Btrfs: handle enospc accounting for free space inodes
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
79154b1b 19#include <linux/fs.h>
5a0e3ad6 20#include <linux/slab.h>
34088780 21#include <linux/sched.h>
d3c2fdcf 22#include <linux/writeback.h>
5f39d397 23#include <linux/pagemap.h>
5f2cc086 24#include <linux/blkdev.h>
79154b1b
CM
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
581bb050 30#include "inode-map.h"
79154b1b 31
0f7d52f4
CM
32#define BTRFS_ROOT_TRANS_TAG 0
33
80b6794d 34static noinline void put_transaction(struct btrfs_transaction *transaction)
79154b1b 35{
13c5a93e
JB
36 WARN_ON(atomic_read(&transaction->use_count) == 0);
37 if (atomic_dec_and_test(&transaction->use_count)) {
a4abeea4 38 BUG_ON(!list_empty(&transaction->list));
2c90e5d6
CM
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
78fae27e 41 }
79154b1b
CM
42}
43
817d52f8
JB
44static noinline void switch_commit_root(struct btrfs_root *root)
45{
817d52f8
JB
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
817d52f8
JB
48}
49
d352ac68
CM
50/*
51 * either allocate a new transaction or hop into the existing one
52 */
a4abeea4 53static noinline int join_transaction(struct btrfs_root *root, int nofail)
79154b1b
CM
54{
55 struct btrfs_transaction *cur_trans;
a4abeea4
JB
56
57 spin_lock(&root->fs_info->trans_lock);
58 if (root->fs_info->trans_no_join) {
59 if (!nofail) {
60 spin_unlock(&root->fs_info->trans_lock);
61 return -EBUSY;
62 }
63 }
64
79154b1b 65 cur_trans = root->fs_info->running_transaction;
a4abeea4
JB
66 if (cur_trans) {
67 atomic_inc(&cur_trans->use_count);
13c5a93e 68 atomic_inc(&cur_trans->num_writers);
15ee9bc7 69 cur_trans->num_joined++;
a4abeea4
JB
70 spin_unlock(&root->fs_info->trans_lock);
71 return 0;
79154b1b 72 }
a4abeea4
JB
73 spin_unlock(&root->fs_info->trans_lock);
74
75 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76 if (!cur_trans)
77 return -ENOMEM;
78 spin_lock(&root->fs_info->trans_lock);
79 if (root->fs_info->running_transaction) {
80 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81 cur_trans = root->fs_info->running_transaction;
82 atomic_inc(&cur_trans->use_count);
13c5a93e 83 atomic_inc(&cur_trans->num_writers);
15ee9bc7 84 cur_trans->num_joined++;
a4abeea4
JB
85 spin_unlock(&root->fs_info->trans_lock);
86 return 0;
79154b1b 87 }
a4abeea4
JB
88 atomic_set(&cur_trans->num_writers, 1);
89 cur_trans->num_joined = 0;
90 init_waitqueue_head(&cur_trans->writer_wait);
91 init_waitqueue_head(&cur_trans->commit_wait);
92 cur_trans->in_commit = 0;
93 cur_trans->blocked = 0;
94 /*
95 * One for this trans handle, one so it will live on until we
96 * commit the transaction.
97 */
98 atomic_set(&cur_trans->use_count, 2);
99 cur_trans->commit_done = 0;
100 cur_trans->start_time = get_seconds();
101
102 cur_trans->delayed_refs.root = RB_ROOT;
103 cur_trans->delayed_refs.num_entries = 0;
104 cur_trans->delayed_refs.num_heads_ready = 0;
105 cur_trans->delayed_refs.num_heads = 0;
106 cur_trans->delayed_refs.flushing = 0;
107 cur_trans->delayed_refs.run_delayed_start = 0;
108 spin_lock_init(&cur_trans->commit_lock);
109 spin_lock_init(&cur_trans->delayed_refs.lock);
110
111 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113 extent_io_tree_init(&cur_trans->dirty_pages,
ff5714cc 114 root->fs_info->btree_inode->i_mapping);
a4abeea4
JB
115 root->fs_info->generation++;
116 cur_trans->transid = root->fs_info->generation;
117 root->fs_info->running_transaction = cur_trans;
118 spin_unlock(&root->fs_info->trans_lock);
15ee9bc7 119
79154b1b
CM
120 return 0;
121}
122
d352ac68 123/*
d397712b
CM
124 * this does all the record keeping required to make sure that a reference
125 * counted root is properly recorded in a given transaction. This is required
126 * to make sure the old root from before we joined the transaction is deleted
127 * when the transaction commits
d352ac68 128 */
7585717f 129static int record_root_in_trans(struct btrfs_trans_handle *trans,
a4abeea4 130 struct btrfs_root *root)
6702ed49 131{
5d4f98a2 132 if (root->ref_cows && root->last_trans < trans->transid) {
6702ed49 133 WARN_ON(root == root->fs_info->extent_root);
5d4f98a2
YZ
134 WARN_ON(root->commit_root != root->node);
135
7585717f
CM
136 /*
137 * see below for in_trans_setup usage rules
138 * we have the reloc mutex held now, so there
139 * is only one writer in this function
140 */
141 root->in_trans_setup = 1;
142
143 /* make sure readers find in_trans_setup before
144 * they find our root->last_trans update
145 */
146 smp_wmb();
147
a4abeea4
JB
148 spin_lock(&root->fs_info->fs_roots_radix_lock);
149 if (root->last_trans == trans->transid) {
150 spin_unlock(&root->fs_info->fs_roots_radix_lock);
151 return 0;
152 }
5d4f98a2
YZ
153 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154 (unsigned long)root->root_key.objectid,
155 BTRFS_ROOT_TRANS_TAG);
a4abeea4 156 spin_unlock(&root->fs_info->fs_roots_radix_lock);
7585717f
CM
157 root->last_trans = trans->transid;
158
159 /* this is pretty tricky. We don't want to
160 * take the relocation lock in btrfs_record_root_in_trans
161 * unless we're really doing the first setup for this root in
162 * this transaction.
163 *
164 * Normally we'd use root->last_trans as a flag to decide
165 * if we want to take the expensive mutex.
166 *
167 * But, we have to set root->last_trans before we
168 * init the relocation root, otherwise, we trip over warnings
169 * in ctree.c. The solution used here is to flag ourselves
170 * with root->in_trans_setup. When this is 1, we're still
171 * fixing up the reloc trees and everyone must wait.
172 *
173 * When this is zero, they can trust root->last_trans and fly
174 * through btrfs_record_root_in_trans without having to take the
175 * lock. smp_wmb() makes sure that all the writes above are
176 * done before we pop in the zero below
177 */
5d4f98a2 178 btrfs_init_reloc_root(trans, root);
7585717f
CM
179 smp_wmb();
180 root->in_trans_setup = 0;
5d4f98a2
YZ
181 }
182 return 0;
183}
bcc63abb 184
7585717f
CM
185
186int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187 struct btrfs_root *root)
188{
189 if (!root->ref_cows)
190 return 0;
191
192 /*
193 * see record_root_in_trans for comments about in_trans_setup usage
194 * and barriers
195 */
196 smp_rmb();
197 if (root->last_trans == trans->transid &&
198 !root->in_trans_setup)
199 return 0;
200
201 mutex_lock(&root->fs_info->reloc_mutex);
202 record_root_in_trans(trans, root);
203 mutex_unlock(&root->fs_info->reloc_mutex);
204
205 return 0;
206}
207
d352ac68
CM
208/* wait for commit against the current transaction to become unblocked
209 * when this is done, it is safe to start a new transaction, but the current
210 * transaction might not be fully on disk.
211 */
37d1aeee 212static void wait_current_trans(struct btrfs_root *root)
79154b1b 213{
f9295749 214 struct btrfs_transaction *cur_trans;
79154b1b 215
a4abeea4 216 spin_lock(&root->fs_info->trans_lock);
f9295749 217 cur_trans = root->fs_info->running_transaction;
37d1aeee 218 if (cur_trans && cur_trans->blocked) {
13c5a93e 219 atomic_inc(&cur_trans->use_count);
a4abeea4 220 spin_unlock(&root->fs_info->trans_lock);
72d63ed6
LZ
221
222 wait_event(root->fs_info->transaction_wait,
223 !cur_trans->blocked);
f9295749 224 put_transaction(cur_trans);
a4abeea4
JB
225 } else {
226 spin_unlock(&root->fs_info->trans_lock);
f9295749 227 }
37d1aeee
CM
228}
229
249ac1e5
JB
230enum btrfs_trans_type {
231 TRANS_START,
232 TRANS_JOIN,
233 TRANS_USERSPACE,
0af3d00b 234 TRANS_JOIN_NOLOCK,
249ac1e5
JB
235};
236
a22285a6
YZ
237static int may_wait_transaction(struct btrfs_root *root, int type)
238{
a4abeea4
JB
239 if (root->fs_info->log_root_recovering)
240 return 0;
241
242 if (type == TRANS_USERSPACE)
243 return 1;
244
245 if (type == TRANS_START &&
246 !atomic_read(&root->fs_info->open_ioctl_trans))
a22285a6 247 return 1;
a4abeea4 248
a22285a6
YZ
249 return 0;
250}
251
e02119d5 252static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
a22285a6 253 u64 num_items, int type)
37d1aeee 254{
a22285a6
YZ
255 struct btrfs_trans_handle *h;
256 struct btrfs_transaction *cur_trans;
b5009945 257 u64 num_bytes = 0;
37d1aeee 258 int ret;
acce952b 259
260 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
261 return ERR_PTR(-EROFS);
2a1eb461
JB
262
263 if (current->journal_info) {
264 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
265 h = current->journal_info;
266 h->use_count++;
267 h->orig_rsv = h->block_rsv;
268 h->block_rsv = NULL;
269 goto got_it;
270 }
b5009945
JB
271
272 /*
273 * Do the reservation before we join the transaction so we can do all
274 * the appropriate flushing if need be.
275 */
276 if (num_items > 0 && root != root->fs_info->chunk_root) {
277 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
278 ret = btrfs_block_rsv_add(NULL, root,
279 &root->fs_info->trans_block_rsv,
280 num_bytes);
281 if (ret)
282 return ERR_PTR(ret);
283 }
a22285a6
YZ
284again:
285 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
286 if (!h)
287 return ERR_PTR(-ENOMEM);
37d1aeee 288
a22285a6 289 if (may_wait_transaction(root, type))
37d1aeee 290 wait_current_trans(root);
a22285a6 291
a4abeea4
JB
292 do {
293 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
294 if (ret == -EBUSY)
295 wait_current_trans(root);
296 } while (ret == -EBUSY);
297
db5b493a 298 if (ret < 0) {
6e8df2ae 299 kmem_cache_free(btrfs_trans_handle_cachep, h);
db5b493a
TI
300 return ERR_PTR(ret);
301 }
0f7d52f4 302
a22285a6 303 cur_trans = root->fs_info->running_transaction;
a22285a6
YZ
304
305 h->transid = cur_trans->transid;
306 h->transaction = cur_trans;
79154b1b 307 h->blocks_used = 0;
a22285a6 308 h->bytes_reserved = 0;
56bec294 309 h->delayed_ref_updates = 0;
2a1eb461 310 h->use_count = 1;
f0486c68 311 h->block_rsv = NULL;
2a1eb461 312 h->orig_rsv = NULL;
b7ec40d7 313
a22285a6
YZ
314 smp_mb();
315 if (cur_trans->blocked && may_wait_transaction(root, type)) {
316 btrfs_commit_transaction(h, root);
317 goto again;
318 }
319
b5009945
JB
320 if (num_bytes) {
321 h->block_rsv = &root->fs_info->trans_block_rsv;
322 h->bytes_reserved = num_bytes;
a22285a6 323 }
9ed74f2d 324
2a1eb461 325got_it:
a4abeea4 326 btrfs_record_root_in_trans(h, root);
a22285a6
YZ
327
328 if (!current->journal_info && type != TRANS_USERSPACE)
329 current->journal_info = h;
79154b1b
CM
330 return h;
331}
332
f9295749 333struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
a22285a6 334 int num_items)
f9295749 335{
a22285a6 336 return start_transaction(root, num_items, TRANS_START);
f9295749 337}
7a7eaa40 338struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 339{
a22285a6 340 return start_transaction(root, 0, TRANS_JOIN);
f9295749
CM
341}
342
7a7eaa40 343struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
0af3d00b
JB
344{
345 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
346}
347
7a7eaa40 348struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
9ca9ee09 349{
7a7eaa40 350 return start_transaction(root, 0, TRANS_USERSPACE);
9ca9ee09
SW
351}
352
d352ac68 353/* wait for a transaction commit to be fully complete */
b9c8300c 354static noinline void wait_for_commit(struct btrfs_root *root,
89ce8a63
CM
355 struct btrfs_transaction *commit)
356{
72d63ed6 357 wait_event(commit->commit_wait, commit->commit_done);
89ce8a63
CM
358}
359
46204592
SW
360int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
361{
362 struct btrfs_transaction *cur_trans = NULL, *t;
363 int ret;
364
46204592
SW
365 ret = 0;
366 if (transid) {
367 if (transid <= root->fs_info->last_trans_committed)
a4abeea4 368 goto out;
46204592
SW
369
370 /* find specified transaction */
a4abeea4 371 spin_lock(&root->fs_info->trans_lock);
46204592
SW
372 list_for_each_entry(t, &root->fs_info->trans_list, list) {
373 if (t->transid == transid) {
374 cur_trans = t;
a4abeea4 375 atomic_inc(&cur_trans->use_count);
46204592
SW
376 break;
377 }
378 if (t->transid > transid)
379 break;
380 }
a4abeea4 381 spin_unlock(&root->fs_info->trans_lock);
46204592
SW
382 ret = -EINVAL;
383 if (!cur_trans)
a4abeea4 384 goto out; /* bad transid */
46204592
SW
385 } else {
386 /* find newest transaction that is committing | committed */
a4abeea4 387 spin_lock(&root->fs_info->trans_lock);
46204592
SW
388 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
389 list) {
390 if (t->in_commit) {
391 if (t->commit_done)
3473f3c0 392 break;
46204592 393 cur_trans = t;
a4abeea4 394 atomic_inc(&cur_trans->use_count);
46204592
SW
395 break;
396 }
397 }
a4abeea4 398 spin_unlock(&root->fs_info->trans_lock);
46204592 399 if (!cur_trans)
a4abeea4 400 goto out; /* nothing committing|committed */
46204592
SW
401 }
402
46204592
SW
403 wait_for_commit(root, cur_trans);
404
46204592
SW
405 put_transaction(cur_trans);
406 ret = 0;
a4abeea4 407out:
46204592
SW
408 return ret;
409}
410
37d1aeee
CM
411void btrfs_throttle(struct btrfs_root *root)
412{
a4abeea4 413 if (!atomic_read(&root->fs_info->open_ioctl_trans))
9ca9ee09 414 wait_current_trans(root);
37d1aeee
CM
415}
416
8929ecfa
YZ
417static int should_end_transaction(struct btrfs_trans_handle *trans,
418 struct btrfs_root *root)
419{
420 int ret;
421 ret = btrfs_block_rsv_check(trans, root,
482e6dc5 422 &root->fs_info->global_block_rsv, 0, 5, 0);
8929ecfa
YZ
423 return ret ? 1 : 0;
424}
425
426int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
427 struct btrfs_root *root)
428{
429 struct btrfs_transaction *cur_trans = trans->transaction;
430 int updates;
431
a4abeea4 432 smp_mb();
8929ecfa
YZ
433 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
434 return 1;
435
436 updates = trans->delayed_ref_updates;
437 trans->delayed_ref_updates = 0;
438 if (updates)
439 btrfs_run_delayed_refs(trans, root, updates);
440
441 return should_end_transaction(trans, root);
442}
443
89ce8a63 444static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
0af3d00b 445 struct btrfs_root *root, int throttle, int lock)
79154b1b 446{
8929ecfa 447 struct btrfs_transaction *cur_trans = trans->transaction;
ab78c84d 448 struct btrfs_fs_info *info = root->fs_info;
c3e69d58
CM
449 int count = 0;
450
2a1eb461
JB
451 if (--trans->use_count) {
452 trans->block_rsv = trans->orig_rsv;
453 return 0;
454 }
455
c3e69d58
CM
456 while (count < 4) {
457 unsigned long cur = trans->delayed_ref_updates;
458 trans->delayed_ref_updates = 0;
459 if (cur &&
460 trans->transaction->delayed_refs.num_heads_ready > 64) {
461 trans->delayed_ref_updates = 0;
b7ec40d7
CM
462
463 /*
464 * do a full flush if the transaction is trying
465 * to close
466 */
467 if (trans->transaction->delayed_refs.flushing)
468 cur = 0;
c3e69d58
CM
469 btrfs_run_delayed_refs(trans, root, cur);
470 } else {
471 break;
472 }
473 count++;
56bec294
CM
474 }
475
a22285a6
YZ
476 btrfs_trans_release_metadata(trans, root);
477
a4abeea4
JB
478 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
479 should_end_transaction(trans, root)) {
8929ecfa 480 trans->transaction->blocked = 1;
a4abeea4
JB
481 smp_wmb();
482 }
8929ecfa 483
0af3d00b 484 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
81317fde
JB
485 if (throttle) {
486 /*
487 * We may race with somebody else here so end up having
488 * to call end_transaction on ourselves again, so inc
489 * our use_count.
490 */
491 trans->use_count++;
8929ecfa 492 return btrfs_commit_transaction(trans, root);
81317fde 493 } else {
8929ecfa 494 wake_up_process(info->transaction_kthread);
81317fde 495 }
8929ecfa
YZ
496 }
497
8929ecfa 498 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
499 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
500 atomic_dec(&cur_trans->num_writers);
89ce8a63 501
99d16cbc 502 smp_mb();
79154b1b
CM
503 if (waitqueue_active(&cur_trans->writer_wait))
504 wake_up(&cur_trans->writer_wait);
79154b1b 505 put_transaction(cur_trans);
9ed74f2d
JB
506
507 if (current->journal_info == trans)
508 current->journal_info = NULL;
d6025579 509 memset(trans, 0, sizeof(*trans));
2c90e5d6 510 kmem_cache_free(btrfs_trans_handle_cachep, trans);
ab78c84d 511
24bbcf04
YZ
512 if (throttle)
513 btrfs_run_delayed_iputs(root);
514
79154b1b
CM
515 return 0;
516}
517
89ce8a63
CM
518int btrfs_end_transaction(struct btrfs_trans_handle *trans,
519 struct btrfs_root *root)
520{
16cdcec7
MX
521 int ret;
522
523 ret = __btrfs_end_transaction(trans, root, 0, 1);
524 if (ret)
525 return ret;
526 return 0;
89ce8a63
CM
527}
528
529int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
530 struct btrfs_root *root)
531{
16cdcec7
MX
532 int ret;
533
534 ret = __btrfs_end_transaction(trans, root, 1, 1);
535 if (ret)
536 return ret;
537 return 0;
0af3d00b
JB
538}
539
540int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
541 struct btrfs_root *root)
542{
16cdcec7
MX
543 int ret;
544
545 ret = __btrfs_end_transaction(trans, root, 0, 0);
546 if (ret)
547 return ret;
548 return 0;
549}
550
551int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
552 struct btrfs_root *root)
553{
554 return __btrfs_end_transaction(trans, root, 1, 1);
89ce8a63
CM
555}
556
d352ac68
CM
557/*
558 * when btree blocks are allocated, they have some corresponding bits set for
559 * them in one of two extent_io trees. This is used to make sure all of
690587d1 560 * those extents are sent to disk but does not wait on them
d352ac68 561 */
690587d1 562int btrfs_write_marked_extents(struct btrfs_root *root,
8cef4e16 563 struct extent_io_tree *dirty_pages, int mark)
79154b1b 564{
7c4452b9 565 int ret;
777e6bd7 566 int err = 0;
7c4452b9
CM
567 int werr = 0;
568 struct page *page;
7c4452b9 569 struct inode *btree_inode = root->fs_info->btree_inode;
777e6bd7 570 u64 start = 0;
5f39d397
CM
571 u64 end;
572 unsigned long index;
7c4452b9 573
d397712b 574 while (1) {
777e6bd7 575 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
8cef4e16 576 mark);
5f39d397 577 if (ret)
7c4452b9 578 break;
d397712b 579 while (start <= end) {
777e6bd7
CM
580 cond_resched();
581
5f39d397 582 index = start >> PAGE_CACHE_SHIFT;
35ebb934 583 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
4bef0848 584 page = find_get_page(btree_inode->i_mapping, index);
7c4452b9
CM
585 if (!page)
586 continue;
4bef0848
CM
587
588 btree_lock_page_hook(page);
589 if (!page->mapping) {
590 unlock_page(page);
591 page_cache_release(page);
592 continue;
593 }
594
6702ed49
CM
595 if (PageWriteback(page)) {
596 if (PageDirty(page))
597 wait_on_page_writeback(page);
598 else {
599 unlock_page(page);
600 page_cache_release(page);
601 continue;
602 }
603 }
7c4452b9
CM
604 err = write_one_page(page, 0);
605 if (err)
606 werr = err;
607 page_cache_release(page);
608 }
609 }
690587d1
CM
610 if (err)
611 werr = err;
612 return werr;
613}
614
615/*
616 * when btree blocks are allocated, they have some corresponding bits set for
617 * them in one of two extent_io trees. This is used to make sure all of
618 * those extents are on disk for transaction or log commit. We wait
619 * on all the pages and clear them from the dirty pages state tree
620 */
621int btrfs_wait_marked_extents(struct btrfs_root *root,
8cef4e16 622 struct extent_io_tree *dirty_pages, int mark)
690587d1
CM
623{
624 int ret;
625 int err = 0;
626 int werr = 0;
627 struct page *page;
628 struct inode *btree_inode = root->fs_info->btree_inode;
629 u64 start = 0;
630 u64 end;
631 unsigned long index;
632
d397712b 633 while (1) {
8cef4e16
YZ
634 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
635 mark);
777e6bd7
CM
636 if (ret)
637 break;
638
8cef4e16 639 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
d397712b 640 while (start <= end) {
777e6bd7
CM
641 index = start >> PAGE_CACHE_SHIFT;
642 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
643 page = find_get_page(btree_inode->i_mapping, index);
644 if (!page)
645 continue;
646 if (PageDirty(page)) {
4bef0848
CM
647 btree_lock_page_hook(page);
648 wait_on_page_writeback(page);
777e6bd7
CM
649 err = write_one_page(page, 0);
650 if (err)
651 werr = err;
652 }
105d931d 653 wait_on_page_writeback(page);
777e6bd7
CM
654 page_cache_release(page);
655 cond_resched();
656 }
657 }
7c4452b9
CM
658 if (err)
659 werr = err;
660 return werr;
79154b1b
CM
661}
662
690587d1
CM
663/*
664 * when btree blocks are allocated, they have some corresponding bits set for
665 * them in one of two extent_io trees. This is used to make sure all of
666 * those extents are on disk for transaction or log commit
667 */
668int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
8cef4e16 669 struct extent_io_tree *dirty_pages, int mark)
690587d1
CM
670{
671 int ret;
672 int ret2;
673
8cef4e16
YZ
674 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
675 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
690587d1
CM
676 return ret || ret2;
677}
678
d0c803c4
CM
679int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
680 struct btrfs_root *root)
681{
682 if (!trans || !trans->transaction) {
683 struct inode *btree_inode;
684 btree_inode = root->fs_info->btree_inode;
685 return filemap_write_and_wait(btree_inode->i_mapping);
686 }
687 return btrfs_write_and_wait_marked_extents(root,
8cef4e16
YZ
688 &trans->transaction->dirty_pages,
689 EXTENT_DIRTY);
d0c803c4
CM
690}
691
d352ac68
CM
692/*
693 * this is used to update the root pointer in the tree of tree roots.
694 *
695 * But, in the case of the extent allocation tree, updating the root
696 * pointer may allocate blocks which may change the root of the extent
697 * allocation tree.
698 *
699 * So, this loops and repeats and makes sure the cowonly root didn't
700 * change while the root pointer was being updated in the metadata.
701 */
0b86a832
CM
702static int update_cowonly_root(struct btrfs_trans_handle *trans,
703 struct btrfs_root *root)
79154b1b
CM
704{
705 int ret;
0b86a832 706 u64 old_root_bytenr;
86b9f2ec 707 u64 old_root_used;
0b86a832 708 struct btrfs_root *tree_root = root->fs_info->tree_root;
79154b1b 709
86b9f2ec 710 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 711 btrfs_write_dirty_block_groups(trans, root);
56bec294 712
d397712b 713 while (1) {
0b86a832 714 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec
YZ
715 if (old_root_bytenr == root->node->start &&
716 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 717 break;
87ef2bb4 718
5d4f98a2 719 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 720 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
721 &root->root_key,
722 &root->root_item);
79154b1b 723 BUG_ON(ret);
56bec294 724
86b9f2ec 725 old_root_used = btrfs_root_used(&root->root_item);
4a8c9a62 726 ret = btrfs_write_dirty_block_groups(trans, root);
56bec294 727 BUG_ON(ret);
0b86a832 728 }
276e680d
YZ
729
730 if (root != root->fs_info->extent_root)
731 switch_commit_root(root);
732
0b86a832
CM
733 return 0;
734}
735
d352ac68
CM
736/*
737 * update all the cowonly tree roots on disk
738 */
5d4f98a2
YZ
739static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
740 struct btrfs_root *root)
0b86a832
CM
741{
742 struct btrfs_fs_info *fs_info = root->fs_info;
743 struct list_head *next;
84234f3a 744 struct extent_buffer *eb;
56bec294 745 int ret;
84234f3a 746
56bec294
CM
747 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
748 BUG_ON(ret);
87ef2bb4 749
84234f3a 750 eb = btrfs_lock_root_node(fs_info->tree_root);
9fa8cfe7 751 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
84234f3a
YZ
752 btrfs_tree_unlock(eb);
753 free_extent_buffer(eb);
0b86a832 754
56bec294
CM
755 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
756 BUG_ON(ret);
87ef2bb4 757
d397712b 758 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
0b86a832
CM
759 next = fs_info->dirty_cowonly_roots.next;
760 list_del_init(next);
761 root = list_entry(next, struct btrfs_root, dirty_list);
87ef2bb4 762
0b86a832 763 update_cowonly_root(trans, root);
79154b1b 764 }
276e680d
YZ
765
766 down_write(&fs_info->extent_commit_sem);
767 switch_commit_root(fs_info->extent_root);
768 up_write(&fs_info->extent_commit_sem);
769
79154b1b
CM
770 return 0;
771}
772
d352ac68
CM
773/*
774 * dead roots are old snapshots that need to be deleted. This allocates
775 * a dirty root struct and adds it into the list of dead roots that need to
776 * be deleted
777 */
5d4f98a2 778int btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 779{
a4abeea4 780 spin_lock(&root->fs_info->trans_lock);
5d4f98a2 781 list_add(&root->root_list, &root->fs_info->dead_roots);
a4abeea4 782 spin_unlock(&root->fs_info->trans_lock);
5eda7b5e
CM
783 return 0;
784}
785
d352ac68 786/*
5d4f98a2 787 * update all the cowonly tree roots on disk
d352ac68 788 */
5d4f98a2
YZ
789static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
790 struct btrfs_root *root)
0f7d52f4 791{
0f7d52f4 792 struct btrfs_root *gang[8];
5d4f98a2 793 struct btrfs_fs_info *fs_info = root->fs_info;
0f7d52f4
CM
794 int i;
795 int ret;
54aa1f4d
CM
796 int err = 0;
797
a4abeea4 798 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 799 while (1) {
5d4f98a2
YZ
800 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
801 (void **)gang, 0,
0f7d52f4
CM
802 ARRAY_SIZE(gang),
803 BTRFS_ROOT_TRANS_TAG);
804 if (ret == 0)
805 break;
806 for (i = 0; i < ret; i++) {
807 root = gang[i];
5d4f98a2
YZ
808 radix_tree_tag_clear(&fs_info->fs_roots_radix,
809 (unsigned long)root->root_key.objectid,
810 BTRFS_ROOT_TRANS_TAG);
a4abeea4 811 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 812
e02119d5 813 btrfs_free_log(trans, root);
5d4f98a2 814 btrfs_update_reloc_root(trans, root);
d68fc57b 815 btrfs_orphan_commit_root(trans, root);
bcc63abb 816
82d5902d
LZ
817 btrfs_save_ino_cache(root, trans);
818
978d910d 819 if (root->commit_root != root->node) {
581bb050 820 mutex_lock(&root->fs_commit_mutex);
817d52f8 821 switch_commit_root(root);
581bb050
LZ
822 btrfs_unpin_free_ino(root);
823 mutex_unlock(&root->fs_commit_mutex);
824
978d910d
YZ
825 btrfs_set_root_node(&root->root_item,
826 root->node);
827 }
5d4f98a2 828
5d4f98a2 829 err = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
830 &root->root_key,
831 &root->root_item);
a4abeea4 832 spin_lock(&fs_info->fs_roots_radix_lock);
54aa1f4d
CM
833 if (err)
834 break;
0f7d52f4
CM
835 }
836 }
a4abeea4 837 spin_unlock(&fs_info->fs_roots_radix_lock);
54aa1f4d 838 return err;
0f7d52f4
CM
839}
840
d352ac68
CM
841/*
842 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
843 * otherwise every leaf in the btree is read and defragged.
844 */
e9d0b13b
CM
845int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
846{
847 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 848 struct btrfs_trans_handle *trans;
8929ecfa 849 int ret;
d3c2fdcf 850 unsigned long nr;
e9d0b13b 851
8929ecfa 852 if (xchg(&root->defrag_running, 1))
e9d0b13b 853 return 0;
8929ecfa 854
6b80053d 855 while (1) {
8929ecfa
YZ
856 trans = btrfs_start_transaction(root, 0);
857 if (IS_ERR(trans))
858 return PTR_ERR(trans);
859
e9d0b13b 860 ret = btrfs_defrag_leaves(trans, root, cacheonly);
8929ecfa 861
d3c2fdcf 862 nr = trans->blocks_used;
e9d0b13b 863 btrfs_end_transaction(trans, root);
d3c2fdcf 864 btrfs_btree_balance_dirty(info->tree_root, nr);
e9d0b13b
CM
865 cond_resched();
866
7841cb28 867 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
e9d0b13b
CM
868 break;
869 }
870 root->defrag_running = 0;
8929ecfa 871 return ret;
e9d0b13b
CM
872}
873
d352ac68
CM
874/*
875 * new snapshots need to be created at a very specific time in the
876 * transaction commit. This does the actual creation
877 */
80b6794d 878static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
879 struct btrfs_fs_info *fs_info,
880 struct btrfs_pending_snapshot *pending)
881{
882 struct btrfs_key key;
80b6794d 883 struct btrfs_root_item *new_root_item;
3063d29f
CM
884 struct btrfs_root *tree_root = fs_info->tree_root;
885 struct btrfs_root *root = pending->root;
6bdb72de 886 struct btrfs_root *parent_root;
98c9942a 887 struct btrfs_block_rsv *rsv;
6bdb72de 888 struct inode *parent_inode;
6a912213 889 struct dentry *parent;
a22285a6 890 struct dentry *dentry;
3063d29f 891 struct extent_buffer *tmp;
925baedd 892 struct extent_buffer *old;
3063d29f 893 int ret;
d68fc57b 894 u64 to_reserve = 0;
6bdb72de 895 u64 index = 0;
a22285a6 896 u64 objectid;
b83cc969 897 u64 root_flags;
3063d29f 898
98c9942a
LB
899 rsv = trans->block_rsv;
900
80b6794d
CM
901 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
902 if (!new_root_item) {
a22285a6 903 pending->error = -ENOMEM;
80b6794d
CM
904 goto fail;
905 }
a22285a6 906
581bb050 907 ret = btrfs_find_free_objectid(tree_root, &objectid);
a22285a6
YZ
908 if (ret) {
909 pending->error = ret;
3063d29f 910 goto fail;
a22285a6 911 }
3063d29f 912
3fd0a558 913 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
d68fc57b
YZ
914
915 if (to_reserve > 0) {
916 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
8bb8ab2e 917 to_reserve);
d68fc57b
YZ
918 if (ret) {
919 pending->error = ret;
920 goto fail;
921 }
922 }
923
3063d29f 924 key.objectid = objectid;
a22285a6
YZ
925 key.offset = (u64)-1;
926 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 927
a22285a6 928 trans->block_rsv = &pending->block_rsv;
3de4586c 929
a22285a6 930 dentry = pending->dentry;
6a912213
JB
931 parent = dget_parent(dentry);
932 parent_inode = parent->d_inode;
a22285a6 933 parent_root = BTRFS_I(parent_inode)->root;
7585717f 934 record_root_in_trans(trans, parent_root);
a22285a6 935
3063d29f
CM
936 /*
937 * insert the directory item
938 */
3de4586c 939 ret = btrfs_set_inode_index(parent_inode, &index);
6bdb72de 940 BUG_ON(ret);
0660b5af 941 ret = btrfs_insert_dir_item(trans, parent_root,
a22285a6 942 dentry->d_name.name, dentry->d_name.len,
16cdcec7 943 parent_inode, &key,
a22285a6 944 BTRFS_FT_DIR, index);
6bdb72de 945 BUG_ON(ret);
0660b5af 946
a22285a6
YZ
947 btrfs_i_size_write(parent_inode, parent_inode->i_size +
948 dentry->d_name.len * 2);
52c26179
YZ
949 ret = btrfs_update_inode(trans, parent_root, parent_inode);
950 BUG_ON(ret);
951
e999376f
CM
952 /*
953 * pull in the delayed directory update
954 * and the delayed inode item
955 * otherwise we corrupt the FS during
956 * snapshot
957 */
958 ret = btrfs_run_delayed_items(trans, root);
959 BUG_ON(ret);
960
7585717f 961 record_root_in_trans(trans, root);
6bdb72de
SW
962 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
963 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 964 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 965
b83cc969
LZ
966 root_flags = btrfs_root_flags(new_root_item);
967 if (pending->readonly)
968 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
969 else
970 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
971 btrfs_set_root_flags(new_root_item, root_flags);
972
6bdb72de
SW
973 old = btrfs_lock_root_node(root);
974 btrfs_cow_block(trans, root, old, NULL, 0, &old);
975 btrfs_set_lock_blocking(old);
976
977 btrfs_copy_root(trans, root, old, &tmp, objectid);
978 btrfs_tree_unlock(old);
979 free_extent_buffer(old);
980
981 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
982 /* record when the snapshot was created in key.offset */
983 key.offset = trans->transid;
984 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
985 btrfs_tree_unlock(tmp);
986 free_extent_buffer(tmp);
a22285a6 987 BUG_ON(ret);
6bdb72de 988
a22285a6
YZ
989 /*
990 * insert root back/forward references
991 */
992 ret = btrfs_add_root_ref(trans, tree_root, objectid,
0660b5af 993 parent_root->root_key.objectid,
33345d01 994 btrfs_ino(parent_inode), index,
a22285a6 995 dentry->d_name.name, dentry->d_name.len);
0660b5af 996 BUG_ON(ret);
6a912213 997 dput(parent);
0660b5af 998
a22285a6
YZ
999 key.offset = (u64)-1;
1000 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1001 BUG_ON(IS_ERR(pending->snap));
d68fc57b 1002
3fd0a558 1003 btrfs_reloc_post_snapshot(trans, pending);
3063d29f 1004fail:
6bdb72de 1005 kfree(new_root_item);
98c9942a 1006 trans->block_rsv = rsv;
a22285a6
YZ
1007 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1008 return 0;
3063d29f
CM
1009}
1010
d352ac68
CM
1011/*
1012 * create all the snapshots we've scheduled for creation
1013 */
80b6794d
CM
1014static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1015 struct btrfs_fs_info *fs_info)
3de4586c
CM
1016{
1017 struct btrfs_pending_snapshot *pending;
1018 struct list_head *head = &trans->transaction->pending_snapshots;
3de4586c
CM
1019 int ret;
1020
c6e30871 1021 list_for_each_entry(pending, head, list) {
3de4586c
CM
1022 ret = create_pending_snapshot(trans, fs_info, pending);
1023 BUG_ON(ret);
1024 }
1025 return 0;
1026}
1027
5d4f98a2
YZ
1028static void update_super_roots(struct btrfs_root *root)
1029{
1030 struct btrfs_root_item *root_item;
1031 struct btrfs_super_block *super;
1032
1033 super = &root->fs_info->super_copy;
1034
1035 root_item = &root->fs_info->chunk_root->root_item;
1036 super->chunk_root = root_item->bytenr;
1037 super->chunk_root_generation = root_item->generation;
1038 super->chunk_root_level = root_item->level;
1039
1040 root_item = &root->fs_info->tree_root->root_item;
1041 super->root = root_item->bytenr;
1042 super->generation = root_item->generation;
1043 super->root_level = root_item->level;
0af3d00b
JB
1044 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1045 super->cache_generation = root_item->generation;
5d4f98a2
YZ
1046}
1047
f36f3042
CM
1048int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1049{
1050 int ret = 0;
a4abeea4 1051 spin_lock(&info->trans_lock);
f36f3042
CM
1052 if (info->running_transaction)
1053 ret = info->running_transaction->in_commit;
a4abeea4 1054 spin_unlock(&info->trans_lock);
f36f3042
CM
1055 return ret;
1056}
1057
8929ecfa
YZ
1058int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1059{
1060 int ret = 0;
a4abeea4 1061 spin_lock(&info->trans_lock);
8929ecfa
YZ
1062 if (info->running_transaction)
1063 ret = info->running_transaction->blocked;
a4abeea4 1064 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1065 return ret;
1066}
1067
bb9c12c9
SW
1068/*
1069 * wait for the current transaction commit to start and block subsequent
1070 * transaction joins
1071 */
1072static void wait_current_trans_commit_start(struct btrfs_root *root,
1073 struct btrfs_transaction *trans)
1074{
72d63ed6 1075 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
bb9c12c9
SW
1076}
1077
1078/*
1079 * wait for the current transaction to start and then become unblocked.
1080 * caller holds ref.
1081 */
1082static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1083 struct btrfs_transaction *trans)
1084{
72d63ed6
LZ
1085 wait_event(root->fs_info->transaction_wait,
1086 trans->commit_done || (trans->in_commit && !trans->blocked));
bb9c12c9
SW
1087}
1088
1089/*
1090 * commit transactions asynchronously. once btrfs_commit_transaction_async
1091 * returns, any subsequent transaction will not be allowed to join.
1092 */
1093struct btrfs_async_commit {
1094 struct btrfs_trans_handle *newtrans;
1095 struct btrfs_root *root;
1096 struct delayed_work work;
1097};
1098
1099static void do_async_commit(struct work_struct *work)
1100{
1101 struct btrfs_async_commit *ac =
1102 container_of(work, struct btrfs_async_commit, work.work);
1103
1104 btrfs_commit_transaction(ac->newtrans, ac->root);
1105 kfree(ac);
1106}
1107
1108int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1109 struct btrfs_root *root,
1110 int wait_for_unblock)
1111{
1112 struct btrfs_async_commit *ac;
1113 struct btrfs_transaction *cur_trans;
1114
1115 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1116 if (!ac)
1117 return -ENOMEM;
bb9c12c9
SW
1118
1119 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1120 ac->root = root;
7a7eaa40 1121 ac->newtrans = btrfs_join_transaction(root);
3612b495
TI
1122 if (IS_ERR(ac->newtrans)) {
1123 int err = PTR_ERR(ac->newtrans);
1124 kfree(ac);
1125 return err;
1126 }
bb9c12c9
SW
1127
1128 /* take transaction reference */
bb9c12c9 1129 cur_trans = trans->transaction;
13c5a93e 1130 atomic_inc(&cur_trans->use_count);
bb9c12c9
SW
1131
1132 btrfs_end_transaction(trans, root);
1133 schedule_delayed_work(&ac->work, 0);
1134
1135 /* wait for transaction to start and unblock */
bb9c12c9
SW
1136 if (wait_for_unblock)
1137 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1138 else
1139 wait_current_trans_commit_start(root, cur_trans);
bb9c12c9 1140
38e88054
SW
1141 if (current->journal_info == trans)
1142 current->journal_info = NULL;
1143
1144 put_transaction(cur_trans);
bb9c12c9
SW
1145 return 0;
1146}
1147
1148/*
1149 * btrfs_transaction state sequence:
1150 * in_commit = 0, blocked = 0 (initial)
1151 * in_commit = 1, blocked = 1
1152 * blocked = 0
1153 * commit_done = 1
1154 */
79154b1b
CM
1155int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1156 struct btrfs_root *root)
1157{
15ee9bc7 1158 unsigned long joined = 0;
79154b1b 1159 struct btrfs_transaction *cur_trans;
8fd17795 1160 struct btrfs_transaction *prev_trans = NULL;
79154b1b 1161 DEFINE_WAIT(wait);
15ee9bc7 1162 int ret;
89573b9c
CM
1163 int should_grow = 0;
1164 unsigned long now = get_seconds();
dccae999 1165 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
79154b1b 1166
5a3f23d5
CM
1167 btrfs_run_ordered_operations(root, 0);
1168
56bec294
CM
1169 /* make a pass through all the delayed refs we have so far
1170 * any runnings procs may add more while we are here
1171 */
1172 ret = btrfs_run_delayed_refs(trans, root, 0);
1173 BUG_ON(ret);
1174
a22285a6
YZ
1175 btrfs_trans_release_metadata(trans, root);
1176
b7ec40d7 1177 cur_trans = trans->transaction;
56bec294
CM
1178 /*
1179 * set the flushing flag so procs in this transaction have to
1180 * start sending their work down.
1181 */
b7ec40d7 1182 cur_trans->delayed_refs.flushing = 1;
56bec294 1183
c3e69d58 1184 ret = btrfs_run_delayed_refs(trans, root, 0);
56bec294
CM
1185 BUG_ON(ret);
1186
a4abeea4 1187 spin_lock(&cur_trans->commit_lock);
b7ec40d7 1188 if (cur_trans->in_commit) {
a4abeea4 1189 spin_unlock(&cur_trans->commit_lock);
13c5a93e 1190 atomic_inc(&cur_trans->use_count);
79154b1b 1191 btrfs_end_transaction(trans, root);
ccd467d6 1192
b9c8300c 1193 wait_for_commit(root, cur_trans);
15ee9bc7 1194
79154b1b 1195 put_transaction(cur_trans);
15ee9bc7 1196
79154b1b
CM
1197 return 0;
1198 }
4313b399 1199
2c90e5d6 1200 trans->transaction->in_commit = 1;
f9295749 1201 trans->transaction->blocked = 1;
a4abeea4 1202 spin_unlock(&cur_trans->commit_lock);
bb9c12c9
SW
1203 wake_up(&root->fs_info->transaction_blocked_wait);
1204
a4abeea4 1205 spin_lock(&root->fs_info->trans_lock);
ccd467d6
CM
1206 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1207 prev_trans = list_entry(cur_trans->list.prev,
1208 struct btrfs_transaction, list);
1209 if (!prev_trans->commit_done) {
13c5a93e 1210 atomic_inc(&prev_trans->use_count);
a4abeea4 1211 spin_unlock(&root->fs_info->trans_lock);
ccd467d6
CM
1212
1213 wait_for_commit(root, prev_trans);
ccd467d6 1214
15ee9bc7 1215 put_transaction(prev_trans);
a4abeea4
JB
1216 } else {
1217 spin_unlock(&root->fs_info->trans_lock);
ccd467d6 1218 }
a4abeea4
JB
1219 } else {
1220 spin_unlock(&root->fs_info->trans_lock);
ccd467d6 1221 }
15ee9bc7 1222
89573b9c
CM
1223 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1224 should_grow = 1;
1225
15ee9bc7 1226 do {
7ea394f1 1227 int snap_pending = 0;
a4abeea4 1228
15ee9bc7 1229 joined = cur_trans->num_joined;
7ea394f1
YZ
1230 if (!list_empty(&trans->transaction->pending_snapshots))
1231 snap_pending = 1;
1232
2c90e5d6 1233 WARN_ON(cur_trans != trans->transaction);
15ee9bc7 1234
0bdb1db2 1235 if (flush_on_commit || snap_pending) {
24bbcf04
YZ
1236 btrfs_start_delalloc_inodes(root, 1);
1237 ret = btrfs_wait_ordered_extents(root, 0, 1);
ebecd3d9 1238 BUG_ON(ret);
7ea394f1
YZ
1239 }
1240
16cdcec7
MX
1241 ret = btrfs_run_delayed_items(trans, root);
1242 BUG_ON(ret);
1243
5a3f23d5
CM
1244 /*
1245 * rename don't use btrfs_join_transaction, so, once we
1246 * set the transaction to blocked above, we aren't going
1247 * to get any new ordered operations. We can safely run
1248 * it here and no for sure that nothing new will be added
1249 * to the list
1250 */
1251 btrfs_run_ordered_operations(root, 1);
1252
ed3b3d31
CM
1253 prepare_to_wait(&cur_trans->writer_wait, &wait,
1254 TASK_UNINTERRUPTIBLE);
1255
13c5a93e 1256 if (atomic_read(&cur_trans->num_writers) > 1)
99d16cbc
SW
1257 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1258 else if (should_grow)
1259 schedule_timeout(1);
15ee9bc7 1260
15ee9bc7 1261 finish_wait(&cur_trans->writer_wait, &wait);
13c5a93e 1262 } while (atomic_read(&cur_trans->num_writers) > 1 ||
89573b9c 1263 (should_grow && cur_trans->num_joined != joined));
15ee9bc7 1264
ed0ca140
JB
1265 /*
1266 * Ok now we need to make sure to block out any other joins while we
1267 * commit the transaction. We could have started a join before setting
1268 * no_join so make sure to wait for num_writers to == 1 again.
1269 */
1270 spin_lock(&root->fs_info->trans_lock);
1271 root->fs_info->trans_no_join = 1;
1272 spin_unlock(&root->fs_info->trans_lock);
1273 wait_event(cur_trans->writer_wait,
1274 atomic_read(&cur_trans->num_writers) == 1);
1275
7585717f
CM
1276 /*
1277 * the reloc mutex makes sure that we stop
1278 * the balancing code from coming in and moving
1279 * extents around in the middle of the commit
1280 */
1281 mutex_lock(&root->fs_info->reloc_mutex);
1282
e999376f 1283 ret = btrfs_run_delayed_items(trans, root);
3063d29f
CM
1284 BUG_ON(ret);
1285
e999376f 1286 ret = create_pending_snapshots(trans, root->fs_info);
16cdcec7
MX
1287 BUG_ON(ret);
1288
56bec294
CM
1289 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1290 BUG_ON(ret);
1291
e999376f
CM
1292 /*
1293 * make sure none of the code above managed to slip in a
1294 * delayed item
1295 */
1296 btrfs_assert_delayed_root_empty(root);
1297
2c90e5d6 1298 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 1299
a2de733c 1300 btrfs_scrub_pause(root);
e02119d5
CM
1301 /* btrfs_commit_tree_roots is responsible for getting the
1302 * various roots consistent with each other. Every pointer
1303 * in the tree of tree roots has to point to the most up to date
1304 * root for every subvolume and other tree. So, we have to keep
1305 * the tree logging code from jumping in and changing any
1306 * of the trees.
1307 *
1308 * At this point in the commit, there can't be any tree-log
1309 * writers, but a little lower down we drop the trans mutex
1310 * and let new people in. By holding the tree_log_mutex
1311 * from now until after the super is written, we avoid races
1312 * with the tree-log code.
1313 */
1314 mutex_lock(&root->fs_info->tree_log_mutex);
1315
5d4f98a2 1316 ret = commit_fs_roots(trans, root);
54aa1f4d
CM
1317 BUG_ON(ret);
1318
5d4f98a2 1319 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
1320 * safe to free the root of tree log roots
1321 */
1322 btrfs_free_log_root_tree(trans, root->fs_info);
1323
5d4f98a2 1324 ret = commit_cowonly_roots(trans, root);
79154b1b 1325 BUG_ON(ret);
54aa1f4d 1326
11833d66
YZ
1327 btrfs_prepare_extent_commit(trans, root);
1328
78fae27e 1329 cur_trans = root->fs_info->running_transaction;
5d4f98a2
YZ
1330
1331 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1332 root->fs_info->tree_root->node);
817d52f8 1333 switch_commit_root(root->fs_info->tree_root);
5d4f98a2
YZ
1334
1335 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1336 root->fs_info->chunk_root->node);
817d52f8 1337 switch_commit_root(root->fs_info->chunk_root);
5d4f98a2
YZ
1338
1339 update_super_roots(root);
e02119d5
CM
1340
1341 if (!root->fs_info->log_root_recovering) {
1342 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1343 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1344 }
1345
a061fc8d
CM
1346 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1347 sizeof(root->fs_info->super_copy));
ccd467d6 1348
f9295749 1349 trans->transaction->blocked = 0;
a4abeea4
JB
1350 spin_lock(&root->fs_info->trans_lock);
1351 root->fs_info->running_transaction = NULL;
1352 root->fs_info->trans_no_join = 0;
1353 spin_unlock(&root->fs_info->trans_lock);
7585717f 1354 mutex_unlock(&root->fs_info->reloc_mutex);
b7ec40d7 1355
f9295749 1356 wake_up(&root->fs_info->transaction_wait);
e6dcd2dc 1357
79154b1b
CM
1358 ret = btrfs_write_and_wait_transaction(trans, root);
1359 BUG_ON(ret);
a512bbf8 1360 write_ctree_super(trans, root, 0);
4313b399 1361
e02119d5
CM
1362 /*
1363 * the super is written, we can safely allow the tree-loggers
1364 * to go about their business
1365 */
1366 mutex_unlock(&root->fs_info->tree_log_mutex);
1367
11833d66 1368 btrfs_finish_extent_commit(trans, root);
4313b399 1369
2c90e5d6 1370 cur_trans->commit_done = 1;
b7ec40d7 1371
15ee9bc7 1372 root->fs_info->last_trans_committed = cur_trans->transid;
817d52f8 1373
2c90e5d6 1374 wake_up(&cur_trans->commit_wait);
3de4586c 1375
a4abeea4 1376 spin_lock(&root->fs_info->trans_lock);
13c5a93e 1377 list_del_init(&cur_trans->list);
a4abeea4
JB
1378 spin_unlock(&root->fs_info->trans_lock);
1379
78fae27e 1380 put_transaction(cur_trans);
79154b1b 1381 put_transaction(cur_trans);
58176a96 1382
1abe9b8a 1383 trace_btrfs_transaction_commit(root);
1384
a2de733c
AJ
1385 btrfs_scrub_continue(root);
1386
9ed74f2d
JB
1387 if (current->journal_info == trans)
1388 current->journal_info = NULL;
1389
2c90e5d6 1390 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04
YZ
1391
1392 if (current != root->fs_info->transaction_kthread)
1393 btrfs_run_delayed_iputs(root);
1394
79154b1b
CM
1395 return ret;
1396}
1397
d352ac68
CM
1398/*
1399 * interface function to delete all the snapshots we have scheduled for deletion
1400 */
e9d0b13b
CM
1401int btrfs_clean_old_snapshots(struct btrfs_root *root)
1402{
5d4f98a2
YZ
1403 LIST_HEAD(list);
1404 struct btrfs_fs_info *fs_info = root->fs_info;
1405
a4abeea4 1406 spin_lock(&fs_info->trans_lock);
5d4f98a2 1407 list_splice_init(&fs_info->dead_roots, &list);
a4abeea4 1408 spin_unlock(&fs_info->trans_lock);
e9d0b13b 1409
5d4f98a2
YZ
1410 while (!list_empty(&list)) {
1411 root = list_entry(list.next, struct btrfs_root, root_list);
76dda93c
YZ
1412 list_del(&root->root_list);
1413
16cdcec7
MX
1414 btrfs_kill_all_delayed_nodes(root);
1415
76dda93c
YZ
1416 if (btrfs_header_backref_rev(root->node) <
1417 BTRFS_MIXED_BACKREF_REV)
3fd0a558 1418 btrfs_drop_snapshot(root, NULL, 0);
76dda93c 1419 else
3fd0a558 1420 btrfs_drop_snapshot(root, NULL, 1);
e9d0b13b
CM
1421 }
1422 return 0;
1423}