Btrfs: kill trans_mutex
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
79154b1b 19#include <linux/fs.h>
5a0e3ad6 20#include <linux/slab.h>
34088780 21#include <linux/sched.h>
d3c2fdcf 22#include <linux/writeback.h>
5f39d397 23#include <linux/pagemap.h>
5f2cc086 24#include <linux/blkdev.h>
79154b1b
CM
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
79154b1b 30
0f7d52f4
CM
31#define BTRFS_ROOT_TRANS_TAG 0
32
80b6794d 33static noinline void put_transaction(struct btrfs_transaction *transaction)
79154b1b 34{
13c5a93e
JB
35 WARN_ON(atomic_read(&transaction->use_count) == 0);
36 if (atomic_dec_and_test(&transaction->use_count)) {
a4abeea4 37 BUG_ON(!list_empty(&transaction->list));
2c90e5d6
CM
38 memset(transaction, 0, sizeof(*transaction));
39 kmem_cache_free(btrfs_transaction_cachep, transaction);
78fae27e 40 }
79154b1b
CM
41}
42
817d52f8
JB
43static noinline void switch_commit_root(struct btrfs_root *root)
44{
817d52f8
JB
45 free_extent_buffer(root->commit_root);
46 root->commit_root = btrfs_root_node(root);
817d52f8
JB
47}
48
d352ac68
CM
49/*
50 * either allocate a new transaction or hop into the existing one
51 */
a4abeea4 52static noinline int join_transaction(struct btrfs_root *root, int nofail)
79154b1b
CM
53{
54 struct btrfs_transaction *cur_trans;
a4abeea4
JB
55
56 spin_lock(&root->fs_info->trans_lock);
57 if (root->fs_info->trans_no_join) {
58 if (!nofail) {
59 spin_unlock(&root->fs_info->trans_lock);
60 return -EBUSY;
61 }
62 }
63
79154b1b 64 cur_trans = root->fs_info->running_transaction;
a4abeea4
JB
65 if (cur_trans) {
66 atomic_inc(&cur_trans->use_count);
67 atomic_inc(&cur_trans->num_writers);
68 cur_trans->num_joined++;
69 spin_unlock(&root->fs_info->trans_lock);
70 return 0;
71 }
72 spin_unlock(&root->fs_info->trans_lock);
73
74 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
75 if (!cur_trans)
76 return -ENOMEM;
77 spin_lock(&root->fs_info->trans_lock);
78 if (root->fs_info->running_transaction) {
79 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
80 cur_trans = root->fs_info->running_transaction;
81 atomic_inc(&cur_trans->use_count);
13c5a93e 82 atomic_inc(&cur_trans->num_writers);
15ee9bc7 83 cur_trans->num_joined++;
a4abeea4
JB
84 spin_unlock(&root->fs_info->trans_lock);
85 return 0;
79154b1b 86 }
a4abeea4
JB
87 atomic_set(&cur_trans->num_writers, 1);
88 cur_trans->num_joined = 0;
89 init_waitqueue_head(&cur_trans->writer_wait);
90 init_waitqueue_head(&cur_trans->commit_wait);
91 cur_trans->in_commit = 0;
92 cur_trans->blocked = 0;
93 /*
94 * One for this trans handle, one so it will live on until we
95 * commit the transaction.
96 */
97 atomic_set(&cur_trans->use_count, 2);
98 cur_trans->commit_done = 0;
99 cur_trans->start_time = get_seconds();
100
101 cur_trans->delayed_refs.root = RB_ROOT;
102 cur_trans->delayed_refs.num_entries = 0;
103 cur_trans->delayed_refs.num_heads_ready = 0;
104 cur_trans->delayed_refs.num_heads = 0;
105 cur_trans->delayed_refs.flushing = 0;
106 cur_trans->delayed_refs.run_delayed_start = 0;
107 spin_lock_init(&cur_trans->commit_lock);
108 spin_lock_init(&cur_trans->delayed_refs.lock);
109
110 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
111 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
112 extent_io_tree_init(&cur_trans->dirty_pages,
113 root->fs_info->btree_inode->i_mapping,
114 GFP_NOFS);
115 root->fs_info->generation++;
116 cur_trans->transid = root->fs_info->generation;
117 root->fs_info->running_transaction = cur_trans;
118 spin_unlock(&root->fs_info->trans_lock);
15ee9bc7 119
79154b1b
CM
120 return 0;
121}
122
d352ac68 123/*
d397712b
CM
124 * this does all the record keeping required to make sure that a reference
125 * counted root is properly recorded in a given transaction. This is required
126 * to make sure the old root from before we joined the transaction is deleted
127 * when the transaction commits
d352ac68 128 */
a4abeea4
JB
129int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
130 struct btrfs_root *root)
6702ed49 131{
5d4f98a2 132 if (root->ref_cows && root->last_trans < trans->transid) {
6702ed49 133 WARN_ON(root == root->fs_info->extent_root);
5d4f98a2
YZ
134 WARN_ON(root->commit_root != root->node);
135
a4abeea4
JB
136 spin_lock(&root->fs_info->fs_roots_radix_lock);
137 if (root->last_trans == trans->transid) {
138 spin_unlock(&root->fs_info->fs_roots_radix_lock);
139 return 0;
140 }
141 root->last_trans = trans->transid;
5d4f98a2
YZ
142 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
143 (unsigned long)root->root_key.objectid,
144 BTRFS_ROOT_TRANS_TAG);
a4abeea4 145 spin_unlock(&root->fs_info->fs_roots_radix_lock);
5d4f98a2
YZ
146 btrfs_init_reloc_root(trans, root);
147 }
148 return 0;
149}
bcc63abb 150
d352ac68
CM
151/* wait for commit against the current transaction to become unblocked
152 * when this is done, it is safe to start a new transaction, but the current
153 * transaction might not be fully on disk.
154 */
37d1aeee 155static void wait_current_trans(struct btrfs_root *root)
79154b1b 156{
f9295749 157 struct btrfs_transaction *cur_trans;
79154b1b 158
a4abeea4 159 spin_lock(&root->fs_info->trans_lock);
f9295749 160 cur_trans = root->fs_info->running_transaction;
37d1aeee 161 if (cur_trans && cur_trans->blocked) {
f9295749 162 DEFINE_WAIT(wait);
13c5a93e 163 atomic_inc(&cur_trans->use_count);
a4abeea4 164 spin_unlock(&root->fs_info->trans_lock);
d397712b 165 while (1) {
f9295749
CM
166 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
167 TASK_UNINTERRUPTIBLE);
471fa17d 168 if (!cur_trans->blocked)
f9295749 169 break;
471fa17d 170 schedule();
f9295749 171 }
471fa17d 172 finish_wait(&root->fs_info->transaction_wait, &wait);
f9295749 173 put_transaction(cur_trans);
a4abeea4
JB
174 } else {
175 spin_unlock(&root->fs_info->trans_lock);
f9295749 176 }
37d1aeee
CM
177}
178
249ac1e5
JB
179enum btrfs_trans_type {
180 TRANS_START,
181 TRANS_JOIN,
182 TRANS_USERSPACE,
0af3d00b 183 TRANS_JOIN_NOLOCK,
249ac1e5
JB
184};
185
a22285a6
YZ
186static int may_wait_transaction(struct btrfs_root *root, int type)
187{
a4abeea4
JB
188 if (root->fs_info->log_root_recovering)
189 return 0;
190
191 if (type == TRANS_USERSPACE)
192 return 1;
193
194 if (type == TRANS_START &&
195 !atomic_read(&root->fs_info->open_ioctl_trans))
a22285a6 196 return 1;
a4abeea4 197
a22285a6
YZ
198 return 0;
199}
200
e02119d5 201static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
a22285a6 202 u64 num_items, int type)
37d1aeee 203{
a22285a6
YZ
204 struct btrfs_trans_handle *h;
205 struct btrfs_transaction *cur_trans;
06d5a589 206 int retries = 0;
37d1aeee 207 int ret;
acce952b 208
209 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
210 return ERR_PTR(-EROFS);
2a1eb461
JB
211
212 if (current->journal_info) {
213 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
214 h = current->journal_info;
215 h->use_count++;
216 h->orig_rsv = h->block_rsv;
217 h->block_rsv = NULL;
218 goto got_it;
219 }
a22285a6
YZ
220again:
221 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
222 if (!h)
223 return ERR_PTR(-ENOMEM);
37d1aeee 224
a22285a6 225 if (may_wait_transaction(root, type))
37d1aeee 226 wait_current_trans(root);
a22285a6 227
a4abeea4
JB
228 do {
229 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
230 if (ret == -EBUSY)
231 wait_current_trans(root);
232 } while (ret == -EBUSY);
233
db5b493a 234 if (ret < 0) {
6e8df2ae 235 kmem_cache_free(btrfs_trans_handle_cachep, h);
db5b493a
TI
236 return ERR_PTR(ret);
237 }
0f7d52f4 238
a22285a6 239 cur_trans = root->fs_info->running_transaction;
a22285a6
YZ
240
241 h->transid = cur_trans->transid;
242 h->transaction = cur_trans;
79154b1b 243 h->blocks_used = 0;
d2fb3437 244 h->block_group = 0;
a22285a6 245 h->bytes_reserved = 0;
56bec294 246 h->delayed_ref_updates = 0;
2a1eb461 247 h->use_count = 1;
f0486c68 248 h->block_rsv = NULL;
2a1eb461 249 h->orig_rsv = NULL;
b7ec40d7 250
a22285a6
YZ
251 smp_mb();
252 if (cur_trans->blocked && may_wait_transaction(root, type)) {
253 btrfs_commit_transaction(h, root);
254 goto again;
255 }
256
257 if (num_items > 0) {
8bb8ab2e 258 ret = btrfs_trans_reserve_metadata(h, root, num_items);
06d5a589
JB
259 if (ret == -EAGAIN && !retries) {
260 retries++;
a22285a6
YZ
261 btrfs_commit_transaction(h, root);
262 goto again;
06d5a589
JB
263 } else if (ret == -EAGAIN) {
264 /*
265 * We have already retried and got EAGAIN, so really we
266 * don't have space, so set ret to -ENOSPC.
267 */
268 ret = -ENOSPC;
a22285a6 269 }
06d5a589 270
a22285a6
YZ
271 if (ret < 0) {
272 btrfs_end_transaction(h, root);
273 return ERR_PTR(ret);
274 }
275 }
9ed74f2d 276
2a1eb461 277got_it:
a4abeea4 278 btrfs_record_root_in_trans(h, root);
a22285a6
YZ
279
280 if (!current->journal_info && type != TRANS_USERSPACE)
281 current->journal_info = h;
79154b1b
CM
282 return h;
283}
284
f9295749 285struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
a22285a6 286 int num_items)
f9295749 287{
a22285a6 288 return start_transaction(root, num_items, TRANS_START);
f9295749 289}
7a7eaa40 290struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 291{
a22285a6 292 return start_transaction(root, 0, TRANS_JOIN);
f9295749
CM
293}
294
7a7eaa40 295struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
0af3d00b
JB
296{
297 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
298}
299
7a7eaa40 300struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
9ca9ee09 301{
7a7eaa40 302 return start_transaction(root, 0, TRANS_USERSPACE);
9ca9ee09
SW
303}
304
d352ac68 305/* wait for a transaction commit to be fully complete */
89ce8a63
CM
306static noinline int wait_for_commit(struct btrfs_root *root,
307 struct btrfs_transaction *commit)
308{
309 DEFINE_WAIT(wait);
d397712b 310 while (!commit->commit_done) {
89ce8a63
CM
311 prepare_to_wait(&commit->commit_wait, &wait,
312 TASK_UNINTERRUPTIBLE);
313 if (commit->commit_done)
314 break;
89ce8a63 315 schedule();
89ce8a63 316 }
89ce8a63
CM
317 finish_wait(&commit->commit_wait, &wait);
318 return 0;
319}
320
46204592
SW
321int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
322{
323 struct btrfs_transaction *cur_trans = NULL, *t;
324 int ret;
325
46204592
SW
326 ret = 0;
327 if (transid) {
328 if (transid <= root->fs_info->last_trans_committed)
a4abeea4 329 goto out;
46204592
SW
330
331 /* find specified transaction */
a4abeea4 332 spin_lock(&root->fs_info->trans_lock);
46204592
SW
333 list_for_each_entry(t, &root->fs_info->trans_list, list) {
334 if (t->transid == transid) {
335 cur_trans = t;
a4abeea4 336 atomic_inc(&cur_trans->use_count);
46204592
SW
337 break;
338 }
339 if (t->transid > transid)
340 break;
341 }
a4abeea4 342 spin_unlock(&root->fs_info->trans_lock);
46204592
SW
343 ret = -EINVAL;
344 if (!cur_trans)
a4abeea4 345 goto out; /* bad transid */
46204592
SW
346 } else {
347 /* find newest transaction that is committing | committed */
a4abeea4 348 spin_lock(&root->fs_info->trans_lock);
46204592
SW
349 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
350 list) {
351 if (t->in_commit) {
352 if (t->commit_done)
a4abeea4 353 goto out;
46204592 354 cur_trans = t;
a4abeea4 355 atomic_inc(&cur_trans->use_count);
46204592
SW
356 break;
357 }
358 }
a4abeea4 359 spin_unlock(&root->fs_info->trans_lock);
46204592 360 if (!cur_trans)
a4abeea4 361 goto out; /* nothing committing|committed */
46204592
SW
362 }
363
46204592
SW
364 wait_for_commit(root, cur_trans);
365
46204592
SW
366 put_transaction(cur_trans);
367 ret = 0;
a4abeea4 368out:
46204592
SW
369 return ret;
370}
371
5d4f98a2 372#if 0
d352ac68 373/*
d397712b
CM
374 * rate limit against the drop_snapshot code. This helps to slow down new
375 * operations if the drop_snapshot code isn't able to keep up.
d352ac68 376 */
37d1aeee 377static void throttle_on_drops(struct btrfs_root *root)
ab78c84d
CM
378{
379 struct btrfs_fs_info *info = root->fs_info;
2dd3e67b 380 int harder_count = 0;
ab78c84d 381
2dd3e67b 382harder:
ab78c84d
CM
383 if (atomic_read(&info->throttles)) {
384 DEFINE_WAIT(wait);
385 int thr;
ab78c84d
CM
386 thr = atomic_read(&info->throttle_gen);
387
388 do {
389 prepare_to_wait(&info->transaction_throttle,
390 &wait, TASK_UNINTERRUPTIBLE);
391 if (!atomic_read(&info->throttles)) {
392 finish_wait(&info->transaction_throttle, &wait);
393 break;
394 }
395 schedule();
396 finish_wait(&info->transaction_throttle, &wait);
397 } while (thr == atomic_read(&info->throttle_gen));
2dd3e67b
CM
398 harder_count++;
399
400 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
401 harder_count < 2)
402 goto harder;
403
404 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
405 harder_count < 10)
406 goto harder;
407
408 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
409 harder_count < 20)
410 goto harder;
ab78c84d
CM
411 }
412}
5d4f98a2 413#endif
ab78c84d 414
37d1aeee
CM
415void btrfs_throttle(struct btrfs_root *root)
416{
a4abeea4 417 if (!atomic_read(&root->fs_info->open_ioctl_trans))
9ca9ee09 418 wait_current_trans(root);
37d1aeee
CM
419}
420
8929ecfa
YZ
421static int should_end_transaction(struct btrfs_trans_handle *trans,
422 struct btrfs_root *root)
423{
424 int ret;
425 ret = btrfs_block_rsv_check(trans, root,
426 &root->fs_info->global_block_rsv, 0, 5);
427 return ret ? 1 : 0;
428}
429
430int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
431 struct btrfs_root *root)
432{
433 struct btrfs_transaction *cur_trans = trans->transaction;
434 int updates;
435
a4abeea4 436 smp_mb();
8929ecfa
YZ
437 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
438 return 1;
439
440 updates = trans->delayed_ref_updates;
441 trans->delayed_ref_updates = 0;
442 if (updates)
443 btrfs_run_delayed_refs(trans, root, updates);
444
445 return should_end_transaction(trans, root);
446}
447
89ce8a63 448static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
0af3d00b 449 struct btrfs_root *root, int throttle, int lock)
79154b1b 450{
8929ecfa 451 struct btrfs_transaction *cur_trans = trans->transaction;
ab78c84d 452 struct btrfs_fs_info *info = root->fs_info;
c3e69d58
CM
453 int count = 0;
454
2a1eb461
JB
455 if (--trans->use_count) {
456 trans->block_rsv = trans->orig_rsv;
457 return 0;
458 }
459
c3e69d58
CM
460 while (count < 4) {
461 unsigned long cur = trans->delayed_ref_updates;
462 trans->delayed_ref_updates = 0;
463 if (cur &&
464 trans->transaction->delayed_refs.num_heads_ready > 64) {
465 trans->delayed_ref_updates = 0;
b7ec40d7
CM
466
467 /*
468 * do a full flush if the transaction is trying
469 * to close
470 */
471 if (trans->transaction->delayed_refs.flushing)
472 cur = 0;
c3e69d58
CM
473 btrfs_run_delayed_refs(trans, root, cur);
474 } else {
475 break;
476 }
477 count++;
56bec294
CM
478 }
479
a22285a6
YZ
480 btrfs_trans_release_metadata(trans, root);
481
a4abeea4
JB
482 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
483 should_end_transaction(trans, root)) {
8929ecfa 484 trans->transaction->blocked = 1;
a4abeea4
JB
485 smp_wmb();
486 }
8929ecfa 487
0af3d00b 488 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
8929ecfa
YZ
489 if (throttle)
490 return btrfs_commit_transaction(trans, root);
491 else
492 wake_up_process(info->transaction_kthread);
493 }
494
8929ecfa 495 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
496 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
497 atomic_dec(&cur_trans->num_writers);
89ce8a63 498
99d16cbc 499 smp_mb();
79154b1b
CM
500 if (waitqueue_active(&cur_trans->writer_wait))
501 wake_up(&cur_trans->writer_wait);
79154b1b 502 put_transaction(cur_trans);
9ed74f2d
JB
503
504 if (current->journal_info == trans)
505 current->journal_info = NULL;
d6025579 506 memset(trans, 0, sizeof(*trans));
2c90e5d6 507 kmem_cache_free(btrfs_trans_handle_cachep, trans);
ab78c84d 508
24bbcf04
YZ
509 if (throttle)
510 btrfs_run_delayed_iputs(root);
511
79154b1b
CM
512 return 0;
513}
514
89ce8a63
CM
515int btrfs_end_transaction(struct btrfs_trans_handle *trans,
516 struct btrfs_root *root)
517{
0af3d00b 518 return __btrfs_end_transaction(trans, root, 0, 1);
89ce8a63
CM
519}
520
521int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
522 struct btrfs_root *root)
523{
0af3d00b
JB
524 return __btrfs_end_transaction(trans, root, 1, 1);
525}
526
527int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
528 struct btrfs_root *root)
529{
530 return __btrfs_end_transaction(trans, root, 0, 0);
89ce8a63
CM
531}
532
d352ac68
CM
533/*
534 * when btree blocks are allocated, they have some corresponding bits set for
535 * them in one of two extent_io trees. This is used to make sure all of
690587d1 536 * those extents are sent to disk but does not wait on them
d352ac68 537 */
690587d1 538int btrfs_write_marked_extents(struct btrfs_root *root,
8cef4e16 539 struct extent_io_tree *dirty_pages, int mark)
79154b1b 540{
7c4452b9 541 int ret;
777e6bd7 542 int err = 0;
7c4452b9
CM
543 int werr = 0;
544 struct page *page;
7c4452b9 545 struct inode *btree_inode = root->fs_info->btree_inode;
777e6bd7 546 u64 start = 0;
5f39d397
CM
547 u64 end;
548 unsigned long index;
7c4452b9 549
d397712b 550 while (1) {
777e6bd7 551 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
8cef4e16 552 mark);
5f39d397 553 if (ret)
7c4452b9 554 break;
d397712b 555 while (start <= end) {
777e6bd7
CM
556 cond_resched();
557
5f39d397 558 index = start >> PAGE_CACHE_SHIFT;
35ebb934 559 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
4bef0848 560 page = find_get_page(btree_inode->i_mapping, index);
7c4452b9
CM
561 if (!page)
562 continue;
4bef0848
CM
563
564 btree_lock_page_hook(page);
565 if (!page->mapping) {
566 unlock_page(page);
567 page_cache_release(page);
568 continue;
569 }
570
6702ed49
CM
571 if (PageWriteback(page)) {
572 if (PageDirty(page))
573 wait_on_page_writeback(page);
574 else {
575 unlock_page(page);
576 page_cache_release(page);
577 continue;
578 }
579 }
7c4452b9
CM
580 err = write_one_page(page, 0);
581 if (err)
582 werr = err;
583 page_cache_release(page);
584 }
585 }
690587d1
CM
586 if (err)
587 werr = err;
588 return werr;
589}
590
591/*
592 * when btree blocks are allocated, they have some corresponding bits set for
593 * them in one of two extent_io trees. This is used to make sure all of
594 * those extents are on disk for transaction or log commit. We wait
595 * on all the pages and clear them from the dirty pages state tree
596 */
597int btrfs_wait_marked_extents(struct btrfs_root *root,
8cef4e16 598 struct extent_io_tree *dirty_pages, int mark)
690587d1
CM
599{
600 int ret;
601 int err = 0;
602 int werr = 0;
603 struct page *page;
604 struct inode *btree_inode = root->fs_info->btree_inode;
605 u64 start = 0;
606 u64 end;
607 unsigned long index;
608
d397712b 609 while (1) {
8cef4e16
YZ
610 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
611 mark);
777e6bd7
CM
612 if (ret)
613 break;
614
8cef4e16 615 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
d397712b 616 while (start <= end) {
777e6bd7
CM
617 index = start >> PAGE_CACHE_SHIFT;
618 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
619 page = find_get_page(btree_inode->i_mapping, index);
620 if (!page)
621 continue;
622 if (PageDirty(page)) {
4bef0848
CM
623 btree_lock_page_hook(page);
624 wait_on_page_writeback(page);
777e6bd7
CM
625 err = write_one_page(page, 0);
626 if (err)
627 werr = err;
628 }
105d931d 629 wait_on_page_writeback(page);
777e6bd7
CM
630 page_cache_release(page);
631 cond_resched();
632 }
633 }
7c4452b9
CM
634 if (err)
635 werr = err;
636 return werr;
79154b1b
CM
637}
638
690587d1
CM
639/*
640 * when btree blocks are allocated, they have some corresponding bits set for
641 * them in one of two extent_io trees. This is used to make sure all of
642 * those extents are on disk for transaction or log commit
643 */
644int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
8cef4e16 645 struct extent_io_tree *dirty_pages, int mark)
690587d1
CM
646{
647 int ret;
648 int ret2;
649
8cef4e16
YZ
650 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
651 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
690587d1
CM
652 return ret || ret2;
653}
654
d0c803c4
CM
655int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
656 struct btrfs_root *root)
657{
658 if (!trans || !trans->transaction) {
659 struct inode *btree_inode;
660 btree_inode = root->fs_info->btree_inode;
661 return filemap_write_and_wait(btree_inode->i_mapping);
662 }
663 return btrfs_write_and_wait_marked_extents(root,
8cef4e16
YZ
664 &trans->transaction->dirty_pages,
665 EXTENT_DIRTY);
d0c803c4
CM
666}
667
d352ac68
CM
668/*
669 * this is used to update the root pointer in the tree of tree roots.
670 *
671 * But, in the case of the extent allocation tree, updating the root
672 * pointer may allocate blocks which may change the root of the extent
673 * allocation tree.
674 *
675 * So, this loops and repeats and makes sure the cowonly root didn't
676 * change while the root pointer was being updated in the metadata.
677 */
0b86a832
CM
678static int update_cowonly_root(struct btrfs_trans_handle *trans,
679 struct btrfs_root *root)
79154b1b
CM
680{
681 int ret;
0b86a832 682 u64 old_root_bytenr;
86b9f2ec 683 u64 old_root_used;
0b86a832 684 struct btrfs_root *tree_root = root->fs_info->tree_root;
79154b1b 685
86b9f2ec 686 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 687 btrfs_write_dirty_block_groups(trans, root);
56bec294 688
d397712b 689 while (1) {
0b86a832 690 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec
YZ
691 if (old_root_bytenr == root->node->start &&
692 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 693 break;
87ef2bb4 694
5d4f98a2 695 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 696 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
697 &root->root_key,
698 &root->root_item);
79154b1b 699 BUG_ON(ret);
56bec294 700
86b9f2ec 701 old_root_used = btrfs_root_used(&root->root_item);
4a8c9a62 702 ret = btrfs_write_dirty_block_groups(trans, root);
56bec294 703 BUG_ON(ret);
0b86a832 704 }
276e680d
YZ
705
706 if (root != root->fs_info->extent_root)
707 switch_commit_root(root);
708
0b86a832
CM
709 return 0;
710}
711
d352ac68
CM
712/*
713 * update all the cowonly tree roots on disk
714 */
5d4f98a2
YZ
715static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
716 struct btrfs_root *root)
0b86a832
CM
717{
718 struct btrfs_fs_info *fs_info = root->fs_info;
719 struct list_head *next;
84234f3a 720 struct extent_buffer *eb;
56bec294 721 int ret;
84234f3a 722
56bec294
CM
723 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
724 BUG_ON(ret);
87ef2bb4 725
84234f3a 726 eb = btrfs_lock_root_node(fs_info->tree_root);
9fa8cfe7 727 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
84234f3a
YZ
728 btrfs_tree_unlock(eb);
729 free_extent_buffer(eb);
0b86a832 730
56bec294
CM
731 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
732 BUG_ON(ret);
87ef2bb4 733
d397712b 734 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
0b86a832
CM
735 next = fs_info->dirty_cowonly_roots.next;
736 list_del_init(next);
737 root = list_entry(next, struct btrfs_root, dirty_list);
87ef2bb4 738
0b86a832 739 update_cowonly_root(trans, root);
79154b1b 740 }
276e680d
YZ
741
742 down_write(&fs_info->extent_commit_sem);
743 switch_commit_root(fs_info->extent_root);
744 up_write(&fs_info->extent_commit_sem);
745
79154b1b
CM
746 return 0;
747}
748
d352ac68
CM
749/*
750 * dead roots are old snapshots that need to be deleted. This allocates
751 * a dirty root struct and adds it into the list of dead roots that need to
752 * be deleted
753 */
5d4f98a2 754int btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 755{
a4abeea4 756 spin_lock(&root->fs_info->trans_lock);
5d4f98a2 757 list_add(&root->root_list, &root->fs_info->dead_roots);
a4abeea4 758 spin_unlock(&root->fs_info->trans_lock);
5eda7b5e
CM
759 return 0;
760}
761
d352ac68 762/*
5d4f98a2 763 * update all the cowonly tree roots on disk
d352ac68 764 */
5d4f98a2
YZ
765static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
766 struct btrfs_root *root)
0f7d52f4 767{
0f7d52f4 768 struct btrfs_root *gang[8];
5d4f98a2 769 struct btrfs_fs_info *fs_info = root->fs_info;
0f7d52f4
CM
770 int i;
771 int ret;
54aa1f4d
CM
772 int err = 0;
773
a4abeea4 774 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 775 while (1) {
5d4f98a2
YZ
776 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
777 (void **)gang, 0,
0f7d52f4
CM
778 ARRAY_SIZE(gang),
779 BTRFS_ROOT_TRANS_TAG);
780 if (ret == 0)
781 break;
782 for (i = 0; i < ret; i++) {
783 root = gang[i];
5d4f98a2
YZ
784 radix_tree_tag_clear(&fs_info->fs_roots_radix,
785 (unsigned long)root->root_key.objectid,
786 BTRFS_ROOT_TRANS_TAG);
a4abeea4 787 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 788
e02119d5 789 btrfs_free_log(trans, root);
5d4f98a2 790 btrfs_update_reloc_root(trans, root);
d68fc57b 791 btrfs_orphan_commit_root(trans, root);
bcc63abb 792
978d910d 793 if (root->commit_root != root->node) {
817d52f8 794 switch_commit_root(root);
978d910d
YZ
795 btrfs_set_root_node(&root->root_item,
796 root->node);
797 }
5d4f98a2 798
5d4f98a2 799 err = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
800 &root->root_key,
801 &root->root_item);
a4abeea4 802 spin_lock(&fs_info->fs_roots_radix_lock);
54aa1f4d
CM
803 if (err)
804 break;
0f7d52f4
CM
805 }
806 }
a4abeea4 807 spin_unlock(&fs_info->fs_roots_radix_lock);
54aa1f4d 808 return err;
0f7d52f4
CM
809}
810
d352ac68
CM
811/*
812 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
813 * otherwise every leaf in the btree is read and defragged.
814 */
e9d0b13b
CM
815int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
816{
817 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 818 struct btrfs_trans_handle *trans;
8929ecfa 819 int ret;
d3c2fdcf 820 unsigned long nr;
e9d0b13b 821
8929ecfa 822 if (xchg(&root->defrag_running, 1))
e9d0b13b 823 return 0;
8929ecfa 824
6b80053d 825 while (1) {
8929ecfa
YZ
826 trans = btrfs_start_transaction(root, 0);
827 if (IS_ERR(trans))
828 return PTR_ERR(trans);
829
e9d0b13b 830 ret = btrfs_defrag_leaves(trans, root, cacheonly);
8929ecfa 831
d3c2fdcf 832 nr = trans->blocks_used;
e9d0b13b 833 btrfs_end_transaction(trans, root);
d3c2fdcf 834 btrfs_btree_balance_dirty(info->tree_root, nr);
e9d0b13b
CM
835 cond_resched();
836
3f157a2f 837 if (root->fs_info->closing || ret != -EAGAIN)
e9d0b13b
CM
838 break;
839 }
840 root->defrag_running = 0;
8929ecfa 841 return ret;
e9d0b13b
CM
842}
843
2c47e605 844#if 0
b7ec40d7
CM
845/*
846 * when dropping snapshots, we generate a ton of delayed refs, and it makes
847 * sense not to join the transaction while it is trying to flush the current
848 * queue of delayed refs out.
849 *
850 * This is used by the drop snapshot code only
851 */
852static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
853{
854 DEFINE_WAIT(wait);
855
856 mutex_lock(&info->trans_mutex);
857 while (info->running_transaction &&
858 info->running_transaction->delayed_refs.flushing) {
859 prepare_to_wait(&info->transaction_wait, &wait,
860 TASK_UNINTERRUPTIBLE);
861 mutex_unlock(&info->trans_mutex);
59bc5c75 862
b7ec40d7 863 schedule();
59bc5c75 864
b7ec40d7
CM
865 mutex_lock(&info->trans_mutex);
866 finish_wait(&info->transaction_wait, &wait);
867 }
868 mutex_unlock(&info->trans_mutex);
869 return 0;
870}
871
d352ac68
CM
872/*
873 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
874 * all of them
875 */
5d4f98a2 876int btrfs_drop_dead_root(struct btrfs_root *root)
0f7d52f4 877{
0f7d52f4 878 struct btrfs_trans_handle *trans;
5d4f98a2 879 struct btrfs_root *tree_root = root->fs_info->tree_root;
d3c2fdcf 880 unsigned long nr;
5d4f98a2 881 int ret;
58176a96 882
5d4f98a2
YZ
883 while (1) {
884 /*
885 * we don't want to jump in and create a bunch of
886 * delayed refs if the transaction is starting to close
887 */
888 wait_transaction_pre_flush(tree_root->fs_info);
889 trans = btrfs_start_transaction(tree_root, 1);
a2135011 890
5d4f98a2
YZ
891 /*
892 * we've joined a transaction, make sure it isn't
893 * closing right now
894 */
895 if (trans->transaction->delayed_refs.flushing) {
896 btrfs_end_transaction(trans, tree_root);
897 continue;
9f3a7427 898 }
58176a96 899
5d4f98a2
YZ
900 ret = btrfs_drop_snapshot(trans, root);
901 if (ret != -EAGAIN)
902 break;
a2135011 903
5d4f98a2
YZ
904 ret = btrfs_update_root(trans, tree_root,
905 &root->root_key,
906 &root->root_item);
907 if (ret)
54aa1f4d 908 break;
bcc63abb 909
d3c2fdcf 910 nr = trans->blocks_used;
0f7d52f4
CM
911 ret = btrfs_end_transaction(trans, tree_root);
912 BUG_ON(ret);
5eda7b5e 913
d3c2fdcf 914 btrfs_btree_balance_dirty(tree_root, nr);
4dc11904 915 cond_resched();
0f7d52f4 916 }
5d4f98a2
YZ
917 BUG_ON(ret);
918
919 ret = btrfs_del_root(trans, tree_root, &root->root_key);
920 BUG_ON(ret);
921
922 nr = trans->blocks_used;
923 ret = btrfs_end_transaction(trans, tree_root);
924 BUG_ON(ret);
925
926 free_extent_buffer(root->node);
927 free_extent_buffer(root->commit_root);
928 kfree(root);
929
930 btrfs_btree_balance_dirty(tree_root, nr);
54aa1f4d 931 return ret;
0f7d52f4 932}
2c47e605 933#endif
0f7d52f4 934
d352ac68
CM
935/*
936 * new snapshots need to be created at a very specific time in the
937 * transaction commit. This does the actual creation
938 */
80b6794d 939static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
940 struct btrfs_fs_info *fs_info,
941 struct btrfs_pending_snapshot *pending)
942{
943 struct btrfs_key key;
80b6794d 944 struct btrfs_root_item *new_root_item;
3063d29f
CM
945 struct btrfs_root *tree_root = fs_info->tree_root;
946 struct btrfs_root *root = pending->root;
6bdb72de
SW
947 struct btrfs_root *parent_root;
948 struct inode *parent_inode;
6a912213 949 struct dentry *parent;
a22285a6 950 struct dentry *dentry;
3063d29f 951 struct extent_buffer *tmp;
925baedd 952 struct extent_buffer *old;
3063d29f 953 int ret;
d68fc57b 954 u64 to_reserve = 0;
6bdb72de 955 u64 index = 0;
a22285a6 956 u64 objectid;
b83cc969 957 u64 root_flags;
3063d29f 958
80b6794d
CM
959 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
960 if (!new_root_item) {
a22285a6 961 pending->error = -ENOMEM;
80b6794d
CM
962 goto fail;
963 }
a22285a6 964
3063d29f 965 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
a22285a6
YZ
966 if (ret) {
967 pending->error = ret;
3063d29f 968 goto fail;
a22285a6 969 }
3063d29f 970
3fd0a558 971 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
d68fc57b
YZ
972 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
973
974 if (to_reserve > 0) {
975 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
8bb8ab2e 976 to_reserve);
d68fc57b
YZ
977 if (ret) {
978 pending->error = ret;
979 goto fail;
980 }
981 }
982
3063d29f 983 key.objectid = objectid;
a22285a6
YZ
984 key.offset = (u64)-1;
985 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 986
a22285a6 987 trans->block_rsv = &pending->block_rsv;
3de4586c 988
a22285a6 989 dentry = pending->dentry;
6a912213
JB
990 parent = dget_parent(dentry);
991 parent_inode = parent->d_inode;
a22285a6 992 parent_root = BTRFS_I(parent_inode)->root;
a4abeea4 993 btrfs_record_root_in_trans(trans, parent_root);
a22285a6 994
3063d29f
CM
995 /*
996 * insert the directory item
997 */
3de4586c 998 ret = btrfs_set_inode_index(parent_inode, &index);
6bdb72de 999 BUG_ON(ret);
0660b5af 1000 ret = btrfs_insert_dir_item(trans, parent_root,
a22285a6
YZ
1001 dentry->d_name.name, dentry->d_name.len,
1002 parent_inode->i_ino, &key,
1003 BTRFS_FT_DIR, index);
6bdb72de 1004 BUG_ON(ret);
0660b5af 1005
a22285a6
YZ
1006 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1007 dentry->d_name.len * 2);
52c26179
YZ
1008 ret = btrfs_update_inode(trans, parent_root, parent_inode);
1009 BUG_ON(ret);
1010
a4abeea4 1011 btrfs_record_root_in_trans(trans, root);
6bdb72de
SW
1012 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1013 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1014 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1015
b83cc969
LZ
1016 root_flags = btrfs_root_flags(new_root_item);
1017 if (pending->readonly)
1018 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1019 else
1020 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1021 btrfs_set_root_flags(new_root_item, root_flags);
1022
6bdb72de
SW
1023 old = btrfs_lock_root_node(root);
1024 btrfs_cow_block(trans, root, old, NULL, 0, &old);
1025 btrfs_set_lock_blocking(old);
1026
1027 btrfs_copy_root(trans, root, old, &tmp, objectid);
1028 btrfs_tree_unlock(old);
1029 free_extent_buffer(old);
1030
1031 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1032 /* record when the snapshot was created in key.offset */
1033 key.offset = trans->transid;
1034 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1035 btrfs_tree_unlock(tmp);
1036 free_extent_buffer(tmp);
a22285a6 1037 BUG_ON(ret);
6bdb72de 1038
a22285a6
YZ
1039 /*
1040 * insert root back/forward references
1041 */
1042 ret = btrfs_add_root_ref(trans, tree_root, objectid,
0660b5af 1043 parent_root->root_key.objectid,
a22285a6
YZ
1044 parent_inode->i_ino, index,
1045 dentry->d_name.name, dentry->d_name.len);
0660b5af 1046 BUG_ON(ret);
6a912213 1047 dput(parent);
0660b5af 1048
a22285a6
YZ
1049 key.offset = (u64)-1;
1050 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1051 BUG_ON(IS_ERR(pending->snap));
d68fc57b 1052
3fd0a558 1053 btrfs_reloc_post_snapshot(trans, pending);
d68fc57b 1054 btrfs_orphan_post_snapshot(trans, pending);
3063d29f 1055fail:
6bdb72de 1056 kfree(new_root_item);
a22285a6
YZ
1057 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1058 return 0;
3063d29f
CM
1059}
1060
d352ac68
CM
1061/*
1062 * create all the snapshots we've scheduled for creation
1063 */
80b6794d
CM
1064static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1065 struct btrfs_fs_info *fs_info)
3de4586c
CM
1066{
1067 struct btrfs_pending_snapshot *pending;
1068 struct list_head *head = &trans->transaction->pending_snapshots;
3de4586c
CM
1069 int ret;
1070
c6e30871 1071 list_for_each_entry(pending, head, list) {
3de4586c
CM
1072 ret = create_pending_snapshot(trans, fs_info, pending);
1073 BUG_ON(ret);
1074 }
1075 return 0;
1076}
1077
5d4f98a2
YZ
1078static void update_super_roots(struct btrfs_root *root)
1079{
1080 struct btrfs_root_item *root_item;
1081 struct btrfs_super_block *super;
1082
1083 super = &root->fs_info->super_copy;
1084
1085 root_item = &root->fs_info->chunk_root->root_item;
1086 super->chunk_root = root_item->bytenr;
1087 super->chunk_root_generation = root_item->generation;
1088 super->chunk_root_level = root_item->level;
1089
1090 root_item = &root->fs_info->tree_root->root_item;
1091 super->root = root_item->bytenr;
1092 super->generation = root_item->generation;
1093 super->root_level = root_item->level;
0af3d00b
JB
1094 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1095 super->cache_generation = root_item->generation;
5d4f98a2
YZ
1096}
1097
f36f3042
CM
1098int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1099{
1100 int ret = 0;
a4abeea4 1101 spin_lock(&info->trans_lock);
f36f3042
CM
1102 if (info->running_transaction)
1103 ret = info->running_transaction->in_commit;
a4abeea4 1104 spin_unlock(&info->trans_lock);
f36f3042
CM
1105 return ret;
1106}
1107
8929ecfa
YZ
1108int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1109{
1110 int ret = 0;
a4abeea4 1111 spin_lock(&info->trans_lock);
8929ecfa
YZ
1112 if (info->running_transaction)
1113 ret = info->running_transaction->blocked;
a4abeea4 1114 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1115 return ret;
1116}
1117
bb9c12c9
SW
1118/*
1119 * wait for the current transaction commit to start and block subsequent
1120 * transaction joins
1121 */
1122static void wait_current_trans_commit_start(struct btrfs_root *root,
1123 struct btrfs_transaction *trans)
1124{
1125 DEFINE_WAIT(wait);
1126
1127 if (trans->in_commit)
1128 return;
1129
1130 while (1) {
1131 prepare_to_wait(&root->fs_info->transaction_blocked_wait, &wait,
1132 TASK_UNINTERRUPTIBLE);
1133 if (trans->in_commit) {
1134 finish_wait(&root->fs_info->transaction_blocked_wait,
1135 &wait);
1136 break;
1137 }
bb9c12c9 1138 schedule();
bb9c12c9
SW
1139 finish_wait(&root->fs_info->transaction_blocked_wait, &wait);
1140 }
1141}
1142
1143/*
1144 * wait for the current transaction to start and then become unblocked.
1145 * caller holds ref.
1146 */
1147static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1148 struct btrfs_transaction *trans)
1149{
1150 DEFINE_WAIT(wait);
1151
1152 if (trans->commit_done || (trans->in_commit && !trans->blocked))
1153 return;
1154
1155 while (1) {
1156 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
1157 TASK_UNINTERRUPTIBLE);
1158 if (trans->commit_done ||
1159 (trans->in_commit && !trans->blocked)) {
1160 finish_wait(&root->fs_info->transaction_wait,
1161 &wait);
1162 break;
1163 }
bb9c12c9 1164 schedule();
bb9c12c9
SW
1165 finish_wait(&root->fs_info->transaction_wait,
1166 &wait);
1167 }
1168}
1169
1170/*
1171 * commit transactions asynchronously. once btrfs_commit_transaction_async
1172 * returns, any subsequent transaction will not be allowed to join.
1173 */
1174struct btrfs_async_commit {
1175 struct btrfs_trans_handle *newtrans;
1176 struct btrfs_root *root;
1177 struct delayed_work work;
1178};
1179
1180static void do_async_commit(struct work_struct *work)
1181{
1182 struct btrfs_async_commit *ac =
1183 container_of(work, struct btrfs_async_commit, work.work);
1184
1185 btrfs_commit_transaction(ac->newtrans, ac->root);
1186 kfree(ac);
1187}
1188
1189int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1190 struct btrfs_root *root,
1191 int wait_for_unblock)
1192{
1193 struct btrfs_async_commit *ac;
1194 struct btrfs_transaction *cur_trans;
1195
1196 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1197 if (!ac)
1198 return -ENOMEM;
bb9c12c9
SW
1199
1200 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1201 ac->root = root;
7a7eaa40 1202 ac->newtrans = btrfs_join_transaction(root);
3612b495
TI
1203 if (IS_ERR(ac->newtrans)) {
1204 int err = PTR_ERR(ac->newtrans);
1205 kfree(ac);
1206 return err;
1207 }
bb9c12c9
SW
1208
1209 /* take transaction reference */
bb9c12c9 1210 cur_trans = trans->transaction;
13c5a93e 1211 atomic_inc(&cur_trans->use_count);
bb9c12c9
SW
1212
1213 btrfs_end_transaction(trans, root);
1214 schedule_delayed_work(&ac->work, 0);
1215
1216 /* wait for transaction to start and unblock */
bb9c12c9
SW
1217 if (wait_for_unblock)
1218 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1219 else
1220 wait_current_trans_commit_start(root, cur_trans);
1221 put_transaction(cur_trans);
bb9c12c9
SW
1222
1223 return 0;
1224}
1225
1226/*
1227 * btrfs_transaction state sequence:
1228 * in_commit = 0, blocked = 0 (initial)
1229 * in_commit = 1, blocked = 1
1230 * blocked = 0
1231 * commit_done = 1
1232 */
79154b1b
CM
1233int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1234 struct btrfs_root *root)
1235{
15ee9bc7 1236 unsigned long joined = 0;
79154b1b 1237 struct btrfs_transaction *cur_trans;
8fd17795 1238 struct btrfs_transaction *prev_trans = NULL;
79154b1b 1239 DEFINE_WAIT(wait);
15ee9bc7 1240 int ret;
89573b9c
CM
1241 int should_grow = 0;
1242 unsigned long now = get_seconds();
dccae999 1243 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
79154b1b 1244
5a3f23d5
CM
1245 btrfs_run_ordered_operations(root, 0);
1246
56bec294
CM
1247 /* make a pass through all the delayed refs we have so far
1248 * any runnings procs may add more while we are here
1249 */
1250 ret = btrfs_run_delayed_refs(trans, root, 0);
1251 BUG_ON(ret);
1252
a22285a6
YZ
1253 btrfs_trans_release_metadata(trans, root);
1254
b7ec40d7 1255 cur_trans = trans->transaction;
56bec294
CM
1256 /*
1257 * set the flushing flag so procs in this transaction have to
1258 * start sending their work down.
1259 */
b7ec40d7 1260 cur_trans->delayed_refs.flushing = 1;
56bec294 1261
c3e69d58 1262 ret = btrfs_run_delayed_refs(trans, root, 0);
56bec294
CM
1263 BUG_ON(ret);
1264
a4abeea4 1265 spin_lock(&cur_trans->commit_lock);
b7ec40d7 1266 if (cur_trans->in_commit) {
a4abeea4 1267 spin_unlock(&cur_trans->commit_lock);
13c5a93e 1268 atomic_inc(&cur_trans->use_count);
79154b1b 1269 btrfs_end_transaction(trans, root);
ccd467d6 1270
79154b1b
CM
1271 ret = wait_for_commit(root, cur_trans);
1272 BUG_ON(ret);
15ee9bc7 1273
79154b1b 1274 put_transaction(cur_trans);
15ee9bc7 1275
79154b1b
CM
1276 return 0;
1277 }
4313b399 1278
2c90e5d6 1279 trans->transaction->in_commit = 1;
f9295749 1280 trans->transaction->blocked = 1;
a4abeea4 1281 spin_unlock(&cur_trans->commit_lock);
bb9c12c9
SW
1282 wake_up(&root->fs_info->transaction_blocked_wait);
1283
a4abeea4 1284 spin_lock(&root->fs_info->trans_lock);
ccd467d6
CM
1285 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1286 prev_trans = list_entry(cur_trans->list.prev,
1287 struct btrfs_transaction, list);
1288 if (!prev_trans->commit_done) {
13c5a93e 1289 atomic_inc(&prev_trans->use_count);
a4abeea4 1290 spin_unlock(&root->fs_info->trans_lock);
ccd467d6
CM
1291
1292 wait_for_commit(root, prev_trans);
ccd467d6 1293
15ee9bc7 1294 put_transaction(prev_trans);
a4abeea4
JB
1295 } else {
1296 spin_unlock(&root->fs_info->trans_lock);
ccd467d6 1297 }
a4abeea4
JB
1298 } else {
1299 spin_unlock(&root->fs_info->trans_lock);
ccd467d6 1300 }
15ee9bc7 1301
89573b9c
CM
1302 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1303 should_grow = 1;
1304
15ee9bc7 1305 do {
7ea394f1 1306 int snap_pending = 0;
a4abeea4 1307
15ee9bc7 1308 joined = cur_trans->num_joined;
7ea394f1
YZ
1309 if (!list_empty(&trans->transaction->pending_snapshots))
1310 snap_pending = 1;
1311
2c90e5d6 1312 WARN_ON(cur_trans != trans->transaction);
15ee9bc7 1313
0bdb1db2 1314 if (flush_on_commit || snap_pending) {
24bbcf04
YZ
1315 btrfs_start_delalloc_inodes(root, 1);
1316 ret = btrfs_wait_ordered_extents(root, 0, 1);
ebecd3d9 1317 BUG_ON(ret);
7ea394f1
YZ
1318 }
1319
5a3f23d5
CM
1320 /*
1321 * rename don't use btrfs_join_transaction, so, once we
1322 * set the transaction to blocked above, we aren't going
1323 * to get any new ordered operations. We can safely run
1324 * it here and no for sure that nothing new will be added
1325 * to the list
1326 */
1327 btrfs_run_ordered_operations(root, 1);
1328
ed3b3d31
CM
1329 prepare_to_wait(&cur_trans->writer_wait, &wait,
1330 TASK_UNINTERRUPTIBLE);
1331
13c5a93e 1332 if (atomic_read(&cur_trans->num_writers) > 1)
99d16cbc
SW
1333 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1334 else if (should_grow)
1335 schedule_timeout(1);
15ee9bc7 1336
15ee9bc7 1337 finish_wait(&cur_trans->writer_wait, &wait);
a4abeea4
JB
1338 spin_lock(&root->fs_info->trans_lock);
1339 root->fs_info->trans_no_join = 1;
1340 spin_unlock(&root->fs_info->trans_lock);
13c5a93e 1341 } while (atomic_read(&cur_trans->num_writers) > 1 ||
89573b9c 1342 (should_grow && cur_trans->num_joined != joined));
15ee9bc7 1343
3063d29f
CM
1344 ret = create_pending_snapshots(trans, root->fs_info);
1345 BUG_ON(ret);
1346
56bec294
CM
1347 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1348 BUG_ON(ret);
1349
2c90e5d6 1350 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 1351
e02119d5
CM
1352 /* btrfs_commit_tree_roots is responsible for getting the
1353 * various roots consistent with each other. Every pointer
1354 * in the tree of tree roots has to point to the most up to date
1355 * root for every subvolume and other tree. So, we have to keep
1356 * the tree logging code from jumping in and changing any
1357 * of the trees.
1358 *
1359 * At this point in the commit, there can't be any tree-log
1360 * writers, but a little lower down we drop the trans mutex
1361 * and let new people in. By holding the tree_log_mutex
1362 * from now until after the super is written, we avoid races
1363 * with the tree-log code.
1364 */
1365 mutex_lock(&root->fs_info->tree_log_mutex);
1366
5d4f98a2 1367 ret = commit_fs_roots(trans, root);
54aa1f4d
CM
1368 BUG_ON(ret);
1369
5d4f98a2 1370 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
1371 * safe to free the root of tree log roots
1372 */
1373 btrfs_free_log_root_tree(trans, root->fs_info);
1374
5d4f98a2 1375 ret = commit_cowonly_roots(trans, root);
79154b1b 1376 BUG_ON(ret);
54aa1f4d 1377
11833d66
YZ
1378 btrfs_prepare_extent_commit(trans, root);
1379
78fae27e 1380 cur_trans = root->fs_info->running_transaction;
5d4f98a2
YZ
1381
1382 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1383 root->fs_info->tree_root->node);
817d52f8 1384 switch_commit_root(root->fs_info->tree_root);
5d4f98a2
YZ
1385
1386 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1387 root->fs_info->chunk_root->node);
817d52f8 1388 switch_commit_root(root->fs_info->chunk_root);
5d4f98a2
YZ
1389
1390 update_super_roots(root);
e02119d5
CM
1391
1392 if (!root->fs_info->log_root_recovering) {
1393 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1394 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1395 }
1396
a061fc8d
CM
1397 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1398 sizeof(root->fs_info->super_copy));
ccd467d6 1399
f9295749 1400 trans->transaction->blocked = 0;
a4abeea4
JB
1401 spin_lock(&root->fs_info->trans_lock);
1402 root->fs_info->running_transaction = NULL;
1403 root->fs_info->trans_no_join = 0;
1404 spin_unlock(&root->fs_info->trans_lock);
b7ec40d7 1405
f9295749 1406 wake_up(&root->fs_info->transaction_wait);
e6dcd2dc 1407
79154b1b
CM
1408 ret = btrfs_write_and_wait_transaction(trans, root);
1409 BUG_ON(ret);
a512bbf8 1410 write_ctree_super(trans, root, 0);
4313b399 1411
e02119d5
CM
1412 /*
1413 * the super is written, we can safely allow the tree-loggers
1414 * to go about their business
1415 */
1416 mutex_unlock(&root->fs_info->tree_log_mutex);
1417
11833d66 1418 btrfs_finish_extent_commit(trans, root);
4313b399 1419
2c90e5d6 1420 cur_trans->commit_done = 1;
b7ec40d7 1421
15ee9bc7 1422 root->fs_info->last_trans_committed = cur_trans->transid;
817d52f8 1423
2c90e5d6 1424 wake_up(&cur_trans->commit_wait);
3de4586c 1425
a4abeea4 1426 spin_lock(&root->fs_info->trans_lock);
13c5a93e 1427 list_del_init(&cur_trans->list);
a4abeea4
JB
1428 spin_unlock(&root->fs_info->trans_lock);
1429
78fae27e 1430 put_transaction(cur_trans);
79154b1b 1431 put_transaction(cur_trans);
58176a96 1432
1abe9b8a 1433 trace_btrfs_transaction_commit(root);
1434
9ed74f2d
JB
1435 if (current->journal_info == trans)
1436 current->journal_info = NULL;
1437
2c90e5d6 1438 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04
YZ
1439
1440 if (current != root->fs_info->transaction_kthread)
1441 btrfs_run_delayed_iputs(root);
1442
79154b1b
CM
1443 return ret;
1444}
1445
d352ac68
CM
1446/*
1447 * interface function to delete all the snapshots we have scheduled for deletion
1448 */
e9d0b13b
CM
1449int btrfs_clean_old_snapshots(struct btrfs_root *root)
1450{
5d4f98a2
YZ
1451 LIST_HEAD(list);
1452 struct btrfs_fs_info *fs_info = root->fs_info;
1453
a4abeea4 1454 spin_lock(&fs_info->trans_lock);
5d4f98a2 1455 list_splice_init(&fs_info->dead_roots, &list);
a4abeea4 1456 spin_unlock(&fs_info->trans_lock);
e9d0b13b 1457
5d4f98a2
YZ
1458 while (!list_empty(&list)) {
1459 root = list_entry(list.next, struct btrfs_root, root_list);
76dda93c
YZ
1460 list_del(&root->root_list);
1461
1462 if (btrfs_header_backref_rev(root->node) <
1463 BTRFS_MIXED_BACKREF_REV)
3fd0a558 1464 btrfs_drop_snapshot(root, NULL, 0);
76dda93c 1465 else
3fd0a558 1466 btrfs_drop_snapshot(root, NULL, 1);
e9d0b13b
CM
1467 }
1468 return 0;
1469}