btrfs: use has_single_bit_set for clarity
[linux-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
602cbe91 13#include "misc.h"
79154b1b
CM
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
925baedd 17#include "locking.h"
e02119d5 18#include "tree-log.h"
581bb050 19#include "inode-map.h"
733f4fbb 20#include "volumes.h"
8dabb742 21#include "dev-replace.h"
fcebe456 22#include "qgroup.h"
aac0023c 23#include "block-group.h"
79154b1b 24
0f7d52f4
CM
25#define BTRFS_ROOT_TRANS_TAG 0
26
e8c9f186 27static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 28 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
29 [TRANS_STATE_BLOCKED] = __TRANS_START,
30 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
31 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 32 __TRANS_ATTACH |
a6d155d2
FM
33 __TRANS_JOIN |
34 __TRANS_JOIN_NOSTART),
bcf3a3e7 35 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
36 __TRANS_ATTACH |
37 __TRANS_JOIN |
a6d155d2
FM
38 __TRANS_JOIN_NOLOCK |
39 __TRANS_JOIN_NOSTART),
bcf3a3e7 40 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
41 __TRANS_ATTACH |
42 __TRANS_JOIN |
a6d155d2
FM
43 __TRANS_JOIN_NOLOCK |
44 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
45};
46
724e2315 47void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 48{
9b64f57d
ER
49 WARN_ON(refcount_read(&transaction->use_count) == 0);
50 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 51 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
52 WARN_ON(!RB_EMPTY_ROOT(
53 &transaction->delayed_refs.href_root.rb_root));
1262133b 54 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
55 btrfs_err(transaction->fs_info,
56 "pending csums is %llu",
57 transaction->delayed_refs.pending_csums);
7785a663
FM
58 /*
59 * If any block groups are found in ->deleted_bgs then it's
60 * because the transaction was aborted and a commit did not
61 * happen (things failed before writing the new superblock
62 * and calling btrfs_finish_extent_commit()), so we can not
63 * discard the physical locations of the block groups.
64 */
65 while (!list_empty(&transaction->deleted_bgs)) {
66 struct btrfs_block_group_cache *cache;
67
68 cache = list_first_entry(&transaction->deleted_bgs,
69 struct btrfs_block_group_cache,
70 bg_list);
71 list_del_init(&cache->bg_list);
72 btrfs_put_block_group_trimming(cache);
73 btrfs_put_block_group(cache);
74 }
bbbf7243 75 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 76 kfree(transaction);
78fae27e 77 }
79154b1b
CM
78}
79
16916a88 80static noinline void switch_commit_roots(struct btrfs_transaction *trans)
817d52f8 81{
16916a88 82 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
83 struct btrfs_root *root, *tmp;
84
85 down_write(&fs_info->commit_root_sem);
86 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
87 dirty_list) {
88 list_del_init(&root->dirty_list);
89 free_extent_buffer(root->commit_root);
90 root->commit_root = btrfs_root_node(root);
4fd786e6 91 if (is_fstree(root->root_key.objectid))
9e351cc8 92 btrfs_unpin_free_ino(root);
41e7acd3 93 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 94 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 95 }
2b9dbef2
JB
96
97 /* We can free old roots now. */
98 spin_lock(&trans->dropped_roots_lock);
99 while (!list_empty(&trans->dropped_roots)) {
100 root = list_first_entry(&trans->dropped_roots,
101 struct btrfs_root, root_list);
102 list_del_init(&root->root_list);
103 spin_unlock(&trans->dropped_roots_lock);
104 btrfs_drop_and_free_fs_root(fs_info, root);
105 spin_lock(&trans->dropped_roots_lock);
106 }
107 spin_unlock(&trans->dropped_roots_lock);
9e351cc8 108 up_write(&fs_info->commit_root_sem);
817d52f8
JB
109}
110
0860adfd
MX
111static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
112 unsigned int type)
113{
114 if (type & TRANS_EXTWRITERS)
115 atomic_inc(&trans->num_extwriters);
116}
117
118static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
119 unsigned int type)
120{
121 if (type & TRANS_EXTWRITERS)
122 atomic_dec(&trans->num_extwriters);
123}
124
125static inline void extwriter_counter_init(struct btrfs_transaction *trans,
126 unsigned int type)
127{
128 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
129}
130
131static inline int extwriter_counter_read(struct btrfs_transaction *trans)
132{
133 return atomic_read(&trans->num_extwriters);
178260b2
MX
134}
135
fb6dea26
JB
136/*
137 * To be called after all the new block groups attached to the transaction
138 * handle have been created (btrfs_create_pending_block_groups()).
139 */
140void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
141{
142 struct btrfs_fs_info *fs_info = trans->fs_info;
143
144 if (!trans->chunk_bytes_reserved)
145 return;
146
147 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
148
149 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
150 trans->chunk_bytes_reserved);
151 trans->chunk_bytes_reserved = 0;
152}
153
d352ac68
CM
154/*
155 * either allocate a new transaction or hop into the existing one
156 */
2ff7e61e
JM
157static noinline int join_transaction(struct btrfs_fs_info *fs_info,
158 unsigned int type)
79154b1b
CM
159{
160 struct btrfs_transaction *cur_trans;
a4abeea4 161
19ae4e81 162 spin_lock(&fs_info->trans_lock);
d43317dc 163loop:
49b25e05 164 /* The file system has been taken offline. No new transactions. */
87533c47 165 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
19ae4e81 166 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
167 return -EROFS;
168 }
169
19ae4e81 170 cur_trans = fs_info->running_transaction;
a4abeea4 171 if (cur_trans) {
871383be 172 if (cur_trans->aborted) {
19ae4e81 173 spin_unlock(&fs_info->trans_lock);
49b25e05 174 return cur_trans->aborted;
871383be 175 }
4a9d8bde 176 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
177 spin_unlock(&fs_info->trans_lock);
178 return -EBUSY;
179 }
9b64f57d 180 refcount_inc(&cur_trans->use_count);
13c5a93e 181 atomic_inc(&cur_trans->num_writers);
0860adfd 182 extwriter_counter_inc(cur_trans, type);
19ae4e81 183 spin_unlock(&fs_info->trans_lock);
a4abeea4 184 return 0;
79154b1b 185 }
19ae4e81 186 spin_unlock(&fs_info->trans_lock);
a4abeea4 187
354aa0fb
MX
188 /*
189 * If we are ATTACH, we just want to catch the current transaction,
190 * and commit it. If there is no transaction, just return ENOENT.
191 */
192 if (type == TRANS_ATTACH)
193 return -ENOENT;
194
4a9d8bde
MX
195 /*
196 * JOIN_NOLOCK only happens during the transaction commit, so
197 * it is impossible that ->running_transaction is NULL
198 */
199 BUG_ON(type == TRANS_JOIN_NOLOCK);
200
4b5faeac 201 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
202 if (!cur_trans)
203 return -ENOMEM;
d43317dc 204
19ae4e81
JS
205 spin_lock(&fs_info->trans_lock);
206 if (fs_info->running_transaction) {
d43317dc
CM
207 /*
208 * someone started a transaction after we unlocked. Make sure
4a9d8bde 209 * to redo the checks above
d43317dc 210 */
4b5faeac 211 kfree(cur_trans);
d43317dc 212 goto loop;
87533c47 213 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
e4b50e14 214 spin_unlock(&fs_info->trans_lock);
4b5faeac 215 kfree(cur_trans);
7b8b92af 216 return -EROFS;
79154b1b 217 }
d43317dc 218
ab8d0fc4 219 cur_trans->fs_info = fs_info;
a4abeea4 220 atomic_set(&cur_trans->num_writers, 1);
0860adfd 221 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
222 init_waitqueue_head(&cur_trans->writer_wait);
223 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 224 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
225 /*
226 * One for this trans handle, one so it will live on until we
227 * commit the transaction.
228 */
9b64f57d 229 refcount_set(&cur_trans->use_count, 2);
3204d33c 230 cur_trans->flags = 0;
afd48513 231 cur_trans->start_time = ktime_get_seconds();
a4abeea4 232
a099d0fd
AM
233 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
234
5c9d028b 235 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 236 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 237 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
238
239 /*
240 * although the tree mod log is per file system and not per transaction,
241 * the log must never go across transaction boundaries.
242 */
243 smp_mb();
31b1a2bd 244 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 245 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 246 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 247 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 248 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 249
a4abeea4
JB
250 spin_lock_init(&cur_trans->delayed_refs.lock);
251
252 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 253 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 254 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 255 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 256 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 257 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 258 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 259 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 260 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 261 spin_lock_init(&cur_trans->dropped_roots_lock);
19ae4e81 262 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 263 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
43eb5f29 264 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
19ae4e81
JS
265 fs_info->generation++;
266 cur_trans->transid = fs_info->generation;
267 fs_info->running_transaction = cur_trans;
49b25e05 268 cur_trans->aborted = 0;
19ae4e81 269 spin_unlock(&fs_info->trans_lock);
15ee9bc7 270
79154b1b
CM
271 return 0;
272}
273
d352ac68 274/*
d397712b
CM
275 * this does all the record keeping required to make sure that a reference
276 * counted root is properly recorded in a given transaction. This is required
277 * to make sure the old root from before we joined the transaction is deleted
278 * when the transaction commits
d352ac68 279 */
7585717f 280static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
281 struct btrfs_root *root,
282 int force)
6702ed49 283{
0b246afa
JM
284 struct btrfs_fs_info *fs_info = root->fs_info;
285
6426c7ad
QW
286 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
287 root->last_trans < trans->transid) || force) {
0b246afa 288 WARN_ON(root == fs_info->extent_root);
4d31778a 289 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 290
7585717f 291 /*
27cdeb70 292 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
293 * we have the reloc mutex held now, so there
294 * is only one writer in this function
295 */
27cdeb70 296 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 297
27cdeb70 298 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
299 * they find our root->last_trans update
300 */
301 smp_wmb();
302
0b246afa 303 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 304 if (root->last_trans == trans->transid && !force) {
0b246afa 305 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
306 return 0;
307 }
0b246afa
JM
308 radix_tree_tag_set(&fs_info->fs_roots_radix,
309 (unsigned long)root->root_key.objectid,
310 BTRFS_ROOT_TRANS_TAG);
311 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
312 root->last_trans = trans->transid;
313
314 /* this is pretty tricky. We don't want to
315 * take the relocation lock in btrfs_record_root_in_trans
316 * unless we're really doing the first setup for this root in
317 * this transaction.
318 *
319 * Normally we'd use root->last_trans as a flag to decide
320 * if we want to take the expensive mutex.
321 *
322 * But, we have to set root->last_trans before we
323 * init the relocation root, otherwise, we trip over warnings
324 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 325 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
326 * fixing up the reloc trees and everyone must wait.
327 *
328 * When this is zero, they can trust root->last_trans and fly
329 * through btrfs_record_root_in_trans without having to take the
330 * lock. smp_wmb() makes sure that all the writes above are
331 * done before we pop in the zero below
332 */
5d4f98a2 333 btrfs_init_reloc_root(trans, root);
c7548af6 334 smp_mb__before_atomic();
27cdeb70 335 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2
YZ
336 }
337 return 0;
338}
bcc63abb 339
7585717f 340
2b9dbef2
JB
341void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
342 struct btrfs_root *root)
343{
0b246afa 344 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
345 struct btrfs_transaction *cur_trans = trans->transaction;
346
347 /* Add ourselves to the transaction dropped list */
348 spin_lock(&cur_trans->dropped_roots_lock);
349 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
350 spin_unlock(&cur_trans->dropped_roots_lock);
351
352 /* Make sure we don't try to update the root at commit time */
0b246afa
JM
353 spin_lock(&fs_info->fs_roots_radix_lock);
354 radix_tree_tag_clear(&fs_info->fs_roots_radix,
2b9dbef2
JB
355 (unsigned long)root->root_key.objectid,
356 BTRFS_ROOT_TRANS_TAG);
0b246afa 357 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
358}
359
7585717f
CM
360int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
361 struct btrfs_root *root)
362{
0b246afa
JM
363 struct btrfs_fs_info *fs_info = root->fs_info;
364
27cdeb70 365 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
7585717f
CM
366 return 0;
367
368 /*
27cdeb70 369 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
370 * and barriers
371 */
372 smp_rmb();
373 if (root->last_trans == trans->transid &&
27cdeb70 374 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
375 return 0;
376
0b246afa 377 mutex_lock(&fs_info->reloc_mutex);
6426c7ad 378 record_root_in_trans(trans, root, 0);
0b246afa 379 mutex_unlock(&fs_info->reloc_mutex);
7585717f
CM
380
381 return 0;
382}
383
4a9d8bde
MX
384static inline int is_transaction_blocked(struct btrfs_transaction *trans)
385{
386 return (trans->state >= TRANS_STATE_BLOCKED &&
501407aa
JB
387 trans->state < TRANS_STATE_UNBLOCKED &&
388 !trans->aborted);
4a9d8bde
MX
389}
390
d352ac68
CM
391/* wait for commit against the current transaction to become unblocked
392 * when this is done, it is safe to start a new transaction, but the current
393 * transaction might not be fully on disk.
394 */
2ff7e61e 395static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 396{
f9295749 397 struct btrfs_transaction *cur_trans;
79154b1b 398
0b246afa
JM
399 spin_lock(&fs_info->trans_lock);
400 cur_trans = fs_info->running_transaction;
4a9d8bde 401 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 402 refcount_inc(&cur_trans->use_count);
0b246afa 403 spin_unlock(&fs_info->trans_lock);
72d63ed6 404
0b246afa 405 wait_event(fs_info->transaction_wait,
501407aa
JB
406 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
407 cur_trans->aborted);
724e2315 408 btrfs_put_transaction(cur_trans);
a4abeea4 409 } else {
0b246afa 410 spin_unlock(&fs_info->trans_lock);
f9295749 411 }
37d1aeee
CM
412}
413
2ff7e61e 414static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 415{
0b246afa 416 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
417 return 0;
418
92e2f7e3 419 if (type == TRANS_START)
a22285a6 420 return 1;
a4abeea4 421
a22285a6
YZ
422 return 0;
423}
424
20dd2cbf
MX
425static inline bool need_reserve_reloc_root(struct btrfs_root *root)
426{
0b246afa
JM
427 struct btrfs_fs_info *fs_info = root->fs_info;
428
429 if (!fs_info->reloc_ctl ||
27cdeb70 430 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
20dd2cbf
MX
431 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
432 root->reloc_root)
433 return false;
434
435 return true;
436}
437
08e007d2 438static struct btrfs_trans_handle *
5aed1dd8 439start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
440 unsigned int type, enum btrfs_reserve_flush_enum flush,
441 bool enforce_qgroups)
37d1aeee 442{
0b246afa 443 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 444 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
445 struct btrfs_trans_handle *h;
446 struct btrfs_transaction *cur_trans;
b5009945 447 u64 num_bytes = 0;
c5567237 448 u64 qgroup_reserved = 0;
20dd2cbf
MX
449 bool reloc_reserved = false;
450 int ret;
acce952b 451
46c4e71e 452 /* Send isn't supposed to start transactions. */
2755a0de 453 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
46c4e71e 454
0b246afa 455 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
acce952b 456 return ERR_PTR(-EROFS);
2a1eb461 457
46c4e71e 458 if (current->journal_info) {
0860adfd 459 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 460 h = current->journal_info;
b50fff81
DS
461 refcount_inc(&h->use_count);
462 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
463 h->orig_rsv = h->block_rsv;
464 h->block_rsv = NULL;
465 goto got_it;
466 }
b5009945
JB
467
468 /*
469 * Do the reservation before we join the transaction so we can do all
470 * the appropriate flushing if need be.
471 */
003d7c59 472 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
473 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
474 u64 delayed_refs_bytes = 0;
475
0b246afa 476 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
477 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
478 enforce_qgroups);
7174109c
QW
479 if (ret)
480 return ERR_PTR(ret);
c5567237 481
ba2c4d4e
JB
482 /*
483 * We want to reserve all the bytes we may need all at once, so
484 * we only do 1 enospc flushing cycle per transaction start. We
485 * accomplish this by simply assuming we'll do 2 x num_items
486 * worth of delayed refs updates in this trans handle, and
487 * refill that amount for whatever is missing in the reserve.
488 */
2bd36e7b 489 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
ba2c4d4e
JB
490 if (delayed_refs_rsv->full == 0) {
491 delayed_refs_bytes = num_bytes;
492 num_bytes <<= 1;
493 }
494
20dd2cbf
MX
495 /*
496 * Do the reservation for the relocation root creation
497 */
ee39b432 498 if (need_reserve_reloc_root(root)) {
0b246afa 499 num_bytes += fs_info->nodesize;
20dd2cbf
MX
500 reloc_reserved = true;
501 }
502
ba2c4d4e
JB
503 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
504 if (ret)
505 goto reserve_fail;
506 if (delayed_refs_bytes) {
507 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
508 delayed_refs_bytes);
509 num_bytes -= delayed_refs_bytes;
510 }
511 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
512 !delayed_refs_rsv->full) {
513 /*
514 * Some people call with btrfs_start_transaction(root, 0)
515 * because they can be throttled, but have some other mechanism
516 * for reserving space. We still want these guys to refill the
517 * delayed block_rsv so just add 1 items worth of reservation
518 * here.
519 */
520 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 521 if (ret)
843fcf35 522 goto reserve_fail;
b5009945 523 }
a22285a6 524again:
f2f767e7 525 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
526 if (!h) {
527 ret = -ENOMEM;
528 goto alloc_fail;
529 }
37d1aeee 530
98114659
JB
531 /*
532 * If we are JOIN_NOLOCK we're already committing a transaction and
533 * waiting on this guy, so we don't need to do the sb_start_intwrite
534 * because we're already holding a ref. We need this because we could
535 * have raced in and did an fsync() on a file which can kick a commit
536 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
537 *
538 * If we are ATTACH, it means we just want to catch the current
539 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 540 */
0860adfd 541 if (type & __TRANS_FREEZABLE)
0b246afa 542 sb_start_intwrite(fs_info->sb);
b2b5ef5c 543
2ff7e61e
JM
544 if (may_wait_transaction(fs_info, type))
545 wait_current_trans(fs_info);
a22285a6 546
a4abeea4 547 do {
2ff7e61e 548 ret = join_transaction(fs_info, type);
178260b2 549 if (ret == -EBUSY) {
2ff7e61e 550 wait_current_trans(fs_info);
a6d155d2
FM
551 if (unlikely(type == TRANS_ATTACH ||
552 type == TRANS_JOIN_NOSTART))
178260b2
MX
553 ret = -ENOENT;
554 }
a4abeea4
JB
555 } while (ret == -EBUSY);
556
a43f7f82 557 if (ret < 0)
843fcf35 558 goto join_fail;
0f7d52f4 559
0b246afa 560 cur_trans = fs_info->running_transaction;
a22285a6
YZ
561
562 h->transid = cur_trans->transid;
563 h->transaction = cur_trans;
d13603ef 564 h->root = root;
b50fff81 565 refcount_set(&h->use_count, 1);
64b63580 566 h->fs_info = root->fs_info;
7174109c 567
a698d075 568 h->type = type;
d9a0540a 569 h->can_flush_pending_bgs = true;
ea658bad 570 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 571
a22285a6 572 smp_mb();
4a9d8bde 573 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
2ff7e61e 574 may_wait_transaction(fs_info, type)) {
abdd2e80 575 current->journal_info = h;
3a45bb20 576 btrfs_commit_transaction(h);
a22285a6
YZ
577 goto again;
578 }
579
b5009945 580 if (num_bytes) {
0b246afa 581 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 582 h->transid, num_bytes, 1);
0b246afa 583 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 584 h->bytes_reserved = num_bytes;
20dd2cbf 585 h->reloc_reserved = reloc_reserved;
a22285a6 586 }
9ed74f2d 587
2a1eb461 588got_it:
a4abeea4 589 btrfs_record_root_in_trans(h, root);
a22285a6 590
bcf3a3e7 591 if (!current->journal_info)
a22285a6 592 current->journal_info = h;
79154b1b 593 return h;
843fcf35
MX
594
595join_fail:
0860adfd 596 if (type & __TRANS_FREEZABLE)
0b246afa 597 sb_end_intwrite(fs_info->sb);
843fcf35
MX
598 kmem_cache_free(btrfs_trans_handle_cachep, h);
599alloc_fail:
600 if (num_bytes)
2ff7e61e 601 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
843fcf35
MX
602 num_bytes);
603reserve_fail:
733e03a0 604 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 605 return ERR_PTR(ret);
79154b1b
CM
606}
607
f9295749 608struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 609 unsigned int num_items)
f9295749 610{
08e007d2 611 return start_transaction(root, num_items, TRANS_START,
003d7c59 612 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 613}
003d7c59 614
8eab77ff
FM
615struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
616 struct btrfs_root *root,
617 unsigned int num_items,
618 int min_factor)
619{
0b246afa 620 struct btrfs_fs_info *fs_info = root->fs_info;
8eab77ff
FM
621 struct btrfs_trans_handle *trans;
622 u64 num_bytes;
623 int ret;
624
003d7c59
JM
625 /*
626 * We have two callers: unlink and block group removal. The
627 * former should succeed even if we will temporarily exceed
628 * quota and the latter operates on the extent root so
629 * qgroup enforcement is ignored anyway.
630 */
631 trans = start_transaction(root, num_items, TRANS_START,
632 BTRFS_RESERVE_FLUSH_ALL, false);
8eab77ff
FM
633 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
634 return trans;
635
636 trans = btrfs_start_transaction(root, 0);
637 if (IS_ERR(trans))
638 return trans;
639
2bd36e7b 640 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
0b246afa
JM
641 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
642 num_bytes, min_factor);
8eab77ff 643 if (ret) {
3a45bb20 644 btrfs_end_transaction(trans);
8eab77ff
FM
645 return ERR_PTR(ret);
646 }
647
0b246afa 648 trans->block_rsv = &fs_info->trans_block_rsv;
8eab77ff 649 trans->bytes_reserved = num_bytes;
0b246afa 650 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa 651 trans->transid, num_bytes, 1);
8eab77ff
FM
652
653 return trans;
654}
8407aa46 655
7a7eaa40 656struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 657{
003d7c59
JM
658 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
659 true);
f9295749
CM
660}
661
7a7eaa40 662struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
0af3d00b 663{
575a75d6 664 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 665 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
666}
667
a6d155d2
FM
668/*
669 * Similar to regular join but it never starts a transaction when none is
670 * running or after waiting for the current one to finish.
671 */
672struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
673{
674 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
675 BTRFS_RESERVE_NO_FLUSH, true);
676}
677
d4edf39b
MX
678/*
679 * btrfs_attach_transaction() - catch the running transaction
680 *
681 * It is used when we want to commit the current the transaction, but
682 * don't want to start a new one.
683 *
684 * Note: If this function return -ENOENT, it just means there is no
685 * running transaction. But it is possible that the inactive transaction
686 * is still in the memory, not fully on disk. If you hope there is no
687 * inactive transaction in the fs when -ENOENT is returned, you should
688 * invoke
689 * btrfs_attach_transaction_barrier()
690 */
354aa0fb 691struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 692{
575a75d6 693 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 694 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
695}
696
d4edf39b 697/*
90b6d283 698 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 699 *
52042d8e 700 * It is similar to the above function, the difference is this one
d4edf39b
MX
701 * will wait for all the inactive transactions until they fully
702 * complete.
703 */
704struct btrfs_trans_handle *
705btrfs_attach_transaction_barrier(struct btrfs_root *root)
706{
707 struct btrfs_trans_handle *trans;
708
575a75d6 709 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 710 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 711 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 712 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
713
714 return trans;
715}
716
d352ac68 717/* wait for a transaction commit to be fully complete */
2ff7e61e 718static noinline void wait_for_commit(struct btrfs_transaction *commit)
89ce8a63 719{
4a9d8bde 720 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
89ce8a63
CM
721}
722
2ff7e61e 723int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
724{
725 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 726 int ret = 0;
46204592 727
46204592 728 if (transid) {
0b246afa 729 if (transid <= fs_info->last_trans_committed)
a4abeea4 730 goto out;
46204592
SW
731
732 /* find specified transaction */
0b246afa
JM
733 spin_lock(&fs_info->trans_lock);
734 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
735 if (t->transid == transid) {
736 cur_trans = t;
9b64f57d 737 refcount_inc(&cur_trans->use_count);
8cd2807f 738 ret = 0;
46204592
SW
739 break;
740 }
8cd2807f
MX
741 if (t->transid > transid) {
742 ret = 0;
46204592 743 break;
8cd2807f 744 }
46204592 745 }
0b246afa 746 spin_unlock(&fs_info->trans_lock);
42383020
SW
747
748 /*
749 * The specified transaction doesn't exist, or we
750 * raced with btrfs_commit_transaction
751 */
752 if (!cur_trans) {
0b246afa 753 if (transid > fs_info->last_trans_committed)
42383020 754 ret = -EINVAL;
8cd2807f 755 goto out;
42383020 756 }
46204592
SW
757 } else {
758 /* find newest transaction that is committing | committed */
0b246afa
JM
759 spin_lock(&fs_info->trans_lock);
760 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 761 list) {
4a9d8bde
MX
762 if (t->state >= TRANS_STATE_COMMIT_START) {
763 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 764 break;
46204592 765 cur_trans = t;
9b64f57d 766 refcount_inc(&cur_trans->use_count);
46204592
SW
767 break;
768 }
769 }
0b246afa 770 spin_unlock(&fs_info->trans_lock);
46204592 771 if (!cur_trans)
a4abeea4 772 goto out; /* nothing committing|committed */
46204592
SW
773 }
774
2ff7e61e 775 wait_for_commit(cur_trans);
724e2315 776 btrfs_put_transaction(cur_trans);
a4abeea4 777out:
46204592
SW
778 return ret;
779}
780
2ff7e61e 781void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 782{
92e2f7e3 783 wait_current_trans(fs_info);
37d1aeee
CM
784}
785
2ff7e61e 786static int should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 787{
2ff7e61e 788 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 789
64403612 790 if (btrfs_check_space_for_delayed_refs(fs_info))
1be41b78 791 return 1;
36ba022a 792
2ff7e61e 793 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
794}
795
3a45bb20 796int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
797{
798 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 799
a4abeea4 800 smp_mb();
4a9d8bde
MX
801 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
802 cur_trans->delayed_refs.flushing)
8929ecfa
YZ
803 return 1;
804
2ff7e61e 805 return should_end_transaction(trans);
8929ecfa
YZ
806}
807
dc60c525
NB
808static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
809
0e34693f 810{
dc60c525
NB
811 struct btrfs_fs_info *fs_info = trans->fs_info;
812
0e34693f
NB
813 if (!trans->block_rsv) {
814 ASSERT(!trans->bytes_reserved);
815 return;
816 }
817
818 if (!trans->bytes_reserved)
819 return;
820
821 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
822 trace_btrfs_space_reservation(fs_info, "transaction",
823 trans->transid, trans->bytes_reserved, 0);
824 btrfs_block_rsv_release(fs_info, trans->block_rsv,
825 trans->bytes_reserved);
826 trans->bytes_reserved = 0;
827}
828
89ce8a63 829static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 830 int throttle)
79154b1b 831{
3a45bb20 832 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 833 struct btrfs_transaction *cur_trans = trans->transaction;
a698d075 834 int lock = (trans->type != TRANS_JOIN_NOLOCK);
4edc2ca3 835 int err = 0;
c3e69d58 836
b50fff81
DS
837 if (refcount_read(&trans->use_count) > 1) {
838 refcount_dec(&trans->use_count);
2a1eb461
JB
839 trans->block_rsv = trans->orig_rsv;
840 return 0;
841 }
842
dc60c525 843 btrfs_trans_release_metadata(trans);
4c13d758 844 trans->block_rsv = NULL;
c5567237 845
119e80df 846 btrfs_create_pending_block_groups(trans);
ea658bad 847
4fbcdf66
FM
848 btrfs_trans_release_chunk_metadata(trans);
849
20c7bcec 850 if (lock && READ_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
3bbb24b2 851 if (throttle)
3a45bb20 852 return btrfs_commit_transaction(trans);
3bbb24b2 853 else
8929ecfa
YZ
854 wake_up_process(info->transaction_kthread);
855 }
856
0860adfd 857 if (trans->type & __TRANS_FREEZABLE)
0b246afa 858 sb_end_intwrite(info->sb);
6df7881a 859
8929ecfa 860 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
861 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
862 atomic_dec(&cur_trans->num_writers);
0860adfd 863 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 864
093258e6 865 cond_wake_up(&cur_trans->writer_wait);
724e2315 866 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
867
868 if (current->journal_info == trans)
869 current->journal_info = NULL;
ab78c84d 870
24bbcf04 871 if (throttle)
2ff7e61e 872 btrfs_run_delayed_iputs(info);
24bbcf04 873
49b25e05 874 if (trans->aborted ||
0b246afa 875 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
4e121c06 876 wake_up_process(info->transaction_kthread);
4edc2ca3 877 err = -EIO;
4e121c06 878 }
49b25e05 879
4edc2ca3
DJ
880 kmem_cache_free(btrfs_trans_handle_cachep, trans);
881 return err;
79154b1b
CM
882}
883
3a45bb20 884int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 885{
3a45bb20 886 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
887}
888
3a45bb20 889int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 890{
3a45bb20 891 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
892}
893
d352ac68
CM
894/*
895 * when btree blocks are allocated, they have some corresponding bits set for
896 * them in one of two extent_io trees. This is used to make sure all of
690587d1 897 * those extents are sent to disk but does not wait on them
d352ac68 898 */
2ff7e61e 899int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 900 struct extent_io_tree *dirty_pages, int mark)
79154b1b 901{
777e6bd7 902 int err = 0;
7c4452b9 903 int werr = 0;
0b246afa 904 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 905 struct extent_state *cached_state = NULL;
777e6bd7 906 u64 start = 0;
5f39d397 907 u64 end;
7c4452b9 908
6300463b 909 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 910 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 911 mark, &cached_state)) {
663dfbb0
FM
912 bool wait_writeback = false;
913
914 err = convert_extent_bit(dirty_pages, start, end,
915 EXTENT_NEED_WAIT,
210aa277 916 mark, &cached_state);
663dfbb0
FM
917 /*
918 * convert_extent_bit can return -ENOMEM, which is most of the
919 * time a temporary error. So when it happens, ignore the error
920 * and wait for writeback of this range to finish - because we
921 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
922 * to __btrfs_wait_marked_extents() would not know that
923 * writeback for this range started and therefore wouldn't
924 * wait for it to finish - we don't want to commit a
925 * superblock that points to btree nodes/leafs for which
926 * writeback hasn't finished yet (and without errors).
663dfbb0 927 * We cleanup any entries left in the io tree when committing
41e7acd3 928 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
929 */
930 if (err == -ENOMEM) {
931 err = 0;
932 wait_writeback = true;
933 }
934 if (!err)
935 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
936 if (err)
937 werr = err;
663dfbb0
FM
938 else if (wait_writeback)
939 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 940 free_extent_state(cached_state);
663dfbb0 941 cached_state = NULL;
1728366e
JB
942 cond_resched();
943 start = end + 1;
7c4452b9 944 }
6300463b 945 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
946 return werr;
947}
948
949/*
950 * when btree blocks are allocated, they have some corresponding bits set for
951 * them in one of two extent_io trees. This is used to make sure all of
952 * those extents are on disk for transaction or log commit. We wait
953 * on all the pages and clear them from the dirty pages state tree
954 */
bf89d38f
JM
955static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
956 struct extent_io_tree *dirty_pages)
690587d1 957{
690587d1
CM
958 int err = 0;
959 int werr = 0;
0b246afa 960 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 961 struct extent_state *cached_state = NULL;
690587d1
CM
962 u64 start = 0;
963 u64 end;
777e6bd7 964
1728366e 965 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 966 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
967 /*
968 * Ignore -ENOMEM errors returned by clear_extent_bit().
969 * When committing the transaction, we'll remove any entries
970 * left in the io tree. For a log commit, we don't remove them
971 * after committing the log because the tree can be accessed
972 * concurrently - we do it only at transaction commit time when
41e7acd3 973 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
974 */
975 err = clear_extent_bit(dirty_pages, start, end,
ae0f1625 976 EXTENT_NEED_WAIT, 0, 0, &cached_state);
663dfbb0
FM
977 if (err == -ENOMEM)
978 err = 0;
979 if (!err)
980 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
981 if (err)
982 werr = err;
e38e2ed7
FM
983 free_extent_state(cached_state);
984 cached_state = NULL;
1728366e
JB
985 cond_resched();
986 start = end + 1;
777e6bd7 987 }
7c4452b9
CM
988 if (err)
989 werr = err;
bf89d38f
JM
990 return werr;
991}
656f30db 992
b9fae2eb 993static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
994 struct extent_io_tree *dirty_pages)
995{
996 bool errors = false;
997 int err;
656f30db 998
bf89d38f
JM
999 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1000 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1001 errors = true;
1002
1003 if (errors && !err)
1004 err = -EIO;
1005 return err;
1006}
656f30db 1007
bf89d38f
JM
1008int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1009{
1010 struct btrfs_fs_info *fs_info = log_root->fs_info;
1011 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1012 bool errors = false;
1013 int err;
656f30db 1014
bf89d38f
JM
1015 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1016
1017 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1018 if ((mark & EXTENT_DIRTY) &&
1019 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1020 errors = true;
1021
1022 if ((mark & EXTENT_NEW) &&
1023 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1024 errors = true;
1025
1026 if (errors && !err)
1027 err = -EIO;
1028 return err;
79154b1b
CM
1029}
1030
690587d1 1031/*
c9b577c0
NB
1032 * When btree blocks are allocated the corresponding extents are marked dirty.
1033 * This function ensures such extents are persisted on disk for transaction or
1034 * log commit.
1035 *
1036 * @trans: transaction whose dirty pages we'd like to write
690587d1 1037 */
70458a58 1038static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1039{
1040 int ret;
1041 int ret2;
c9b577c0 1042 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1043 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1044 struct blk_plug plug;
690587d1 1045
c6adc9cc 1046 blk_start_plug(&plug);
c9b577c0 1047 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1048 blk_finish_plug(&plug);
bf89d38f 1049 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1050
41e7acd3 1051 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1052
bf0da8c1
CM
1053 if (ret)
1054 return ret;
c9b577c0 1055 else if (ret2)
bf0da8c1 1056 return ret2;
c9b577c0
NB
1057 else
1058 return 0;
d0c803c4
CM
1059}
1060
d352ac68
CM
1061/*
1062 * this is used to update the root pointer in the tree of tree roots.
1063 *
1064 * But, in the case of the extent allocation tree, updating the root
1065 * pointer may allocate blocks which may change the root of the extent
1066 * allocation tree.
1067 *
1068 * So, this loops and repeats and makes sure the cowonly root didn't
1069 * change while the root pointer was being updated in the metadata.
1070 */
0b86a832
CM
1071static int update_cowonly_root(struct btrfs_trans_handle *trans,
1072 struct btrfs_root *root)
79154b1b
CM
1073{
1074 int ret;
0b86a832 1075 u64 old_root_bytenr;
86b9f2ec 1076 u64 old_root_used;
0b246afa
JM
1077 struct btrfs_fs_info *fs_info = root->fs_info;
1078 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1079
86b9f2ec 1080 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1081
d397712b 1082 while (1) {
0b86a832 1083 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1084 if (old_root_bytenr == root->node->start &&
ea526d18 1085 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1086 break;
87ef2bb4 1087
5d4f98a2 1088 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1089 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1090 &root->root_key,
1091 &root->root_item);
49b25e05
JM
1092 if (ret)
1093 return ret;
56bec294 1094
86b9f2ec 1095 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1096 }
276e680d 1097
0b86a832
CM
1098 return 0;
1099}
1100
d352ac68
CM
1101/*
1102 * update all the cowonly tree roots on disk
49b25e05
JM
1103 *
1104 * The error handling in this function may not be obvious. Any of the
1105 * failures will cause the file system to go offline. We still need
1106 * to clean up the delayed refs.
d352ac68 1107 */
9386d8bc 1108static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1109{
9386d8bc 1110 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1111 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1112 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1113 struct list_head *next;
84234f3a 1114 struct extent_buffer *eb;
56bec294 1115 int ret;
84234f3a
YZ
1116
1117 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05
JM
1118 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1119 0, &eb);
84234f3a
YZ
1120 btrfs_tree_unlock(eb);
1121 free_extent_buffer(eb);
0b86a832 1122
49b25e05
JM
1123 if (ret)
1124 return ret;
1125
c79a70b1 1126 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
49b25e05
JM
1127 if (ret)
1128 return ret;
87ef2bb4 1129
196c9d8d 1130 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1131 if (ret)
1132 return ret;
2b584c68 1133 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1134 if (ret)
1135 return ret;
280f8bd2 1136 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1137 if (ret)
1138 return ret;
546adb0d 1139
bbebb3e0 1140 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1141 if (ret)
1142 return ret;
1143
546adb0d 1144 /* run_qgroups might have added some more refs */
c79a70b1 1145 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
c16ce190
JB
1146 if (ret)
1147 return ret;
ea526d18 1148again:
d397712b 1149 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1150 struct btrfs_root *root;
0b86a832
CM
1151 next = fs_info->dirty_cowonly_roots.next;
1152 list_del_init(next);
1153 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1154 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1155
9e351cc8
JB
1156 if (root != fs_info->extent_root)
1157 list_add_tail(&root->dirty_list,
1158 &trans->transaction->switch_commits);
49b25e05
JM
1159 ret = update_cowonly_root(trans, root);
1160 if (ret)
1161 return ret;
c79a70b1 1162 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1163 if (ret)
1164 return ret;
79154b1b 1165 }
276e680d 1166
1bbc621e 1167 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1168 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1169 if (ret)
1170 return ret;
c79a70b1 1171 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1172 if (ret)
1173 return ret;
1174 }
1175
1176 if (!list_empty(&fs_info->dirty_cowonly_roots))
1177 goto again;
1178
9e351cc8
JB
1179 list_add_tail(&fs_info->extent_root->dirty_list,
1180 &trans->transaction->switch_commits);
9f6cbcbb
DS
1181
1182 /* Update dev-replace pointer once everything is committed */
1183 fs_info->dev_replace.committed_cursor_left =
1184 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1185
79154b1b
CM
1186 return 0;
1187}
1188
d352ac68
CM
1189/*
1190 * dead roots are old snapshots that need to be deleted. This allocates
1191 * a dirty root struct and adds it into the list of dead roots that need to
1192 * be deleted
1193 */
cfad392b 1194void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1195{
0b246afa
JM
1196 struct btrfs_fs_info *fs_info = root->fs_info;
1197
1198 spin_lock(&fs_info->trans_lock);
cfad392b 1199 if (list_empty(&root->root_list))
0b246afa
JM
1200 list_add_tail(&root->root_list, &fs_info->dead_roots);
1201 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1202}
1203
d352ac68 1204/*
5d4f98a2 1205 * update all the cowonly tree roots on disk
d352ac68 1206 */
7e4443d9 1207static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1208{
7e4443d9 1209 struct btrfs_fs_info *fs_info = trans->fs_info;
0f7d52f4 1210 struct btrfs_root *gang[8];
0f7d52f4
CM
1211 int i;
1212 int ret;
54aa1f4d
CM
1213 int err = 0;
1214
a4abeea4 1215 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 1216 while (1) {
5d4f98a2
YZ
1217 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1218 (void **)gang, 0,
0f7d52f4
CM
1219 ARRAY_SIZE(gang),
1220 BTRFS_ROOT_TRANS_TAG);
1221 if (ret == 0)
1222 break;
1223 for (i = 0; i < ret; i++) {
5b4aacef 1224 struct btrfs_root *root = gang[i];
5d4f98a2
YZ
1225 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1226 (unsigned long)root->root_key.objectid,
1227 BTRFS_ROOT_TRANS_TAG);
a4abeea4 1228 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 1229
e02119d5 1230 btrfs_free_log(trans, root);
5d4f98a2 1231 btrfs_update_reloc_root(trans, root);
bcc63abb 1232
82d5902d
LZ
1233 btrfs_save_ino_cache(root, trans);
1234
f1ebcc74 1235 /* see comments in should_cow_block() */
27cdeb70 1236 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
c7548af6 1237 smp_mb__after_atomic();
f1ebcc74 1238
978d910d 1239 if (root->commit_root != root->node) {
9e351cc8
JB
1240 list_add_tail(&root->dirty_list,
1241 &trans->transaction->switch_commits);
978d910d
YZ
1242 btrfs_set_root_node(&root->root_item,
1243 root->node);
1244 }
5d4f98a2 1245
5d4f98a2 1246 err = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
1247 &root->root_key,
1248 &root->root_item);
a4abeea4 1249 spin_lock(&fs_info->fs_roots_radix_lock);
54aa1f4d
CM
1250 if (err)
1251 break;
733e03a0 1252 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1253 }
1254 }
a4abeea4 1255 spin_unlock(&fs_info->fs_roots_radix_lock);
54aa1f4d 1256 return err;
0f7d52f4
CM
1257}
1258
d352ac68 1259/*
de78b51a
ES
1260 * defrag a given btree.
1261 * Every leaf in the btree is read and defragged.
d352ac68 1262 */
de78b51a 1263int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1264{
1265 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1266 struct btrfs_trans_handle *trans;
8929ecfa 1267 int ret;
e9d0b13b 1268
27cdeb70 1269 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1270 return 0;
8929ecfa 1271
6b80053d 1272 while (1) {
8929ecfa
YZ
1273 trans = btrfs_start_transaction(root, 0);
1274 if (IS_ERR(trans))
1275 return PTR_ERR(trans);
1276
de78b51a 1277 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1278
3a45bb20 1279 btrfs_end_transaction(trans);
2ff7e61e 1280 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1281 cond_resched();
1282
ab8d0fc4 1283 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1284 break;
210549eb 1285
ab8d0fc4
JM
1286 if (btrfs_defrag_cancelled(info)) {
1287 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1288 ret = -EAGAIN;
1289 break;
1290 }
e9d0b13b 1291 }
27cdeb70 1292 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1293 return ret;
e9d0b13b
CM
1294}
1295
6426c7ad
QW
1296/*
1297 * Do all special snapshot related qgroup dirty hack.
1298 *
1299 * Will do all needed qgroup inherit and dirty hack like switch commit
1300 * roots inside one transaction and write all btree into disk, to make
1301 * qgroup works.
1302 */
1303static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1304 struct btrfs_root *src,
1305 struct btrfs_root *parent,
1306 struct btrfs_qgroup_inherit *inherit,
1307 u64 dst_objectid)
1308{
1309 struct btrfs_fs_info *fs_info = src->fs_info;
1310 int ret;
1311
1312 /*
1313 * Save some performance in the case that qgroups are not
1314 * enabled. If this check races with the ioctl, rescan will
1315 * kick in anyway.
1316 */
9ea6e2b5 1317 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1318 return 0;
6426c7ad 1319
4d31778a 1320 /*
52042d8e 1321 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1322 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1323 * recorded root will never be updated again, causing an outdated root
1324 * item.
1325 */
1326 record_root_in_trans(trans, src, 1);
1327
6426c7ad
QW
1328 /*
1329 * We are going to commit transaction, see btrfs_commit_transaction()
1330 * comment for reason locking tree_log_mutex
1331 */
1332 mutex_lock(&fs_info->tree_log_mutex);
1333
7e4443d9 1334 ret = commit_fs_roots(trans);
6426c7ad
QW
1335 if (ret)
1336 goto out;
460fb20a 1337 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1338 if (ret < 0)
1339 goto out;
1340
1341 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1342 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1343 inherit);
1344 if (ret < 0)
1345 goto out;
1346
1347 /*
1348 * Now we do a simplified commit transaction, which will:
1349 * 1) commit all subvolume and extent tree
1350 * To ensure all subvolume and extent tree have a valid
1351 * commit_root to accounting later insert_dir_item()
1352 * 2) write all btree blocks onto disk
1353 * This is to make sure later btree modification will be cowed
1354 * Or commit_root can be populated and cause wrong qgroup numbers
1355 * In this simplified commit, we don't really care about other trees
1356 * like chunk and root tree, as they won't affect qgroup.
1357 * And we don't write super to avoid half committed status.
1358 */
9386d8bc 1359 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1360 if (ret)
1361 goto out;
16916a88 1362 switch_commit_roots(trans->transaction);
70458a58 1363 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1364 if (ret)
f7af3934 1365 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1366 "Error while writing out transaction for qgroup");
1367
1368out:
1369 mutex_unlock(&fs_info->tree_log_mutex);
1370
1371 /*
1372 * Force parent root to be updated, as we recorded it before so its
1373 * last_trans == cur_transid.
1374 * Or it won't be committed again onto disk after later
1375 * insert_dir_item()
1376 */
1377 if (!ret)
1378 record_root_in_trans(trans, parent, 1);
1379 return ret;
1380}
1381
d352ac68
CM
1382/*
1383 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1384 * transaction commit. This does the actual creation.
1385 *
1386 * Note:
1387 * If the error which may affect the commitment of the current transaction
1388 * happens, we should return the error number. If the error which just affect
1389 * the creation of the pending snapshots, just return 0.
d352ac68 1390 */
80b6794d 1391static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1392 struct btrfs_pending_snapshot *pending)
1393{
08d50ca3
NB
1394
1395 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1396 struct btrfs_key key;
80b6794d 1397 struct btrfs_root_item *new_root_item;
3063d29f
CM
1398 struct btrfs_root *tree_root = fs_info->tree_root;
1399 struct btrfs_root *root = pending->root;
6bdb72de 1400 struct btrfs_root *parent_root;
98c9942a 1401 struct btrfs_block_rsv *rsv;
6bdb72de 1402 struct inode *parent_inode;
42874b3d
MX
1403 struct btrfs_path *path;
1404 struct btrfs_dir_item *dir_item;
a22285a6 1405 struct dentry *dentry;
3063d29f 1406 struct extent_buffer *tmp;
925baedd 1407 struct extent_buffer *old;
95582b00 1408 struct timespec64 cur_time;
aec8030a 1409 int ret = 0;
d68fc57b 1410 u64 to_reserve = 0;
6bdb72de 1411 u64 index = 0;
a22285a6 1412 u64 objectid;
b83cc969 1413 u64 root_flags;
8ea05e3a 1414 uuid_le new_uuid;
3063d29f 1415
8546b570
DS
1416 ASSERT(pending->path);
1417 path = pending->path;
42874b3d 1418
b0c0ea63
DS
1419 ASSERT(pending->root_item);
1420 new_root_item = pending->root_item;
a22285a6 1421
aec8030a
MX
1422 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1423 if (pending->error)
6fa9700e 1424 goto no_free_objectid;
3063d29f 1425
d6726335
QW
1426 /*
1427 * Make qgroup to skip current new snapshot's qgroupid, as it is
1428 * accounted by later btrfs_qgroup_inherit().
1429 */
1430 btrfs_set_skip_qgroup(trans, objectid);
1431
147d256e 1432 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1433
1434 if (to_reserve > 0) {
aec8030a
MX
1435 pending->error = btrfs_block_rsv_add(root,
1436 &pending->block_rsv,
1437 to_reserve,
1438 BTRFS_RESERVE_NO_FLUSH);
1439 if (pending->error)
d6726335 1440 goto clear_skip_qgroup;
d68fc57b
YZ
1441 }
1442
3063d29f 1443 key.objectid = objectid;
a22285a6
YZ
1444 key.offset = (u64)-1;
1445 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1446
6fa9700e 1447 rsv = trans->block_rsv;
a22285a6 1448 trans->block_rsv = &pending->block_rsv;
2382c5cc 1449 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1450 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1451 trans->transid,
1452 trans->bytes_reserved, 1);
a22285a6 1453 dentry = pending->dentry;
e9662f70 1454 parent_inode = pending->dir;
a22285a6 1455 parent_root = BTRFS_I(parent_inode)->root;
6426c7ad 1456 record_root_in_trans(trans, parent_root, 0);
a22285a6 1457
c2050a45 1458 cur_time = current_time(parent_inode);
04b285f3 1459
3063d29f
CM
1460 /*
1461 * insert the directory item
1462 */
877574e2 1463 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1464 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1465
1466 /* check if there is a file/dir which has the same name. */
1467 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1468 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1469 dentry->d_name.name,
1470 dentry->d_name.len, 0);
1471 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1472 pending->error = -EEXIST;
aec8030a 1473 goto dir_item_existed;
42874b3d
MX
1474 } else if (IS_ERR(dir_item)) {
1475 ret = PTR_ERR(dir_item);
66642832 1476 btrfs_abort_transaction(trans, ret);
8732d44f 1477 goto fail;
79787eaa 1478 }
42874b3d 1479 btrfs_release_path(path);
52c26179 1480
e999376f
CM
1481 /*
1482 * pull in the delayed directory update
1483 * and the delayed inode item
1484 * otherwise we corrupt the FS during
1485 * snapshot
1486 */
e5c304e6 1487 ret = btrfs_run_delayed_items(trans);
8732d44f 1488 if (ret) { /* Transaction aborted */
66642832 1489 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1490 goto fail;
1491 }
e999376f 1492
6426c7ad 1493 record_root_in_trans(trans, root, 0);
6bdb72de
SW
1494 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1495 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1496 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1497
b83cc969
LZ
1498 root_flags = btrfs_root_flags(new_root_item);
1499 if (pending->readonly)
1500 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1501 else
1502 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1503 btrfs_set_root_flags(new_root_item, root_flags);
1504
8ea05e3a
AB
1505 btrfs_set_root_generation_v2(new_root_item,
1506 trans->transid);
1507 uuid_le_gen(&new_uuid);
1508 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1509 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1510 BTRFS_UUID_SIZE);
70023da2
SB
1511 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1512 memset(new_root_item->received_uuid, 0,
1513 sizeof(new_root_item->received_uuid));
1514 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1515 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1516 btrfs_set_root_stransid(new_root_item, 0);
1517 btrfs_set_root_rtransid(new_root_item, 0);
1518 }
3cae210f
QW
1519 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1520 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1521 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1522
6bdb72de 1523 old = btrfs_lock_root_node(root);
49b25e05 1524 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
79787eaa
JM
1525 if (ret) {
1526 btrfs_tree_unlock(old);
1527 free_extent_buffer(old);
66642832 1528 btrfs_abort_transaction(trans, ret);
8732d44f 1529 goto fail;
79787eaa 1530 }
49b25e05 1531
8bead258 1532 btrfs_set_lock_blocking_write(old);
6bdb72de 1533
49b25e05 1534 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1535 /* clean up in any case */
6bdb72de
SW
1536 btrfs_tree_unlock(old);
1537 free_extent_buffer(old);
8732d44f 1538 if (ret) {
66642832 1539 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1540 goto fail;
1541 }
f1ebcc74 1542 /* see comments in should_cow_block() */
27cdeb70 1543 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1544 smp_wmb();
1545
6bdb72de 1546 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1547 /* record when the snapshot was created in key.offset */
1548 key.offset = trans->transid;
1549 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1550 btrfs_tree_unlock(tmp);
1551 free_extent_buffer(tmp);
8732d44f 1552 if (ret) {
66642832 1553 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1554 goto fail;
1555 }
6bdb72de 1556
a22285a6
YZ
1557 /*
1558 * insert root back/forward references
1559 */
6025c19f 1560 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1561 parent_root->root_key.objectid,
4a0cc7ca 1562 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1563 dentry->d_name.name, dentry->d_name.len);
8732d44f 1564 if (ret) {
66642832 1565 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1566 goto fail;
1567 }
0660b5af 1568
a22285a6 1569 key.offset = (u64)-1;
0b246afa 1570 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
79787eaa
JM
1571 if (IS_ERR(pending->snap)) {
1572 ret = PTR_ERR(pending->snap);
66642832 1573 btrfs_abort_transaction(trans, ret);
8732d44f 1574 goto fail;
79787eaa 1575 }
d68fc57b 1576
49b25e05 1577 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1578 if (ret) {
66642832 1579 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1580 goto fail;
1581 }
361048f5 1582
c79a70b1 1583 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
8732d44f 1584 if (ret) {
66642832 1585 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1586 goto fail;
1587 }
42874b3d 1588
6426c7ad
QW
1589 /*
1590 * Do special qgroup accounting for snapshot, as we do some qgroup
1591 * snapshot hack to do fast snapshot.
1592 * To co-operate with that hack, we do hack again.
1593 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1594 */
1595 ret = qgroup_account_snapshot(trans, root, parent_root,
1596 pending->inherit, objectid);
1597 if (ret < 0)
1598 goto fail;
1599
684572df
LF
1600 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1601 dentry->d_name.len, BTRFS_I(parent_inode),
1602 &key, BTRFS_FT_DIR, index);
42874b3d 1603 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1604 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1605 if (ret) {
66642832 1606 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1607 goto fail;
1608 }
42874b3d 1609
6ef06d27 1610 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1611 dentry->d_name.len * 2);
04b285f3 1612 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 1613 current_time(parent_inode);
be6aef60 1614 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
dd5f9615 1615 if (ret) {
66642832 1616 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1617 goto fail;
1618 }
cdb345a8
LF
1619 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1620 objectid);
dd5f9615 1621 if (ret) {
66642832 1622 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1623 goto fail;
1624 }
1625 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1626 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1627 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1628 objectid);
1629 if (ret && ret != -EEXIST) {
66642832 1630 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1631 goto fail;
1632 }
1633 }
d6726335 1634
c79a70b1 1635 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
d6726335 1636 if (ret) {
66642832 1637 btrfs_abort_transaction(trans, ret);
d6726335
QW
1638 goto fail;
1639 }
1640
3063d29f 1641fail:
aec8030a
MX
1642 pending->error = ret;
1643dir_item_existed:
98c9942a 1644 trans->block_rsv = rsv;
2382c5cc 1645 trans->bytes_reserved = 0;
d6726335
QW
1646clear_skip_qgroup:
1647 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1648no_free_objectid:
1649 kfree(new_root_item);
b0c0ea63 1650 pending->root_item = NULL;
42874b3d 1651 btrfs_free_path(path);
8546b570
DS
1652 pending->path = NULL;
1653
49b25e05 1654 return ret;
3063d29f
CM
1655}
1656
d352ac68
CM
1657/*
1658 * create all the snapshots we've scheduled for creation
1659 */
08d50ca3 1660static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1661{
aec8030a 1662 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1663 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1664 int ret = 0;
3de4586c 1665
aec8030a
MX
1666 list_for_each_entry_safe(pending, next, head, list) {
1667 list_del(&pending->list);
08d50ca3 1668 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1669 if (ret)
1670 break;
1671 }
1672 return ret;
3de4586c
CM
1673}
1674
2ff7e61e 1675static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1676{
1677 struct btrfs_root_item *root_item;
1678 struct btrfs_super_block *super;
1679
0b246afa 1680 super = fs_info->super_copy;
5d4f98a2 1681
0b246afa 1682 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1683 super->chunk_root = root_item->bytenr;
1684 super->chunk_root_generation = root_item->generation;
1685 super->chunk_root_level = root_item->level;
5d4f98a2 1686
0b246afa 1687 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1688 super->root = root_item->bytenr;
1689 super->generation = root_item->generation;
1690 super->root_level = root_item->level;
0b246afa 1691 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1692 super->cache_generation = root_item->generation;
0b246afa 1693 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1694 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1695}
1696
f36f3042
CM
1697int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1698{
4a9d8bde 1699 struct btrfs_transaction *trans;
f36f3042 1700 int ret = 0;
4a9d8bde 1701
a4abeea4 1702 spin_lock(&info->trans_lock);
4a9d8bde
MX
1703 trans = info->running_transaction;
1704 if (trans)
1705 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1706 spin_unlock(&info->trans_lock);
f36f3042
CM
1707 return ret;
1708}
1709
8929ecfa
YZ
1710int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1711{
4a9d8bde 1712 struct btrfs_transaction *trans;
8929ecfa 1713 int ret = 0;
4a9d8bde 1714
a4abeea4 1715 spin_lock(&info->trans_lock);
4a9d8bde
MX
1716 trans = info->running_transaction;
1717 if (trans)
1718 ret = is_transaction_blocked(trans);
a4abeea4 1719 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1720 return ret;
1721}
1722
bb9c12c9
SW
1723/*
1724 * wait for the current transaction commit to start and block subsequent
1725 * transaction joins
1726 */
2ff7e61e 1727static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
bb9c12c9
SW
1728 struct btrfs_transaction *trans)
1729{
2ff7e61e
JM
1730 wait_event(fs_info->transaction_blocked_wait,
1731 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
bb9c12c9
SW
1732}
1733
1734/*
1735 * wait for the current transaction to start and then become unblocked.
1736 * caller holds ref.
1737 */
2ff7e61e
JM
1738static void wait_current_trans_commit_start_and_unblock(
1739 struct btrfs_fs_info *fs_info,
1740 struct btrfs_transaction *trans)
bb9c12c9 1741{
2ff7e61e
JM
1742 wait_event(fs_info->transaction_wait,
1743 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
bb9c12c9
SW
1744}
1745
1746/*
1747 * commit transactions asynchronously. once btrfs_commit_transaction_async
1748 * returns, any subsequent transaction will not be allowed to join.
1749 */
1750struct btrfs_async_commit {
1751 struct btrfs_trans_handle *newtrans;
7892b5af 1752 struct work_struct work;
bb9c12c9
SW
1753};
1754
1755static void do_async_commit(struct work_struct *work)
1756{
1757 struct btrfs_async_commit *ac =
7892b5af 1758 container_of(work, struct btrfs_async_commit, work);
bb9c12c9 1759
6fc4e354
SW
1760 /*
1761 * We've got freeze protection passed with the transaction.
1762 * Tell lockdep about it.
1763 */
b1a06a4b 1764 if (ac->newtrans->type & __TRANS_FREEZABLE)
3a45bb20 1765 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
6fc4e354 1766
e209db7a
SW
1767 current->journal_info = ac->newtrans;
1768
3a45bb20 1769 btrfs_commit_transaction(ac->newtrans);
bb9c12c9
SW
1770 kfree(ac);
1771}
1772
1773int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
bb9c12c9
SW
1774 int wait_for_unblock)
1775{
3a45bb20 1776 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1777 struct btrfs_async_commit *ac;
1778 struct btrfs_transaction *cur_trans;
1779
1780 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1781 if (!ac)
1782 return -ENOMEM;
bb9c12c9 1783
7892b5af 1784 INIT_WORK(&ac->work, do_async_commit);
3a45bb20 1785 ac->newtrans = btrfs_join_transaction(trans->root);
3612b495
TI
1786 if (IS_ERR(ac->newtrans)) {
1787 int err = PTR_ERR(ac->newtrans);
1788 kfree(ac);
1789 return err;
1790 }
bb9c12c9
SW
1791
1792 /* take transaction reference */
bb9c12c9 1793 cur_trans = trans->transaction;
9b64f57d 1794 refcount_inc(&cur_trans->use_count);
bb9c12c9 1795
3a45bb20 1796 btrfs_end_transaction(trans);
6fc4e354
SW
1797
1798 /*
1799 * Tell lockdep we've released the freeze rwsem, since the
1800 * async commit thread will be the one to unlock it.
1801 */
b1a06a4b 1802 if (ac->newtrans->type & __TRANS_FREEZABLE)
0b246afa 1803 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
6fc4e354 1804
7892b5af 1805 schedule_work(&ac->work);
bb9c12c9
SW
1806
1807 /* wait for transaction to start and unblock */
bb9c12c9 1808 if (wait_for_unblock)
2ff7e61e 1809 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
bb9c12c9 1810 else
2ff7e61e 1811 wait_current_trans_commit_start(fs_info, cur_trans);
bb9c12c9 1812
38e88054
SW
1813 if (current->journal_info == trans)
1814 current->journal_info = NULL;
1815
724e2315 1816 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1817 return 0;
1818}
1819
49b25e05 1820
97cb39bb 1821static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1822{
97cb39bb 1823 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1824 struct btrfs_transaction *cur_trans = trans->transaction;
1825
b50fff81 1826 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1827
66642832 1828 btrfs_abort_transaction(trans, err);
7b8b92af 1829
0b246afa 1830 spin_lock(&fs_info->trans_lock);
66b6135b 1831
25d8c284
MX
1832 /*
1833 * If the transaction is removed from the list, it means this
1834 * transaction has been committed successfully, so it is impossible
1835 * to call the cleanup function.
1836 */
1837 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1838
49b25e05 1839 list_del_init(&cur_trans->list);
0b246afa 1840 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1841 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1842 spin_unlock(&fs_info->trans_lock);
f094ac32
LB
1843 wait_event(cur_trans->writer_wait,
1844 atomic_read(&cur_trans->num_writers) == 1);
1845
0b246afa 1846 spin_lock(&fs_info->trans_lock);
d7096fc3 1847 }
0b246afa 1848 spin_unlock(&fs_info->trans_lock);
49b25e05 1849
2ff7e61e 1850 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 1851
0b246afa
JM
1852 spin_lock(&fs_info->trans_lock);
1853 if (cur_trans == fs_info->running_transaction)
1854 fs_info->running_transaction = NULL;
1855 spin_unlock(&fs_info->trans_lock);
4a9d8bde 1856
e0228285 1857 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1858 sb_end_intwrite(fs_info->sb);
724e2315
JB
1859 btrfs_put_transaction(cur_trans);
1860 btrfs_put_transaction(cur_trans);
49b25e05 1861
97cb39bb 1862 trace_btrfs_transaction_commit(trans->root);
49b25e05 1863
49b25e05
JM
1864 if (current->journal_info == trans)
1865 current->journal_info = NULL;
0b246afa 1866 btrfs_scrub_cancel(fs_info);
49b25e05
JM
1867
1868 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1869}
1870
c7cc64a9
DS
1871/*
1872 * Release reserved delayed ref space of all pending block groups of the
1873 * transaction and remove them from the list
1874 */
1875static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1876{
1877 struct btrfs_fs_info *fs_info = trans->fs_info;
1878 struct btrfs_block_group_cache *block_group, *tmp;
1879
1880 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1881 btrfs_delayed_refs_rsv_release(fs_info, 1);
1882 list_del_init(&block_group->bg_list);
1883 }
1884}
1885
609e804d 1886static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
82436617 1887{
609e804d
FM
1888 struct btrfs_fs_info *fs_info = trans->fs_info;
1889
ce8ea7cc
JB
1890 /*
1891 * We use writeback_inodes_sb here because if we used
1892 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1893 * Currently are holding the fs freeze lock, if we do an async flush
1894 * we'll do btrfs_join_transaction() and deadlock because we need to
1895 * wait for the fs freeze lock. Using the direct flushing we benefit
1896 * from already being in a transaction and our join_transaction doesn't
1897 * have to re-take the fs freeze lock.
1898 */
609e804d 1899 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
ce8ea7cc 1900 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
609e804d
FM
1901 } else {
1902 struct btrfs_pending_snapshot *pending;
1903 struct list_head *head = &trans->transaction->pending_snapshots;
1904
1905 /*
1906 * Flush dellaloc for any root that is going to be snapshotted.
1907 * This is done to avoid a corrupted version of files, in the
1908 * snapshots, that had both buffered and direct IO writes (even
1909 * if they were done sequentially) due to an unordered update of
1910 * the inode's size on disk.
1911 */
1912 list_for_each_entry(pending, head, list) {
1913 int ret;
1914
1915 ret = btrfs_start_delalloc_snapshot(pending->root);
1916 if (ret)
1917 return ret;
1918 }
1919 }
82436617
MX
1920 return 0;
1921}
1922
609e804d 1923static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
82436617 1924{
609e804d
FM
1925 struct btrfs_fs_info *fs_info = trans->fs_info;
1926
1927 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
6374e57a 1928 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
609e804d
FM
1929 } else {
1930 struct btrfs_pending_snapshot *pending;
1931 struct list_head *head = &trans->transaction->pending_snapshots;
1932
1933 /*
1934 * Wait for any dellaloc that we started previously for the roots
1935 * that are going to be snapshotted. This is to avoid a corrupted
1936 * version of files in the snapshots that had both buffered and
1937 * direct IO writes (even if they were done sequentially).
1938 */
1939 list_for_each_entry(pending, head, list)
1940 btrfs_wait_ordered_extents(pending->root,
1941 U64_MAX, 0, U64_MAX);
1942 }
82436617
MX
1943}
1944
3a45bb20 1945int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 1946{
3a45bb20 1947 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 1948 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 1949 struct btrfs_transaction *prev_trans = NULL;
25287e0a 1950 int ret;
79154b1b 1951
35b814f3
NB
1952 ASSERT(refcount_read(&trans->use_count) == 1);
1953
8d25a086 1954 /* Stop the commit early if ->aborted is set */
20c7bcec 1955 if (unlikely(READ_ONCE(cur_trans->aborted))) {
25287e0a 1956 ret = cur_trans->aborted;
3a45bb20 1957 btrfs_end_transaction(trans);
e4a2bcac 1958 return ret;
25287e0a 1959 }
49b25e05 1960
f45c752b
JB
1961 btrfs_trans_release_metadata(trans);
1962 trans->block_rsv = NULL;
1963
56bec294
CM
1964 /* make a pass through all the delayed refs we have so far
1965 * any runnings procs may add more while we are here
1966 */
c79a70b1 1967 ret = btrfs_run_delayed_refs(trans, 0);
e4a2bcac 1968 if (ret) {
3a45bb20 1969 btrfs_end_transaction(trans);
e4a2bcac
JB
1970 return ret;
1971 }
56bec294 1972
b7ec40d7 1973 cur_trans = trans->transaction;
49b25e05 1974
56bec294
CM
1975 /*
1976 * set the flushing flag so procs in this transaction have to
1977 * start sending their work down.
1978 */
b7ec40d7 1979 cur_trans->delayed_refs.flushing = 1;
1be41b78 1980 smp_wmb();
56bec294 1981
119e80df 1982 btrfs_create_pending_block_groups(trans);
ea658bad 1983
c79a70b1 1984 ret = btrfs_run_delayed_refs(trans, 0);
e4a2bcac 1985 if (ret) {
3a45bb20 1986 btrfs_end_transaction(trans);
e4a2bcac
JB
1987 return ret;
1988 }
56bec294 1989
3204d33c 1990 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
1991 int run_it = 0;
1992
1993 /* this mutex is also taken before trying to set
1994 * block groups readonly. We need to make sure
1995 * that nobody has set a block group readonly
1996 * after a extents from that block group have been
1997 * allocated for cache files. btrfs_set_block_group_ro
1998 * will wait for the transaction to commit if it
3204d33c 1999 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2000 *
3204d33c
JB
2001 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2002 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2003 * hurt to have more than one go through, but there's no
2004 * real advantage to it either.
2005 */
0b246afa 2006 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2007 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2008 &cur_trans->flags))
1bbc621e 2009 run_it = 1;
0b246afa 2010 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2011
f9cacae3 2012 if (run_it) {
21217054 2013 ret = btrfs_start_dirty_block_groups(trans);
f9cacae3
NB
2014 if (ret) {
2015 btrfs_end_transaction(trans);
2016 return ret;
2017 }
2018 }
1bbc621e
CM
2019 }
2020
0b246afa 2021 spin_lock(&fs_info->trans_lock);
4a9d8bde 2022 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
0b246afa 2023 spin_unlock(&fs_info->trans_lock);
9b64f57d 2024 refcount_inc(&cur_trans->use_count);
3a45bb20 2025 ret = btrfs_end_transaction(trans);
ccd467d6 2026
2ff7e61e 2027 wait_for_commit(cur_trans);
15ee9bc7 2028
b4924a0f
LB
2029 if (unlikely(cur_trans->aborted))
2030 ret = cur_trans->aborted;
2031
724e2315 2032 btrfs_put_transaction(cur_trans);
15ee9bc7 2033
49b25e05 2034 return ret;
79154b1b 2035 }
4313b399 2036
4a9d8bde 2037 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2038 wake_up(&fs_info->transaction_blocked_wait);
bb9c12c9 2039
0b246afa 2040 if (cur_trans->list.prev != &fs_info->trans_list) {
ccd467d6
CM
2041 prev_trans = list_entry(cur_trans->list.prev,
2042 struct btrfs_transaction, list);
4a9d8bde 2043 if (prev_trans->state != TRANS_STATE_COMPLETED) {
9b64f57d 2044 refcount_inc(&prev_trans->use_count);
0b246afa 2045 spin_unlock(&fs_info->trans_lock);
ccd467d6 2046
2ff7e61e 2047 wait_for_commit(prev_trans);
1f9b8c8f 2048 ret = prev_trans->aborted;
ccd467d6 2049
724e2315 2050 btrfs_put_transaction(prev_trans);
1f9b8c8f
FM
2051 if (ret)
2052 goto cleanup_transaction;
a4abeea4 2053 } else {
0b246afa 2054 spin_unlock(&fs_info->trans_lock);
ccd467d6 2055 }
a4abeea4 2056 } else {
0b246afa 2057 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2058 /*
2059 * The previous transaction was aborted and was already removed
2060 * from the list of transactions at fs_info->trans_list. So we
2061 * abort to prevent writing a new superblock that reflects a
2062 * corrupt state (pointing to trees with unwritten nodes/leafs).
2063 */
2064 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2065 ret = -EROFS;
2066 goto cleanup_transaction;
2067 }
ccd467d6 2068 }
15ee9bc7 2069
0860adfd
MX
2070 extwriter_counter_dec(cur_trans, trans->type);
2071
609e804d 2072 ret = btrfs_start_delalloc_flush(trans);
82436617
MX
2073 if (ret)
2074 goto cleanup_transaction;
2075
e5c304e6 2076 ret = btrfs_run_delayed_items(trans);
581227d0
MX
2077 if (ret)
2078 goto cleanup_transaction;
15ee9bc7 2079
581227d0
MX
2080 wait_event(cur_trans->writer_wait,
2081 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2082
581227d0 2083 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2084 ret = btrfs_run_delayed_items(trans);
ca469637
MX
2085 if (ret)
2086 goto cleanup_transaction;
2087
609e804d 2088 btrfs_wait_delalloc_flush(trans);
cb7ab021 2089
2ff7e61e 2090 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2091 /*
2092 * Ok now we need to make sure to block out any other joins while we
2093 * commit the transaction. We could have started a join before setting
4a9d8bde 2094 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2095 */
0b246afa 2096 spin_lock(&fs_info->trans_lock);
4a9d8bde 2097 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2098 spin_unlock(&fs_info->trans_lock);
ed0ca140
JB
2099 wait_event(cur_trans->writer_wait,
2100 atomic_read(&cur_trans->num_writers) == 1);
2101
2cba30f1 2102 /* ->aborted might be set after the previous check, so check it */
20c7bcec 2103 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2cba30f1 2104 ret = cur_trans->aborted;
6cf7f77e 2105 goto scrub_continue;
2cba30f1 2106 }
7585717f
CM
2107 /*
2108 * the reloc mutex makes sure that we stop
2109 * the balancing code from coming in and moving
2110 * extents around in the middle of the commit
2111 */
0b246afa 2112 mutex_lock(&fs_info->reloc_mutex);
7585717f 2113
42874b3d
MX
2114 /*
2115 * We needn't worry about the delayed items because we will
2116 * deal with them in create_pending_snapshot(), which is the
2117 * core function of the snapshot creation.
2118 */
08d50ca3 2119 ret = create_pending_snapshots(trans);
49b25e05 2120 if (ret) {
0b246afa 2121 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2122 goto scrub_continue;
49b25e05 2123 }
3063d29f 2124
42874b3d
MX
2125 /*
2126 * We insert the dir indexes of the snapshots and update the inode
2127 * of the snapshots' parents after the snapshot creation, so there
2128 * are some delayed items which are not dealt with. Now deal with
2129 * them.
2130 *
2131 * We needn't worry that this operation will corrupt the snapshots,
2132 * because all the tree which are snapshoted will be forced to COW
2133 * the nodes and leaves.
2134 */
e5c304e6 2135 ret = btrfs_run_delayed_items(trans);
49b25e05 2136 if (ret) {
0b246afa 2137 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2138 goto scrub_continue;
49b25e05 2139 }
16cdcec7 2140
c79a70b1 2141 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
49b25e05 2142 if (ret) {
0b246afa 2143 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2144 goto scrub_continue;
49b25e05 2145 }
56bec294 2146
e999376f
CM
2147 /*
2148 * make sure none of the code above managed to slip in a
2149 * delayed item
2150 */
ccdf9b30 2151 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2152
2c90e5d6 2153 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2154
e02119d5
CM
2155 /* btrfs_commit_tree_roots is responsible for getting the
2156 * various roots consistent with each other. Every pointer
2157 * in the tree of tree roots has to point to the most up to date
2158 * root for every subvolume and other tree. So, we have to keep
2159 * the tree logging code from jumping in and changing any
2160 * of the trees.
2161 *
2162 * At this point in the commit, there can't be any tree-log
2163 * writers, but a little lower down we drop the trans mutex
2164 * and let new people in. By holding the tree_log_mutex
2165 * from now until after the super is written, we avoid races
2166 * with the tree-log code.
2167 */
0b246afa 2168 mutex_lock(&fs_info->tree_log_mutex);
e02119d5 2169
7e4443d9 2170 ret = commit_fs_roots(trans);
49b25e05 2171 if (ret) {
0b246afa
JM
2172 mutex_unlock(&fs_info->tree_log_mutex);
2173 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2174 goto scrub_continue;
49b25e05 2175 }
54aa1f4d 2176
3818aea2 2177 /*
7e1876ac
DS
2178 * Since the transaction is done, we can apply the pending changes
2179 * before the next transaction.
3818aea2 2180 */
0b246afa 2181 btrfs_apply_pending_changes(fs_info);
3818aea2 2182
5d4f98a2 2183 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2184 * safe to free the root of tree log roots
2185 */
0b246afa 2186 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2187
82bafb38
QW
2188 /*
2189 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2190 * new delayed refs. Must handle them or qgroup can be wrong.
2191 */
c79a70b1 2192 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
82bafb38
QW
2193 if (ret) {
2194 mutex_unlock(&fs_info->tree_log_mutex);
2195 mutex_unlock(&fs_info->reloc_mutex);
2196 goto scrub_continue;
2197 }
2198
0ed4792a
QW
2199 /*
2200 * Since fs roots are all committed, we can get a quite accurate
2201 * new_roots. So let's do quota accounting.
2202 */
460fb20a 2203 ret = btrfs_qgroup_account_extents(trans);
0ed4792a 2204 if (ret < 0) {
0b246afa
JM
2205 mutex_unlock(&fs_info->tree_log_mutex);
2206 mutex_unlock(&fs_info->reloc_mutex);
0ed4792a
QW
2207 goto scrub_continue;
2208 }
2209
9386d8bc 2210 ret = commit_cowonly_roots(trans);
49b25e05 2211 if (ret) {
0b246afa
JM
2212 mutex_unlock(&fs_info->tree_log_mutex);
2213 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2214 goto scrub_continue;
49b25e05 2215 }
54aa1f4d 2216
2cba30f1
MX
2217 /*
2218 * The tasks which save the space cache and inode cache may also
2219 * update ->aborted, check it.
2220 */
20c7bcec 2221 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2cba30f1 2222 ret = cur_trans->aborted;
0b246afa
JM
2223 mutex_unlock(&fs_info->tree_log_mutex);
2224 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2225 goto scrub_continue;
2cba30f1
MX
2226 }
2227
8b74c03e 2228 btrfs_prepare_extent_commit(fs_info);
11833d66 2229
0b246afa 2230 cur_trans = fs_info->running_transaction;
5d4f98a2 2231
0b246afa
JM
2232 btrfs_set_root_node(&fs_info->tree_root->root_item,
2233 fs_info->tree_root->node);
2234 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2235 &cur_trans->switch_commits);
5d4f98a2 2236
0b246afa
JM
2237 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2238 fs_info->chunk_root->node);
2239 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2240 &cur_trans->switch_commits);
2241
16916a88 2242 switch_commit_roots(cur_trans);
5d4f98a2 2243
ce93ec54 2244 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2245 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2246 update_super_roots(fs_info);
e02119d5 2247
0b246afa
JM
2248 btrfs_set_super_log_root(fs_info->super_copy, 0);
2249 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2250 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2251 sizeof(*fs_info->super_copy));
ccd467d6 2252
bbbf7243 2253 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2254
0b246afa
JM
2255 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2256 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2257
4fbcdf66
FM
2258 btrfs_trans_release_chunk_metadata(trans);
2259
0b246afa 2260 spin_lock(&fs_info->trans_lock);
4a9d8bde 2261 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2262 fs_info->running_transaction = NULL;
2263 spin_unlock(&fs_info->trans_lock);
2264 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2265
0b246afa 2266 wake_up(&fs_info->transaction_wait);
e6dcd2dc 2267
70458a58 2268 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2269 if (ret) {
0b246afa
JM
2270 btrfs_handle_fs_error(fs_info, ret,
2271 "Error while writing out transaction");
2272 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2273 goto scrub_continue;
49b25e05
JM
2274 }
2275
eece6a9c 2276 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2277 /*
2278 * the super is written, we can safely allow the tree-loggers
2279 * to go about their business
2280 */
0b246afa 2281 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2282 if (ret)
2283 goto scrub_continue;
e02119d5 2284
5ead2dd0 2285 btrfs_finish_extent_commit(trans);
4313b399 2286
3204d33c 2287 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2288 btrfs_clear_space_info_full(fs_info);
13212b54 2289
0b246afa 2290 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2291 /*
2292 * We needn't acquire the lock here because there is no other task
2293 * which can change it.
2294 */
2295 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2296 wake_up(&cur_trans->commit_wait);
a514d638 2297 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
3de4586c 2298
0b246afa 2299 spin_lock(&fs_info->trans_lock);
13c5a93e 2300 list_del_init(&cur_trans->list);
0b246afa 2301 spin_unlock(&fs_info->trans_lock);
a4abeea4 2302
724e2315
JB
2303 btrfs_put_transaction(cur_trans);
2304 btrfs_put_transaction(cur_trans);
58176a96 2305
0860adfd 2306 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2307 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2308
3a45bb20 2309 trace_btrfs_transaction_commit(trans->root);
1abe9b8a 2310
2ff7e61e 2311 btrfs_scrub_continue(fs_info);
a2de733c 2312
9ed74f2d
JB
2313 if (current->journal_info == trans)
2314 current->journal_info = NULL;
2315
2c90e5d6 2316 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2317
79154b1b 2318 return ret;
49b25e05 2319
6cf7f77e 2320scrub_continue:
2ff7e61e 2321 btrfs_scrub_continue(fs_info);
49b25e05 2322cleanup_transaction:
dc60c525 2323 btrfs_trans_release_metadata(trans);
c7cc64a9 2324 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2325 btrfs_trans_release_chunk_metadata(trans);
0e721106 2326 trans->block_rsv = NULL;
0b246afa 2327 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2328 if (current->journal_info == trans)
2329 current->journal_info = NULL;
97cb39bb 2330 cleanup_transaction(trans, ret);
49b25e05
JM
2331
2332 return ret;
79154b1b
CM
2333}
2334
d352ac68 2335/*
9d1a2a3a
DS
2336 * return < 0 if error
2337 * 0 if there are no more dead_roots at the time of call
2338 * 1 there are more to be processed, call me again
2339 *
2340 * The return value indicates there are certainly more snapshots to delete, but
2341 * if there comes a new one during processing, it may return 0. We don't mind,
2342 * because btrfs_commit_super will poke cleaner thread and it will process it a
2343 * few seconds later.
d352ac68 2344 */
9d1a2a3a 2345int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
e9d0b13b 2346{
9d1a2a3a 2347 int ret;
5d4f98a2
YZ
2348 struct btrfs_fs_info *fs_info = root->fs_info;
2349
a4abeea4 2350 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2351 if (list_empty(&fs_info->dead_roots)) {
2352 spin_unlock(&fs_info->trans_lock);
2353 return 0;
2354 }
2355 root = list_first_entry(&fs_info->dead_roots,
2356 struct btrfs_root, root_list);
cfad392b 2357 list_del_init(&root->root_list);
a4abeea4 2358 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2359
4fd786e6 2360 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2361
9d1a2a3a 2362 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2363
9d1a2a3a
DS
2364 if (btrfs_header_backref_rev(root->node) <
2365 BTRFS_MIXED_BACKREF_REV)
2366 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2367 else
2368 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
32471dc2 2369
6596a928 2370 return (ret < 0) ? 0 : 1;
e9d0b13b 2371}
572d9ab7
DS
2372
2373void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2374{
2375 unsigned long prev;
2376 unsigned long bit;
2377
6c9fe14f 2378 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2379 if (!prev)
2380 return;
2381
7e1876ac
DS
2382 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2383 if (prev & bit)
2384 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2385 prev &= ~bit;
2386
2387 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2388 if (prev & bit)
2389 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2390 prev &= ~bit;
2391
d51033d0
DS
2392 bit = 1 << BTRFS_PENDING_COMMIT;
2393 if (prev & bit)
2394 btrfs_debug(fs_info, "pending commit done");
2395 prev &= ~bit;
2396
572d9ab7
DS
2397 if (prev)
2398 btrfs_warn(fs_info,
2399 "unknown pending changes left 0x%lx, ignoring", prev);
2400}