btrfs: move fs_info::flags enum to fs.h
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
e55958c8 13#include <linux/timekeeping.h>
602cbe91 14#include "misc.h"
79154b1b
CM
15#include "ctree.h"
16#include "disk-io.h"
17#include "transaction.h"
925baedd 18#include "locking.h"
e02119d5 19#include "tree-log.h"
733f4fbb 20#include "volumes.h"
8dabb742 21#include "dev-replace.h"
fcebe456 22#include "qgroup.h"
aac0023c 23#include "block-group.h"
9c343784 24#include "space-info.h"
d3575156 25#include "zoned.h"
c7f13d42 26#include "fs.h"
79154b1b 27
956504a3
JB
28static struct kmem_cache *btrfs_trans_handle_cachep;
29
fc7cbcd4 30#define BTRFS_ROOT_TRANS_TAG 0
0f7d52f4 31
61c047b5
QW
32/*
33 * Transaction states and transitions
34 *
35 * No running transaction (fs tree blocks are not modified)
36 * |
37 * | To next stage:
38 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
39 * V
40 * Transaction N [[TRANS_STATE_RUNNING]]
41 * |
42 * | New trans handles can be attached to transaction N by calling all
43 * | start_transaction() variants.
44 * |
45 * | To next stage:
46 * | Call btrfs_commit_transaction() on any trans handle attached to
47 * | transaction N
48 * V
49 * Transaction N [[TRANS_STATE_COMMIT_START]]
50 * |
51 * | Will wait for previous running transaction to completely finish if there
52 * | is one
53 * |
54 * | Then one of the following happes:
55 * | - Wait for all other trans handle holders to release.
56 * | The btrfs_commit_transaction() caller will do the commit work.
57 * | - Wait for current transaction to be committed by others.
58 * | Other btrfs_commit_transaction() caller will do the commit work.
59 * |
60 * | At this stage, only btrfs_join_transaction*() variants can attach
61 * | to this running transaction.
62 * | All other variants will wait for current one to finish and attach to
63 * | transaction N+1.
64 * |
65 * | To next stage:
66 * | Caller is chosen to commit transaction N, and all other trans handle
67 * | haven been released.
68 * V
69 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
70 * |
71 * | The heavy lifting transaction work is started.
72 * | From running delayed refs (modifying extent tree) to creating pending
73 * | snapshots, running qgroups.
74 * | In short, modify supporting trees to reflect modifications of subvolume
75 * | trees.
76 * |
77 * | At this stage, all start_transaction() calls will wait for this
78 * | transaction to finish and attach to transaction N+1.
79 * |
80 * | To next stage:
81 * | Until all supporting trees are updated.
82 * V
83 * Transaction N [[TRANS_STATE_UNBLOCKED]]
84 * | Transaction N+1
85 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
86 * | need to write them back to disk and update |
87 * | super blocks. |
88 * | |
89 * | At this stage, new transaction is allowed to |
90 * | start. |
91 * | All new start_transaction() calls will be |
92 * | attached to transid N+1. |
93 * | |
94 * | To next stage: |
95 * | Until all tree blocks are super blocks are |
96 * | written to block devices |
97 * V |
98 * Transaction N [[TRANS_STATE_COMPLETED]] V
99 * All tree blocks and super blocks are written. Transaction N+1
100 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
101 * data structures will be cleaned up. | Life goes on
102 */
e8c9f186 103static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 104 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
105 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
106 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 107 __TRANS_ATTACH |
a6d155d2
FM
108 __TRANS_JOIN |
109 __TRANS_JOIN_NOSTART),
bcf3a3e7 110 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
111 __TRANS_ATTACH |
112 __TRANS_JOIN |
a6d155d2
FM
113 __TRANS_JOIN_NOLOCK |
114 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
115 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
116 __TRANS_ATTACH |
117 __TRANS_JOIN |
118 __TRANS_JOIN_NOLOCK |
119 __TRANS_JOIN_NOSTART),
bcf3a3e7 120 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
121 __TRANS_ATTACH |
122 __TRANS_JOIN |
a6d155d2
FM
123 __TRANS_JOIN_NOLOCK |
124 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
125};
126
724e2315 127void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 128{
9b64f57d
ER
129 WARN_ON(refcount_read(&transaction->use_count) == 0);
130 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 131 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
132 WARN_ON(!RB_EMPTY_ROOT(
133 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
134 WARN_ON(!RB_EMPTY_ROOT(
135 &transaction->delayed_refs.dirty_extent_root));
1262133b 136 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
137 btrfs_err(transaction->fs_info,
138 "pending csums is %llu",
139 transaction->delayed_refs.pending_csums);
7785a663
FM
140 /*
141 * If any block groups are found in ->deleted_bgs then it's
142 * because the transaction was aborted and a commit did not
143 * happen (things failed before writing the new superblock
144 * and calling btrfs_finish_extent_commit()), so we can not
145 * discard the physical locations of the block groups.
146 */
147 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 148 struct btrfs_block_group *cache;
7785a663
FM
149
150 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 151 struct btrfs_block_group,
7785a663
FM
152 bg_list);
153 list_del_init(&cache->bg_list);
6b7304af 154 btrfs_unfreeze_block_group(cache);
7785a663
FM
155 btrfs_put_block_group(cache);
156 }
bbbf7243 157 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 158 kfree(transaction);
78fae27e 159 }
79154b1b
CM
160}
161
889bfa39 162static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 163{
889bfa39 164 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 165 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
166 struct btrfs_root *root, *tmp;
167
dfba78dc
FM
168 /*
169 * At this point no one can be using this transaction to modify any tree
170 * and no one can start another transaction to modify any tree either.
171 */
172 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
173
9e351cc8 174 down_write(&fs_info->commit_root_sem);
d96b3424
FM
175
176 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
177 fs_info->last_reloc_trans = trans->transid;
178
889bfa39 179 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
180 dirty_list) {
181 list_del_init(&root->dirty_list);
182 free_extent_buffer(root->commit_root);
183 root->commit_root = btrfs_root_node(root);
41e7acd3 184 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 185 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 186 }
2b9dbef2
JB
187
188 /* We can free old roots now. */
889bfa39
JB
189 spin_lock(&cur_trans->dropped_roots_lock);
190 while (!list_empty(&cur_trans->dropped_roots)) {
191 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
192 struct btrfs_root, root_list);
193 list_del_init(&root->root_list);
889bfa39
JB
194 spin_unlock(&cur_trans->dropped_roots_lock);
195 btrfs_free_log(trans, root);
2b9dbef2 196 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 197 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 198 }
889bfa39 199 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62 200
9e351cc8 201 up_write(&fs_info->commit_root_sem);
817d52f8
JB
202}
203
0860adfd
MX
204static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
205 unsigned int type)
206{
207 if (type & TRANS_EXTWRITERS)
208 atomic_inc(&trans->num_extwriters);
209}
210
211static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
212 unsigned int type)
213{
214 if (type & TRANS_EXTWRITERS)
215 atomic_dec(&trans->num_extwriters);
216}
217
218static inline void extwriter_counter_init(struct btrfs_transaction *trans,
219 unsigned int type)
220{
221 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
222}
223
224static inline int extwriter_counter_read(struct btrfs_transaction *trans)
225{
226 return atomic_read(&trans->num_extwriters);
178260b2
MX
227}
228
fb6dea26 229/*
79bd3712
FM
230 * To be called after doing the chunk btree updates right after allocating a new
231 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
232 * chunk after all chunk btree updates and after finishing the second phase of
233 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
234 * group had its chunk item insertion delayed to the second phase.
fb6dea26
JB
235 */
236void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
237{
238 struct btrfs_fs_info *fs_info = trans->fs_info;
239
240 if (!trans->chunk_bytes_reserved)
241 return;
242
fb6dea26 243 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 244 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
245 trans->chunk_bytes_reserved = 0;
246}
247
d352ac68
CM
248/*
249 * either allocate a new transaction or hop into the existing one
250 */
2ff7e61e
JM
251static noinline int join_transaction(struct btrfs_fs_info *fs_info,
252 unsigned int type)
79154b1b
CM
253{
254 struct btrfs_transaction *cur_trans;
a4abeea4 255
19ae4e81 256 spin_lock(&fs_info->trans_lock);
d43317dc 257loop:
49b25e05 258 /* The file system has been taken offline. No new transactions. */
84961539 259 if (BTRFS_FS_ERROR(fs_info)) {
19ae4e81 260 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
261 return -EROFS;
262 }
263
19ae4e81 264 cur_trans = fs_info->running_transaction;
a4abeea4 265 if (cur_trans) {
bf31f87f 266 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 267 spin_unlock(&fs_info->trans_lock);
49b25e05 268 return cur_trans->aborted;
871383be 269 }
4a9d8bde 270 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
271 spin_unlock(&fs_info->trans_lock);
272 return -EBUSY;
273 }
9b64f57d 274 refcount_inc(&cur_trans->use_count);
13c5a93e 275 atomic_inc(&cur_trans->num_writers);
0860adfd 276 extwriter_counter_inc(cur_trans, type);
19ae4e81 277 spin_unlock(&fs_info->trans_lock);
e1489b4f 278 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 279 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
a4abeea4 280 return 0;
79154b1b 281 }
19ae4e81 282 spin_unlock(&fs_info->trans_lock);
a4abeea4 283
354aa0fb
MX
284 /*
285 * If we are ATTACH, we just want to catch the current transaction,
286 * and commit it. If there is no transaction, just return ENOENT.
287 */
288 if (type == TRANS_ATTACH)
289 return -ENOENT;
290
4a9d8bde
MX
291 /*
292 * JOIN_NOLOCK only happens during the transaction commit, so
293 * it is impossible that ->running_transaction is NULL
294 */
295 BUG_ON(type == TRANS_JOIN_NOLOCK);
296
4b5faeac 297 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
298 if (!cur_trans)
299 return -ENOMEM;
d43317dc 300
e1489b4f 301 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 302 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
e1489b4f 303
19ae4e81
JS
304 spin_lock(&fs_info->trans_lock);
305 if (fs_info->running_transaction) {
d43317dc
CM
306 /*
307 * someone started a transaction after we unlocked. Make sure
4a9d8bde 308 * to redo the checks above
d43317dc 309 */
5a9ba670 310 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 311 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 312 kfree(cur_trans);
d43317dc 313 goto loop;
84961539 314 } else if (BTRFS_FS_ERROR(fs_info)) {
e4b50e14 315 spin_unlock(&fs_info->trans_lock);
5a9ba670 316 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 317 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 318 kfree(cur_trans);
7b8b92af 319 return -EROFS;
79154b1b 320 }
d43317dc 321
ab8d0fc4 322 cur_trans->fs_info = fs_info;
48778179
FM
323 atomic_set(&cur_trans->pending_ordered, 0);
324 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 325 atomic_set(&cur_trans->num_writers, 1);
0860adfd 326 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
327 init_waitqueue_head(&cur_trans->writer_wait);
328 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 329 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
330 /*
331 * One for this trans handle, one so it will live on until we
332 * commit the transaction.
333 */
9b64f57d 334 refcount_set(&cur_trans->use_count, 2);
3204d33c 335 cur_trans->flags = 0;
afd48513 336 cur_trans->start_time = ktime_get_seconds();
a4abeea4 337
a099d0fd
AM
338 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
339
5c9d028b 340 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 341 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 342 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
343
344 /*
345 * although the tree mod log is per file system and not per transaction,
346 * the log must never go across transaction boundaries.
347 */
348 smp_mb();
31b1a2bd 349 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 350 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 351 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 352 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 353 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 354
a4abeea4
JB
355 spin_lock_init(&cur_trans->delayed_refs.lock);
356
357 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 358 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 359 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 360 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 361 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 362 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 363 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 364 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 365 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 366 spin_lock_init(&cur_trans->dropped_roots_lock);
d3575156
NA
367 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
368 spin_lock_init(&cur_trans->releasing_ebs_lock);
19ae4e81 369 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 370 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
efb0645b 371 IO_TREE_TRANS_DIRTY_PAGES, NULL);
fe119a6e
NB
372 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
373 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
374 fs_info->generation++;
375 cur_trans->transid = fs_info->generation;
376 fs_info->running_transaction = cur_trans;
49b25e05 377 cur_trans->aborted = 0;
19ae4e81 378 spin_unlock(&fs_info->trans_lock);
15ee9bc7 379
79154b1b
CM
380 return 0;
381}
382
d352ac68 383/*
92a7cc42
QW
384 * This does all the record keeping required to make sure that a shareable root
385 * is properly recorded in a given transaction. This is required to make sure
386 * the old root from before we joined the transaction is deleted when the
387 * transaction commits.
d352ac68 388 */
7585717f 389static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
390 struct btrfs_root *root,
391 int force)
6702ed49 392{
0b246afa 393 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 394 int ret = 0;
0b246afa 395
92a7cc42 396 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 397 root->last_trans < trans->transid) || force) {
4d31778a 398 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 399
7585717f 400 /*
27cdeb70 401 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
402 * we have the reloc mutex held now, so there
403 * is only one writer in this function
404 */
27cdeb70 405 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 406
27cdeb70 407 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
408 * they find our root->last_trans update
409 */
410 smp_wmb();
411
fc7cbcd4 412 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 413 if (root->last_trans == trans->transid && !force) {
fc7cbcd4 414 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
415 return 0;
416 }
fc7cbcd4
DS
417 radix_tree_tag_set(&fs_info->fs_roots_radix,
418 (unsigned long)root->root_key.objectid,
419 BTRFS_ROOT_TRANS_TAG);
420 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
421 root->last_trans = trans->transid;
422
423 /* this is pretty tricky. We don't want to
424 * take the relocation lock in btrfs_record_root_in_trans
425 * unless we're really doing the first setup for this root in
426 * this transaction.
427 *
428 * Normally we'd use root->last_trans as a flag to decide
429 * if we want to take the expensive mutex.
430 *
431 * But, we have to set root->last_trans before we
432 * init the relocation root, otherwise, we trip over warnings
433 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 434 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
435 * fixing up the reloc trees and everyone must wait.
436 *
437 * When this is zero, they can trust root->last_trans and fly
438 * through btrfs_record_root_in_trans without having to take the
439 * lock. smp_wmb() makes sure that all the writes above are
440 * done before we pop in the zero below
441 */
03a7e111 442 ret = btrfs_init_reloc_root(trans, root);
c7548af6 443 smp_mb__before_atomic();
27cdeb70 444 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 445 }
03a7e111 446 return ret;
5d4f98a2 447}
bcc63abb 448
7585717f 449
2b9dbef2
JB
450void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
451 struct btrfs_root *root)
452{
0b246afa 453 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
454 struct btrfs_transaction *cur_trans = trans->transaction;
455
456 /* Add ourselves to the transaction dropped list */
457 spin_lock(&cur_trans->dropped_roots_lock);
458 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
459 spin_unlock(&cur_trans->dropped_roots_lock);
460
461 /* Make sure we don't try to update the root at commit time */
fc7cbcd4
DS
462 spin_lock(&fs_info->fs_roots_radix_lock);
463 radix_tree_tag_clear(&fs_info->fs_roots_radix,
464 (unsigned long)root->root_key.objectid,
465 BTRFS_ROOT_TRANS_TAG);
466 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
467}
468
7585717f
CM
469int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
470 struct btrfs_root *root)
471{
0b246afa 472 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 473 int ret;
0b246afa 474
92a7cc42 475 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
476 return 0;
477
478 /*
27cdeb70 479 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
480 * and barriers
481 */
482 smp_rmb();
483 if (root->last_trans == trans->transid &&
27cdeb70 484 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
485 return 0;
486
0b246afa 487 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 488 ret = record_root_in_trans(trans, root, 0);
0b246afa 489 mutex_unlock(&fs_info->reloc_mutex);
7585717f 490
1409e6cc 491 return ret;
7585717f
CM
492}
493
4a9d8bde
MX
494static inline int is_transaction_blocked(struct btrfs_transaction *trans)
495{
3296bf56 496 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 497 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 498 !TRANS_ABORTED(trans));
4a9d8bde
MX
499}
500
d352ac68
CM
501/* wait for commit against the current transaction to become unblocked
502 * when this is done, it is safe to start a new transaction, but the current
503 * transaction might not be fully on disk.
504 */
2ff7e61e 505static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 506{
f9295749 507 struct btrfs_transaction *cur_trans;
79154b1b 508
0b246afa
JM
509 spin_lock(&fs_info->trans_lock);
510 cur_trans = fs_info->running_transaction;
4a9d8bde 511 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 512 refcount_inc(&cur_trans->use_count);
0b246afa 513 spin_unlock(&fs_info->trans_lock);
72d63ed6 514
3e738c53 515 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
0b246afa 516 wait_event(fs_info->transaction_wait,
501407aa 517 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 518 TRANS_ABORTED(cur_trans));
724e2315 519 btrfs_put_transaction(cur_trans);
a4abeea4 520 } else {
0b246afa 521 spin_unlock(&fs_info->trans_lock);
f9295749 522 }
37d1aeee
CM
523}
524
2ff7e61e 525static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 526{
0b246afa 527 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
528 return 0;
529
92e2f7e3 530 if (type == TRANS_START)
a22285a6 531 return 1;
a4abeea4 532
a22285a6
YZ
533 return 0;
534}
535
20dd2cbf
MX
536static inline bool need_reserve_reloc_root(struct btrfs_root *root)
537{
0b246afa
JM
538 struct btrfs_fs_info *fs_info = root->fs_info;
539
540 if (!fs_info->reloc_ctl ||
92a7cc42 541 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
542 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
543 root->reloc_root)
544 return false;
545
546 return true;
547}
548
08e007d2 549static struct btrfs_trans_handle *
5aed1dd8 550start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
551 unsigned int type, enum btrfs_reserve_flush_enum flush,
552 bool enforce_qgroups)
37d1aeee 553{
0b246afa 554 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 555 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
556 struct btrfs_trans_handle *h;
557 struct btrfs_transaction *cur_trans;
b5009945 558 u64 num_bytes = 0;
c5567237 559 u64 qgroup_reserved = 0;
20dd2cbf 560 bool reloc_reserved = false;
9c343784 561 bool do_chunk_alloc = false;
20dd2cbf 562 int ret;
acce952b 563
84961539 564 if (BTRFS_FS_ERROR(fs_info))
acce952b 565 return ERR_PTR(-EROFS);
2a1eb461 566
46c4e71e 567 if (current->journal_info) {
0860adfd 568 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 569 h = current->journal_info;
b50fff81
DS
570 refcount_inc(&h->use_count);
571 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
572 h->orig_rsv = h->block_rsv;
573 h->block_rsv = NULL;
574 goto got_it;
575 }
b5009945
JB
576
577 /*
578 * Do the reservation before we join the transaction so we can do all
579 * the appropriate flushing if need be.
580 */
003d7c59 581 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
582 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
583 u64 delayed_refs_bytes = 0;
584
0b246afa 585 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
586 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
587 enforce_qgroups);
7174109c
QW
588 if (ret)
589 return ERR_PTR(ret);
c5567237 590
ba2c4d4e
JB
591 /*
592 * We want to reserve all the bytes we may need all at once, so
593 * we only do 1 enospc flushing cycle per transaction start. We
594 * accomplish this by simply assuming we'll do 2 x num_items
595 * worth of delayed refs updates in this trans handle, and
596 * refill that amount for whatever is missing in the reserve.
597 */
2bd36e7b 598 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614 599 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 600 btrfs_block_rsv_full(delayed_refs_rsv) == 0) {
ba2c4d4e
JB
601 delayed_refs_bytes = num_bytes;
602 num_bytes <<= 1;
603 }
604
20dd2cbf
MX
605 /*
606 * Do the reservation for the relocation root creation
607 */
ee39b432 608 if (need_reserve_reloc_root(root)) {
0b246afa 609 num_bytes += fs_info->nodesize;
20dd2cbf
MX
610 reloc_reserved = true;
611 }
612
9270501c 613 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
ba2c4d4e
JB
614 if (ret)
615 goto reserve_fail;
616 if (delayed_refs_bytes) {
617 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
618 delayed_refs_bytes);
619 num_bytes -= delayed_refs_bytes;
620 }
9c343784
JB
621
622 if (rsv->space_info->force_alloc)
623 do_chunk_alloc = true;
ba2c4d4e 624 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 625 !btrfs_block_rsv_full(delayed_refs_rsv)) {
ba2c4d4e
JB
626 /*
627 * Some people call with btrfs_start_transaction(root, 0)
628 * because they can be throttled, but have some other mechanism
629 * for reserving space. We still want these guys to refill the
630 * delayed block_rsv so just add 1 items worth of reservation
631 * here.
632 */
633 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 634 if (ret)
843fcf35 635 goto reserve_fail;
b5009945 636 }
a22285a6 637again:
f2f767e7 638 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
639 if (!h) {
640 ret = -ENOMEM;
641 goto alloc_fail;
642 }
37d1aeee 643
98114659
JB
644 /*
645 * If we are JOIN_NOLOCK we're already committing a transaction and
646 * waiting on this guy, so we don't need to do the sb_start_intwrite
647 * because we're already holding a ref. We need this because we could
648 * have raced in and did an fsync() on a file which can kick a commit
649 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
650 *
651 * If we are ATTACH, it means we just want to catch the current
652 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 653 */
0860adfd 654 if (type & __TRANS_FREEZABLE)
0b246afa 655 sb_start_intwrite(fs_info->sb);
b2b5ef5c 656
2ff7e61e
JM
657 if (may_wait_transaction(fs_info, type))
658 wait_current_trans(fs_info);
a22285a6 659
a4abeea4 660 do {
2ff7e61e 661 ret = join_transaction(fs_info, type);
178260b2 662 if (ret == -EBUSY) {
2ff7e61e 663 wait_current_trans(fs_info);
a6d155d2
FM
664 if (unlikely(type == TRANS_ATTACH ||
665 type == TRANS_JOIN_NOSTART))
178260b2
MX
666 ret = -ENOENT;
667 }
a4abeea4
JB
668 } while (ret == -EBUSY);
669
a43f7f82 670 if (ret < 0)
843fcf35 671 goto join_fail;
0f7d52f4 672
0b246afa 673 cur_trans = fs_info->running_transaction;
a22285a6
YZ
674
675 h->transid = cur_trans->transid;
676 h->transaction = cur_trans;
b50fff81 677 refcount_set(&h->use_count, 1);
64b63580 678 h->fs_info = root->fs_info;
7174109c 679
a698d075 680 h->type = type;
ea658bad 681 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 682
a22285a6 683 smp_mb();
3296bf56 684 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 685 may_wait_transaction(fs_info, type)) {
abdd2e80 686 current->journal_info = h;
3a45bb20 687 btrfs_commit_transaction(h);
a22285a6
YZ
688 goto again;
689 }
690
b5009945 691 if (num_bytes) {
0b246afa 692 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 693 h->transid, num_bytes, 1);
0b246afa 694 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 695 h->bytes_reserved = num_bytes;
20dd2cbf 696 h->reloc_reserved = reloc_reserved;
a22285a6 697 }
9ed74f2d 698
2a1eb461 699got_it:
bcf3a3e7 700 if (!current->journal_info)
a22285a6 701 current->journal_info = h;
fcc99734 702
9c343784
JB
703 /*
704 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
705 * ALLOC_FORCE the first run through, and then we won't allocate for
706 * anybody else who races in later. We don't care about the return
707 * value here.
708 */
709 if (do_chunk_alloc && num_bytes) {
710 u64 flags = h->block_rsv->space_info->flags;
711
712 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
713 CHUNK_ALLOC_NO_FORCE);
714 }
715
fcc99734
QW
716 /*
717 * btrfs_record_root_in_trans() needs to alloc new extents, and may
718 * call btrfs_join_transaction() while we're also starting a
719 * transaction.
720 *
721 * Thus it need to be called after current->journal_info initialized,
722 * or we can deadlock.
723 */
68075ea8
JB
724 ret = btrfs_record_root_in_trans(h, root);
725 if (ret) {
726 /*
727 * The transaction handle is fully initialized and linked with
728 * other structures so it needs to be ended in case of errors,
729 * not just freed.
730 */
731 btrfs_end_transaction(h);
732 return ERR_PTR(ret);
733 }
fcc99734 734
79154b1b 735 return h;
843fcf35
MX
736
737join_fail:
0860adfd 738 if (type & __TRANS_FREEZABLE)
0b246afa 739 sb_end_intwrite(fs_info->sb);
843fcf35
MX
740 kmem_cache_free(btrfs_trans_handle_cachep, h);
741alloc_fail:
742 if (num_bytes)
2ff7e61e 743 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 744 num_bytes, NULL);
843fcf35 745reserve_fail:
733e03a0 746 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 747 return ERR_PTR(ret);
79154b1b
CM
748}
749
f9295749 750struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 751 unsigned int num_items)
f9295749 752{
08e007d2 753 return start_transaction(root, num_items, TRANS_START,
003d7c59 754 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 755}
003d7c59 756
8eab77ff
FM
757struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
758 struct btrfs_root *root,
7f9fe614 759 unsigned int num_items)
8eab77ff 760{
7f9fe614
JB
761 return start_transaction(root, num_items, TRANS_START,
762 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 763}
8407aa46 764
7a7eaa40 765struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 766{
003d7c59
JM
767 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
768 true);
f9295749
CM
769}
770
8d510121 771struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 772{
575a75d6 773 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 774 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
775}
776
a6d155d2
FM
777/*
778 * Similar to regular join but it never starts a transaction when none is
779 * running or after waiting for the current one to finish.
780 */
781struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
782{
783 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
784 BTRFS_RESERVE_NO_FLUSH, true);
785}
786
d4edf39b
MX
787/*
788 * btrfs_attach_transaction() - catch the running transaction
789 *
790 * It is used when we want to commit the current the transaction, but
791 * don't want to start a new one.
792 *
793 * Note: If this function return -ENOENT, it just means there is no
794 * running transaction. But it is possible that the inactive transaction
795 * is still in the memory, not fully on disk. If you hope there is no
796 * inactive transaction in the fs when -ENOENT is returned, you should
797 * invoke
798 * btrfs_attach_transaction_barrier()
799 */
354aa0fb 800struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 801{
575a75d6 802 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 803 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
804}
805
d4edf39b 806/*
90b6d283 807 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 808 *
52042d8e 809 * It is similar to the above function, the difference is this one
d4edf39b
MX
810 * will wait for all the inactive transactions until they fully
811 * complete.
812 */
813struct btrfs_trans_handle *
814btrfs_attach_transaction_barrier(struct btrfs_root *root)
815{
816 struct btrfs_trans_handle *trans;
817
575a75d6 818 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 819 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 820 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 821 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
822
823 return trans;
824}
825
d0c2f4fa
FM
826/* Wait for a transaction commit to reach at least the given state. */
827static noinline void wait_for_commit(struct btrfs_transaction *commit,
828 const enum btrfs_trans_state min_state)
89ce8a63 829{
5fd76bf3
OS
830 struct btrfs_fs_info *fs_info = commit->fs_info;
831 u64 transid = commit->transid;
832 bool put = false;
833
3e738c53
IA
834 /*
835 * At the moment this function is called with min_state either being
836 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
837 */
838 if (min_state == TRANS_STATE_COMPLETED)
839 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
840 else
841 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
842
5fd76bf3
OS
843 while (1) {
844 wait_event(commit->commit_wait, commit->state >= min_state);
845 if (put)
846 btrfs_put_transaction(commit);
847
848 if (min_state < TRANS_STATE_COMPLETED)
849 break;
850
851 /*
852 * A transaction isn't really completed until all of the
853 * previous transactions are completed, but with fsync we can
854 * end up with SUPER_COMMITTED transactions before a COMPLETED
855 * transaction. Wait for those.
856 */
857
858 spin_lock(&fs_info->trans_lock);
859 commit = list_first_entry_or_null(&fs_info->trans_list,
860 struct btrfs_transaction,
861 list);
862 if (!commit || commit->transid > transid) {
863 spin_unlock(&fs_info->trans_lock);
864 break;
865 }
866 refcount_inc(&commit->use_count);
867 put = true;
868 spin_unlock(&fs_info->trans_lock);
869 }
89ce8a63
CM
870}
871
2ff7e61e 872int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
873{
874 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 875 int ret = 0;
46204592 876
46204592 877 if (transid) {
0b246afa 878 if (transid <= fs_info->last_trans_committed)
a4abeea4 879 goto out;
46204592
SW
880
881 /* find specified transaction */
0b246afa
JM
882 spin_lock(&fs_info->trans_lock);
883 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
884 if (t->transid == transid) {
885 cur_trans = t;
9b64f57d 886 refcount_inc(&cur_trans->use_count);
8cd2807f 887 ret = 0;
46204592
SW
888 break;
889 }
8cd2807f
MX
890 if (t->transid > transid) {
891 ret = 0;
46204592 892 break;
8cd2807f 893 }
46204592 894 }
0b246afa 895 spin_unlock(&fs_info->trans_lock);
42383020
SW
896
897 /*
898 * The specified transaction doesn't exist, or we
899 * raced with btrfs_commit_transaction
900 */
901 if (!cur_trans) {
0b246afa 902 if (transid > fs_info->last_trans_committed)
42383020 903 ret = -EINVAL;
8cd2807f 904 goto out;
42383020 905 }
46204592
SW
906 } else {
907 /* find newest transaction that is committing | committed */
0b246afa
JM
908 spin_lock(&fs_info->trans_lock);
909 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 910 list) {
4a9d8bde
MX
911 if (t->state >= TRANS_STATE_COMMIT_START) {
912 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 913 break;
46204592 914 cur_trans = t;
9b64f57d 915 refcount_inc(&cur_trans->use_count);
46204592
SW
916 break;
917 }
918 }
0b246afa 919 spin_unlock(&fs_info->trans_lock);
46204592 920 if (!cur_trans)
a4abeea4 921 goto out; /* nothing committing|committed */
46204592
SW
922 }
923
d0c2f4fa 924 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 925 btrfs_put_transaction(cur_trans);
a4abeea4 926out:
46204592
SW
927 return ret;
928}
929
2ff7e61e 930void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 931{
92e2f7e3 932 wait_current_trans(fs_info);
37d1aeee
CM
933}
934
8a8f4dea 935static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 936{
2ff7e61e 937 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 938
64403612 939 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 940 return true;
36ba022a 941
2ff7e61e 942 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
943}
944
a2633b6a 945bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
946{
947 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 948
3296bf56 949 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 950 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 951 return true;
8929ecfa 952
2ff7e61e 953 return should_end_transaction(trans);
8929ecfa
YZ
954}
955
dc60c525
NB
956static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
957
0e34693f 958{
dc60c525
NB
959 struct btrfs_fs_info *fs_info = trans->fs_info;
960
0e34693f
NB
961 if (!trans->block_rsv) {
962 ASSERT(!trans->bytes_reserved);
963 return;
964 }
965
966 if (!trans->bytes_reserved)
967 return;
968
969 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
970 trace_btrfs_space_reservation(fs_info, "transaction",
971 trans->transid, trans->bytes_reserved, 0);
972 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 973 trans->bytes_reserved, NULL);
0e34693f
NB
974 trans->bytes_reserved = 0;
975}
976
89ce8a63 977static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 978 int throttle)
79154b1b 979{
3a45bb20 980 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 981 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 982 int err = 0;
c3e69d58 983
b50fff81
DS
984 if (refcount_read(&trans->use_count) > 1) {
985 refcount_dec(&trans->use_count);
2a1eb461
JB
986 trans->block_rsv = trans->orig_rsv;
987 return 0;
988 }
989
dc60c525 990 btrfs_trans_release_metadata(trans);
4c13d758 991 trans->block_rsv = NULL;
c5567237 992
119e80df 993 btrfs_create_pending_block_groups(trans);
ea658bad 994
4fbcdf66
FM
995 btrfs_trans_release_chunk_metadata(trans);
996
0860adfd 997 if (trans->type & __TRANS_FREEZABLE)
0b246afa 998 sb_end_intwrite(info->sb);
6df7881a 999
8929ecfa 1000 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
1001 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1002 atomic_dec(&cur_trans->num_writers);
0860adfd 1003 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 1004
093258e6 1005 cond_wake_up(&cur_trans->writer_wait);
e1489b4f 1006
5a9ba670 1007 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
e1489b4f
IA
1008 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1009
724e2315 1010 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
1011
1012 if (current->journal_info == trans)
1013 current->journal_info = NULL;
ab78c84d 1014
24bbcf04 1015 if (throttle)
2ff7e61e 1016 btrfs_run_delayed_iputs(info);
24bbcf04 1017
84961539 1018 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
4e121c06 1019 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1020 if (TRANS_ABORTED(trans))
1021 err = trans->aborted;
1022 else
1023 err = -EROFS;
4e121c06 1024 }
49b25e05 1025
4edc2ca3
DJ
1026 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1027 return err;
79154b1b
CM
1028}
1029
3a45bb20 1030int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1031{
3a45bb20 1032 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1033}
1034
3a45bb20 1035int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1036{
3a45bb20 1037 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1038}
1039
d352ac68
CM
1040/*
1041 * when btree blocks are allocated, they have some corresponding bits set for
1042 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1043 * those extents are sent to disk but does not wait on them
d352ac68 1044 */
2ff7e61e 1045int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1046 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1047{
777e6bd7 1048 int err = 0;
7c4452b9 1049 int werr = 0;
0b246afa 1050 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1051 struct extent_state *cached_state = NULL;
777e6bd7 1052 u64 start = 0;
5f39d397 1053 u64 end;
7c4452b9 1054
6300463b 1055 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1056 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1057 mark, &cached_state)) {
663dfbb0
FM
1058 bool wait_writeback = false;
1059
1060 err = convert_extent_bit(dirty_pages, start, end,
1061 EXTENT_NEED_WAIT,
210aa277 1062 mark, &cached_state);
663dfbb0
FM
1063 /*
1064 * convert_extent_bit can return -ENOMEM, which is most of the
1065 * time a temporary error. So when it happens, ignore the error
1066 * and wait for writeback of this range to finish - because we
1067 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1068 * to __btrfs_wait_marked_extents() would not know that
1069 * writeback for this range started and therefore wouldn't
1070 * wait for it to finish - we don't want to commit a
1071 * superblock that points to btree nodes/leafs for which
1072 * writeback hasn't finished yet (and without errors).
663dfbb0 1073 * We cleanup any entries left in the io tree when committing
41e7acd3 1074 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1075 */
1076 if (err == -ENOMEM) {
1077 err = 0;
1078 wait_writeback = true;
1079 }
1080 if (!err)
1081 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1082 if (err)
1083 werr = err;
663dfbb0
FM
1084 else if (wait_writeback)
1085 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1086 free_extent_state(cached_state);
663dfbb0 1087 cached_state = NULL;
1728366e
JB
1088 cond_resched();
1089 start = end + 1;
7c4452b9 1090 }
6300463b 1091 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1092 return werr;
1093}
1094
1095/*
1096 * when btree blocks are allocated, they have some corresponding bits set for
1097 * them in one of two extent_io trees. This is used to make sure all of
1098 * those extents are on disk for transaction or log commit. We wait
1099 * on all the pages and clear them from the dirty pages state tree
1100 */
bf89d38f
JM
1101static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1102 struct extent_io_tree *dirty_pages)
690587d1 1103{
690587d1
CM
1104 int err = 0;
1105 int werr = 0;
0b246afa 1106 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1107 struct extent_state *cached_state = NULL;
690587d1
CM
1108 u64 start = 0;
1109 u64 end;
777e6bd7 1110
1728366e 1111 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1112 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1113 /*
1114 * Ignore -ENOMEM errors returned by clear_extent_bit().
1115 * When committing the transaction, we'll remove any entries
1116 * left in the io tree. For a log commit, we don't remove them
1117 * after committing the log because the tree can be accessed
1118 * concurrently - we do it only at transaction commit time when
41e7acd3 1119 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1120 */
1121 err = clear_extent_bit(dirty_pages, start, end,
bd015294 1122 EXTENT_NEED_WAIT, &cached_state);
663dfbb0
FM
1123 if (err == -ENOMEM)
1124 err = 0;
1125 if (!err)
1126 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1127 if (err)
1128 werr = err;
e38e2ed7
FM
1129 free_extent_state(cached_state);
1130 cached_state = NULL;
1728366e
JB
1131 cond_resched();
1132 start = end + 1;
777e6bd7 1133 }
7c4452b9
CM
1134 if (err)
1135 werr = err;
bf89d38f
JM
1136 return werr;
1137}
656f30db 1138
b9fae2eb 1139static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1140 struct extent_io_tree *dirty_pages)
1141{
1142 bool errors = false;
1143 int err;
656f30db 1144
bf89d38f
JM
1145 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1146 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1147 errors = true;
1148
1149 if (errors && !err)
1150 err = -EIO;
1151 return err;
1152}
656f30db 1153
bf89d38f
JM
1154int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1155{
1156 struct btrfs_fs_info *fs_info = log_root->fs_info;
1157 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1158 bool errors = false;
1159 int err;
656f30db 1160
bf89d38f
JM
1161 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1162
1163 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1164 if ((mark & EXTENT_DIRTY) &&
1165 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1166 errors = true;
1167
1168 if ((mark & EXTENT_NEW) &&
1169 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1170 errors = true;
1171
1172 if (errors && !err)
1173 err = -EIO;
1174 return err;
79154b1b
CM
1175}
1176
690587d1 1177/*
c9b577c0
NB
1178 * When btree blocks are allocated the corresponding extents are marked dirty.
1179 * This function ensures such extents are persisted on disk for transaction or
1180 * log commit.
1181 *
1182 * @trans: transaction whose dirty pages we'd like to write
690587d1 1183 */
70458a58 1184static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1185{
1186 int ret;
1187 int ret2;
c9b577c0 1188 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1189 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1190 struct blk_plug plug;
690587d1 1191
c6adc9cc 1192 blk_start_plug(&plug);
c9b577c0 1193 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1194 blk_finish_plug(&plug);
bf89d38f 1195 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1196
41e7acd3 1197 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1198
bf0da8c1
CM
1199 if (ret)
1200 return ret;
c9b577c0 1201 else if (ret2)
bf0da8c1 1202 return ret2;
c9b577c0
NB
1203 else
1204 return 0;
d0c803c4
CM
1205}
1206
d352ac68
CM
1207/*
1208 * this is used to update the root pointer in the tree of tree roots.
1209 *
1210 * But, in the case of the extent allocation tree, updating the root
1211 * pointer may allocate blocks which may change the root of the extent
1212 * allocation tree.
1213 *
1214 * So, this loops and repeats and makes sure the cowonly root didn't
1215 * change while the root pointer was being updated in the metadata.
1216 */
0b86a832
CM
1217static int update_cowonly_root(struct btrfs_trans_handle *trans,
1218 struct btrfs_root *root)
79154b1b
CM
1219{
1220 int ret;
0b86a832 1221 u64 old_root_bytenr;
86b9f2ec 1222 u64 old_root_used;
0b246afa
JM
1223 struct btrfs_fs_info *fs_info = root->fs_info;
1224 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1225
86b9f2ec 1226 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1227
d397712b 1228 while (1) {
0b86a832 1229 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1230 if (old_root_bytenr == root->node->start &&
ea526d18 1231 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1232 break;
87ef2bb4 1233
5d4f98a2 1234 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1235 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1236 &root->root_key,
1237 &root->root_item);
49b25e05
JM
1238 if (ret)
1239 return ret;
56bec294 1240
86b9f2ec 1241 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1242 }
276e680d 1243
0b86a832
CM
1244 return 0;
1245}
1246
d352ac68
CM
1247/*
1248 * update all the cowonly tree roots on disk
49b25e05
JM
1249 *
1250 * The error handling in this function may not be obvious. Any of the
1251 * failures will cause the file system to go offline. We still need
1252 * to clean up the delayed refs.
d352ac68 1253 */
9386d8bc 1254static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1255{
9386d8bc 1256 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1257 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1258 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1259 struct list_head *next;
84234f3a 1260 struct extent_buffer *eb;
56bec294 1261 int ret;
84234f3a 1262
dfba78dc
FM
1263 /*
1264 * At this point no one can be using this transaction to modify any tree
1265 * and no one can start another transaction to modify any tree either.
1266 */
1267 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1268
84234f3a 1269 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1270 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1271 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1272 btrfs_tree_unlock(eb);
1273 free_extent_buffer(eb);
0b86a832 1274
49b25e05
JM
1275 if (ret)
1276 return ret;
87ef2bb4 1277
196c9d8d 1278 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1279 if (ret)
1280 return ret;
2b584c68 1281 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1282 if (ret)
1283 return ret;
280f8bd2 1284 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1285 if (ret)
1286 return ret;
546adb0d 1287
bbebb3e0 1288 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1289 if (ret)
1290 return ret;
1291
ea526d18 1292again:
d397712b 1293 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1294 struct btrfs_root *root;
0b86a832
CM
1295 next = fs_info->dirty_cowonly_roots.next;
1296 list_del_init(next);
1297 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1298 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1299
826582ca
JB
1300 list_add_tail(&root->dirty_list,
1301 &trans->transaction->switch_commits);
49b25e05
JM
1302 ret = update_cowonly_root(trans, root);
1303 if (ret)
1304 return ret;
79154b1b 1305 }
276e680d 1306
488bc2a2
JB
1307 /* Now flush any delayed refs generated by updating all of the roots */
1308 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1309 if (ret)
1310 return ret;
1311
1bbc621e 1312 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1313 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1314 if (ret)
1315 return ret;
488bc2a2
JB
1316
1317 /*
1318 * We're writing the dirty block groups, which could generate
1319 * delayed refs, which could generate more dirty block groups,
1320 * so we want to keep this flushing in this loop to make sure
1321 * everything gets run.
1322 */
c79a70b1 1323 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1324 if (ret)
1325 return ret;
1326 }
1327
1328 if (!list_empty(&fs_info->dirty_cowonly_roots))
1329 goto again;
1330
9f6cbcbb
DS
1331 /* Update dev-replace pointer once everything is committed */
1332 fs_info->dev_replace.committed_cursor_left =
1333 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1334
79154b1b
CM
1335 return 0;
1336}
1337
b4be6aef
JB
1338/*
1339 * If we had a pending drop we need to see if there are any others left in our
1340 * dead roots list, and if not clear our bit and wake any waiters.
1341 */
1342void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1343{
1344 /*
1345 * We put the drop in progress roots at the front of the list, so if the
1346 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1347 * up.
1348 */
1349 spin_lock(&fs_info->trans_lock);
1350 if (!list_empty(&fs_info->dead_roots)) {
1351 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1352 struct btrfs_root,
1353 root_list);
1354 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1355 spin_unlock(&fs_info->trans_lock);
1356 return;
1357 }
1358 }
1359 spin_unlock(&fs_info->trans_lock);
1360
1361 btrfs_wake_unfinished_drop(fs_info);
1362}
1363
d352ac68
CM
1364/*
1365 * dead roots are old snapshots that need to be deleted. This allocates
1366 * a dirty root struct and adds it into the list of dead roots that need to
1367 * be deleted
1368 */
cfad392b 1369void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1370{
0b246afa
JM
1371 struct btrfs_fs_info *fs_info = root->fs_info;
1372
1373 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1374 if (list_empty(&root->root_list)) {
1375 btrfs_grab_root(root);
b4be6aef
JB
1376
1377 /* We want to process the partially complete drops first. */
1378 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1379 list_add(&root->root_list, &fs_info->dead_roots);
1380 else
1381 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1382 }
0b246afa 1383 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1384}
1385
d352ac68 1386/*
dfba78dc
FM
1387 * Update each subvolume root and its relocation root, if it exists, in the tree
1388 * of tree roots. Also free log roots if they exist.
d352ac68 1389 */
7e4443d9 1390static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1391{
7e4443d9 1392 struct btrfs_fs_info *fs_info = trans->fs_info;
fc7cbcd4
DS
1393 struct btrfs_root *gang[8];
1394 int i;
1395 int ret;
54aa1f4d 1396
dfba78dc
FM
1397 /*
1398 * At this point no one can be using this transaction to modify any tree
1399 * and no one can start another transaction to modify any tree either.
1400 */
1401 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1402
fc7cbcd4
DS
1403 spin_lock(&fs_info->fs_roots_radix_lock);
1404 while (1) {
1405 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1406 (void **)gang, 0,
1407 ARRAY_SIZE(gang),
1408 BTRFS_ROOT_TRANS_TAG);
1409 if (ret == 0)
1410 break;
1411 for (i = 0; i < ret; i++) {
1412 struct btrfs_root *root = gang[i];
1413 int ret2;
1414
1415 /*
1416 * At this point we can neither have tasks logging inodes
1417 * from a root nor trying to commit a log tree.
1418 */
1419 ASSERT(atomic_read(&root->log_writers) == 0);
1420 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1421 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1422
1423 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1424 (unsigned long)root->root_key.objectid,
1425 BTRFS_ROOT_TRANS_TAG);
1426 spin_unlock(&fs_info->fs_roots_radix_lock);
1427
1428 btrfs_free_log(trans, root);
1429 ret2 = btrfs_update_reloc_root(trans, root);
1430 if (ret2)
1431 return ret2;
1432
1433 /* see comments in should_cow_block() */
1434 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1435 smp_mb__after_atomic();
1436
1437 if (root->commit_root != root->node) {
1438 list_add_tail(&root->dirty_list,
1439 &trans->transaction->switch_commits);
1440 btrfs_set_root_node(&root->root_item,
1441 root->node);
1442 }
48b36a60 1443
fc7cbcd4
DS
1444 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1445 &root->root_key,
1446 &root->root_item);
1447 if (ret2)
1448 return ret2;
1449 spin_lock(&fs_info->fs_roots_radix_lock);
1450 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1451 }
1452 }
fc7cbcd4 1453 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1454 return 0;
0f7d52f4
CM
1455}
1456
d352ac68 1457/*
de78b51a
ES
1458 * defrag a given btree.
1459 * Every leaf in the btree is read and defragged.
d352ac68 1460 */
de78b51a 1461int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1462{
1463 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1464 struct btrfs_trans_handle *trans;
8929ecfa 1465 int ret;
e9d0b13b 1466
27cdeb70 1467 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1468 return 0;
8929ecfa 1469
6b80053d 1470 while (1) {
8929ecfa 1471 trans = btrfs_start_transaction(root, 0);
6819703f
DS
1472 if (IS_ERR(trans)) {
1473 ret = PTR_ERR(trans);
1474 break;
1475 }
8929ecfa 1476
de78b51a 1477 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1478
3a45bb20 1479 btrfs_end_transaction(trans);
2ff7e61e 1480 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1481 cond_resched();
1482
ab8d0fc4 1483 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1484 break;
210549eb 1485
ab8d0fc4
JM
1486 if (btrfs_defrag_cancelled(info)) {
1487 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1488 ret = -EAGAIN;
1489 break;
1490 }
e9d0b13b 1491 }
27cdeb70 1492 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1493 return ret;
e9d0b13b
CM
1494}
1495
6426c7ad
QW
1496/*
1497 * Do all special snapshot related qgroup dirty hack.
1498 *
1499 * Will do all needed qgroup inherit and dirty hack like switch commit
1500 * roots inside one transaction and write all btree into disk, to make
1501 * qgroup works.
1502 */
1503static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1504 struct btrfs_root *src,
1505 struct btrfs_root *parent,
1506 struct btrfs_qgroup_inherit *inherit,
1507 u64 dst_objectid)
1508{
1509 struct btrfs_fs_info *fs_info = src->fs_info;
1510 int ret;
1511
1512 /*
1513 * Save some performance in the case that qgroups are not
1514 * enabled. If this check races with the ioctl, rescan will
1515 * kick in anyway.
1516 */
9ea6e2b5 1517 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1518 return 0;
6426c7ad 1519
4d31778a 1520 /*
52042d8e 1521 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1522 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1523 * recorded root will never be updated again, causing an outdated root
1524 * item.
1525 */
1c442d22
JB
1526 ret = record_root_in_trans(trans, src, 1);
1527 if (ret)
1528 return ret;
4d31778a 1529
2a4d84c1
JB
1530 /*
1531 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1532 * src root, so we must run the delayed refs here.
1533 *
1534 * However this isn't particularly fool proof, because there's no
1535 * synchronization keeping us from changing the tree after this point
1536 * before we do the qgroup_inherit, or even from making changes while
1537 * we're doing the qgroup_inherit. But that's a problem for the future,
1538 * for now flush the delayed refs to narrow the race window where the
1539 * qgroup counters could end up wrong.
1540 */
1541 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1542 if (ret) {
1543 btrfs_abort_transaction(trans, ret);
44365827 1544 return ret;
2a4d84c1
JB
1545 }
1546
7e4443d9 1547 ret = commit_fs_roots(trans);
6426c7ad
QW
1548 if (ret)
1549 goto out;
460fb20a 1550 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1551 if (ret < 0)
1552 goto out;
1553
1554 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1555 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1556 inherit);
1557 if (ret < 0)
1558 goto out;
1559
1560 /*
1561 * Now we do a simplified commit transaction, which will:
1562 * 1) commit all subvolume and extent tree
1563 * To ensure all subvolume and extent tree have a valid
1564 * commit_root to accounting later insert_dir_item()
1565 * 2) write all btree blocks onto disk
1566 * This is to make sure later btree modification will be cowed
1567 * Or commit_root can be populated and cause wrong qgroup numbers
1568 * In this simplified commit, we don't really care about other trees
1569 * like chunk and root tree, as they won't affect qgroup.
1570 * And we don't write super to avoid half committed status.
1571 */
9386d8bc 1572 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1573 if (ret)
1574 goto out;
889bfa39 1575 switch_commit_roots(trans);
70458a58 1576 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1577 if (ret)
f7af3934 1578 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1579 "Error while writing out transaction for qgroup");
1580
1581out:
6426c7ad
QW
1582 /*
1583 * Force parent root to be updated, as we recorded it before so its
1584 * last_trans == cur_transid.
1585 * Or it won't be committed again onto disk after later
1586 * insert_dir_item()
1587 */
1588 if (!ret)
1c442d22 1589 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1590 return ret;
1591}
1592
d352ac68
CM
1593/*
1594 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1595 * transaction commit. This does the actual creation.
1596 *
1597 * Note:
1598 * If the error which may affect the commitment of the current transaction
1599 * happens, we should return the error number. If the error which just affect
1600 * the creation of the pending snapshots, just return 0.
d352ac68 1601 */
80b6794d 1602static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1603 struct btrfs_pending_snapshot *pending)
1604{
08d50ca3
NB
1605
1606 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1607 struct btrfs_key key;
80b6794d 1608 struct btrfs_root_item *new_root_item;
3063d29f
CM
1609 struct btrfs_root *tree_root = fs_info->tree_root;
1610 struct btrfs_root *root = pending->root;
6bdb72de 1611 struct btrfs_root *parent_root;
98c9942a 1612 struct btrfs_block_rsv *rsv;
6bdb72de 1613 struct inode *parent_inode;
42874b3d
MX
1614 struct btrfs_path *path;
1615 struct btrfs_dir_item *dir_item;
a22285a6 1616 struct dentry *dentry;
3063d29f 1617 struct extent_buffer *tmp;
925baedd 1618 struct extent_buffer *old;
95582b00 1619 struct timespec64 cur_time;
aec8030a 1620 int ret = 0;
d68fc57b 1621 u64 to_reserve = 0;
6bdb72de 1622 u64 index = 0;
a22285a6 1623 u64 objectid;
b83cc969 1624 u64 root_flags;
3063d29f 1625
8546b570
DS
1626 ASSERT(pending->path);
1627 path = pending->path;
42874b3d 1628
b0c0ea63
DS
1629 ASSERT(pending->root_item);
1630 new_root_item = pending->root_item;
a22285a6 1631
543068a2 1632 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1633 if (pending->error)
6fa9700e 1634 goto no_free_objectid;
3063d29f 1635
d6726335
QW
1636 /*
1637 * Make qgroup to skip current new snapshot's qgroupid, as it is
1638 * accounted by later btrfs_qgroup_inherit().
1639 */
1640 btrfs_set_skip_qgroup(trans, objectid);
1641
147d256e 1642 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1643
1644 if (to_reserve > 0) {
9270501c 1645 pending->error = btrfs_block_rsv_add(fs_info,
aec8030a
MX
1646 &pending->block_rsv,
1647 to_reserve,
1648 BTRFS_RESERVE_NO_FLUSH);
1649 if (pending->error)
d6726335 1650 goto clear_skip_qgroup;
d68fc57b
YZ
1651 }
1652
3063d29f 1653 key.objectid = objectid;
a22285a6
YZ
1654 key.offset = (u64)-1;
1655 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1656
6fa9700e 1657 rsv = trans->block_rsv;
a22285a6 1658 trans->block_rsv = &pending->block_rsv;
2382c5cc 1659 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1660 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1661 trans->transid,
1662 trans->bytes_reserved, 1);
a22285a6 1663 dentry = pending->dentry;
e9662f70 1664 parent_inode = pending->dir;
a22285a6 1665 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1666 ret = record_root_in_trans(trans, parent_root, 0);
1667 if (ret)
1668 goto fail;
c2050a45 1669 cur_time = current_time(parent_inode);
04b285f3 1670
3063d29f
CM
1671 /*
1672 * insert the directory item
1673 */
877574e2 1674 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1675 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1676
1677 /* check if there is a file/dir which has the same name. */
1678 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1679 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1680 dentry->d_name.name,
1681 dentry->d_name.len, 0);
1682 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1683 pending->error = -EEXIST;
aec8030a 1684 goto dir_item_existed;
42874b3d
MX
1685 } else if (IS_ERR(dir_item)) {
1686 ret = PTR_ERR(dir_item);
66642832 1687 btrfs_abort_transaction(trans, ret);
8732d44f 1688 goto fail;
79787eaa 1689 }
42874b3d 1690 btrfs_release_path(path);
52c26179 1691
e999376f
CM
1692 /*
1693 * pull in the delayed directory update
1694 * and the delayed inode item
1695 * otherwise we corrupt the FS during
1696 * snapshot
1697 */
e5c304e6 1698 ret = btrfs_run_delayed_items(trans);
8732d44f 1699 if (ret) { /* Transaction aborted */
66642832 1700 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1701 goto fail;
1702 }
e999376f 1703
f0118cb6
JB
1704 ret = record_root_in_trans(trans, root, 0);
1705 if (ret) {
1706 btrfs_abort_transaction(trans, ret);
1707 goto fail;
1708 }
6bdb72de
SW
1709 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1710 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1711 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1712
b83cc969
LZ
1713 root_flags = btrfs_root_flags(new_root_item);
1714 if (pending->readonly)
1715 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1716 else
1717 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1718 btrfs_set_root_flags(new_root_item, root_flags);
1719
8ea05e3a
AB
1720 btrfs_set_root_generation_v2(new_root_item,
1721 trans->transid);
807fc790 1722 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1723 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1724 BTRFS_UUID_SIZE);
70023da2
SB
1725 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1726 memset(new_root_item->received_uuid, 0,
1727 sizeof(new_root_item->received_uuid));
1728 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1729 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1730 btrfs_set_root_stransid(new_root_item, 0);
1731 btrfs_set_root_rtransid(new_root_item, 0);
1732 }
3cae210f
QW
1733 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1734 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1735 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1736
6bdb72de 1737 old = btrfs_lock_root_node(root);
9631e4cc
JB
1738 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1739 BTRFS_NESTING_COW);
79787eaa
JM
1740 if (ret) {
1741 btrfs_tree_unlock(old);
1742 free_extent_buffer(old);
66642832 1743 btrfs_abort_transaction(trans, ret);
8732d44f 1744 goto fail;
79787eaa 1745 }
49b25e05 1746
49b25e05 1747 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1748 /* clean up in any case */
6bdb72de
SW
1749 btrfs_tree_unlock(old);
1750 free_extent_buffer(old);
8732d44f 1751 if (ret) {
66642832 1752 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1753 goto fail;
1754 }
f1ebcc74 1755 /* see comments in should_cow_block() */
27cdeb70 1756 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1757 smp_wmb();
1758
6bdb72de 1759 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1760 /* record when the snapshot was created in key.offset */
1761 key.offset = trans->transid;
1762 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1763 btrfs_tree_unlock(tmp);
1764 free_extent_buffer(tmp);
8732d44f 1765 if (ret) {
66642832 1766 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1767 goto fail;
1768 }
6bdb72de 1769
a22285a6
YZ
1770 /*
1771 * insert root back/forward references
1772 */
6025c19f 1773 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1774 parent_root->root_key.objectid,
4a0cc7ca 1775 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1776 dentry->d_name.name, dentry->d_name.len);
8732d44f 1777 if (ret) {
66642832 1778 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1779 goto fail;
1780 }
0660b5af 1781
a22285a6 1782 key.offset = (u64)-1;
2dfb1e43 1783 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1784 if (IS_ERR(pending->snap)) {
1785 ret = PTR_ERR(pending->snap);
2d892ccd 1786 pending->snap = NULL;
66642832 1787 btrfs_abort_transaction(trans, ret);
8732d44f 1788 goto fail;
79787eaa 1789 }
d68fc57b 1790
49b25e05 1791 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1792 if (ret) {
66642832 1793 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1794 goto fail;
1795 }
361048f5 1796
6426c7ad
QW
1797 /*
1798 * Do special qgroup accounting for snapshot, as we do some qgroup
1799 * snapshot hack to do fast snapshot.
1800 * To co-operate with that hack, we do hack again.
1801 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1802 */
1803 ret = qgroup_account_snapshot(trans, root, parent_root,
1804 pending->inherit, objectid);
1805 if (ret < 0)
1806 goto fail;
1807
684572df
LF
1808 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1809 dentry->d_name.len, BTRFS_I(parent_inode),
1810 &key, BTRFS_FT_DIR, index);
42874b3d 1811 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1812 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1813 if (ret) {
66642832 1814 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1815 goto fail;
1816 }
42874b3d 1817
6ef06d27 1818 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1819 dentry->d_name.len * 2);
c1867eb3
DS
1820 parent_inode->i_mtime = current_time(parent_inode);
1821 parent_inode->i_ctime = parent_inode->i_mtime;
729f7961 1822 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1823 if (ret) {
66642832 1824 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1825 goto fail;
1826 }
807fc790
AS
1827 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1828 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1829 objectid);
dd5f9615 1830 if (ret) {
66642832 1831 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1832 goto fail;
1833 }
1834 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1835 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1836 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1837 objectid);
1838 if (ret && ret != -EEXIST) {
66642832 1839 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1840 goto fail;
1841 }
1842 }
d6726335 1843
3063d29f 1844fail:
aec8030a
MX
1845 pending->error = ret;
1846dir_item_existed:
98c9942a 1847 trans->block_rsv = rsv;
2382c5cc 1848 trans->bytes_reserved = 0;
d6726335
QW
1849clear_skip_qgroup:
1850 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1851no_free_objectid:
1852 kfree(new_root_item);
b0c0ea63 1853 pending->root_item = NULL;
42874b3d 1854 btrfs_free_path(path);
8546b570
DS
1855 pending->path = NULL;
1856
49b25e05 1857 return ret;
3063d29f
CM
1858}
1859
d352ac68
CM
1860/*
1861 * create all the snapshots we've scheduled for creation
1862 */
08d50ca3 1863static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1864{
aec8030a 1865 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1866 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1867 int ret = 0;
3de4586c 1868
aec8030a
MX
1869 list_for_each_entry_safe(pending, next, head, list) {
1870 list_del(&pending->list);
08d50ca3 1871 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1872 if (ret)
1873 break;
1874 }
1875 return ret;
3de4586c
CM
1876}
1877
2ff7e61e 1878static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1879{
1880 struct btrfs_root_item *root_item;
1881 struct btrfs_super_block *super;
1882
0b246afa 1883 super = fs_info->super_copy;
5d4f98a2 1884
0b246afa 1885 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1886 super->chunk_root = root_item->bytenr;
1887 super->chunk_root_generation = root_item->generation;
1888 super->chunk_root_level = root_item->level;
5d4f98a2 1889
0b246afa 1890 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1891 super->root = root_item->bytenr;
1892 super->generation = root_item->generation;
1893 super->root_level = root_item->level;
0b246afa 1894 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1895 super->cache_generation = root_item->generation;
94846229
BB
1896 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1897 super->cache_generation = 0;
0b246afa 1898 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1899 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1900}
1901
f36f3042
CM
1902int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1903{
4a9d8bde 1904 struct btrfs_transaction *trans;
f36f3042 1905 int ret = 0;
4a9d8bde 1906
a4abeea4 1907 spin_lock(&info->trans_lock);
4a9d8bde
MX
1908 trans = info->running_transaction;
1909 if (trans)
1910 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1911 spin_unlock(&info->trans_lock);
f36f3042
CM
1912 return ret;
1913}
1914
8929ecfa
YZ
1915int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1916{
4a9d8bde 1917 struct btrfs_transaction *trans;
8929ecfa 1918 int ret = 0;
4a9d8bde 1919
a4abeea4 1920 spin_lock(&info->trans_lock);
4a9d8bde
MX
1921 trans = info->running_transaction;
1922 if (trans)
1923 ret = is_transaction_blocked(trans);
a4abeea4 1924 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1925 return ret;
1926}
1927
fdfbf020 1928void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 1929{
3a45bb20 1930 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1931 struct btrfs_transaction *cur_trans;
1932
fdfbf020
JB
1933 /* Kick the transaction kthread. */
1934 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1935 wake_up_process(fs_info->transaction_kthread);
bb9c12c9
SW
1936
1937 /* take transaction reference */
bb9c12c9 1938 cur_trans = trans->transaction;
9b64f57d 1939 refcount_inc(&cur_trans->use_count);
bb9c12c9 1940
3a45bb20 1941 btrfs_end_transaction(trans);
6fc4e354 1942
ae5d29d4
DS
1943 /*
1944 * Wait for the current transaction commit to start and block
1945 * subsequent transaction joins
1946 */
3e738c53 1947 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
ae5d29d4
DS
1948 wait_event(fs_info->transaction_blocked_wait,
1949 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1950 TRANS_ABORTED(cur_trans));
724e2315 1951 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1952}
1953
97cb39bb 1954static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1955{
97cb39bb 1956 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1957 struct btrfs_transaction *cur_trans = trans->transaction;
1958
b50fff81 1959 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1960
66642832 1961 btrfs_abort_transaction(trans, err);
7b8b92af 1962
0b246afa 1963 spin_lock(&fs_info->trans_lock);
66b6135b 1964
25d8c284
MX
1965 /*
1966 * If the transaction is removed from the list, it means this
1967 * transaction has been committed successfully, so it is impossible
1968 * to call the cleanup function.
1969 */
1970 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1971
0b246afa 1972 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1973 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1974 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
1975
1976 /*
1977 * The thread has already released the lockdep map as reader
1978 * already in btrfs_commit_transaction().
1979 */
1980 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
f094ac32
LB
1981 wait_event(cur_trans->writer_wait,
1982 atomic_read(&cur_trans->num_writers) == 1);
1983
0b246afa 1984 spin_lock(&fs_info->trans_lock);
d7096fc3 1985 }
061dde82
FM
1986
1987 /*
1988 * Now that we know no one else is still using the transaction we can
1989 * remove the transaction from the list of transactions. This avoids
1990 * the transaction kthread from cleaning up the transaction while some
1991 * other task is still using it, which could result in a use-after-free
1992 * on things like log trees, as it forces the transaction kthread to
1993 * wait for this transaction to be cleaned up by us.
1994 */
1995 list_del_init(&cur_trans->list);
1996
0b246afa 1997 spin_unlock(&fs_info->trans_lock);
49b25e05 1998
2ff7e61e 1999 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 2000
0b246afa
JM
2001 spin_lock(&fs_info->trans_lock);
2002 if (cur_trans == fs_info->running_transaction)
2003 fs_info->running_transaction = NULL;
2004 spin_unlock(&fs_info->trans_lock);
4a9d8bde 2005
e0228285 2006 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2007 sb_end_intwrite(fs_info->sb);
724e2315
JB
2008 btrfs_put_transaction(cur_trans);
2009 btrfs_put_transaction(cur_trans);
49b25e05 2010
2e4e97ab 2011 trace_btrfs_transaction_commit(fs_info);
49b25e05 2012
49b25e05
JM
2013 if (current->journal_info == trans)
2014 current->journal_info = NULL;
0b246afa 2015 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2016
2017 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2018}
2019
c7cc64a9
DS
2020/*
2021 * Release reserved delayed ref space of all pending block groups of the
2022 * transaction and remove them from the list
2023 */
2024static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2025{
2026 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2027 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2028
2029 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2030 btrfs_delayed_refs_rsv_release(fs_info, 1);
2031 list_del_init(&block_group->bg_list);
2032 }
2033}
2034
88090ad3 2035static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2036{
ce8ea7cc 2037 /*
a0f0cf83 2038 * We use try_to_writeback_inodes_sb() here because if we used
ce8ea7cc
JB
2039 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2040 * Currently are holding the fs freeze lock, if we do an async flush
2041 * we'll do btrfs_join_transaction() and deadlock because we need to
2042 * wait for the fs freeze lock. Using the direct flushing we benefit
2043 * from already being in a transaction and our join_transaction doesn't
2044 * have to re-take the fs freeze lock.
a0f0cf83
FM
2045 *
2046 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2047 * if it can read lock sb->s_umount. It will always be able to lock it,
2048 * except when the filesystem is being unmounted or being frozen, but in
2049 * those cases sync_filesystem() is called, which results in calling
2050 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2051 * Note that we don't call writeback_inodes_sb() directly, because it
2052 * will emit a warning if sb->s_umount is not locked.
ce8ea7cc 2053 */
88090ad3 2054 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
a0f0cf83 2055 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2056 return 0;
2057}
2058
88090ad3 2059static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2060{
88090ad3 2061 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2062 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2063}
2064
28b21c55
FM
2065/*
2066 * Add a pending snapshot associated with the given transaction handle to the
2067 * respective handle. This must be called after the transaction commit started
2068 * and while holding fs_info->trans_lock.
2069 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2070 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2071 * returns an error.
2072 */
2073static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2074{
2075 struct btrfs_transaction *cur_trans = trans->transaction;
2076
2077 if (!trans->pending_snapshot)
2078 return;
2079
2080 lockdep_assert_held(&trans->fs_info->trans_lock);
2081 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2082
2083 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2084}
2085
e55958c8
IA
2086static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2087{
2088 fs_info->commit_stats.commit_count++;
2089 fs_info->commit_stats.last_commit_dur = interval;
2090 fs_info->commit_stats.max_commit_dur =
2091 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2092 fs_info->commit_stats.total_commit_dur += interval;
2093}
2094
3a45bb20 2095int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2096{
3a45bb20 2097 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2098 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2099 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2100 int ret;
e55958c8
IA
2101 ktime_t start_time;
2102 ktime_t interval;
79154b1b 2103
35b814f3 2104 ASSERT(refcount_read(&trans->use_count) == 1);
3e738c53 2105 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
35b814f3 2106
8d25a086 2107 /* Stop the commit early if ->aborted is set */
bf31f87f 2108 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2109 ret = cur_trans->aborted;
3e738c53 2110 goto lockdep_trans_commit_start_release;
25287e0a 2111 }
49b25e05 2112
f45c752b
JB
2113 btrfs_trans_release_metadata(trans);
2114 trans->block_rsv = NULL;
2115
56bec294 2116 /*
e19eb11f
JB
2117 * We only want one transaction commit doing the flushing so we do not
2118 * waste a bunch of time on lock contention on the extent root node.
56bec294 2119 */
e19eb11f
JB
2120 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2121 &cur_trans->delayed_refs.flags)) {
2122 /*
2123 * Make a pass through all the delayed refs we have so far.
2124 * Any running threads may add more while we are here.
2125 */
2126 ret = btrfs_run_delayed_refs(trans, 0);
3e738c53
IA
2127 if (ret)
2128 goto lockdep_trans_commit_start_release;
e19eb11f 2129 }
56bec294 2130
119e80df 2131 btrfs_create_pending_block_groups(trans);
ea658bad 2132
3204d33c 2133 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2134 int run_it = 0;
2135
2136 /* this mutex is also taken before trying to set
2137 * block groups readonly. We need to make sure
2138 * that nobody has set a block group readonly
2139 * after a extents from that block group have been
2140 * allocated for cache files. btrfs_set_block_group_ro
2141 * will wait for the transaction to commit if it
3204d33c 2142 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2143 *
3204d33c
JB
2144 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2145 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2146 * hurt to have more than one go through, but there's no
2147 * real advantage to it either.
2148 */
0b246afa 2149 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2150 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2151 &cur_trans->flags))
1bbc621e 2152 run_it = 1;
0b246afa 2153 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2154
f9cacae3 2155 if (run_it) {
21217054 2156 ret = btrfs_start_dirty_block_groups(trans);
3e738c53
IA
2157 if (ret)
2158 goto lockdep_trans_commit_start_release;
f9cacae3 2159 }
1bbc621e
CM
2160 }
2161
0b246afa 2162 spin_lock(&fs_info->trans_lock);
4a9d8bde 2163 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2164 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2165
28b21c55
FM
2166 add_pending_snapshot(trans);
2167
0b246afa 2168 spin_unlock(&fs_info->trans_lock);
9b64f57d 2169 refcount_inc(&cur_trans->use_count);
ccd467d6 2170
d0c2f4fa
FM
2171 if (trans->in_fsync)
2172 want_state = TRANS_STATE_SUPER_COMMITTED;
3e738c53
IA
2173
2174 btrfs_trans_state_lockdep_release(fs_info,
2175 BTRFS_LOCKDEP_TRANS_COMMIT_START);
d0c2f4fa
FM
2176 ret = btrfs_end_transaction(trans);
2177 wait_for_commit(cur_trans, want_state);
15ee9bc7 2178
bf31f87f 2179 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2180 ret = cur_trans->aborted;
2181
724e2315 2182 btrfs_put_transaction(cur_trans);
15ee9bc7 2183
49b25e05 2184 return ret;
79154b1b 2185 }
4313b399 2186
4a9d8bde 2187 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2188 wake_up(&fs_info->transaction_blocked_wait);
3e738c53 2189 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
bb9c12c9 2190
0b246afa 2191 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2192 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2193
2194 if (trans->in_fsync)
2195 want_state = TRANS_STATE_SUPER_COMMITTED;
2196
ccd467d6
CM
2197 prev_trans = list_entry(cur_trans->list.prev,
2198 struct btrfs_transaction, list);
d0c2f4fa 2199 if (prev_trans->state < want_state) {
9b64f57d 2200 refcount_inc(&prev_trans->use_count);
0b246afa 2201 spin_unlock(&fs_info->trans_lock);
ccd467d6 2202
d0c2f4fa
FM
2203 wait_for_commit(prev_trans, want_state);
2204
bf31f87f 2205 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2206
724e2315 2207 btrfs_put_transaction(prev_trans);
1f9b8c8f 2208 if (ret)
e1489b4f 2209 goto lockdep_release;
a4abeea4 2210 } else {
0b246afa 2211 spin_unlock(&fs_info->trans_lock);
ccd467d6 2212 }
a4abeea4 2213 } else {
0b246afa 2214 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2215 /*
2216 * The previous transaction was aborted and was already removed
2217 * from the list of transactions at fs_info->trans_list. So we
2218 * abort to prevent writing a new superblock that reflects a
2219 * corrupt state (pointing to trees with unwritten nodes/leafs).
2220 */
84961539 2221 if (BTRFS_FS_ERROR(fs_info)) {
cb2d3dad 2222 ret = -EROFS;
e1489b4f 2223 goto lockdep_release;
cb2d3dad 2224 }
ccd467d6 2225 }
15ee9bc7 2226
e55958c8
IA
2227 /*
2228 * Get the time spent on the work done by the commit thread and not
2229 * the time spent waiting on a previous commit
2230 */
2231 start_time = ktime_get_ns();
2232
0860adfd
MX
2233 extwriter_counter_dec(cur_trans, trans->type);
2234
88090ad3 2235 ret = btrfs_start_delalloc_flush(fs_info);
82436617 2236 if (ret)
e1489b4f 2237 goto lockdep_release;
82436617 2238
e5c304e6 2239 ret = btrfs_run_delayed_items(trans);
581227d0 2240 if (ret)
e1489b4f 2241 goto lockdep_release;
15ee9bc7 2242
5a9ba670
IA
2243 /*
2244 * The thread has started/joined the transaction thus it holds the
2245 * lockdep map as a reader. It has to release it before acquiring the
2246 * lockdep map as a writer.
2247 */
2248 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2249 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
581227d0
MX
2250 wait_event(cur_trans->writer_wait,
2251 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2252
581227d0 2253 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2254 ret = btrfs_run_delayed_items(trans);
e1489b4f
IA
2255 if (ret) {
2256 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
ca469637 2257 goto cleanup_transaction;
e1489b4f 2258 }
ca469637 2259
88090ad3 2260 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2261
48778179
FM
2262 /*
2263 * Wait for all ordered extents started by a fast fsync that joined this
2264 * transaction. Otherwise if this transaction commits before the ordered
2265 * extents complete we lose logged data after a power failure.
2266 */
8b53779e 2267 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
48778179
FM
2268 wait_event(cur_trans->pending_wait,
2269 atomic_read(&cur_trans->pending_ordered) == 0);
2270
2ff7e61e 2271 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2272 /*
2273 * Ok now we need to make sure to block out any other joins while we
2274 * commit the transaction. We could have started a join before setting
4a9d8bde 2275 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2276 */
0b246afa 2277 spin_lock(&fs_info->trans_lock);
28b21c55 2278 add_pending_snapshot(trans);
4a9d8bde 2279 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2280 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2281
2282 /*
2283 * The thread has started/joined the transaction thus it holds the
2284 * lockdep map as a reader. It has to release it before acquiring the
2285 * lockdep map as a writer.
2286 */
2287 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2288 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
ed0ca140
JB
2289 wait_event(cur_trans->writer_wait,
2290 atomic_read(&cur_trans->num_writers) == 1);
2291
3e738c53
IA
2292 /*
2293 * Make lockdep happy by acquiring the state locks after
2294 * btrfs_trans_num_writers is released. If we acquired the state locks
2295 * before releasing the btrfs_trans_num_writers lock then lockdep would
2296 * complain because we did not follow the reverse order unlocking rule.
2297 */
2298 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2299 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2300 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2301
fdfbf020
JB
2302 /*
2303 * We've started the commit, clear the flag in case we were triggered to
2304 * do an async commit but somebody else started before the transaction
2305 * kthread could do the work.
2306 */
2307 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2308
bf31f87f 2309 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2310 ret = cur_trans->aborted;
3e738c53 2311 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2312 goto scrub_continue;
2cba30f1 2313 }
7585717f
CM
2314 /*
2315 * the reloc mutex makes sure that we stop
2316 * the balancing code from coming in and moving
2317 * extents around in the middle of the commit
2318 */
0b246afa 2319 mutex_lock(&fs_info->reloc_mutex);
7585717f 2320
42874b3d
MX
2321 /*
2322 * We needn't worry about the delayed items because we will
2323 * deal with them in create_pending_snapshot(), which is the
2324 * core function of the snapshot creation.
2325 */
08d50ca3 2326 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2327 if (ret)
2328 goto unlock_reloc;
3063d29f 2329
42874b3d
MX
2330 /*
2331 * We insert the dir indexes of the snapshots and update the inode
2332 * of the snapshots' parents after the snapshot creation, so there
2333 * are some delayed items which are not dealt with. Now deal with
2334 * them.
2335 *
2336 * We needn't worry that this operation will corrupt the snapshots,
2337 * because all the tree which are snapshoted will be forced to COW
2338 * the nodes and leaves.
2339 */
e5c304e6 2340 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2341 if (ret)
2342 goto unlock_reloc;
16cdcec7 2343
c79a70b1 2344 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2345 if (ret)
2346 goto unlock_reloc;
56bec294 2347
e999376f
CM
2348 /*
2349 * make sure none of the code above managed to slip in a
2350 * delayed item
2351 */
ccdf9b30 2352 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2353
2c90e5d6 2354 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2355
7e4443d9 2356 ret = commit_fs_roots(trans);
56e9f6ea 2357 if (ret)
dfba78dc 2358 goto unlock_reloc;
54aa1f4d 2359
3818aea2 2360 /*
7e1876ac
DS
2361 * Since the transaction is done, we can apply the pending changes
2362 * before the next transaction.
3818aea2 2363 */
0b246afa 2364 btrfs_apply_pending_changes(fs_info);
3818aea2 2365
5d4f98a2 2366 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2367 * safe to free the root of tree log roots
2368 */
0b246afa 2369 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2370
0ed4792a
QW
2371 /*
2372 * Since fs roots are all committed, we can get a quite accurate
2373 * new_roots. So let's do quota accounting.
2374 */
460fb20a 2375 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea 2376 if (ret < 0)
dfba78dc 2377 goto unlock_reloc;
0ed4792a 2378
9386d8bc 2379 ret = commit_cowonly_roots(trans);
56e9f6ea 2380 if (ret)
dfba78dc 2381 goto unlock_reloc;
54aa1f4d 2382
2cba30f1
MX
2383 /*
2384 * The tasks which save the space cache and inode cache may also
2385 * update ->aborted, check it.
2386 */
bf31f87f 2387 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2388 ret = cur_trans->aborted;
dfba78dc 2389 goto unlock_reloc;
2cba30f1
MX
2390 }
2391
0b246afa 2392 cur_trans = fs_info->running_transaction;
5d4f98a2 2393
0b246afa
JM
2394 btrfs_set_root_node(&fs_info->tree_root->root_item,
2395 fs_info->tree_root->node);
2396 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2397 &cur_trans->switch_commits);
5d4f98a2 2398
0b246afa
JM
2399 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2400 fs_info->chunk_root->node);
2401 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2402 &cur_trans->switch_commits);
2403
f7238e50
JB
2404 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2405 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2406 fs_info->block_group_root->node);
2407 list_add_tail(&fs_info->block_group_root->dirty_list,
2408 &cur_trans->switch_commits);
2409 }
2410
889bfa39 2411 switch_commit_roots(trans);
5d4f98a2 2412
ce93ec54 2413 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2414 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2415 update_super_roots(fs_info);
e02119d5 2416
0b246afa
JM
2417 btrfs_set_super_log_root(fs_info->super_copy, 0);
2418 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2419 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2420 sizeof(*fs_info->super_copy));
ccd467d6 2421
bbbf7243 2422 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2423
0b246afa
JM
2424 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2425 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2426
4fbcdf66
FM
2427 btrfs_trans_release_chunk_metadata(trans);
2428
dfba78dc
FM
2429 /*
2430 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2431 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2432 * make sure that before we commit our superblock, no other task can
2433 * start a new transaction and commit a log tree before we commit our
2434 * superblock. Anyone trying to commit a log tree locks this mutex before
2435 * writing its superblock.
2436 */
2437 mutex_lock(&fs_info->tree_log_mutex);
2438
0b246afa 2439 spin_lock(&fs_info->trans_lock);
4a9d8bde 2440 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2441 fs_info->running_transaction = NULL;
2442 spin_unlock(&fs_info->trans_lock);
2443 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2444
0b246afa 2445 wake_up(&fs_info->transaction_wait);
3e738c53 2446 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
e6dcd2dc 2447
70458a58 2448 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2449 if (ret) {
0b246afa
JM
2450 btrfs_handle_fs_error(fs_info, ret,
2451 "Error while writing out transaction");
2452 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2453 goto scrub_continue;
49b25e05
JM
2454 }
2455
d3575156
NA
2456 /*
2457 * At this point, we should have written all the tree blocks allocated
2458 * in this transaction. So it's now safe to free the redirtyied extent
2459 * buffers.
2460 */
2461 btrfs_free_redirty_list(cur_trans);
2462
eece6a9c 2463 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2464 /*
2465 * the super is written, we can safely allow the tree-loggers
2466 * to go about their business
2467 */
0b246afa 2468 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2469 if (ret)
2470 goto scrub_continue;
e02119d5 2471
d0c2f4fa
FM
2472 /*
2473 * We needn't acquire the lock here because there is no other task
2474 * which can change it.
2475 */
2476 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2477 wake_up(&cur_trans->commit_wait);
3e738c53 2478 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
d0c2f4fa 2479
5ead2dd0 2480 btrfs_finish_extent_commit(trans);
4313b399 2481
3204d33c 2482 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2483 btrfs_clear_space_info_full(fs_info);
13212b54 2484
0b246afa 2485 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2486 /*
2487 * We needn't acquire the lock here because there is no other task
2488 * which can change it.
2489 */
2490 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2491 wake_up(&cur_trans->commit_wait);
3e738c53 2492 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
3de4586c 2493
0b246afa 2494 spin_lock(&fs_info->trans_lock);
13c5a93e 2495 list_del_init(&cur_trans->list);
0b246afa 2496 spin_unlock(&fs_info->trans_lock);
a4abeea4 2497
724e2315
JB
2498 btrfs_put_transaction(cur_trans);
2499 btrfs_put_transaction(cur_trans);
58176a96 2500
0860adfd 2501 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2502 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2503
2e4e97ab 2504 trace_btrfs_transaction_commit(fs_info);
1abe9b8a 2505
e55958c8
IA
2506 interval = ktime_get_ns() - start_time;
2507
2ff7e61e 2508 btrfs_scrub_continue(fs_info);
a2de733c 2509
9ed74f2d
JB
2510 if (current->journal_info == trans)
2511 current->journal_info = NULL;
2512
2c90e5d6 2513 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2514
e55958c8
IA
2515 update_commit_stats(fs_info, interval);
2516
79154b1b 2517 return ret;
49b25e05 2518
56e9f6ea
DS
2519unlock_reloc:
2520 mutex_unlock(&fs_info->reloc_mutex);
3e738c53 2521 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2522scrub_continue:
3e738c53
IA
2523 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2524 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2ff7e61e 2525 btrfs_scrub_continue(fs_info);
49b25e05 2526cleanup_transaction:
dc60c525 2527 btrfs_trans_release_metadata(trans);
c7cc64a9 2528 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2529 btrfs_trans_release_chunk_metadata(trans);
0e721106 2530 trans->block_rsv = NULL;
0b246afa 2531 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2532 if (current->journal_info == trans)
2533 current->journal_info = NULL;
97cb39bb 2534 cleanup_transaction(trans, ret);
49b25e05
JM
2535
2536 return ret;
e1489b4f
IA
2537
2538lockdep_release:
5a9ba670 2539 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f
IA
2540 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2541 goto cleanup_transaction;
3e738c53
IA
2542
2543lockdep_trans_commit_start_release:
2544 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2545 btrfs_end_transaction(trans);
2546 return ret;
79154b1b
CM
2547}
2548
d352ac68 2549/*
9d1a2a3a
DS
2550 * return < 0 if error
2551 * 0 if there are no more dead_roots at the time of call
2552 * 1 there are more to be processed, call me again
2553 *
2554 * The return value indicates there are certainly more snapshots to delete, but
2555 * if there comes a new one during processing, it may return 0. We don't mind,
2556 * because btrfs_commit_super will poke cleaner thread and it will process it a
2557 * few seconds later.
d352ac68 2558 */
33c44184 2559int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
e9d0b13b 2560{
33c44184 2561 struct btrfs_root *root;
9d1a2a3a 2562 int ret;
5d4f98a2 2563
a4abeea4 2564 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2565 if (list_empty(&fs_info->dead_roots)) {
2566 spin_unlock(&fs_info->trans_lock);
2567 return 0;
2568 }
2569 root = list_first_entry(&fs_info->dead_roots,
2570 struct btrfs_root, root_list);
cfad392b 2571 list_del_init(&root->root_list);
a4abeea4 2572 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2573
4fd786e6 2574 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2575
9d1a2a3a 2576 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2577
9d1a2a3a
DS
2578 if (btrfs_header_backref_rev(root->node) <
2579 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2580 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2581 else
0078a9f9 2582 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2583
dc9492c1 2584 btrfs_put_root(root);
6596a928 2585 return (ret < 0) ? 0 : 1;
e9d0b13b 2586}
572d9ab7
DS
2587
2588void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2589{
2590 unsigned long prev;
2591 unsigned long bit;
2592
6c9fe14f 2593 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2594 if (!prev)
2595 return;
2596
d51033d0
DS
2597 bit = 1 << BTRFS_PENDING_COMMIT;
2598 if (prev & bit)
2599 btrfs_debug(fs_info, "pending commit done");
2600 prev &= ~bit;
2601
572d9ab7
DS
2602 if (prev)
2603 btrfs_warn(fs_info,
2604 "unknown pending changes left 0x%lx, ignoring", prev);
2605}
956504a3
JB
2606
2607int __init btrfs_transaction_init(void)
2608{
2609 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2610 sizeof(struct btrfs_trans_handle), 0,
2611 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2612 if (!btrfs_trans_handle_cachep)
2613 return -ENOMEM;
2614 return 0;
2615}
2616
2617void __cold btrfs_transaction_exit(void)
2618{
2619 kmem_cache_destroy(btrfs_trans_handle_cachep);
2620}