btrfs: zoned: fix chunk map leak when loading block group zone info
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
ab3c5c18 9#include <linux/sched/mm.h>
d3c2fdcf 10#include <linux/writeback.h>
5f39d397 11#include <linux/pagemap.h>
5f2cc086 12#include <linux/blkdev.h>
8ea05e3a 13#include <linux/uuid.h>
e55958c8 14#include <linux/timekeeping.h>
602cbe91 15#include "misc.h"
79154b1b
CM
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
925baedd 19#include "locking.h"
e02119d5 20#include "tree-log.h"
733f4fbb 21#include "volumes.h"
8dabb742 22#include "dev-replace.h"
fcebe456 23#include "qgroup.h"
aac0023c 24#include "block-group.h"
9c343784 25#include "space-info.h"
d3575156 26#include "zoned.h"
c7f13d42 27#include "fs.h"
07e81dc9 28#include "accessors.h"
a0231804 29#include "extent-tree.h"
45c40c8f 30#include "root-tree.h"
59b818e0 31#include "defrag.h"
f2b39277 32#include "dir-item.h"
c7a03b52 33#include "uuid-tree.h"
7572dec8 34#include "ioctl.h"
67707479 35#include "relocation.h"
2fc6822c 36#include "scrub.h"
79154b1b 37
956504a3
JB
38static struct kmem_cache *btrfs_trans_handle_cachep;
39
61c047b5
QW
40/*
41 * Transaction states and transitions
42 *
43 * No running transaction (fs tree blocks are not modified)
44 * |
45 * | To next stage:
46 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
47 * V
48 * Transaction N [[TRANS_STATE_RUNNING]]
49 * |
50 * | New trans handles can be attached to transaction N by calling all
51 * | start_transaction() variants.
52 * |
53 * | To next stage:
54 * | Call btrfs_commit_transaction() on any trans handle attached to
55 * | transaction N
56 * V
77d20c68
JB
57 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
58 * |
59 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
60 * | the race and the rest will wait for the winner to commit the transaction.
61 * |
62 * | The winner will wait for previous running transaction to completely finish
63 * | if there is one.
61c047b5 64 * |
77d20c68 65 * Transaction N [[TRANS_STATE_COMMIT_START]]
61c047b5 66 * |
77d20c68 67 * | Then one of the following happens:
61c047b5
QW
68 * | - Wait for all other trans handle holders to release.
69 * | The btrfs_commit_transaction() caller will do the commit work.
70 * | - Wait for current transaction to be committed by others.
71 * | Other btrfs_commit_transaction() caller will do the commit work.
72 * |
73 * | At this stage, only btrfs_join_transaction*() variants can attach
74 * | to this running transaction.
75 * | All other variants will wait for current one to finish and attach to
76 * | transaction N+1.
77 * |
78 * | To next stage:
79 * | Caller is chosen to commit transaction N, and all other trans handle
80 * | haven been released.
81 * V
82 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
83 * |
84 * | The heavy lifting transaction work is started.
85 * | From running delayed refs (modifying extent tree) to creating pending
86 * | snapshots, running qgroups.
87 * | In short, modify supporting trees to reflect modifications of subvolume
88 * | trees.
89 * |
90 * | At this stage, all start_transaction() calls will wait for this
91 * | transaction to finish and attach to transaction N+1.
92 * |
93 * | To next stage:
94 * | Until all supporting trees are updated.
95 * V
96 * Transaction N [[TRANS_STATE_UNBLOCKED]]
97 * | Transaction N+1
98 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
99 * | need to write them back to disk and update |
100 * | super blocks. |
101 * | |
102 * | At this stage, new transaction is allowed to |
103 * | start. |
104 * | All new start_transaction() calls will be |
105 * | attached to transid N+1. |
106 * | |
107 * | To next stage: |
108 * | Until all tree blocks are super blocks are |
109 * | written to block devices |
110 * V |
111 * Transaction N [[TRANS_STATE_COMPLETED]] V
112 * All tree blocks and super blocks are written. Transaction N+1
113 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
114 * data structures will be cleaned up. | Life goes on
115 */
e8c9f186 116static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 117 [TRANS_STATE_RUNNING] = 0U,
77d20c68 118 [TRANS_STATE_COMMIT_PREP] = 0U,
bcf3a3e7
NB
119 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
120 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 121 __TRANS_ATTACH |
a6d155d2
FM
122 __TRANS_JOIN |
123 __TRANS_JOIN_NOSTART),
bcf3a3e7 124 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
125 __TRANS_ATTACH |
126 __TRANS_JOIN |
a6d155d2
FM
127 __TRANS_JOIN_NOLOCK |
128 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
129 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
130 __TRANS_ATTACH |
131 __TRANS_JOIN |
132 __TRANS_JOIN_NOLOCK |
133 __TRANS_JOIN_NOSTART),
bcf3a3e7 134 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
135 __TRANS_ATTACH |
136 __TRANS_JOIN |
a6d155d2
FM
137 __TRANS_JOIN_NOLOCK |
138 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
139};
140
724e2315 141void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 142{
9b64f57d
ER
143 WARN_ON(refcount_read(&transaction->use_count) == 0);
144 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 145 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
146 WARN_ON(!RB_EMPTY_ROOT(
147 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
148 WARN_ON(!RB_EMPTY_ROOT(
149 &transaction->delayed_refs.dirty_extent_root));
1262133b 150 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
151 btrfs_err(transaction->fs_info,
152 "pending csums is %llu",
153 transaction->delayed_refs.pending_csums);
7785a663
FM
154 /*
155 * If any block groups are found in ->deleted_bgs then it's
156 * because the transaction was aborted and a commit did not
157 * happen (things failed before writing the new superblock
158 * and calling btrfs_finish_extent_commit()), so we can not
159 * discard the physical locations of the block groups.
160 */
161 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 162 struct btrfs_block_group *cache;
7785a663
FM
163
164 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 165 struct btrfs_block_group,
7785a663
FM
166 bg_list);
167 list_del_init(&cache->bg_list);
6b7304af 168 btrfs_unfreeze_block_group(cache);
7785a663
FM
169 btrfs_put_block_group(cache);
170 }
bbbf7243 171 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 172 kfree(transaction);
78fae27e 173 }
79154b1b
CM
174}
175
889bfa39 176static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 177{
889bfa39 178 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 179 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
180 struct btrfs_root *root, *tmp;
181
dfba78dc
FM
182 /*
183 * At this point no one can be using this transaction to modify any tree
184 * and no one can start another transaction to modify any tree either.
185 */
186 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
187
9e351cc8 188 down_write(&fs_info->commit_root_sem);
d96b3424
FM
189
190 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
191 fs_info->last_reloc_trans = trans->transid;
192
889bfa39 193 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
194 dirty_list) {
195 list_del_init(&root->dirty_list);
196 free_extent_buffer(root->commit_root);
197 root->commit_root = btrfs_root_node(root);
41e7acd3 198 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 199 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 200 }
2b9dbef2
JB
201
202 /* We can free old roots now. */
889bfa39
JB
203 spin_lock(&cur_trans->dropped_roots_lock);
204 while (!list_empty(&cur_trans->dropped_roots)) {
205 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
206 struct btrfs_root, root_list);
207 list_del_init(&root->root_list);
889bfa39
JB
208 spin_unlock(&cur_trans->dropped_roots_lock);
209 btrfs_free_log(trans, root);
2b9dbef2 210 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 211 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 212 }
889bfa39 213 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62 214
9e351cc8 215 up_write(&fs_info->commit_root_sem);
817d52f8
JB
216}
217
0860adfd
MX
218static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
219 unsigned int type)
220{
221 if (type & TRANS_EXTWRITERS)
222 atomic_inc(&trans->num_extwriters);
223}
224
225static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
226 unsigned int type)
227{
228 if (type & TRANS_EXTWRITERS)
229 atomic_dec(&trans->num_extwriters);
230}
231
232static inline void extwriter_counter_init(struct btrfs_transaction *trans,
233 unsigned int type)
234{
235 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
236}
237
238static inline int extwriter_counter_read(struct btrfs_transaction *trans)
239{
240 return atomic_read(&trans->num_extwriters);
178260b2
MX
241}
242
fb6dea26 243/*
79bd3712
FM
244 * To be called after doing the chunk btree updates right after allocating a new
245 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
246 * chunk after all chunk btree updates and after finishing the second phase of
247 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
248 * group had its chunk item insertion delayed to the second phase.
fb6dea26
JB
249 */
250void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
251{
252 struct btrfs_fs_info *fs_info = trans->fs_info;
253
254 if (!trans->chunk_bytes_reserved)
255 return;
256
fb6dea26 257 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 258 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
259 trans->chunk_bytes_reserved = 0;
260}
261
d352ac68
CM
262/*
263 * either allocate a new transaction or hop into the existing one
264 */
2ff7e61e
JM
265static noinline int join_transaction(struct btrfs_fs_info *fs_info,
266 unsigned int type)
79154b1b
CM
267{
268 struct btrfs_transaction *cur_trans;
a4abeea4 269
19ae4e81 270 spin_lock(&fs_info->trans_lock);
d43317dc 271loop:
49b25e05 272 /* The file system has been taken offline. No new transactions. */
84961539 273 if (BTRFS_FS_ERROR(fs_info)) {
19ae4e81 274 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
275 return -EROFS;
276 }
277
19ae4e81 278 cur_trans = fs_info->running_transaction;
a4abeea4 279 if (cur_trans) {
bf31f87f 280 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 281 spin_unlock(&fs_info->trans_lock);
49b25e05 282 return cur_trans->aborted;
871383be 283 }
4a9d8bde 284 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
285 spin_unlock(&fs_info->trans_lock);
286 return -EBUSY;
287 }
9b64f57d 288 refcount_inc(&cur_trans->use_count);
13c5a93e 289 atomic_inc(&cur_trans->num_writers);
0860adfd 290 extwriter_counter_inc(cur_trans, type);
19ae4e81 291 spin_unlock(&fs_info->trans_lock);
e1489b4f 292 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 293 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
a4abeea4 294 return 0;
79154b1b 295 }
19ae4e81 296 spin_unlock(&fs_info->trans_lock);
a4abeea4 297
354aa0fb 298 /*
4490e803
FM
299 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
300 * current transaction, and commit it. If there is no transaction, just
301 * return ENOENT.
354aa0fb 302 */
4490e803 303 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
354aa0fb
MX
304 return -ENOENT;
305
4a9d8bde
MX
306 /*
307 * JOIN_NOLOCK only happens during the transaction commit, so
308 * it is impossible that ->running_transaction is NULL
309 */
310 BUG_ON(type == TRANS_JOIN_NOLOCK);
311
4b5faeac 312 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
313 if (!cur_trans)
314 return -ENOMEM;
d43317dc 315
e1489b4f 316 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 317 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
e1489b4f 318
19ae4e81
JS
319 spin_lock(&fs_info->trans_lock);
320 if (fs_info->running_transaction) {
d43317dc
CM
321 /*
322 * someone started a transaction after we unlocked. Make sure
4a9d8bde 323 * to redo the checks above
d43317dc 324 */
5a9ba670 325 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 326 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 327 kfree(cur_trans);
d43317dc 328 goto loop;
84961539 329 } else if (BTRFS_FS_ERROR(fs_info)) {
e4b50e14 330 spin_unlock(&fs_info->trans_lock);
5a9ba670 331 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 332 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 333 kfree(cur_trans);
7b8b92af 334 return -EROFS;
79154b1b 335 }
d43317dc 336
ab8d0fc4 337 cur_trans->fs_info = fs_info;
48778179
FM
338 atomic_set(&cur_trans->pending_ordered, 0);
339 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 340 atomic_set(&cur_trans->num_writers, 1);
0860adfd 341 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
342 init_waitqueue_head(&cur_trans->writer_wait);
343 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 344 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
345 /*
346 * One for this trans handle, one so it will live on until we
347 * commit the transaction.
348 */
9b64f57d 349 refcount_set(&cur_trans->use_count, 2);
3204d33c 350 cur_trans->flags = 0;
afd48513 351 cur_trans->start_time = ktime_get_seconds();
a4abeea4 352
a099d0fd
AM
353 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
354
5c9d028b 355 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 356 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 357 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
358
359 /*
360 * although the tree mod log is per file system and not per transaction,
361 * the log must never go across transaction boundaries.
362 */
363 smp_mb();
31b1a2bd 364 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 365 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 366 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 367 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 368 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 369
a4abeea4
JB
370 spin_lock_init(&cur_trans->delayed_refs.lock);
371
372 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 373 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 374 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 375 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 376 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 377 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 378 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 379 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 380 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 381 spin_lock_init(&cur_trans->dropped_roots_lock);
19ae4e81 382 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 383 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
35da5a7e 384 IO_TREE_TRANS_DIRTY_PAGES);
fe119a6e 385 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
35da5a7e 386 IO_TREE_FS_PINNED_EXTENTS);
4a4f8fe2 387 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
19ae4e81
JS
388 cur_trans->transid = fs_info->generation;
389 fs_info->running_transaction = cur_trans;
49b25e05 390 cur_trans->aborted = 0;
19ae4e81 391 spin_unlock(&fs_info->trans_lock);
15ee9bc7 392
79154b1b
CM
393 return 0;
394}
395
d352ac68 396/*
92a7cc42
QW
397 * This does all the record keeping required to make sure that a shareable root
398 * is properly recorded in a given transaction. This is required to make sure
399 * the old root from before we joined the transaction is deleted when the
400 * transaction commits.
d352ac68 401 */
7585717f 402static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
403 struct btrfs_root *root,
404 int force)
6702ed49 405{
0b246afa 406 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 407 int ret = 0;
0b246afa 408
92a7cc42 409 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 410 root->last_trans < trans->transid) || force) {
4d31778a 411 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 412
7585717f 413 /*
27cdeb70 414 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
415 * we have the reloc mutex held now, so there
416 * is only one writer in this function
417 */
27cdeb70 418 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 419
27cdeb70 420 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
421 * they find our root->last_trans update
422 */
423 smp_wmb();
424
fc7cbcd4 425 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 426 if (root->last_trans == trans->transid && !force) {
fc7cbcd4 427 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
428 return 0;
429 }
fc7cbcd4
DS
430 radix_tree_tag_set(&fs_info->fs_roots_radix,
431 (unsigned long)root->root_key.objectid,
432 BTRFS_ROOT_TRANS_TAG);
433 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
434 root->last_trans = trans->transid;
435
436 /* this is pretty tricky. We don't want to
437 * take the relocation lock in btrfs_record_root_in_trans
438 * unless we're really doing the first setup for this root in
439 * this transaction.
440 *
441 * Normally we'd use root->last_trans as a flag to decide
442 * if we want to take the expensive mutex.
443 *
444 * But, we have to set root->last_trans before we
445 * init the relocation root, otherwise, we trip over warnings
446 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 447 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
448 * fixing up the reloc trees and everyone must wait.
449 *
450 * When this is zero, they can trust root->last_trans and fly
451 * through btrfs_record_root_in_trans without having to take the
452 * lock. smp_wmb() makes sure that all the writes above are
453 * done before we pop in the zero below
454 */
03a7e111 455 ret = btrfs_init_reloc_root(trans, root);
c7548af6 456 smp_mb__before_atomic();
27cdeb70 457 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 458 }
03a7e111 459 return ret;
5d4f98a2 460}
bcc63abb 461
7585717f 462
2b9dbef2
JB
463void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
464 struct btrfs_root *root)
465{
0b246afa 466 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
467 struct btrfs_transaction *cur_trans = trans->transaction;
468
469 /* Add ourselves to the transaction dropped list */
470 spin_lock(&cur_trans->dropped_roots_lock);
471 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
472 spin_unlock(&cur_trans->dropped_roots_lock);
473
474 /* Make sure we don't try to update the root at commit time */
fc7cbcd4
DS
475 spin_lock(&fs_info->fs_roots_radix_lock);
476 radix_tree_tag_clear(&fs_info->fs_roots_radix,
477 (unsigned long)root->root_key.objectid,
478 BTRFS_ROOT_TRANS_TAG);
479 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
480}
481
7585717f
CM
482int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
483 struct btrfs_root *root)
484{
0b246afa 485 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 486 int ret;
0b246afa 487
92a7cc42 488 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
489 return 0;
490
491 /*
27cdeb70 492 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
493 * and barriers
494 */
495 smp_rmb();
496 if (root->last_trans == trans->transid &&
27cdeb70 497 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
498 return 0;
499
0b246afa 500 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 501 ret = record_root_in_trans(trans, root, 0);
0b246afa 502 mutex_unlock(&fs_info->reloc_mutex);
7585717f 503
1409e6cc 504 return ret;
7585717f
CM
505}
506
4a9d8bde
MX
507static inline int is_transaction_blocked(struct btrfs_transaction *trans)
508{
3296bf56 509 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 510 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 511 !TRANS_ABORTED(trans));
4a9d8bde
MX
512}
513
d352ac68
CM
514/* wait for commit against the current transaction to become unblocked
515 * when this is done, it is safe to start a new transaction, but the current
516 * transaction might not be fully on disk.
517 */
2ff7e61e 518static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 519{
f9295749 520 struct btrfs_transaction *cur_trans;
79154b1b 521
0b246afa
JM
522 spin_lock(&fs_info->trans_lock);
523 cur_trans = fs_info->running_transaction;
4a9d8bde 524 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 525 refcount_inc(&cur_trans->use_count);
0b246afa 526 spin_unlock(&fs_info->trans_lock);
72d63ed6 527
3e738c53 528 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
0b246afa 529 wait_event(fs_info->transaction_wait,
501407aa 530 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 531 TRANS_ABORTED(cur_trans));
724e2315 532 btrfs_put_transaction(cur_trans);
a4abeea4 533 } else {
0b246afa 534 spin_unlock(&fs_info->trans_lock);
f9295749 535 }
37d1aeee
CM
536}
537
2ff7e61e 538static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 539{
0b246afa 540 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
541 return 0;
542
92e2f7e3 543 if (type == TRANS_START)
a22285a6 544 return 1;
a4abeea4 545
a22285a6
YZ
546 return 0;
547}
548
20dd2cbf
MX
549static inline bool need_reserve_reloc_root(struct btrfs_root *root)
550{
0b246afa
JM
551 struct btrfs_fs_info *fs_info = root->fs_info;
552
553 if (!fs_info->reloc_ctl ||
92a7cc42 554 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
555 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
556 root->reloc_root)
557 return false;
558
559 return true;
560}
561
28270e25
FM
562static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
563 enum btrfs_reserve_flush_enum flush,
564 u64 num_bytes,
565 u64 *delayed_refs_bytes)
566{
567 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
568 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
569 u64 extra_delayed_refs_bytes = 0;
570 u64 bytes;
571 int ret;
572
573 /*
574 * If there's a gap between the size of the delayed refs reserve and
575 * its reserved space, than some tasks have added delayed refs or bumped
576 * its size otherwise (due to block group creation or removal, or block
577 * group item update). Also try to allocate that gap in order to prevent
578 * using (and possibly abusing) the global reserve when committing the
579 * transaction.
580 */
581 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
582 !btrfs_block_rsv_full(delayed_refs_rsv)) {
583 spin_lock(&delayed_refs_rsv->lock);
584 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved)
585 extra_delayed_refs_bytes = delayed_refs_rsv->size -
586 delayed_refs_rsv->reserved;
587 spin_unlock(&delayed_refs_rsv->lock);
588 }
589
590 bytes = num_bytes + *delayed_refs_bytes + extra_delayed_refs_bytes;
591
592 /*
593 * We want to reserve all the bytes we may need all at once, so we only
594 * do 1 enospc flushing cycle per transaction start.
595 */
596 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
597 if (ret == 0) {
598 if (extra_delayed_refs_bytes > 0)
599 btrfs_migrate_to_delayed_refs_rsv(fs_info,
600 extra_delayed_refs_bytes);
601 return 0;
602 }
603
604 if (extra_delayed_refs_bytes > 0) {
605 bytes -= extra_delayed_refs_bytes;
606 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
607 if (ret == 0)
608 return 0;
609 }
610
611 /*
612 * If we are an emergency flush, which can steal from the global block
613 * reserve, then attempt to not reserve space for the delayed refs, as
614 * we will consume space for them from the global block reserve.
615 */
616 if (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
617 bytes -= *delayed_refs_bytes;
618 *delayed_refs_bytes = 0;
619 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
620 }
621
622 return ret;
623}
624
08e007d2 625static struct btrfs_trans_handle *
5aed1dd8 626start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
627 unsigned int type, enum btrfs_reserve_flush_enum flush,
628 bool enforce_qgroups)
37d1aeee 629{
0b246afa 630 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 631 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
28270e25 632 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
a22285a6
YZ
633 struct btrfs_trans_handle *h;
634 struct btrfs_transaction *cur_trans;
b5009945 635 u64 num_bytes = 0;
c5567237 636 u64 qgroup_reserved = 0;
28270e25 637 u64 delayed_refs_bytes = 0;
20dd2cbf 638 bool reloc_reserved = false;
9c343784 639 bool do_chunk_alloc = false;
20dd2cbf 640 int ret;
acce952b 641
84961539 642 if (BTRFS_FS_ERROR(fs_info))
acce952b 643 return ERR_PTR(-EROFS);
2a1eb461 644
46c4e71e 645 if (current->journal_info) {
0860adfd 646 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 647 h = current->journal_info;
b50fff81
DS
648 refcount_inc(&h->use_count);
649 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
650 h->orig_rsv = h->block_rsv;
651 h->block_rsv = NULL;
652 goto got_it;
653 }
b5009945
JB
654
655 /*
656 * Do the reservation before we join the transaction so we can do all
657 * the appropriate flushing if need be.
658 */
003d7c59 659 if (num_items && root != fs_info->chunk_root) {
0b246afa 660 qgroup_reserved = num_items * fs_info->nodesize;
a6496849
BB
661 /*
662 * Use prealloc for now, as there might be a currently running
663 * transaction that could free this reserved space prematurely
664 * by committing.
665 */
666 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
667 enforce_qgroups, false);
7174109c
QW
668 if (ret)
669 return ERR_PTR(ret);
c5567237 670
28270e25 671 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
ba2c4d4e 672 /*
28270e25
FM
673 * If we plan to insert/update/delete "num_items" from a btree,
674 * we will also generate delayed refs for extent buffers in the
675 * respective btree paths, so reserve space for the delayed refs
676 * that will be generated by the caller as it modifies btrees.
677 * Try to reserve them to avoid excessive use of the global
678 * block reserve.
ba2c4d4e 679 */
28270e25 680 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
ba2c4d4e 681
20dd2cbf
MX
682 /*
683 * Do the reservation for the relocation root creation
684 */
ee39b432 685 if (need_reserve_reloc_root(root)) {
0b246afa 686 num_bytes += fs_info->nodesize;
20dd2cbf
MX
687 reloc_reserved = true;
688 }
689
28270e25
FM
690 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
691 &delayed_refs_bytes);
ba2c4d4e
JB
692 if (ret)
693 goto reserve_fail;
9c343784 694
28270e25
FM
695 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
696
697 if (trans_rsv->space_info->force_alloc)
9c343784 698 do_chunk_alloc = true;
ba2c4d4e 699 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 700 !btrfs_block_rsv_full(delayed_refs_rsv)) {
ba2c4d4e
JB
701 /*
702 * Some people call with btrfs_start_transaction(root, 0)
703 * because they can be throttled, but have some other mechanism
704 * for reserving space. We still want these guys to refill the
705 * delayed block_rsv so just add 1 items worth of reservation
706 * here.
707 */
708 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 709 if (ret)
843fcf35 710 goto reserve_fail;
b5009945 711 }
a22285a6 712again:
f2f767e7 713 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
714 if (!h) {
715 ret = -ENOMEM;
716 goto alloc_fail;
717 }
37d1aeee 718
98114659
JB
719 /*
720 * If we are JOIN_NOLOCK we're already committing a transaction and
721 * waiting on this guy, so we don't need to do the sb_start_intwrite
722 * because we're already holding a ref. We need this because we could
723 * have raced in and did an fsync() on a file which can kick a commit
724 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
725 *
726 * If we are ATTACH, it means we just want to catch the current
727 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 728 */
0860adfd 729 if (type & __TRANS_FREEZABLE)
0b246afa 730 sb_start_intwrite(fs_info->sb);
b2b5ef5c 731
2ff7e61e
JM
732 if (may_wait_transaction(fs_info, type))
733 wait_current_trans(fs_info);
a22285a6 734
a4abeea4 735 do {
2ff7e61e 736 ret = join_transaction(fs_info, type);
178260b2 737 if (ret == -EBUSY) {
2ff7e61e 738 wait_current_trans(fs_info);
a6d155d2
FM
739 if (unlikely(type == TRANS_ATTACH ||
740 type == TRANS_JOIN_NOSTART))
178260b2
MX
741 ret = -ENOENT;
742 }
a4abeea4
JB
743 } while (ret == -EBUSY);
744
a43f7f82 745 if (ret < 0)
843fcf35 746 goto join_fail;
0f7d52f4 747
0b246afa 748 cur_trans = fs_info->running_transaction;
a22285a6
YZ
749
750 h->transid = cur_trans->transid;
751 h->transaction = cur_trans;
b50fff81 752 refcount_set(&h->use_count, 1);
64b63580 753 h->fs_info = root->fs_info;
7174109c 754
a698d075 755 h->type = type;
ea658bad 756 INIT_LIST_HEAD(&h->new_bgs);
28270e25 757 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
b7ec40d7 758
a22285a6 759 smp_mb();
3296bf56 760 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 761 may_wait_transaction(fs_info, type)) {
abdd2e80 762 current->journal_info = h;
3a45bb20 763 btrfs_commit_transaction(h);
a22285a6
YZ
764 goto again;
765 }
766
b5009945 767 if (num_bytes) {
0b246afa 768 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 769 h->transid, num_bytes, 1);
28270e25 770 h->block_rsv = trans_rsv;
b5009945 771 h->bytes_reserved = num_bytes;
28270e25
FM
772 if (delayed_refs_bytes > 0) {
773 trace_btrfs_space_reservation(fs_info,
774 "local_delayed_refs_rsv",
775 h->transid,
776 delayed_refs_bytes, 1);
777 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
778 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
779 delayed_refs_bytes = 0;
780 }
20dd2cbf 781 h->reloc_reserved = reloc_reserved;
a22285a6 782 }
9ed74f2d 783
a6496849
BB
784 /*
785 * Now that we have found a transaction to be a part of, convert the
786 * qgroup reservation from prealloc to pertrans. A different transaction
787 * can't race in and free our pertrans out from under us.
788 */
789 if (qgroup_reserved)
790 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
791
2a1eb461 792got_it:
bcf3a3e7 793 if (!current->journal_info)
a22285a6 794 current->journal_info = h;
fcc99734 795
9c343784
JB
796 /*
797 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
798 * ALLOC_FORCE the first run through, and then we won't allocate for
799 * anybody else who races in later. We don't care about the return
800 * value here.
801 */
802 if (do_chunk_alloc && num_bytes) {
803 u64 flags = h->block_rsv->space_info->flags;
804
805 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
806 CHUNK_ALLOC_NO_FORCE);
807 }
808
fcc99734
QW
809 /*
810 * btrfs_record_root_in_trans() needs to alloc new extents, and may
811 * call btrfs_join_transaction() while we're also starting a
812 * transaction.
813 *
814 * Thus it need to be called after current->journal_info initialized,
815 * or we can deadlock.
816 */
68075ea8
JB
817 ret = btrfs_record_root_in_trans(h, root);
818 if (ret) {
819 /*
820 * The transaction handle is fully initialized and linked with
821 * other structures so it needs to be ended in case of errors,
822 * not just freed.
823 */
824 btrfs_end_transaction(h);
825 return ERR_PTR(ret);
826 }
fcc99734 827
79154b1b 828 return h;
843fcf35
MX
829
830join_fail:
0860adfd 831 if (type & __TRANS_FREEZABLE)
0b246afa 832 sb_end_intwrite(fs_info->sb);
843fcf35
MX
833 kmem_cache_free(btrfs_trans_handle_cachep, h);
834alloc_fail:
835 if (num_bytes)
28270e25
FM
836 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
837 if (delayed_refs_bytes)
838 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
839 delayed_refs_bytes);
843fcf35 840reserve_fail:
a6496849 841 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
843fcf35 842 return ERR_PTR(ret);
79154b1b
CM
843}
844
f9295749 845struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 846 unsigned int num_items)
f9295749 847{
08e007d2 848 return start_transaction(root, num_items, TRANS_START,
003d7c59 849 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 850}
003d7c59 851
8eab77ff
FM
852struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
853 struct btrfs_root *root,
7f9fe614 854 unsigned int num_items)
8eab77ff 855{
7f9fe614
JB
856 return start_transaction(root, num_items, TRANS_START,
857 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 858}
8407aa46 859
7a7eaa40 860struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 861{
003d7c59
JM
862 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
863 true);
f9295749
CM
864}
865
8d510121 866struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 867{
575a75d6 868 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 869 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
870}
871
a6d155d2
FM
872/*
873 * Similar to regular join but it never starts a transaction when none is
19288951
FM
874 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
875 * This is similar to btrfs_attach_transaction() but it allows the join to
876 * happen if the transaction commit already started but it's not yet in the
877 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
a6d155d2
FM
878 */
879struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
880{
881 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
882 BTRFS_RESERVE_NO_FLUSH, true);
883}
884
d4edf39b 885/*
9580503b 886 * Catch the running transaction.
d4edf39b
MX
887 *
888 * It is used when we want to commit the current the transaction, but
889 * don't want to start a new one.
890 *
891 * Note: If this function return -ENOENT, it just means there is no
892 * running transaction. But it is possible that the inactive transaction
893 * is still in the memory, not fully on disk. If you hope there is no
894 * inactive transaction in the fs when -ENOENT is returned, you should
895 * invoke
896 * btrfs_attach_transaction_barrier()
897 */
354aa0fb 898struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 899{
575a75d6 900 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 901 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
902}
903
d4edf39b 904/*
9580503b 905 * Catch the running transaction.
d4edf39b 906 *
52042d8e 907 * It is similar to the above function, the difference is this one
d4edf39b
MX
908 * will wait for all the inactive transactions until they fully
909 * complete.
910 */
911struct btrfs_trans_handle *
912btrfs_attach_transaction_barrier(struct btrfs_root *root)
913{
914 struct btrfs_trans_handle *trans;
915
575a75d6 916 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 917 BTRFS_RESERVE_NO_FLUSH, true);
b28ff3a7
FM
918 if (trans == ERR_PTR(-ENOENT)) {
919 int ret;
920
921 ret = btrfs_wait_for_commit(root->fs_info, 0);
922 if (ret)
923 return ERR_PTR(ret);
924 }
d4edf39b
MX
925
926 return trans;
927}
928
d0c2f4fa
FM
929/* Wait for a transaction commit to reach at least the given state. */
930static noinline void wait_for_commit(struct btrfs_transaction *commit,
931 const enum btrfs_trans_state min_state)
89ce8a63 932{
5fd76bf3
OS
933 struct btrfs_fs_info *fs_info = commit->fs_info;
934 u64 transid = commit->transid;
935 bool put = false;
936
3e738c53
IA
937 /*
938 * At the moment this function is called with min_state either being
939 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
940 */
941 if (min_state == TRANS_STATE_COMPLETED)
942 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
943 else
944 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
945
5fd76bf3
OS
946 while (1) {
947 wait_event(commit->commit_wait, commit->state >= min_state);
948 if (put)
949 btrfs_put_transaction(commit);
950
951 if (min_state < TRANS_STATE_COMPLETED)
952 break;
953
954 /*
955 * A transaction isn't really completed until all of the
956 * previous transactions are completed, but with fsync we can
957 * end up with SUPER_COMMITTED transactions before a COMPLETED
958 * transaction. Wait for those.
959 */
960
961 spin_lock(&fs_info->trans_lock);
962 commit = list_first_entry_or_null(&fs_info->trans_list,
963 struct btrfs_transaction,
964 list);
965 if (!commit || commit->transid > transid) {
966 spin_unlock(&fs_info->trans_lock);
967 break;
968 }
969 refcount_inc(&commit->use_count);
970 put = true;
971 spin_unlock(&fs_info->trans_lock);
972 }
89ce8a63
CM
973}
974
2ff7e61e 975int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
976{
977 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 978 int ret = 0;
46204592 979
46204592 980 if (transid) {
0124855f 981 if (transid <= btrfs_get_last_trans_committed(fs_info))
a4abeea4 982 goto out;
46204592
SW
983
984 /* find specified transaction */
0b246afa
JM
985 spin_lock(&fs_info->trans_lock);
986 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
987 if (t->transid == transid) {
988 cur_trans = t;
9b64f57d 989 refcount_inc(&cur_trans->use_count);
8cd2807f 990 ret = 0;
46204592
SW
991 break;
992 }
8cd2807f
MX
993 if (t->transid > transid) {
994 ret = 0;
46204592 995 break;
8cd2807f 996 }
46204592 997 }
0b246afa 998 spin_unlock(&fs_info->trans_lock);
42383020
SW
999
1000 /*
1001 * The specified transaction doesn't exist, or we
1002 * raced with btrfs_commit_transaction
1003 */
1004 if (!cur_trans) {
0124855f 1005 if (transid > btrfs_get_last_trans_committed(fs_info))
42383020 1006 ret = -EINVAL;
8cd2807f 1007 goto out;
42383020 1008 }
46204592
SW
1009 } else {
1010 /* find newest transaction that is committing | committed */
0b246afa
JM
1011 spin_lock(&fs_info->trans_lock);
1012 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 1013 list) {
4a9d8bde
MX
1014 if (t->state >= TRANS_STATE_COMMIT_START) {
1015 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 1016 break;
46204592 1017 cur_trans = t;
9b64f57d 1018 refcount_inc(&cur_trans->use_count);
46204592
SW
1019 break;
1020 }
1021 }
0b246afa 1022 spin_unlock(&fs_info->trans_lock);
46204592 1023 if (!cur_trans)
a4abeea4 1024 goto out; /* nothing committing|committed */
46204592
SW
1025 }
1026
d0c2f4fa 1027 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
bf7ecbe9 1028 ret = cur_trans->aborted;
724e2315 1029 btrfs_put_transaction(cur_trans);
a4abeea4 1030out:
46204592
SW
1031 return ret;
1032}
1033
2ff7e61e 1034void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 1035{
92e2f7e3 1036 wait_current_trans(fs_info);
37d1aeee
CM
1037}
1038
a2633b6a 1039bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
1040{
1041 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 1042
3296bf56 1043 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 1044 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 1045 return true;
8929ecfa 1046
04fb3285
FM
1047 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1048 return true;
1049
1050 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
8929ecfa
YZ
1051}
1052
dc60c525
NB
1053static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1054
0e34693f 1055{
dc60c525
NB
1056 struct btrfs_fs_info *fs_info = trans->fs_info;
1057
0e34693f
NB
1058 if (!trans->block_rsv) {
1059 ASSERT(!trans->bytes_reserved);
28270e25 1060 ASSERT(!trans->delayed_refs_bytes_reserved);
0e34693f
NB
1061 return;
1062 }
1063
28270e25
FM
1064 if (!trans->bytes_reserved) {
1065 ASSERT(!trans->delayed_refs_bytes_reserved);
0e34693f 1066 return;
28270e25 1067 }
0e34693f
NB
1068
1069 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1070 trace_btrfs_space_reservation(fs_info, "transaction",
1071 trans->transid, trans->bytes_reserved, 0);
1072 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 1073 trans->bytes_reserved, NULL);
0e34693f 1074 trans->bytes_reserved = 0;
28270e25
FM
1075
1076 if (!trans->delayed_refs_bytes_reserved)
1077 return;
1078
1079 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1080 trans->transid,
1081 trans->delayed_refs_bytes_reserved, 0);
1082 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1083 trans->delayed_refs_bytes_reserved, NULL);
1084 trans->delayed_refs_bytes_reserved = 0;
0e34693f
NB
1085}
1086
89ce8a63 1087static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 1088 int throttle)
79154b1b 1089{
3a45bb20 1090 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 1091 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 1092 int err = 0;
c3e69d58 1093
b50fff81
DS
1094 if (refcount_read(&trans->use_count) > 1) {
1095 refcount_dec(&trans->use_count);
2a1eb461
JB
1096 trans->block_rsv = trans->orig_rsv;
1097 return 0;
1098 }
1099
dc60c525 1100 btrfs_trans_release_metadata(trans);
4c13d758 1101 trans->block_rsv = NULL;
c5567237 1102
119e80df 1103 btrfs_create_pending_block_groups(trans);
ea658bad 1104
4fbcdf66
FM
1105 btrfs_trans_release_chunk_metadata(trans);
1106
0860adfd 1107 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1108 sb_end_intwrite(info->sb);
6df7881a 1109
8929ecfa 1110 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
1111 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1112 atomic_dec(&cur_trans->num_writers);
0860adfd 1113 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 1114
093258e6 1115 cond_wake_up(&cur_trans->writer_wait);
e1489b4f 1116
5a9ba670 1117 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
e1489b4f
IA
1118 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1119
724e2315 1120 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
1121
1122 if (current->journal_info == trans)
1123 current->journal_info = NULL;
ab78c84d 1124
24bbcf04 1125 if (throttle)
2ff7e61e 1126 btrfs_run_delayed_iputs(info);
24bbcf04 1127
84961539 1128 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
4e121c06 1129 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1130 if (TRANS_ABORTED(trans))
1131 err = trans->aborted;
1132 else
1133 err = -EROFS;
4e121c06 1134 }
49b25e05 1135
4edc2ca3
DJ
1136 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1137 return err;
79154b1b
CM
1138}
1139
3a45bb20 1140int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1141{
3a45bb20 1142 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1143}
1144
3a45bb20 1145int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1146{
3a45bb20 1147 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1148}
1149
d352ac68
CM
1150/*
1151 * when btree blocks are allocated, they have some corresponding bits set for
1152 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1153 * those extents are sent to disk but does not wait on them
d352ac68 1154 */
2ff7e61e 1155int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1156 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1157{
777e6bd7 1158 int err = 0;
7c4452b9 1159 int werr = 0;
0b246afa 1160 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1161 struct extent_state *cached_state = NULL;
777e6bd7 1162 u64 start = 0;
5f39d397 1163 u64 end;
7c4452b9 1164
e5860f82
FM
1165 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1166 mark, &cached_state)) {
663dfbb0
FM
1167 bool wait_writeback = false;
1168
1169 err = convert_extent_bit(dirty_pages, start, end,
1170 EXTENT_NEED_WAIT,
210aa277 1171 mark, &cached_state);
663dfbb0
FM
1172 /*
1173 * convert_extent_bit can return -ENOMEM, which is most of the
1174 * time a temporary error. So when it happens, ignore the error
1175 * and wait for writeback of this range to finish - because we
1176 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1177 * to __btrfs_wait_marked_extents() would not know that
1178 * writeback for this range started and therefore wouldn't
1179 * wait for it to finish - we don't want to commit a
1180 * superblock that points to btree nodes/leafs for which
1181 * writeback hasn't finished yet (and without errors).
663dfbb0 1182 * We cleanup any entries left in the io tree when committing
41e7acd3 1183 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1184 */
1185 if (err == -ENOMEM) {
1186 err = 0;
1187 wait_writeback = true;
1188 }
1189 if (!err)
1190 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1191 if (err)
1192 werr = err;
663dfbb0
FM
1193 else if (wait_writeback)
1194 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1195 free_extent_state(cached_state);
663dfbb0 1196 cached_state = NULL;
1728366e
JB
1197 cond_resched();
1198 start = end + 1;
7c4452b9 1199 }
690587d1
CM
1200 return werr;
1201}
1202
1203/*
1204 * when btree blocks are allocated, they have some corresponding bits set for
1205 * them in one of two extent_io trees. This is used to make sure all of
1206 * those extents are on disk for transaction or log commit. We wait
1207 * on all the pages and clear them from the dirty pages state tree
1208 */
bf89d38f
JM
1209static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1210 struct extent_io_tree *dirty_pages)
690587d1 1211{
690587d1
CM
1212 int err = 0;
1213 int werr = 0;
0b246afa 1214 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1215 struct extent_state *cached_state = NULL;
690587d1
CM
1216 u64 start = 0;
1217 u64 end;
777e6bd7 1218
e5860f82
FM
1219 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1220 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1221 /*
1222 * Ignore -ENOMEM errors returned by clear_extent_bit().
1223 * When committing the transaction, we'll remove any entries
1224 * left in the io tree. For a log commit, we don't remove them
1225 * after committing the log because the tree can be accessed
1226 * concurrently - we do it only at transaction commit time when
41e7acd3 1227 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1228 */
1229 err = clear_extent_bit(dirty_pages, start, end,
bd015294 1230 EXTENT_NEED_WAIT, &cached_state);
663dfbb0
FM
1231 if (err == -ENOMEM)
1232 err = 0;
1233 if (!err)
1234 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1235 if (err)
1236 werr = err;
e38e2ed7
FM
1237 free_extent_state(cached_state);
1238 cached_state = NULL;
1728366e
JB
1239 cond_resched();
1240 start = end + 1;
777e6bd7 1241 }
7c4452b9
CM
1242 if (err)
1243 werr = err;
bf89d38f
JM
1244 return werr;
1245}
656f30db 1246
b9fae2eb 1247static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1248 struct extent_io_tree *dirty_pages)
1249{
1250 bool errors = false;
1251 int err;
656f30db 1252
bf89d38f
JM
1253 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1254 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1255 errors = true;
1256
1257 if (errors && !err)
1258 err = -EIO;
1259 return err;
1260}
656f30db 1261
bf89d38f
JM
1262int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1263{
1264 struct btrfs_fs_info *fs_info = log_root->fs_info;
1265 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1266 bool errors = false;
1267 int err;
656f30db 1268
bf89d38f
JM
1269 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1270
1271 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1272 if ((mark & EXTENT_DIRTY) &&
1273 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1274 errors = true;
1275
1276 if ((mark & EXTENT_NEW) &&
1277 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1278 errors = true;
1279
1280 if (errors && !err)
1281 err = -EIO;
1282 return err;
79154b1b
CM
1283}
1284
690587d1 1285/*
c9b577c0
NB
1286 * When btree blocks are allocated the corresponding extents are marked dirty.
1287 * This function ensures such extents are persisted on disk for transaction or
1288 * log commit.
1289 *
1290 * @trans: transaction whose dirty pages we'd like to write
690587d1 1291 */
70458a58 1292static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1293{
1294 int ret;
1295 int ret2;
c9b577c0 1296 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1297 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1298 struct blk_plug plug;
690587d1 1299
c6adc9cc 1300 blk_start_plug(&plug);
c9b577c0 1301 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1302 blk_finish_plug(&plug);
bf89d38f 1303 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1304
41e7acd3 1305 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1306
bf0da8c1
CM
1307 if (ret)
1308 return ret;
c9b577c0 1309 else if (ret2)
bf0da8c1 1310 return ret2;
c9b577c0
NB
1311 else
1312 return 0;
d0c803c4
CM
1313}
1314
d352ac68
CM
1315/*
1316 * this is used to update the root pointer in the tree of tree roots.
1317 *
1318 * But, in the case of the extent allocation tree, updating the root
1319 * pointer may allocate blocks which may change the root of the extent
1320 * allocation tree.
1321 *
1322 * So, this loops and repeats and makes sure the cowonly root didn't
1323 * change while the root pointer was being updated in the metadata.
1324 */
0b86a832
CM
1325static int update_cowonly_root(struct btrfs_trans_handle *trans,
1326 struct btrfs_root *root)
79154b1b
CM
1327{
1328 int ret;
0b86a832 1329 u64 old_root_bytenr;
86b9f2ec 1330 u64 old_root_used;
0b246afa
JM
1331 struct btrfs_fs_info *fs_info = root->fs_info;
1332 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1333
86b9f2ec 1334 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1335
d397712b 1336 while (1) {
0b86a832 1337 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1338 if (old_root_bytenr == root->node->start &&
ea526d18 1339 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1340 break;
87ef2bb4 1341
5d4f98a2 1342 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1343 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1344 &root->root_key,
1345 &root->root_item);
49b25e05
JM
1346 if (ret)
1347 return ret;
56bec294 1348
86b9f2ec 1349 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1350 }
276e680d 1351
0b86a832
CM
1352 return 0;
1353}
1354
d352ac68
CM
1355/*
1356 * update all the cowonly tree roots on disk
49b25e05
JM
1357 *
1358 * The error handling in this function may not be obvious. Any of the
1359 * failures will cause the file system to go offline. We still need
1360 * to clean up the delayed refs.
d352ac68 1361 */
9386d8bc 1362static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1363{
9386d8bc 1364 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1365 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1366 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1367 struct list_head *next;
84234f3a 1368 struct extent_buffer *eb;
56bec294 1369 int ret;
84234f3a 1370
dfba78dc
FM
1371 /*
1372 * At this point no one can be using this transaction to modify any tree
1373 * and no one can start another transaction to modify any tree either.
1374 */
1375 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1376
84234f3a 1377 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1378 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1379 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1380 btrfs_tree_unlock(eb);
1381 free_extent_buffer(eb);
0b86a832 1382
49b25e05
JM
1383 if (ret)
1384 return ret;
87ef2bb4 1385
196c9d8d 1386 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1387 if (ret)
1388 return ret;
2b584c68 1389 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1390 if (ret)
1391 return ret;
280f8bd2 1392 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1393 if (ret)
1394 return ret;
546adb0d 1395
bbebb3e0 1396 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1397 if (ret)
1398 return ret;
1399
ea526d18 1400again:
d397712b 1401 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1402 struct btrfs_root *root;
0b86a832
CM
1403 next = fs_info->dirty_cowonly_roots.next;
1404 list_del_init(next);
1405 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1406 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1407
826582ca
JB
1408 list_add_tail(&root->dirty_list,
1409 &trans->transaction->switch_commits);
49b25e05
JM
1410 ret = update_cowonly_root(trans, root);
1411 if (ret)
1412 return ret;
79154b1b 1413 }
276e680d 1414
488bc2a2 1415 /* Now flush any delayed refs generated by updating all of the roots */
8a526c44 1416 ret = btrfs_run_delayed_refs(trans, U64_MAX);
488bc2a2
JB
1417 if (ret)
1418 return ret;
1419
1bbc621e 1420 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1421 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1422 if (ret)
1423 return ret;
488bc2a2
JB
1424
1425 /*
1426 * We're writing the dirty block groups, which could generate
1427 * delayed refs, which could generate more dirty block groups,
1428 * so we want to keep this flushing in this loop to make sure
1429 * everything gets run.
1430 */
8a526c44 1431 ret = btrfs_run_delayed_refs(trans, U64_MAX);
ea526d18
JB
1432 if (ret)
1433 return ret;
1434 }
1435
1436 if (!list_empty(&fs_info->dirty_cowonly_roots))
1437 goto again;
1438
9f6cbcbb
DS
1439 /* Update dev-replace pointer once everything is committed */
1440 fs_info->dev_replace.committed_cursor_left =
1441 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1442
79154b1b
CM
1443 return 0;
1444}
1445
b4be6aef
JB
1446/*
1447 * If we had a pending drop we need to see if there are any others left in our
1448 * dead roots list, and if not clear our bit and wake any waiters.
1449 */
1450void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1451{
1452 /*
1453 * We put the drop in progress roots at the front of the list, so if the
1454 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1455 * up.
1456 */
1457 spin_lock(&fs_info->trans_lock);
1458 if (!list_empty(&fs_info->dead_roots)) {
1459 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1460 struct btrfs_root,
1461 root_list);
1462 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1463 spin_unlock(&fs_info->trans_lock);
1464 return;
1465 }
1466 }
1467 spin_unlock(&fs_info->trans_lock);
1468
1469 btrfs_wake_unfinished_drop(fs_info);
1470}
1471
d352ac68
CM
1472/*
1473 * dead roots are old snapshots that need to be deleted. This allocates
1474 * a dirty root struct and adds it into the list of dead roots that need to
1475 * be deleted
1476 */
cfad392b 1477void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1478{
0b246afa
JM
1479 struct btrfs_fs_info *fs_info = root->fs_info;
1480
1481 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1482 if (list_empty(&root->root_list)) {
1483 btrfs_grab_root(root);
b4be6aef
JB
1484
1485 /* We want to process the partially complete drops first. */
1486 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1487 list_add(&root->root_list, &fs_info->dead_roots);
1488 else
1489 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1490 }
0b246afa 1491 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1492}
1493
d352ac68 1494/*
dfba78dc
FM
1495 * Update each subvolume root and its relocation root, if it exists, in the tree
1496 * of tree roots. Also free log roots if they exist.
d352ac68 1497 */
7e4443d9 1498static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1499{
7e4443d9 1500 struct btrfs_fs_info *fs_info = trans->fs_info;
fc7cbcd4
DS
1501 struct btrfs_root *gang[8];
1502 int i;
1503 int ret;
54aa1f4d 1504
dfba78dc
FM
1505 /*
1506 * At this point no one can be using this transaction to modify any tree
1507 * and no one can start another transaction to modify any tree either.
1508 */
1509 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1510
fc7cbcd4
DS
1511 spin_lock(&fs_info->fs_roots_radix_lock);
1512 while (1) {
1513 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1514 (void **)gang, 0,
1515 ARRAY_SIZE(gang),
1516 BTRFS_ROOT_TRANS_TAG);
1517 if (ret == 0)
1518 break;
1519 for (i = 0; i < ret; i++) {
1520 struct btrfs_root *root = gang[i];
1521 int ret2;
1522
1523 /*
1524 * At this point we can neither have tasks logging inodes
1525 * from a root nor trying to commit a log tree.
1526 */
1527 ASSERT(atomic_read(&root->log_writers) == 0);
1528 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1529 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1530
1531 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1532 (unsigned long)root->root_key.objectid,
1533 BTRFS_ROOT_TRANS_TAG);
1534 spin_unlock(&fs_info->fs_roots_radix_lock);
1535
1536 btrfs_free_log(trans, root);
1537 ret2 = btrfs_update_reloc_root(trans, root);
1538 if (ret2)
1539 return ret2;
1540
1541 /* see comments in should_cow_block() */
1542 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1543 smp_mb__after_atomic();
1544
1545 if (root->commit_root != root->node) {
1546 list_add_tail(&root->dirty_list,
1547 &trans->transaction->switch_commits);
1548 btrfs_set_root_node(&root->root_item,
1549 root->node);
1550 }
48b36a60 1551
fc7cbcd4
DS
1552 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1553 &root->root_key,
1554 &root->root_item);
1555 if (ret2)
1556 return ret2;
1557 spin_lock(&fs_info->fs_roots_radix_lock);
1558 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1559 }
1560 }
fc7cbcd4 1561 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1562 return 0;
0f7d52f4
CM
1563}
1564
6426c7ad
QW
1565/*
1566 * Do all special snapshot related qgroup dirty hack.
1567 *
1568 * Will do all needed qgroup inherit and dirty hack like switch commit
1569 * roots inside one transaction and write all btree into disk, to make
1570 * qgroup works.
1571 */
1572static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1573 struct btrfs_root *src,
1574 struct btrfs_root *parent,
1575 struct btrfs_qgroup_inherit *inherit,
1576 u64 dst_objectid)
1577{
1578 struct btrfs_fs_info *fs_info = src->fs_info;
1579 int ret;
1580
1581 /*
5343cd93
BB
1582 * Save some performance in the case that qgroups are not enabled. If
1583 * this check races with the ioctl, rescan will kick in anyway.
6426c7ad 1584 */
182940f4 1585 if (!btrfs_qgroup_full_accounting(fs_info))
6426c7ad 1586 return 0;
6426c7ad 1587
4d31778a 1588 /*
52042d8e 1589 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1590 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1591 * recorded root will never be updated again, causing an outdated root
1592 * item.
1593 */
1c442d22
JB
1594 ret = record_root_in_trans(trans, src, 1);
1595 if (ret)
1596 return ret;
4d31778a 1597
2a4d84c1
JB
1598 /*
1599 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1600 * src root, so we must run the delayed refs here.
1601 *
1602 * However this isn't particularly fool proof, because there's no
1603 * synchronization keeping us from changing the tree after this point
1604 * before we do the qgroup_inherit, or even from making changes while
1605 * we're doing the qgroup_inherit. But that's a problem for the future,
1606 * for now flush the delayed refs to narrow the race window where the
1607 * qgroup counters could end up wrong.
1608 */
8a526c44 1609 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2a4d84c1
JB
1610 if (ret) {
1611 btrfs_abort_transaction(trans, ret);
44365827 1612 return ret;
2a4d84c1
JB
1613 }
1614
7e4443d9 1615 ret = commit_fs_roots(trans);
6426c7ad
QW
1616 if (ret)
1617 goto out;
460fb20a 1618 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1619 if (ret < 0)
1620 goto out;
1621
1622 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1623 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
5343cd93 1624 parent->root_key.objectid, inherit);
6426c7ad
QW
1625 if (ret < 0)
1626 goto out;
1627
1628 /*
1629 * Now we do a simplified commit transaction, which will:
1630 * 1) commit all subvolume and extent tree
1631 * To ensure all subvolume and extent tree have a valid
1632 * commit_root to accounting later insert_dir_item()
1633 * 2) write all btree blocks onto disk
1634 * This is to make sure later btree modification will be cowed
1635 * Or commit_root can be populated and cause wrong qgroup numbers
1636 * In this simplified commit, we don't really care about other trees
1637 * like chunk and root tree, as they won't affect qgroup.
1638 * And we don't write super to avoid half committed status.
1639 */
9386d8bc 1640 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1641 if (ret)
1642 goto out;
889bfa39 1643 switch_commit_roots(trans);
70458a58 1644 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1645 if (ret)
f7af3934 1646 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1647 "Error while writing out transaction for qgroup");
1648
1649out:
6426c7ad
QW
1650 /*
1651 * Force parent root to be updated, as we recorded it before so its
1652 * last_trans == cur_transid.
1653 * Or it won't be committed again onto disk after later
1654 * insert_dir_item()
1655 */
1656 if (!ret)
1c442d22 1657 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1658 return ret;
1659}
1660
d352ac68
CM
1661/*
1662 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1663 * transaction commit. This does the actual creation.
1664 *
1665 * Note:
1666 * If the error which may affect the commitment of the current transaction
1667 * happens, we should return the error number. If the error which just affect
1668 * the creation of the pending snapshots, just return 0.
d352ac68 1669 */
80b6794d 1670static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1671 struct btrfs_pending_snapshot *pending)
1672{
08d50ca3
NB
1673
1674 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1675 struct btrfs_key key;
80b6794d 1676 struct btrfs_root_item *new_root_item;
3063d29f
CM
1677 struct btrfs_root *tree_root = fs_info->tree_root;
1678 struct btrfs_root *root = pending->root;
6bdb72de 1679 struct btrfs_root *parent_root;
98c9942a 1680 struct btrfs_block_rsv *rsv;
ab3c5c18 1681 struct inode *parent_inode = pending->dir;
42874b3d
MX
1682 struct btrfs_path *path;
1683 struct btrfs_dir_item *dir_item;
3063d29f 1684 struct extent_buffer *tmp;
925baedd 1685 struct extent_buffer *old;
95582b00 1686 struct timespec64 cur_time;
aec8030a 1687 int ret = 0;
d68fc57b 1688 u64 to_reserve = 0;
6bdb72de 1689 u64 index = 0;
a22285a6 1690 u64 objectid;
b83cc969 1691 u64 root_flags;
ab3c5c18
STD
1692 unsigned int nofs_flags;
1693 struct fscrypt_name fname;
3063d29f 1694
8546b570
DS
1695 ASSERT(pending->path);
1696 path = pending->path;
42874b3d 1697
b0c0ea63
DS
1698 ASSERT(pending->root_item);
1699 new_root_item = pending->root_item;
a22285a6 1700
ab3c5c18
STD
1701 /*
1702 * We're inside a transaction and must make sure that any potential
1703 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1704 * filesystem.
1705 */
1706 nofs_flags = memalloc_nofs_save();
1707 pending->error = fscrypt_setup_filename(parent_inode,
1708 &pending->dentry->d_name, 0,
1709 &fname);
1710 memalloc_nofs_restore(nofs_flags);
1711 if (pending->error)
1712 goto free_pending;
ab3c5c18 1713
543068a2 1714 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1715 if (pending->error)
ab3c5c18 1716 goto free_fname;
3063d29f 1717
d6726335
QW
1718 /*
1719 * Make qgroup to skip current new snapshot's qgroupid, as it is
1720 * accounted by later btrfs_qgroup_inherit().
1721 */
1722 btrfs_set_skip_qgroup(trans, objectid);
1723
147d256e 1724 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1725
1726 if (to_reserve > 0) {
9270501c 1727 pending->error = btrfs_block_rsv_add(fs_info,
aec8030a
MX
1728 &pending->block_rsv,
1729 to_reserve,
1730 BTRFS_RESERVE_NO_FLUSH);
1731 if (pending->error)
d6726335 1732 goto clear_skip_qgroup;
d68fc57b
YZ
1733 }
1734
3063d29f 1735 key.objectid = objectid;
a22285a6
YZ
1736 key.offset = (u64)-1;
1737 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1738
6fa9700e 1739 rsv = trans->block_rsv;
a22285a6 1740 trans->block_rsv = &pending->block_rsv;
2382c5cc 1741 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1742 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1743 trans->transid,
1744 trans->bytes_reserved, 1);
a22285a6 1745 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1746 ret = record_root_in_trans(trans, parent_root, 0);
1747 if (ret)
1748 goto fail;
c2050a45 1749 cur_time = current_time(parent_inode);
04b285f3 1750
3063d29f
CM
1751 /*
1752 * insert the directory item
1753 */
877574e2 1754 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
df9f2782
FM
1755 if (ret) {
1756 btrfs_abort_transaction(trans, ret);
1757 goto fail;
1758 }
42874b3d
MX
1759
1760 /* check if there is a file/dir which has the same name. */
1761 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1762 btrfs_ino(BTRFS_I(parent_inode)),
6db75318 1763 &fname.disk_name, 0);
42874b3d 1764 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1765 pending->error = -EEXIST;
aec8030a 1766 goto dir_item_existed;
42874b3d
MX
1767 } else if (IS_ERR(dir_item)) {
1768 ret = PTR_ERR(dir_item);
66642832 1769 btrfs_abort_transaction(trans, ret);
8732d44f 1770 goto fail;
79787eaa 1771 }
42874b3d 1772 btrfs_release_path(path);
52c26179 1773
6ed05643 1774 ret = btrfs_create_qgroup(trans, objectid);
8049ba5d 1775 if (ret && ret != -EEXIST) {
6ed05643
BB
1776 btrfs_abort_transaction(trans, ret);
1777 goto fail;
1778 }
1779
e999376f
CM
1780 /*
1781 * pull in the delayed directory update
1782 * and the delayed inode item
1783 * otherwise we corrupt the FS during
1784 * snapshot
1785 */
e5c304e6 1786 ret = btrfs_run_delayed_items(trans);
8732d44f 1787 if (ret) { /* Transaction aborted */
66642832 1788 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1789 goto fail;
1790 }
e999376f 1791
f0118cb6
JB
1792 ret = record_root_in_trans(trans, root, 0);
1793 if (ret) {
1794 btrfs_abort_transaction(trans, ret);
1795 goto fail;
1796 }
6bdb72de
SW
1797 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1798 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1799 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1800
b83cc969
LZ
1801 root_flags = btrfs_root_flags(new_root_item);
1802 if (pending->readonly)
1803 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1804 else
1805 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1806 btrfs_set_root_flags(new_root_item, root_flags);
1807
8ea05e3a
AB
1808 btrfs_set_root_generation_v2(new_root_item,
1809 trans->transid);
807fc790 1810 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1811 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1812 BTRFS_UUID_SIZE);
70023da2
SB
1813 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1814 memset(new_root_item->received_uuid, 0,
1815 sizeof(new_root_item->received_uuid));
1816 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1817 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1818 btrfs_set_root_stransid(new_root_item, 0);
1819 btrfs_set_root_rtransid(new_root_item, 0);
1820 }
3cae210f
QW
1821 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1822 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1823 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1824
6bdb72de 1825 old = btrfs_lock_root_node(root);
9631e4cc
JB
1826 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1827 BTRFS_NESTING_COW);
79787eaa
JM
1828 if (ret) {
1829 btrfs_tree_unlock(old);
1830 free_extent_buffer(old);
66642832 1831 btrfs_abort_transaction(trans, ret);
8732d44f 1832 goto fail;
79787eaa 1833 }
49b25e05 1834
49b25e05 1835 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1836 /* clean up in any case */
6bdb72de
SW
1837 btrfs_tree_unlock(old);
1838 free_extent_buffer(old);
8732d44f 1839 if (ret) {
66642832 1840 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1841 goto fail;
1842 }
f1ebcc74 1843 /* see comments in should_cow_block() */
27cdeb70 1844 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1845 smp_wmb();
1846
6bdb72de 1847 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1848 /* record when the snapshot was created in key.offset */
1849 key.offset = trans->transid;
1850 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1851 btrfs_tree_unlock(tmp);
1852 free_extent_buffer(tmp);
8732d44f 1853 if (ret) {
66642832 1854 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1855 goto fail;
1856 }
6bdb72de 1857
a22285a6
YZ
1858 /*
1859 * insert root back/forward references
1860 */
6025c19f 1861 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1862 parent_root->root_key.objectid,
4a0cc7ca 1863 btrfs_ino(BTRFS_I(parent_inode)), index,
6db75318 1864 &fname.disk_name);
8732d44f 1865 if (ret) {
66642832 1866 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1867 goto fail;
1868 }
0660b5af 1869
a22285a6 1870 key.offset = (u64)-1;
2dfb1e43 1871 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1872 if (IS_ERR(pending->snap)) {
1873 ret = PTR_ERR(pending->snap);
2d892ccd 1874 pending->snap = NULL;
66642832 1875 btrfs_abort_transaction(trans, ret);
8732d44f 1876 goto fail;
79787eaa 1877 }
d68fc57b 1878
49b25e05 1879 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1880 if (ret) {
66642832 1881 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1882 goto fail;
1883 }
361048f5 1884
6426c7ad
QW
1885 /*
1886 * Do special qgroup accounting for snapshot, as we do some qgroup
1887 * snapshot hack to do fast snapshot.
1888 * To co-operate with that hack, we do hack again.
1889 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1890 */
5343cd93
BB
1891 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1892 ret = qgroup_account_snapshot(trans, root, parent_root,
1893 pending->inherit, objectid);
1894 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1895 ret = btrfs_qgroup_inherit(trans, root->root_key.objectid, objectid,
1896 parent_root->root_key.objectid, pending->inherit);
6426c7ad
QW
1897 if (ret < 0)
1898 goto fail;
1899
6db75318
STD
1900 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1901 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1902 index);
42874b3d 1903 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1904 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1905 if (ret) {
66642832 1906 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1907 goto fail;
1908 }
42874b3d 1909
6ef06d27 1910 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
6db75318 1911 fname.disk_name.len * 2);
b1c38a13
JL
1912 inode_set_mtime_to_ts(parent_inode,
1913 inode_set_ctime_current(parent_inode));
0a5d0dc5 1914 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
dd5f9615 1915 if (ret) {
66642832 1916 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1917 goto fail;
1918 }
807fc790
AS
1919 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1920 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1921 objectid);
dd5f9615 1922 if (ret) {
66642832 1923 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1924 goto fail;
1925 }
1926 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1927 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1928 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1929 objectid);
1930 if (ret && ret != -EEXIST) {
66642832 1931 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1932 goto fail;
1933 }
1934 }
d6726335 1935
3063d29f 1936fail:
aec8030a
MX
1937 pending->error = ret;
1938dir_item_existed:
98c9942a 1939 trans->block_rsv = rsv;
2382c5cc 1940 trans->bytes_reserved = 0;
d6726335
QW
1941clear_skip_qgroup:
1942 btrfs_clear_skip_qgroup(trans);
ab3c5c18
STD
1943free_fname:
1944 fscrypt_free_filename(&fname);
1945free_pending:
6fa9700e 1946 kfree(new_root_item);
b0c0ea63 1947 pending->root_item = NULL;
42874b3d 1948 btrfs_free_path(path);
8546b570
DS
1949 pending->path = NULL;
1950
49b25e05 1951 return ret;
3063d29f
CM
1952}
1953
d352ac68
CM
1954/*
1955 * create all the snapshots we've scheduled for creation
1956 */
08d50ca3 1957static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1958{
aec8030a 1959 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1960 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1961 int ret = 0;
3de4586c 1962
aec8030a
MX
1963 list_for_each_entry_safe(pending, next, head, list) {
1964 list_del(&pending->list);
08d50ca3 1965 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1966 if (ret)
1967 break;
1968 }
1969 return ret;
3de4586c
CM
1970}
1971
2ff7e61e 1972static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1973{
1974 struct btrfs_root_item *root_item;
1975 struct btrfs_super_block *super;
1976
0b246afa 1977 super = fs_info->super_copy;
5d4f98a2 1978
0b246afa 1979 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1980 super->chunk_root = root_item->bytenr;
1981 super->chunk_root_generation = root_item->generation;
1982 super->chunk_root_level = root_item->level;
5d4f98a2 1983
0b246afa 1984 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1985 super->root = root_item->bytenr;
1986 super->generation = root_item->generation;
1987 super->root_level = root_item->level;
0b246afa 1988 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1989 super->cache_generation = root_item->generation;
94846229
BB
1990 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1991 super->cache_generation = 0;
0b246afa 1992 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1993 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1994}
1995
f36f3042
CM
1996int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1997{
4a9d8bde 1998 struct btrfs_transaction *trans;
f36f3042 1999 int ret = 0;
4a9d8bde 2000
a4abeea4 2001 spin_lock(&info->trans_lock);
4a9d8bde
MX
2002 trans = info->running_transaction;
2003 if (trans)
2004 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 2005 spin_unlock(&info->trans_lock);
f36f3042
CM
2006 return ret;
2007}
2008
8929ecfa
YZ
2009int btrfs_transaction_blocked(struct btrfs_fs_info *info)
2010{
4a9d8bde 2011 struct btrfs_transaction *trans;
8929ecfa 2012 int ret = 0;
4a9d8bde 2013
a4abeea4 2014 spin_lock(&info->trans_lock);
4a9d8bde
MX
2015 trans = info->running_transaction;
2016 if (trans)
2017 ret = is_transaction_blocked(trans);
a4abeea4 2018 spin_unlock(&info->trans_lock);
8929ecfa
YZ
2019 return ret;
2020}
2021
fdfbf020 2022void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 2023{
3a45bb20 2024 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
2025 struct btrfs_transaction *cur_trans;
2026
fdfbf020
JB
2027 /* Kick the transaction kthread. */
2028 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2029 wake_up_process(fs_info->transaction_kthread);
bb9c12c9
SW
2030
2031 /* take transaction reference */
bb9c12c9 2032 cur_trans = trans->transaction;
9b64f57d 2033 refcount_inc(&cur_trans->use_count);
bb9c12c9 2034
3a45bb20 2035 btrfs_end_transaction(trans);
6fc4e354 2036
ae5d29d4
DS
2037 /*
2038 * Wait for the current transaction commit to start and block
2039 * subsequent transaction joins
2040 */
77d20c68 2041 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
ae5d29d4
DS
2042 wait_event(fs_info->transaction_blocked_wait,
2043 cur_trans->state >= TRANS_STATE_COMMIT_START ||
2044 TRANS_ABORTED(cur_trans));
724e2315 2045 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
2046}
2047
97cb39bb 2048static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 2049{
97cb39bb 2050 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
2051 struct btrfs_transaction *cur_trans = trans->transaction;
2052
b50fff81 2053 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 2054
66642832 2055 btrfs_abort_transaction(trans, err);
7b8b92af 2056
0b246afa 2057 spin_lock(&fs_info->trans_lock);
66b6135b 2058
25d8c284
MX
2059 /*
2060 * If the transaction is removed from the list, it means this
2061 * transaction has been committed successfully, so it is impossible
2062 * to call the cleanup function.
2063 */
2064 BUG_ON(list_empty(&cur_trans->list));
66b6135b 2065
0b246afa 2066 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 2067 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2068 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2069
2070 /*
2071 * The thread has already released the lockdep map as reader
2072 * already in btrfs_commit_transaction().
2073 */
2074 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
f094ac32
LB
2075 wait_event(cur_trans->writer_wait,
2076 atomic_read(&cur_trans->num_writers) == 1);
2077
0b246afa 2078 spin_lock(&fs_info->trans_lock);
d7096fc3 2079 }
061dde82
FM
2080
2081 /*
2082 * Now that we know no one else is still using the transaction we can
2083 * remove the transaction from the list of transactions. This avoids
2084 * the transaction kthread from cleaning up the transaction while some
2085 * other task is still using it, which could result in a use-after-free
2086 * on things like log trees, as it forces the transaction kthread to
2087 * wait for this transaction to be cleaned up by us.
2088 */
2089 list_del_init(&cur_trans->list);
2090
0b246afa 2091 spin_unlock(&fs_info->trans_lock);
49b25e05 2092
2ff7e61e 2093 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 2094
0b246afa
JM
2095 spin_lock(&fs_info->trans_lock);
2096 if (cur_trans == fs_info->running_transaction)
2097 fs_info->running_transaction = NULL;
2098 spin_unlock(&fs_info->trans_lock);
4a9d8bde 2099
e0228285 2100 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2101 sb_end_intwrite(fs_info->sb);
724e2315
JB
2102 btrfs_put_transaction(cur_trans);
2103 btrfs_put_transaction(cur_trans);
49b25e05 2104
2e4e97ab 2105 trace_btrfs_transaction_commit(fs_info);
49b25e05 2106
49b25e05
JM
2107 if (current->journal_info == trans)
2108 current->journal_info = NULL;
2d82a40a
FM
2109
2110 /*
2111 * If relocation is running, we can't cancel scrub because that will
2112 * result in a deadlock. Before relocating a block group, relocation
2113 * pauses scrub, then starts and commits a transaction before unpausing
2114 * scrub. If the transaction commit is being done by the relocation
2115 * task or triggered by another task and the relocation task is waiting
2116 * for the commit, and we end up here due to an error in the commit
2117 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2118 * asking for scrub to stop while having it asked to be paused higher
2119 * above in relocation code.
2120 */
2121 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2122 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2123
2124 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2125}
2126
c7cc64a9
DS
2127/*
2128 * Release reserved delayed ref space of all pending block groups of the
2129 * transaction and remove them from the list
2130 */
2131static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2132{
2133 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2134 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2135
2136 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
9ef17228 2137 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
c7cc64a9
DS
2138 list_del_init(&block_group->bg_list);
2139 }
2140}
2141
88090ad3 2142static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2143{
ce8ea7cc 2144 /*
a0f0cf83 2145 * We use try_to_writeback_inodes_sb() here because if we used
ce8ea7cc
JB
2146 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2147 * Currently are holding the fs freeze lock, if we do an async flush
2148 * we'll do btrfs_join_transaction() and deadlock because we need to
2149 * wait for the fs freeze lock. Using the direct flushing we benefit
2150 * from already being in a transaction and our join_transaction doesn't
2151 * have to re-take the fs freeze lock.
a0f0cf83
FM
2152 *
2153 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2154 * if it can read lock sb->s_umount. It will always be able to lock it,
2155 * except when the filesystem is being unmounted or being frozen, but in
2156 * those cases sync_filesystem() is called, which results in calling
2157 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2158 * Note that we don't call writeback_inodes_sb() directly, because it
2159 * will emit a warning if sb->s_umount is not locked.
ce8ea7cc 2160 */
88090ad3 2161 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
a0f0cf83 2162 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2163 return 0;
2164}
2165
88090ad3 2166static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2167{
88090ad3 2168 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2169 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2170}
2171
28b21c55
FM
2172/*
2173 * Add a pending snapshot associated with the given transaction handle to the
2174 * respective handle. This must be called after the transaction commit started
2175 * and while holding fs_info->trans_lock.
2176 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2177 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2178 * returns an error.
2179 */
2180static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2181{
2182 struct btrfs_transaction *cur_trans = trans->transaction;
2183
2184 if (!trans->pending_snapshot)
2185 return;
2186
2187 lockdep_assert_held(&trans->fs_info->trans_lock);
77d20c68 2188 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
28b21c55
FM
2189
2190 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2191}
2192
e55958c8
IA
2193static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2194{
2195 fs_info->commit_stats.commit_count++;
2196 fs_info->commit_stats.last_commit_dur = interval;
2197 fs_info->commit_stats.max_commit_dur =
2198 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2199 fs_info->commit_stats.total_commit_dur += interval;
2200}
2201
3a45bb20 2202int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2203{
3a45bb20 2204 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2205 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2206 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2207 int ret;
e55958c8
IA
2208 ktime_t start_time;
2209 ktime_t interval;
79154b1b 2210
35b814f3 2211 ASSERT(refcount_read(&trans->use_count) == 1);
77d20c68 2212 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
35b814f3 2213
c52cc7b7
JB
2214 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2215
8d25a086 2216 /* Stop the commit early if ->aborted is set */
bf31f87f 2217 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2218 ret = cur_trans->aborted;
3e738c53 2219 goto lockdep_trans_commit_start_release;
25287e0a 2220 }
49b25e05 2221
f45c752b
JB
2222 btrfs_trans_release_metadata(trans);
2223 trans->block_rsv = NULL;
2224
56bec294 2225 /*
e19eb11f
JB
2226 * We only want one transaction commit doing the flushing so we do not
2227 * waste a bunch of time on lock contention on the extent root node.
56bec294 2228 */
e19eb11f
JB
2229 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2230 &cur_trans->delayed_refs.flags)) {
2231 /*
2232 * Make a pass through all the delayed refs we have so far.
2233 * Any running threads may add more while we are here.
2234 */
2235 ret = btrfs_run_delayed_refs(trans, 0);
3e738c53
IA
2236 if (ret)
2237 goto lockdep_trans_commit_start_release;
e19eb11f 2238 }
56bec294 2239
119e80df 2240 btrfs_create_pending_block_groups(trans);
ea658bad 2241
3204d33c 2242 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2243 int run_it = 0;
2244
2245 /* this mutex is also taken before trying to set
2246 * block groups readonly. We need to make sure
2247 * that nobody has set a block group readonly
2248 * after a extents from that block group have been
2249 * allocated for cache files. btrfs_set_block_group_ro
2250 * will wait for the transaction to commit if it
3204d33c 2251 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2252 *
3204d33c
JB
2253 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2254 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2255 * hurt to have more than one go through, but there's no
2256 * real advantage to it either.
2257 */
0b246afa 2258 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2259 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2260 &cur_trans->flags))
1bbc621e 2261 run_it = 1;
0b246afa 2262 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2263
f9cacae3 2264 if (run_it) {
21217054 2265 ret = btrfs_start_dirty_block_groups(trans);
3e738c53
IA
2266 if (ret)
2267 goto lockdep_trans_commit_start_release;
f9cacae3 2268 }
1bbc621e
CM
2269 }
2270
0b246afa 2271 spin_lock(&fs_info->trans_lock);
77d20c68 2272 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
d0c2f4fa
FM
2273 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2274
28b21c55
FM
2275 add_pending_snapshot(trans);
2276
0b246afa 2277 spin_unlock(&fs_info->trans_lock);
9b64f57d 2278 refcount_inc(&cur_trans->use_count);
ccd467d6 2279
d0c2f4fa
FM
2280 if (trans->in_fsync)
2281 want_state = TRANS_STATE_SUPER_COMMITTED;
3e738c53
IA
2282
2283 btrfs_trans_state_lockdep_release(fs_info,
77d20c68 2284 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
d0c2f4fa
FM
2285 ret = btrfs_end_transaction(trans);
2286 wait_for_commit(cur_trans, want_state);
15ee9bc7 2287
bf31f87f 2288 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2289 ret = cur_trans->aborted;
2290
724e2315 2291 btrfs_put_transaction(cur_trans);
15ee9bc7 2292
49b25e05 2293 return ret;
79154b1b 2294 }
4313b399 2295
77d20c68 2296 cur_trans->state = TRANS_STATE_COMMIT_PREP;
0b246afa 2297 wake_up(&fs_info->transaction_blocked_wait);
77d20c68 2298 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
bb9c12c9 2299
0b246afa 2300 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2301 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2302
2303 if (trans->in_fsync)
2304 want_state = TRANS_STATE_SUPER_COMMITTED;
2305
ccd467d6
CM
2306 prev_trans = list_entry(cur_trans->list.prev,
2307 struct btrfs_transaction, list);
d0c2f4fa 2308 if (prev_trans->state < want_state) {
9b64f57d 2309 refcount_inc(&prev_trans->use_count);
0b246afa 2310 spin_unlock(&fs_info->trans_lock);
ccd467d6 2311
d0c2f4fa
FM
2312 wait_for_commit(prev_trans, want_state);
2313
bf31f87f 2314 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2315
724e2315 2316 btrfs_put_transaction(prev_trans);
1f9b8c8f 2317 if (ret)
e1489b4f 2318 goto lockdep_release;
77d20c68 2319 spin_lock(&fs_info->trans_lock);
ccd467d6 2320 }
a4abeea4 2321 } else {
cb2d3dad
FM
2322 /*
2323 * The previous transaction was aborted and was already removed
2324 * from the list of transactions at fs_info->trans_list. So we
2325 * abort to prevent writing a new superblock that reflects a
2326 * corrupt state (pointing to trees with unwritten nodes/leafs).
2327 */
84961539 2328 if (BTRFS_FS_ERROR(fs_info)) {
77d20c68 2329 spin_unlock(&fs_info->trans_lock);
cb2d3dad 2330 ret = -EROFS;
e1489b4f 2331 goto lockdep_release;
cb2d3dad 2332 }
ccd467d6 2333 }
15ee9bc7 2334
77d20c68
JB
2335 cur_trans->state = TRANS_STATE_COMMIT_START;
2336 wake_up(&fs_info->transaction_blocked_wait);
2337 spin_unlock(&fs_info->trans_lock);
2338
e55958c8
IA
2339 /*
2340 * Get the time spent on the work done by the commit thread and not
2341 * the time spent waiting on a previous commit
2342 */
2343 start_time = ktime_get_ns();
2344
0860adfd
MX
2345 extwriter_counter_dec(cur_trans, trans->type);
2346
88090ad3 2347 ret = btrfs_start_delalloc_flush(fs_info);
82436617 2348 if (ret)
e1489b4f 2349 goto lockdep_release;
82436617 2350
e5c304e6 2351 ret = btrfs_run_delayed_items(trans);
581227d0 2352 if (ret)
e1489b4f 2353 goto lockdep_release;
15ee9bc7 2354
5a9ba670
IA
2355 /*
2356 * The thread has started/joined the transaction thus it holds the
2357 * lockdep map as a reader. It has to release it before acquiring the
2358 * lockdep map as a writer.
2359 */
2360 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2361 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
581227d0
MX
2362 wait_event(cur_trans->writer_wait,
2363 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2364
581227d0 2365 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2366 ret = btrfs_run_delayed_items(trans);
e1489b4f
IA
2367 if (ret) {
2368 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
ca469637 2369 goto cleanup_transaction;
e1489b4f 2370 }
ca469637 2371
88090ad3 2372 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2373
48778179
FM
2374 /*
2375 * Wait for all ordered extents started by a fast fsync that joined this
2376 * transaction. Otherwise if this transaction commits before the ordered
2377 * extents complete we lose logged data after a power failure.
2378 */
8b53779e 2379 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
48778179
FM
2380 wait_event(cur_trans->pending_wait,
2381 atomic_read(&cur_trans->pending_ordered) == 0);
2382
2ff7e61e 2383 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2384 /*
2385 * Ok now we need to make sure to block out any other joins while we
2386 * commit the transaction. We could have started a join before setting
4a9d8bde 2387 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2388 */
0b246afa 2389 spin_lock(&fs_info->trans_lock);
28b21c55 2390 add_pending_snapshot(trans);
4a9d8bde 2391 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2392 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2393
2394 /*
2395 * The thread has started/joined the transaction thus it holds the
2396 * lockdep map as a reader. It has to release it before acquiring the
2397 * lockdep map as a writer.
2398 */
2399 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2400 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
ed0ca140
JB
2401 wait_event(cur_trans->writer_wait,
2402 atomic_read(&cur_trans->num_writers) == 1);
2403
3e738c53
IA
2404 /*
2405 * Make lockdep happy by acquiring the state locks after
2406 * btrfs_trans_num_writers is released. If we acquired the state locks
2407 * before releasing the btrfs_trans_num_writers lock then lockdep would
2408 * complain because we did not follow the reverse order unlocking rule.
2409 */
2410 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2411 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2412 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2413
fdfbf020
JB
2414 /*
2415 * We've started the commit, clear the flag in case we were triggered to
2416 * do an async commit but somebody else started before the transaction
2417 * kthread could do the work.
2418 */
2419 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2420
bf31f87f 2421 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2422 ret = cur_trans->aborted;
3e738c53 2423 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2424 goto scrub_continue;
2cba30f1 2425 }
7585717f
CM
2426 /*
2427 * the reloc mutex makes sure that we stop
2428 * the balancing code from coming in and moving
2429 * extents around in the middle of the commit
2430 */
0b246afa 2431 mutex_lock(&fs_info->reloc_mutex);
7585717f 2432
42874b3d
MX
2433 /*
2434 * We needn't worry about the delayed items because we will
2435 * deal with them in create_pending_snapshot(), which is the
2436 * core function of the snapshot creation.
2437 */
08d50ca3 2438 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2439 if (ret)
2440 goto unlock_reloc;
3063d29f 2441
42874b3d
MX
2442 /*
2443 * We insert the dir indexes of the snapshots and update the inode
2444 * of the snapshots' parents after the snapshot creation, so there
2445 * are some delayed items which are not dealt with. Now deal with
2446 * them.
2447 *
2448 * We needn't worry that this operation will corrupt the snapshots,
2449 * because all the tree which are snapshoted will be forced to COW
2450 * the nodes and leaves.
2451 */
e5c304e6 2452 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2453 if (ret)
2454 goto unlock_reloc;
16cdcec7 2455
8a526c44 2456 ret = btrfs_run_delayed_refs(trans, U64_MAX);
56e9f6ea
DS
2457 if (ret)
2458 goto unlock_reloc;
56bec294 2459
e999376f
CM
2460 /*
2461 * make sure none of the code above managed to slip in a
2462 * delayed item
2463 */
ccdf9b30 2464 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2465
2c90e5d6 2466 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2467
7e4443d9 2468 ret = commit_fs_roots(trans);
56e9f6ea 2469 if (ret)
dfba78dc 2470 goto unlock_reloc;
54aa1f4d 2471
5d4f98a2 2472 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2473 * safe to free the root of tree log roots
2474 */
0b246afa 2475 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2476
0ed4792a
QW
2477 /*
2478 * Since fs roots are all committed, we can get a quite accurate
2479 * new_roots. So let's do quota accounting.
2480 */
460fb20a 2481 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea 2482 if (ret < 0)
dfba78dc 2483 goto unlock_reloc;
0ed4792a 2484
9386d8bc 2485 ret = commit_cowonly_roots(trans);
56e9f6ea 2486 if (ret)
dfba78dc 2487 goto unlock_reloc;
54aa1f4d 2488
2cba30f1
MX
2489 /*
2490 * The tasks which save the space cache and inode cache may also
2491 * update ->aborted, check it.
2492 */
bf31f87f 2493 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2494 ret = cur_trans->aborted;
dfba78dc 2495 goto unlock_reloc;
2cba30f1
MX
2496 }
2497
0b246afa 2498 cur_trans = fs_info->running_transaction;
5d4f98a2 2499
0b246afa
JM
2500 btrfs_set_root_node(&fs_info->tree_root->root_item,
2501 fs_info->tree_root->node);
2502 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2503 &cur_trans->switch_commits);
5d4f98a2 2504
0b246afa
JM
2505 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2506 fs_info->chunk_root->node);
2507 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2508 &cur_trans->switch_commits);
2509
f7238e50
JB
2510 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2511 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2512 fs_info->block_group_root->node);
2513 list_add_tail(&fs_info->block_group_root->dirty_list,
2514 &cur_trans->switch_commits);
2515 }
2516
889bfa39 2517 switch_commit_roots(trans);
5d4f98a2 2518
ce93ec54 2519 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2520 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2521 update_super_roots(fs_info);
e02119d5 2522
0b246afa
JM
2523 btrfs_set_super_log_root(fs_info->super_copy, 0);
2524 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2525 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2526 sizeof(*fs_info->super_copy));
ccd467d6 2527
bbbf7243 2528 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2529
0b246afa
JM
2530 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2531 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2532
4fbcdf66
FM
2533 btrfs_trans_release_chunk_metadata(trans);
2534
dfba78dc
FM
2535 /*
2536 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2537 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2538 * make sure that before we commit our superblock, no other task can
2539 * start a new transaction and commit a log tree before we commit our
2540 * superblock. Anyone trying to commit a log tree locks this mutex before
2541 * writing its superblock.
2542 */
2543 mutex_lock(&fs_info->tree_log_mutex);
2544
0b246afa 2545 spin_lock(&fs_info->trans_lock);
4a9d8bde 2546 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2547 fs_info->running_transaction = NULL;
2548 spin_unlock(&fs_info->trans_lock);
2549 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2550
0b246afa 2551 wake_up(&fs_info->transaction_wait);
3e738c53 2552 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
e6dcd2dc 2553
b7625f46
QW
2554 /* If we have features changed, wake up the cleaner to update sysfs. */
2555 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2556 fs_info->cleaner_kthread)
2557 wake_up_process(fs_info->cleaner_kthread);
2558
70458a58 2559 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2560 if (ret) {
0b246afa
JM
2561 btrfs_handle_fs_error(fs_info, ret,
2562 "Error while writing out transaction");
2563 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2564 goto scrub_continue;
49b25e05
JM
2565 }
2566
eece6a9c 2567 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2568 /*
2569 * the super is written, we can safely allow the tree-loggers
2570 * to go about their business
2571 */
0b246afa 2572 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2573 if (ret)
2574 goto scrub_continue;
e02119d5 2575
d0c2f4fa
FM
2576 /*
2577 * We needn't acquire the lock here because there is no other task
2578 * which can change it.
2579 */
2580 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2581 wake_up(&cur_trans->commit_wait);
3e738c53 2582 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
d0c2f4fa 2583
5ead2dd0 2584 btrfs_finish_extent_commit(trans);
4313b399 2585
3204d33c 2586 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2587 btrfs_clear_space_info_full(fs_info);
13212b54 2588
0124855f 2589 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
4a9d8bde
MX
2590 /*
2591 * We needn't acquire the lock here because there is no other task
2592 * which can change it.
2593 */
2594 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2595 wake_up(&cur_trans->commit_wait);
3e738c53 2596 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
3de4586c 2597
0b246afa 2598 spin_lock(&fs_info->trans_lock);
13c5a93e 2599 list_del_init(&cur_trans->list);
0b246afa 2600 spin_unlock(&fs_info->trans_lock);
a4abeea4 2601
724e2315
JB
2602 btrfs_put_transaction(cur_trans);
2603 btrfs_put_transaction(cur_trans);
58176a96 2604
0860adfd 2605 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2606 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2607
2e4e97ab 2608 trace_btrfs_transaction_commit(fs_info);
1abe9b8a 2609
e55958c8
IA
2610 interval = ktime_get_ns() - start_time;
2611
2ff7e61e 2612 btrfs_scrub_continue(fs_info);
a2de733c 2613
9ed74f2d
JB
2614 if (current->journal_info == trans)
2615 current->journal_info = NULL;
2616
2c90e5d6 2617 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2618
e55958c8
IA
2619 update_commit_stats(fs_info, interval);
2620
79154b1b 2621 return ret;
49b25e05 2622
56e9f6ea
DS
2623unlock_reloc:
2624 mutex_unlock(&fs_info->reloc_mutex);
3e738c53 2625 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2626scrub_continue:
3e738c53
IA
2627 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2628 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2ff7e61e 2629 btrfs_scrub_continue(fs_info);
49b25e05 2630cleanup_transaction:
dc60c525 2631 btrfs_trans_release_metadata(trans);
c7cc64a9 2632 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2633 btrfs_trans_release_chunk_metadata(trans);
0e721106 2634 trans->block_rsv = NULL;
0b246afa 2635 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2636 if (current->journal_info == trans)
2637 current->journal_info = NULL;
97cb39bb 2638 cleanup_transaction(trans, ret);
49b25e05
JM
2639
2640 return ret;
e1489b4f
IA
2641
2642lockdep_release:
5a9ba670 2643 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f
IA
2644 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2645 goto cleanup_transaction;
3e738c53
IA
2646
2647lockdep_trans_commit_start_release:
77d20c68 2648 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
3e738c53
IA
2649 btrfs_end_transaction(trans);
2650 return ret;
79154b1b
CM
2651}
2652
d352ac68 2653/*
9d1a2a3a
DS
2654 * return < 0 if error
2655 * 0 if there are no more dead_roots at the time of call
2656 * 1 there are more to be processed, call me again
2657 *
2658 * The return value indicates there are certainly more snapshots to delete, but
2659 * if there comes a new one during processing, it may return 0. We don't mind,
2660 * because btrfs_commit_super will poke cleaner thread and it will process it a
2661 * few seconds later.
d352ac68 2662 */
33c44184 2663int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
e9d0b13b 2664{
33c44184 2665 struct btrfs_root *root;
9d1a2a3a 2666 int ret;
5d4f98a2 2667
a4abeea4 2668 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2669 if (list_empty(&fs_info->dead_roots)) {
2670 spin_unlock(&fs_info->trans_lock);
2671 return 0;
2672 }
2673 root = list_first_entry(&fs_info->dead_roots,
2674 struct btrfs_root, root_list);
cfad392b 2675 list_del_init(&root->root_list);
a4abeea4 2676 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2677
4fd786e6 2678 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2679
9d1a2a3a 2680 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2681
9d1a2a3a
DS
2682 if (btrfs_header_backref_rev(root->node) <
2683 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2684 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2685 else
0078a9f9 2686 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2687
dc9492c1 2688 btrfs_put_root(root);
6596a928 2689 return (ret < 0) ? 0 : 1;
e9d0b13b 2690}
572d9ab7 2691
fccf0c84
JB
2692/*
2693 * We only mark the transaction aborted and then set the file system read-only.
2694 * This will prevent new transactions from starting or trying to join this
2695 * one.
2696 *
2697 * This means that error recovery at the call site is limited to freeing
2698 * any local memory allocations and passing the error code up without
2699 * further cleanup. The transaction should complete as it normally would
2700 * in the call path but will return -EIO.
2701 *
2702 * We'll complete the cleanup in btrfs_end_transaction and
2703 * btrfs_commit_transaction.
2704 */
2705void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2706 const char *function,
ed164802 2707 unsigned int line, int error, bool first_hit)
fccf0c84
JB
2708{
2709 struct btrfs_fs_info *fs_info = trans->fs_info;
2710
ed164802
DS
2711 WRITE_ONCE(trans->aborted, error);
2712 WRITE_ONCE(trans->transaction->aborted, error);
2713 if (first_hit && error == -ENOSPC)
fccf0c84
JB
2714 btrfs_dump_space_info_for_trans_abort(fs_info);
2715 /* Wake up anybody who may be waiting on this transaction */
2716 wake_up(&fs_info->transaction_wait);
2717 wake_up(&fs_info->transaction_blocked_wait);
ed164802 2718 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
fccf0c84
JB
2719}
2720
956504a3
JB
2721int __init btrfs_transaction_init(void)
2722{
2723 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2724 sizeof(struct btrfs_trans_handle), 0,
2725 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2726 if (!btrfs_trans_handle_cachep)
2727 return -ENOMEM;
2728 return 0;
2729}
2730
2731void __cold btrfs_transaction_exit(void)
2732{
2733 kmem_cache_destroy(btrfs_trans_handle_cachep);
2734}