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1125 struct extent_state *cached_state = NULL;
777e6bd7 1126 u64 start = 0;
5f39d397 1127 u64 end;
7c4452b9 1128
e5860f82
FM
1129 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1130 mark, &cached_state)) {
663dfbb0
FM
1131 bool wait_writeback = false;
1132
1133 err = convert_extent_bit(dirty_pages, start, end,
1134 EXTENT_NEED_WAIT,
210aa277 1135 mark, &cached_state);
663dfbb0
FM
1136 /*
1137 * convert_extent_bit can return -ENOMEM, which is most of the
1138 * time a temporary error. So when it happens, ignore the error
1139 * and wait for writeback of this range to finish - because we
1140 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1141 * to __btrfs_wait_marked_extents() would not know that
1142 * writeback for this range started and therefore wouldn't
1143 * wait for it to finish - we don't want to commit a
1144 * superblock that points to btree nodes/leafs for which
1145 * writeback hasn't finished yet (and without errors).
663dfbb0 1146 * We cleanup any entries left in the io tree when committing
41e7acd3 1147 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1148 */
1149 if (err == -ENOMEM) {
1150 err = 0;
1151 wait_writeback = true;
1152 }
1153 if (!err)
1154 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1155 if (err)
1156 werr = err;
663dfbb0
FM
1157 else if (wait_writeback)
1158 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1159 free_extent_state(cached_state);
663dfbb0 1160 cached_state = NULL;
1728366e
JB
1161 cond_resched();
1162 start = end + 1;
7c4452b9 1163 }
690587d1
CM
1164 return werr;
1165}
1166
1167/*
1168 * when btree blocks are allocated, they have some corresponding bits set for
1169 * them in one of two extent_io trees. This is used to make sure all of
1170 * those extents are on disk for transaction or log commit. We wait
1171 * on all the pages and clear them from the dirty pages state tree
1172 */
bf89d38f
JM
1173static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1174 struct extent_io_tree *dirty_pages)
690587d1 1175{
690587d1
CM
1176 int err = 0;
1177 int werr = 0;
0b246afa 1178 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1179 struct extent_state *cached_state = NULL;
690587d1
CM
1180 u64 start = 0;
1181 u64 end;
777e6bd7 1182
e5860f82
FM
1183 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1184 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1185 /*
1186 * Ignore -ENOMEM errors returned by clear_extent_bit().
1187 * When committing the transaction, we'll remove any entries
1188 * left in the io tree. For a log commit, we don't remove them
1189 * after committing the log because the tree can be accessed
1190 * concurrently - we do it only at transaction commit time when
41e7acd3 1191 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1192 */
1193 err = clear_extent_bit(dirty_pages, start, end,
bd015294 1194 EXTENT_NEED_WAIT, &cached_state);
663dfbb0
FM
1195 if (err == -ENOMEM)
1196 err = 0;
1197 if (!err)
1198 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1199 if (err)
1200 werr = err;
e38e2ed7
FM
1201 free_extent_state(cached_state);
1202 cached_state = NULL;
1728366e
JB
1203 cond_resched();
1204 start = end + 1;
777e6bd7 1205 }
7c4452b9
CM
1206 if (err)
1207 werr = err;
bf89d38f
JM
1208 return werr;
1209}
656f30db 1210
b9fae2eb 1211static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1212 struct extent_io_tree *dirty_pages)
1213{
1214 bool errors = false;
1215 int err;
656f30db 1216
bf89d38f
JM
1217 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1218 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1219 errors = true;
1220
1221 if (errors && !err)
1222 err = -EIO;
1223 return err;
1224}
656f30db 1225
bf89d38f
JM
1226int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1227{
1228 struct btrfs_fs_info *fs_info = log_root->fs_info;
1229 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1230 bool errors = false;
1231 int err;
656f30db 1232
bf89d38f
JM
1233 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1234
1235 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1236 if ((mark & EXTENT_DIRTY) &&
1237 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1238 errors = true;
1239
1240 if ((mark & EXTENT_NEW) &&
1241 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1242 errors = true;
1243
1244 if (errors && !err)
1245 err = -EIO;
1246 return err;
79154b1b
CM
1247}
1248
690587d1 1249/*
c9b577c0
NB
1250 * When btree blocks are allocated the corresponding extents are marked dirty.
1251 * This function ensures such extents are persisted on disk for transaction or
1252 * log commit.
1253 *
1254 * @trans: transaction whose dirty pages we'd like to write
690587d1 1255 */
70458a58 1256static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1257{
1258 int ret;
1259 int ret2;
c9b577c0 1260 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1261 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1262 struct blk_plug plug;
690587d1 1263
c6adc9cc 1264 blk_start_plug(&plug);
c9b577c0 1265 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1266 blk_finish_plug(&plug);
bf89d38f 1267 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1268
41e7acd3 1269 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1270
bf0da8c1
CM
1271 if (ret)
1272 return ret;
c9b577c0 1273 else if (ret2)
bf0da8c1 1274 return ret2;
c9b577c0
NB
1275 else
1276 return 0;
d0c803c4
CM
1277}
1278
d352ac68
CM
1279/*
1280 * this is used to update the root pointer in the tree of tree roots.
1281 *
1282 * But, in the case of the extent allocation tree, updating the root
1283 * pointer may allocate blocks which may change the root of the extent
1284 * allocation tree.
1285 *
1286 * So, this loops and repeats and makes sure the cowonly root didn't
1287 * change while the root pointer was being updated in the metadata.
1288 */
0b86a832
CM
1289static int update_cowonly_root(struct btrfs_trans_handle *trans,
1290 struct btrfs_root *root)
79154b1b
CM
1291{
1292 int ret;
0b86a832 1293 u64 old_root_bytenr;
86b9f2ec 1294 u64 old_root_used;
0b246afa
JM
1295 struct btrfs_fs_info *fs_info = root->fs_info;
1296 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1297
86b9f2ec 1298 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1299
d397712b 1300 while (1) {
0b86a832 1301 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1302 if (old_root_bytenr == root->node->start &&
ea526d18 1303 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1304 break;
87ef2bb4 1305
5d4f98a2 1306 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1307 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1308 &root->root_key,
1309 &root->root_item);
49b25e05
JM
1310 if (ret)
1311 return ret;
56bec294 1312
86b9f2ec 1313 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1314 }
276e680d 1315
0b86a832
CM
1316 return 0;
1317}
1318
d352ac68
CM
1319/*
1320 * update all the cowonly tree roots on disk
49b25e05
JM
1321 *
1322 * The error handling in this function may not be obvious. Any of the
1323 * failures will cause the file system to go offline. We still need
1324 * to clean up the delayed refs.
d352ac68 1325 */
9386d8bc 1326static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1327{
9386d8bc 1328 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1329 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1330 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1331 struct list_head *next;
84234f3a 1332 struct extent_buffer *eb;
56bec294 1333 int ret;
84234f3a 1334
dfba78dc
FM
1335 /*
1336 * At this point no one can be using this transaction to modify any tree
1337 * and no one can start another transaction to modify any tree either.
1338 */
1339 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1340
84234f3a 1341 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1342 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1343 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1344 btrfs_tree_unlock(eb);
1345 free_extent_buffer(eb);
0b86a832 1346
49b25e05
JM
1347 if (ret)
1348 return ret;
87ef2bb4 1349
196c9d8d 1350 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1351 if (ret)
1352 return ret;
2b584c68 1353 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1354 if (ret)
1355 return ret;
280f8bd2 1356 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1357 if (ret)
1358 return ret;
546adb0d 1359
bbebb3e0 1360 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1361 if (ret)
1362 return ret;
1363
ea526d18 1364again:
d397712b 1365 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1366 struct btrfs_root *root;
0b86a832
CM
1367 next = fs_info->dirty_cowonly_roots.next;
1368 list_del_init(next);
1369 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1370 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1371
826582ca
JB
1372 list_add_tail(&root->dirty_list,
1373 &trans->transaction->switch_commits);
49b25e05
JM
1374 ret = update_cowonly_root(trans, root);
1375 if (ret)
1376 return ret;
79154b1b 1377 }
276e680d 1378
488bc2a2 1379 /* Now flush any delayed refs generated by updating all of the roots */
8a526c44 1380 ret = btrfs_run_delayed_refs(trans, U64_MAX);
488bc2a2
JB
1381 if (ret)
1382 return ret;
1383
1bbc621e 1384 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1385 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1386 if (ret)
1387 return ret;
488bc2a2
JB
1388
1389 /*
1390 * We're writing the dirty block groups, which could generate
1391 * delayed refs, which could generate more dirty block groups,
1392 * so we want to keep this flushing in this loop to make sure
1393 * everything gets run.
1394 */
8a526c44 1395 ret = btrfs_run_delayed_refs(trans, U64_MAX);
ea526d18
JB
1396 if (ret)
1397 return ret;
1398 }
1399
1400 if (!list_empty(&fs_info->dirty_cowonly_roots))
1401 goto again;
1402
9f6cbcbb
DS
1403 /* Update dev-replace pointer once everything is committed */
1404 fs_info->dev_replace.committed_cursor_left =
1405 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1406
79154b1b
CM
1407 return 0;
1408}
1409
b4be6aef
JB
1410/*
1411 * If we had a pending drop we need to see if there are any others left in our
1412 * dead roots list, and if not clear our bit and wake any waiters.
1413 */
1414void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1415{
1416 /*
1417 * We put the drop in progress roots at the front of the list, so if the
1418 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1419 * up.
1420 */
1421 spin_lock(&fs_info->trans_lock);
1422 if (!list_empty(&fs_info->dead_roots)) {
1423 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1424 struct btrfs_root,
1425 root_list);
1426 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1427 spin_unlock(&fs_info->trans_lock);
1428 return;
1429 }
1430 }
1431 spin_unlock(&fs_info->trans_lock);
1432
1433 btrfs_wake_unfinished_drop(fs_info);
1434}
1435
d352ac68
CM
1436/*
1437 * dead roots are old snapshots that need to be deleted. This allocates
1438 * a dirty root struct and adds it into the list of dead roots that need to
1439 * be deleted
1440 */
cfad392b 1441void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1442{
0b246afa
JM
1443 struct btrfs_fs_info *fs_info = root->fs_info;
1444
1445 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1446 if (list_empty(&root->root_list)) {
1447 btrfs_grab_root(root);
b4be6aef
JB
1448
1449 /* We want to process the partially complete drops first. */
1450 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1451 list_add(&root->root_list, &fs_info->dead_roots);
1452 else
1453 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1454 }
0b246afa 1455 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1456}
1457
d352ac68 1458/*
dfba78dc
FM
1459 * Update each subvolume root and its relocation root, if it exists, in the tree
1460 * of tree roots. Also free log roots if they exist.
d352ac68 1461 */
7e4443d9 1462static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1463{
7e4443d9 1464 struct btrfs_fs_info *fs_info = trans->fs_info;
fc7cbcd4
DS
1465 struct btrfs_root *gang[8];
1466 int i;
1467 int ret;
54aa1f4d 1468
dfba78dc
FM
1469 /*
1470 * At this point no one can be using this transaction to modify any tree
1471 * and no one can start another transaction to modify any tree either.
1472 */
1473 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1474
fc7cbcd4
DS
1475 spin_lock(&fs_info->fs_roots_radix_lock);
1476 while (1) {
1477 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1478 (void **)gang, 0,
1479 ARRAY_SIZE(gang),
1480 BTRFS_ROOT_TRANS_TAG);
1481 if (ret == 0)
1482 break;
1483 for (i = 0; i < ret; i++) {
1484 struct btrfs_root *root = gang[i];
1485 int ret2;
1486
1487 /*
1488 * At this point we can neither have tasks logging inodes
1489 * from a root nor trying to commit a log tree.
1490 */
1491 ASSERT(atomic_read(&root->log_writers) == 0);
1492 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1493 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1494
1495 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1496 (unsigned long)root->root_key.objectid,
1497 BTRFS_ROOT_TRANS_TAG);
1498 spin_unlock(&fs_info->fs_roots_radix_lock);
1499
1500 btrfs_free_log(trans, root);
1501 ret2 = btrfs_update_reloc_root(trans, root);
1502 if (ret2)
1503 return ret2;
1504
1505 /* see comments in should_cow_block() */
1506 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1507 smp_mb__after_atomic();
1508
1509 if (root->commit_root != root->node) {
1510 list_add_tail(&root->dirty_list,
1511 &trans->transaction->switch_commits);
1512 btrfs_set_root_node(&root->root_item,
1513 root->node);
1514 }
48b36a60 1515
fc7cbcd4
DS
1516 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1517 &root->root_key,
1518 &root->root_item);
1519 if (ret2)
1520 return ret2;
1521 spin_lock(&fs_info->fs_roots_radix_lock);
1522 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1523 }
1524 }
fc7cbcd4 1525 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1526 return 0;
0f7d52f4
CM
1527}
1528
6426c7ad
QW
1529/*
1530 * Do all special snapshot related qgroup dirty hack.
1531 *
1532 * Will do all needed qgroup inherit and dirty hack like switch commit
1533 * roots inside one transaction and write all btree into disk, to make
1534 * qgroup works.
1535 */
1536static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1537 struct btrfs_root *src,
1538 struct btrfs_root *parent,
1539 struct btrfs_qgroup_inherit *inherit,
1540 u64 dst_objectid)
1541{
1542 struct btrfs_fs_info *fs_info = src->fs_info;
1543 int ret;
1544
1545 /*
5343cd93
BB
1546 * Save some performance in the case that qgroups are not enabled. If
1547 * this check races with the ioctl, rescan will kick in anyway.
6426c7ad 1548 */
182940f4 1549 if (!btrfs_qgroup_full_accounting(fs_info))
6426c7ad 1550 return 0;
6426c7ad 1551
4d31778a 1552 /*
52042d8e 1553 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1554 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1555 * recorded root will never be updated again, causing an outdated root
1556 * item.
1557 */
1c442d22
JB
1558 ret = record_root_in_trans(trans, src, 1);
1559 if (ret)
1560 return ret;
4d31778a 1561
2a4d84c1
JB
1562 /*
1563 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1564 * src root, so we must run the delayed refs here.
1565 *
1566 * However this isn't particularly fool proof, because there's no
1567 * synchronization keeping us from changing the tree after this point
1568 * before we do the qgroup_inherit, or even from making changes while
1569 * we're doing the qgroup_inherit. But that's a problem for the future,
1570 * for now flush the delayed refs to narrow the race window where the
1571 * qgroup counters could end up wrong.
1572 */
8a526c44 1573 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2a4d84c1
JB
1574 if (ret) {
1575 btrfs_abort_transaction(trans, ret);
44365827 1576 return ret;
2a4d84c1
JB
1577 }
1578
7e4443d9 1579 ret = commit_fs_roots(trans);
6426c7ad
QW
1580 if (ret)
1581 goto out;
460fb20a 1582 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1583 if (ret < 0)
1584 goto out;
1585
1586 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1587 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
5343cd93 1588 parent->root_key.objectid, inherit);
6426c7ad
QW
1589 if (ret < 0)
1590 goto out;
1591
1592 /*
1593 * Now we do a simplified commit transaction, which will:
1594 * 1) commit all subvolume and extent tree
1595 * To ensure all subvolume and extent tree have a valid
1596 * commit_root to accounting later insert_dir_item()
1597 * 2) write all btree blocks onto disk
1598 * This is to make sure later btree modification will be cowed
1599 * Or commit_root can be populated and cause wrong qgroup numbers
1600 * In this simplified commit, we don't really care about other trees
1601 * like chunk and root tree, as they won't affect qgroup.
1602 * And we don't write super to avoid half committed status.
1603 */
9386d8bc 1604 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1605 if (ret)
1606 goto out;
889bfa39 1607 switch_commit_roots(trans);
70458a58 1608 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1609 if (ret)
f7af3934 1610 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1611 "Error while writing out transaction for qgroup");
1612
1613out:
6426c7ad
QW
1614 /*
1615 * Force parent root to be updated, as we recorded it before so its
1616 * last_trans == cur_transid.
1617 * Or it won't be committed again onto disk after later
1618 * insert_dir_item()
1619 */
1620 if (!ret)
1c442d22 1621 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1622 return ret;
1623}
1624
d352ac68
CM
1625/*
1626 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1627 * transaction commit. This does the actual creation.
1628 *
1629 * Note:
1630 * If the error which may affect the commitment of the current transaction
1631 * happens, we should return the error number. If the error which just affect
1632 * the creation of the pending snapshots, just return 0.
d352ac68 1633 */
80b6794d 1634static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1635 struct btrfs_pending_snapshot *pending)
1636{
08d50ca3
NB
1637
1638 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1639 struct btrfs_key key;
80b6794d 1640 struct btrfs_root_item *new_root_item;
3063d29f
CM
1641 struct btrfs_root *tree_root = fs_info->tree_root;
1642 struct btrfs_root *root = pending->root;
6bdb72de 1643 struct btrfs_root *parent_root;
98c9942a 1644 struct btrfs_block_rsv *rsv;
ab3c5c18 1645 struct inode *parent_inode = pending->dir;
42874b3d
MX
1646 struct btrfs_path *path;
1647 struct btrfs_dir_item *dir_item;
3063d29f 1648 struct extent_buffer *tmp;
925baedd 1649 struct extent_buffer *old;
95582b00 1650 struct timespec64 cur_time;
aec8030a 1651 int ret = 0;
d68fc57b 1652 u64 to_reserve = 0;
6bdb72de 1653 u64 index = 0;
a22285a6 1654 u64 objectid;
b83cc969 1655 u64 root_flags;
ab3c5c18
STD
1656 unsigned int nofs_flags;
1657 struct fscrypt_name fname;
3063d29f 1658
8546b570
DS
1659 ASSERT(pending->path);
1660 path = pending->path;
42874b3d 1661
b0c0ea63
DS
1662 ASSERT(pending->root_item);
1663 new_root_item = pending->root_item;
a22285a6 1664
ab3c5c18
STD
1665 /*
1666 * We're inside a transaction and must make sure that any potential
1667 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1668 * filesystem.
1669 */
1670 nofs_flags = memalloc_nofs_save();
1671 pending->error = fscrypt_setup_filename(parent_inode,
1672 &pending->dentry->d_name, 0,
1673 &fname);
1674 memalloc_nofs_restore(nofs_flags);
1675 if (pending->error)
1676 goto free_pending;
ab3c5c18 1677
543068a2 1678 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1679 if (pending->error)
ab3c5c18 1680 goto free_fname;
3063d29f 1681
d6726335
QW
1682 /*
1683 * Make qgroup to skip current new snapshot's qgroupid, as it is
1684 * accounted by later btrfs_qgroup_inherit().
1685 */
1686 btrfs_set_skip_qgroup(trans, objectid);
1687
147d256e 1688 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1689
1690 if (to_reserve > 0) {
9270501c 1691 pending->error = btrfs_block_rsv_add(fs_info,
aec8030a
MX
1692 &pending->block_rsv,
1693 to_reserve,
1694 BTRFS_RESERVE_NO_FLUSH);
1695 if (pending->error)
d6726335 1696 goto clear_skip_qgroup;
d68fc57b
YZ
1697 }
1698
3063d29f 1699 key.objectid = objectid;
a22285a6
YZ
1700 key.offset = (u64)-1;
1701 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1702
6fa9700e 1703 rsv = trans->block_rsv;
a22285a6 1704 trans->block_rsv = &pending->block_rsv;
2382c5cc 1705 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1706 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1707 trans->transid,
1708 trans->bytes_reserved, 1);
a22285a6 1709 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1710 ret = record_root_in_trans(trans, parent_root, 0);
1711 if (ret)
1712 goto fail;
c2050a45 1713 cur_time = current_time(parent_inode);
04b285f3 1714
3063d29f
CM
1715 /*
1716 * insert the directory item
1717 */
877574e2 1718 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
df9f2782
FM
1719 if (ret) {
1720 btrfs_abort_transaction(trans, ret);
1721 goto fail;
1722 }
42874b3d
MX
1723
1724 /* check if there is a file/dir which has the same name. */
1725 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1726 btrfs_ino(BTRFS_I(parent_inode)),
6db75318 1727 &fname.disk_name, 0);
42874b3d 1728 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1729 pending->error = -EEXIST;
aec8030a 1730 goto dir_item_existed;
42874b3d
MX
1731 } else if (IS_ERR(dir_item)) {
1732 ret = PTR_ERR(dir_item);
66642832 1733 btrfs_abort_transaction(trans, ret);
8732d44f 1734 goto fail;
79787eaa 1735 }
42874b3d 1736 btrfs_release_path(path);
52c26179 1737
6ed05643 1738 ret = btrfs_create_qgroup(trans, objectid);
8049ba5d 1739 if (ret && ret != -EEXIST) {
6ed05643
BB
1740 btrfs_abort_transaction(trans, ret);
1741 goto fail;
1742 }
1743
e999376f
CM
1744 /*
1745 * pull in the delayed directory update
1746 * and the delayed inode item
1747 * otherwise we corrupt the FS during
1748 * snapshot
1749 */
e5c304e6 1750 ret = btrfs_run_delayed_items(trans);
8732d44f 1751 if (ret) { /* Transaction aborted */
66642832 1752 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1753 goto fail;
1754 }
e999376f 1755
f0118cb6
JB
1756 ret = record_root_in_trans(trans, root, 0);
1757 if (ret) {
1758 btrfs_abort_transaction(trans, ret);
1759 goto fail;
1760 }
6bdb72de
SW
1761 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1762 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1763 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1764
b83cc969
LZ
1765 root_flags = btrfs_root_flags(new_root_item);
1766 if (pending->readonly)
1767 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1768 else
1769 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1770 btrfs_set_root_flags(new_root_item, root_flags);
1771
8ea05e3a
AB
1772 btrfs_set_root_generation_v2(new_root_item,
1773 trans->transid);
807fc790 1774 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1775 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1776 BTRFS_UUID_SIZE);
70023da2
SB
1777 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1778 memset(new_root_item->received_uuid, 0,
1779 sizeof(new_root_item->received_uuid));
1780 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1781 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1782 btrfs_set_root_stransid(new_root_item, 0);
1783 btrfs_set_root_rtransid(new_root_item, 0);
1784 }
3cae210f
QW
1785 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1786 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1787 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1788
6bdb72de 1789 old = btrfs_lock_root_node(root);
9631e4cc
JB
1790 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1791 BTRFS_NESTING_COW);
79787eaa
JM
1792 if (ret) {
1793 btrfs_tree_unlock(old);
1794 free_extent_buffer(old);
66642832 1795 btrfs_abort_transaction(trans, ret);
8732d44f 1796 goto fail;
79787eaa 1797 }
49b25e05 1798
49b25e05 1799 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1800 /* clean up in any case */
6bdb72de
SW
1801 btrfs_tree_unlock(old);
1802 free_extent_buffer(old);
8732d44f 1803 if (ret) {
66642832 1804 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1805 goto fail;
1806 }
f1ebcc74 1807 /* see comments in should_cow_block() */
27cdeb70 1808 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1809 smp_wmb();
1810
6bdb72de 1811 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1812 /* record when the snapshot was created in key.offset */
1813 key.offset = trans->transid;
1814 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1815 btrfs_tree_unlock(tmp);
1816 free_extent_buffer(tmp);
8732d44f 1817 if (ret) {
66642832 1818 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1819 goto fail;
1820 }
6bdb72de 1821
a22285a6
YZ
1822 /*
1823 * insert root back/forward references
1824 */
6025c19f 1825 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1826 parent_root->root_key.objectid,
4a0cc7ca 1827 btrfs_ino(BTRFS_I(parent_inode)), index,
6db75318 1828 &fname.disk_name);
8732d44f 1829 if (ret) {
66642832 1830 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1831 goto fail;
1832 }
0660b5af 1833
a22285a6 1834 key.offset = (u64)-1;
e2b54eaf 1835 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
79787eaa
JM
1836 if (IS_ERR(pending->snap)) {
1837 ret = PTR_ERR(pending->snap);
2d892ccd 1838 pending->snap = NULL;
66642832 1839 btrfs_abort_transaction(trans, ret);
8732d44f 1840 goto fail;
79787eaa 1841 }
d68fc57b 1842
49b25e05 1843 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1844 if (ret) {
66642832 1845 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1846 goto fail;
1847 }
361048f5 1848
6426c7ad
QW
1849 /*
1850 * Do special qgroup accounting for snapshot, as we do some qgroup
1851 * snapshot hack to do fast snapshot.
1852 * To co-operate with that hack, we do hack again.
1853 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1854 */
5343cd93
BB
1855 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1856 ret = qgroup_account_snapshot(trans, root, parent_root,
1857 pending->inherit, objectid);
1858 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1859 ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1860 parent_root->root_key.objectid, pending->inherit);
6426c7ad
QW
1861 if (ret < 0)
1862 goto fail;
1863
6db75318
STD
1864 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1865 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1866 index);
42874b3d 1867 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1868 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1869 if (ret) {
66642832 1870 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1871 goto fail;
1872 }
42874b3d 1873
6ef06d27 1874 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
6db75318 1875 fname.disk_name.len * 2);
b1c38a13
JL
1876 inode_set_mtime_to_ts(parent_inode,
1877 inode_set_ctime_current(parent_inode));
0a5d0dc5 1878 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
dd5f9615 1879 if (ret) {
66642832 1880 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1881 goto fail;
1882 }
807fc790
AS
1883 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1884 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1885 objectid);
dd5f9615 1886 if (ret) {
66642832 1887 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1888 goto fail;
1889 }
1890 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1891 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1892 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1893 objectid);
1894 if (ret && ret != -EEXIST) {
66642832 1895 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1896 goto fail;
1897 }
1898 }
d6726335 1899
3063d29f 1900fail:
aec8030a
MX
1901 pending->error = ret;
1902dir_item_existed:
98c9942a 1903 trans->block_rsv = rsv;
2382c5cc 1904 trans->bytes_reserved = 0;
d6726335
QW
1905clear_skip_qgroup:
1906 btrfs_clear_skip_qgroup(trans);
ab3c5c18
STD
1907free_fname:
1908 fscrypt_free_filename(&fname);
1909free_pending:
6fa9700e 1910 kfree(new_root_item);
b0c0ea63 1911 pending->root_item = NULL;
42874b3d 1912 btrfs_free_path(path);
8546b570
DS
1913 pending->path = NULL;
1914
49b25e05 1915 return ret;
3063d29f
CM
1916}
1917
d352ac68
CM
1918/*
1919 * create all the snapshots we've scheduled for creation
1920 */
08d50ca3 1921static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1922{
aec8030a 1923 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1924 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1925 int ret = 0;
3de4586c 1926
aec8030a
MX
1927 list_for_each_entry_safe(pending, next, head, list) {
1928 list_del(&pending->list);
08d50ca3 1929 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1930 if (ret)
1931 break;
1932 }
1933 return ret;
3de4586c
CM
1934}
1935
2ff7e61e 1936static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1937{
1938 struct btrfs_root_item *root_item;
1939 struct btrfs_super_block *super;
1940
0b246afa 1941 super = fs_info->super_copy;
5d4f98a2 1942
0b246afa 1943 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1944 super->chunk_root = root_item->bytenr;
1945 super->chunk_root_generation = root_item->generation;
1946 super->chunk_root_level = root_item->level;
5d4f98a2 1947
0b246afa 1948 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1949 super->root = root_item->bytenr;
1950 super->generation = root_item->generation;
1951 super->root_level = root_item->level;
0b246afa 1952 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1953 super->cache_generation = root_item->generation;
94846229
BB
1954 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1955 super->cache_generation = 0;
0b246afa 1956 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1957 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1958}
1959
8929ecfa
YZ
1960int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1961{
4a9d8bde 1962 struct btrfs_transaction *trans;
8929ecfa 1963 int ret = 0;
4a9d8bde 1964
a4abeea4 1965 spin_lock(&info->trans_lock);
4a9d8bde
MX
1966 trans = info->running_transaction;
1967 if (trans)
1968 ret = is_transaction_blocked(trans);
a4abeea4 1969 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1970 return ret;
1971}
1972
fdfbf020 1973void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 1974{
3a45bb20 1975 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1976 struct btrfs_transaction *cur_trans;
1977
fdfbf020
JB
1978 /* Kick the transaction kthread. */
1979 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1980 wake_up_process(fs_info->transaction_kthread);
bb9c12c9
SW
1981
1982 /* take transaction reference */
bb9c12c9 1983 cur_trans = trans->transaction;
9b64f57d 1984 refcount_inc(&cur_trans->use_count);
bb9c12c9 1985
3a45bb20 1986 btrfs_end_transaction(trans);
6fc4e354 1987
ae5d29d4
DS
1988 /*
1989 * Wait for the current transaction commit to start and block
1990 * subsequent transaction joins
1991 */
77d20c68 1992 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
ae5d29d4
DS
1993 wait_event(fs_info->transaction_blocked_wait,
1994 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1995 TRANS_ABORTED(cur_trans));
724e2315 1996 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1997}
1998
97cb39bb 1999static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 2000{
97cb39bb 2001 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
2002 struct btrfs_transaction *cur_trans = trans->transaction;
2003
b50fff81 2004 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 2005
66642832 2006 btrfs_abort_transaction(trans, err);
7b8b92af 2007
0b246afa 2008 spin_lock(&fs_info->trans_lock);
66b6135b 2009
25d8c284
MX
2010 /*
2011 * If the transaction is removed from the list, it means this
2012 * transaction has been committed successfully, so it is impossible
2013 * to call the cleanup function.
2014 */
2015 BUG_ON(list_empty(&cur_trans->list));
66b6135b 2016
0b246afa 2017 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 2018 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2019 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2020
2021 /*
2022 * The thread has already released the lockdep map as reader
2023 * already in btrfs_commit_transaction().
2024 */
2025 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
f094ac32
LB
2026 wait_event(cur_trans->writer_wait,
2027 atomic_read(&cur_trans->num_writers) == 1);
2028
0b246afa 2029 spin_lock(&fs_info->trans_lock);
d7096fc3 2030 }
061dde82
FM
2031
2032 /*
2033 * Now that we know no one else is still using the transaction we can
2034 * remove the transaction from the list of transactions. This avoids
2035 * the transaction kthread from cleaning up the transaction while some
2036 * other task is still using it, which could result in a use-after-free
2037 * on things like log trees, as it forces the transaction kthread to
2038 * wait for this transaction to be cleaned up by us.
2039 */
2040 list_del_init(&cur_trans->list);
2041
0b246afa 2042 spin_unlock(&fs_info->trans_lock);
49b25e05 2043
2ff7e61e 2044 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 2045
0b246afa
JM
2046 spin_lock(&fs_info->trans_lock);
2047 if (cur_trans == fs_info->running_transaction)
2048 fs_info->running_transaction = NULL;
2049 spin_unlock(&fs_info->trans_lock);
4a9d8bde 2050
e0228285 2051 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2052 sb_end_intwrite(fs_info->sb);
724e2315
JB
2053 btrfs_put_transaction(cur_trans);
2054 btrfs_put_transaction(cur_trans);
49b25e05 2055
2e4e97ab 2056 trace_btrfs_transaction_commit(fs_info);
49b25e05 2057
49b25e05
JM
2058 if (current->journal_info == trans)
2059 current->journal_info = NULL;
2d82a40a
FM
2060
2061 /*
2062 * If relocation is running, we can't cancel scrub because that will
2063 * result in a deadlock. Before relocating a block group, relocation
2064 * pauses scrub, then starts and commits a transaction before unpausing
2065 * scrub. If the transaction commit is being done by the relocation
2066 * task or triggered by another task and the relocation task is waiting
2067 * for the commit, and we end up here due to an error in the commit
2068 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2069 * asking for scrub to stop while having it asked to be paused higher
2070 * above in relocation code.
2071 */
2072 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2073 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2074
2075 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2076}
2077
c7cc64a9
DS
2078/*
2079 * Release reserved delayed ref space of all pending block groups of the
2080 * transaction and remove them from the list
2081 */
2082static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2083{
2084 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2085 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2086
2087 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9ef17228 2088 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
c7cc64a9
DS
2089 list_del_init(&block_group->bg_list);
2090 }
2091}
2092
88090ad3 2093static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2094{
ce8ea7cc 2095 /*
a0f0cf83 2096 * We use try_to_writeback_inodes_sb() here because if we used
ce8ea7cc
JB
2097 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2098 * Currently are holding the fs freeze lock, if we do an async flush
2099 * we'll do btrfs_join_transaction() and deadlock because we need to
2100 * wait for the fs freeze lock. Using the direct flushing we benefit
2101 * from already being in a transaction and our join_transaction doesn't
2102 * have to re-take the fs freeze lock.
a0f0cf83
FM
2103 *
2104 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2105 * if it can read lock sb->s_umount. It will always be able to lock it,
2106 * except when the filesystem is being unmounted or being frozen, but in
2107 * those cases sync_filesystem() is called, which results in calling
2108 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2109 * Note that we don't call writeback_inodes_sb() directly, because it
2110 * will emit a warning if sb->s_umount is not locked.
ce8ea7cc 2111 */
88090ad3 2112 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
a0f0cf83 2113 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2114 return 0;
2115}
2116
88090ad3 2117static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2118{
88090ad3 2119 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2120 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2121}
2122
28b21c55
FM
2123/*
2124 * Add a pending snapshot associated with the given transaction handle to the
2125 * respective handle. This must be called after the transaction commit started
2126 * and while holding fs_info->trans_lock.
2127 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2128 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2129 * returns an error.
2130 */
2131static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2132{
2133 struct btrfs_transaction *cur_trans = trans->transaction;
2134
2135 if (!trans->pending_snapshot)
2136 return;
2137
2138 lockdep_assert_held(&trans->fs_info->trans_lock);
77d20c68 2139 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
28b21c55
FM
2140
2141 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2142}
2143
e55958c8
IA
2144static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2145{
2146 fs_info->commit_stats.commit_count++;
2147 fs_info->commit_stats.last_commit_dur = interval;
2148 fs_info->commit_stats.max_commit_dur =
2149 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2150 fs_info->commit_stats.total_commit_dur += interval;
2151}
2152
3a45bb20 2153int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2154{
3a45bb20 2155 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2156 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2157 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2158 int ret;
e55958c8
IA
2159 ktime_t start_time;
2160 ktime_t interval;
79154b1b 2161
35b814f3 2162 ASSERT(refcount_read(&trans->use_count) == 1);
77d20c68 2163 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
35b814f3 2164
c52cc7b7
JB
2165 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2166
8d25a086 2167 /* Stop the commit early if ->aborted is set */
bf31f87f 2168 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2169 ret = cur_trans->aborted;
3e738c53 2170 goto lockdep_trans_commit_start_release;
25287e0a 2171 }
49b25e05 2172
f45c752b
JB
2173 btrfs_trans_release_metadata(trans);
2174 trans->block_rsv = NULL;
2175
56bec294 2176 /*
e19eb11f
JB
2177 * We only want one transaction commit doing the flushing so we do not
2178 * waste a bunch of time on lock contention on the extent root node.
56bec294 2179 */
e19eb11f
JB
2180 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2181 &cur_trans->delayed_refs.flags)) {
2182 /*
2183 * Make a pass through all the delayed refs we have so far.
2184 * Any running threads may add more while we are here.
2185 */
2186 ret = btrfs_run_delayed_refs(trans, 0);
3e738c53
IA
2187 if (ret)
2188 goto lockdep_trans_commit_start_release;
e19eb11f 2189 }
56bec294 2190
119e80df 2191 btrfs_create_pending_block_groups(trans);
ea658bad 2192
3204d33c 2193 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2194 int run_it = 0;
2195
2196 /* this mutex is also taken before trying to set
2197 * block groups readonly. We need to make sure
2198 * that nobody has set a block group readonly
2199 * after a extents from that block group have been
2200 * allocated for cache files. btrfs_set_block_group_ro
2201 * will wait for the transaction to commit if it
3204d33c 2202 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2203 *
3204d33c
JB
2204 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2205 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2206 * hurt to have more than one go through, but there's no
2207 * real advantage to it either.
2208 */
0b246afa 2209 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2210 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2211 &cur_trans->flags))
1bbc621e 2212 run_it = 1;
0b246afa 2213 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2214
f9cacae3 2215 if (run_it) {
21217054 2216 ret = btrfs_start_dirty_block_groups(trans);
3e738c53
IA
2217 if (ret)
2218 goto lockdep_trans_commit_start_release;
f9cacae3 2219 }
1bbc621e
CM
2220 }
2221
0b246afa 2222 spin_lock(&fs_info->trans_lock);
77d20c68 2223 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
d0c2f4fa
FM
2224 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2225
28b21c55
FM
2226 add_pending_snapshot(trans);
2227
0b246afa 2228 spin_unlock(&fs_info->trans_lock);
9b64f57d 2229 refcount_inc(&cur_trans->use_count);
ccd467d6 2230
d0c2f4fa
FM
2231 if (trans->in_fsync)
2232 want_state = TRANS_STATE_SUPER_COMMITTED;
3e738c53
IA
2233
2234 btrfs_trans_state_lockdep_release(fs_info,
77d20c68 2235 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
d0c2f4fa
FM
2236 ret = btrfs_end_transaction(trans);
2237 wait_for_commit(cur_trans, want_state);
15ee9bc7 2238
bf31f87f 2239 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2240 ret = cur_trans->aborted;
2241
724e2315 2242 btrfs_put_transaction(cur_trans);
15ee9bc7 2243
49b25e05 2244 return ret;
79154b1b 2245 }
4313b399 2246
77d20c68 2247 cur_trans->state = TRANS_STATE_COMMIT_PREP;
0b246afa 2248 wake_up(&fs_info->transaction_blocked_wait);
77d20c68 2249 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
bb9c12c9 2250
0b246afa 2251 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2252 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2253
2254 if (trans->in_fsync)
2255 want_state = TRANS_STATE_SUPER_COMMITTED;
2256
ccd467d6
CM
2257 prev_trans = list_entry(cur_trans->list.prev,
2258 struct btrfs_transaction, list);
d0c2f4fa 2259 if (prev_trans->state < want_state) {
9b64f57d 2260 refcount_inc(&prev_trans->use_count);
0b246afa 2261 spin_unlock(&fs_info->trans_lock);
ccd467d6 2262
d0c2f4fa
FM
2263 wait_for_commit(prev_trans, want_state);
2264
bf31f87f 2265 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2266
724e2315 2267 btrfs_put_transaction(prev_trans);
1f9b8c8f 2268 if (ret)
e1489b4f 2269 goto lockdep_release;
77d20c68 2270 spin_lock(&fs_info->trans_lock);
ccd467d6 2271 }
a4abeea4 2272 } else {
cb2d3dad
FM
2273 /*
2274 * The previous transaction was aborted and was already removed
2275 * from the list of transactions at fs_info->trans_list. So we
2276 * abort to prevent writing a new superblock that reflects a
2277 * corrupt state (pointing to trees with unwritten nodes/leafs).
2278 */
84961539 2279 if (BTRFS_FS_ERROR(fs_info)) {
77d20c68 2280 spin_unlock(&fs_info->trans_lock);
cb2d3dad 2281 ret = -EROFS;
e1489b4f 2282 goto lockdep_release;
cb2d3dad 2283 }
ccd467d6 2284 }
15ee9bc7 2285
77d20c68
JB
2286 cur_trans->state = TRANS_STATE_COMMIT_START;
2287 wake_up(&fs_info->transaction_blocked_wait);
2288 spin_unlock(&fs_info->trans_lock);
2289
e55958c8
IA
2290 /*
2291 * Get the time spent on the work done by the commit thread and not
2292 * the time spent waiting on a previous commit
2293 */
2294 start_time = ktime_get_ns();
2295
0860adfd
MX
2296 extwriter_counter_dec(cur_trans, trans->type);
2297
88090ad3 2298 ret = btrfs_start_delalloc_flush(fs_info);
82436617 2299 if (ret)
e1489b4f 2300 goto lockdep_release;
82436617 2301
e5c304e6 2302 ret = btrfs_run_delayed_items(trans);
581227d0 2303 if (ret)
e1489b4f 2304 goto lockdep_release;
15ee9bc7 2305
5a9ba670
IA
2306 /*
2307 * The thread has started/joined the transaction thus it holds the
2308 * lockdep map as a reader. It has to release it before acquiring the
2309 * lockdep map as a writer.
2310 */
2311 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2312 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
581227d0
MX
2313 wait_event(cur_trans->writer_wait,
2314 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2315
581227d0 2316 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2317 ret = btrfs_run_delayed_items(trans);
e1489b4f
IA
2318 if (ret) {
2319 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
ca469637 2320 goto cleanup_transaction;
e1489b4f 2321 }
ca469637 2322
88090ad3 2323 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2324
48778179
FM
2325 /*
2326 * Wait for all ordered extents started by a fast fsync that joined this
2327 * transaction. Otherwise if this transaction commits before the ordered
2328 * extents complete we lose logged data after a power failure.
2329 */
8b53779e 2330 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
48778179
FM
2331 wait_event(cur_trans->pending_wait,
2332 atomic_read(&cur_trans->pending_ordered) == 0);
2333
2ff7e61e 2334 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2335 /*
2336 * Ok now we need to make sure to block out any other joins while we
2337 * commit the transaction. We could have started a join before setting
4a9d8bde 2338 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2339 */
0b246afa 2340 spin_lock(&fs_info->trans_lock);
28b21c55 2341 add_pending_snapshot(trans);
4a9d8bde 2342 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2343 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2344
2345 /*
2346 * The thread has started/joined the transaction thus it holds the
2347 * lockdep map as a reader. It has to release it before acquiring the
2348 * lockdep map as a writer.
2349 */
2350 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2351 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
ed0ca140
JB
2352 wait_event(cur_trans->writer_wait,
2353 atomic_read(&cur_trans->num_writers) == 1);
2354
3e738c53
IA
2355 /*
2356 * Make lockdep happy by acquiring the state locks after
2357 * btrfs_trans_num_writers is released. If we acquired the state locks
2358 * before releasing the btrfs_trans_num_writers lock then lockdep would
2359 * complain because we did not follow the reverse order unlocking rule.
2360 */
2361 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2362 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2363 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2364
fdfbf020
JB
2365 /*
2366 * We've started the commit, clear the flag in case we were triggered to
2367 * do an async commit but somebody else started before the transaction
2368 * kthread could do the work.
2369 */
2370 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2371
bf31f87f 2372 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2373 ret = cur_trans->aborted;
3e738c53 2374 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2375 goto scrub_continue;
2cba30f1 2376 }
7585717f
CM
2377 /*
2378 * the reloc mutex makes sure that we stop
2379 * the balancing code from coming in and moving
2380 * extents around in the middle of the commit
2381 */
0b246afa 2382 mutex_lock(&fs_info->reloc_mutex);
7585717f 2383
42874b3d
MX
2384 /*
2385 * We needn't worry about the delayed items because we will
2386 * deal with them in create_pending_snapshot(), which is the
2387 * core function of the snapshot creation.
2388 */
08d50ca3 2389 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2390 if (ret)
2391 goto unlock_reloc;
3063d29f 2392
42874b3d
MX
2393 /*
2394 * We insert the dir indexes of the snapshots and update the inode
2395 * of the snapshots' parents after the snapshot creation, so there
2396 * are some delayed items which are not dealt with. Now deal with
2397 * them.
2398 *
2399 * We needn't worry that this operation will corrupt the snapshots,
2400 * because all the tree which are snapshoted will be forced to COW
2401 * the nodes and leaves.
2402 */
e5c304e6 2403 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2404 if (ret)
2405 goto unlock_reloc;
16cdcec7 2406
8a526c44 2407 ret = btrfs_run_delayed_refs(trans, U64_MAX);
56e9f6ea
DS
2408 if (ret)
2409 goto unlock_reloc;
56bec294 2410
e999376f
CM
2411 /*
2412 * make sure none of the code above managed to slip in a
2413 * delayed item
2414 */
ccdf9b30 2415 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2416
2c90e5d6 2417 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2418
7e4443d9 2419 ret = commit_fs_roots(trans);
56e9f6ea 2420 if (ret)
dfba78dc 2421 goto unlock_reloc;
54aa1f4d 2422
5d4f98a2 2423 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2424 * safe to free the root of tree log roots
2425 */
0b246afa 2426 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2427
0ed4792a
QW
2428 /*
2429 * Since fs roots are all committed, we can get a quite accurate
2430 * new_roots. So let's do quota accounting.
2431 */
460fb20a 2432 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea 2433 if (ret < 0)
dfba78dc 2434 goto unlock_reloc;
0ed4792a 2435
9386d8bc 2436 ret = commit_cowonly_roots(trans);
56e9f6ea 2437 if (ret)
dfba78dc 2438 goto unlock_reloc;
54aa1f4d 2439
2cba30f1
MX
2440 /*
2441 * The tasks which save the space cache and inode cache may also
2442 * update ->aborted, check it.
2443 */
bf31f87f 2444 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2445 ret = cur_trans->aborted;
dfba78dc 2446 goto unlock_reloc;
2cba30f1
MX
2447 }
2448
0b246afa 2449 cur_trans = fs_info->running_transaction;
5d4f98a2 2450
0b246afa
JM
2451 btrfs_set_root_node(&fs_info->tree_root->root_item,
2452 fs_info->tree_root->node);
2453 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2454 &cur_trans->switch_commits);
5d4f98a2 2455
0b246afa
JM
2456 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2457 fs_info->chunk_root->node);
2458 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2459 &cur_trans->switch_commits);
2460
f7238e50
JB
2461 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2462 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2463 fs_info->block_group_root->node);
2464 list_add_tail(&fs_info->block_group_root->dirty_list,
2465 &cur_trans->switch_commits);
2466 }
2467
889bfa39 2468 switch_commit_roots(trans);
5d4f98a2 2469
ce93ec54 2470 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2471 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2472 update_super_roots(fs_info);
e02119d5 2473
0b246afa
JM
2474 btrfs_set_super_log_root(fs_info->super_copy, 0);
2475 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2476 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2477 sizeof(*fs_info->super_copy));
ccd467d6 2478
bbbf7243 2479 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2480
0b246afa
JM
2481 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2482 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2483
4fbcdf66
FM
2484 btrfs_trans_release_chunk_metadata(trans);
2485
dfba78dc
FM
2486 /*
2487 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2488 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2489 * make sure that before we commit our superblock, no other task can
2490 * start a new transaction and commit a log tree before we commit our
2491 * superblock. Anyone trying to commit a log tree locks this mutex before
2492 * writing its superblock.
2493 */
2494 mutex_lock(&fs_info->tree_log_mutex);
2495
0b246afa 2496 spin_lock(&fs_info->trans_lock);
4a9d8bde 2497 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2498 fs_info->running_transaction = NULL;
2499 spin_unlock(&fs_info->trans_lock);
2500 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2501
0b246afa 2502 wake_up(&fs_info->transaction_wait);
3e738c53 2503 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
e6dcd2dc 2504
b7625f46
QW
2505 /* If we have features changed, wake up the cleaner to update sysfs. */
2506 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2507 fs_info->cleaner_kthread)
2508 wake_up_process(fs_info->cleaner_kthread);
2509
70458a58 2510 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2511 if (ret) {
0b246afa
JM
2512 btrfs_handle_fs_error(fs_info, ret,
2513 "Error while writing out transaction");
2514 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2515 goto scrub_continue;
49b25e05
JM
2516 }
2517
eece6a9c 2518 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2519 /*
2520 * the super is written, we can safely allow the tree-loggers
2521 * to go about their business
2522 */
0b246afa 2523 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2524 if (ret)
2525 goto scrub_continue;
e02119d5 2526
d0c2f4fa
FM
2527 /*
2528 * We needn't acquire the lock here because there is no other task
2529 * which can change it.
2530 */
2531 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2532 wake_up(&cur_trans->commit_wait);
3e738c53 2533 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
d0c2f4fa 2534
5ead2dd0 2535 btrfs_finish_extent_commit(trans);
4313b399 2536
3204d33c 2537 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2538 btrfs_clear_space_info_full(fs_info);
13212b54 2539
0124855f 2540 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
4a9d8bde
MX
2541 /*
2542 * We needn't acquire the lock here because there is no other task
2543 * which can change it.
2544 */
2545 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2546 wake_up(&cur_trans->commit_wait);
3e738c53 2547 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
3de4586c 2548
0b246afa 2549 spin_lock(&fs_info->trans_lock);
13c5a93e 2550 list_del_init(&cur_trans->list);
0b246afa 2551 spin_unlock(&fs_info->trans_lock);
a4abeea4 2552
724e2315
JB
2553 btrfs_put_transaction(cur_trans);
2554 btrfs_put_transaction(cur_trans);
58176a96 2555
0860adfd 2556 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2557 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2558
2e4e97ab 2559 trace_btrfs_transaction_commit(fs_info);
1abe9b8a 2560
e55958c8
IA
2561 interval = ktime_get_ns() - start_time;
2562
2ff7e61e 2563 btrfs_scrub_continue(fs_info);
a2de733c 2564
9ed74f2d
JB
2565 if (current->journal_info == trans)
2566 current->journal_info = NULL;
2567
2c90e5d6 2568 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2569
e55958c8
IA
2570 update_commit_stats(fs_info, interval);
2571
79154b1b 2572 return ret;
49b25e05 2573
56e9f6ea
DS
2574unlock_reloc:
2575 mutex_unlock(&fs_info->reloc_mutex);
3e738c53 2576 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2577scrub_continue:
3e738c53
IA
2578 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2579 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2ff7e61e 2580 btrfs_scrub_continue(fs_info);
49b25e05 2581cleanup_transaction:
dc60c525 2582 btrfs_trans_release_metadata(trans);
c7cc64a9 2583 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2584 btrfs_trans_release_chunk_metadata(trans);
0e721106 2585 trans->block_rsv = NULL;
0b246afa 2586 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2587 if (current->journal_info == trans)
2588 current->journal_info = NULL;
97cb39bb 2589 cleanup_transaction(trans, ret);
49b25e05
JM
2590
2591 return ret;
e1489b4f
IA
2592
2593lockdep_release:
5a9ba670 2594 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f
IA
2595 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2596 goto cleanup_transaction;
3e738c53
IA
2597
2598lockdep_trans_commit_start_release:
77d20c68 2599 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
3e738c53
IA
2600 btrfs_end_transaction(trans);
2601 return ret;
79154b1b
CM
2602}
2603
d352ac68 2604/*
9d1a2a3a
DS
2605 * return < 0 if error
2606 * 0 if there are no more dead_roots at the time of call
2607 * 1 there are more to be processed, call me again
2608 *
2609 * The return value indicates there are certainly more snapshots to delete, but
2610 * if there comes a new one during processing, it may return 0. We don't mind,
2611 * because btrfs_commit_super will poke cleaner thread and it will process it a
2612 * few seconds later.
d352ac68 2613 */
33c44184 2614int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
e9d0b13b 2615{
33c44184 2616 struct btrfs_root *root;
9d1a2a3a 2617 int ret;
5d4f98a2 2618
a4abeea4 2619 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2620 if (list_empty(&fs_info->dead_roots)) {
2621 spin_unlock(&fs_info->trans_lock);
2622 return 0;
2623 }
2624 root = list_first_entry(&fs_info->dead_roots,
2625 struct btrfs_root, root_list);
cfad392b 2626 list_del_init(&root->root_list);
a4abeea4 2627 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2628
4fd786e6 2629 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2630
9d1a2a3a 2631 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2632
9d1a2a3a
DS
2633 if (btrfs_header_backref_rev(root->node) <
2634 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2635 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2636 else
0078a9f9 2637 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2638
dc9492c1 2639 btrfs_put_root(root);
6596a928 2640 return (ret < 0) ? 0 : 1;
e9d0b13b 2641}
572d9ab7 2642
fccf0c84
JB
2643/*
2644 * We only mark the transaction aborted and then set the file system read-only.
2645 * This will prevent new transactions from starting or trying to join this
2646 * one.
2647 *
2648 * This means that error recovery at the call site is limited to freeing
2649 * any local memory allocations and passing the error code up without
2650 * further cleanup. The transaction should complete as it normally would
2651 * in the call path but will return -EIO.
2652 *
2653 * We'll complete the cleanup in btrfs_end_transaction and
2654 * btrfs_commit_transaction.
2655 */
2656void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2657 const char *function,
ed164802 2658 unsigned int line, int error, bool first_hit)
fccf0c84
JB
2659{
2660 struct btrfs_fs_info *fs_info = trans->fs_info;
2661
ed164802
DS
2662 WRITE_ONCE(trans->aborted, error);
2663 WRITE_ONCE(trans->transaction->aborted, error);
2664 if (first_hit && error == -ENOSPC)
fccf0c84
JB
2665 btrfs_dump_space_info_for_trans_abort(fs_info);
2666 /* Wake up anybody who may be waiting on this transaction */
2667 wake_up(&fs_info->transaction_wait);
2668 wake_up(&fs_info->transaction_blocked_wait);
ed164802 2669 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
fccf0c84
JB
2670}
2671
956504a3
JB
2672int __init btrfs_transaction_init(void)
2673{
2753b4d8
KC
2674 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle,
2675 SLAB_TEMPORARY | SLAB_MEM_SPREAD);
956504a3
JB
2676 if (!btrfs_trans_handle_cachep)
2677 return -ENOMEM;
2678 return 0;
2679}
2680
2681void __cold btrfs_transaction_exit(void)
2682{
2683 kmem_cache_destroy(btrfs_trans_handle_cachep);
2684}