btrfs: use chunk_root in find_free_extent_update_loop
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
602cbe91 13#include "misc.h"
79154b1b
CM
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
925baedd 17#include "locking.h"
e02119d5 18#include "tree-log.h"
733f4fbb 19#include "volumes.h"
8dabb742 20#include "dev-replace.h"
fcebe456 21#include "qgroup.h"
aac0023c 22#include "block-group.h"
9c343784 23#include "space-info.h"
d3575156 24#include "zoned.h"
79154b1b 25
0f7d52f4
CM
26#define BTRFS_ROOT_TRANS_TAG 0
27
61c047b5
QW
28/*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
e8c9f186 99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 100 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 103 __TRANS_ATTACH |
a6d155d2
FM
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
bcf3a3e7 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
a6d155d2
FM
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
bcf3a3e7 116 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
117 __TRANS_ATTACH |
118 __TRANS_JOIN |
a6d155d2
FM
119 __TRANS_JOIN_NOLOCK |
120 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
121};
122
724e2315 123void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 124{
9b64f57d
ER
125 WARN_ON(refcount_read(&transaction->use_count) == 0);
126 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 127 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
128 WARN_ON(!RB_EMPTY_ROOT(
129 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
130 WARN_ON(!RB_EMPTY_ROOT(
131 &transaction->delayed_refs.dirty_extent_root));
1262133b 132 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
133 btrfs_err(transaction->fs_info,
134 "pending csums is %llu",
135 transaction->delayed_refs.pending_csums);
7785a663
FM
136 /*
137 * If any block groups are found in ->deleted_bgs then it's
138 * because the transaction was aborted and a commit did not
139 * happen (things failed before writing the new superblock
140 * and calling btrfs_finish_extent_commit()), so we can not
141 * discard the physical locations of the block groups.
142 */
143 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 144 struct btrfs_block_group *cache;
7785a663
FM
145
146 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 147 struct btrfs_block_group,
7785a663
FM
148 bg_list);
149 list_del_init(&cache->bg_list);
6b7304af 150 btrfs_unfreeze_block_group(cache);
7785a663
FM
151 btrfs_put_block_group(cache);
152 }
bbbf7243 153 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 154 kfree(transaction);
78fae27e 155 }
79154b1b
CM
156}
157
889bfa39 158static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 159{
889bfa39 160 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 161 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8 162 struct btrfs_root *root, *tmp;
27d56e62 163 struct btrfs_caching_control *caching_ctl, *next;
9e351cc8 164
dfba78dc
FM
165 /*
166 * At this point no one can be using this transaction to modify any tree
167 * and no one can start another transaction to modify any tree either.
168 */
169 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
170
9e351cc8 171 down_write(&fs_info->commit_root_sem);
889bfa39 172 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
173 dirty_list) {
174 list_del_init(&root->dirty_list);
175 free_extent_buffer(root->commit_root);
176 root->commit_root = btrfs_root_node(root);
41e7acd3 177 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 178 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 179 }
2b9dbef2
JB
180
181 /* We can free old roots now. */
889bfa39
JB
182 spin_lock(&cur_trans->dropped_roots_lock);
183 while (!list_empty(&cur_trans->dropped_roots)) {
184 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
185 struct btrfs_root, root_list);
186 list_del_init(&root->root_list);
889bfa39
JB
187 spin_unlock(&cur_trans->dropped_roots_lock);
188 btrfs_free_log(trans, root);
2b9dbef2 189 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 190 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 191 }
889bfa39 192 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62
JB
193
194 /*
195 * We have to update the last_byte_to_unpin under the commit_root_sem,
196 * at the same time we swap out the commit roots.
197 *
198 * This is because we must have a real view of the last spot the caching
199 * kthreads were while caching. Consider the following views of the
200 * extent tree for a block group
201 *
202 * commit root
203 * +----+----+----+----+----+----+----+
204 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
205 * +----+----+----+----+----+----+----+
206 * 0 1 2 3 4 5 6 7
207 *
208 * new commit root
209 * +----+----+----+----+----+----+----+
210 * | | | |\\\\| | |\\\\|
211 * +----+----+----+----+----+----+----+
212 * 0 1 2 3 4 5 6 7
213 *
214 * If the cache_ctl->progress was at 3, then we are only allowed to
215 * unpin [0,1) and [2,3], because the caching thread has already
216 * processed those extents. We are not allowed to unpin [5,6), because
217 * the caching thread will re-start it's search from 3, and thus find
218 * the hole from [4,6) to add to the free space cache.
219 */
bbb86a37 220 spin_lock(&fs_info->block_group_cache_lock);
27d56e62
JB
221 list_for_each_entry_safe(caching_ctl, next,
222 &fs_info->caching_block_groups, list) {
223 struct btrfs_block_group *cache = caching_ctl->block_group;
224
225 if (btrfs_block_group_done(cache)) {
226 cache->last_byte_to_unpin = (u64)-1;
227 list_del_init(&caching_ctl->list);
228 btrfs_put_caching_control(caching_ctl);
229 } else {
230 cache->last_byte_to_unpin = caching_ctl->progress;
231 }
232 }
bbb86a37 233 spin_unlock(&fs_info->block_group_cache_lock);
9e351cc8 234 up_write(&fs_info->commit_root_sem);
817d52f8
JB
235}
236
0860adfd
MX
237static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
238 unsigned int type)
239{
240 if (type & TRANS_EXTWRITERS)
241 atomic_inc(&trans->num_extwriters);
242}
243
244static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
245 unsigned int type)
246{
247 if (type & TRANS_EXTWRITERS)
248 atomic_dec(&trans->num_extwriters);
249}
250
251static inline void extwriter_counter_init(struct btrfs_transaction *trans,
252 unsigned int type)
253{
254 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
255}
256
257static inline int extwriter_counter_read(struct btrfs_transaction *trans)
258{
259 return atomic_read(&trans->num_extwriters);
178260b2
MX
260}
261
fb6dea26 262/*
79bd3712
FM
263 * To be called after doing the chunk btree updates right after allocating a new
264 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
265 * chunk after all chunk btree updates and after finishing the second phase of
266 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
267 * group had its chunk item insertion delayed to the second phase.
fb6dea26
JB
268 */
269void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
270{
271 struct btrfs_fs_info *fs_info = trans->fs_info;
272
273 if (!trans->chunk_bytes_reserved)
274 return;
275
fb6dea26 276 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 277 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
278 trans->chunk_bytes_reserved = 0;
279}
280
d352ac68
CM
281/*
282 * either allocate a new transaction or hop into the existing one
283 */
2ff7e61e
JM
284static noinline int join_transaction(struct btrfs_fs_info *fs_info,
285 unsigned int type)
79154b1b
CM
286{
287 struct btrfs_transaction *cur_trans;
a4abeea4 288
19ae4e81 289 spin_lock(&fs_info->trans_lock);
d43317dc 290loop:
49b25e05 291 /* The file system has been taken offline. No new transactions. */
84961539 292 if (BTRFS_FS_ERROR(fs_info)) {
19ae4e81 293 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
294 return -EROFS;
295 }
296
19ae4e81 297 cur_trans = fs_info->running_transaction;
a4abeea4 298 if (cur_trans) {
bf31f87f 299 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 300 spin_unlock(&fs_info->trans_lock);
49b25e05 301 return cur_trans->aborted;
871383be 302 }
4a9d8bde 303 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
304 spin_unlock(&fs_info->trans_lock);
305 return -EBUSY;
306 }
9b64f57d 307 refcount_inc(&cur_trans->use_count);
13c5a93e 308 atomic_inc(&cur_trans->num_writers);
0860adfd 309 extwriter_counter_inc(cur_trans, type);
19ae4e81 310 spin_unlock(&fs_info->trans_lock);
a4abeea4 311 return 0;
79154b1b 312 }
19ae4e81 313 spin_unlock(&fs_info->trans_lock);
a4abeea4 314
354aa0fb
MX
315 /*
316 * If we are ATTACH, we just want to catch the current transaction,
317 * and commit it. If there is no transaction, just return ENOENT.
318 */
319 if (type == TRANS_ATTACH)
320 return -ENOENT;
321
4a9d8bde
MX
322 /*
323 * JOIN_NOLOCK only happens during the transaction commit, so
324 * it is impossible that ->running_transaction is NULL
325 */
326 BUG_ON(type == TRANS_JOIN_NOLOCK);
327
4b5faeac 328 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
329 if (!cur_trans)
330 return -ENOMEM;
d43317dc 331
19ae4e81
JS
332 spin_lock(&fs_info->trans_lock);
333 if (fs_info->running_transaction) {
d43317dc
CM
334 /*
335 * someone started a transaction after we unlocked. Make sure
4a9d8bde 336 * to redo the checks above
d43317dc 337 */
4b5faeac 338 kfree(cur_trans);
d43317dc 339 goto loop;
84961539 340 } else if (BTRFS_FS_ERROR(fs_info)) {
e4b50e14 341 spin_unlock(&fs_info->trans_lock);
4b5faeac 342 kfree(cur_trans);
7b8b92af 343 return -EROFS;
79154b1b 344 }
d43317dc 345
ab8d0fc4 346 cur_trans->fs_info = fs_info;
48778179
FM
347 atomic_set(&cur_trans->pending_ordered, 0);
348 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 349 atomic_set(&cur_trans->num_writers, 1);
0860adfd 350 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
351 init_waitqueue_head(&cur_trans->writer_wait);
352 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 353 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
354 /*
355 * One for this trans handle, one so it will live on until we
356 * commit the transaction.
357 */
9b64f57d 358 refcount_set(&cur_trans->use_count, 2);
3204d33c 359 cur_trans->flags = 0;
afd48513 360 cur_trans->start_time = ktime_get_seconds();
a4abeea4 361
a099d0fd
AM
362 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
363
5c9d028b 364 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 365 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 366 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
367
368 /*
369 * although the tree mod log is per file system and not per transaction,
370 * the log must never go across transaction boundaries.
371 */
372 smp_mb();
31b1a2bd 373 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 374 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 375 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 376 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 377 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 378
a4abeea4
JB
379 spin_lock_init(&cur_trans->delayed_refs.lock);
380
381 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 382 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 383 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 384 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 385 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 386 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 387 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 388 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 389 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 390 spin_lock_init(&cur_trans->dropped_roots_lock);
d3575156
NA
391 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
392 spin_lock_init(&cur_trans->releasing_ebs_lock);
19ae4e81 393 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 394 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
43eb5f29 395 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
fe119a6e
NB
396 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
397 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
398 fs_info->generation++;
399 cur_trans->transid = fs_info->generation;
400 fs_info->running_transaction = cur_trans;
49b25e05 401 cur_trans->aborted = 0;
19ae4e81 402 spin_unlock(&fs_info->trans_lock);
15ee9bc7 403
79154b1b
CM
404 return 0;
405}
406
d352ac68 407/*
92a7cc42
QW
408 * This does all the record keeping required to make sure that a shareable root
409 * is properly recorded in a given transaction. This is required to make sure
410 * the old root from before we joined the transaction is deleted when the
411 * transaction commits.
d352ac68 412 */
7585717f 413static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
414 struct btrfs_root *root,
415 int force)
6702ed49 416{
0b246afa 417 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 418 int ret = 0;
0b246afa 419
92a7cc42 420 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 421 root->last_trans < trans->transid) || force) {
0b246afa 422 WARN_ON(root == fs_info->extent_root);
4d31778a 423 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 424
7585717f 425 /*
27cdeb70 426 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
427 * we have the reloc mutex held now, so there
428 * is only one writer in this function
429 */
27cdeb70 430 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 431
27cdeb70 432 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
433 * they find our root->last_trans update
434 */
435 smp_wmb();
436
0b246afa 437 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 438 if (root->last_trans == trans->transid && !force) {
0b246afa 439 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
440 return 0;
441 }
0b246afa
JM
442 radix_tree_tag_set(&fs_info->fs_roots_radix,
443 (unsigned long)root->root_key.objectid,
444 BTRFS_ROOT_TRANS_TAG);
445 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
446 root->last_trans = trans->transid;
447
448 /* this is pretty tricky. We don't want to
449 * take the relocation lock in btrfs_record_root_in_trans
450 * unless we're really doing the first setup for this root in
451 * this transaction.
452 *
453 * Normally we'd use root->last_trans as a flag to decide
454 * if we want to take the expensive mutex.
455 *
456 * But, we have to set root->last_trans before we
457 * init the relocation root, otherwise, we trip over warnings
458 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 459 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
460 * fixing up the reloc trees and everyone must wait.
461 *
462 * When this is zero, they can trust root->last_trans and fly
463 * through btrfs_record_root_in_trans without having to take the
464 * lock. smp_wmb() makes sure that all the writes above are
465 * done before we pop in the zero below
466 */
03a7e111 467 ret = btrfs_init_reloc_root(trans, root);
c7548af6 468 smp_mb__before_atomic();
27cdeb70 469 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 470 }
03a7e111 471 return ret;
5d4f98a2 472}
bcc63abb 473
7585717f 474
2b9dbef2
JB
475void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
476 struct btrfs_root *root)
477{
0b246afa 478 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
479 struct btrfs_transaction *cur_trans = trans->transaction;
480
481 /* Add ourselves to the transaction dropped list */
482 spin_lock(&cur_trans->dropped_roots_lock);
483 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
484 spin_unlock(&cur_trans->dropped_roots_lock);
485
486 /* Make sure we don't try to update the root at commit time */
0b246afa
JM
487 spin_lock(&fs_info->fs_roots_radix_lock);
488 radix_tree_tag_clear(&fs_info->fs_roots_radix,
2b9dbef2
JB
489 (unsigned long)root->root_key.objectid,
490 BTRFS_ROOT_TRANS_TAG);
0b246afa 491 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
492}
493
7585717f
CM
494int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
495 struct btrfs_root *root)
496{
0b246afa 497 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 498 int ret;
0b246afa 499
92a7cc42 500 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
501 return 0;
502
503 /*
27cdeb70 504 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
505 * and barriers
506 */
507 smp_rmb();
508 if (root->last_trans == trans->transid &&
27cdeb70 509 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
510 return 0;
511
0b246afa 512 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 513 ret = record_root_in_trans(trans, root, 0);
0b246afa 514 mutex_unlock(&fs_info->reloc_mutex);
7585717f 515
1409e6cc 516 return ret;
7585717f
CM
517}
518
4a9d8bde
MX
519static inline int is_transaction_blocked(struct btrfs_transaction *trans)
520{
3296bf56 521 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 522 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 523 !TRANS_ABORTED(trans));
4a9d8bde
MX
524}
525
d352ac68
CM
526/* wait for commit against the current transaction to become unblocked
527 * when this is done, it is safe to start a new transaction, but the current
528 * transaction might not be fully on disk.
529 */
2ff7e61e 530static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 531{
f9295749 532 struct btrfs_transaction *cur_trans;
79154b1b 533
0b246afa
JM
534 spin_lock(&fs_info->trans_lock);
535 cur_trans = fs_info->running_transaction;
4a9d8bde 536 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 537 refcount_inc(&cur_trans->use_count);
0b246afa 538 spin_unlock(&fs_info->trans_lock);
72d63ed6 539
0b246afa 540 wait_event(fs_info->transaction_wait,
501407aa 541 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 542 TRANS_ABORTED(cur_trans));
724e2315 543 btrfs_put_transaction(cur_trans);
a4abeea4 544 } else {
0b246afa 545 spin_unlock(&fs_info->trans_lock);
f9295749 546 }
37d1aeee
CM
547}
548
2ff7e61e 549static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 550{
0b246afa 551 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
552 return 0;
553
92e2f7e3 554 if (type == TRANS_START)
a22285a6 555 return 1;
a4abeea4 556
a22285a6
YZ
557 return 0;
558}
559
20dd2cbf
MX
560static inline bool need_reserve_reloc_root(struct btrfs_root *root)
561{
0b246afa
JM
562 struct btrfs_fs_info *fs_info = root->fs_info;
563
564 if (!fs_info->reloc_ctl ||
92a7cc42 565 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
566 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
567 root->reloc_root)
568 return false;
569
570 return true;
571}
572
08e007d2 573static struct btrfs_trans_handle *
5aed1dd8 574start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
575 unsigned int type, enum btrfs_reserve_flush_enum flush,
576 bool enforce_qgroups)
37d1aeee 577{
0b246afa 578 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 579 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
580 struct btrfs_trans_handle *h;
581 struct btrfs_transaction *cur_trans;
b5009945 582 u64 num_bytes = 0;
c5567237 583 u64 qgroup_reserved = 0;
20dd2cbf 584 bool reloc_reserved = false;
9c343784 585 bool do_chunk_alloc = false;
20dd2cbf 586 int ret;
acce952b 587
84961539 588 if (BTRFS_FS_ERROR(fs_info))
acce952b 589 return ERR_PTR(-EROFS);
2a1eb461 590
46c4e71e 591 if (current->journal_info) {
0860adfd 592 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 593 h = current->journal_info;
b50fff81
DS
594 refcount_inc(&h->use_count);
595 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
596 h->orig_rsv = h->block_rsv;
597 h->block_rsv = NULL;
598 goto got_it;
599 }
b5009945
JB
600
601 /*
602 * Do the reservation before we join the transaction so we can do all
603 * the appropriate flushing if need be.
604 */
003d7c59 605 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
606 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
607 u64 delayed_refs_bytes = 0;
608
0b246afa 609 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
610 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
611 enforce_qgroups);
7174109c
QW
612 if (ret)
613 return ERR_PTR(ret);
c5567237 614
ba2c4d4e
JB
615 /*
616 * We want to reserve all the bytes we may need all at once, so
617 * we only do 1 enospc flushing cycle per transaction start. We
618 * accomplish this by simply assuming we'll do 2 x num_items
619 * worth of delayed refs updates in this trans handle, and
620 * refill that amount for whatever is missing in the reserve.
621 */
2bd36e7b 622 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614
JB
623 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
624 delayed_refs_rsv->full == 0) {
ba2c4d4e
JB
625 delayed_refs_bytes = num_bytes;
626 num_bytes <<= 1;
627 }
628
20dd2cbf
MX
629 /*
630 * Do the reservation for the relocation root creation
631 */
ee39b432 632 if (need_reserve_reloc_root(root)) {
0b246afa 633 num_bytes += fs_info->nodesize;
20dd2cbf
MX
634 reloc_reserved = true;
635 }
636
9270501c 637 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
ba2c4d4e
JB
638 if (ret)
639 goto reserve_fail;
640 if (delayed_refs_bytes) {
641 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
642 delayed_refs_bytes);
643 num_bytes -= delayed_refs_bytes;
644 }
9c343784
JB
645
646 if (rsv->space_info->force_alloc)
647 do_chunk_alloc = true;
ba2c4d4e
JB
648 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
649 !delayed_refs_rsv->full) {
650 /*
651 * Some people call with btrfs_start_transaction(root, 0)
652 * because they can be throttled, but have some other mechanism
653 * for reserving space. We still want these guys to refill the
654 * delayed block_rsv so just add 1 items worth of reservation
655 * here.
656 */
657 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 658 if (ret)
843fcf35 659 goto reserve_fail;
b5009945 660 }
a22285a6 661again:
f2f767e7 662 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
663 if (!h) {
664 ret = -ENOMEM;
665 goto alloc_fail;
666 }
37d1aeee 667
98114659
JB
668 /*
669 * If we are JOIN_NOLOCK we're already committing a transaction and
670 * waiting on this guy, so we don't need to do the sb_start_intwrite
671 * because we're already holding a ref. We need this because we could
672 * have raced in and did an fsync() on a file which can kick a commit
673 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
674 *
675 * If we are ATTACH, it means we just want to catch the current
676 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 677 */
0860adfd 678 if (type & __TRANS_FREEZABLE)
0b246afa 679 sb_start_intwrite(fs_info->sb);
b2b5ef5c 680
2ff7e61e
JM
681 if (may_wait_transaction(fs_info, type))
682 wait_current_trans(fs_info);
a22285a6 683
a4abeea4 684 do {
2ff7e61e 685 ret = join_transaction(fs_info, type);
178260b2 686 if (ret == -EBUSY) {
2ff7e61e 687 wait_current_trans(fs_info);
a6d155d2
FM
688 if (unlikely(type == TRANS_ATTACH ||
689 type == TRANS_JOIN_NOSTART))
178260b2
MX
690 ret = -ENOENT;
691 }
a4abeea4
JB
692 } while (ret == -EBUSY);
693
a43f7f82 694 if (ret < 0)
843fcf35 695 goto join_fail;
0f7d52f4 696
0b246afa 697 cur_trans = fs_info->running_transaction;
a22285a6
YZ
698
699 h->transid = cur_trans->transid;
700 h->transaction = cur_trans;
b50fff81 701 refcount_set(&h->use_count, 1);
64b63580 702 h->fs_info = root->fs_info;
7174109c 703
a698d075 704 h->type = type;
ea658bad 705 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 706
a22285a6 707 smp_mb();
3296bf56 708 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 709 may_wait_transaction(fs_info, type)) {
abdd2e80 710 current->journal_info = h;
3a45bb20 711 btrfs_commit_transaction(h);
a22285a6
YZ
712 goto again;
713 }
714
b5009945 715 if (num_bytes) {
0b246afa 716 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 717 h->transid, num_bytes, 1);
0b246afa 718 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 719 h->bytes_reserved = num_bytes;
20dd2cbf 720 h->reloc_reserved = reloc_reserved;
a22285a6 721 }
9ed74f2d 722
2a1eb461 723got_it:
bcf3a3e7 724 if (!current->journal_info)
a22285a6 725 current->journal_info = h;
fcc99734 726
9c343784
JB
727 /*
728 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
729 * ALLOC_FORCE the first run through, and then we won't allocate for
730 * anybody else who races in later. We don't care about the return
731 * value here.
732 */
733 if (do_chunk_alloc && num_bytes) {
734 u64 flags = h->block_rsv->space_info->flags;
735
736 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
737 CHUNK_ALLOC_NO_FORCE);
738 }
739
fcc99734
QW
740 /*
741 * btrfs_record_root_in_trans() needs to alloc new extents, and may
742 * call btrfs_join_transaction() while we're also starting a
743 * transaction.
744 *
745 * Thus it need to be called after current->journal_info initialized,
746 * or we can deadlock.
747 */
68075ea8
JB
748 ret = btrfs_record_root_in_trans(h, root);
749 if (ret) {
750 /*
751 * The transaction handle is fully initialized and linked with
752 * other structures so it needs to be ended in case of errors,
753 * not just freed.
754 */
755 btrfs_end_transaction(h);
756 return ERR_PTR(ret);
757 }
fcc99734 758
79154b1b 759 return h;
843fcf35
MX
760
761join_fail:
0860adfd 762 if (type & __TRANS_FREEZABLE)
0b246afa 763 sb_end_intwrite(fs_info->sb);
843fcf35
MX
764 kmem_cache_free(btrfs_trans_handle_cachep, h);
765alloc_fail:
766 if (num_bytes)
2ff7e61e 767 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 768 num_bytes, NULL);
843fcf35 769reserve_fail:
733e03a0 770 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 771 return ERR_PTR(ret);
79154b1b
CM
772}
773
f9295749 774struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 775 unsigned int num_items)
f9295749 776{
08e007d2 777 return start_transaction(root, num_items, TRANS_START,
003d7c59 778 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 779}
003d7c59 780
8eab77ff
FM
781struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
782 struct btrfs_root *root,
7f9fe614 783 unsigned int num_items)
8eab77ff 784{
7f9fe614
JB
785 return start_transaction(root, num_items, TRANS_START,
786 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 787}
8407aa46 788
7a7eaa40 789struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 790{
003d7c59
JM
791 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
792 true);
f9295749
CM
793}
794
8d510121 795struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 796{
575a75d6 797 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 798 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
799}
800
a6d155d2
FM
801/*
802 * Similar to regular join but it never starts a transaction when none is
803 * running or after waiting for the current one to finish.
804 */
805struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
806{
807 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
808 BTRFS_RESERVE_NO_FLUSH, true);
809}
810
d4edf39b
MX
811/*
812 * btrfs_attach_transaction() - catch the running transaction
813 *
814 * It is used when we want to commit the current the transaction, but
815 * don't want to start a new one.
816 *
817 * Note: If this function return -ENOENT, it just means there is no
818 * running transaction. But it is possible that the inactive transaction
819 * is still in the memory, not fully on disk. If you hope there is no
820 * inactive transaction in the fs when -ENOENT is returned, you should
821 * invoke
822 * btrfs_attach_transaction_barrier()
823 */
354aa0fb 824struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 825{
575a75d6 826 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 827 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
828}
829
d4edf39b 830/*
90b6d283 831 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 832 *
52042d8e 833 * It is similar to the above function, the difference is this one
d4edf39b
MX
834 * will wait for all the inactive transactions until they fully
835 * complete.
836 */
837struct btrfs_trans_handle *
838btrfs_attach_transaction_barrier(struct btrfs_root *root)
839{
840 struct btrfs_trans_handle *trans;
841
575a75d6 842 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 843 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 844 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 845 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
846
847 return trans;
848}
849
d0c2f4fa
FM
850/* Wait for a transaction commit to reach at least the given state. */
851static noinline void wait_for_commit(struct btrfs_transaction *commit,
852 const enum btrfs_trans_state min_state)
89ce8a63 853{
d0c2f4fa 854 wait_event(commit->commit_wait, commit->state >= min_state);
89ce8a63
CM
855}
856
2ff7e61e 857int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
858{
859 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 860 int ret = 0;
46204592 861
46204592 862 if (transid) {
0b246afa 863 if (transid <= fs_info->last_trans_committed)
a4abeea4 864 goto out;
46204592
SW
865
866 /* find specified transaction */
0b246afa
JM
867 spin_lock(&fs_info->trans_lock);
868 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
869 if (t->transid == transid) {
870 cur_trans = t;
9b64f57d 871 refcount_inc(&cur_trans->use_count);
8cd2807f 872 ret = 0;
46204592
SW
873 break;
874 }
8cd2807f
MX
875 if (t->transid > transid) {
876 ret = 0;
46204592 877 break;
8cd2807f 878 }
46204592 879 }
0b246afa 880 spin_unlock(&fs_info->trans_lock);
42383020
SW
881
882 /*
883 * The specified transaction doesn't exist, or we
884 * raced with btrfs_commit_transaction
885 */
886 if (!cur_trans) {
0b246afa 887 if (transid > fs_info->last_trans_committed)
42383020 888 ret = -EINVAL;
8cd2807f 889 goto out;
42383020 890 }
46204592
SW
891 } else {
892 /* find newest transaction that is committing | committed */
0b246afa
JM
893 spin_lock(&fs_info->trans_lock);
894 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 895 list) {
4a9d8bde
MX
896 if (t->state >= TRANS_STATE_COMMIT_START) {
897 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 898 break;
46204592 899 cur_trans = t;
9b64f57d 900 refcount_inc(&cur_trans->use_count);
46204592
SW
901 break;
902 }
903 }
0b246afa 904 spin_unlock(&fs_info->trans_lock);
46204592 905 if (!cur_trans)
a4abeea4 906 goto out; /* nothing committing|committed */
46204592
SW
907 }
908
d0c2f4fa 909 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 910 btrfs_put_transaction(cur_trans);
a4abeea4 911out:
46204592
SW
912 return ret;
913}
914
2ff7e61e 915void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 916{
92e2f7e3 917 wait_current_trans(fs_info);
37d1aeee
CM
918}
919
8a8f4dea 920static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 921{
2ff7e61e 922 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 923
64403612 924 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 925 return true;
36ba022a 926
2ff7e61e 927 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
928}
929
a2633b6a 930bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
931{
932 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 933
3296bf56 934 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 935 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 936 return true;
8929ecfa 937
2ff7e61e 938 return should_end_transaction(trans);
8929ecfa
YZ
939}
940
dc60c525
NB
941static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
942
0e34693f 943{
dc60c525
NB
944 struct btrfs_fs_info *fs_info = trans->fs_info;
945
0e34693f
NB
946 if (!trans->block_rsv) {
947 ASSERT(!trans->bytes_reserved);
948 return;
949 }
950
951 if (!trans->bytes_reserved)
952 return;
953
954 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
955 trace_btrfs_space_reservation(fs_info, "transaction",
956 trans->transid, trans->bytes_reserved, 0);
957 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 958 trans->bytes_reserved, NULL);
0e34693f
NB
959 trans->bytes_reserved = 0;
960}
961
89ce8a63 962static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 963 int throttle)
79154b1b 964{
3a45bb20 965 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 966 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 967 int err = 0;
c3e69d58 968
b50fff81
DS
969 if (refcount_read(&trans->use_count) > 1) {
970 refcount_dec(&trans->use_count);
2a1eb461
JB
971 trans->block_rsv = trans->orig_rsv;
972 return 0;
973 }
974
dc60c525 975 btrfs_trans_release_metadata(trans);
4c13d758 976 trans->block_rsv = NULL;
c5567237 977
119e80df 978 btrfs_create_pending_block_groups(trans);
ea658bad 979
4fbcdf66
FM
980 btrfs_trans_release_chunk_metadata(trans);
981
0860adfd 982 if (trans->type & __TRANS_FREEZABLE)
0b246afa 983 sb_end_intwrite(info->sb);
6df7881a 984
8929ecfa 985 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
986 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
987 atomic_dec(&cur_trans->num_writers);
0860adfd 988 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 989
093258e6 990 cond_wake_up(&cur_trans->writer_wait);
724e2315 991 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
992
993 if (current->journal_info == trans)
994 current->journal_info = NULL;
ab78c84d 995
24bbcf04 996 if (throttle)
2ff7e61e 997 btrfs_run_delayed_iputs(info);
24bbcf04 998
84961539 999 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
4e121c06 1000 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1001 if (TRANS_ABORTED(trans))
1002 err = trans->aborted;
1003 else
1004 err = -EROFS;
4e121c06 1005 }
49b25e05 1006
4edc2ca3
DJ
1007 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1008 return err;
79154b1b
CM
1009}
1010
3a45bb20 1011int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1012{
3a45bb20 1013 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1014}
1015
3a45bb20 1016int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1017{
3a45bb20 1018 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1019}
1020
d352ac68
CM
1021/*
1022 * when btree blocks are allocated, they have some corresponding bits set for
1023 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1024 * those extents are sent to disk but does not wait on them
d352ac68 1025 */
2ff7e61e 1026int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1027 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1028{
777e6bd7 1029 int err = 0;
7c4452b9 1030 int werr = 0;
0b246afa 1031 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1032 struct extent_state *cached_state = NULL;
777e6bd7 1033 u64 start = 0;
5f39d397 1034 u64 end;
7c4452b9 1035
6300463b 1036 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1037 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1038 mark, &cached_state)) {
663dfbb0
FM
1039 bool wait_writeback = false;
1040
1041 err = convert_extent_bit(dirty_pages, start, end,
1042 EXTENT_NEED_WAIT,
210aa277 1043 mark, &cached_state);
663dfbb0
FM
1044 /*
1045 * convert_extent_bit can return -ENOMEM, which is most of the
1046 * time a temporary error. So when it happens, ignore the error
1047 * and wait for writeback of this range to finish - because we
1048 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1049 * to __btrfs_wait_marked_extents() would not know that
1050 * writeback for this range started and therefore wouldn't
1051 * wait for it to finish - we don't want to commit a
1052 * superblock that points to btree nodes/leafs for which
1053 * writeback hasn't finished yet (and without errors).
663dfbb0 1054 * We cleanup any entries left in the io tree when committing
41e7acd3 1055 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1056 */
1057 if (err == -ENOMEM) {
1058 err = 0;
1059 wait_writeback = true;
1060 }
1061 if (!err)
1062 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1063 if (err)
1064 werr = err;
663dfbb0
FM
1065 else if (wait_writeback)
1066 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1067 free_extent_state(cached_state);
663dfbb0 1068 cached_state = NULL;
1728366e
JB
1069 cond_resched();
1070 start = end + 1;
7c4452b9 1071 }
6300463b 1072 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1073 return werr;
1074}
1075
1076/*
1077 * when btree blocks are allocated, they have some corresponding bits set for
1078 * them in one of two extent_io trees. This is used to make sure all of
1079 * those extents are on disk for transaction or log commit. We wait
1080 * on all the pages and clear them from the dirty pages state tree
1081 */
bf89d38f
JM
1082static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1083 struct extent_io_tree *dirty_pages)
690587d1 1084{
690587d1
CM
1085 int err = 0;
1086 int werr = 0;
0b246afa 1087 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1088 struct extent_state *cached_state = NULL;
690587d1
CM
1089 u64 start = 0;
1090 u64 end;
777e6bd7 1091
1728366e 1092 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1093 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1094 /*
1095 * Ignore -ENOMEM errors returned by clear_extent_bit().
1096 * When committing the transaction, we'll remove any entries
1097 * left in the io tree. For a log commit, we don't remove them
1098 * after committing the log because the tree can be accessed
1099 * concurrently - we do it only at transaction commit time when
41e7acd3 1100 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1101 */
1102 err = clear_extent_bit(dirty_pages, start, end,
ae0f1625 1103 EXTENT_NEED_WAIT, 0, 0, &cached_state);
663dfbb0
FM
1104 if (err == -ENOMEM)
1105 err = 0;
1106 if (!err)
1107 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1108 if (err)
1109 werr = err;
e38e2ed7
FM
1110 free_extent_state(cached_state);
1111 cached_state = NULL;
1728366e
JB
1112 cond_resched();
1113 start = end + 1;
777e6bd7 1114 }
7c4452b9
CM
1115 if (err)
1116 werr = err;
bf89d38f
JM
1117 return werr;
1118}
656f30db 1119
b9fae2eb 1120static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1121 struct extent_io_tree *dirty_pages)
1122{
1123 bool errors = false;
1124 int err;
656f30db 1125
bf89d38f
JM
1126 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1127 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1128 errors = true;
1129
1130 if (errors && !err)
1131 err = -EIO;
1132 return err;
1133}
656f30db 1134
bf89d38f
JM
1135int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1136{
1137 struct btrfs_fs_info *fs_info = log_root->fs_info;
1138 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1139 bool errors = false;
1140 int err;
656f30db 1141
bf89d38f
JM
1142 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1143
1144 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1145 if ((mark & EXTENT_DIRTY) &&
1146 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1147 errors = true;
1148
1149 if ((mark & EXTENT_NEW) &&
1150 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1151 errors = true;
1152
1153 if (errors && !err)
1154 err = -EIO;
1155 return err;
79154b1b
CM
1156}
1157
690587d1 1158/*
c9b577c0
NB
1159 * When btree blocks are allocated the corresponding extents are marked dirty.
1160 * This function ensures such extents are persisted on disk for transaction or
1161 * log commit.
1162 *
1163 * @trans: transaction whose dirty pages we'd like to write
690587d1 1164 */
70458a58 1165static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1166{
1167 int ret;
1168 int ret2;
c9b577c0 1169 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1170 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1171 struct blk_plug plug;
690587d1 1172
c6adc9cc 1173 blk_start_plug(&plug);
c9b577c0 1174 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1175 blk_finish_plug(&plug);
bf89d38f 1176 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1177
41e7acd3 1178 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1179
bf0da8c1
CM
1180 if (ret)
1181 return ret;
c9b577c0 1182 else if (ret2)
bf0da8c1 1183 return ret2;
c9b577c0
NB
1184 else
1185 return 0;
d0c803c4
CM
1186}
1187
d352ac68
CM
1188/*
1189 * this is used to update the root pointer in the tree of tree roots.
1190 *
1191 * But, in the case of the extent allocation tree, updating the root
1192 * pointer may allocate blocks which may change the root of the extent
1193 * allocation tree.
1194 *
1195 * So, this loops and repeats and makes sure the cowonly root didn't
1196 * change while the root pointer was being updated in the metadata.
1197 */
0b86a832
CM
1198static int update_cowonly_root(struct btrfs_trans_handle *trans,
1199 struct btrfs_root *root)
79154b1b
CM
1200{
1201 int ret;
0b86a832 1202 u64 old_root_bytenr;
86b9f2ec 1203 u64 old_root_used;
0b246afa
JM
1204 struct btrfs_fs_info *fs_info = root->fs_info;
1205 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1206
86b9f2ec 1207 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1208
d397712b 1209 while (1) {
0b86a832 1210 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1211 if (old_root_bytenr == root->node->start &&
ea526d18 1212 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1213 break;
87ef2bb4 1214
5d4f98a2 1215 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1216 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1217 &root->root_key,
1218 &root->root_item);
49b25e05
JM
1219 if (ret)
1220 return ret;
56bec294 1221
86b9f2ec 1222 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1223 }
276e680d 1224
0b86a832
CM
1225 return 0;
1226}
1227
d352ac68
CM
1228/*
1229 * update all the cowonly tree roots on disk
49b25e05
JM
1230 *
1231 * The error handling in this function may not be obvious. Any of the
1232 * failures will cause the file system to go offline. We still need
1233 * to clean up the delayed refs.
d352ac68 1234 */
9386d8bc 1235static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1236{
9386d8bc 1237 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1238 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1239 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1240 struct list_head *next;
84234f3a 1241 struct extent_buffer *eb;
56bec294 1242 int ret;
84234f3a 1243
dfba78dc
FM
1244 /*
1245 * At this point no one can be using this transaction to modify any tree
1246 * and no one can start another transaction to modify any tree either.
1247 */
1248 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1249
84234f3a 1250 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1251 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1252 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1253 btrfs_tree_unlock(eb);
1254 free_extent_buffer(eb);
0b86a832 1255
49b25e05
JM
1256 if (ret)
1257 return ret;
87ef2bb4 1258
196c9d8d 1259 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1260 if (ret)
1261 return ret;
2b584c68 1262 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1263 if (ret)
1264 return ret;
280f8bd2 1265 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1266 if (ret)
1267 return ret;
546adb0d 1268
bbebb3e0 1269 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1270 if (ret)
1271 return ret;
1272
ea526d18 1273again:
d397712b 1274 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1275 struct btrfs_root *root;
0b86a832
CM
1276 next = fs_info->dirty_cowonly_roots.next;
1277 list_del_init(next);
1278 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1279 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1280
9e351cc8
JB
1281 if (root != fs_info->extent_root)
1282 list_add_tail(&root->dirty_list,
1283 &trans->transaction->switch_commits);
49b25e05
JM
1284 ret = update_cowonly_root(trans, root);
1285 if (ret)
1286 return ret;
79154b1b 1287 }
276e680d 1288
488bc2a2
JB
1289 /* Now flush any delayed refs generated by updating all of the roots */
1290 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1291 if (ret)
1292 return ret;
1293
1bbc621e 1294 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1295 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1296 if (ret)
1297 return ret;
488bc2a2
JB
1298
1299 /*
1300 * We're writing the dirty block groups, which could generate
1301 * delayed refs, which could generate more dirty block groups,
1302 * so we want to keep this flushing in this loop to make sure
1303 * everything gets run.
1304 */
c79a70b1 1305 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1306 if (ret)
1307 return ret;
1308 }
1309
1310 if (!list_empty(&fs_info->dirty_cowonly_roots))
1311 goto again;
1312
9e351cc8
JB
1313 list_add_tail(&fs_info->extent_root->dirty_list,
1314 &trans->transaction->switch_commits);
9f6cbcbb
DS
1315
1316 /* Update dev-replace pointer once everything is committed */
1317 fs_info->dev_replace.committed_cursor_left =
1318 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1319
79154b1b
CM
1320 return 0;
1321}
1322
d352ac68
CM
1323/*
1324 * dead roots are old snapshots that need to be deleted. This allocates
1325 * a dirty root struct and adds it into the list of dead roots that need to
1326 * be deleted
1327 */
cfad392b 1328void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1329{
0b246afa
JM
1330 struct btrfs_fs_info *fs_info = root->fs_info;
1331
1332 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1333 if (list_empty(&root->root_list)) {
1334 btrfs_grab_root(root);
0b246afa 1335 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1336 }
0b246afa 1337 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1338}
1339
d352ac68 1340/*
dfba78dc
FM
1341 * Update each subvolume root and its relocation root, if it exists, in the tree
1342 * of tree roots. Also free log roots if they exist.
d352ac68 1343 */
7e4443d9 1344static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1345{
7e4443d9 1346 struct btrfs_fs_info *fs_info = trans->fs_info;
0f7d52f4 1347 struct btrfs_root *gang[8];
0f7d52f4
CM
1348 int i;
1349 int ret;
54aa1f4d 1350
dfba78dc
FM
1351 /*
1352 * At this point no one can be using this transaction to modify any tree
1353 * and no one can start another transaction to modify any tree either.
1354 */
1355 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1356
a4abeea4 1357 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 1358 while (1) {
5d4f98a2
YZ
1359 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1360 (void **)gang, 0,
0f7d52f4
CM
1361 ARRAY_SIZE(gang),
1362 BTRFS_ROOT_TRANS_TAG);
1363 if (ret == 0)
1364 break;
1365 for (i = 0; i < ret; i++) {
5b4aacef 1366 struct btrfs_root *root = gang[i];
4f4317c1
JB
1367 int ret2;
1368
dfba78dc
FM
1369 /*
1370 * At this point we can neither have tasks logging inodes
1371 * from a root nor trying to commit a log tree.
1372 */
1373 ASSERT(atomic_read(&root->log_writers) == 0);
1374 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1375 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1376
5d4f98a2
YZ
1377 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1378 (unsigned long)root->root_key.objectid,
1379 BTRFS_ROOT_TRANS_TAG);
a4abeea4 1380 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 1381
e02119d5 1382 btrfs_free_log(trans, root);
2dd8298e
JB
1383 ret2 = btrfs_update_reloc_root(trans, root);
1384 if (ret2)
1385 return ret2;
bcc63abb 1386
f1ebcc74 1387 /* see comments in should_cow_block() */
27cdeb70 1388 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
c7548af6 1389 smp_mb__after_atomic();
f1ebcc74 1390
978d910d 1391 if (root->commit_root != root->node) {
9e351cc8
JB
1392 list_add_tail(&root->dirty_list,
1393 &trans->transaction->switch_commits);
978d910d
YZ
1394 btrfs_set_root_node(&root->root_item,
1395 root->node);
1396 }
5d4f98a2 1397
4f4317c1 1398 ret2 = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
1399 &root->root_key,
1400 &root->root_item);
4f4317c1
JB
1401 if (ret2)
1402 return ret2;
a4abeea4 1403 spin_lock(&fs_info->fs_roots_radix_lock);
733e03a0 1404 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1405 }
1406 }
a4abeea4 1407 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1408 return 0;
0f7d52f4
CM
1409}
1410
d352ac68 1411/*
de78b51a
ES
1412 * defrag a given btree.
1413 * Every leaf in the btree is read and defragged.
d352ac68 1414 */
de78b51a 1415int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1416{
1417 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1418 struct btrfs_trans_handle *trans;
8929ecfa 1419 int ret;
e9d0b13b 1420
27cdeb70 1421 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1422 return 0;
8929ecfa 1423
6b80053d 1424 while (1) {
8929ecfa 1425 trans = btrfs_start_transaction(root, 0);
6819703f
DS
1426 if (IS_ERR(trans)) {
1427 ret = PTR_ERR(trans);
1428 break;
1429 }
8929ecfa 1430
de78b51a 1431 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1432
3a45bb20 1433 btrfs_end_transaction(trans);
2ff7e61e 1434 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1435 cond_resched();
1436
ab8d0fc4 1437 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1438 break;
210549eb 1439
ab8d0fc4
JM
1440 if (btrfs_defrag_cancelled(info)) {
1441 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1442 ret = -EAGAIN;
1443 break;
1444 }
e9d0b13b 1445 }
27cdeb70 1446 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1447 return ret;
e9d0b13b
CM
1448}
1449
6426c7ad
QW
1450/*
1451 * Do all special snapshot related qgroup dirty hack.
1452 *
1453 * Will do all needed qgroup inherit and dirty hack like switch commit
1454 * roots inside one transaction and write all btree into disk, to make
1455 * qgroup works.
1456 */
1457static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1458 struct btrfs_root *src,
1459 struct btrfs_root *parent,
1460 struct btrfs_qgroup_inherit *inherit,
1461 u64 dst_objectid)
1462{
1463 struct btrfs_fs_info *fs_info = src->fs_info;
1464 int ret;
1465
1466 /*
1467 * Save some performance in the case that qgroups are not
1468 * enabled. If this check races with the ioctl, rescan will
1469 * kick in anyway.
1470 */
9ea6e2b5 1471 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1472 return 0;
6426c7ad 1473
4d31778a 1474 /*
52042d8e 1475 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1476 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1477 * recorded root will never be updated again, causing an outdated root
1478 * item.
1479 */
1c442d22
JB
1480 ret = record_root_in_trans(trans, src, 1);
1481 if (ret)
1482 return ret;
4d31778a 1483
2a4d84c1
JB
1484 /*
1485 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1486 * src root, so we must run the delayed refs here.
1487 *
1488 * However this isn't particularly fool proof, because there's no
1489 * synchronization keeping us from changing the tree after this point
1490 * before we do the qgroup_inherit, or even from making changes while
1491 * we're doing the qgroup_inherit. But that's a problem for the future,
1492 * for now flush the delayed refs to narrow the race window where the
1493 * qgroup counters could end up wrong.
1494 */
1495 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1496 if (ret) {
1497 btrfs_abort_transaction(trans, ret);
44365827 1498 return ret;
2a4d84c1
JB
1499 }
1500
7e4443d9 1501 ret = commit_fs_roots(trans);
6426c7ad
QW
1502 if (ret)
1503 goto out;
460fb20a 1504 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1505 if (ret < 0)
1506 goto out;
1507
1508 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1509 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1510 inherit);
1511 if (ret < 0)
1512 goto out;
1513
1514 /*
1515 * Now we do a simplified commit transaction, which will:
1516 * 1) commit all subvolume and extent tree
1517 * To ensure all subvolume and extent tree have a valid
1518 * commit_root to accounting later insert_dir_item()
1519 * 2) write all btree blocks onto disk
1520 * This is to make sure later btree modification will be cowed
1521 * Or commit_root can be populated and cause wrong qgroup numbers
1522 * In this simplified commit, we don't really care about other trees
1523 * like chunk and root tree, as they won't affect qgroup.
1524 * And we don't write super to avoid half committed status.
1525 */
9386d8bc 1526 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1527 if (ret)
1528 goto out;
889bfa39 1529 switch_commit_roots(trans);
70458a58 1530 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1531 if (ret)
f7af3934 1532 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1533 "Error while writing out transaction for qgroup");
1534
1535out:
6426c7ad
QW
1536 /*
1537 * Force parent root to be updated, as we recorded it before so its
1538 * last_trans == cur_transid.
1539 * Or it won't be committed again onto disk after later
1540 * insert_dir_item()
1541 */
1542 if (!ret)
1c442d22 1543 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1544 return ret;
1545}
1546
d352ac68
CM
1547/*
1548 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1549 * transaction commit. This does the actual creation.
1550 *
1551 * Note:
1552 * If the error which may affect the commitment of the current transaction
1553 * happens, we should return the error number. If the error which just affect
1554 * the creation of the pending snapshots, just return 0.
d352ac68 1555 */
80b6794d 1556static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1557 struct btrfs_pending_snapshot *pending)
1558{
08d50ca3
NB
1559
1560 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1561 struct btrfs_key key;
80b6794d 1562 struct btrfs_root_item *new_root_item;
3063d29f
CM
1563 struct btrfs_root *tree_root = fs_info->tree_root;
1564 struct btrfs_root *root = pending->root;
6bdb72de 1565 struct btrfs_root *parent_root;
98c9942a 1566 struct btrfs_block_rsv *rsv;
6bdb72de 1567 struct inode *parent_inode;
42874b3d
MX
1568 struct btrfs_path *path;
1569 struct btrfs_dir_item *dir_item;
a22285a6 1570 struct dentry *dentry;
3063d29f 1571 struct extent_buffer *tmp;
925baedd 1572 struct extent_buffer *old;
95582b00 1573 struct timespec64 cur_time;
aec8030a 1574 int ret = 0;
d68fc57b 1575 u64 to_reserve = 0;
6bdb72de 1576 u64 index = 0;
a22285a6 1577 u64 objectid;
b83cc969 1578 u64 root_flags;
3063d29f 1579
8546b570
DS
1580 ASSERT(pending->path);
1581 path = pending->path;
42874b3d 1582
b0c0ea63
DS
1583 ASSERT(pending->root_item);
1584 new_root_item = pending->root_item;
a22285a6 1585
543068a2 1586 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1587 if (pending->error)
6fa9700e 1588 goto no_free_objectid;
3063d29f 1589
d6726335
QW
1590 /*
1591 * Make qgroup to skip current new snapshot's qgroupid, as it is
1592 * accounted by later btrfs_qgroup_inherit().
1593 */
1594 btrfs_set_skip_qgroup(trans, objectid);
1595
147d256e 1596 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1597
1598 if (to_reserve > 0) {
9270501c 1599 pending->error = btrfs_block_rsv_add(fs_info,
aec8030a
MX
1600 &pending->block_rsv,
1601 to_reserve,
1602 BTRFS_RESERVE_NO_FLUSH);
1603 if (pending->error)
d6726335 1604 goto clear_skip_qgroup;
d68fc57b
YZ
1605 }
1606
3063d29f 1607 key.objectid = objectid;
a22285a6
YZ
1608 key.offset = (u64)-1;
1609 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1610
6fa9700e 1611 rsv = trans->block_rsv;
a22285a6 1612 trans->block_rsv = &pending->block_rsv;
2382c5cc 1613 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1614 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1615 trans->transid,
1616 trans->bytes_reserved, 1);
a22285a6 1617 dentry = pending->dentry;
e9662f70 1618 parent_inode = pending->dir;
a22285a6 1619 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1620 ret = record_root_in_trans(trans, parent_root, 0);
1621 if (ret)
1622 goto fail;
c2050a45 1623 cur_time = current_time(parent_inode);
04b285f3 1624
3063d29f
CM
1625 /*
1626 * insert the directory item
1627 */
877574e2 1628 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1629 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1630
1631 /* check if there is a file/dir which has the same name. */
1632 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1633 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1634 dentry->d_name.name,
1635 dentry->d_name.len, 0);
1636 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1637 pending->error = -EEXIST;
aec8030a 1638 goto dir_item_existed;
42874b3d
MX
1639 } else if (IS_ERR(dir_item)) {
1640 ret = PTR_ERR(dir_item);
66642832 1641 btrfs_abort_transaction(trans, ret);
8732d44f 1642 goto fail;
79787eaa 1643 }
42874b3d 1644 btrfs_release_path(path);
52c26179 1645
e999376f
CM
1646 /*
1647 * pull in the delayed directory update
1648 * and the delayed inode item
1649 * otherwise we corrupt the FS during
1650 * snapshot
1651 */
e5c304e6 1652 ret = btrfs_run_delayed_items(trans);
8732d44f 1653 if (ret) { /* Transaction aborted */
66642832 1654 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1655 goto fail;
1656 }
e999376f 1657
f0118cb6
JB
1658 ret = record_root_in_trans(trans, root, 0);
1659 if (ret) {
1660 btrfs_abort_transaction(trans, ret);
1661 goto fail;
1662 }
6bdb72de
SW
1663 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1664 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1665 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1666
b83cc969
LZ
1667 root_flags = btrfs_root_flags(new_root_item);
1668 if (pending->readonly)
1669 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1670 else
1671 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1672 btrfs_set_root_flags(new_root_item, root_flags);
1673
8ea05e3a
AB
1674 btrfs_set_root_generation_v2(new_root_item,
1675 trans->transid);
807fc790 1676 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1677 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1678 BTRFS_UUID_SIZE);
70023da2
SB
1679 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1680 memset(new_root_item->received_uuid, 0,
1681 sizeof(new_root_item->received_uuid));
1682 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1683 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1684 btrfs_set_root_stransid(new_root_item, 0);
1685 btrfs_set_root_rtransid(new_root_item, 0);
1686 }
3cae210f
QW
1687 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1688 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1689 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1690
6bdb72de 1691 old = btrfs_lock_root_node(root);
9631e4cc
JB
1692 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1693 BTRFS_NESTING_COW);
79787eaa
JM
1694 if (ret) {
1695 btrfs_tree_unlock(old);
1696 free_extent_buffer(old);
66642832 1697 btrfs_abort_transaction(trans, ret);
8732d44f 1698 goto fail;
79787eaa 1699 }
49b25e05 1700
49b25e05 1701 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1702 /* clean up in any case */
6bdb72de
SW
1703 btrfs_tree_unlock(old);
1704 free_extent_buffer(old);
8732d44f 1705 if (ret) {
66642832 1706 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1707 goto fail;
1708 }
f1ebcc74 1709 /* see comments in should_cow_block() */
27cdeb70 1710 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1711 smp_wmb();
1712
6bdb72de 1713 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1714 /* record when the snapshot was created in key.offset */
1715 key.offset = trans->transid;
1716 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1717 btrfs_tree_unlock(tmp);
1718 free_extent_buffer(tmp);
8732d44f 1719 if (ret) {
66642832 1720 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1721 goto fail;
1722 }
6bdb72de 1723
a22285a6
YZ
1724 /*
1725 * insert root back/forward references
1726 */
6025c19f 1727 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1728 parent_root->root_key.objectid,
4a0cc7ca 1729 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1730 dentry->d_name.name, dentry->d_name.len);
8732d44f 1731 if (ret) {
66642832 1732 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1733 goto fail;
1734 }
0660b5af 1735
a22285a6 1736 key.offset = (u64)-1;
2dfb1e43 1737 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1738 if (IS_ERR(pending->snap)) {
1739 ret = PTR_ERR(pending->snap);
2d892ccd 1740 pending->snap = NULL;
66642832 1741 btrfs_abort_transaction(trans, ret);
8732d44f 1742 goto fail;
79787eaa 1743 }
d68fc57b 1744
49b25e05 1745 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1746 if (ret) {
66642832 1747 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1748 goto fail;
1749 }
361048f5 1750
6426c7ad
QW
1751 /*
1752 * Do special qgroup accounting for snapshot, as we do some qgroup
1753 * snapshot hack to do fast snapshot.
1754 * To co-operate with that hack, we do hack again.
1755 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1756 */
1757 ret = qgroup_account_snapshot(trans, root, parent_root,
1758 pending->inherit, objectid);
1759 if (ret < 0)
1760 goto fail;
1761
684572df
LF
1762 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1763 dentry->d_name.len, BTRFS_I(parent_inode),
1764 &key, BTRFS_FT_DIR, index);
42874b3d 1765 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1766 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1767 if (ret) {
66642832 1768 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1769 goto fail;
1770 }
42874b3d 1771
6ef06d27 1772 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1773 dentry->d_name.len * 2);
04b285f3 1774 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 1775 current_time(parent_inode);
729f7961 1776 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1777 if (ret) {
66642832 1778 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1779 goto fail;
1780 }
807fc790
AS
1781 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1782 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1783 objectid);
dd5f9615 1784 if (ret) {
66642832 1785 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1786 goto fail;
1787 }
1788 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1789 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1790 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1791 objectid);
1792 if (ret && ret != -EEXIST) {
66642832 1793 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1794 goto fail;
1795 }
1796 }
d6726335 1797
3063d29f 1798fail:
aec8030a
MX
1799 pending->error = ret;
1800dir_item_existed:
98c9942a 1801 trans->block_rsv = rsv;
2382c5cc 1802 trans->bytes_reserved = 0;
d6726335
QW
1803clear_skip_qgroup:
1804 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1805no_free_objectid:
1806 kfree(new_root_item);
b0c0ea63 1807 pending->root_item = NULL;
42874b3d 1808 btrfs_free_path(path);
8546b570
DS
1809 pending->path = NULL;
1810
49b25e05 1811 return ret;
3063d29f
CM
1812}
1813
d352ac68
CM
1814/*
1815 * create all the snapshots we've scheduled for creation
1816 */
08d50ca3 1817static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1818{
aec8030a 1819 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1820 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1821 int ret = 0;
3de4586c 1822
aec8030a
MX
1823 list_for_each_entry_safe(pending, next, head, list) {
1824 list_del(&pending->list);
08d50ca3 1825 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1826 if (ret)
1827 break;
1828 }
1829 return ret;
3de4586c
CM
1830}
1831
2ff7e61e 1832static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1833{
1834 struct btrfs_root_item *root_item;
1835 struct btrfs_super_block *super;
1836
0b246afa 1837 super = fs_info->super_copy;
5d4f98a2 1838
0b246afa 1839 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1840 super->chunk_root = root_item->bytenr;
1841 super->chunk_root_generation = root_item->generation;
1842 super->chunk_root_level = root_item->level;
5d4f98a2 1843
0b246afa 1844 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1845 super->root = root_item->bytenr;
1846 super->generation = root_item->generation;
1847 super->root_level = root_item->level;
0b246afa 1848 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1849 super->cache_generation = root_item->generation;
94846229
BB
1850 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1851 super->cache_generation = 0;
0b246afa 1852 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1853 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1854}
1855
f36f3042
CM
1856int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1857{
4a9d8bde 1858 struct btrfs_transaction *trans;
f36f3042 1859 int ret = 0;
4a9d8bde 1860
a4abeea4 1861 spin_lock(&info->trans_lock);
4a9d8bde
MX
1862 trans = info->running_transaction;
1863 if (trans)
1864 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1865 spin_unlock(&info->trans_lock);
f36f3042
CM
1866 return ret;
1867}
1868
8929ecfa
YZ
1869int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1870{
4a9d8bde 1871 struct btrfs_transaction *trans;
8929ecfa 1872 int ret = 0;
4a9d8bde 1873
a4abeea4 1874 spin_lock(&info->trans_lock);
4a9d8bde
MX
1875 trans = info->running_transaction;
1876 if (trans)
1877 ret = is_transaction_blocked(trans);
a4abeea4 1878 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1879 return ret;
1880}
1881
fdfbf020 1882void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 1883{
3a45bb20 1884 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1885 struct btrfs_transaction *cur_trans;
1886
fdfbf020
JB
1887 /* Kick the transaction kthread. */
1888 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1889 wake_up_process(fs_info->transaction_kthread);
bb9c12c9
SW
1890
1891 /* take transaction reference */
bb9c12c9 1892 cur_trans = trans->transaction;
9b64f57d 1893 refcount_inc(&cur_trans->use_count);
bb9c12c9 1894
3a45bb20 1895 btrfs_end_transaction(trans);
6fc4e354 1896
ae5d29d4
DS
1897 /*
1898 * Wait for the current transaction commit to start and block
1899 * subsequent transaction joins
1900 */
1901 wait_event(fs_info->transaction_blocked_wait,
1902 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1903 TRANS_ABORTED(cur_trans));
724e2315 1904 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1905}
1906
97cb39bb 1907static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1908{
97cb39bb 1909 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1910 struct btrfs_transaction *cur_trans = trans->transaction;
1911
b50fff81 1912 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1913
66642832 1914 btrfs_abort_transaction(trans, err);
7b8b92af 1915
0b246afa 1916 spin_lock(&fs_info->trans_lock);
66b6135b 1917
25d8c284
MX
1918 /*
1919 * If the transaction is removed from the list, it means this
1920 * transaction has been committed successfully, so it is impossible
1921 * to call the cleanup function.
1922 */
1923 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1924
0b246afa 1925 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1926 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1927 spin_unlock(&fs_info->trans_lock);
f094ac32
LB
1928 wait_event(cur_trans->writer_wait,
1929 atomic_read(&cur_trans->num_writers) == 1);
1930
0b246afa 1931 spin_lock(&fs_info->trans_lock);
d7096fc3 1932 }
061dde82
FM
1933
1934 /*
1935 * Now that we know no one else is still using the transaction we can
1936 * remove the transaction from the list of transactions. This avoids
1937 * the transaction kthread from cleaning up the transaction while some
1938 * other task is still using it, which could result in a use-after-free
1939 * on things like log trees, as it forces the transaction kthread to
1940 * wait for this transaction to be cleaned up by us.
1941 */
1942 list_del_init(&cur_trans->list);
1943
0b246afa 1944 spin_unlock(&fs_info->trans_lock);
49b25e05 1945
2ff7e61e 1946 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 1947
0b246afa
JM
1948 spin_lock(&fs_info->trans_lock);
1949 if (cur_trans == fs_info->running_transaction)
1950 fs_info->running_transaction = NULL;
1951 spin_unlock(&fs_info->trans_lock);
4a9d8bde 1952
e0228285 1953 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1954 sb_end_intwrite(fs_info->sb);
724e2315
JB
1955 btrfs_put_transaction(cur_trans);
1956 btrfs_put_transaction(cur_trans);
49b25e05 1957
2e4e97ab 1958 trace_btrfs_transaction_commit(fs_info);
49b25e05 1959
49b25e05
JM
1960 if (current->journal_info == trans)
1961 current->journal_info = NULL;
0b246afa 1962 btrfs_scrub_cancel(fs_info);
49b25e05
JM
1963
1964 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1965}
1966
c7cc64a9
DS
1967/*
1968 * Release reserved delayed ref space of all pending block groups of the
1969 * transaction and remove them from the list
1970 */
1971static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1972{
1973 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 1974 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
1975
1976 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1977 btrfs_delayed_refs_rsv_release(fs_info, 1);
1978 list_del_init(&block_group->bg_list);
1979 }
1980}
1981
88090ad3 1982static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 1983{
ce8ea7cc
JB
1984 /*
1985 * We use writeback_inodes_sb here because if we used
1986 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1987 * Currently are holding the fs freeze lock, if we do an async flush
1988 * we'll do btrfs_join_transaction() and deadlock because we need to
1989 * wait for the fs freeze lock. Using the direct flushing we benefit
1990 * from already being in a transaction and our join_transaction doesn't
1991 * have to re-take the fs freeze lock.
1992 */
88090ad3 1993 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
ce8ea7cc 1994 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
1995 return 0;
1996}
1997
88090ad3 1998static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 1999{
88090ad3 2000 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2001 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2002}
2003
3a45bb20 2004int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2005{
3a45bb20 2006 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2007 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2008 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2009 int ret;
79154b1b 2010
35b814f3
NB
2011 ASSERT(refcount_read(&trans->use_count) == 1);
2012
8d25a086 2013 /* Stop the commit early if ->aborted is set */
bf31f87f 2014 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2015 ret = cur_trans->aborted;
3a45bb20 2016 btrfs_end_transaction(trans);
e4a2bcac 2017 return ret;
25287e0a 2018 }
49b25e05 2019
f45c752b
JB
2020 btrfs_trans_release_metadata(trans);
2021 trans->block_rsv = NULL;
2022
56bec294 2023 /*
e19eb11f
JB
2024 * We only want one transaction commit doing the flushing so we do not
2025 * waste a bunch of time on lock contention on the extent root node.
56bec294 2026 */
e19eb11f
JB
2027 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2028 &cur_trans->delayed_refs.flags)) {
2029 /*
2030 * Make a pass through all the delayed refs we have so far.
2031 * Any running threads may add more while we are here.
2032 */
2033 ret = btrfs_run_delayed_refs(trans, 0);
2034 if (ret) {
2035 btrfs_end_transaction(trans);
2036 return ret;
2037 }
2038 }
56bec294 2039
119e80df 2040 btrfs_create_pending_block_groups(trans);
ea658bad 2041
3204d33c 2042 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2043 int run_it = 0;
2044
2045 /* this mutex is also taken before trying to set
2046 * block groups readonly. We need to make sure
2047 * that nobody has set a block group readonly
2048 * after a extents from that block group have been
2049 * allocated for cache files. btrfs_set_block_group_ro
2050 * will wait for the transaction to commit if it
3204d33c 2051 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2052 *
3204d33c
JB
2053 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2054 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2055 * hurt to have more than one go through, but there's no
2056 * real advantage to it either.
2057 */
0b246afa 2058 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2059 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2060 &cur_trans->flags))
1bbc621e 2061 run_it = 1;
0b246afa 2062 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2063
f9cacae3 2064 if (run_it) {
21217054 2065 ret = btrfs_start_dirty_block_groups(trans);
f9cacae3
NB
2066 if (ret) {
2067 btrfs_end_transaction(trans);
2068 return ret;
2069 }
2070 }
1bbc621e
CM
2071 }
2072
0b246afa 2073 spin_lock(&fs_info->trans_lock);
4a9d8bde 2074 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2075 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2076
0b246afa 2077 spin_unlock(&fs_info->trans_lock);
9b64f57d 2078 refcount_inc(&cur_trans->use_count);
ccd467d6 2079
d0c2f4fa
FM
2080 if (trans->in_fsync)
2081 want_state = TRANS_STATE_SUPER_COMMITTED;
2082 ret = btrfs_end_transaction(trans);
2083 wait_for_commit(cur_trans, want_state);
15ee9bc7 2084
bf31f87f 2085 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2086 ret = cur_trans->aborted;
2087
724e2315 2088 btrfs_put_transaction(cur_trans);
15ee9bc7 2089
49b25e05 2090 return ret;
79154b1b 2091 }
4313b399 2092
4a9d8bde 2093 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2094 wake_up(&fs_info->transaction_blocked_wait);
bb9c12c9 2095
0b246afa 2096 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2097 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2098
2099 if (trans->in_fsync)
2100 want_state = TRANS_STATE_SUPER_COMMITTED;
2101
ccd467d6
CM
2102 prev_trans = list_entry(cur_trans->list.prev,
2103 struct btrfs_transaction, list);
d0c2f4fa 2104 if (prev_trans->state < want_state) {
9b64f57d 2105 refcount_inc(&prev_trans->use_count);
0b246afa 2106 spin_unlock(&fs_info->trans_lock);
ccd467d6 2107
d0c2f4fa
FM
2108 wait_for_commit(prev_trans, want_state);
2109
bf31f87f 2110 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2111
724e2315 2112 btrfs_put_transaction(prev_trans);
1f9b8c8f
FM
2113 if (ret)
2114 goto cleanup_transaction;
a4abeea4 2115 } else {
0b246afa 2116 spin_unlock(&fs_info->trans_lock);
ccd467d6 2117 }
a4abeea4 2118 } else {
0b246afa 2119 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2120 /*
2121 * The previous transaction was aborted and was already removed
2122 * from the list of transactions at fs_info->trans_list. So we
2123 * abort to prevent writing a new superblock that reflects a
2124 * corrupt state (pointing to trees with unwritten nodes/leafs).
2125 */
84961539 2126 if (BTRFS_FS_ERROR(fs_info)) {
cb2d3dad
FM
2127 ret = -EROFS;
2128 goto cleanup_transaction;
2129 }
ccd467d6 2130 }
15ee9bc7 2131
0860adfd
MX
2132 extwriter_counter_dec(cur_trans, trans->type);
2133
88090ad3 2134 ret = btrfs_start_delalloc_flush(fs_info);
82436617
MX
2135 if (ret)
2136 goto cleanup_transaction;
2137
e5c304e6 2138 ret = btrfs_run_delayed_items(trans);
581227d0
MX
2139 if (ret)
2140 goto cleanup_transaction;
15ee9bc7 2141
581227d0
MX
2142 wait_event(cur_trans->writer_wait,
2143 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2144
581227d0 2145 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2146 ret = btrfs_run_delayed_items(trans);
ca469637
MX
2147 if (ret)
2148 goto cleanup_transaction;
2149
88090ad3 2150 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2151
48778179
FM
2152 /*
2153 * Wait for all ordered extents started by a fast fsync that joined this
2154 * transaction. Otherwise if this transaction commits before the ordered
2155 * extents complete we lose logged data after a power failure.
2156 */
2157 wait_event(cur_trans->pending_wait,
2158 atomic_read(&cur_trans->pending_ordered) == 0);
2159
2ff7e61e 2160 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2161 /*
2162 * Ok now we need to make sure to block out any other joins while we
2163 * commit the transaction. We could have started a join before setting
4a9d8bde 2164 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2165 */
0b246afa 2166 spin_lock(&fs_info->trans_lock);
4a9d8bde 2167 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2168 spin_unlock(&fs_info->trans_lock);
ed0ca140
JB
2169 wait_event(cur_trans->writer_wait,
2170 atomic_read(&cur_trans->num_writers) == 1);
2171
fdfbf020
JB
2172 /*
2173 * We've started the commit, clear the flag in case we were triggered to
2174 * do an async commit but somebody else started before the transaction
2175 * kthread could do the work.
2176 */
2177 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2178
bf31f87f 2179 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2180 ret = cur_trans->aborted;
6cf7f77e 2181 goto scrub_continue;
2cba30f1 2182 }
7585717f
CM
2183 /*
2184 * the reloc mutex makes sure that we stop
2185 * the balancing code from coming in and moving
2186 * extents around in the middle of the commit
2187 */
0b246afa 2188 mutex_lock(&fs_info->reloc_mutex);
7585717f 2189
42874b3d
MX
2190 /*
2191 * We needn't worry about the delayed items because we will
2192 * deal with them in create_pending_snapshot(), which is the
2193 * core function of the snapshot creation.
2194 */
08d50ca3 2195 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2196 if (ret)
2197 goto unlock_reloc;
3063d29f 2198
42874b3d
MX
2199 /*
2200 * We insert the dir indexes of the snapshots and update the inode
2201 * of the snapshots' parents after the snapshot creation, so there
2202 * are some delayed items which are not dealt with. Now deal with
2203 * them.
2204 *
2205 * We needn't worry that this operation will corrupt the snapshots,
2206 * because all the tree which are snapshoted will be forced to COW
2207 * the nodes and leaves.
2208 */
e5c304e6 2209 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2210 if (ret)
2211 goto unlock_reloc;
16cdcec7 2212
c79a70b1 2213 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2214 if (ret)
2215 goto unlock_reloc;
56bec294 2216
e999376f
CM
2217 /*
2218 * make sure none of the code above managed to slip in a
2219 * delayed item
2220 */
ccdf9b30 2221 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2222
2c90e5d6 2223 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2224
7e4443d9 2225 ret = commit_fs_roots(trans);
56e9f6ea 2226 if (ret)
dfba78dc 2227 goto unlock_reloc;
54aa1f4d 2228
3818aea2 2229 /*
7e1876ac
DS
2230 * Since the transaction is done, we can apply the pending changes
2231 * before the next transaction.
3818aea2 2232 */
0b246afa 2233 btrfs_apply_pending_changes(fs_info);
3818aea2 2234
5d4f98a2 2235 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2236 * safe to free the root of tree log roots
2237 */
0b246afa 2238 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2239
0ed4792a
QW
2240 /*
2241 * Since fs roots are all committed, we can get a quite accurate
2242 * new_roots. So let's do quota accounting.
2243 */
460fb20a 2244 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea 2245 if (ret < 0)
dfba78dc 2246 goto unlock_reloc;
0ed4792a 2247
9386d8bc 2248 ret = commit_cowonly_roots(trans);
56e9f6ea 2249 if (ret)
dfba78dc 2250 goto unlock_reloc;
54aa1f4d 2251
2cba30f1
MX
2252 /*
2253 * The tasks which save the space cache and inode cache may also
2254 * update ->aborted, check it.
2255 */
bf31f87f 2256 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2257 ret = cur_trans->aborted;
dfba78dc 2258 goto unlock_reloc;
2cba30f1
MX
2259 }
2260
0b246afa 2261 cur_trans = fs_info->running_transaction;
5d4f98a2 2262
0b246afa
JM
2263 btrfs_set_root_node(&fs_info->tree_root->root_item,
2264 fs_info->tree_root->node);
2265 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2266 &cur_trans->switch_commits);
5d4f98a2 2267
0b246afa
JM
2268 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2269 fs_info->chunk_root->node);
2270 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2271 &cur_trans->switch_commits);
2272
889bfa39 2273 switch_commit_roots(trans);
5d4f98a2 2274
ce93ec54 2275 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2276 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2277 update_super_roots(fs_info);
e02119d5 2278
0b246afa
JM
2279 btrfs_set_super_log_root(fs_info->super_copy, 0);
2280 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2281 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2282 sizeof(*fs_info->super_copy));
ccd467d6 2283
bbbf7243 2284 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2285
0b246afa
JM
2286 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2287 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2288
4fbcdf66
FM
2289 btrfs_trans_release_chunk_metadata(trans);
2290
dfba78dc
FM
2291 /*
2292 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2293 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2294 * make sure that before we commit our superblock, no other task can
2295 * start a new transaction and commit a log tree before we commit our
2296 * superblock. Anyone trying to commit a log tree locks this mutex before
2297 * writing its superblock.
2298 */
2299 mutex_lock(&fs_info->tree_log_mutex);
2300
0b246afa 2301 spin_lock(&fs_info->trans_lock);
4a9d8bde 2302 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2303 fs_info->running_transaction = NULL;
2304 spin_unlock(&fs_info->trans_lock);
2305 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2306
0b246afa 2307 wake_up(&fs_info->transaction_wait);
e6dcd2dc 2308
70458a58 2309 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2310 if (ret) {
0b246afa
JM
2311 btrfs_handle_fs_error(fs_info, ret,
2312 "Error while writing out transaction");
2313 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2314 goto scrub_continue;
49b25e05
JM
2315 }
2316
d3575156
NA
2317 /*
2318 * At this point, we should have written all the tree blocks allocated
2319 * in this transaction. So it's now safe to free the redirtyied extent
2320 * buffers.
2321 */
2322 btrfs_free_redirty_list(cur_trans);
2323
eece6a9c 2324 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2325 /*
2326 * the super is written, we can safely allow the tree-loggers
2327 * to go about their business
2328 */
0b246afa 2329 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2330 if (ret)
2331 goto scrub_continue;
e02119d5 2332
d0c2f4fa
FM
2333 /*
2334 * We needn't acquire the lock here because there is no other task
2335 * which can change it.
2336 */
2337 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2338 wake_up(&cur_trans->commit_wait);
2339
5ead2dd0 2340 btrfs_finish_extent_commit(trans);
4313b399 2341
3204d33c 2342 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2343 btrfs_clear_space_info_full(fs_info);
13212b54 2344
0b246afa 2345 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2346 /*
2347 * We needn't acquire the lock here because there is no other task
2348 * which can change it.
2349 */
2350 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2351 wake_up(&cur_trans->commit_wait);
3de4586c 2352
0b246afa 2353 spin_lock(&fs_info->trans_lock);
13c5a93e 2354 list_del_init(&cur_trans->list);
0b246afa 2355 spin_unlock(&fs_info->trans_lock);
a4abeea4 2356
724e2315
JB
2357 btrfs_put_transaction(cur_trans);
2358 btrfs_put_transaction(cur_trans);
58176a96 2359
0860adfd 2360 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2361 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2362
2e4e97ab 2363 trace_btrfs_transaction_commit(fs_info);
1abe9b8a 2364
2ff7e61e 2365 btrfs_scrub_continue(fs_info);
a2de733c 2366
9ed74f2d
JB
2367 if (current->journal_info == trans)
2368 current->journal_info = NULL;
2369
2c90e5d6 2370 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2371
79154b1b 2372 return ret;
49b25e05 2373
56e9f6ea
DS
2374unlock_reloc:
2375 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2376scrub_continue:
2ff7e61e 2377 btrfs_scrub_continue(fs_info);
49b25e05 2378cleanup_transaction:
dc60c525 2379 btrfs_trans_release_metadata(trans);
c7cc64a9 2380 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2381 btrfs_trans_release_chunk_metadata(trans);
0e721106 2382 trans->block_rsv = NULL;
0b246afa 2383 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2384 if (current->journal_info == trans)
2385 current->journal_info = NULL;
97cb39bb 2386 cleanup_transaction(trans, ret);
49b25e05
JM
2387
2388 return ret;
79154b1b
CM
2389}
2390
d352ac68 2391/*
9d1a2a3a
DS
2392 * return < 0 if error
2393 * 0 if there are no more dead_roots at the time of call
2394 * 1 there are more to be processed, call me again
2395 *
2396 * The return value indicates there are certainly more snapshots to delete, but
2397 * if there comes a new one during processing, it may return 0. We don't mind,
2398 * because btrfs_commit_super will poke cleaner thread and it will process it a
2399 * few seconds later.
d352ac68 2400 */
9d1a2a3a 2401int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
e9d0b13b 2402{
9d1a2a3a 2403 int ret;
5d4f98a2
YZ
2404 struct btrfs_fs_info *fs_info = root->fs_info;
2405
a4abeea4 2406 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2407 if (list_empty(&fs_info->dead_roots)) {
2408 spin_unlock(&fs_info->trans_lock);
2409 return 0;
2410 }
2411 root = list_first_entry(&fs_info->dead_roots,
2412 struct btrfs_root, root_list);
cfad392b 2413 list_del_init(&root->root_list);
a4abeea4 2414 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2415
4fd786e6 2416 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2417
9d1a2a3a 2418 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2419
9d1a2a3a
DS
2420 if (btrfs_header_backref_rev(root->node) <
2421 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2422 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2423 else
0078a9f9 2424 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2425
dc9492c1 2426 btrfs_put_root(root);
6596a928 2427 return (ret < 0) ? 0 : 1;
e9d0b13b 2428}
572d9ab7
DS
2429
2430void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2431{
2432 unsigned long prev;
2433 unsigned long bit;
2434
6c9fe14f 2435 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2436 if (!prev)
2437 return;
2438
d51033d0
DS
2439 bit = 1 << BTRFS_PENDING_COMMIT;
2440 if (prev & bit)
2441 btrfs_debug(fs_info, "pending commit done");
2442 prev &= ~bit;
2443
572d9ab7
DS
2444 if (prev)
2445 btrfs_warn(fs_info,
2446 "unknown pending changes left 0x%lx, ignoring", prev);
2447}