btrfs: inline wait_current_trans_commit_start in its caller
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
602cbe91 13#include "misc.h"
79154b1b
CM
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
925baedd 17#include "locking.h"
e02119d5 18#include "tree-log.h"
733f4fbb 19#include "volumes.h"
8dabb742 20#include "dev-replace.h"
fcebe456 21#include "qgroup.h"
aac0023c 22#include "block-group.h"
9c343784 23#include "space-info.h"
d3575156 24#include "zoned.h"
79154b1b 25
0f7d52f4
CM
26#define BTRFS_ROOT_TRANS_TAG 0
27
61c047b5
QW
28/*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
e8c9f186 99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 100 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 103 __TRANS_ATTACH |
a6d155d2
FM
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
bcf3a3e7 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
a6d155d2
FM
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
bcf3a3e7 116 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
117 __TRANS_ATTACH |
118 __TRANS_JOIN |
a6d155d2
FM
119 __TRANS_JOIN_NOLOCK |
120 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
121};
122
724e2315 123void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 124{
9b64f57d
ER
125 WARN_ON(refcount_read(&transaction->use_count) == 0);
126 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 127 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
128 WARN_ON(!RB_EMPTY_ROOT(
129 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
130 WARN_ON(!RB_EMPTY_ROOT(
131 &transaction->delayed_refs.dirty_extent_root));
1262133b 132 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
133 btrfs_err(transaction->fs_info,
134 "pending csums is %llu",
135 transaction->delayed_refs.pending_csums);
7785a663
FM
136 /*
137 * If any block groups are found in ->deleted_bgs then it's
138 * because the transaction was aborted and a commit did not
139 * happen (things failed before writing the new superblock
140 * and calling btrfs_finish_extent_commit()), so we can not
141 * discard the physical locations of the block groups.
142 */
143 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 144 struct btrfs_block_group *cache;
7785a663
FM
145
146 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 147 struct btrfs_block_group,
7785a663
FM
148 bg_list);
149 list_del_init(&cache->bg_list);
6b7304af 150 btrfs_unfreeze_block_group(cache);
7785a663
FM
151 btrfs_put_block_group(cache);
152 }
bbbf7243 153 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 154 kfree(transaction);
78fae27e 155 }
79154b1b
CM
156}
157
889bfa39 158static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 159{
889bfa39 160 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 161 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8 162 struct btrfs_root *root, *tmp;
27d56e62 163 struct btrfs_caching_control *caching_ctl, *next;
9e351cc8
JB
164
165 down_write(&fs_info->commit_root_sem);
889bfa39 166 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
167 dirty_list) {
168 list_del_init(&root->dirty_list);
169 free_extent_buffer(root->commit_root);
170 root->commit_root = btrfs_root_node(root);
41e7acd3 171 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 172 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 173 }
2b9dbef2
JB
174
175 /* We can free old roots now. */
889bfa39
JB
176 spin_lock(&cur_trans->dropped_roots_lock);
177 while (!list_empty(&cur_trans->dropped_roots)) {
178 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
179 struct btrfs_root, root_list);
180 list_del_init(&root->root_list);
889bfa39
JB
181 spin_unlock(&cur_trans->dropped_roots_lock);
182 btrfs_free_log(trans, root);
2b9dbef2 183 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 184 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 185 }
889bfa39 186 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62
JB
187
188 /*
189 * We have to update the last_byte_to_unpin under the commit_root_sem,
190 * at the same time we swap out the commit roots.
191 *
192 * This is because we must have a real view of the last spot the caching
193 * kthreads were while caching. Consider the following views of the
194 * extent tree for a block group
195 *
196 * commit root
197 * +----+----+----+----+----+----+----+
198 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
199 * +----+----+----+----+----+----+----+
200 * 0 1 2 3 4 5 6 7
201 *
202 * new commit root
203 * +----+----+----+----+----+----+----+
204 * | | | |\\\\| | |\\\\|
205 * +----+----+----+----+----+----+----+
206 * 0 1 2 3 4 5 6 7
207 *
208 * If the cache_ctl->progress was at 3, then we are only allowed to
209 * unpin [0,1) and [2,3], because the caching thread has already
210 * processed those extents. We are not allowed to unpin [5,6), because
211 * the caching thread will re-start it's search from 3, and thus find
212 * the hole from [4,6) to add to the free space cache.
213 */
bbb86a37 214 spin_lock(&fs_info->block_group_cache_lock);
27d56e62
JB
215 list_for_each_entry_safe(caching_ctl, next,
216 &fs_info->caching_block_groups, list) {
217 struct btrfs_block_group *cache = caching_ctl->block_group;
218
219 if (btrfs_block_group_done(cache)) {
220 cache->last_byte_to_unpin = (u64)-1;
221 list_del_init(&caching_ctl->list);
222 btrfs_put_caching_control(caching_ctl);
223 } else {
224 cache->last_byte_to_unpin = caching_ctl->progress;
225 }
226 }
bbb86a37 227 spin_unlock(&fs_info->block_group_cache_lock);
9e351cc8 228 up_write(&fs_info->commit_root_sem);
817d52f8
JB
229}
230
0860adfd
MX
231static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
232 unsigned int type)
233{
234 if (type & TRANS_EXTWRITERS)
235 atomic_inc(&trans->num_extwriters);
236}
237
238static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
239 unsigned int type)
240{
241 if (type & TRANS_EXTWRITERS)
242 atomic_dec(&trans->num_extwriters);
243}
244
245static inline void extwriter_counter_init(struct btrfs_transaction *trans,
246 unsigned int type)
247{
248 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
249}
250
251static inline int extwriter_counter_read(struct btrfs_transaction *trans)
252{
253 return atomic_read(&trans->num_extwriters);
178260b2
MX
254}
255
fb6dea26
JB
256/*
257 * To be called after all the new block groups attached to the transaction
258 * handle have been created (btrfs_create_pending_block_groups()).
259 */
260void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
261{
262 struct btrfs_fs_info *fs_info = trans->fs_info;
eafa4fd0 263 struct btrfs_transaction *cur_trans = trans->transaction;
fb6dea26
JB
264
265 if (!trans->chunk_bytes_reserved)
266 return;
267
268 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
269
270 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 271 trans->chunk_bytes_reserved, NULL);
eafa4fd0
FM
272 atomic64_sub(trans->chunk_bytes_reserved, &cur_trans->chunk_bytes_reserved);
273 cond_wake_up(&cur_trans->chunk_reserve_wait);
fb6dea26
JB
274 trans->chunk_bytes_reserved = 0;
275}
276
d352ac68
CM
277/*
278 * either allocate a new transaction or hop into the existing one
279 */
2ff7e61e
JM
280static noinline int join_transaction(struct btrfs_fs_info *fs_info,
281 unsigned int type)
79154b1b
CM
282{
283 struct btrfs_transaction *cur_trans;
a4abeea4 284
19ae4e81 285 spin_lock(&fs_info->trans_lock);
d43317dc 286loop:
49b25e05 287 /* The file system has been taken offline. No new transactions. */
87533c47 288 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
19ae4e81 289 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
290 return -EROFS;
291 }
292
19ae4e81 293 cur_trans = fs_info->running_transaction;
a4abeea4 294 if (cur_trans) {
bf31f87f 295 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 296 spin_unlock(&fs_info->trans_lock);
49b25e05 297 return cur_trans->aborted;
871383be 298 }
4a9d8bde 299 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
300 spin_unlock(&fs_info->trans_lock);
301 return -EBUSY;
302 }
9b64f57d 303 refcount_inc(&cur_trans->use_count);
13c5a93e 304 atomic_inc(&cur_trans->num_writers);
0860adfd 305 extwriter_counter_inc(cur_trans, type);
19ae4e81 306 spin_unlock(&fs_info->trans_lock);
a4abeea4 307 return 0;
79154b1b 308 }
19ae4e81 309 spin_unlock(&fs_info->trans_lock);
a4abeea4 310
354aa0fb
MX
311 /*
312 * If we are ATTACH, we just want to catch the current transaction,
313 * and commit it. If there is no transaction, just return ENOENT.
314 */
315 if (type == TRANS_ATTACH)
316 return -ENOENT;
317
4a9d8bde
MX
318 /*
319 * JOIN_NOLOCK only happens during the transaction commit, so
320 * it is impossible that ->running_transaction is NULL
321 */
322 BUG_ON(type == TRANS_JOIN_NOLOCK);
323
4b5faeac 324 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
325 if (!cur_trans)
326 return -ENOMEM;
d43317dc 327
19ae4e81
JS
328 spin_lock(&fs_info->trans_lock);
329 if (fs_info->running_transaction) {
d43317dc
CM
330 /*
331 * someone started a transaction after we unlocked. Make sure
4a9d8bde 332 * to redo the checks above
d43317dc 333 */
4b5faeac 334 kfree(cur_trans);
d43317dc 335 goto loop;
87533c47 336 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
e4b50e14 337 spin_unlock(&fs_info->trans_lock);
4b5faeac 338 kfree(cur_trans);
7b8b92af 339 return -EROFS;
79154b1b 340 }
d43317dc 341
ab8d0fc4 342 cur_trans->fs_info = fs_info;
48778179
FM
343 atomic_set(&cur_trans->pending_ordered, 0);
344 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 345 atomic_set(&cur_trans->num_writers, 1);
0860adfd 346 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
347 init_waitqueue_head(&cur_trans->writer_wait);
348 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 349 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
350 /*
351 * One for this trans handle, one so it will live on until we
352 * commit the transaction.
353 */
9b64f57d 354 refcount_set(&cur_trans->use_count, 2);
3204d33c 355 cur_trans->flags = 0;
afd48513 356 cur_trans->start_time = ktime_get_seconds();
a4abeea4 357
a099d0fd
AM
358 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
359
5c9d028b 360 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 361 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 362 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
363
364 /*
365 * although the tree mod log is per file system and not per transaction,
366 * the log must never go across transaction boundaries.
367 */
368 smp_mb();
31b1a2bd 369 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 370 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 371 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 372 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 373 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 374
a4abeea4
JB
375 spin_lock_init(&cur_trans->delayed_refs.lock);
376
377 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 378 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 379 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 380 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 381 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 382 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 383 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 384 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 385 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 386 spin_lock_init(&cur_trans->dropped_roots_lock);
d3575156
NA
387 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
388 spin_lock_init(&cur_trans->releasing_ebs_lock);
eafa4fd0
FM
389 atomic64_set(&cur_trans->chunk_bytes_reserved, 0);
390 init_waitqueue_head(&cur_trans->chunk_reserve_wait);
19ae4e81 391 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 392 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
43eb5f29 393 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
fe119a6e
NB
394 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
395 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
396 fs_info->generation++;
397 cur_trans->transid = fs_info->generation;
398 fs_info->running_transaction = cur_trans;
49b25e05 399 cur_trans->aborted = 0;
19ae4e81 400 spin_unlock(&fs_info->trans_lock);
15ee9bc7 401
79154b1b
CM
402 return 0;
403}
404
d352ac68 405/*
92a7cc42
QW
406 * This does all the record keeping required to make sure that a shareable root
407 * is properly recorded in a given transaction. This is required to make sure
408 * the old root from before we joined the transaction is deleted when the
409 * transaction commits.
d352ac68 410 */
7585717f 411static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
412 struct btrfs_root *root,
413 int force)
6702ed49 414{
0b246afa 415 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 416 int ret = 0;
0b246afa 417
92a7cc42 418 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 419 root->last_trans < trans->transid) || force) {
0b246afa 420 WARN_ON(root == fs_info->extent_root);
4d31778a 421 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 422
7585717f 423 /*
27cdeb70 424 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
425 * we have the reloc mutex held now, so there
426 * is only one writer in this function
427 */
27cdeb70 428 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 429
27cdeb70 430 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
431 * they find our root->last_trans update
432 */
433 smp_wmb();
434
0b246afa 435 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 436 if (root->last_trans == trans->transid && !force) {
0b246afa 437 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
438 return 0;
439 }
0b246afa
JM
440 radix_tree_tag_set(&fs_info->fs_roots_radix,
441 (unsigned long)root->root_key.objectid,
442 BTRFS_ROOT_TRANS_TAG);
443 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
444 root->last_trans = trans->transid;
445
446 /* this is pretty tricky. We don't want to
447 * take the relocation lock in btrfs_record_root_in_trans
448 * unless we're really doing the first setup for this root in
449 * this transaction.
450 *
451 * Normally we'd use root->last_trans as a flag to decide
452 * if we want to take the expensive mutex.
453 *
454 * But, we have to set root->last_trans before we
455 * init the relocation root, otherwise, we trip over warnings
456 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 457 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
458 * fixing up the reloc trees and everyone must wait.
459 *
460 * When this is zero, they can trust root->last_trans and fly
461 * through btrfs_record_root_in_trans without having to take the
462 * lock. smp_wmb() makes sure that all the writes above are
463 * done before we pop in the zero below
464 */
03a7e111 465 ret = btrfs_init_reloc_root(trans, root);
c7548af6 466 smp_mb__before_atomic();
27cdeb70 467 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 468 }
03a7e111 469 return ret;
5d4f98a2 470}
bcc63abb 471
7585717f 472
2b9dbef2
JB
473void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
474 struct btrfs_root *root)
475{
0b246afa 476 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
477 struct btrfs_transaction *cur_trans = trans->transaction;
478
479 /* Add ourselves to the transaction dropped list */
480 spin_lock(&cur_trans->dropped_roots_lock);
481 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
482 spin_unlock(&cur_trans->dropped_roots_lock);
483
484 /* Make sure we don't try to update the root at commit time */
0b246afa
JM
485 spin_lock(&fs_info->fs_roots_radix_lock);
486 radix_tree_tag_clear(&fs_info->fs_roots_radix,
2b9dbef2
JB
487 (unsigned long)root->root_key.objectid,
488 BTRFS_ROOT_TRANS_TAG);
0b246afa 489 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
490}
491
7585717f
CM
492int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
493 struct btrfs_root *root)
494{
0b246afa 495 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 496 int ret;
0b246afa 497
92a7cc42 498 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
499 return 0;
500
501 /*
27cdeb70 502 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
503 * and barriers
504 */
505 smp_rmb();
506 if (root->last_trans == trans->transid &&
27cdeb70 507 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
508 return 0;
509
0b246afa 510 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 511 ret = record_root_in_trans(trans, root, 0);
0b246afa 512 mutex_unlock(&fs_info->reloc_mutex);
7585717f 513
1409e6cc 514 return ret;
7585717f
CM
515}
516
4a9d8bde
MX
517static inline int is_transaction_blocked(struct btrfs_transaction *trans)
518{
3296bf56 519 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 520 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 521 !TRANS_ABORTED(trans));
4a9d8bde
MX
522}
523
d352ac68
CM
524/* wait for commit against the current transaction to become unblocked
525 * when this is done, it is safe to start a new transaction, but the current
526 * transaction might not be fully on disk.
527 */
2ff7e61e 528static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 529{
f9295749 530 struct btrfs_transaction *cur_trans;
79154b1b 531
0b246afa
JM
532 spin_lock(&fs_info->trans_lock);
533 cur_trans = fs_info->running_transaction;
4a9d8bde 534 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 535 refcount_inc(&cur_trans->use_count);
0b246afa 536 spin_unlock(&fs_info->trans_lock);
72d63ed6 537
0b246afa 538 wait_event(fs_info->transaction_wait,
501407aa 539 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 540 TRANS_ABORTED(cur_trans));
724e2315 541 btrfs_put_transaction(cur_trans);
a4abeea4 542 } else {
0b246afa 543 spin_unlock(&fs_info->trans_lock);
f9295749 544 }
37d1aeee
CM
545}
546
2ff7e61e 547static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 548{
0b246afa 549 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
550 return 0;
551
92e2f7e3 552 if (type == TRANS_START)
a22285a6 553 return 1;
a4abeea4 554
a22285a6
YZ
555 return 0;
556}
557
20dd2cbf
MX
558static inline bool need_reserve_reloc_root(struct btrfs_root *root)
559{
0b246afa
JM
560 struct btrfs_fs_info *fs_info = root->fs_info;
561
562 if (!fs_info->reloc_ctl ||
92a7cc42 563 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
564 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
565 root->reloc_root)
566 return false;
567
568 return true;
569}
570
08e007d2 571static struct btrfs_trans_handle *
5aed1dd8 572start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
573 unsigned int type, enum btrfs_reserve_flush_enum flush,
574 bool enforce_qgroups)
37d1aeee 575{
0b246afa 576 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 577 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
578 struct btrfs_trans_handle *h;
579 struct btrfs_transaction *cur_trans;
b5009945 580 u64 num_bytes = 0;
c5567237 581 u64 qgroup_reserved = 0;
20dd2cbf 582 bool reloc_reserved = false;
9c343784 583 bool do_chunk_alloc = false;
20dd2cbf 584 int ret;
acce952b 585
46c4e71e 586 /* Send isn't supposed to start transactions. */
2755a0de 587 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
46c4e71e 588
0b246afa 589 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
acce952b 590 return ERR_PTR(-EROFS);
2a1eb461 591
46c4e71e 592 if (current->journal_info) {
0860adfd 593 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 594 h = current->journal_info;
b50fff81
DS
595 refcount_inc(&h->use_count);
596 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
597 h->orig_rsv = h->block_rsv;
598 h->block_rsv = NULL;
599 goto got_it;
600 }
b5009945
JB
601
602 /*
603 * Do the reservation before we join the transaction so we can do all
604 * the appropriate flushing if need be.
605 */
003d7c59 606 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
607 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
608 u64 delayed_refs_bytes = 0;
609
0b246afa 610 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
611 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
612 enforce_qgroups);
7174109c
QW
613 if (ret)
614 return ERR_PTR(ret);
c5567237 615
ba2c4d4e
JB
616 /*
617 * We want to reserve all the bytes we may need all at once, so
618 * we only do 1 enospc flushing cycle per transaction start. We
619 * accomplish this by simply assuming we'll do 2 x num_items
620 * worth of delayed refs updates in this trans handle, and
621 * refill that amount for whatever is missing in the reserve.
622 */
2bd36e7b 623 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614
JB
624 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
625 delayed_refs_rsv->full == 0) {
ba2c4d4e
JB
626 delayed_refs_bytes = num_bytes;
627 num_bytes <<= 1;
628 }
629
20dd2cbf
MX
630 /*
631 * Do the reservation for the relocation root creation
632 */
ee39b432 633 if (need_reserve_reloc_root(root)) {
0b246afa 634 num_bytes += fs_info->nodesize;
20dd2cbf
MX
635 reloc_reserved = true;
636 }
637
ba2c4d4e
JB
638 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
639 if (ret)
640 goto reserve_fail;
641 if (delayed_refs_bytes) {
642 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
643 delayed_refs_bytes);
644 num_bytes -= delayed_refs_bytes;
645 }
9c343784
JB
646
647 if (rsv->space_info->force_alloc)
648 do_chunk_alloc = true;
ba2c4d4e
JB
649 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
650 !delayed_refs_rsv->full) {
651 /*
652 * Some people call with btrfs_start_transaction(root, 0)
653 * because they can be throttled, but have some other mechanism
654 * for reserving space. We still want these guys to refill the
655 * delayed block_rsv so just add 1 items worth of reservation
656 * here.
657 */
658 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 659 if (ret)
843fcf35 660 goto reserve_fail;
b5009945 661 }
a22285a6 662again:
f2f767e7 663 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
664 if (!h) {
665 ret = -ENOMEM;
666 goto alloc_fail;
667 }
37d1aeee 668
98114659
JB
669 /*
670 * If we are JOIN_NOLOCK we're already committing a transaction and
671 * waiting on this guy, so we don't need to do the sb_start_intwrite
672 * because we're already holding a ref. We need this because we could
673 * have raced in and did an fsync() on a file which can kick a commit
674 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
675 *
676 * If we are ATTACH, it means we just want to catch the current
677 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 678 */
0860adfd 679 if (type & __TRANS_FREEZABLE)
0b246afa 680 sb_start_intwrite(fs_info->sb);
b2b5ef5c 681
2ff7e61e
JM
682 if (may_wait_transaction(fs_info, type))
683 wait_current_trans(fs_info);
a22285a6 684
a4abeea4 685 do {
2ff7e61e 686 ret = join_transaction(fs_info, type);
178260b2 687 if (ret == -EBUSY) {
2ff7e61e 688 wait_current_trans(fs_info);
a6d155d2
FM
689 if (unlikely(type == TRANS_ATTACH ||
690 type == TRANS_JOIN_NOSTART))
178260b2
MX
691 ret = -ENOENT;
692 }
a4abeea4
JB
693 } while (ret == -EBUSY);
694
a43f7f82 695 if (ret < 0)
843fcf35 696 goto join_fail;
0f7d52f4 697
0b246afa 698 cur_trans = fs_info->running_transaction;
a22285a6
YZ
699
700 h->transid = cur_trans->transid;
701 h->transaction = cur_trans;
d13603ef 702 h->root = root;
b50fff81 703 refcount_set(&h->use_count, 1);
64b63580 704 h->fs_info = root->fs_info;
7174109c 705
a698d075 706 h->type = type;
d9a0540a 707 h->can_flush_pending_bgs = true;
ea658bad 708 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 709
a22285a6 710 smp_mb();
3296bf56 711 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 712 may_wait_transaction(fs_info, type)) {
abdd2e80 713 current->journal_info = h;
3a45bb20 714 btrfs_commit_transaction(h);
a22285a6
YZ
715 goto again;
716 }
717
b5009945 718 if (num_bytes) {
0b246afa 719 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 720 h->transid, num_bytes, 1);
0b246afa 721 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 722 h->bytes_reserved = num_bytes;
20dd2cbf 723 h->reloc_reserved = reloc_reserved;
a22285a6 724 }
9ed74f2d 725
2a1eb461 726got_it:
bcf3a3e7 727 if (!current->journal_info)
a22285a6 728 current->journal_info = h;
fcc99734 729
9c343784
JB
730 /*
731 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
732 * ALLOC_FORCE the first run through, and then we won't allocate for
733 * anybody else who races in later. We don't care about the return
734 * value here.
735 */
736 if (do_chunk_alloc && num_bytes) {
737 u64 flags = h->block_rsv->space_info->flags;
738
739 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
740 CHUNK_ALLOC_NO_FORCE);
741 }
742
fcc99734
QW
743 /*
744 * btrfs_record_root_in_trans() needs to alloc new extents, and may
745 * call btrfs_join_transaction() while we're also starting a
746 * transaction.
747 *
748 * Thus it need to be called after current->journal_info initialized,
749 * or we can deadlock.
750 */
68075ea8
JB
751 ret = btrfs_record_root_in_trans(h, root);
752 if (ret) {
753 /*
754 * The transaction handle is fully initialized and linked with
755 * other structures so it needs to be ended in case of errors,
756 * not just freed.
757 */
758 btrfs_end_transaction(h);
759 return ERR_PTR(ret);
760 }
fcc99734 761
79154b1b 762 return h;
843fcf35
MX
763
764join_fail:
0860adfd 765 if (type & __TRANS_FREEZABLE)
0b246afa 766 sb_end_intwrite(fs_info->sb);
843fcf35
MX
767 kmem_cache_free(btrfs_trans_handle_cachep, h);
768alloc_fail:
769 if (num_bytes)
2ff7e61e 770 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 771 num_bytes, NULL);
843fcf35 772reserve_fail:
733e03a0 773 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 774 return ERR_PTR(ret);
79154b1b
CM
775}
776
f9295749 777struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 778 unsigned int num_items)
f9295749 779{
08e007d2 780 return start_transaction(root, num_items, TRANS_START,
003d7c59 781 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 782}
003d7c59 783
8eab77ff
FM
784struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
785 struct btrfs_root *root,
7f9fe614 786 unsigned int num_items)
8eab77ff 787{
7f9fe614
JB
788 return start_transaction(root, num_items, TRANS_START,
789 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 790}
8407aa46 791
7a7eaa40 792struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 793{
003d7c59
JM
794 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
795 true);
f9295749
CM
796}
797
8d510121 798struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 799{
575a75d6 800 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 801 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
802}
803
a6d155d2
FM
804/*
805 * Similar to regular join but it never starts a transaction when none is
806 * running or after waiting for the current one to finish.
807 */
808struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
809{
810 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
811 BTRFS_RESERVE_NO_FLUSH, true);
812}
813
d4edf39b
MX
814/*
815 * btrfs_attach_transaction() - catch the running transaction
816 *
817 * It is used when we want to commit the current the transaction, but
818 * don't want to start a new one.
819 *
820 * Note: If this function return -ENOENT, it just means there is no
821 * running transaction. But it is possible that the inactive transaction
822 * is still in the memory, not fully on disk. If you hope there is no
823 * inactive transaction in the fs when -ENOENT is returned, you should
824 * invoke
825 * btrfs_attach_transaction_barrier()
826 */
354aa0fb 827struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 828{
575a75d6 829 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 830 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
831}
832
d4edf39b 833/*
90b6d283 834 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 835 *
52042d8e 836 * It is similar to the above function, the difference is this one
d4edf39b
MX
837 * will wait for all the inactive transactions until they fully
838 * complete.
839 */
840struct btrfs_trans_handle *
841btrfs_attach_transaction_barrier(struct btrfs_root *root)
842{
843 struct btrfs_trans_handle *trans;
844
575a75d6 845 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 846 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 847 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 848 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
849
850 return trans;
851}
852
d0c2f4fa
FM
853/* Wait for a transaction commit to reach at least the given state. */
854static noinline void wait_for_commit(struct btrfs_transaction *commit,
855 const enum btrfs_trans_state min_state)
89ce8a63 856{
d0c2f4fa 857 wait_event(commit->commit_wait, commit->state >= min_state);
89ce8a63
CM
858}
859
2ff7e61e 860int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
861{
862 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 863 int ret = 0;
46204592 864
46204592 865 if (transid) {
0b246afa 866 if (transid <= fs_info->last_trans_committed)
a4abeea4 867 goto out;
46204592
SW
868
869 /* find specified transaction */
0b246afa
JM
870 spin_lock(&fs_info->trans_lock);
871 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
872 if (t->transid == transid) {
873 cur_trans = t;
9b64f57d 874 refcount_inc(&cur_trans->use_count);
8cd2807f 875 ret = 0;
46204592
SW
876 break;
877 }
8cd2807f
MX
878 if (t->transid > transid) {
879 ret = 0;
46204592 880 break;
8cd2807f 881 }
46204592 882 }
0b246afa 883 spin_unlock(&fs_info->trans_lock);
42383020
SW
884
885 /*
886 * The specified transaction doesn't exist, or we
887 * raced with btrfs_commit_transaction
888 */
889 if (!cur_trans) {
0b246afa 890 if (transid > fs_info->last_trans_committed)
42383020 891 ret = -EINVAL;
8cd2807f 892 goto out;
42383020 893 }
46204592
SW
894 } else {
895 /* find newest transaction that is committing | committed */
0b246afa
JM
896 spin_lock(&fs_info->trans_lock);
897 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 898 list) {
4a9d8bde
MX
899 if (t->state >= TRANS_STATE_COMMIT_START) {
900 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 901 break;
46204592 902 cur_trans = t;
9b64f57d 903 refcount_inc(&cur_trans->use_count);
46204592
SW
904 break;
905 }
906 }
0b246afa 907 spin_unlock(&fs_info->trans_lock);
46204592 908 if (!cur_trans)
a4abeea4 909 goto out; /* nothing committing|committed */
46204592
SW
910 }
911
d0c2f4fa 912 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 913 btrfs_put_transaction(cur_trans);
a4abeea4 914out:
46204592
SW
915 return ret;
916}
917
2ff7e61e 918void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 919{
92e2f7e3 920 wait_current_trans(fs_info);
37d1aeee
CM
921}
922
8a8f4dea 923static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 924{
2ff7e61e 925 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 926
64403612 927 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 928 return true;
36ba022a 929
2ff7e61e 930 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
931}
932
a2633b6a 933bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
934{
935 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 936
3296bf56 937 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 938 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 939 return true;
8929ecfa 940
2ff7e61e 941 return should_end_transaction(trans);
8929ecfa
YZ
942}
943
dc60c525
NB
944static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
945
0e34693f 946{
dc60c525
NB
947 struct btrfs_fs_info *fs_info = trans->fs_info;
948
0e34693f
NB
949 if (!trans->block_rsv) {
950 ASSERT(!trans->bytes_reserved);
951 return;
952 }
953
954 if (!trans->bytes_reserved)
955 return;
956
957 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
958 trace_btrfs_space_reservation(fs_info, "transaction",
959 trans->transid, trans->bytes_reserved, 0);
960 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 961 trans->bytes_reserved, NULL);
0e34693f
NB
962 trans->bytes_reserved = 0;
963}
964
89ce8a63 965static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 966 int throttle)
79154b1b 967{
3a45bb20 968 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 969 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 970 int err = 0;
c3e69d58 971
b50fff81
DS
972 if (refcount_read(&trans->use_count) > 1) {
973 refcount_dec(&trans->use_count);
2a1eb461
JB
974 trans->block_rsv = trans->orig_rsv;
975 return 0;
976 }
977
dc60c525 978 btrfs_trans_release_metadata(trans);
4c13d758 979 trans->block_rsv = NULL;
c5567237 980
119e80df 981 btrfs_create_pending_block_groups(trans);
ea658bad 982
4fbcdf66
FM
983 btrfs_trans_release_chunk_metadata(trans);
984
0860adfd 985 if (trans->type & __TRANS_FREEZABLE)
0b246afa 986 sb_end_intwrite(info->sb);
6df7881a 987
8929ecfa 988 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
989 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
990 atomic_dec(&cur_trans->num_writers);
0860adfd 991 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 992
093258e6 993 cond_wake_up(&cur_trans->writer_wait);
724e2315 994 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
995
996 if (current->journal_info == trans)
997 current->journal_info = NULL;
ab78c84d 998
24bbcf04 999 if (throttle)
2ff7e61e 1000 btrfs_run_delayed_iputs(info);
24bbcf04 1001
bf31f87f 1002 if (TRANS_ABORTED(trans) ||
0b246afa 1003 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
4e121c06 1004 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1005 if (TRANS_ABORTED(trans))
1006 err = trans->aborted;
1007 else
1008 err = -EROFS;
4e121c06 1009 }
49b25e05 1010
4edc2ca3
DJ
1011 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1012 return err;
79154b1b
CM
1013}
1014
3a45bb20 1015int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1016{
3a45bb20 1017 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1018}
1019
3a45bb20 1020int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1021{
3a45bb20 1022 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1023}
1024
d352ac68
CM
1025/*
1026 * when btree blocks are allocated, they have some corresponding bits set for
1027 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1028 * those extents are sent to disk but does not wait on them
d352ac68 1029 */
2ff7e61e 1030int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1031 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1032{
777e6bd7 1033 int err = 0;
7c4452b9 1034 int werr = 0;
0b246afa 1035 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1036 struct extent_state *cached_state = NULL;
777e6bd7 1037 u64 start = 0;
5f39d397 1038 u64 end;
7c4452b9 1039
6300463b 1040 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1041 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1042 mark, &cached_state)) {
663dfbb0
FM
1043 bool wait_writeback = false;
1044
1045 err = convert_extent_bit(dirty_pages, start, end,
1046 EXTENT_NEED_WAIT,
210aa277 1047 mark, &cached_state);
663dfbb0
FM
1048 /*
1049 * convert_extent_bit can return -ENOMEM, which is most of the
1050 * time a temporary error. So when it happens, ignore the error
1051 * and wait for writeback of this range to finish - because we
1052 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1053 * to __btrfs_wait_marked_extents() would not know that
1054 * writeback for this range started and therefore wouldn't
1055 * wait for it to finish - we don't want to commit a
1056 * superblock that points to btree nodes/leafs for which
1057 * writeback hasn't finished yet (and without errors).
663dfbb0 1058 * We cleanup any entries left in the io tree when committing
41e7acd3 1059 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1060 */
1061 if (err == -ENOMEM) {
1062 err = 0;
1063 wait_writeback = true;
1064 }
1065 if (!err)
1066 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1067 if (err)
1068 werr = err;
663dfbb0
FM
1069 else if (wait_writeback)
1070 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1071 free_extent_state(cached_state);
663dfbb0 1072 cached_state = NULL;
1728366e
JB
1073 cond_resched();
1074 start = end + 1;
7c4452b9 1075 }
6300463b 1076 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1077 return werr;
1078}
1079
1080/*
1081 * when btree blocks are allocated, they have some corresponding bits set for
1082 * them in one of two extent_io trees. This is used to make sure all of
1083 * those extents are on disk for transaction or log commit. We wait
1084 * on all the pages and clear them from the dirty pages state tree
1085 */
bf89d38f
JM
1086static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1087 struct extent_io_tree *dirty_pages)
690587d1 1088{
690587d1
CM
1089 int err = 0;
1090 int werr = 0;
0b246afa 1091 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1092 struct extent_state *cached_state = NULL;
690587d1
CM
1093 u64 start = 0;
1094 u64 end;
777e6bd7 1095
1728366e 1096 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1097 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1098 /*
1099 * Ignore -ENOMEM errors returned by clear_extent_bit().
1100 * When committing the transaction, we'll remove any entries
1101 * left in the io tree. For a log commit, we don't remove them
1102 * after committing the log because the tree can be accessed
1103 * concurrently - we do it only at transaction commit time when
41e7acd3 1104 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1105 */
1106 err = clear_extent_bit(dirty_pages, start, end,
ae0f1625 1107 EXTENT_NEED_WAIT, 0, 0, &cached_state);
663dfbb0
FM
1108 if (err == -ENOMEM)
1109 err = 0;
1110 if (!err)
1111 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1112 if (err)
1113 werr = err;
e38e2ed7
FM
1114 free_extent_state(cached_state);
1115 cached_state = NULL;
1728366e
JB
1116 cond_resched();
1117 start = end + 1;
777e6bd7 1118 }
7c4452b9
CM
1119 if (err)
1120 werr = err;
bf89d38f
JM
1121 return werr;
1122}
656f30db 1123
b9fae2eb 1124static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1125 struct extent_io_tree *dirty_pages)
1126{
1127 bool errors = false;
1128 int err;
656f30db 1129
bf89d38f
JM
1130 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1131 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1132 errors = true;
1133
1134 if (errors && !err)
1135 err = -EIO;
1136 return err;
1137}
656f30db 1138
bf89d38f
JM
1139int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1140{
1141 struct btrfs_fs_info *fs_info = log_root->fs_info;
1142 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1143 bool errors = false;
1144 int err;
656f30db 1145
bf89d38f
JM
1146 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1147
1148 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1149 if ((mark & EXTENT_DIRTY) &&
1150 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1151 errors = true;
1152
1153 if ((mark & EXTENT_NEW) &&
1154 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1155 errors = true;
1156
1157 if (errors && !err)
1158 err = -EIO;
1159 return err;
79154b1b
CM
1160}
1161
690587d1 1162/*
c9b577c0
NB
1163 * When btree blocks are allocated the corresponding extents are marked dirty.
1164 * This function ensures such extents are persisted on disk for transaction or
1165 * log commit.
1166 *
1167 * @trans: transaction whose dirty pages we'd like to write
690587d1 1168 */
70458a58 1169static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1170{
1171 int ret;
1172 int ret2;
c9b577c0 1173 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1174 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1175 struct blk_plug plug;
690587d1 1176
c6adc9cc 1177 blk_start_plug(&plug);
c9b577c0 1178 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1179 blk_finish_plug(&plug);
bf89d38f 1180 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1181
41e7acd3 1182 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1183
bf0da8c1
CM
1184 if (ret)
1185 return ret;
c9b577c0 1186 else if (ret2)
bf0da8c1 1187 return ret2;
c9b577c0
NB
1188 else
1189 return 0;
d0c803c4
CM
1190}
1191
d352ac68
CM
1192/*
1193 * this is used to update the root pointer in the tree of tree roots.
1194 *
1195 * But, in the case of the extent allocation tree, updating the root
1196 * pointer may allocate blocks which may change the root of the extent
1197 * allocation tree.
1198 *
1199 * So, this loops and repeats and makes sure the cowonly root didn't
1200 * change while the root pointer was being updated in the metadata.
1201 */
0b86a832
CM
1202static int update_cowonly_root(struct btrfs_trans_handle *trans,
1203 struct btrfs_root *root)
79154b1b
CM
1204{
1205 int ret;
0b86a832 1206 u64 old_root_bytenr;
86b9f2ec 1207 u64 old_root_used;
0b246afa
JM
1208 struct btrfs_fs_info *fs_info = root->fs_info;
1209 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1210
86b9f2ec 1211 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1212
d397712b 1213 while (1) {
0b86a832 1214 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1215 if (old_root_bytenr == root->node->start &&
ea526d18 1216 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1217 break;
87ef2bb4 1218
5d4f98a2 1219 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1220 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1221 &root->root_key,
1222 &root->root_item);
49b25e05
JM
1223 if (ret)
1224 return ret;
56bec294 1225
86b9f2ec 1226 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1227 }
276e680d 1228
0b86a832
CM
1229 return 0;
1230}
1231
d352ac68
CM
1232/*
1233 * update all the cowonly tree roots on disk
49b25e05
JM
1234 *
1235 * The error handling in this function may not be obvious. Any of the
1236 * failures will cause the file system to go offline. We still need
1237 * to clean up the delayed refs.
d352ac68 1238 */
9386d8bc 1239static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1240{
9386d8bc 1241 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1242 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1243 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1244 struct list_head *next;
84234f3a 1245 struct extent_buffer *eb;
56bec294 1246 int ret;
84234f3a
YZ
1247
1248 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1249 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1250 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1251 btrfs_tree_unlock(eb);
1252 free_extent_buffer(eb);
0b86a832 1253
49b25e05
JM
1254 if (ret)
1255 return ret;
87ef2bb4 1256
196c9d8d 1257 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1258 if (ret)
1259 return ret;
2b584c68 1260 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1261 if (ret)
1262 return ret;
280f8bd2 1263 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1264 if (ret)
1265 return ret;
546adb0d 1266
bbebb3e0 1267 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1268 if (ret)
1269 return ret;
1270
ea526d18 1271again:
d397712b 1272 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1273 struct btrfs_root *root;
0b86a832
CM
1274 next = fs_info->dirty_cowonly_roots.next;
1275 list_del_init(next);
1276 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1277 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1278
9e351cc8
JB
1279 if (root != fs_info->extent_root)
1280 list_add_tail(&root->dirty_list,
1281 &trans->transaction->switch_commits);
49b25e05
JM
1282 ret = update_cowonly_root(trans, root);
1283 if (ret)
1284 return ret;
79154b1b 1285 }
276e680d 1286
488bc2a2
JB
1287 /* Now flush any delayed refs generated by updating all of the roots */
1288 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1289 if (ret)
1290 return ret;
1291
1bbc621e 1292 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1293 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1294 if (ret)
1295 return ret;
488bc2a2
JB
1296
1297 /*
1298 * We're writing the dirty block groups, which could generate
1299 * delayed refs, which could generate more dirty block groups,
1300 * so we want to keep this flushing in this loop to make sure
1301 * everything gets run.
1302 */
c79a70b1 1303 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1304 if (ret)
1305 return ret;
1306 }
1307
1308 if (!list_empty(&fs_info->dirty_cowonly_roots))
1309 goto again;
1310
9e351cc8
JB
1311 list_add_tail(&fs_info->extent_root->dirty_list,
1312 &trans->transaction->switch_commits);
9f6cbcbb
DS
1313
1314 /* Update dev-replace pointer once everything is committed */
1315 fs_info->dev_replace.committed_cursor_left =
1316 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1317
79154b1b
CM
1318 return 0;
1319}
1320
d352ac68
CM
1321/*
1322 * dead roots are old snapshots that need to be deleted. This allocates
1323 * a dirty root struct and adds it into the list of dead roots that need to
1324 * be deleted
1325 */
cfad392b 1326void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1327{
0b246afa
JM
1328 struct btrfs_fs_info *fs_info = root->fs_info;
1329
1330 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1331 if (list_empty(&root->root_list)) {
1332 btrfs_grab_root(root);
0b246afa 1333 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1334 }
0b246afa 1335 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1336}
1337
d352ac68 1338/*
5d4f98a2 1339 * update all the cowonly tree roots on disk
d352ac68 1340 */
7e4443d9 1341static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1342{
7e4443d9 1343 struct btrfs_fs_info *fs_info = trans->fs_info;
0f7d52f4 1344 struct btrfs_root *gang[8];
0f7d52f4
CM
1345 int i;
1346 int ret;
54aa1f4d 1347
a4abeea4 1348 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 1349 while (1) {
5d4f98a2
YZ
1350 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1351 (void **)gang, 0,
0f7d52f4
CM
1352 ARRAY_SIZE(gang),
1353 BTRFS_ROOT_TRANS_TAG);
1354 if (ret == 0)
1355 break;
1356 for (i = 0; i < ret; i++) {
5b4aacef 1357 struct btrfs_root *root = gang[i];
4f4317c1
JB
1358 int ret2;
1359
5d4f98a2
YZ
1360 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1361 (unsigned long)root->root_key.objectid,
1362 BTRFS_ROOT_TRANS_TAG);
a4abeea4 1363 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 1364
e02119d5 1365 btrfs_free_log(trans, root);
2dd8298e
JB
1366 ret2 = btrfs_update_reloc_root(trans, root);
1367 if (ret2)
1368 return ret2;
bcc63abb 1369
f1ebcc74 1370 /* see comments in should_cow_block() */
27cdeb70 1371 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
c7548af6 1372 smp_mb__after_atomic();
f1ebcc74 1373
978d910d 1374 if (root->commit_root != root->node) {
9e351cc8
JB
1375 list_add_tail(&root->dirty_list,
1376 &trans->transaction->switch_commits);
978d910d
YZ
1377 btrfs_set_root_node(&root->root_item,
1378 root->node);
1379 }
5d4f98a2 1380
4f4317c1 1381 ret2 = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
1382 &root->root_key,
1383 &root->root_item);
4f4317c1
JB
1384 if (ret2)
1385 return ret2;
a4abeea4 1386 spin_lock(&fs_info->fs_roots_radix_lock);
733e03a0 1387 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1388 }
1389 }
a4abeea4 1390 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1391 return 0;
0f7d52f4
CM
1392}
1393
d352ac68 1394/*
de78b51a
ES
1395 * defrag a given btree.
1396 * Every leaf in the btree is read and defragged.
d352ac68 1397 */
de78b51a 1398int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1399{
1400 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1401 struct btrfs_trans_handle *trans;
8929ecfa 1402 int ret;
e9d0b13b 1403
27cdeb70 1404 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1405 return 0;
8929ecfa 1406
6b80053d 1407 while (1) {
8929ecfa 1408 trans = btrfs_start_transaction(root, 0);
6819703f
DS
1409 if (IS_ERR(trans)) {
1410 ret = PTR_ERR(trans);
1411 break;
1412 }
8929ecfa 1413
de78b51a 1414 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1415
3a45bb20 1416 btrfs_end_transaction(trans);
2ff7e61e 1417 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1418 cond_resched();
1419
ab8d0fc4 1420 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1421 break;
210549eb 1422
ab8d0fc4
JM
1423 if (btrfs_defrag_cancelled(info)) {
1424 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1425 ret = -EAGAIN;
1426 break;
1427 }
e9d0b13b 1428 }
27cdeb70 1429 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1430 return ret;
e9d0b13b
CM
1431}
1432
6426c7ad
QW
1433/*
1434 * Do all special snapshot related qgroup dirty hack.
1435 *
1436 * Will do all needed qgroup inherit and dirty hack like switch commit
1437 * roots inside one transaction and write all btree into disk, to make
1438 * qgroup works.
1439 */
1440static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1441 struct btrfs_root *src,
1442 struct btrfs_root *parent,
1443 struct btrfs_qgroup_inherit *inherit,
1444 u64 dst_objectid)
1445{
1446 struct btrfs_fs_info *fs_info = src->fs_info;
1447 int ret;
1448
1449 /*
1450 * Save some performance in the case that qgroups are not
1451 * enabled. If this check races with the ioctl, rescan will
1452 * kick in anyway.
1453 */
9ea6e2b5 1454 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1455 return 0;
6426c7ad 1456
4d31778a 1457 /*
52042d8e 1458 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1459 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1460 * recorded root will never be updated again, causing an outdated root
1461 * item.
1462 */
1c442d22
JB
1463 ret = record_root_in_trans(trans, src, 1);
1464 if (ret)
1465 return ret;
4d31778a 1466
2a4d84c1
JB
1467 /*
1468 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1469 * src root, so we must run the delayed refs here.
1470 *
1471 * However this isn't particularly fool proof, because there's no
1472 * synchronization keeping us from changing the tree after this point
1473 * before we do the qgroup_inherit, or even from making changes while
1474 * we're doing the qgroup_inherit. But that's a problem for the future,
1475 * for now flush the delayed refs to narrow the race window where the
1476 * qgroup counters could end up wrong.
1477 */
1478 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1479 if (ret) {
1480 btrfs_abort_transaction(trans, ret);
1481 goto out;
1482 }
1483
6426c7ad
QW
1484 /*
1485 * We are going to commit transaction, see btrfs_commit_transaction()
1486 * comment for reason locking tree_log_mutex
1487 */
1488 mutex_lock(&fs_info->tree_log_mutex);
1489
7e4443d9 1490 ret = commit_fs_roots(trans);
6426c7ad
QW
1491 if (ret)
1492 goto out;
460fb20a 1493 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1494 if (ret < 0)
1495 goto out;
1496
1497 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1498 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1499 inherit);
1500 if (ret < 0)
1501 goto out;
1502
1503 /*
1504 * Now we do a simplified commit transaction, which will:
1505 * 1) commit all subvolume and extent tree
1506 * To ensure all subvolume and extent tree have a valid
1507 * commit_root to accounting later insert_dir_item()
1508 * 2) write all btree blocks onto disk
1509 * This is to make sure later btree modification will be cowed
1510 * Or commit_root can be populated and cause wrong qgroup numbers
1511 * In this simplified commit, we don't really care about other trees
1512 * like chunk and root tree, as they won't affect qgroup.
1513 * And we don't write super to avoid half committed status.
1514 */
9386d8bc 1515 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1516 if (ret)
1517 goto out;
889bfa39 1518 switch_commit_roots(trans);
70458a58 1519 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1520 if (ret)
f7af3934 1521 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1522 "Error while writing out transaction for qgroup");
1523
1524out:
1525 mutex_unlock(&fs_info->tree_log_mutex);
1526
1527 /*
1528 * Force parent root to be updated, as we recorded it before so its
1529 * last_trans == cur_transid.
1530 * Or it won't be committed again onto disk after later
1531 * insert_dir_item()
1532 */
1533 if (!ret)
1c442d22 1534 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1535 return ret;
1536}
1537
d352ac68
CM
1538/*
1539 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1540 * transaction commit. This does the actual creation.
1541 *
1542 * Note:
1543 * If the error which may affect the commitment of the current transaction
1544 * happens, we should return the error number. If the error which just affect
1545 * the creation of the pending snapshots, just return 0.
d352ac68 1546 */
80b6794d 1547static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1548 struct btrfs_pending_snapshot *pending)
1549{
08d50ca3
NB
1550
1551 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1552 struct btrfs_key key;
80b6794d 1553 struct btrfs_root_item *new_root_item;
3063d29f
CM
1554 struct btrfs_root *tree_root = fs_info->tree_root;
1555 struct btrfs_root *root = pending->root;
6bdb72de 1556 struct btrfs_root *parent_root;
98c9942a 1557 struct btrfs_block_rsv *rsv;
6bdb72de 1558 struct inode *parent_inode;
42874b3d
MX
1559 struct btrfs_path *path;
1560 struct btrfs_dir_item *dir_item;
a22285a6 1561 struct dentry *dentry;
3063d29f 1562 struct extent_buffer *tmp;
925baedd 1563 struct extent_buffer *old;
95582b00 1564 struct timespec64 cur_time;
aec8030a 1565 int ret = 0;
d68fc57b 1566 u64 to_reserve = 0;
6bdb72de 1567 u64 index = 0;
a22285a6 1568 u64 objectid;
b83cc969 1569 u64 root_flags;
3063d29f 1570
8546b570
DS
1571 ASSERT(pending->path);
1572 path = pending->path;
42874b3d 1573
b0c0ea63
DS
1574 ASSERT(pending->root_item);
1575 new_root_item = pending->root_item;
a22285a6 1576
543068a2 1577 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1578 if (pending->error)
6fa9700e 1579 goto no_free_objectid;
3063d29f 1580
d6726335
QW
1581 /*
1582 * Make qgroup to skip current new snapshot's qgroupid, as it is
1583 * accounted by later btrfs_qgroup_inherit().
1584 */
1585 btrfs_set_skip_qgroup(trans, objectid);
1586
147d256e 1587 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1588
1589 if (to_reserve > 0) {
aec8030a
MX
1590 pending->error = btrfs_block_rsv_add(root,
1591 &pending->block_rsv,
1592 to_reserve,
1593 BTRFS_RESERVE_NO_FLUSH);
1594 if (pending->error)
d6726335 1595 goto clear_skip_qgroup;
d68fc57b
YZ
1596 }
1597
3063d29f 1598 key.objectid = objectid;
a22285a6
YZ
1599 key.offset = (u64)-1;
1600 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1601
6fa9700e 1602 rsv = trans->block_rsv;
a22285a6 1603 trans->block_rsv = &pending->block_rsv;
2382c5cc 1604 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1605 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1606 trans->transid,
1607 trans->bytes_reserved, 1);
a22285a6 1608 dentry = pending->dentry;
e9662f70 1609 parent_inode = pending->dir;
a22285a6 1610 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1611 ret = record_root_in_trans(trans, parent_root, 0);
1612 if (ret)
1613 goto fail;
c2050a45 1614 cur_time = current_time(parent_inode);
04b285f3 1615
3063d29f
CM
1616 /*
1617 * insert the directory item
1618 */
877574e2 1619 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1620 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1621
1622 /* check if there is a file/dir which has the same name. */
1623 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1624 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1625 dentry->d_name.name,
1626 dentry->d_name.len, 0);
1627 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1628 pending->error = -EEXIST;
aec8030a 1629 goto dir_item_existed;
42874b3d
MX
1630 } else if (IS_ERR(dir_item)) {
1631 ret = PTR_ERR(dir_item);
66642832 1632 btrfs_abort_transaction(trans, ret);
8732d44f 1633 goto fail;
79787eaa 1634 }
42874b3d 1635 btrfs_release_path(path);
52c26179 1636
e999376f
CM
1637 /*
1638 * pull in the delayed directory update
1639 * and the delayed inode item
1640 * otherwise we corrupt the FS during
1641 * snapshot
1642 */
e5c304e6 1643 ret = btrfs_run_delayed_items(trans);
8732d44f 1644 if (ret) { /* Transaction aborted */
66642832 1645 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1646 goto fail;
1647 }
e999376f 1648
f0118cb6
JB
1649 ret = record_root_in_trans(trans, root, 0);
1650 if (ret) {
1651 btrfs_abort_transaction(trans, ret);
1652 goto fail;
1653 }
6bdb72de
SW
1654 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1655 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1656 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1657
b83cc969
LZ
1658 root_flags = btrfs_root_flags(new_root_item);
1659 if (pending->readonly)
1660 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1661 else
1662 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1663 btrfs_set_root_flags(new_root_item, root_flags);
1664
8ea05e3a
AB
1665 btrfs_set_root_generation_v2(new_root_item,
1666 trans->transid);
807fc790 1667 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1668 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1669 BTRFS_UUID_SIZE);
70023da2
SB
1670 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1671 memset(new_root_item->received_uuid, 0,
1672 sizeof(new_root_item->received_uuid));
1673 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1674 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1675 btrfs_set_root_stransid(new_root_item, 0);
1676 btrfs_set_root_rtransid(new_root_item, 0);
1677 }
3cae210f
QW
1678 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1679 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1680 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1681
6bdb72de 1682 old = btrfs_lock_root_node(root);
9631e4cc
JB
1683 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1684 BTRFS_NESTING_COW);
79787eaa
JM
1685 if (ret) {
1686 btrfs_tree_unlock(old);
1687 free_extent_buffer(old);
66642832 1688 btrfs_abort_transaction(trans, ret);
8732d44f 1689 goto fail;
79787eaa 1690 }
49b25e05 1691
49b25e05 1692 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1693 /* clean up in any case */
6bdb72de
SW
1694 btrfs_tree_unlock(old);
1695 free_extent_buffer(old);
8732d44f 1696 if (ret) {
66642832 1697 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1698 goto fail;
1699 }
f1ebcc74 1700 /* see comments in should_cow_block() */
27cdeb70 1701 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1702 smp_wmb();
1703
6bdb72de 1704 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1705 /* record when the snapshot was created in key.offset */
1706 key.offset = trans->transid;
1707 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1708 btrfs_tree_unlock(tmp);
1709 free_extent_buffer(tmp);
8732d44f 1710 if (ret) {
66642832 1711 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1712 goto fail;
1713 }
6bdb72de 1714
a22285a6
YZ
1715 /*
1716 * insert root back/forward references
1717 */
6025c19f 1718 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1719 parent_root->root_key.objectid,
4a0cc7ca 1720 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1721 dentry->d_name.name, dentry->d_name.len);
8732d44f 1722 if (ret) {
66642832 1723 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1724 goto fail;
1725 }
0660b5af 1726
a22285a6 1727 key.offset = (u64)-1;
2dfb1e43 1728 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1729 if (IS_ERR(pending->snap)) {
1730 ret = PTR_ERR(pending->snap);
2d892ccd 1731 pending->snap = NULL;
66642832 1732 btrfs_abort_transaction(trans, ret);
8732d44f 1733 goto fail;
79787eaa 1734 }
d68fc57b 1735
49b25e05 1736 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1737 if (ret) {
66642832 1738 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1739 goto fail;
1740 }
361048f5 1741
6426c7ad
QW
1742 /*
1743 * Do special qgroup accounting for snapshot, as we do some qgroup
1744 * snapshot hack to do fast snapshot.
1745 * To co-operate with that hack, we do hack again.
1746 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1747 */
1748 ret = qgroup_account_snapshot(trans, root, parent_root,
1749 pending->inherit, objectid);
1750 if (ret < 0)
1751 goto fail;
1752
684572df
LF
1753 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1754 dentry->d_name.len, BTRFS_I(parent_inode),
1755 &key, BTRFS_FT_DIR, index);
42874b3d 1756 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1757 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1758 if (ret) {
66642832 1759 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1760 goto fail;
1761 }
42874b3d 1762
6ef06d27 1763 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1764 dentry->d_name.len * 2);
04b285f3 1765 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 1766 current_time(parent_inode);
729f7961 1767 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1768 if (ret) {
66642832 1769 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1770 goto fail;
1771 }
807fc790
AS
1772 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1773 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1774 objectid);
dd5f9615 1775 if (ret) {
66642832 1776 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1777 goto fail;
1778 }
1779 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1780 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1781 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1782 objectid);
1783 if (ret && ret != -EEXIST) {
66642832 1784 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1785 goto fail;
1786 }
1787 }
d6726335 1788
3063d29f 1789fail:
aec8030a
MX
1790 pending->error = ret;
1791dir_item_existed:
98c9942a 1792 trans->block_rsv = rsv;
2382c5cc 1793 trans->bytes_reserved = 0;
d6726335
QW
1794clear_skip_qgroup:
1795 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1796no_free_objectid:
1797 kfree(new_root_item);
b0c0ea63 1798 pending->root_item = NULL;
42874b3d 1799 btrfs_free_path(path);
8546b570
DS
1800 pending->path = NULL;
1801
49b25e05 1802 return ret;
3063d29f
CM
1803}
1804
d352ac68
CM
1805/*
1806 * create all the snapshots we've scheduled for creation
1807 */
08d50ca3 1808static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1809{
aec8030a 1810 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1811 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1812 int ret = 0;
3de4586c 1813
aec8030a
MX
1814 list_for_each_entry_safe(pending, next, head, list) {
1815 list_del(&pending->list);
08d50ca3 1816 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1817 if (ret)
1818 break;
1819 }
1820 return ret;
3de4586c
CM
1821}
1822
2ff7e61e 1823static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1824{
1825 struct btrfs_root_item *root_item;
1826 struct btrfs_super_block *super;
1827
0b246afa 1828 super = fs_info->super_copy;
5d4f98a2 1829
0b246afa 1830 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1831 super->chunk_root = root_item->bytenr;
1832 super->chunk_root_generation = root_item->generation;
1833 super->chunk_root_level = root_item->level;
5d4f98a2 1834
0b246afa 1835 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1836 super->root = root_item->bytenr;
1837 super->generation = root_item->generation;
1838 super->root_level = root_item->level;
0b246afa 1839 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1840 super->cache_generation = root_item->generation;
94846229
BB
1841 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1842 super->cache_generation = 0;
0b246afa 1843 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1844 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1845}
1846
f36f3042
CM
1847int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1848{
4a9d8bde 1849 struct btrfs_transaction *trans;
f36f3042 1850 int ret = 0;
4a9d8bde 1851
a4abeea4 1852 spin_lock(&info->trans_lock);
4a9d8bde
MX
1853 trans = info->running_transaction;
1854 if (trans)
1855 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1856 spin_unlock(&info->trans_lock);
f36f3042
CM
1857 return ret;
1858}
1859
8929ecfa
YZ
1860int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1861{
4a9d8bde 1862 struct btrfs_transaction *trans;
8929ecfa 1863 int ret = 0;
4a9d8bde 1864
a4abeea4 1865 spin_lock(&info->trans_lock);
4a9d8bde
MX
1866 trans = info->running_transaction;
1867 if (trans)
1868 ret = is_transaction_blocked(trans);
a4abeea4 1869 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1870 return ret;
1871}
1872
bb9c12c9
SW
1873/*
1874 * commit transactions asynchronously. once btrfs_commit_transaction_async
1875 * returns, any subsequent transaction will not be allowed to join.
1876 */
1877struct btrfs_async_commit {
1878 struct btrfs_trans_handle *newtrans;
7892b5af 1879 struct work_struct work;
bb9c12c9
SW
1880};
1881
1882static void do_async_commit(struct work_struct *work)
1883{
1884 struct btrfs_async_commit *ac =
7892b5af 1885 container_of(work, struct btrfs_async_commit, work);
bb9c12c9 1886
6fc4e354
SW
1887 /*
1888 * We've got freeze protection passed with the transaction.
1889 * Tell lockdep about it.
1890 */
b1a06a4b 1891 if (ac->newtrans->type & __TRANS_FREEZABLE)
3a45bb20 1892 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
6fc4e354 1893
e209db7a
SW
1894 current->journal_info = ac->newtrans;
1895
3a45bb20 1896 btrfs_commit_transaction(ac->newtrans);
bb9c12c9
SW
1897 kfree(ac);
1898}
1899
32cc4f87 1900int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 1901{
3a45bb20 1902 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1903 struct btrfs_async_commit *ac;
1904 struct btrfs_transaction *cur_trans;
1905
1906 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1907 if (!ac)
1908 return -ENOMEM;
bb9c12c9 1909
7892b5af 1910 INIT_WORK(&ac->work, do_async_commit);
3a45bb20 1911 ac->newtrans = btrfs_join_transaction(trans->root);
3612b495
TI
1912 if (IS_ERR(ac->newtrans)) {
1913 int err = PTR_ERR(ac->newtrans);
1914 kfree(ac);
1915 return err;
1916 }
bb9c12c9
SW
1917
1918 /* take transaction reference */
bb9c12c9 1919 cur_trans = trans->transaction;
9b64f57d 1920 refcount_inc(&cur_trans->use_count);
bb9c12c9 1921
3a45bb20 1922 btrfs_end_transaction(trans);
6fc4e354
SW
1923
1924 /*
1925 * Tell lockdep we've released the freeze rwsem, since the
1926 * async commit thread will be the one to unlock it.
1927 */
b1a06a4b 1928 if (ac->newtrans->type & __TRANS_FREEZABLE)
0b246afa 1929 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
6fc4e354 1930
7892b5af 1931 schedule_work(&ac->work);
ae5d29d4
DS
1932 /*
1933 * Wait for the current transaction commit to start and block
1934 * subsequent transaction joins
1935 */
1936 wait_event(fs_info->transaction_blocked_wait,
1937 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1938 TRANS_ABORTED(cur_trans));
38e88054
SW
1939 if (current->journal_info == trans)
1940 current->journal_info = NULL;
1941
724e2315 1942 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1943 return 0;
1944}
1945
49b25e05 1946
97cb39bb 1947static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1948{
97cb39bb 1949 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1950 struct btrfs_transaction *cur_trans = trans->transaction;
1951
b50fff81 1952 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1953
66642832 1954 btrfs_abort_transaction(trans, err);
7b8b92af 1955
0b246afa 1956 spin_lock(&fs_info->trans_lock);
66b6135b 1957
25d8c284
MX
1958 /*
1959 * If the transaction is removed from the list, it means this
1960 * transaction has been committed successfully, so it is impossible
1961 * to call the cleanup function.
1962 */
1963 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1964
0b246afa 1965 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1966 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1967 spin_unlock(&fs_info->trans_lock);
f094ac32
LB
1968 wait_event(cur_trans->writer_wait,
1969 atomic_read(&cur_trans->num_writers) == 1);
1970
0b246afa 1971 spin_lock(&fs_info->trans_lock);
d7096fc3 1972 }
061dde82
FM
1973
1974 /*
1975 * Now that we know no one else is still using the transaction we can
1976 * remove the transaction from the list of transactions. This avoids
1977 * the transaction kthread from cleaning up the transaction while some
1978 * other task is still using it, which could result in a use-after-free
1979 * on things like log trees, as it forces the transaction kthread to
1980 * wait for this transaction to be cleaned up by us.
1981 */
1982 list_del_init(&cur_trans->list);
1983
0b246afa 1984 spin_unlock(&fs_info->trans_lock);
49b25e05 1985
2ff7e61e 1986 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 1987
0b246afa
JM
1988 spin_lock(&fs_info->trans_lock);
1989 if (cur_trans == fs_info->running_transaction)
1990 fs_info->running_transaction = NULL;
1991 spin_unlock(&fs_info->trans_lock);
4a9d8bde 1992
e0228285 1993 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1994 sb_end_intwrite(fs_info->sb);
724e2315
JB
1995 btrfs_put_transaction(cur_trans);
1996 btrfs_put_transaction(cur_trans);
49b25e05 1997
97cb39bb 1998 trace_btrfs_transaction_commit(trans->root);
49b25e05 1999
49b25e05
JM
2000 if (current->journal_info == trans)
2001 current->journal_info = NULL;
0b246afa 2002 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2003
2004 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2005}
2006
c7cc64a9
DS
2007/*
2008 * Release reserved delayed ref space of all pending block groups of the
2009 * transaction and remove them from the list
2010 */
2011static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2012{
2013 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2014 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2015
2016 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2017 btrfs_delayed_refs_rsv_release(fs_info, 1);
2018 list_del_init(&block_group->bg_list);
2019 }
2020}
2021
88090ad3 2022static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2023{
ce8ea7cc
JB
2024 /*
2025 * We use writeback_inodes_sb here because if we used
2026 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2027 * Currently are holding the fs freeze lock, if we do an async flush
2028 * we'll do btrfs_join_transaction() and deadlock because we need to
2029 * wait for the fs freeze lock. Using the direct flushing we benefit
2030 * from already being in a transaction and our join_transaction doesn't
2031 * have to re-take the fs freeze lock.
2032 */
88090ad3 2033 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
ce8ea7cc 2034 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2035 return 0;
2036}
2037
88090ad3 2038static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2039{
88090ad3 2040 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2041 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2042}
2043
3a45bb20 2044int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2045{
3a45bb20 2046 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2047 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2048 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2049 int ret;
79154b1b 2050
35b814f3
NB
2051 ASSERT(refcount_read(&trans->use_count) == 1);
2052
8d25a086 2053 /* Stop the commit early if ->aborted is set */
bf31f87f 2054 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2055 ret = cur_trans->aborted;
3a45bb20 2056 btrfs_end_transaction(trans);
e4a2bcac 2057 return ret;
25287e0a 2058 }
49b25e05 2059
f45c752b
JB
2060 btrfs_trans_release_metadata(trans);
2061 trans->block_rsv = NULL;
2062
56bec294 2063 /*
e19eb11f
JB
2064 * We only want one transaction commit doing the flushing so we do not
2065 * waste a bunch of time on lock contention on the extent root node.
56bec294 2066 */
e19eb11f
JB
2067 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2068 &cur_trans->delayed_refs.flags)) {
2069 /*
2070 * Make a pass through all the delayed refs we have so far.
2071 * Any running threads may add more while we are here.
2072 */
2073 ret = btrfs_run_delayed_refs(trans, 0);
2074 if (ret) {
2075 btrfs_end_transaction(trans);
2076 return ret;
2077 }
2078 }
56bec294 2079
119e80df 2080 btrfs_create_pending_block_groups(trans);
ea658bad 2081
3204d33c 2082 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2083 int run_it = 0;
2084
2085 /* this mutex is also taken before trying to set
2086 * block groups readonly. We need to make sure
2087 * that nobody has set a block group readonly
2088 * after a extents from that block group have been
2089 * allocated for cache files. btrfs_set_block_group_ro
2090 * will wait for the transaction to commit if it
3204d33c 2091 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2092 *
3204d33c
JB
2093 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2094 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2095 * hurt to have more than one go through, but there's no
2096 * real advantage to it either.
2097 */
0b246afa 2098 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2099 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2100 &cur_trans->flags))
1bbc621e 2101 run_it = 1;
0b246afa 2102 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2103
f9cacae3 2104 if (run_it) {
21217054 2105 ret = btrfs_start_dirty_block_groups(trans);
f9cacae3
NB
2106 if (ret) {
2107 btrfs_end_transaction(trans);
2108 return ret;
2109 }
2110 }
1bbc621e
CM
2111 }
2112
0b246afa 2113 spin_lock(&fs_info->trans_lock);
4a9d8bde 2114 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2115 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2116
0b246afa 2117 spin_unlock(&fs_info->trans_lock);
9b64f57d 2118 refcount_inc(&cur_trans->use_count);
ccd467d6 2119
d0c2f4fa
FM
2120 if (trans->in_fsync)
2121 want_state = TRANS_STATE_SUPER_COMMITTED;
2122 ret = btrfs_end_transaction(trans);
2123 wait_for_commit(cur_trans, want_state);
15ee9bc7 2124
bf31f87f 2125 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2126 ret = cur_trans->aborted;
2127
724e2315 2128 btrfs_put_transaction(cur_trans);
15ee9bc7 2129
49b25e05 2130 return ret;
79154b1b 2131 }
4313b399 2132
4a9d8bde 2133 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2134 wake_up(&fs_info->transaction_blocked_wait);
bb9c12c9 2135
0b246afa 2136 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2137 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2138
2139 if (trans->in_fsync)
2140 want_state = TRANS_STATE_SUPER_COMMITTED;
2141
ccd467d6
CM
2142 prev_trans = list_entry(cur_trans->list.prev,
2143 struct btrfs_transaction, list);
d0c2f4fa 2144 if (prev_trans->state < want_state) {
9b64f57d 2145 refcount_inc(&prev_trans->use_count);
0b246afa 2146 spin_unlock(&fs_info->trans_lock);
ccd467d6 2147
d0c2f4fa
FM
2148 wait_for_commit(prev_trans, want_state);
2149
bf31f87f 2150 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2151
724e2315 2152 btrfs_put_transaction(prev_trans);
1f9b8c8f
FM
2153 if (ret)
2154 goto cleanup_transaction;
a4abeea4 2155 } else {
0b246afa 2156 spin_unlock(&fs_info->trans_lock);
ccd467d6 2157 }
a4abeea4 2158 } else {
0b246afa 2159 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2160 /*
2161 * The previous transaction was aborted and was already removed
2162 * from the list of transactions at fs_info->trans_list. So we
2163 * abort to prevent writing a new superblock that reflects a
2164 * corrupt state (pointing to trees with unwritten nodes/leafs).
2165 */
2166 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2167 ret = -EROFS;
2168 goto cleanup_transaction;
2169 }
ccd467d6 2170 }
15ee9bc7 2171
0860adfd
MX
2172 extwriter_counter_dec(cur_trans, trans->type);
2173
88090ad3 2174 ret = btrfs_start_delalloc_flush(fs_info);
82436617
MX
2175 if (ret)
2176 goto cleanup_transaction;
2177
e5c304e6 2178 ret = btrfs_run_delayed_items(trans);
581227d0
MX
2179 if (ret)
2180 goto cleanup_transaction;
15ee9bc7 2181
581227d0
MX
2182 wait_event(cur_trans->writer_wait,
2183 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2184
581227d0 2185 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2186 ret = btrfs_run_delayed_items(trans);
ca469637
MX
2187 if (ret)
2188 goto cleanup_transaction;
2189
88090ad3 2190 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2191
48778179
FM
2192 /*
2193 * Wait for all ordered extents started by a fast fsync that joined this
2194 * transaction. Otherwise if this transaction commits before the ordered
2195 * extents complete we lose logged data after a power failure.
2196 */
2197 wait_event(cur_trans->pending_wait,
2198 atomic_read(&cur_trans->pending_ordered) == 0);
2199
2ff7e61e 2200 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2201 /*
2202 * Ok now we need to make sure to block out any other joins while we
2203 * commit the transaction. We could have started a join before setting
4a9d8bde 2204 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2205 */
0b246afa 2206 spin_lock(&fs_info->trans_lock);
4a9d8bde 2207 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2208 spin_unlock(&fs_info->trans_lock);
ed0ca140
JB
2209 wait_event(cur_trans->writer_wait,
2210 atomic_read(&cur_trans->num_writers) == 1);
2211
bf31f87f 2212 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2213 ret = cur_trans->aborted;
6cf7f77e 2214 goto scrub_continue;
2cba30f1 2215 }
7585717f
CM
2216 /*
2217 * the reloc mutex makes sure that we stop
2218 * the balancing code from coming in and moving
2219 * extents around in the middle of the commit
2220 */
0b246afa 2221 mutex_lock(&fs_info->reloc_mutex);
7585717f 2222
42874b3d
MX
2223 /*
2224 * We needn't worry about the delayed items because we will
2225 * deal with them in create_pending_snapshot(), which is the
2226 * core function of the snapshot creation.
2227 */
08d50ca3 2228 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2229 if (ret)
2230 goto unlock_reloc;
3063d29f 2231
42874b3d
MX
2232 /*
2233 * We insert the dir indexes of the snapshots and update the inode
2234 * of the snapshots' parents after the snapshot creation, so there
2235 * are some delayed items which are not dealt with. Now deal with
2236 * them.
2237 *
2238 * We needn't worry that this operation will corrupt the snapshots,
2239 * because all the tree which are snapshoted will be forced to COW
2240 * the nodes and leaves.
2241 */
e5c304e6 2242 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2243 if (ret)
2244 goto unlock_reloc;
16cdcec7 2245
c79a70b1 2246 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2247 if (ret)
2248 goto unlock_reloc;
56bec294 2249
e999376f
CM
2250 /*
2251 * make sure none of the code above managed to slip in a
2252 * delayed item
2253 */
ccdf9b30 2254 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2255
2c90e5d6 2256 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2257
e02119d5
CM
2258 /* btrfs_commit_tree_roots is responsible for getting the
2259 * various roots consistent with each other. Every pointer
2260 * in the tree of tree roots has to point to the most up to date
2261 * root for every subvolume and other tree. So, we have to keep
2262 * the tree logging code from jumping in and changing any
2263 * of the trees.
2264 *
2265 * At this point in the commit, there can't be any tree-log
2266 * writers, but a little lower down we drop the trans mutex
2267 * and let new people in. By holding the tree_log_mutex
2268 * from now until after the super is written, we avoid races
2269 * with the tree-log code.
2270 */
0b246afa 2271 mutex_lock(&fs_info->tree_log_mutex);
e02119d5 2272
7e4443d9 2273 ret = commit_fs_roots(trans);
56e9f6ea
DS
2274 if (ret)
2275 goto unlock_tree_log;
54aa1f4d 2276
3818aea2 2277 /*
7e1876ac
DS
2278 * Since the transaction is done, we can apply the pending changes
2279 * before the next transaction.
3818aea2 2280 */
0b246afa 2281 btrfs_apply_pending_changes(fs_info);
3818aea2 2282
5d4f98a2 2283 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2284 * safe to free the root of tree log roots
2285 */
0b246afa 2286 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2287
0ed4792a
QW
2288 /*
2289 * Since fs roots are all committed, we can get a quite accurate
2290 * new_roots. So let's do quota accounting.
2291 */
460fb20a 2292 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea
DS
2293 if (ret < 0)
2294 goto unlock_tree_log;
0ed4792a 2295
9386d8bc 2296 ret = commit_cowonly_roots(trans);
56e9f6ea
DS
2297 if (ret)
2298 goto unlock_tree_log;
54aa1f4d 2299
2cba30f1
MX
2300 /*
2301 * The tasks which save the space cache and inode cache may also
2302 * update ->aborted, check it.
2303 */
bf31f87f 2304 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2305 ret = cur_trans->aborted;
56e9f6ea 2306 goto unlock_tree_log;
2cba30f1
MX
2307 }
2308
0b246afa 2309 cur_trans = fs_info->running_transaction;
5d4f98a2 2310
0b246afa
JM
2311 btrfs_set_root_node(&fs_info->tree_root->root_item,
2312 fs_info->tree_root->node);
2313 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2314 &cur_trans->switch_commits);
5d4f98a2 2315
0b246afa
JM
2316 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2317 fs_info->chunk_root->node);
2318 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2319 &cur_trans->switch_commits);
2320
889bfa39 2321 switch_commit_roots(trans);
5d4f98a2 2322
ce93ec54 2323 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2324 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2325 update_super_roots(fs_info);
e02119d5 2326
0b246afa
JM
2327 btrfs_set_super_log_root(fs_info->super_copy, 0);
2328 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2329 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2330 sizeof(*fs_info->super_copy));
ccd467d6 2331
bbbf7243 2332 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2333
0b246afa
JM
2334 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2335 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2336
4fbcdf66
FM
2337 btrfs_trans_release_chunk_metadata(trans);
2338
0b246afa 2339 spin_lock(&fs_info->trans_lock);
4a9d8bde 2340 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2341 fs_info->running_transaction = NULL;
2342 spin_unlock(&fs_info->trans_lock);
2343 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2344
0b246afa 2345 wake_up(&fs_info->transaction_wait);
e6dcd2dc 2346
70458a58 2347 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2348 if (ret) {
0b246afa
JM
2349 btrfs_handle_fs_error(fs_info, ret,
2350 "Error while writing out transaction");
56e9f6ea
DS
2351 /*
2352 * reloc_mutex has been unlocked, tree_log_mutex is still held
2353 * but we can't jump to unlock_tree_log causing double unlock
2354 */
0b246afa 2355 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2356 goto scrub_continue;
49b25e05
JM
2357 }
2358
d3575156
NA
2359 /*
2360 * At this point, we should have written all the tree blocks allocated
2361 * in this transaction. So it's now safe to free the redirtyied extent
2362 * buffers.
2363 */
2364 btrfs_free_redirty_list(cur_trans);
2365
eece6a9c 2366 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2367 /*
2368 * the super is written, we can safely allow the tree-loggers
2369 * to go about their business
2370 */
0b246afa 2371 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2372 if (ret)
2373 goto scrub_continue;
e02119d5 2374
d0c2f4fa
FM
2375 /*
2376 * We needn't acquire the lock here because there is no other task
2377 * which can change it.
2378 */
2379 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2380 wake_up(&cur_trans->commit_wait);
2381
5ead2dd0 2382 btrfs_finish_extent_commit(trans);
4313b399 2383
3204d33c 2384 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2385 btrfs_clear_space_info_full(fs_info);
13212b54 2386
0b246afa 2387 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2388 /*
2389 * We needn't acquire the lock here because there is no other task
2390 * which can change it.
2391 */
2392 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2393 wake_up(&cur_trans->commit_wait);
3de4586c 2394
0b246afa 2395 spin_lock(&fs_info->trans_lock);
13c5a93e 2396 list_del_init(&cur_trans->list);
0b246afa 2397 spin_unlock(&fs_info->trans_lock);
a4abeea4 2398
724e2315
JB
2399 btrfs_put_transaction(cur_trans);
2400 btrfs_put_transaction(cur_trans);
58176a96 2401
0860adfd 2402 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2403 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2404
3a45bb20 2405 trace_btrfs_transaction_commit(trans->root);
1abe9b8a 2406
2ff7e61e 2407 btrfs_scrub_continue(fs_info);
a2de733c 2408
9ed74f2d
JB
2409 if (current->journal_info == trans)
2410 current->journal_info = NULL;
2411
2c90e5d6 2412 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2413
79154b1b 2414 return ret;
49b25e05 2415
56e9f6ea
DS
2416unlock_tree_log:
2417 mutex_unlock(&fs_info->tree_log_mutex);
2418unlock_reloc:
2419 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2420scrub_continue:
2ff7e61e 2421 btrfs_scrub_continue(fs_info);
49b25e05 2422cleanup_transaction:
dc60c525 2423 btrfs_trans_release_metadata(trans);
c7cc64a9 2424 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2425 btrfs_trans_release_chunk_metadata(trans);
0e721106 2426 trans->block_rsv = NULL;
0b246afa 2427 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2428 if (current->journal_info == trans)
2429 current->journal_info = NULL;
97cb39bb 2430 cleanup_transaction(trans, ret);
49b25e05
JM
2431
2432 return ret;
79154b1b
CM
2433}
2434
d352ac68 2435/*
9d1a2a3a
DS
2436 * return < 0 if error
2437 * 0 if there are no more dead_roots at the time of call
2438 * 1 there are more to be processed, call me again
2439 *
2440 * The return value indicates there are certainly more snapshots to delete, but
2441 * if there comes a new one during processing, it may return 0. We don't mind,
2442 * because btrfs_commit_super will poke cleaner thread and it will process it a
2443 * few seconds later.
d352ac68 2444 */
9d1a2a3a 2445int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
e9d0b13b 2446{
9d1a2a3a 2447 int ret;
5d4f98a2
YZ
2448 struct btrfs_fs_info *fs_info = root->fs_info;
2449
a4abeea4 2450 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2451 if (list_empty(&fs_info->dead_roots)) {
2452 spin_unlock(&fs_info->trans_lock);
2453 return 0;
2454 }
2455 root = list_first_entry(&fs_info->dead_roots,
2456 struct btrfs_root, root_list);
cfad392b 2457 list_del_init(&root->root_list);
a4abeea4 2458 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2459
4fd786e6 2460 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2461
9d1a2a3a 2462 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2463
9d1a2a3a
DS
2464 if (btrfs_header_backref_rev(root->node) <
2465 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2466 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2467 else
0078a9f9 2468 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2469
dc9492c1 2470 btrfs_put_root(root);
6596a928 2471 return (ret < 0) ? 0 : 1;
e9d0b13b 2472}
572d9ab7
DS
2473
2474void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2475{
2476 unsigned long prev;
2477 unsigned long bit;
2478
6c9fe14f 2479 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2480 if (!prev)
2481 return;
2482
d51033d0
DS
2483 bit = 1 << BTRFS_PENDING_COMMIT;
2484 if (prev & bit)
2485 btrfs_debug(fs_info, "pending commit done");
2486 prev &= ~bit;
2487
572d9ab7
DS
2488 if (prev)
2489 btrfs_warn(fs_info,
2490 "unknown pending changes left 0x%lx, ignoring", prev);
2491}