btrfs: remove btrfs_read_fs_root, not used anymore
[linux-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
602cbe91 13#include "misc.h"
79154b1b
CM
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
925baedd 17#include "locking.h"
e02119d5 18#include "tree-log.h"
581bb050 19#include "inode-map.h"
733f4fbb 20#include "volumes.h"
8dabb742 21#include "dev-replace.h"
fcebe456 22#include "qgroup.h"
aac0023c 23#include "block-group.h"
79154b1b 24
0f7d52f4
CM
25#define BTRFS_ROOT_TRANS_TAG 0
26
61c047b5
QW
27/*
28 * Transaction states and transitions
29 *
30 * No running transaction (fs tree blocks are not modified)
31 * |
32 * | To next stage:
33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
34 * V
35 * Transaction N [[TRANS_STATE_RUNNING]]
36 * |
37 * | New trans handles can be attached to transaction N by calling all
38 * | start_transaction() variants.
39 * |
40 * | To next stage:
41 * | Call btrfs_commit_transaction() on any trans handle attached to
42 * | transaction N
43 * V
44 * Transaction N [[TRANS_STATE_COMMIT_START]]
45 * |
46 * | Will wait for previous running transaction to completely finish if there
47 * | is one
48 * |
49 * | Then one of the following happes:
50 * | - Wait for all other trans handle holders to release.
51 * | The btrfs_commit_transaction() caller will do the commit work.
52 * | - Wait for current transaction to be committed by others.
53 * | Other btrfs_commit_transaction() caller will do the commit work.
54 * |
55 * | At this stage, only btrfs_join_transaction*() variants can attach
56 * | to this running transaction.
57 * | All other variants will wait for current one to finish and attach to
58 * | transaction N+1.
59 * |
60 * | To next stage:
61 * | Caller is chosen to commit transaction N, and all other trans handle
62 * | haven been released.
63 * V
64 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
65 * |
66 * | The heavy lifting transaction work is started.
67 * | From running delayed refs (modifying extent tree) to creating pending
68 * | snapshots, running qgroups.
69 * | In short, modify supporting trees to reflect modifications of subvolume
70 * | trees.
71 * |
72 * | At this stage, all start_transaction() calls will wait for this
73 * | transaction to finish and attach to transaction N+1.
74 * |
75 * | To next stage:
76 * | Until all supporting trees are updated.
77 * V
78 * Transaction N [[TRANS_STATE_UNBLOCKED]]
79 * | Transaction N+1
80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
81 * | need to write them back to disk and update |
82 * | super blocks. |
83 * | |
84 * | At this stage, new transaction is allowed to |
85 * | start. |
86 * | All new start_transaction() calls will be |
87 * | attached to transid N+1. |
88 * | |
89 * | To next stage: |
90 * | Until all tree blocks are super blocks are |
91 * | written to block devices |
92 * V |
93 * Transaction N [[TRANS_STATE_COMPLETED]] V
94 * All tree blocks and super blocks are written. Transaction N+1
95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
96 * data structures will be cleaned up. | Life goes on
97 */
e8c9f186 98static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 99 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 102 __TRANS_ATTACH |
a6d155d2
FM
103 __TRANS_JOIN |
104 __TRANS_JOIN_NOSTART),
bcf3a3e7 105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
106 __TRANS_ATTACH |
107 __TRANS_JOIN |
a6d155d2
FM
108 __TRANS_JOIN_NOLOCK |
109 __TRANS_JOIN_NOSTART),
bcf3a3e7 110 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
111 __TRANS_ATTACH |
112 __TRANS_JOIN |
a6d155d2
FM
113 __TRANS_JOIN_NOLOCK |
114 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
115};
116
724e2315 117void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 118{
9b64f57d
ER
119 WARN_ON(refcount_read(&transaction->use_count) == 0);
120 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 121 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
122 WARN_ON(!RB_EMPTY_ROOT(
123 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
124 WARN_ON(!RB_EMPTY_ROOT(
125 &transaction->delayed_refs.dirty_extent_root));
1262133b 126 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
127 btrfs_err(transaction->fs_info,
128 "pending csums is %llu",
129 transaction->delayed_refs.pending_csums);
7785a663
FM
130 /*
131 * If any block groups are found in ->deleted_bgs then it's
132 * because the transaction was aborted and a commit did not
133 * happen (things failed before writing the new superblock
134 * and calling btrfs_finish_extent_commit()), so we can not
135 * discard the physical locations of the block groups.
136 */
137 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 138 struct btrfs_block_group *cache;
7785a663
FM
139
140 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 141 struct btrfs_block_group,
7785a663
FM
142 bg_list);
143 list_del_init(&cache->bg_list);
144 btrfs_put_block_group_trimming(cache);
145 btrfs_put_block_group(cache);
146 }
bbbf7243 147 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 148 kfree(transaction);
78fae27e 149 }
79154b1b
CM
150}
151
889bfa39 152static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 153{
889bfa39 154 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 155 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
156 struct btrfs_root *root, *tmp;
157
158 down_write(&fs_info->commit_root_sem);
889bfa39 159 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
160 dirty_list) {
161 list_del_init(&root->dirty_list);
162 free_extent_buffer(root->commit_root);
163 root->commit_root = btrfs_root_node(root);
4fd786e6 164 if (is_fstree(root->root_key.objectid))
9e351cc8 165 btrfs_unpin_free_ino(root);
41e7acd3 166 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 167 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 168 }
2b9dbef2
JB
169
170 /* We can free old roots now. */
889bfa39
JB
171 spin_lock(&cur_trans->dropped_roots_lock);
172 while (!list_empty(&cur_trans->dropped_roots)) {
173 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
174 struct btrfs_root, root_list);
175 list_del_init(&root->root_list);
889bfa39
JB
176 spin_unlock(&cur_trans->dropped_roots_lock);
177 btrfs_free_log(trans, root);
2b9dbef2 178 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 179 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 180 }
889bfa39 181 spin_unlock(&cur_trans->dropped_roots_lock);
9e351cc8 182 up_write(&fs_info->commit_root_sem);
817d52f8
JB
183}
184
0860adfd
MX
185static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
186 unsigned int type)
187{
188 if (type & TRANS_EXTWRITERS)
189 atomic_inc(&trans->num_extwriters);
190}
191
192static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
193 unsigned int type)
194{
195 if (type & TRANS_EXTWRITERS)
196 atomic_dec(&trans->num_extwriters);
197}
198
199static inline void extwriter_counter_init(struct btrfs_transaction *trans,
200 unsigned int type)
201{
202 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
203}
204
205static inline int extwriter_counter_read(struct btrfs_transaction *trans)
206{
207 return atomic_read(&trans->num_extwriters);
178260b2
MX
208}
209
fb6dea26
JB
210/*
211 * To be called after all the new block groups attached to the transaction
212 * handle have been created (btrfs_create_pending_block_groups()).
213 */
214void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
215{
216 struct btrfs_fs_info *fs_info = trans->fs_info;
217
218 if (!trans->chunk_bytes_reserved)
219 return;
220
221 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
222
223 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
224 trans->chunk_bytes_reserved);
225 trans->chunk_bytes_reserved = 0;
226}
227
d352ac68
CM
228/*
229 * either allocate a new transaction or hop into the existing one
230 */
2ff7e61e
JM
231static noinline int join_transaction(struct btrfs_fs_info *fs_info,
232 unsigned int type)
79154b1b
CM
233{
234 struct btrfs_transaction *cur_trans;
a4abeea4 235
19ae4e81 236 spin_lock(&fs_info->trans_lock);
d43317dc 237loop:
49b25e05 238 /* The file system has been taken offline. No new transactions. */
87533c47 239 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
19ae4e81 240 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
241 return -EROFS;
242 }
243
19ae4e81 244 cur_trans = fs_info->running_transaction;
a4abeea4 245 if (cur_trans) {
871383be 246 if (cur_trans->aborted) {
19ae4e81 247 spin_unlock(&fs_info->trans_lock);
49b25e05 248 return cur_trans->aborted;
871383be 249 }
4a9d8bde 250 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
251 spin_unlock(&fs_info->trans_lock);
252 return -EBUSY;
253 }
9b64f57d 254 refcount_inc(&cur_trans->use_count);
13c5a93e 255 atomic_inc(&cur_trans->num_writers);
0860adfd 256 extwriter_counter_inc(cur_trans, type);
19ae4e81 257 spin_unlock(&fs_info->trans_lock);
a4abeea4 258 return 0;
79154b1b 259 }
19ae4e81 260 spin_unlock(&fs_info->trans_lock);
a4abeea4 261
354aa0fb
MX
262 /*
263 * If we are ATTACH, we just want to catch the current transaction,
264 * and commit it. If there is no transaction, just return ENOENT.
265 */
266 if (type == TRANS_ATTACH)
267 return -ENOENT;
268
4a9d8bde
MX
269 /*
270 * JOIN_NOLOCK only happens during the transaction commit, so
271 * it is impossible that ->running_transaction is NULL
272 */
273 BUG_ON(type == TRANS_JOIN_NOLOCK);
274
4b5faeac 275 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
276 if (!cur_trans)
277 return -ENOMEM;
d43317dc 278
19ae4e81
JS
279 spin_lock(&fs_info->trans_lock);
280 if (fs_info->running_transaction) {
d43317dc
CM
281 /*
282 * someone started a transaction after we unlocked. Make sure
4a9d8bde 283 * to redo the checks above
d43317dc 284 */
4b5faeac 285 kfree(cur_trans);
d43317dc 286 goto loop;
87533c47 287 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
e4b50e14 288 spin_unlock(&fs_info->trans_lock);
4b5faeac 289 kfree(cur_trans);
7b8b92af 290 return -EROFS;
79154b1b 291 }
d43317dc 292
ab8d0fc4 293 cur_trans->fs_info = fs_info;
a4abeea4 294 atomic_set(&cur_trans->num_writers, 1);
0860adfd 295 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
296 init_waitqueue_head(&cur_trans->writer_wait);
297 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 298 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
299 /*
300 * One for this trans handle, one so it will live on until we
301 * commit the transaction.
302 */
9b64f57d 303 refcount_set(&cur_trans->use_count, 2);
3204d33c 304 cur_trans->flags = 0;
afd48513 305 cur_trans->start_time = ktime_get_seconds();
a4abeea4 306
a099d0fd
AM
307 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
308
5c9d028b 309 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 310 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 311 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
312
313 /*
314 * although the tree mod log is per file system and not per transaction,
315 * the log must never go across transaction boundaries.
316 */
317 smp_mb();
31b1a2bd 318 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 319 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 320 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 321 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 322 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 323
a4abeea4
JB
324 spin_lock_init(&cur_trans->delayed_refs.lock);
325
326 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 327 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 328 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 329 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 330 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 331 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 332 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 333 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 334 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 335 spin_lock_init(&cur_trans->dropped_roots_lock);
19ae4e81 336 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 337 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
43eb5f29 338 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
19ae4e81
JS
339 fs_info->generation++;
340 cur_trans->transid = fs_info->generation;
341 fs_info->running_transaction = cur_trans;
49b25e05 342 cur_trans->aborted = 0;
19ae4e81 343 spin_unlock(&fs_info->trans_lock);
15ee9bc7 344
79154b1b
CM
345 return 0;
346}
347
d352ac68 348/*
d397712b
CM
349 * this does all the record keeping required to make sure that a reference
350 * counted root is properly recorded in a given transaction. This is required
351 * to make sure the old root from before we joined the transaction is deleted
352 * when the transaction commits
d352ac68 353 */
7585717f 354static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
355 struct btrfs_root *root,
356 int force)
6702ed49 357{
0b246afa
JM
358 struct btrfs_fs_info *fs_info = root->fs_info;
359
6426c7ad
QW
360 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
361 root->last_trans < trans->transid) || force) {
0b246afa 362 WARN_ON(root == fs_info->extent_root);
4d31778a 363 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 364
7585717f 365 /*
27cdeb70 366 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
367 * we have the reloc mutex held now, so there
368 * is only one writer in this function
369 */
27cdeb70 370 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 371
27cdeb70 372 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
373 * they find our root->last_trans update
374 */
375 smp_wmb();
376
0b246afa 377 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 378 if (root->last_trans == trans->transid && !force) {
0b246afa 379 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
380 return 0;
381 }
0b246afa
JM
382 radix_tree_tag_set(&fs_info->fs_roots_radix,
383 (unsigned long)root->root_key.objectid,
384 BTRFS_ROOT_TRANS_TAG);
385 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
386 root->last_trans = trans->transid;
387
388 /* this is pretty tricky. We don't want to
389 * take the relocation lock in btrfs_record_root_in_trans
390 * unless we're really doing the first setup for this root in
391 * this transaction.
392 *
393 * Normally we'd use root->last_trans as a flag to decide
394 * if we want to take the expensive mutex.
395 *
396 * But, we have to set root->last_trans before we
397 * init the relocation root, otherwise, we trip over warnings
398 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 399 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
400 * fixing up the reloc trees and everyone must wait.
401 *
402 * When this is zero, they can trust root->last_trans and fly
403 * through btrfs_record_root_in_trans without having to take the
404 * lock. smp_wmb() makes sure that all the writes above are
405 * done before we pop in the zero below
406 */
5d4f98a2 407 btrfs_init_reloc_root(trans, root);
c7548af6 408 smp_mb__before_atomic();
27cdeb70 409 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2
YZ
410 }
411 return 0;
412}
bcc63abb 413
7585717f 414
2b9dbef2
JB
415void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
416 struct btrfs_root *root)
417{
0b246afa 418 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
419 struct btrfs_transaction *cur_trans = trans->transaction;
420
421 /* Add ourselves to the transaction dropped list */
422 spin_lock(&cur_trans->dropped_roots_lock);
423 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
424 spin_unlock(&cur_trans->dropped_roots_lock);
425
426 /* Make sure we don't try to update the root at commit time */
0b246afa
JM
427 spin_lock(&fs_info->fs_roots_radix_lock);
428 radix_tree_tag_clear(&fs_info->fs_roots_radix,
2b9dbef2
JB
429 (unsigned long)root->root_key.objectid,
430 BTRFS_ROOT_TRANS_TAG);
0b246afa 431 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
432}
433
7585717f
CM
434int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
435 struct btrfs_root *root)
436{
0b246afa
JM
437 struct btrfs_fs_info *fs_info = root->fs_info;
438
27cdeb70 439 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
7585717f
CM
440 return 0;
441
442 /*
27cdeb70 443 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
444 * and barriers
445 */
446 smp_rmb();
447 if (root->last_trans == trans->transid &&
27cdeb70 448 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
449 return 0;
450
0b246afa 451 mutex_lock(&fs_info->reloc_mutex);
6426c7ad 452 record_root_in_trans(trans, root, 0);
0b246afa 453 mutex_unlock(&fs_info->reloc_mutex);
7585717f
CM
454
455 return 0;
456}
457
4a9d8bde
MX
458static inline int is_transaction_blocked(struct btrfs_transaction *trans)
459{
3296bf56 460 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa
JB
461 trans->state < TRANS_STATE_UNBLOCKED &&
462 !trans->aborted);
4a9d8bde
MX
463}
464
d352ac68
CM
465/* wait for commit against the current transaction to become unblocked
466 * when this is done, it is safe to start a new transaction, but the current
467 * transaction might not be fully on disk.
468 */
2ff7e61e 469static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 470{
f9295749 471 struct btrfs_transaction *cur_trans;
79154b1b 472
0b246afa
JM
473 spin_lock(&fs_info->trans_lock);
474 cur_trans = fs_info->running_transaction;
4a9d8bde 475 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 476 refcount_inc(&cur_trans->use_count);
0b246afa 477 spin_unlock(&fs_info->trans_lock);
72d63ed6 478
0b246afa 479 wait_event(fs_info->transaction_wait,
501407aa
JB
480 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
481 cur_trans->aborted);
724e2315 482 btrfs_put_transaction(cur_trans);
a4abeea4 483 } else {
0b246afa 484 spin_unlock(&fs_info->trans_lock);
f9295749 485 }
37d1aeee
CM
486}
487
2ff7e61e 488static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 489{
0b246afa 490 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
491 return 0;
492
92e2f7e3 493 if (type == TRANS_START)
a22285a6 494 return 1;
a4abeea4 495
a22285a6
YZ
496 return 0;
497}
498
20dd2cbf
MX
499static inline bool need_reserve_reloc_root(struct btrfs_root *root)
500{
0b246afa
JM
501 struct btrfs_fs_info *fs_info = root->fs_info;
502
503 if (!fs_info->reloc_ctl ||
27cdeb70 504 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
20dd2cbf
MX
505 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
506 root->reloc_root)
507 return false;
508
509 return true;
510}
511
08e007d2 512static struct btrfs_trans_handle *
5aed1dd8 513start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
514 unsigned int type, enum btrfs_reserve_flush_enum flush,
515 bool enforce_qgroups)
37d1aeee 516{
0b246afa 517 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 518 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
519 struct btrfs_trans_handle *h;
520 struct btrfs_transaction *cur_trans;
b5009945 521 u64 num_bytes = 0;
c5567237 522 u64 qgroup_reserved = 0;
20dd2cbf
MX
523 bool reloc_reserved = false;
524 int ret;
acce952b 525
46c4e71e 526 /* Send isn't supposed to start transactions. */
2755a0de 527 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
46c4e71e 528
0b246afa 529 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
acce952b 530 return ERR_PTR(-EROFS);
2a1eb461 531
46c4e71e 532 if (current->journal_info) {
0860adfd 533 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 534 h = current->journal_info;
b50fff81
DS
535 refcount_inc(&h->use_count);
536 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
537 h->orig_rsv = h->block_rsv;
538 h->block_rsv = NULL;
539 goto got_it;
540 }
b5009945
JB
541
542 /*
543 * Do the reservation before we join the transaction so we can do all
544 * the appropriate flushing if need be.
545 */
003d7c59 546 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
547 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
548 u64 delayed_refs_bytes = 0;
549
0b246afa 550 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
551 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
552 enforce_qgroups);
7174109c
QW
553 if (ret)
554 return ERR_PTR(ret);
c5567237 555
ba2c4d4e
JB
556 /*
557 * We want to reserve all the bytes we may need all at once, so
558 * we only do 1 enospc flushing cycle per transaction start. We
559 * accomplish this by simply assuming we'll do 2 x num_items
560 * worth of delayed refs updates in this trans handle, and
561 * refill that amount for whatever is missing in the reserve.
562 */
2bd36e7b 563 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
ba2c4d4e
JB
564 if (delayed_refs_rsv->full == 0) {
565 delayed_refs_bytes = num_bytes;
566 num_bytes <<= 1;
567 }
568
20dd2cbf
MX
569 /*
570 * Do the reservation for the relocation root creation
571 */
ee39b432 572 if (need_reserve_reloc_root(root)) {
0b246afa 573 num_bytes += fs_info->nodesize;
20dd2cbf
MX
574 reloc_reserved = true;
575 }
576
ba2c4d4e
JB
577 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
578 if (ret)
579 goto reserve_fail;
580 if (delayed_refs_bytes) {
581 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
582 delayed_refs_bytes);
583 num_bytes -= delayed_refs_bytes;
584 }
585 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
586 !delayed_refs_rsv->full) {
587 /*
588 * Some people call with btrfs_start_transaction(root, 0)
589 * because they can be throttled, but have some other mechanism
590 * for reserving space. We still want these guys to refill the
591 * delayed block_rsv so just add 1 items worth of reservation
592 * here.
593 */
594 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 595 if (ret)
843fcf35 596 goto reserve_fail;
b5009945 597 }
a22285a6 598again:
f2f767e7 599 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
600 if (!h) {
601 ret = -ENOMEM;
602 goto alloc_fail;
603 }
37d1aeee 604
98114659
JB
605 /*
606 * If we are JOIN_NOLOCK we're already committing a transaction and
607 * waiting on this guy, so we don't need to do the sb_start_intwrite
608 * because we're already holding a ref. We need this because we could
609 * have raced in and did an fsync() on a file which can kick a commit
610 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
611 *
612 * If we are ATTACH, it means we just want to catch the current
613 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 614 */
0860adfd 615 if (type & __TRANS_FREEZABLE)
0b246afa 616 sb_start_intwrite(fs_info->sb);
b2b5ef5c 617
2ff7e61e
JM
618 if (may_wait_transaction(fs_info, type))
619 wait_current_trans(fs_info);
a22285a6 620
a4abeea4 621 do {
2ff7e61e 622 ret = join_transaction(fs_info, type);
178260b2 623 if (ret == -EBUSY) {
2ff7e61e 624 wait_current_trans(fs_info);
a6d155d2
FM
625 if (unlikely(type == TRANS_ATTACH ||
626 type == TRANS_JOIN_NOSTART))
178260b2
MX
627 ret = -ENOENT;
628 }
a4abeea4
JB
629 } while (ret == -EBUSY);
630
a43f7f82 631 if (ret < 0)
843fcf35 632 goto join_fail;
0f7d52f4 633
0b246afa 634 cur_trans = fs_info->running_transaction;
a22285a6
YZ
635
636 h->transid = cur_trans->transid;
637 h->transaction = cur_trans;
d13603ef 638 h->root = root;
b50fff81 639 refcount_set(&h->use_count, 1);
64b63580 640 h->fs_info = root->fs_info;
7174109c 641
a698d075 642 h->type = type;
d9a0540a 643 h->can_flush_pending_bgs = true;
ea658bad 644 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 645
a22285a6 646 smp_mb();
3296bf56 647 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 648 may_wait_transaction(fs_info, type)) {
abdd2e80 649 current->journal_info = h;
3a45bb20 650 btrfs_commit_transaction(h);
a22285a6
YZ
651 goto again;
652 }
653
b5009945 654 if (num_bytes) {
0b246afa 655 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 656 h->transid, num_bytes, 1);
0b246afa 657 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 658 h->bytes_reserved = num_bytes;
20dd2cbf 659 h->reloc_reserved = reloc_reserved;
a22285a6 660 }
9ed74f2d 661
2a1eb461 662got_it:
a4abeea4 663 btrfs_record_root_in_trans(h, root);
a22285a6 664
bcf3a3e7 665 if (!current->journal_info)
a22285a6 666 current->journal_info = h;
79154b1b 667 return h;
843fcf35
MX
668
669join_fail:
0860adfd 670 if (type & __TRANS_FREEZABLE)
0b246afa 671 sb_end_intwrite(fs_info->sb);
843fcf35
MX
672 kmem_cache_free(btrfs_trans_handle_cachep, h);
673alloc_fail:
674 if (num_bytes)
2ff7e61e 675 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
843fcf35
MX
676 num_bytes);
677reserve_fail:
733e03a0 678 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 679 return ERR_PTR(ret);
79154b1b
CM
680}
681
f9295749 682struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 683 unsigned int num_items)
f9295749 684{
08e007d2 685 return start_transaction(root, num_items, TRANS_START,
003d7c59 686 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 687}
003d7c59 688
8eab77ff
FM
689struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
690 struct btrfs_root *root,
691 unsigned int num_items,
692 int min_factor)
693{
0b246afa 694 struct btrfs_fs_info *fs_info = root->fs_info;
8eab77ff
FM
695 struct btrfs_trans_handle *trans;
696 u64 num_bytes;
697 int ret;
698
003d7c59
JM
699 /*
700 * We have two callers: unlink and block group removal. The
701 * former should succeed even if we will temporarily exceed
702 * quota and the latter operates on the extent root so
703 * qgroup enforcement is ignored anyway.
704 */
705 trans = start_transaction(root, num_items, TRANS_START,
706 BTRFS_RESERVE_FLUSH_ALL, false);
8eab77ff
FM
707 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
708 return trans;
709
710 trans = btrfs_start_transaction(root, 0);
711 if (IS_ERR(trans))
712 return trans;
713
2bd36e7b 714 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
0b246afa
JM
715 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
716 num_bytes, min_factor);
8eab77ff 717 if (ret) {
3a45bb20 718 btrfs_end_transaction(trans);
8eab77ff
FM
719 return ERR_PTR(ret);
720 }
721
0b246afa 722 trans->block_rsv = &fs_info->trans_block_rsv;
8eab77ff 723 trans->bytes_reserved = num_bytes;
0b246afa 724 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa 725 trans->transid, num_bytes, 1);
8eab77ff
FM
726
727 return trans;
728}
8407aa46 729
7a7eaa40 730struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 731{
003d7c59
JM
732 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
733 true);
f9295749
CM
734}
735
8d510121 736struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 737{
575a75d6 738 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 739 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
740}
741
a6d155d2
FM
742/*
743 * Similar to regular join but it never starts a transaction when none is
744 * running or after waiting for the current one to finish.
745 */
746struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
747{
748 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
749 BTRFS_RESERVE_NO_FLUSH, true);
750}
751
d4edf39b
MX
752/*
753 * btrfs_attach_transaction() - catch the running transaction
754 *
755 * It is used when we want to commit the current the transaction, but
756 * don't want to start a new one.
757 *
758 * Note: If this function return -ENOENT, it just means there is no
759 * running transaction. But it is possible that the inactive transaction
760 * is still in the memory, not fully on disk. If you hope there is no
761 * inactive transaction in the fs when -ENOENT is returned, you should
762 * invoke
763 * btrfs_attach_transaction_barrier()
764 */
354aa0fb 765struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 766{
575a75d6 767 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 768 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
769}
770
d4edf39b 771/*
90b6d283 772 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 773 *
52042d8e 774 * It is similar to the above function, the difference is this one
d4edf39b
MX
775 * will wait for all the inactive transactions until they fully
776 * complete.
777 */
778struct btrfs_trans_handle *
779btrfs_attach_transaction_barrier(struct btrfs_root *root)
780{
781 struct btrfs_trans_handle *trans;
782
575a75d6 783 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 784 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 785 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 786 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
787
788 return trans;
789}
790
d352ac68 791/* wait for a transaction commit to be fully complete */
2ff7e61e 792static noinline void wait_for_commit(struct btrfs_transaction *commit)
89ce8a63 793{
4a9d8bde 794 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
89ce8a63
CM
795}
796
2ff7e61e 797int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
798{
799 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 800 int ret = 0;
46204592 801
46204592 802 if (transid) {
0b246afa 803 if (transid <= fs_info->last_trans_committed)
a4abeea4 804 goto out;
46204592
SW
805
806 /* find specified transaction */
0b246afa
JM
807 spin_lock(&fs_info->trans_lock);
808 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
809 if (t->transid == transid) {
810 cur_trans = t;
9b64f57d 811 refcount_inc(&cur_trans->use_count);
8cd2807f 812 ret = 0;
46204592
SW
813 break;
814 }
8cd2807f
MX
815 if (t->transid > transid) {
816 ret = 0;
46204592 817 break;
8cd2807f 818 }
46204592 819 }
0b246afa 820 spin_unlock(&fs_info->trans_lock);
42383020
SW
821
822 /*
823 * The specified transaction doesn't exist, or we
824 * raced with btrfs_commit_transaction
825 */
826 if (!cur_trans) {
0b246afa 827 if (transid > fs_info->last_trans_committed)
42383020 828 ret = -EINVAL;
8cd2807f 829 goto out;
42383020 830 }
46204592
SW
831 } else {
832 /* find newest transaction that is committing | committed */
0b246afa
JM
833 spin_lock(&fs_info->trans_lock);
834 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 835 list) {
4a9d8bde
MX
836 if (t->state >= TRANS_STATE_COMMIT_START) {
837 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 838 break;
46204592 839 cur_trans = t;
9b64f57d 840 refcount_inc(&cur_trans->use_count);
46204592
SW
841 break;
842 }
843 }
0b246afa 844 spin_unlock(&fs_info->trans_lock);
46204592 845 if (!cur_trans)
a4abeea4 846 goto out; /* nothing committing|committed */
46204592
SW
847 }
848
2ff7e61e 849 wait_for_commit(cur_trans);
724e2315 850 btrfs_put_transaction(cur_trans);
a4abeea4 851out:
46204592
SW
852 return ret;
853}
854
2ff7e61e 855void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 856{
92e2f7e3 857 wait_current_trans(fs_info);
37d1aeee
CM
858}
859
2ff7e61e 860static int should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 861{
2ff7e61e 862 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 863
64403612 864 if (btrfs_check_space_for_delayed_refs(fs_info))
1be41b78 865 return 1;
36ba022a 866
2ff7e61e 867 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
868}
869
3a45bb20 870int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
871{
872 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 873
a4abeea4 874 smp_mb();
3296bf56 875 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
4a9d8bde 876 cur_trans->delayed_refs.flushing)
8929ecfa
YZ
877 return 1;
878
2ff7e61e 879 return should_end_transaction(trans);
8929ecfa
YZ
880}
881
dc60c525
NB
882static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
883
0e34693f 884{
dc60c525
NB
885 struct btrfs_fs_info *fs_info = trans->fs_info;
886
0e34693f
NB
887 if (!trans->block_rsv) {
888 ASSERT(!trans->bytes_reserved);
889 return;
890 }
891
892 if (!trans->bytes_reserved)
893 return;
894
895 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
896 trace_btrfs_space_reservation(fs_info, "transaction",
897 trans->transid, trans->bytes_reserved, 0);
898 btrfs_block_rsv_release(fs_info, trans->block_rsv,
899 trans->bytes_reserved);
900 trans->bytes_reserved = 0;
901}
902
89ce8a63 903static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 904 int throttle)
79154b1b 905{
3a45bb20 906 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 907 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 908 int err = 0;
c3e69d58 909
b50fff81
DS
910 if (refcount_read(&trans->use_count) > 1) {
911 refcount_dec(&trans->use_count);
2a1eb461
JB
912 trans->block_rsv = trans->orig_rsv;
913 return 0;
914 }
915
dc60c525 916 btrfs_trans_release_metadata(trans);
4c13d758 917 trans->block_rsv = NULL;
c5567237 918
119e80df 919 btrfs_create_pending_block_groups(trans);
ea658bad 920
4fbcdf66
FM
921 btrfs_trans_release_chunk_metadata(trans);
922
0860adfd 923 if (trans->type & __TRANS_FREEZABLE)
0b246afa 924 sb_end_intwrite(info->sb);
6df7881a 925
8929ecfa 926 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
927 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
928 atomic_dec(&cur_trans->num_writers);
0860adfd 929 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 930
093258e6 931 cond_wake_up(&cur_trans->writer_wait);
724e2315 932 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
933
934 if (current->journal_info == trans)
935 current->journal_info = NULL;
ab78c84d 936
24bbcf04 937 if (throttle)
2ff7e61e 938 btrfs_run_delayed_iputs(info);
24bbcf04 939
49b25e05 940 if (trans->aborted ||
0b246afa 941 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
4e121c06 942 wake_up_process(info->transaction_kthread);
4edc2ca3 943 err = -EIO;
4e121c06 944 }
49b25e05 945
4edc2ca3
DJ
946 kmem_cache_free(btrfs_trans_handle_cachep, trans);
947 return err;
79154b1b
CM
948}
949
3a45bb20 950int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 951{
3a45bb20 952 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
953}
954
3a45bb20 955int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 956{
3a45bb20 957 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
958}
959
d352ac68
CM
960/*
961 * when btree blocks are allocated, they have some corresponding bits set for
962 * them in one of two extent_io trees. This is used to make sure all of
690587d1 963 * those extents are sent to disk but does not wait on them
d352ac68 964 */
2ff7e61e 965int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 966 struct extent_io_tree *dirty_pages, int mark)
79154b1b 967{
777e6bd7 968 int err = 0;
7c4452b9 969 int werr = 0;
0b246afa 970 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 971 struct extent_state *cached_state = NULL;
777e6bd7 972 u64 start = 0;
5f39d397 973 u64 end;
7c4452b9 974
6300463b 975 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 976 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 977 mark, &cached_state)) {
663dfbb0
FM
978 bool wait_writeback = false;
979
980 err = convert_extent_bit(dirty_pages, start, end,
981 EXTENT_NEED_WAIT,
210aa277 982 mark, &cached_state);
663dfbb0
FM
983 /*
984 * convert_extent_bit can return -ENOMEM, which is most of the
985 * time a temporary error. So when it happens, ignore the error
986 * and wait for writeback of this range to finish - because we
987 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
988 * to __btrfs_wait_marked_extents() would not know that
989 * writeback for this range started and therefore wouldn't
990 * wait for it to finish - we don't want to commit a
991 * superblock that points to btree nodes/leafs for which
992 * writeback hasn't finished yet (and without errors).
663dfbb0 993 * We cleanup any entries left in the io tree when committing
41e7acd3 994 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
995 */
996 if (err == -ENOMEM) {
997 err = 0;
998 wait_writeback = true;
999 }
1000 if (!err)
1001 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1002 if (err)
1003 werr = err;
663dfbb0
FM
1004 else if (wait_writeback)
1005 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1006 free_extent_state(cached_state);
663dfbb0 1007 cached_state = NULL;
1728366e
JB
1008 cond_resched();
1009 start = end + 1;
7c4452b9 1010 }
6300463b 1011 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1012 return werr;
1013}
1014
1015/*
1016 * when btree blocks are allocated, they have some corresponding bits set for
1017 * them in one of two extent_io trees. This is used to make sure all of
1018 * those extents are on disk for transaction or log commit. We wait
1019 * on all the pages and clear them from the dirty pages state tree
1020 */
bf89d38f
JM
1021static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1022 struct extent_io_tree *dirty_pages)
690587d1 1023{
690587d1
CM
1024 int err = 0;
1025 int werr = 0;
0b246afa 1026 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1027 struct extent_state *cached_state = NULL;
690587d1
CM
1028 u64 start = 0;
1029 u64 end;
777e6bd7 1030
1728366e 1031 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1032 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1033 /*
1034 * Ignore -ENOMEM errors returned by clear_extent_bit().
1035 * When committing the transaction, we'll remove any entries
1036 * left in the io tree. For a log commit, we don't remove them
1037 * after committing the log because the tree can be accessed
1038 * concurrently - we do it only at transaction commit time when
41e7acd3 1039 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1040 */
1041 err = clear_extent_bit(dirty_pages, start, end,
ae0f1625 1042 EXTENT_NEED_WAIT, 0, 0, &cached_state);
663dfbb0
FM
1043 if (err == -ENOMEM)
1044 err = 0;
1045 if (!err)
1046 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1047 if (err)
1048 werr = err;
e38e2ed7
FM
1049 free_extent_state(cached_state);
1050 cached_state = NULL;
1728366e
JB
1051 cond_resched();
1052 start = end + 1;
777e6bd7 1053 }
7c4452b9
CM
1054 if (err)
1055 werr = err;
bf89d38f
JM
1056 return werr;
1057}
656f30db 1058
b9fae2eb 1059static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1060 struct extent_io_tree *dirty_pages)
1061{
1062 bool errors = false;
1063 int err;
656f30db 1064
bf89d38f
JM
1065 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1066 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1067 errors = true;
1068
1069 if (errors && !err)
1070 err = -EIO;
1071 return err;
1072}
656f30db 1073
bf89d38f
JM
1074int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1075{
1076 struct btrfs_fs_info *fs_info = log_root->fs_info;
1077 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1078 bool errors = false;
1079 int err;
656f30db 1080
bf89d38f
JM
1081 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1082
1083 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1084 if ((mark & EXTENT_DIRTY) &&
1085 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1086 errors = true;
1087
1088 if ((mark & EXTENT_NEW) &&
1089 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1090 errors = true;
1091
1092 if (errors && !err)
1093 err = -EIO;
1094 return err;
79154b1b
CM
1095}
1096
690587d1 1097/*
c9b577c0
NB
1098 * When btree blocks are allocated the corresponding extents are marked dirty.
1099 * This function ensures such extents are persisted on disk for transaction or
1100 * log commit.
1101 *
1102 * @trans: transaction whose dirty pages we'd like to write
690587d1 1103 */
70458a58 1104static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1105{
1106 int ret;
1107 int ret2;
c9b577c0 1108 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1109 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1110 struct blk_plug plug;
690587d1 1111
c6adc9cc 1112 blk_start_plug(&plug);
c9b577c0 1113 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1114 blk_finish_plug(&plug);
bf89d38f 1115 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1116
41e7acd3 1117 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1118
bf0da8c1
CM
1119 if (ret)
1120 return ret;
c9b577c0 1121 else if (ret2)
bf0da8c1 1122 return ret2;
c9b577c0
NB
1123 else
1124 return 0;
d0c803c4
CM
1125}
1126
d352ac68
CM
1127/*
1128 * this is used to update the root pointer in the tree of tree roots.
1129 *
1130 * But, in the case of the extent allocation tree, updating the root
1131 * pointer may allocate blocks which may change the root of the extent
1132 * allocation tree.
1133 *
1134 * So, this loops and repeats and makes sure the cowonly root didn't
1135 * change while the root pointer was being updated in the metadata.
1136 */
0b86a832
CM
1137static int update_cowonly_root(struct btrfs_trans_handle *trans,
1138 struct btrfs_root *root)
79154b1b
CM
1139{
1140 int ret;
0b86a832 1141 u64 old_root_bytenr;
86b9f2ec 1142 u64 old_root_used;
0b246afa
JM
1143 struct btrfs_fs_info *fs_info = root->fs_info;
1144 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1145
86b9f2ec 1146 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1147
d397712b 1148 while (1) {
0b86a832 1149 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1150 if (old_root_bytenr == root->node->start &&
ea526d18 1151 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1152 break;
87ef2bb4 1153
5d4f98a2 1154 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1155 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1156 &root->root_key,
1157 &root->root_item);
49b25e05
JM
1158 if (ret)
1159 return ret;
56bec294 1160
86b9f2ec 1161 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1162 }
276e680d 1163
0b86a832
CM
1164 return 0;
1165}
1166
d352ac68
CM
1167/*
1168 * update all the cowonly tree roots on disk
49b25e05
JM
1169 *
1170 * The error handling in this function may not be obvious. Any of the
1171 * failures will cause the file system to go offline. We still need
1172 * to clean up the delayed refs.
d352ac68 1173 */
9386d8bc 1174static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1175{
9386d8bc 1176 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1177 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1178 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1179 struct list_head *next;
84234f3a 1180 struct extent_buffer *eb;
56bec294 1181 int ret;
84234f3a
YZ
1182
1183 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05
JM
1184 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1185 0, &eb);
84234f3a
YZ
1186 btrfs_tree_unlock(eb);
1187 free_extent_buffer(eb);
0b86a832 1188
49b25e05
JM
1189 if (ret)
1190 return ret;
1191
c79a70b1 1192 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
49b25e05
JM
1193 if (ret)
1194 return ret;
87ef2bb4 1195
196c9d8d 1196 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1197 if (ret)
1198 return ret;
2b584c68 1199 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1200 if (ret)
1201 return ret;
280f8bd2 1202 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1203 if (ret)
1204 return ret;
546adb0d 1205
bbebb3e0 1206 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1207 if (ret)
1208 return ret;
1209
546adb0d 1210 /* run_qgroups might have added some more refs */
c79a70b1 1211 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
c16ce190
JB
1212 if (ret)
1213 return ret;
ea526d18 1214again:
d397712b 1215 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1216 struct btrfs_root *root;
0b86a832
CM
1217 next = fs_info->dirty_cowonly_roots.next;
1218 list_del_init(next);
1219 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1220 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1221
9e351cc8
JB
1222 if (root != fs_info->extent_root)
1223 list_add_tail(&root->dirty_list,
1224 &trans->transaction->switch_commits);
49b25e05
JM
1225 ret = update_cowonly_root(trans, root);
1226 if (ret)
1227 return ret;
c79a70b1 1228 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1229 if (ret)
1230 return ret;
79154b1b 1231 }
276e680d 1232
1bbc621e 1233 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1234 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1235 if (ret)
1236 return ret;
c79a70b1 1237 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1238 if (ret)
1239 return ret;
1240 }
1241
1242 if (!list_empty(&fs_info->dirty_cowonly_roots))
1243 goto again;
1244
9e351cc8
JB
1245 list_add_tail(&fs_info->extent_root->dirty_list,
1246 &trans->transaction->switch_commits);
9f6cbcbb
DS
1247
1248 /* Update dev-replace pointer once everything is committed */
1249 fs_info->dev_replace.committed_cursor_left =
1250 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1251
79154b1b
CM
1252 return 0;
1253}
1254
d352ac68
CM
1255/*
1256 * dead roots are old snapshots that need to be deleted. This allocates
1257 * a dirty root struct and adds it into the list of dead roots that need to
1258 * be deleted
1259 */
cfad392b 1260void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1261{
0b246afa
JM
1262 struct btrfs_fs_info *fs_info = root->fs_info;
1263
1264 spin_lock(&fs_info->trans_lock);
cfad392b 1265 if (list_empty(&root->root_list))
0b246afa
JM
1266 list_add_tail(&root->root_list, &fs_info->dead_roots);
1267 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1268}
1269
d352ac68 1270/*
5d4f98a2 1271 * update all the cowonly tree roots on disk
d352ac68 1272 */
7e4443d9 1273static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1274{
7e4443d9 1275 struct btrfs_fs_info *fs_info = trans->fs_info;
0f7d52f4 1276 struct btrfs_root *gang[8];
0f7d52f4
CM
1277 int i;
1278 int ret;
54aa1f4d
CM
1279 int err = 0;
1280
a4abeea4 1281 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 1282 while (1) {
5d4f98a2
YZ
1283 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1284 (void **)gang, 0,
0f7d52f4
CM
1285 ARRAY_SIZE(gang),
1286 BTRFS_ROOT_TRANS_TAG);
1287 if (ret == 0)
1288 break;
1289 for (i = 0; i < ret; i++) {
5b4aacef 1290 struct btrfs_root *root = gang[i];
5d4f98a2
YZ
1291 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1292 (unsigned long)root->root_key.objectid,
1293 BTRFS_ROOT_TRANS_TAG);
a4abeea4 1294 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 1295
e02119d5 1296 btrfs_free_log(trans, root);
5d4f98a2 1297 btrfs_update_reloc_root(trans, root);
bcc63abb 1298
82d5902d
LZ
1299 btrfs_save_ino_cache(root, trans);
1300
f1ebcc74 1301 /* see comments in should_cow_block() */
27cdeb70 1302 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
c7548af6 1303 smp_mb__after_atomic();
f1ebcc74 1304
978d910d 1305 if (root->commit_root != root->node) {
9e351cc8
JB
1306 list_add_tail(&root->dirty_list,
1307 &trans->transaction->switch_commits);
978d910d
YZ
1308 btrfs_set_root_node(&root->root_item,
1309 root->node);
1310 }
5d4f98a2 1311
5d4f98a2 1312 err = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
1313 &root->root_key,
1314 &root->root_item);
a4abeea4 1315 spin_lock(&fs_info->fs_roots_radix_lock);
54aa1f4d
CM
1316 if (err)
1317 break;
733e03a0 1318 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1319 }
1320 }
a4abeea4 1321 spin_unlock(&fs_info->fs_roots_radix_lock);
54aa1f4d 1322 return err;
0f7d52f4
CM
1323}
1324
d352ac68 1325/*
de78b51a
ES
1326 * defrag a given btree.
1327 * Every leaf in the btree is read and defragged.
d352ac68 1328 */
de78b51a 1329int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1330{
1331 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1332 struct btrfs_trans_handle *trans;
8929ecfa 1333 int ret;
e9d0b13b 1334
27cdeb70 1335 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1336 return 0;
8929ecfa 1337
6b80053d 1338 while (1) {
8929ecfa
YZ
1339 trans = btrfs_start_transaction(root, 0);
1340 if (IS_ERR(trans))
1341 return PTR_ERR(trans);
1342
de78b51a 1343 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1344
3a45bb20 1345 btrfs_end_transaction(trans);
2ff7e61e 1346 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1347 cond_resched();
1348
ab8d0fc4 1349 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1350 break;
210549eb 1351
ab8d0fc4
JM
1352 if (btrfs_defrag_cancelled(info)) {
1353 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1354 ret = -EAGAIN;
1355 break;
1356 }
e9d0b13b 1357 }
27cdeb70 1358 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1359 return ret;
e9d0b13b
CM
1360}
1361
6426c7ad
QW
1362/*
1363 * Do all special snapshot related qgroup dirty hack.
1364 *
1365 * Will do all needed qgroup inherit and dirty hack like switch commit
1366 * roots inside one transaction and write all btree into disk, to make
1367 * qgroup works.
1368 */
1369static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1370 struct btrfs_root *src,
1371 struct btrfs_root *parent,
1372 struct btrfs_qgroup_inherit *inherit,
1373 u64 dst_objectid)
1374{
1375 struct btrfs_fs_info *fs_info = src->fs_info;
1376 int ret;
1377
1378 /*
1379 * Save some performance in the case that qgroups are not
1380 * enabled. If this check races with the ioctl, rescan will
1381 * kick in anyway.
1382 */
9ea6e2b5 1383 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1384 return 0;
6426c7ad 1385
4d31778a 1386 /*
52042d8e 1387 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1388 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1389 * recorded root will never be updated again, causing an outdated root
1390 * item.
1391 */
1392 record_root_in_trans(trans, src, 1);
1393
6426c7ad
QW
1394 /*
1395 * We are going to commit transaction, see btrfs_commit_transaction()
1396 * comment for reason locking tree_log_mutex
1397 */
1398 mutex_lock(&fs_info->tree_log_mutex);
1399
7e4443d9 1400 ret = commit_fs_roots(trans);
6426c7ad
QW
1401 if (ret)
1402 goto out;
460fb20a 1403 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1404 if (ret < 0)
1405 goto out;
1406
1407 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1408 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1409 inherit);
1410 if (ret < 0)
1411 goto out;
1412
1413 /*
1414 * Now we do a simplified commit transaction, which will:
1415 * 1) commit all subvolume and extent tree
1416 * To ensure all subvolume and extent tree have a valid
1417 * commit_root to accounting later insert_dir_item()
1418 * 2) write all btree blocks onto disk
1419 * This is to make sure later btree modification will be cowed
1420 * Or commit_root can be populated and cause wrong qgroup numbers
1421 * In this simplified commit, we don't really care about other trees
1422 * like chunk and root tree, as they won't affect qgroup.
1423 * And we don't write super to avoid half committed status.
1424 */
9386d8bc 1425 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1426 if (ret)
1427 goto out;
889bfa39 1428 switch_commit_roots(trans);
70458a58 1429 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1430 if (ret)
f7af3934 1431 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1432 "Error while writing out transaction for qgroup");
1433
1434out:
1435 mutex_unlock(&fs_info->tree_log_mutex);
1436
1437 /*
1438 * Force parent root to be updated, as we recorded it before so its
1439 * last_trans == cur_transid.
1440 * Or it won't be committed again onto disk after later
1441 * insert_dir_item()
1442 */
1443 if (!ret)
1444 record_root_in_trans(trans, parent, 1);
1445 return ret;
1446}
1447
d352ac68
CM
1448/*
1449 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1450 * transaction commit. This does the actual creation.
1451 *
1452 * Note:
1453 * If the error which may affect the commitment of the current transaction
1454 * happens, we should return the error number. If the error which just affect
1455 * the creation of the pending snapshots, just return 0.
d352ac68 1456 */
80b6794d 1457static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1458 struct btrfs_pending_snapshot *pending)
1459{
08d50ca3
NB
1460
1461 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1462 struct btrfs_key key;
80b6794d 1463 struct btrfs_root_item *new_root_item;
3063d29f
CM
1464 struct btrfs_root *tree_root = fs_info->tree_root;
1465 struct btrfs_root *root = pending->root;
6bdb72de 1466 struct btrfs_root *parent_root;
98c9942a 1467 struct btrfs_block_rsv *rsv;
6bdb72de 1468 struct inode *parent_inode;
42874b3d
MX
1469 struct btrfs_path *path;
1470 struct btrfs_dir_item *dir_item;
a22285a6 1471 struct dentry *dentry;
3063d29f 1472 struct extent_buffer *tmp;
925baedd 1473 struct extent_buffer *old;
95582b00 1474 struct timespec64 cur_time;
aec8030a 1475 int ret = 0;
d68fc57b 1476 u64 to_reserve = 0;
6bdb72de 1477 u64 index = 0;
a22285a6 1478 u64 objectid;
b83cc969 1479 u64 root_flags;
8ea05e3a 1480 uuid_le new_uuid;
3063d29f 1481
8546b570
DS
1482 ASSERT(pending->path);
1483 path = pending->path;
42874b3d 1484
b0c0ea63
DS
1485 ASSERT(pending->root_item);
1486 new_root_item = pending->root_item;
a22285a6 1487
aec8030a
MX
1488 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1489 if (pending->error)
6fa9700e 1490 goto no_free_objectid;
3063d29f 1491
d6726335
QW
1492 /*
1493 * Make qgroup to skip current new snapshot's qgroupid, as it is
1494 * accounted by later btrfs_qgroup_inherit().
1495 */
1496 btrfs_set_skip_qgroup(trans, objectid);
1497
147d256e 1498 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1499
1500 if (to_reserve > 0) {
aec8030a
MX
1501 pending->error = btrfs_block_rsv_add(root,
1502 &pending->block_rsv,
1503 to_reserve,
1504 BTRFS_RESERVE_NO_FLUSH);
1505 if (pending->error)
d6726335 1506 goto clear_skip_qgroup;
d68fc57b
YZ
1507 }
1508
3063d29f 1509 key.objectid = objectid;
a22285a6
YZ
1510 key.offset = (u64)-1;
1511 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1512
6fa9700e 1513 rsv = trans->block_rsv;
a22285a6 1514 trans->block_rsv = &pending->block_rsv;
2382c5cc 1515 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1516 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1517 trans->transid,
1518 trans->bytes_reserved, 1);
a22285a6 1519 dentry = pending->dentry;
e9662f70 1520 parent_inode = pending->dir;
a22285a6 1521 parent_root = BTRFS_I(parent_inode)->root;
6426c7ad 1522 record_root_in_trans(trans, parent_root, 0);
a22285a6 1523
c2050a45 1524 cur_time = current_time(parent_inode);
04b285f3 1525
3063d29f
CM
1526 /*
1527 * insert the directory item
1528 */
877574e2 1529 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1530 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1531
1532 /* check if there is a file/dir which has the same name. */
1533 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1534 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1535 dentry->d_name.name,
1536 dentry->d_name.len, 0);
1537 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1538 pending->error = -EEXIST;
aec8030a 1539 goto dir_item_existed;
42874b3d
MX
1540 } else if (IS_ERR(dir_item)) {
1541 ret = PTR_ERR(dir_item);
66642832 1542 btrfs_abort_transaction(trans, ret);
8732d44f 1543 goto fail;
79787eaa 1544 }
42874b3d 1545 btrfs_release_path(path);
52c26179 1546
e999376f
CM
1547 /*
1548 * pull in the delayed directory update
1549 * and the delayed inode item
1550 * otherwise we corrupt the FS during
1551 * snapshot
1552 */
e5c304e6 1553 ret = btrfs_run_delayed_items(trans);
8732d44f 1554 if (ret) { /* Transaction aborted */
66642832 1555 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1556 goto fail;
1557 }
e999376f 1558
6426c7ad 1559 record_root_in_trans(trans, root, 0);
6bdb72de
SW
1560 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1561 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1562 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1563
b83cc969
LZ
1564 root_flags = btrfs_root_flags(new_root_item);
1565 if (pending->readonly)
1566 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1567 else
1568 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1569 btrfs_set_root_flags(new_root_item, root_flags);
1570
8ea05e3a
AB
1571 btrfs_set_root_generation_v2(new_root_item,
1572 trans->transid);
1573 uuid_le_gen(&new_uuid);
1574 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1575 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1576 BTRFS_UUID_SIZE);
70023da2
SB
1577 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1578 memset(new_root_item->received_uuid, 0,
1579 sizeof(new_root_item->received_uuid));
1580 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1581 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1582 btrfs_set_root_stransid(new_root_item, 0);
1583 btrfs_set_root_rtransid(new_root_item, 0);
1584 }
3cae210f
QW
1585 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1586 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1587 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1588
6bdb72de 1589 old = btrfs_lock_root_node(root);
49b25e05 1590 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
79787eaa
JM
1591 if (ret) {
1592 btrfs_tree_unlock(old);
1593 free_extent_buffer(old);
66642832 1594 btrfs_abort_transaction(trans, ret);
8732d44f 1595 goto fail;
79787eaa 1596 }
49b25e05 1597
8bead258 1598 btrfs_set_lock_blocking_write(old);
6bdb72de 1599
49b25e05 1600 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1601 /* clean up in any case */
6bdb72de
SW
1602 btrfs_tree_unlock(old);
1603 free_extent_buffer(old);
8732d44f 1604 if (ret) {
66642832 1605 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1606 goto fail;
1607 }
f1ebcc74 1608 /* see comments in should_cow_block() */
27cdeb70 1609 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1610 smp_wmb();
1611
6bdb72de 1612 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1613 /* record when the snapshot was created in key.offset */
1614 key.offset = trans->transid;
1615 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1616 btrfs_tree_unlock(tmp);
1617 free_extent_buffer(tmp);
8732d44f 1618 if (ret) {
66642832 1619 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1620 goto fail;
1621 }
6bdb72de 1622
a22285a6
YZ
1623 /*
1624 * insert root back/forward references
1625 */
6025c19f 1626 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1627 parent_root->root_key.objectid,
4a0cc7ca 1628 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1629 dentry->d_name.name, dentry->d_name.len);
8732d44f 1630 if (ret) {
66642832 1631 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1632 goto fail;
1633 }
0660b5af 1634
a22285a6 1635 key.offset = (u64)-1;
0b246afa 1636 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
79787eaa
JM
1637 if (IS_ERR(pending->snap)) {
1638 ret = PTR_ERR(pending->snap);
66642832 1639 btrfs_abort_transaction(trans, ret);
8732d44f 1640 goto fail;
79787eaa 1641 }
d68fc57b 1642
49b25e05 1643 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1644 if (ret) {
66642832 1645 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1646 goto fail;
1647 }
361048f5 1648
c79a70b1 1649 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
8732d44f 1650 if (ret) {
66642832 1651 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1652 goto fail;
1653 }
42874b3d 1654
6426c7ad
QW
1655 /*
1656 * Do special qgroup accounting for snapshot, as we do some qgroup
1657 * snapshot hack to do fast snapshot.
1658 * To co-operate with that hack, we do hack again.
1659 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1660 */
1661 ret = qgroup_account_snapshot(trans, root, parent_root,
1662 pending->inherit, objectid);
1663 if (ret < 0)
1664 goto fail;
1665
684572df
LF
1666 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1667 dentry->d_name.len, BTRFS_I(parent_inode),
1668 &key, BTRFS_FT_DIR, index);
42874b3d 1669 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1670 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1671 if (ret) {
66642832 1672 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1673 goto fail;
1674 }
42874b3d 1675
6ef06d27 1676 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1677 dentry->d_name.len * 2);
04b285f3 1678 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 1679 current_time(parent_inode);
be6aef60 1680 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
dd5f9615 1681 if (ret) {
66642832 1682 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1683 goto fail;
1684 }
cdb345a8
LF
1685 ret = btrfs_uuid_tree_add(trans, new_uuid.b, BTRFS_UUID_KEY_SUBVOL,
1686 objectid);
dd5f9615 1687 if (ret) {
66642832 1688 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1689 goto fail;
1690 }
1691 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1692 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1693 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1694 objectid);
1695 if (ret && ret != -EEXIST) {
66642832 1696 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1697 goto fail;
1698 }
1699 }
d6726335 1700
c79a70b1 1701 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
d6726335 1702 if (ret) {
66642832 1703 btrfs_abort_transaction(trans, ret);
d6726335
QW
1704 goto fail;
1705 }
1706
3063d29f 1707fail:
aec8030a
MX
1708 pending->error = ret;
1709dir_item_existed:
98c9942a 1710 trans->block_rsv = rsv;
2382c5cc 1711 trans->bytes_reserved = 0;
d6726335
QW
1712clear_skip_qgroup:
1713 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1714no_free_objectid:
1715 kfree(new_root_item);
b0c0ea63 1716 pending->root_item = NULL;
42874b3d 1717 btrfs_free_path(path);
8546b570
DS
1718 pending->path = NULL;
1719
49b25e05 1720 return ret;
3063d29f
CM
1721}
1722
d352ac68
CM
1723/*
1724 * create all the snapshots we've scheduled for creation
1725 */
08d50ca3 1726static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1727{
aec8030a 1728 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1729 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1730 int ret = 0;
3de4586c 1731
aec8030a
MX
1732 list_for_each_entry_safe(pending, next, head, list) {
1733 list_del(&pending->list);
08d50ca3 1734 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1735 if (ret)
1736 break;
1737 }
1738 return ret;
3de4586c
CM
1739}
1740
2ff7e61e 1741static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1742{
1743 struct btrfs_root_item *root_item;
1744 struct btrfs_super_block *super;
1745
0b246afa 1746 super = fs_info->super_copy;
5d4f98a2 1747
0b246afa 1748 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1749 super->chunk_root = root_item->bytenr;
1750 super->chunk_root_generation = root_item->generation;
1751 super->chunk_root_level = root_item->level;
5d4f98a2 1752
0b246afa 1753 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1754 super->root = root_item->bytenr;
1755 super->generation = root_item->generation;
1756 super->root_level = root_item->level;
0b246afa 1757 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1758 super->cache_generation = root_item->generation;
0b246afa 1759 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1760 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1761}
1762
f36f3042
CM
1763int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1764{
4a9d8bde 1765 struct btrfs_transaction *trans;
f36f3042 1766 int ret = 0;
4a9d8bde 1767
a4abeea4 1768 spin_lock(&info->trans_lock);
4a9d8bde
MX
1769 trans = info->running_transaction;
1770 if (trans)
1771 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1772 spin_unlock(&info->trans_lock);
f36f3042
CM
1773 return ret;
1774}
1775
8929ecfa
YZ
1776int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1777{
4a9d8bde 1778 struct btrfs_transaction *trans;
8929ecfa 1779 int ret = 0;
4a9d8bde 1780
a4abeea4 1781 spin_lock(&info->trans_lock);
4a9d8bde
MX
1782 trans = info->running_transaction;
1783 if (trans)
1784 ret = is_transaction_blocked(trans);
a4abeea4 1785 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1786 return ret;
1787}
1788
bb9c12c9
SW
1789/*
1790 * wait for the current transaction commit to start and block subsequent
1791 * transaction joins
1792 */
2ff7e61e 1793static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
bb9c12c9
SW
1794 struct btrfs_transaction *trans)
1795{
2ff7e61e
JM
1796 wait_event(fs_info->transaction_blocked_wait,
1797 trans->state >= TRANS_STATE_COMMIT_START || trans->aborted);
bb9c12c9
SW
1798}
1799
1800/*
1801 * wait for the current transaction to start and then become unblocked.
1802 * caller holds ref.
1803 */
2ff7e61e
JM
1804static void wait_current_trans_commit_start_and_unblock(
1805 struct btrfs_fs_info *fs_info,
1806 struct btrfs_transaction *trans)
bb9c12c9 1807{
2ff7e61e
JM
1808 wait_event(fs_info->transaction_wait,
1809 trans->state >= TRANS_STATE_UNBLOCKED || trans->aborted);
bb9c12c9
SW
1810}
1811
1812/*
1813 * commit transactions asynchronously. once btrfs_commit_transaction_async
1814 * returns, any subsequent transaction will not be allowed to join.
1815 */
1816struct btrfs_async_commit {
1817 struct btrfs_trans_handle *newtrans;
7892b5af 1818 struct work_struct work;
bb9c12c9
SW
1819};
1820
1821static void do_async_commit(struct work_struct *work)
1822{
1823 struct btrfs_async_commit *ac =
7892b5af 1824 container_of(work, struct btrfs_async_commit, work);
bb9c12c9 1825
6fc4e354
SW
1826 /*
1827 * We've got freeze protection passed with the transaction.
1828 * Tell lockdep about it.
1829 */
b1a06a4b 1830 if (ac->newtrans->type & __TRANS_FREEZABLE)
3a45bb20 1831 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
6fc4e354 1832
e209db7a
SW
1833 current->journal_info = ac->newtrans;
1834
3a45bb20 1835 btrfs_commit_transaction(ac->newtrans);
bb9c12c9
SW
1836 kfree(ac);
1837}
1838
1839int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
bb9c12c9
SW
1840 int wait_for_unblock)
1841{
3a45bb20 1842 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1843 struct btrfs_async_commit *ac;
1844 struct btrfs_transaction *cur_trans;
1845
1846 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1847 if (!ac)
1848 return -ENOMEM;
bb9c12c9 1849
7892b5af 1850 INIT_WORK(&ac->work, do_async_commit);
3a45bb20 1851 ac->newtrans = btrfs_join_transaction(trans->root);
3612b495
TI
1852 if (IS_ERR(ac->newtrans)) {
1853 int err = PTR_ERR(ac->newtrans);
1854 kfree(ac);
1855 return err;
1856 }
bb9c12c9
SW
1857
1858 /* take transaction reference */
bb9c12c9 1859 cur_trans = trans->transaction;
9b64f57d 1860 refcount_inc(&cur_trans->use_count);
bb9c12c9 1861
3a45bb20 1862 btrfs_end_transaction(trans);
6fc4e354
SW
1863
1864 /*
1865 * Tell lockdep we've released the freeze rwsem, since the
1866 * async commit thread will be the one to unlock it.
1867 */
b1a06a4b 1868 if (ac->newtrans->type & __TRANS_FREEZABLE)
0b246afa 1869 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
6fc4e354 1870
7892b5af 1871 schedule_work(&ac->work);
bb9c12c9
SW
1872
1873 /* wait for transaction to start and unblock */
bb9c12c9 1874 if (wait_for_unblock)
2ff7e61e 1875 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
bb9c12c9 1876 else
2ff7e61e 1877 wait_current_trans_commit_start(fs_info, cur_trans);
bb9c12c9 1878
38e88054
SW
1879 if (current->journal_info == trans)
1880 current->journal_info = NULL;
1881
724e2315 1882 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1883 return 0;
1884}
1885
49b25e05 1886
97cb39bb 1887static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1888{
97cb39bb 1889 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1890 struct btrfs_transaction *cur_trans = trans->transaction;
1891
b50fff81 1892 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1893
66642832 1894 btrfs_abort_transaction(trans, err);
7b8b92af 1895
0b246afa 1896 spin_lock(&fs_info->trans_lock);
66b6135b 1897
25d8c284
MX
1898 /*
1899 * If the transaction is removed from the list, it means this
1900 * transaction has been committed successfully, so it is impossible
1901 * to call the cleanup function.
1902 */
1903 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1904
49b25e05 1905 list_del_init(&cur_trans->list);
0b246afa 1906 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1907 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1908 spin_unlock(&fs_info->trans_lock);
f094ac32
LB
1909 wait_event(cur_trans->writer_wait,
1910 atomic_read(&cur_trans->num_writers) == 1);
1911
0b246afa 1912 spin_lock(&fs_info->trans_lock);
d7096fc3 1913 }
0b246afa 1914 spin_unlock(&fs_info->trans_lock);
49b25e05 1915
2ff7e61e 1916 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 1917
0b246afa
JM
1918 spin_lock(&fs_info->trans_lock);
1919 if (cur_trans == fs_info->running_transaction)
1920 fs_info->running_transaction = NULL;
1921 spin_unlock(&fs_info->trans_lock);
4a9d8bde 1922
e0228285 1923 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1924 sb_end_intwrite(fs_info->sb);
724e2315
JB
1925 btrfs_put_transaction(cur_trans);
1926 btrfs_put_transaction(cur_trans);
49b25e05 1927
97cb39bb 1928 trace_btrfs_transaction_commit(trans->root);
49b25e05 1929
49b25e05
JM
1930 if (current->journal_info == trans)
1931 current->journal_info = NULL;
0b246afa 1932 btrfs_scrub_cancel(fs_info);
49b25e05
JM
1933
1934 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1935}
1936
c7cc64a9
DS
1937/*
1938 * Release reserved delayed ref space of all pending block groups of the
1939 * transaction and remove them from the list
1940 */
1941static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1942{
1943 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 1944 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
1945
1946 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1947 btrfs_delayed_refs_rsv_release(fs_info, 1);
1948 list_del_init(&block_group->bg_list);
1949 }
1950}
1951
609e804d 1952static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
82436617 1953{
609e804d
FM
1954 struct btrfs_fs_info *fs_info = trans->fs_info;
1955
ce8ea7cc
JB
1956 /*
1957 * We use writeback_inodes_sb here because if we used
1958 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1959 * Currently are holding the fs freeze lock, if we do an async flush
1960 * we'll do btrfs_join_transaction() and deadlock because we need to
1961 * wait for the fs freeze lock. Using the direct flushing we benefit
1962 * from already being in a transaction and our join_transaction doesn't
1963 * have to re-take the fs freeze lock.
1964 */
609e804d 1965 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
ce8ea7cc 1966 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
609e804d
FM
1967 } else {
1968 struct btrfs_pending_snapshot *pending;
1969 struct list_head *head = &trans->transaction->pending_snapshots;
1970
1971 /*
1972 * Flush dellaloc for any root that is going to be snapshotted.
1973 * This is done to avoid a corrupted version of files, in the
1974 * snapshots, that had both buffered and direct IO writes (even
1975 * if they were done sequentially) due to an unordered update of
1976 * the inode's size on disk.
1977 */
1978 list_for_each_entry(pending, head, list) {
1979 int ret;
1980
1981 ret = btrfs_start_delalloc_snapshot(pending->root);
1982 if (ret)
1983 return ret;
1984 }
1985 }
82436617
MX
1986 return 0;
1987}
1988
609e804d 1989static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
82436617 1990{
609e804d
FM
1991 struct btrfs_fs_info *fs_info = trans->fs_info;
1992
1993 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
6374e57a 1994 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
609e804d
FM
1995 } else {
1996 struct btrfs_pending_snapshot *pending;
1997 struct list_head *head = &trans->transaction->pending_snapshots;
1998
1999 /*
2000 * Wait for any dellaloc that we started previously for the roots
2001 * that are going to be snapshotted. This is to avoid a corrupted
2002 * version of files in the snapshots that had both buffered and
2003 * direct IO writes (even if they were done sequentially).
2004 */
2005 list_for_each_entry(pending, head, list)
2006 btrfs_wait_ordered_extents(pending->root,
2007 U64_MAX, 0, U64_MAX);
2008 }
82436617
MX
2009}
2010
3a45bb20 2011int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2012{
3a45bb20 2013 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2014 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2015 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2016 int ret;
79154b1b 2017
35b814f3
NB
2018 ASSERT(refcount_read(&trans->use_count) == 1);
2019
d62b23c9
JB
2020 /*
2021 * Some places just start a transaction to commit it. We need to make
2022 * sure that if this commit fails that the abort code actually marks the
2023 * transaction as failed, so set trans->dirty to make the abort code do
2024 * the right thing.
2025 */
2026 trans->dirty = true;
2027
8d25a086 2028 /* Stop the commit early if ->aborted is set */
20c7bcec 2029 if (unlikely(READ_ONCE(cur_trans->aborted))) {
25287e0a 2030 ret = cur_trans->aborted;
3a45bb20 2031 btrfs_end_transaction(trans);
e4a2bcac 2032 return ret;
25287e0a 2033 }
49b25e05 2034
f45c752b
JB
2035 btrfs_trans_release_metadata(trans);
2036 trans->block_rsv = NULL;
2037
56bec294
CM
2038 /* make a pass through all the delayed refs we have so far
2039 * any runnings procs may add more while we are here
2040 */
c79a70b1 2041 ret = btrfs_run_delayed_refs(trans, 0);
e4a2bcac 2042 if (ret) {
3a45bb20 2043 btrfs_end_transaction(trans);
e4a2bcac
JB
2044 return ret;
2045 }
56bec294 2046
b7ec40d7 2047 cur_trans = trans->transaction;
49b25e05 2048
56bec294
CM
2049 /*
2050 * set the flushing flag so procs in this transaction have to
2051 * start sending their work down.
2052 */
b7ec40d7 2053 cur_trans->delayed_refs.flushing = 1;
1be41b78 2054 smp_wmb();
56bec294 2055
119e80df 2056 btrfs_create_pending_block_groups(trans);
ea658bad 2057
c79a70b1 2058 ret = btrfs_run_delayed_refs(trans, 0);
e4a2bcac 2059 if (ret) {
3a45bb20 2060 btrfs_end_transaction(trans);
e4a2bcac
JB
2061 return ret;
2062 }
56bec294 2063
3204d33c 2064 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2065 int run_it = 0;
2066
2067 /* this mutex is also taken before trying to set
2068 * block groups readonly. We need to make sure
2069 * that nobody has set a block group readonly
2070 * after a extents from that block group have been
2071 * allocated for cache files. btrfs_set_block_group_ro
2072 * will wait for the transaction to commit if it
3204d33c 2073 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2074 *
3204d33c
JB
2075 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2076 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2077 * hurt to have more than one go through, but there's no
2078 * real advantage to it either.
2079 */
0b246afa 2080 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2081 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2082 &cur_trans->flags))
1bbc621e 2083 run_it = 1;
0b246afa 2084 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2085
f9cacae3 2086 if (run_it) {
21217054 2087 ret = btrfs_start_dirty_block_groups(trans);
f9cacae3
NB
2088 if (ret) {
2089 btrfs_end_transaction(trans);
2090 return ret;
2091 }
2092 }
1bbc621e
CM
2093 }
2094
0b246afa 2095 spin_lock(&fs_info->trans_lock);
4a9d8bde 2096 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
0b246afa 2097 spin_unlock(&fs_info->trans_lock);
9b64f57d 2098 refcount_inc(&cur_trans->use_count);
3a45bb20 2099 ret = btrfs_end_transaction(trans);
ccd467d6 2100
2ff7e61e 2101 wait_for_commit(cur_trans);
15ee9bc7 2102
b4924a0f
LB
2103 if (unlikely(cur_trans->aborted))
2104 ret = cur_trans->aborted;
2105
724e2315 2106 btrfs_put_transaction(cur_trans);
15ee9bc7 2107
49b25e05 2108 return ret;
79154b1b 2109 }
4313b399 2110
4a9d8bde 2111 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2112 wake_up(&fs_info->transaction_blocked_wait);
bb9c12c9 2113
0b246afa 2114 if (cur_trans->list.prev != &fs_info->trans_list) {
ccd467d6
CM
2115 prev_trans = list_entry(cur_trans->list.prev,
2116 struct btrfs_transaction, list);
4a9d8bde 2117 if (prev_trans->state != TRANS_STATE_COMPLETED) {
9b64f57d 2118 refcount_inc(&prev_trans->use_count);
0b246afa 2119 spin_unlock(&fs_info->trans_lock);
ccd467d6 2120
2ff7e61e 2121 wait_for_commit(prev_trans);
1f9b8c8f 2122 ret = prev_trans->aborted;
ccd467d6 2123
724e2315 2124 btrfs_put_transaction(prev_trans);
1f9b8c8f
FM
2125 if (ret)
2126 goto cleanup_transaction;
a4abeea4 2127 } else {
0b246afa 2128 spin_unlock(&fs_info->trans_lock);
ccd467d6 2129 }
a4abeea4 2130 } else {
0b246afa 2131 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2132 /*
2133 * The previous transaction was aborted and was already removed
2134 * from the list of transactions at fs_info->trans_list. So we
2135 * abort to prevent writing a new superblock that reflects a
2136 * corrupt state (pointing to trees with unwritten nodes/leafs).
2137 */
2138 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2139 ret = -EROFS;
2140 goto cleanup_transaction;
2141 }
ccd467d6 2142 }
15ee9bc7 2143
0860adfd
MX
2144 extwriter_counter_dec(cur_trans, trans->type);
2145
609e804d 2146 ret = btrfs_start_delalloc_flush(trans);
82436617
MX
2147 if (ret)
2148 goto cleanup_transaction;
2149
e5c304e6 2150 ret = btrfs_run_delayed_items(trans);
581227d0
MX
2151 if (ret)
2152 goto cleanup_transaction;
15ee9bc7 2153
581227d0
MX
2154 wait_event(cur_trans->writer_wait,
2155 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2156
581227d0 2157 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2158 ret = btrfs_run_delayed_items(trans);
ca469637
MX
2159 if (ret)
2160 goto cleanup_transaction;
2161
609e804d 2162 btrfs_wait_delalloc_flush(trans);
cb7ab021 2163
2ff7e61e 2164 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2165 /*
2166 * Ok now we need to make sure to block out any other joins while we
2167 * commit the transaction. We could have started a join before setting
4a9d8bde 2168 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2169 */
0b246afa 2170 spin_lock(&fs_info->trans_lock);
4a9d8bde 2171 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2172 spin_unlock(&fs_info->trans_lock);
ed0ca140
JB
2173 wait_event(cur_trans->writer_wait,
2174 atomic_read(&cur_trans->num_writers) == 1);
2175
2cba30f1 2176 /* ->aborted might be set after the previous check, so check it */
20c7bcec 2177 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2cba30f1 2178 ret = cur_trans->aborted;
6cf7f77e 2179 goto scrub_continue;
2cba30f1 2180 }
7585717f
CM
2181 /*
2182 * the reloc mutex makes sure that we stop
2183 * the balancing code from coming in and moving
2184 * extents around in the middle of the commit
2185 */
0b246afa 2186 mutex_lock(&fs_info->reloc_mutex);
7585717f 2187
42874b3d
MX
2188 /*
2189 * We needn't worry about the delayed items because we will
2190 * deal with them in create_pending_snapshot(), which is the
2191 * core function of the snapshot creation.
2192 */
08d50ca3 2193 ret = create_pending_snapshots(trans);
49b25e05 2194 if (ret) {
0b246afa 2195 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2196 goto scrub_continue;
49b25e05 2197 }
3063d29f 2198
42874b3d
MX
2199 /*
2200 * We insert the dir indexes of the snapshots and update the inode
2201 * of the snapshots' parents after the snapshot creation, so there
2202 * are some delayed items which are not dealt with. Now deal with
2203 * them.
2204 *
2205 * We needn't worry that this operation will corrupt the snapshots,
2206 * because all the tree which are snapshoted will be forced to COW
2207 * the nodes and leaves.
2208 */
e5c304e6 2209 ret = btrfs_run_delayed_items(trans);
49b25e05 2210 if (ret) {
0b246afa 2211 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2212 goto scrub_continue;
49b25e05 2213 }
16cdcec7 2214
c79a70b1 2215 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
49b25e05 2216 if (ret) {
0b246afa 2217 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2218 goto scrub_continue;
49b25e05 2219 }
56bec294 2220
e999376f
CM
2221 /*
2222 * make sure none of the code above managed to slip in a
2223 * delayed item
2224 */
ccdf9b30 2225 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2226
2c90e5d6 2227 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2228
e02119d5
CM
2229 /* btrfs_commit_tree_roots is responsible for getting the
2230 * various roots consistent with each other. Every pointer
2231 * in the tree of tree roots has to point to the most up to date
2232 * root for every subvolume and other tree. So, we have to keep
2233 * the tree logging code from jumping in and changing any
2234 * of the trees.
2235 *
2236 * At this point in the commit, there can't be any tree-log
2237 * writers, but a little lower down we drop the trans mutex
2238 * and let new people in. By holding the tree_log_mutex
2239 * from now until after the super is written, we avoid races
2240 * with the tree-log code.
2241 */
0b246afa 2242 mutex_lock(&fs_info->tree_log_mutex);
e02119d5 2243
7e4443d9 2244 ret = commit_fs_roots(trans);
49b25e05 2245 if (ret) {
0b246afa
JM
2246 mutex_unlock(&fs_info->tree_log_mutex);
2247 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2248 goto scrub_continue;
49b25e05 2249 }
54aa1f4d 2250
3818aea2 2251 /*
7e1876ac
DS
2252 * Since the transaction is done, we can apply the pending changes
2253 * before the next transaction.
3818aea2 2254 */
0b246afa 2255 btrfs_apply_pending_changes(fs_info);
3818aea2 2256
5d4f98a2 2257 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2258 * safe to free the root of tree log roots
2259 */
0b246afa 2260 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2261
82bafb38
QW
2262 /*
2263 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2264 * new delayed refs. Must handle them or qgroup can be wrong.
2265 */
c79a70b1 2266 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
82bafb38
QW
2267 if (ret) {
2268 mutex_unlock(&fs_info->tree_log_mutex);
2269 mutex_unlock(&fs_info->reloc_mutex);
2270 goto scrub_continue;
2271 }
2272
0ed4792a
QW
2273 /*
2274 * Since fs roots are all committed, we can get a quite accurate
2275 * new_roots. So let's do quota accounting.
2276 */
460fb20a 2277 ret = btrfs_qgroup_account_extents(trans);
0ed4792a 2278 if (ret < 0) {
0b246afa
JM
2279 mutex_unlock(&fs_info->tree_log_mutex);
2280 mutex_unlock(&fs_info->reloc_mutex);
0ed4792a
QW
2281 goto scrub_continue;
2282 }
2283
9386d8bc 2284 ret = commit_cowonly_roots(trans);
49b25e05 2285 if (ret) {
0b246afa
JM
2286 mutex_unlock(&fs_info->tree_log_mutex);
2287 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2288 goto scrub_continue;
49b25e05 2289 }
54aa1f4d 2290
2cba30f1
MX
2291 /*
2292 * The tasks which save the space cache and inode cache may also
2293 * update ->aborted, check it.
2294 */
20c7bcec 2295 if (unlikely(READ_ONCE(cur_trans->aborted))) {
2cba30f1 2296 ret = cur_trans->aborted;
0b246afa
JM
2297 mutex_unlock(&fs_info->tree_log_mutex);
2298 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2299 goto scrub_continue;
2cba30f1
MX
2300 }
2301
8b74c03e 2302 btrfs_prepare_extent_commit(fs_info);
11833d66 2303
0b246afa 2304 cur_trans = fs_info->running_transaction;
5d4f98a2 2305
0b246afa
JM
2306 btrfs_set_root_node(&fs_info->tree_root->root_item,
2307 fs_info->tree_root->node);
2308 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2309 &cur_trans->switch_commits);
5d4f98a2 2310
0b246afa
JM
2311 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2312 fs_info->chunk_root->node);
2313 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2314 &cur_trans->switch_commits);
2315
889bfa39 2316 switch_commit_roots(trans);
5d4f98a2 2317
ce93ec54 2318 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2319 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2320 update_super_roots(fs_info);
e02119d5 2321
0b246afa
JM
2322 btrfs_set_super_log_root(fs_info->super_copy, 0);
2323 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2324 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2325 sizeof(*fs_info->super_copy));
ccd467d6 2326
bbbf7243 2327 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2328
0b246afa
JM
2329 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2330 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2331
4fbcdf66
FM
2332 btrfs_trans_release_chunk_metadata(trans);
2333
0b246afa 2334 spin_lock(&fs_info->trans_lock);
4a9d8bde 2335 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2336 fs_info->running_transaction = NULL;
2337 spin_unlock(&fs_info->trans_lock);
2338 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2339
0b246afa 2340 wake_up(&fs_info->transaction_wait);
e6dcd2dc 2341
70458a58 2342 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2343 if (ret) {
0b246afa
JM
2344 btrfs_handle_fs_error(fs_info, ret,
2345 "Error while writing out transaction");
2346 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2347 goto scrub_continue;
49b25e05
JM
2348 }
2349
eece6a9c 2350 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2351 /*
2352 * the super is written, we can safely allow the tree-loggers
2353 * to go about their business
2354 */
0b246afa 2355 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2356 if (ret)
2357 goto scrub_continue;
e02119d5 2358
5ead2dd0 2359 btrfs_finish_extent_commit(trans);
4313b399 2360
3204d33c 2361 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2362 btrfs_clear_space_info_full(fs_info);
13212b54 2363
0b246afa 2364 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2365 /*
2366 * We needn't acquire the lock here because there is no other task
2367 * which can change it.
2368 */
2369 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2370 wake_up(&cur_trans->commit_wait);
a514d638 2371 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
3de4586c 2372
0b246afa 2373 spin_lock(&fs_info->trans_lock);
13c5a93e 2374 list_del_init(&cur_trans->list);
0b246afa 2375 spin_unlock(&fs_info->trans_lock);
a4abeea4 2376
724e2315
JB
2377 btrfs_put_transaction(cur_trans);
2378 btrfs_put_transaction(cur_trans);
58176a96 2379
0860adfd 2380 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2381 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2382
3a45bb20 2383 trace_btrfs_transaction_commit(trans->root);
1abe9b8a 2384
2ff7e61e 2385 btrfs_scrub_continue(fs_info);
a2de733c 2386
9ed74f2d
JB
2387 if (current->journal_info == trans)
2388 current->journal_info = NULL;
2389
2c90e5d6 2390 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2391
79154b1b 2392 return ret;
49b25e05 2393
6cf7f77e 2394scrub_continue:
2ff7e61e 2395 btrfs_scrub_continue(fs_info);
49b25e05 2396cleanup_transaction:
dc60c525 2397 btrfs_trans_release_metadata(trans);
c7cc64a9 2398 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2399 btrfs_trans_release_chunk_metadata(trans);
0e721106 2400 trans->block_rsv = NULL;
0b246afa 2401 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2402 if (current->journal_info == trans)
2403 current->journal_info = NULL;
97cb39bb 2404 cleanup_transaction(trans, ret);
49b25e05
JM
2405
2406 return ret;
79154b1b
CM
2407}
2408
d352ac68 2409/*
9d1a2a3a
DS
2410 * return < 0 if error
2411 * 0 if there are no more dead_roots at the time of call
2412 * 1 there are more to be processed, call me again
2413 *
2414 * The return value indicates there are certainly more snapshots to delete, but
2415 * if there comes a new one during processing, it may return 0. We don't mind,
2416 * because btrfs_commit_super will poke cleaner thread and it will process it a
2417 * few seconds later.
d352ac68 2418 */
9d1a2a3a 2419int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
e9d0b13b 2420{
9d1a2a3a 2421 int ret;
5d4f98a2
YZ
2422 struct btrfs_fs_info *fs_info = root->fs_info;
2423
a4abeea4 2424 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2425 if (list_empty(&fs_info->dead_roots)) {
2426 spin_unlock(&fs_info->trans_lock);
2427 return 0;
2428 }
2429 root = list_first_entry(&fs_info->dead_roots,
2430 struct btrfs_root, root_list);
cfad392b 2431 list_del_init(&root->root_list);
a4abeea4 2432 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2433
4fd786e6 2434 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2435
9d1a2a3a 2436 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2437
9d1a2a3a
DS
2438 if (btrfs_header_backref_rev(root->node) <
2439 BTRFS_MIXED_BACKREF_REV)
2440 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2441 else
2442 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
32471dc2 2443
6596a928 2444 return (ret < 0) ? 0 : 1;
e9d0b13b 2445}
572d9ab7
DS
2446
2447void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2448{
2449 unsigned long prev;
2450 unsigned long bit;
2451
6c9fe14f 2452 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2453 if (!prev)
2454 return;
2455
7e1876ac
DS
2456 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2457 if (prev & bit)
2458 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2459 prev &= ~bit;
2460
2461 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2462 if (prev & bit)
2463 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2464 prev &= ~bit;
2465
d51033d0
DS
2466 bit = 1 << BTRFS_PENDING_COMMIT;
2467 if (prev & bit)
2468 btrfs_debug(fs_info, "pending commit done");
2469 prev &= ~bit;
2470
572d9ab7
DS
2471 if (prev)
2472 btrfs_warn(fs_info,
2473 "unknown pending changes left 0x%lx, ignoring", prev);
2474}