btrfs: move relocation prototypes into relocation.h
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
ab3c5c18 9#include <linux/sched/mm.h>
d3c2fdcf 10#include <linux/writeback.h>
5f39d397 11#include <linux/pagemap.h>
5f2cc086 12#include <linux/blkdev.h>
8ea05e3a 13#include <linux/uuid.h>
e55958c8 14#include <linux/timekeeping.h>
602cbe91 15#include "misc.h"
79154b1b
CM
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
925baedd 19#include "locking.h"
e02119d5 20#include "tree-log.h"
733f4fbb 21#include "volumes.h"
8dabb742 22#include "dev-replace.h"
fcebe456 23#include "qgroup.h"
aac0023c 24#include "block-group.h"
9c343784 25#include "space-info.h"
d3575156 26#include "zoned.h"
c7f13d42 27#include "fs.h"
07e81dc9 28#include "accessors.h"
a0231804 29#include "extent-tree.h"
45c40c8f 30#include "root-tree.h"
59b818e0 31#include "defrag.h"
f2b39277 32#include "dir-item.h"
c7a03b52 33#include "uuid-tree.h"
7572dec8 34#include "ioctl.h"
67707479 35#include "relocation.h"
79154b1b 36
956504a3
JB
37static struct kmem_cache *btrfs_trans_handle_cachep;
38
fc7cbcd4 39#define BTRFS_ROOT_TRANS_TAG 0
0f7d52f4 40
61c047b5
QW
41/*
42 * Transaction states and transitions
43 *
44 * No running transaction (fs tree blocks are not modified)
45 * |
46 * | To next stage:
47 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
48 * V
49 * Transaction N [[TRANS_STATE_RUNNING]]
50 * |
51 * | New trans handles can be attached to transaction N by calling all
52 * | start_transaction() variants.
53 * |
54 * | To next stage:
55 * | Call btrfs_commit_transaction() on any trans handle attached to
56 * | transaction N
57 * V
58 * Transaction N [[TRANS_STATE_COMMIT_START]]
59 * |
60 * | Will wait for previous running transaction to completely finish if there
61 * | is one
62 * |
63 * | Then one of the following happes:
64 * | - Wait for all other trans handle holders to release.
65 * | The btrfs_commit_transaction() caller will do the commit work.
66 * | - Wait for current transaction to be committed by others.
67 * | Other btrfs_commit_transaction() caller will do the commit work.
68 * |
69 * | At this stage, only btrfs_join_transaction*() variants can attach
70 * | to this running transaction.
71 * | All other variants will wait for current one to finish and attach to
72 * | transaction N+1.
73 * |
74 * | To next stage:
75 * | Caller is chosen to commit transaction N, and all other trans handle
76 * | haven been released.
77 * V
78 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
79 * |
80 * | The heavy lifting transaction work is started.
81 * | From running delayed refs (modifying extent tree) to creating pending
82 * | snapshots, running qgroups.
83 * | In short, modify supporting trees to reflect modifications of subvolume
84 * | trees.
85 * |
86 * | At this stage, all start_transaction() calls will wait for this
87 * | transaction to finish and attach to transaction N+1.
88 * |
89 * | To next stage:
90 * | Until all supporting trees are updated.
91 * V
92 * Transaction N [[TRANS_STATE_UNBLOCKED]]
93 * | Transaction N+1
94 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
95 * | need to write them back to disk and update |
96 * | super blocks. |
97 * | |
98 * | At this stage, new transaction is allowed to |
99 * | start. |
100 * | All new start_transaction() calls will be |
101 * | attached to transid N+1. |
102 * | |
103 * | To next stage: |
104 * | Until all tree blocks are super blocks are |
105 * | written to block devices |
106 * V |
107 * Transaction N [[TRANS_STATE_COMPLETED]] V
108 * All tree blocks and super blocks are written. Transaction N+1
109 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
110 * data structures will be cleaned up. | Life goes on
111 */
e8c9f186 112static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 113 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
114 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
115 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 116 __TRANS_ATTACH |
a6d155d2
FM
117 __TRANS_JOIN |
118 __TRANS_JOIN_NOSTART),
bcf3a3e7 119 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
120 __TRANS_ATTACH |
121 __TRANS_JOIN |
a6d155d2
FM
122 __TRANS_JOIN_NOLOCK |
123 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
124 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
125 __TRANS_ATTACH |
126 __TRANS_JOIN |
127 __TRANS_JOIN_NOLOCK |
128 __TRANS_JOIN_NOSTART),
bcf3a3e7 129 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
130 __TRANS_ATTACH |
131 __TRANS_JOIN |
a6d155d2
FM
132 __TRANS_JOIN_NOLOCK |
133 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
134};
135
724e2315 136void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 137{
9b64f57d
ER
138 WARN_ON(refcount_read(&transaction->use_count) == 0);
139 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 140 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
141 WARN_ON(!RB_EMPTY_ROOT(
142 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
143 WARN_ON(!RB_EMPTY_ROOT(
144 &transaction->delayed_refs.dirty_extent_root));
1262133b 145 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
146 btrfs_err(transaction->fs_info,
147 "pending csums is %llu",
148 transaction->delayed_refs.pending_csums);
7785a663
FM
149 /*
150 * If any block groups are found in ->deleted_bgs then it's
151 * because the transaction was aborted and a commit did not
152 * happen (things failed before writing the new superblock
153 * and calling btrfs_finish_extent_commit()), so we can not
154 * discard the physical locations of the block groups.
155 */
156 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 157 struct btrfs_block_group *cache;
7785a663
FM
158
159 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 160 struct btrfs_block_group,
7785a663
FM
161 bg_list);
162 list_del_init(&cache->bg_list);
6b7304af 163 btrfs_unfreeze_block_group(cache);
7785a663
FM
164 btrfs_put_block_group(cache);
165 }
bbbf7243 166 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 167 kfree(transaction);
78fae27e 168 }
79154b1b
CM
169}
170
889bfa39 171static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 172{
889bfa39 173 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 174 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
175 struct btrfs_root *root, *tmp;
176
dfba78dc
FM
177 /*
178 * At this point no one can be using this transaction to modify any tree
179 * and no one can start another transaction to modify any tree either.
180 */
181 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
182
9e351cc8 183 down_write(&fs_info->commit_root_sem);
d96b3424
FM
184
185 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
186 fs_info->last_reloc_trans = trans->transid;
187
889bfa39 188 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
189 dirty_list) {
190 list_del_init(&root->dirty_list);
191 free_extent_buffer(root->commit_root);
192 root->commit_root = btrfs_root_node(root);
41e7acd3 193 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 194 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 195 }
2b9dbef2
JB
196
197 /* We can free old roots now. */
889bfa39
JB
198 spin_lock(&cur_trans->dropped_roots_lock);
199 while (!list_empty(&cur_trans->dropped_roots)) {
200 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
201 struct btrfs_root, root_list);
202 list_del_init(&root->root_list);
889bfa39
JB
203 spin_unlock(&cur_trans->dropped_roots_lock);
204 btrfs_free_log(trans, root);
2b9dbef2 205 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 206 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 207 }
889bfa39 208 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62 209
9e351cc8 210 up_write(&fs_info->commit_root_sem);
817d52f8
JB
211}
212
0860adfd
MX
213static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
214 unsigned int type)
215{
216 if (type & TRANS_EXTWRITERS)
217 atomic_inc(&trans->num_extwriters);
218}
219
220static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
221 unsigned int type)
222{
223 if (type & TRANS_EXTWRITERS)
224 atomic_dec(&trans->num_extwriters);
225}
226
227static inline void extwriter_counter_init(struct btrfs_transaction *trans,
228 unsigned int type)
229{
230 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
231}
232
233static inline int extwriter_counter_read(struct btrfs_transaction *trans)
234{
235 return atomic_read(&trans->num_extwriters);
178260b2
MX
236}
237
fb6dea26 238/*
79bd3712
FM
239 * To be called after doing the chunk btree updates right after allocating a new
240 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
241 * chunk after all chunk btree updates and after finishing the second phase of
242 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
243 * group had its chunk item insertion delayed to the second phase.
fb6dea26
JB
244 */
245void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
246{
247 struct btrfs_fs_info *fs_info = trans->fs_info;
248
249 if (!trans->chunk_bytes_reserved)
250 return;
251
fb6dea26 252 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 253 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
254 trans->chunk_bytes_reserved = 0;
255}
256
d352ac68
CM
257/*
258 * either allocate a new transaction or hop into the existing one
259 */
2ff7e61e
JM
260static noinline int join_transaction(struct btrfs_fs_info *fs_info,
261 unsigned int type)
79154b1b
CM
262{
263 struct btrfs_transaction *cur_trans;
a4abeea4 264
19ae4e81 265 spin_lock(&fs_info->trans_lock);
d43317dc 266loop:
49b25e05 267 /* The file system has been taken offline. No new transactions. */
84961539 268 if (BTRFS_FS_ERROR(fs_info)) {
19ae4e81 269 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
270 return -EROFS;
271 }
272
19ae4e81 273 cur_trans = fs_info->running_transaction;
a4abeea4 274 if (cur_trans) {
bf31f87f 275 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 276 spin_unlock(&fs_info->trans_lock);
49b25e05 277 return cur_trans->aborted;
871383be 278 }
4a9d8bde 279 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
280 spin_unlock(&fs_info->trans_lock);
281 return -EBUSY;
282 }
9b64f57d 283 refcount_inc(&cur_trans->use_count);
13c5a93e 284 atomic_inc(&cur_trans->num_writers);
0860adfd 285 extwriter_counter_inc(cur_trans, type);
19ae4e81 286 spin_unlock(&fs_info->trans_lock);
e1489b4f 287 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 288 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
a4abeea4 289 return 0;
79154b1b 290 }
19ae4e81 291 spin_unlock(&fs_info->trans_lock);
a4abeea4 292
354aa0fb
MX
293 /*
294 * If we are ATTACH, we just want to catch the current transaction,
295 * and commit it. If there is no transaction, just return ENOENT.
296 */
297 if (type == TRANS_ATTACH)
298 return -ENOENT;
299
4a9d8bde
MX
300 /*
301 * JOIN_NOLOCK only happens during the transaction commit, so
302 * it is impossible that ->running_transaction is NULL
303 */
304 BUG_ON(type == TRANS_JOIN_NOLOCK);
305
4b5faeac 306 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
307 if (!cur_trans)
308 return -ENOMEM;
d43317dc 309
e1489b4f 310 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 311 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
e1489b4f 312
19ae4e81
JS
313 spin_lock(&fs_info->trans_lock);
314 if (fs_info->running_transaction) {
d43317dc
CM
315 /*
316 * someone started a transaction after we unlocked. Make sure
4a9d8bde 317 * to redo the checks above
d43317dc 318 */
5a9ba670 319 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 320 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 321 kfree(cur_trans);
d43317dc 322 goto loop;
84961539 323 } else if (BTRFS_FS_ERROR(fs_info)) {
e4b50e14 324 spin_unlock(&fs_info->trans_lock);
5a9ba670 325 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 326 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 327 kfree(cur_trans);
7b8b92af 328 return -EROFS;
79154b1b 329 }
d43317dc 330
ab8d0fc4 331 cur_trans->fs_info = fs_info;
48778179
FM
332 atomic_set(&cur_trans->pending_ordered, 0);
333 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 334 atomic_set(&cur_trans->num_writers, 1);
0860adfd 335 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
336 init_waitqueue_head(&cur_trans->writer_wait);
337 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 338 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
339 /*
340 * One for this trans handle, one so it will live on until we
341 * commit the transaction.
342 */
9b64f57d 343 refcount_set(&cur_trans->use_count, 2);
3204d33c 344 cur_trans->flags = 0;
afd48513 345 cur_trans->start_time = ktime_get_seconds();
a4abeea4 346
a099d0fd
AM
347 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
348
5c9d028b 349 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 350 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 351 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
352
353 /*
354 * although the tree mod log is per file system and not per transaction,
355 * the log must never go across transaction boundaries.
356 */
357 smp_mb();
31b1a2bd 358 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 359 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 360 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 361 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 362 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 363
a4abeea4
JB
364 spin_lock_init(&cur_trans->delayed_refs.lock);
365
366 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 367 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 368 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 369 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 370 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 371 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 372 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 373 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 374 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 375 spin_lock_init(&cur_trans->dropped_roots_lock);
d3575156
NA
376 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
377 spin_lock_init(&cur_trans->releasing_ebs_lock);
19ae4e81 378 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 379 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
efb0645b 380 IO_TREE_TRANS_DIRTY_PAGES, NULL);
fe119a6e
NB
381 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
382 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
383 fs_info->generation++;
384 cur_trans->transid = fs_info->generation;
385 fs_info->running_transaction = cur_trans;
49b25e05 386 cur_trans->aborted = 0;
19ae4e81 387 spin_unlock(&fs_info->trans_lock);
15ee9bc7 388
79154b1b
CM
389 return 0;
390}
391
d352ac68 392/*
92a7cc42
QW
393 * This does all the record keeping required to make sure that a shareable root
394 * is properly recorded in a given transaction. This is required to make sure
395 * the old root from before we joined the transaction is deleted when the
396 * transaction commits.
d352ac68 397 */
7585717f 398static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
399 struct btrfs_root *root,
400 int force)
6702ed49 401{
0b246afa 402 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 403 int ret = 0;
0b246afa 404
92a7cc42 405 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 406 root->last_trans < trans->transid) || force) {
4d31778a 407 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 408
7585717f 409 /*
27cdeb70 410 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
411 * we have the reloc mutex held now, so there
412 * is only one writer in this function
413 */
27cdeb70 414 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 415
27cdeb70 416 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
417 * they find our root->last_trans update
418 */
419 smp_wmb();
420
fc7cbcd4 421 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 422 if (root->last_trans == trans->transid && !force) {
fc7cbcd4 423 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
424 return 0;
425 }
fc7cbcd4
DS
426 radix_tree_tag_set(&fs_info->fs_roots_radix,
427 (unsigned long)root->root_key.objectid,
428 BTRFS_ROOT_TRANS_TAG);
429 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
430 root->last_trans = trans->transid;
431
432 /* this is pretty tricky. We don't want to
433 * take the relocation lock in btrfs_record_root_in_trans
434 * unless we're really doing the first setup for this root in
435 * this transaction.
436 *
437 * Normally we'd use root->last_trans as a flag to decide
438 * if we want to take the expensive mutex.
439 *
440 * But, we have to set root->last_trans before we
441 * init the relocation root, otherwise, we trip over warnings
442 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 443 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
444 * fixing up the reloc trees and everyone must wait.
445 *
446 * When this is zero, they can trust root->last_trans and fly
447 * through btrfs_record_root_in_trans without having to take the
448 * lock. smp_wmb() makes sure that all the writes above are
449 * done before we pop in the zero below
450 */
03a7e111 451 ret = btrfs_init_reloc_root(trans, root);
c7548af6 452 smp_mb__before_atomic();
27cdeb70 453 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 454 }
03a7e111 455 return ret;
5d4f98a2 456}
bcc63abb 457
7585717f 458
2b9dbef2
JB
459void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
460 struct btrfs_root *root)
461{
0b246afa 462 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
463 struct btrfs_transaction *cur_trans = trans->transaction;
464
465 /* Add ourselves to the transaction dropped list */
466 spin_lock(&cur_trans->dropped_roots_lock);
467 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
468 spin_unlock(&cur_trans->dropped_roots_lock);
469
470 /* Make sure we don't try to update the root at commit time */
fc7cbcd4
DS
471 spin_lock(&fs_info->fs_roots_radix_lock);
472 radix_tree_tag_clear(&fs_info->fs_roots_radix,
473 (unsigned long)root->root_key.objectid,
474 BTRFS_ROOT_TRANS_TAG);
475 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
476}
477
7585717f
CM
478int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
479 struct btrfs_root *root)
480{
0b246afa 481 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 482 int ret;
0b246afa 483
92a7cc42 484 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
485 return 0;
486
487 /*
27cdeb70 488 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
489 * and barriers
490 */
491 smp_rmb();
492 if (root->last_trans == trans->transid &&
27cdeb70 493 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
494 return 0;
495
0b246afa 496 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 497 ret = record_root_in_trans(trans, root, 0);
0b246afa 498 mutex_unlock(&fs_info->reloc_mutex);
7585717f 499
1409e6cc 500 return ret;
7585717f
CM
501}
502
4a9d8bde
MX
503static inline int is_transaction_blocked(struct btrfs_transaction *trans)
504{
3296bf56 505 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 506 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 507 !TRANS_ABORTED(trans));
4a9d8bde
MX
508}
509
d352ac68
CM
510/* wait for commit against the current transaction to become unblocked
511 * when this is done, it is safe to start a new transaction, but the current
512 * transaction might not be fully on disk.
513 */
2ff7e61e 514static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 515{
f9295749 516 struct btrfs_transaction *cur_trans;
79154b1b 517
0b246afa
JM
518 spin_lock(&fs_info->trans_lock);
519 cur_trans = fs_info->running_transaction;
4a9d8bde 520 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 521 refcount_inc(&cur_trans->use_count);
0b246afa 522 spin_unlock(&fs_info->trans_lock);
72d63ed6 523
3e738c53 524 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
0b246afa 525 wait_event(fs_info->transaction_wait,
501407aa 526 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 527 TRANS_ABORTED(cur_trans));
724e2315 528 btrfs_put_transaction(cur_trans);
a4abeea4 529 } else {
0b246afa 530 spin_unlock(&fs_info->trans_lock);
f9295749 531 }
37d1aeee
CM
532}
533
2ff7e61e 534static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 535{
0b246afa 536 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
537 return 0;
538
92e2f7e3 539 if (type == TRANS_START)
a22285a6 540 return 1;
a4abeea4 541
a22285a6
YZ
542 return 0;
543}
544
20dd2cbf
MX
545static inline bool need_reserve_reloc_root(struct btrfs_root *root)
546{
0b246afa
JM
547 struct btrfs_fs_info *fs_info = root->fs_info;
548
549 if (!fs_info->reloc_ctl ||
92a7cc42 550 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
551 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
552 root->reloc_root)
553 return false;
554
555 return true;
556}
557
08e007d2 558static struct btrfs_trans_handle *
5aed1dd8 559start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
560 unsigned int type, enum btrfs_reserve_flush_enum flush,
561 bool enforce_qgroups)
37d1aeee 562{
0b246afa 563 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 564 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
565 struct btrfs_trans_handle *h;
566 struct btrfs_transaction *cur_trans;
b5009945 567 u64 num_bytes = 0;
c5567237 568 u64 qgroup_reserved = 0;
20dd2cbf 569 bool reloc_reserved = false;
9c343784 570 bool do_chunk_alloc = false;
20dd2cbf 571 int ret;
acce952b 572
84961539 573 if (BTRFS_FS_ERROR(fs_info))
acce952b 574 return ERR_PTR(-EROFS);
2a1eb461 575
46c4e71e 576 if (current->journal_info) {
0860adfd 577 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 578 h = current->journal_info;
b50fff81
DS
579 refcount_inc(&h->use_count);
580 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
581 h->orig_rsv = h->block_rsv;
582 h->block_rsv = NULL;
583 goto got_it;
584 }
b5009945
JB
585
586 /*
587 * Do the reservation before we join the transaction so we can do all
588 * the appropriate flushing if need be.
589 */
003d7c59 590 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
591 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
592 u64 delayed_refs_bytes = 0;
593
0b246afa 594 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
595 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
596 enforce_qgroups);
7174109c
QW
597 if (ret)
598 return ERR_PTR(ret);
c5567237 599
ba2c4d4e
JB
600 /*
601 * We want to reserve all the bytes we may need all at once, so
602 * we only do 1 enospc flushing cycle per transaction start. We
603 * accomplish this by simply assuming we'll do 2 x num_items
604 * worth of delayed refs updates in this trans handle, and
605 * refill that amount for whatever is missing in the reserve.
606 */
2bd36e7b 607 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614 608 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 609 btrfs_block_rsv_full(delayed_refs_rsv) == 0) {
ba2c4d4e
JB
610 delayed_refs_bytes = num_bytes;
611 num_bytes <<= 1;
612 }
613
20dd2cbf
MX
614 /*
615 * Do the reservation for the relocation root creation
616 */
ee39b432 617 if (need_reserve_reloc_root(root)) {
0b246afa 618 num_bytes += fs_info->nodesize;
20dd2cbf
MX
619 reloc_reserved = true;
620 }
621
9270501c 622 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
ba2c4d4e
JB
623 if (ret)
624 goto reserve_fail;
625 if (delayed_refs_bytes) {
626 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
627 delayed_refs_bytes);
628 num_bytes -= delayed_refs_bytes;
629 }
9c343784
JB
630
631 if (rsv->space_info->force_alloc)
632 do_chunk_alloc = true;
ba2c4d4e 633 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 634 !btrfs_block_rsv_full(delayed_refs_rsv)) {
ba2c4d4e
JB
635 /*
636 * Some people call with btrfs_start_transaction(root, 0)
637 * because they can be throttled, but have some other mechanism
638 * for reserving space. We still want these guys to refill the
639 * delayed block_rsv so just add 1 items worth of reservation
640 * here.
641 */
642 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 643 if (ret)
843fcf35 644 goto reserve_fail;
b5009945 645 }
a22285a6 646again:
f2f767e7 647 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
648 if (!h) {
649 ret = -ENOMEM;
650 goto alloc_fail;
651 }
37d1aeee 652
98114659
JB
653 /*
654 * If we are JOIN_NOLOCK we're already committing a transaction and
655 * waiting on this guy, so we don't need to do the sb_start_intwrite
656 * because we're already holding a ref. We need this because we could
657 * have raced in and did an fsync() on a file which can kick a commit
658 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
659 *
660 * If we are ATTACH, it means we just want to catch the current
661 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 662 */
0860adfd 663 if (type & __TRANS_FREEZABLE)
0b246afa 664 sb_start_intwrite(fs_info->sb);
b2b5ef5c 665
2ff7e61e
JM
666 if (may_wait_transaction(fs_info, type))
667 wait_current_trans(fs_info);
a22285a6 668
a4abeea4 669 do {
2ff7e61e 670 ret = join_transaction(fs_info, type);
178260b2 671 if (ret == -EBUSY) {
2ff7e61e 672 wait_current_trans(fs_info);
a6d155d2
FM
673 if (unlikely(type == TRANS_ATTACH ||
674 type == TRANS_JOIN_NOSTART))
178260b2
MX
675 ret = -ENOENT;
676 }
a4abeea4
JB
677 } while (ret == -EBUSY);
678
a43f7f82 679 if (ret < 0)
843fcf35 680 goto join_fail;
0f7d52f4 681
0b246afa 682 cur_trans = fs_info->running_transaction;
a22285a6
YZ
683
684 h->transid = cur_trans->transid;
685 h->transaction = cur_trans;
b50fff81 686 refcount_set(&h->use_count, 1);
64b63580 687 h->fs_info = root->fs_info;
7174109c 688
a698d075 689 h->type = type;
ea658bad 690 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 691
a22285a6 692 smp_mb();
3296bf56 693 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 694 may_wait_transaction(fs_info, type)) {
abdd2e80 695 current->journal_info = h;
3a45bb20 696 btrfs_commit_transaction(h);
a22285a6
YZ
697 goto again;
698 }
699
b5009945 700 if (num_bytes) {
0b246afa 701 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 702 h->transid, num_bytes, 1);
0b246afa 703 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 704 h->bytes_reserved = num_bytes;
20dd2cbf 705 h->reloc_reserved = reloc_reserved;
a22285a6 706 }
9ed74f2d 707
2a1eb461 708got_it:
bcf3a3e7 709 if (!current->journal_info)
a22285a6 710 current->journal_info = h;
fcc99734 711
9c343784
JB
712 /*
713 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
714 * ALLOC_FORCE the first run through, and then we won't allocate for
715 * anybody else who races in later. We don't care about the return
716 * value here.
717 */
718 if (do_chunk_alloc && num_bytes) {
719 u64 flags = h->block_rsv->space_info->flags;
720
721 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
722 CHUNK_ALLOC_NO_FORCE);
723 }
724
fcc99734
QW
725 /*
726 * btrfs_record_root_in_trans() needs to alloc new extents, and may
727 * call btrfs_join_transaction() while we're also starting a
728 * transaction.
729 *
730 * Thus it need to be called after current->journal_info initialized,
731 * or we can deadlock.
732 */
68075ea8
JB
733 ret = btrfs_record_root_in_trans(h, root);
734 if (ret) {
735 /*
736 * The transaction handle is fully initialized and linked with
737 * other structures so it needs to be ended in case of errors,
738 * not just freed.
739 */
740 btrfs_end_transaction(h);
741 return ERR_PTR(ret);
742 }
fcc99734 743
79154b1b 744 return h;
843fcf35
MX
745
746join_fail:
0860adfd 747 if (type & __TRANS_FREEZABLE)
0b246afa 748 sb_end_intwrite(fs_info->sb);
843fcf35
MX
749 kmem_cache_free(btrfs_trans_handle_cachep, h);
750alloc_fail:
751 if (num_bytes)
2ff7e61e 752 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 753 num_bytes, NULL);
843fcf35 754reserve_fail:
733e03a0 755 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 756 return ERR_PTR(ret);
79154b1b
CM
757}
758
f9295749 759struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 760 unsigned int num_items)
f9295749 761{
08e007d2 762 return start_transaction(root, num_items, TRANS_START,
003d7c59 763 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 764}
003d7c59 765
8eab77ff
FM
766struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
767 struct btrfs_root *root,
7f9fe614 768 unsigned int num_items)
8eab77ff 769{
7f9fe614
JB
770 return start_transaction(root, num_items, TRANS_START,
771 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 772}
8407aa46 773
7a7eaa40 774struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 775{
003d7c59
JM
776 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
777 true);
f9295749
CM
778}
779
8d510121 780struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 781{
575a75d6 782 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 783 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
784}
785
a6d155d2
FM
786/*
787 * Similar to regular join but it never starts a transaction when none is
788 * running or after waiting for the current one to finish.
789 */
790struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
791{
792 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
793 BTRFS_RESERVE_NO_FLUSH, true);
794}
795
d4edf39b
MX
796/*
797 * btrfs_attach_transaction() - catch the running transaction
798 *
799 * It is used when we want to commit the current the transaction, but
800 * don't want to start a new one.
801 *
802 * Note: If this function return -ENOENT, it just means there is no
803 * running transaction. But it is possible that the inactive transaction
804 * is still in the memory, not fully on disk. If you hope there is no
805 * inactive transaction in the fs when -ENOENT is returned, you should
806 * invoke
807 * btrfs_attach_transaction_barrier()
808 */
354aa0fb 809struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 810{
575a75d6 811 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 812 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
813}
814
d4edf39b 815/*
90b6d283 816 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 817 *
52042d8e 818 * It is similar to the above function, the difference is this one
d4edf39b
MX
819 * will wait for all the inactive transactions until they fully
820 * complete.
821 */
822struct btrfs_trans_handle *
823btrfs_attach_transaction_barrier(struct btrfs_root *root)
824{
825 struct btrfs_trans_handle *trans;
826
575a75d6 827 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 828 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 829 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 830 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
831
832 return trans;
833}
834
d0c2f4fa
FM
835/* Wait for a transaction commit to reach at least the given state. */
836static noinline void wait_for_commit(struct btrfs_transaction *commit,
837 const enum btrfs_trans_state min_state)
89ce8a63 838{
5fd76bf3
OS
839 struct btrfs_fs_info *fs_info = commit->fs_info;
840 u64 transid = commit->transid;
841 bool put = false;
842
3e738c53
IA
843 /*
844 * At the moment this function is called with min_state either being
845 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
846 */
847 if (min_state == TRANS_STATE_COMPLETED)
848 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
849 else
850 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
851
5fd76bf3
OS
852 while (1) {
853 wait_event(commit->commit_wait, commit->state >= min_state);
854 if (put)
855 btrfs_put_transaction(commit);
856
857 if (min_state < TRANS_STATE_COMPLETED)
858 break;
859
860 /*
861 * A transaction isn't really completed until all of the
862 * previous transactions are completed, but with fsync we can
863 * end up with SUPER_COMMITTED transactions before a COMPLETED
864 * transaction. Wait for those.
865 */
866
867 spin_lock(&fs_info->trans_lock);
868 commit = list_first_entry_or_null(&fs_info->trans_list,
869 struct btrfs_transaction,
870 list);
871 if (!commit || commit->transid > transid) {
872 spin_unlock(&fs_info->trans_lock);
873 break;
874 }
875 refcount_inc(&commit->use_count);
876 put = true;
877 spin_unlock(&fs_info->trans_lock);
878 }
89ce8a63
CM
879}
880
2ff7e61e 881int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
882{
883 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 884 int ret = 0;
46204592 885
46204592 886 if (transid) {
0b246afa 887 if (transid <= fs_info->last_trans_committed)
a4abeea4 888 goto out;
46204592
SW
889
890 /* find specified transaction */
0b246afa
JM
891 spin_lock(&fs_info->trans_lock);
892 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
893 if (t->transid == transid) {
894 cur_trans = t;
9b64f57d 895 refcount_inc(&cur_trans->use_count);
8cd2807f 896 ret = 0;
46204592
SW
897 break;
898 }
8cd2807f
MX
899 if (t->transid > transid) {
900 ret = 0;
46204592 901 break;
8cd2807f 902 }
46204592 903 }
0b246afa 904 spin_unlock(&fs_info->trans_lock);
42383020
SW
905
906 /*
907 * The specified transaction doesn't exist, or we
908 * raced with btrfs_commit_transaction
909 */
910 if (!cur_trans) {
0b246afa 911 if (transid > fs_info->last_trans_committed)
42383020 912 ret = -EINVAL;
8cd2807f 913 goto out;
42383020 914 }
46204592
SW
915 } else {
916 /* find newest transaction that is committing | committed */
0b246afa
JM
917 spin_lock(&fs_info->trans_lock);
918 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 919 list) {
4a9d8bde
MX
920 if (t->state >= TRANS_STATE_COMMIT_START) {
921 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 922 break;
46204592 923 cur_trans = t;
9b64f57d 924 refcount_inc(&cur_trans->use_count);
46204592
SW
925 break;
926 }
927 }
0b246afa 928 spin_unlock(&fs_info->trans_lock);
46204592 929 if (!cur_trans)
a4abeea4 930 goto out; /* nothing committing|committed */
46204592
SW
931 }
932
d0c2f4fa 933 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 934 btrfs_put_transaction(cur_trans);
a4abeea4 935out:
46204592
SW
936 return ret;
937}
938
2ff7e61e 939void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 940{
92e2f7e3 941 wait_current_trans(fs_info);
37d1aeee
CM
942}
943
8a8f4dea 944static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 945{
2ff7e61e 946 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 947
64403612 948 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 949 return true;
36ba022a 950
2ff7e61e 951 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
952}
953
a2633b6a 954bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
955{
956 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 957
3296bf56 958 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 959 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 960 return true;
8929ecfa 961
2ff7e61e 962 return should_end_transaction(trans);
8929ecfa
YZ
963}
964
dc60c525
NB
965static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
966
0e34693f 967{
dc60c525
NB
968 struct btrfs_fs_info *fs_info = trans->fs_info;
969
0e34693f
NB
970 if (!trans->block_rsv) {
971 ASSERT(!trans->bytes_reserved);
972 return;
973 }
974
975 if (!trans->bytes_reserved)
976 return;
977
978 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
979 trace_btrfs_space_reservation(fs_info, "transaction",
980 trans->transid, trans->bytes_reserved, 0);
981 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 982 trans->bytes_reserved, NULL);
0e34693f
NB
983 trans->bytes_reserved = 0;
984}
985
89ce8a63 986static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 987 int throttle)
79154b1b 988{
3a45bb20 989 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 990 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 991 int err = 0;
c3e69d58 992
b50fff81
DS
993 if (refcount_read(&trans->use_count) > 1) {
994 refcount_dec(&trans->use_count);
2a1eb461
JB
995 trans->block_rsv = trans->orig_rsv;
996 return 0;
997 }
998
dc60c525 999 btrfs_trans_release_metadata(trans);
4c13d758 1000 trans->block_rsv = NULL;
c5567237 1001
119e80df 1002 btrfs_create_pending_block_groups(trans);
ea658bad 1003
4fbcdf66
FM
1004 btrfs_trans_release_chunk_metadata(trans);
1005
0860adfd 1006 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1007 sb_end_intwrite(info->sb);
6df7881a 1008
8929ecfa 1009 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
1010 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1011 atomic_dec(&cur_trans->num_writers);
0860adfd 1012 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 1013
093258e6 1014 cond_wake_up(&cur_trans->writer_wait);
e1489b4f 1015
5a9ba670 1016 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
e1489b4f
IA
1017 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1018
724e2315 1019 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
1020
1021 if (current->journal_info == trans)
1022 current->journal_info = NULL;
ab78c84d 1023
24bbcf04 1024 if (throttle)
2ff7e61e 1025 btrfs_run_delayed_iputs(info);
24bbcf04 1026
84961539 1027 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
4e121c06 1028 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1029 if (TRANS_ABORTED(trans))
1030 err = trans->aborted;
1031 else
1032 err = -EROFS;
4e121c06 1033 }
49b25e05 1034
4edc2ca3
DJ
1035 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1036 return err;
79154b1b
CM
1037}
1038
3a45bb20 1039int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1040{
3a45bb20 1041 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1042}
1043
3a45bb20 1044int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1045{
3a45bb20 1046 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1047}
1048
d352ac68
CM
1049/*
1050 * when btree blocks are allocated, they have some corresponding bits set for
1051 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1052 * those extents are sent to disk but does not wait on them
d352ac68 1053 */
2ff7e61e 1054int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1055 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1056{
777e6bd7 1057 int err = 0;
7c4452b9 1058 int werr = 0;
0b246afa 1059 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1060 struct extent_state *cached_state = NULL;
777e6bd7 1061 u64 start = 0;
5f39d397 1062 u64 end;
7c4452b9 1063
6300463b 1064 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1065 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1066 mark, &cached_state)) {
663dfbb0
FM
1067 bool wait_writeback = false;
1068
1069 err = convert_extent_bit(dirty_pages, start, end,
1070 EXTENT_NEED_WAIT,
210aa277 1071 mark, &cached_state);
663dfbb0
FM
1072 /*
1073 * convert_extent_bit can return -ENOMEM, which is most of the
1074 * time a temporary error. So when it happens, ignore the error
1075 * and wait for writeback of this range to finish - because we
1076 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1077 * to __btrfs_wait_marked_extents() would not know that
1078 * writeback for this range started and therefore wouldn't
1079 * wait for it to finish - we don't want to commit a
1080 * superblock that points to btree nodes/leafs for which
1081 * writeback hasn't finished yet (and without errors).
663dfbb0 1082 * We cleanup any entries left in the io tree when committing
41e7acd3 1083 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1084 */
1085 if (err == -ENOMEM) {
1086 err = 0;
1087 wait_writeback = true;
1088 }
1089 if (!err)
1090 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1091 if (err)
1092 werr = err;
663dfbb0
FM
1093 else if (wait_writeback)
1094 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1095 free_extent_state(cached_state);
663dfbb0 1096 cached_state = NULL;
1728366e
JB
1097 cond_resched();
1098 start = end + 1;
7c4452b9 1099 }
6300463b 1100 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1101 return werr;
1102}
1103
1104/*
1105 * when btree blocks are allocated, they have some corresponding bits set for
1106 * them in one of two extent_io trees. This is used to make sure all of
1107 * those extents are on disk for transaction or log commit. We wait
1108 * on all the pages and clear them from the dirty pages state tree
1109 */
bf89d38f
JM
1110static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1111 struct extent_io_tree *dirty_pages)
690587d1 1112{
690587d1
CM
1113 int err = 0;
1114 int werr = 0;
0b246afa 1115 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1116 struct extent_state *cached_state = NULL;
690587d1
CM
1117 u64 start = 0;
1118 u64 end;
777e6bd7 1119
1728366e 1120 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1121 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1122 /*
1123 * Ignore -ENOMEM errors returned by clear_extent_bit().
1124 * When committing the transaction, we'll remove any entries
1125 * left in the io tree. For a log commit, we don't remove them
1126 * after committing the log because the tree can be accessed
1127 * concurrently - we do it only at transaction commit time when
41e7acd3 1128 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1129 */
1130 err = clear_extent_bit(dirty_pages, start, end,
bd015294 1131 EXTENT_NEED_WAIT, &cached_state);
663dfbb0
FM
1132 if (err == -ENOMEM)
1133 err = 0;
1134 if (!err)
1135 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1136 if (err)
1137 werr = err;
e38e2ed7
FM
1138 free_extent_state(cached_state);
1139 cached_state = NULL;
1728366e
JB
1140 cond_resched();
1141 start = end + 1;
777e6bd7 1142 }
7c4452b9
CM
1143 if (err)
1144 werr = err;
bf89d38f
JM
1145 return werr;
1146}
656f30db 1147
b9fae2eb 1148static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1149 struct extent_io_tree *dirty_pages)
1150{
1151 bool errors = false;
1152 int err;
656f30db 1153
bf89d38f
JM
1154 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1155 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1156 errors = true;
1157
1158 if (errors && !err)
1159 err = -EIO;
1160 return err;
1161}
656f30db 1162
bf89d38f
JM
1163int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1164{
1165 struct btrfs_fs_info *fs_info = log_root->fs_info;
1166 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1167 bool errors = false;
1168 int err;
656f30db 1169
bf89d38f
JM
1170 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1171
1172 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1173 if ((mark & EXTENT_DIRTY) &&
1174 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1175 errors = true;
1176
1177 if ((mark & EXTENT_NEW) &&
1178 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1179 errors = true;
1180
1181 if (errors && !err)
1182 err = -EIO;
1183 return err;
79154b1b
CM
1184}
1185
690587d1 1186/*
c9b577c0
NB
1187 * When btree blocks are allocated the corresponding extents are marked dirty.
1188 * This function ensures such extents are persisted on disk for transaction or
1189 * log commit.
1190 *
1191 * @trans: transaction whose dirty pages we'd like to write
690587d1 1192 */
70458a58 1193static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1194{
1195 int ret;
1196 int ret2;
c9b577c0 1197 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1198 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1199 struct blk_plug plug;
690587d1 1200
c6adc9cc 1201 blk_start_plug(&plug);
c9b577c0 1202 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1203 blk_finish_plug(&plug);
bf89d38f 1204 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1205
41e7acd3 1206 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1207
bf0da8c1
CM
1208 if (ret)
1209 return ret;
c9b577c0 1210 else if (ret2)
bf0da8c1 1211 return ret2;
c9b577c0
NB
1212 else
1213 return 0;
d0c803c4
CM
1214}
1215
d352ac68
CM
1216/*
1217 * this is used to update the root pointer in the tree of tree roots.
1218 *
1219 * But, in the case of the extent allocation tree, updating the root
1220 * pointer may allocate blocks which may change the root of the extent
1221 * allocation tree.
1222 *
1223 * So, this loops and repeats and makes sure the cowonly root didn't
1224 * change while the root pointer was being updated in the metadata.
1225 */
0b86a832
CM
1226static int update_cowonly_root(struct btrfs_trans_handle *trans,
1227 struct btrfs_root *root)
79154b1b
CM
1228{
1229 int ret;
0b86a832 1230 u64 old_root_bytenr;
86b9f2ec 1231 u64 old_root_used;
0b246afa
JM
1232 struct btrfs_fs_info *fs_info = root->fs_info;
1233 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1234
86b9f2ec 1235 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1236
d397712b 1237 while (1) {
0b86a832 1238 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1239 if (old_root_bytenr == root->node->start &&
ea526d18 1240 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1241 break;
87ef2bb4 1242
5d4f98a2 1243 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1244 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1245 &root->root_key,
1246 &root->root_item);
49b25e05
JM
1247 if (ret)
1248 return ret;
56bec294 1249
86b9f2ec 1250 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1251 }
276e680d 1252
0b86a832
CM
1253 return 0;
1254}
1255
d352ac68
CM
1256/*
1257 * update all the cowonly tree roots on disk
49b25e05
JM
1258 *
1259 * The error handling in this function may not be obvious. Any of the
1260 * failures will cause the file system to go offline. We still need
1261 * to clean up the delayed refs.
d352ac68 1262 */
9386d8bc 1263static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1264{
9386d8bc 1265 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1266 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1267 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1268 struct list_head *next;
84234f3a 1269 struct extent_buffer *eb;
56bec294 1270 int ret;
84234f3a 1271
dfba78dc
FM
1272 /*
1273 * At this point no one can be using this transaction to modify any tree
1274 * and no one can start another transaction to modify any tree either.
1275 */
1276 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1277
84234f3a 1278 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1279 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1280 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1281 btrfs_tree_unlock(eb);
1282 free_extent_buffer(eb);
0b86a832 1283
49b25e05
JM
1284 if (ret)
1285 return ret;
87ef2bb4 1286
196c9d8d 1287 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1288 if (ret)
1289 return ret;
2b584c68 1290 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1291 if (ret)
1292 return ret;
280f8bd2 1293 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1294 if (ret)
1295 return ret;
546adb0d 1296
bbebb3e0 1297 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1298 if (ret)
1299 return ret;
1300
ea526d18 1301again:
d397712b 1302 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1303 struct btrfs_root *root;
0b86a832
CM
1304 next = fs_info->dirty_cowonly_roots.next;
1305 list_del_init(next);
1306 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1307 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1308
826582ca
JB
1309 list_add_tail(&root->dirty_list,
1310 &trans->transaction->switch_commits);
49b25e05
JM
1311 ret = update_cowonly_root(trans, root);
1312 if (ret)
1313 return ret;
79154b1b 1314 }
276e680d 1315
488bc2a2
JB
1316 /* Now flush any delayed refs generated by updating all of the roots */
1317 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1318 if (ret)
1319 return ret;
1320
1bbc621e 1321 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1322 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1323 if (ret)
1324 return ret;
488bc2a2
JB
1325
1326 /*
1327 * We're writing the dirty block groups, which could generate
1328 * delayed refs, which could generate more dirty block groups,
1329 * so we want to keep this flushing in this loop to make sure
1330 * everything gets run.
1331 */
c79a70b1 1332 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1333 if (ret)
1334 return ret;
1335 }
1336
1337 if (!list_empty(&fs_info->dirty_cowonly_roots))
1338 goto again;
1339
9f6cbcbb
DS
1340 /* Update dev-replace pointer once everything is committed */
1341 fs_info->dev_replace.committed_cursor_left =
1342 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1343
79154b1b
CM
1344 return 0;
1345}
1346
b4be6aef
JB
1347/*
1348 * If we had a pending drop we need to see if there are any others left in our
1349 * dead roots list, and if not clear our bit and wake any waiters.
1350 */
1351void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1352{
1353 /*
1354 * We put the drop in progress roots at the front of the list, so if the
1355 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1356 * up.
1357 */
1358 spin_lock(&fs_info->trans_lock);
1359 if (!list_empty(&fs_info->dead_roots)) {
1360 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1361 struct btrfs_root,
1362 root_list);
1363 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1364 spin_unlock(&fs_info->trans_lock);
1365 return;
1366 }
1367 }
1368 spin_unlock(&fs_info->trans_lock);
1369
1370 btrfs_wake_unfinished_drop(fs_info);
1371}
1372
d352ac68
CM
1373/*
1374 * dead roots are old snapshots that need to be deleted. This allocates
1375 * a dirty root struct and adds it into the list of dead roots that need to
1376 * be deleted
1377 */
cfad392b 1378void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1379{
0b246afa
JM
1380 struct btrfs_fs_info *fs_info = root->fs_info;
1381
1382 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1383 if (list_empty(&root->root_list)) {
1384 btrfs_grab_root(root);
b4be6aef
JB
1385
1386 /* We want to process the partially complete drops first. */
1387 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1388 list_add(&root->root_list, &fs_info->dead_roots);
1389 else
1390 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1391 }
0b246afa 1392 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1393}
1394
d352ac68 1395/*
dfba78dc
FM
1396 * Update each subvolume root and its relocation root, if it exists, in the tree
1397 * of tree roots. Also free log roots if they exist.
d352ac68 1398 */
7e4443d9 1399static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1400{
7e4443d9 1401 struct btrfs_fs_info *fs_info = trans->fs_info;
fc7cbcd4
DS
1402 struct btrfs_root *gang[8];
1403 int i;
1404 int ret;
54aa1f4d 1405
dfba78dc
FM
1406 /*
1407 * At this point no one can be using this transaction to modify any tree
1408 * and no one can start another transaction to modify any tree either.
1409 */
1410 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1411
fc7cbcd4
DS
1412 spin_lock(&fs_info->fs_roots_radix_lock);
1413 while (1) {
1414 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1415 (void **)gang, 0,
1416 ARRAY_SIZE(gang),
1417 BTRFS_ROOT_TRANS_TAG);
1418 if (ret == 0)
1419 break;
1420 for (i = 0; i < ret; i++) {
1421 struct btrfs_root *root = gang[i];
1422 int ret2;
1423
1424 /*
1425 * At this point we can neither have tasks logging inodes
1426 * from a root nor trying to commit a log tree.
1427 */
1428 ASSERT(atomic_read(&root->log_writers) == 0);
1429 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1430 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1431
1432 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1433 (unsigned long)root->root_key.objectid,
1434 BTRFS_ROOT_TRANS_TAG);
1435 spin_unlock(&fs_info->fs_roots_radix_lock);
1436
1437 btrfs_free_log(trans, root);
1438 ret2 = btrfs_update_reloc_root(trans, root);
1439 if (ret2)
1440 return ret2;
1441
1442 /* see comments in should_cow_block() */
1443 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1444 smp_mb__after_atomic();
1445
1446 if (root->commit_root != root->node) {
1447 list_add_tail(&root->dirty_list,
1448 &trans->transaction->switch_commits);
1449 btrfs_set_root_node(&root->root_item,
1450 root->node);
1451 }
48b36a60 1452
fc7cbcd4
DS
1453 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1454 &root->root_key,
1455 &root->root_item);
1456 if (ret2)
1457 return ret2;
1458 spin_lock(&fs_info->fs_roots_radix_lock);
1459 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1460 }
1461 }
fc7cbcd4 1462 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1463 return 0;
0f7d52f4
CM
1464}
1465
d352ac68 1466/*
de78b51a
ES
1467 * defrag a given btree.
1468 * Every leaf in the btree is read and defragged.
d352ac68 1469 */
de78b51a 1470int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1471{
1472 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1473 struct btrfs_trans_handle *trans;
8929ecfa 1474 int ret;
e9d0b13b 1475
27cdeb70 1476 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1477 return 0;
8929ecfa 1478
6b80053d 1479 while (1) {
8929ecfa 1480 trans = btrfs_start_transaction(root, 0);
6819703f
DS
1481 if (IS_ERR(trans)) {
1482 ret = PTR_ERR(trans);
1483 break;
1484 }
8929ecfa 1485
de78b51a 1486 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1487
3a45bb20 1488 btrfs_end_transaction(trans);
2ff7e61e 1489 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1490 cond_resched();
1491
ab8d0fc4 1492 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1493 break;
210549eb 1494
ab8d0fc4
JM
1495 if (btrfs_defrag_cancelled(info)) {
1496 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1497 ret = -EAGAIN;
1498 break;
1499 }
e9d0b13b 1500 }
27cdeb70 1501 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1502 return ret;
e9d0b13b
CM
1503}
1504
6426c7ad
QW
1505/*
1506 * Do all special snapshot related qgroup dirty hack.
1507 *
1508 * Will do all needed qgroup inherit and dirty hack like switch commit
1509 * roots inside one transaction and write all btree into disk, to make
1510 * qgroup works.
1511 */
1512static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1513 struct btrfs_root *src,
1514 struct btrfs_root *parent,
1515 struct btrfs_qgroup_inherit *inherit,
1516 u64 dst_objectid)
1517{
1518 struct btrfs_fs_info *fs_info = src->fs_info;
1519 int ret;
1520
1521 /*
1522 * Save some performance in the case that qgroups are not
1523 * enabled. If this check races with the ioctl, rescan will
1524 * kick in anyway.
1525 */
9ea6e2b5 1526 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1527 return 0;
6426c7ad 1528
4d31778a 1529 /*
52042d8e 1530 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1531 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1532 * recorded root will never be updated again, causing an outdated root
1533 * item.
1534 */
1c442d22
JB
1535 ret = record_root_in_trans(trans, src, 1);
1536 if (ret)
1537 return ret;
4d31778a 1538
2a4d84c1
JB
1539 /*
1540 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1541 * src root, so we must run the delayed refs here.
1542 *
1543 * However this isn't particularly fool proof, because there's no
1544 * synchronization keeping us from changing the tree after this point
1545 * before we do the qgroup_inherit, or even from making changes while
1546 * we're doing the qgroup_inherit. But that's a problem for the future,
1547 * for now flush the delayed refs to narrow the race window where the
1548 * qgroup counters could end up wrong.
1549 */
1550 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1551 if (ret) {
1552 btrfs_abort_transaction(trans, ret);
44365827 1553 return ret;
2a4d84c1
JB
1554 }
1555
7e4443d9 1556 ret = commit_fs_roots(trans);
6426c7ad
QW
1557 if (ret)
1558 goto out;
460fb20a 1559 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1560 if (ret < 0)
1561 goto out;
1562
1563 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1564 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1565 inherit);
1566 if (ret < 0)
1567 goto out;
1568
1569 /*
1570 * Now we do a simplified commit transaction, which will:
1571 * 1) commit all subvolume and extent tree
1572 * To ensure all subvolume and extent tree have a valid
1573 * commit_root to accounting later insert_dir_item()
1574 * 2) write all btree blocks onto disk
1575 * This is to make sure later btree modification will be cowed
1576 * Or commit_root can be populated and cause wrong qgroup numbers
1577 * In this simplified commit, we don't really care about other trees
1578 * like chunk and root tree, as they won't affect qgroup.
1579 * And we don't write super to avoid half committed status.
1580 */
9386d8bc 1581 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1582 if (ret)
1583 goto out;
889bfa39 1584 switch_commit_roots(trans);
70458a58 1585 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1586 if (ret)
f7af3934 1587 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1588 "Error while writing out transaction for qgroup");
1589
1590out:
6426c7ad
QW
1591 /*
1592 * Force parent root to be updated, as we recorded it before so its
1593 * last_trans == cur_transid.
1594 * Or it won't be committed again onto disk after later
1595 * insert_dir_item()
1596 */
1597 if (!ret)
1c442d22 1598 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1599 return ret;
1600}
1601
d352ac68
CM
1602/*
1603 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1604 * transaction commit. This does the actual creation.
1605 *
1606 * Note:
1607 * If the error which may affect the commitment of the current transaction
1608 * happens, we should return the error number. If the error which just affect
1609 * the creation of the pending snapshots, just return 0.
d352ac68 1610 */
80b6794d 1611static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1612 struct btrfs_pending_snapshot *pending)
1613{
08d50ca3
NB
1614
1615 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1616 struct btrfs_key key;
80b6794d 1617 struct btrfs_root_item *new_root_item;
3063d29f
CM
1618 struct btrfs_root *tree_root = fs_info->tree_root;
1619 struct btrfs_root *root = pending->root;
6bdb72de 1620 struct btrfs_root *parent_root;
98c9942a 1621 struct btrfs_block_rsv *rsv;
ab3c5c18 1622 struct inode *parent_inode = pending->dir;
42874b3d
MX
1623 struct btrfs_path *path;
1624 struct btrfs_dir_item *dir_item;
3063d29f 1625 struct extent_buffer *tmp;
925baedd 1626 struct extent_buffer *old;
95582b00 1627 struct timespec64 cur_time;
aec8030a 1628 int ret = 0;
d68fc57b 1629 u64 to_reserve = 0;
6bdb72de 1630 u64 index = 0;
a22285a6 1631 u64 objectid;
b83cc969 1632 u64 root_flags;
ab3c5c18
STD
1633 unsigned int nofs_flags;
1634 struct fscrypt_name fname;
3063d29f 1635
8546b570
DS
1636 ASSERT(pending->path);
1637 path = pending->path;
42874b3d 1638
b0c0ea63
DS
1639 ASSERT(pending->root_item);
1640 new_root_item = pending->root_item;
a22285a6 1641
ab3c5c18
STD
1642 /*
1643 * We're inside a transaction and must make sure that any potential
1644 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1645 * filesystem.
1646 */
1647 nofs_flags = memalloc_nofs_save();
1648 pending->error = fscrypt_setup_filename(parent_inode,
1649 &pending->dentry->d_name, 0,
1650 &fname);
1651 memalloc_nofs_restore(nofs_flags);
1652 if (pending->error)
1653 goto free_pending;
ab3c5c18 1654
543068a2 1655 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1656 if (pending->error)
ab3c5c18 1657 goto free_fname;
3063d29f 1658
d6726335
QW
1659 /*
1660 * Make qgroup to skip current new snapshot's qgroupid, as it is
1661 * accounted by later btrfs_qgroup_inherit().
1662 */
1663 btrfs_set_skip_qgroup(trans, objectid);
1664
147d256e 1665 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1666
1667 if (to_reserve > 0) {
9270501c 1668 pending->error = btrfs_block_rsv_add(fs_info,
aec8030a
MX
1669 &pending->block_rsv,
1670 to_reserve,
1671 BTRFS_RESERVE_NO_FLUSH);
1672 if (pending->error)
d6726335 1673 goto clear_skip_qgroup;
d68fc57b
YZ
1674 }
1675
3063d29f 1676 key.objectid = objectid;
a22285a6
YZ
1677 key.offset = (u64)-1;
1678 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1679
6fa9700e 1680 rsv = trans->block_rsv;
a22285a6 1681 trans->block_rsv = &pending->block_rsv;
2382c5cc 1682 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1683 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1684 trans->transid,
1685 trans->bytes_reserved, 1);
a22285a6 1686 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1687 ret = record_root_in_trans(trans, parent_root, 0);
1688 if (ret)
1689 goto fail;
c2050a45 1690 cur_time = current_time(parent_inode);
04b285f3 1691
3063d29f
CM
1692 /*
1693 * insert the directory item
1694 */
877574e2 1695 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1696 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1697
1698 /* check if there is a file/dir which has the same name. */
1699 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1700 btrfs_ino(BTRFS_I(parent_inode)),
6db75318 1701 &fname.disk_name, 0);
42874b3d 1702 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1703 pending->error = -EEXIST;
aec8030a 1704 goto dir_item_existed;
42874b3d
MX
1705 } else if (IS_ERR(dir_item)) {
1706 ret = PTR_ERR(dir_item);
66642832 1707 btrfs_abort_transaction(trans, ret);
8732d44f 1708 goto fail;
79787eaa 1709 }
42874b3d 1710 btrfs_release_path(path);
52c26179 1711
e999376f
CM
1712 /*
1713 * pull in the delayed directory update
1714 * and the delayed inode item
1715 * otherwise we corrupt the FS during
1716 * snapshot
1717 */
e5c304e6 1718 ret = btrfs_run_delayed_items(trans);
8732d44f 1719 if (ret) { /* Transaction aborted */
66642832 1720 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1721 goto fail;
1722 }
e999376f 1723
f0118cb6
JB
1724 ret = record_root_in_trans(trans, root, 0);
1725 if (ret) {
1726 btrfs_abort_transaction(trans, ret);
1727 goto fail;
1728 }
6bdb72de
SW
1729 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1730 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1731 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1732
b83cc969
LZ
1733 root_flags = btrfs_root_flags(new_root_item);
1734 if (pending->readonly)
1735 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1736 else
1737 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1738 btrfs_set_root_flags(new_root_item, root_flags);
1739
8ea05e3a
AB
1740 btrfs_set_root_generation_v2(new_root_item,
1741 trans->transid);
807fc790 1742 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1743 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1744 BTRFS_UUID_SIZE);
70023da2
SB
1745 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1746 memset(new_root_item->received_uuid, 0,
1747 sizeof(new_root_item->received_uuid));
1748 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1749 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1750 btrfs_set_root_stransid(new_root_item, 0);
1751 btrfs_set_root_rtransid(new_root_item, 0);
1752 }
3cae210f
QW
1753 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1754 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1755 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1756
6bdb72de 1757 old = btrfs_lock_root_node(root);
9631e4cc
JB
1758 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1759 BTRFS_NESTING_COW);
79787eaa
JM
1760 if (ret) {
1761 btrfs_tree_unlock(old);
1762 free_extent_buffer(old);
66642832 1763 btrfs_abort_transaction(trans, ret);
8732d44f 1764 goto fail;
79787eaa 1765 }
49b25e05 1766
49b25e05 1767 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1768 /* clean up in any case */
6bdb72de
SW
1769 btrfs_tree_unlock(old);
1770 free_extent_buffer(old);
8732d44f 1771 if (ret) {
66642832 1772 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1773 goto fail;
1774 }
f1ebcc74 1775 /* see comments in should_cow_block() */
27cdeb70 1776 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1777 smp_wmb();
1778
6bdb72de 1779 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1780 /* record when the snapshot was created in key.offset */
1781 key.offset = trans->transid;
1782 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1783 btrfs_tree_unlock(tmp);
1784 free_extent_buffer(tmp);
8732d44f 1785 if (ret) {
66642832 1786 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1787 goto fail;
1788 }
6bdb72de 1789
a22285a6
YZ
1790 /*
1791 * insert root back/forward references
1792 */
6025c19f 1793 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1794 parent_root->root_key.objectid,
4a0cc7ca 1795 btrfs_ino(BTRFS_I(parent_inode)), index,
6db75318 1796 &fname.disk_name);
8732d44f 1797 if (ret) {
66642832 1798 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1799 goto fail;
1800 }
0660b5af 1801
a22285a6 1802 key.offset = (u64)-1;
2dfb1e43 1803 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1804 if (IS_ERR(pending->snap)) {
1805 ret = PTR_ERR(pending->snap);
2d892ccd 1806 pending->snap = NULL;
66642832 1807 btrfs_abort_transaction(trans, ret);
8732d44f 1808 goto fail;
79787eaa 1809 }
d68fc57b 1810
49b25e05 1811 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1812 if (ret) {
66642832 1813 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1814 goto fail;
1815 }
361048f5 1816
6426c7ad
QW
1817 /*
1818 * Do special qgroup accounting for snapshot, as we do some qgroup
1819 * snapshot hack to do fast snapshot.
1820 * To co-operate with that hack, we do hack again.
1821 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1822 */
1823 ret = qgroup_account_snapshot(trans, root, parent_root,
1824 pending->inherit, objectid);
1825 if (ret < 0)
1826 goto fail;
1827
6db75318
STD
1828 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1829 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1830 index);
42874b3d 1831 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1832 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1833 if (ret) {
66642832 1834 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1835 goto fail;
1836 }
42874b3d 1837
6ef06d27 1838 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
6db75318 1839 fname.disk_name.len * 2);
c1867eb3
DS
1840 parent_inode->i_mtime = current_time(parent_inode);
1841 parent_inode->i_ctime = parent_inode->i_mtime;
729f7961 1842 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1843 if (ret) {
66642832 1844 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1845 goto fail;
1846 }
807fc790
AS
1847 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1848 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1849 objectid);
dd5f9615 1850 if (ret) {
66642832 1851 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1852 goto fail;
1853 }
1854 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1855 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1856 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1857 objectid);
1858 if (ret && ret != -EEXIST) {
66642832 1859 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1860 goto fail;
1861 }
1862 }
d6726335 1863
3063d29f 1864fail:
aec8030a
MX
1865 pending->error = ret;
1866dir_item_existed:
98c9942a 1867 trans->block_rsv = rsv;
2382c5cc 1868 trans->bytes_reserved = 0;
d6726335
QW
1869clear_skip_qgroup:
1870 btrfs_clear_skip_qgroup(trans);
ab3c5c18
STD
1871free_fname:
1872 fscrypt_free_filename(&fname);
1873free_pending:
6fa9700e 1874 kfree(new_root_item);
b0c0ea63 1875 pending->root_item = NULL;
42874b3d 1876 btrfs_free_path(path);
8546b570
DS
1877 pending->path = NULL;
1878
49b25e05 1879 return ret;
3063d29f
CM
1880}
1881
d352ac68
CM
1882/*
1883 * create all the snapshots we've scheduled for creation
1884 */
08d50ca3 1885static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1886{
aec8030a 1887 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1888 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1889 int ret = 0;
3de4586c 1890
aec8030a
MX
1891 list_for_each_entry_safe(pending, next, head, list) {
1892 list_del(&pending->list);
08d50ca3 1893 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1894 if (ret)
1895 break;
1896 }
1897 return ret;
3de4586c
CM
1898}
1899
2ff7e61e 1900static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1901{
1902 struct btrfs_root_item *root_item;
1903 struct btrfs_super_block *super;
1904
0b246afa 1905 super = fs_info->super_copy;
5d4f98a2 1906
0b246afa 1907 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1908 super->chunk_root = root_item->bytenr;
1909 super->chunk_root_generation = root_item->generation;
1910 super->chunk_root_level = root_item->level;
5d4f98a2 1911
0b246afa 1912 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1913 super->root = root_item->bytenr;
1914 super->generation = root_item->generation;
1915 super->root_level = root_item->level;
0b246afa 1916 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1917 super->cache_generation = root_item->generation;
94846229
BB
1918 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1919 super->cache_generation = 0;
0b246afa 1920 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1921 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1922}
1923
f36f3042
CM
1924int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1925{
4a9d8bde 1926 struct btrfs_transaction *trans;
f36f3042 1927 int ret = 0;
4a9d8bde 1928
a4abeea4 1929 spin_lock(&info->trans_lock);
4a9d8bde
MX
1930 trans = info->running_transaction;
1931 if (trans)
1932 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1933 spin_unlock(&info->trans_lock);
f36f3042
CM
1934 return ret;
1935}
1936
8929ecfa
YZ
1937int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1938{
4a9d8bde 1939 struct btrfs_transaction *trans;
8929ecfa 1940 int ret = 0;
4a9d8bde 1941
a4abeea4 1942 spin_lock(&info->trans_lock);
4a9d8bde
MX
1943 trans = info->running_transaction;
1944 if (trans)
1945 ret = is_transaction_blocked(trans);
a4abeea4 1946 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1947 return ret;
1948}
1949
fdfbf020 1950void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 1951{
3a45bb20 1952 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1953 struct btrfs_transaction *cur_trans;
1954
fdfbf020
JB
1955 /* Kick the transaction kthread. */
1956 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1957 wake_up_process(fs_info->transaction_kthread);
bb9c12c9
SW
1958
1959 /* take transaction reference */
bb9c12c9 1960 cur_trans = trans->transaction;
9b64f57d 1961 refcount_inc(&cur_trans->use_count);
bb9c12c9 1962
3a45bb20 1963 btrfs_end_transaction(trans);
6fc4e354 1964
ae5d29d4
DS
1965 /*
1966 * Wait for the current transaction commit to start and block
1967 * subsequent transaction joins
1968 */
3e738c53 1969 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
ae5d29d4
DS
1970 wait_event(fs_info->transaction_blocked_wait,
1971 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1972 TRANS_ABORTED(cur_trans));
724e2315 1973 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1974}
1975
97cb39bb 1976static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1977{
97cb39bb 1978 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1979 struct btrfs_transaction *cur_trans = trans->transaction;
1980
b50fff81 1981 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1982
66642832 1983 btrfs_abort_transaction(trans, err);
7b8b92af 1984
0b246afa 1985 spin_lock(&fs_info->trans_lock);
66b6135b 1986
25d8c284
MX
1987 /*
1988 * If the transaction is removed from the list, it means this
1989 * transaction has been committed successfully, so it is impossible
1990 * to call the cleanup function.
1991 */
1992 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1993
0b246afa 1994 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1995 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1996 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
1997
1998 /*
1999 * The thread has already released the lockdep map as reader
2000 * already in btrfs_commit_transaction().
2001 */
2002 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
f094ac32
LB
2003 wait_event(cur_trans->writer_wait,
2004 atomic_read(&cur_trans->num_writers) == 1);
2005
0b246afa 2006 spin_lock(&fs_info->trans_lock);
d7096fc3 2007 }
061dde82
FM
2008
2009 /*
2010 * Now that we know no one else is still using the transaction we can
2011 * remove the transaction from the list of transactions. This avoids
2012 * the transaction kthread from cleaning up the transaction while some
2013 * other task is still using it, which could result in a use-after-free
2014 * on things like log trees, as it forces the transaction kthread to
2015 * wait for this transaction to be cleaned up by us.
2016 */
2017 list_del_init(&cur_trans->list);
2018
0b246afa 2019 spin_unlock(&fs_info->trans_lock);
49b25e05 2020
2ff7e61e 2021 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 2022
0b246afa
JM
2023 spin_lock(&fs_info->trans_lock);
2024 if (cur_trans == fs_info->running_transaction)
2025 fs_info->running_transaction = NULL;
2026 spin_unlock(&fs_info->trans_lock);
4a9d8bde 2027
e0228285 2028 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2029 sb_end_intwrite(fs_info->sb);
724e2315
JB
2030 btrfs_put_transaction(cur_trans);
2031 btrfs_put_transaction(cur_trans);
49b25e05 2032
2e4e97ab 2033 trace_btrfs_transaction_commit(fs_info);
49b25e05 2034
49b25e05
JM
2035 if (current->journal_info == trans)
2036 current->journal_info = NULL;
0b246afa 2037 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2038
2039 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2040}
2041
c7cc64a9
DS
2042/*
2043 * Release reserved delayed ref space of all pending block groups of the
2044 * transaction and remove them from the list
2045 */
2046static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2047{
2048 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2049 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2050
2051 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2052 btrfs_delayed_refs_rsv_release(fs_info, 1);
2053 list_del_init(&block_group->bg_list);
2054 }
2055}
2056
88090ad3 2057static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2058{
ce8ea7cc 2059 /*
a0f0cf83 2060 * We use try_to_writeback_inodes_sb() here because if we used
ce8ea7cc
JB
2061 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2062 * Currently are holding the fs freeze lock, if we do an async flush
2063 * we'll do btrfs_join_transaction() and deadlock because we need to
2064 * wait for the fs freeze lock. Using the direct flushing we benefit
2065 * from already being in a transaction and our join_transaction doesn't
2066 * have to re-take the fs freeze lock.
a0f0cf83
FM
2067 *
2068 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2069 * if it can read lock sb->s_umount. It will always be able to lock it,
2070 * except when the filesystem is being unmounted or being frozen, but in
2071 * those cases sync_filesystem() is called, which results in calling
2072 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2073 * Note that we don't call writeback_inodes_sb() directly, because it
2074 * will emit a warning if sb->s_umount is not locked.
ce8ea7cc 2075 */
88090ad3 2076 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
a0f0cf83 2077 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2078 return 0;
2079}
2080
88090ad3 2081static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2082{
88090ad3 2083 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2084 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2085}
2086
28b21c55
FM
2087/*
2088 * Add a pending snapshot associated with the given transaction handle to the
2089 * respective handle. This must be called after the transaction commit started
2090 * and while holding fs_info->trans_lock.
2091 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2092 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2093 * returns an error.
2094 */
2095static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2096{
2097 struct btrfs_transaction *cur_trans = trans->transaction;
2098
2099 if (!trans->pending_snapshot)
2100 return;
2101
2102 lockdep_assert_held(&trans->fs_info->trans_lock);
2103 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2104
2105 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2106}
2107
e55958c8
IA
2108static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2109{
2110 fs_info->commit_stats.commit_count++;
2111 fs_info->commit_stats.last_commit_dur = interval;
2112 fs_info->commit_stats.max_commit_dur =
2113 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2114 fs_info->commit_stats.total_commit_dur += interval;
2115}
2116
3a45bb20 2117int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2118{
3a45bb20 2119 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2120 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2121 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2122 int ret;
e55958c8
IA
2123 ktime_t start_time;
2124 ktime_t interval;
79154b1b 2125
35b814f3 2126 ASSERT(refcount_read(&trans->use_count) == 1);
3e738c53 2127 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
35b814f3 2128
c52cc7b7
JB
2129 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2130
8d25a086 2131 /* Stop the commit early if ->aborted is set */
bf31f87f 2132 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2133 ret = cur_trans->aborted;
3e738c53 2134 goto lockdep_trans_commit_start_release;
25287e0a 2135 }
49b25e05 2136
f45c752b
JB
2137 btrfs_trans_release_metadata(trans);
2138 trans->block_rsv = NULL;
2139
56bec294 2140 /*
e19eb11f
JB
2141 * We only want one transaction commit doing the flushing so we do not
2142 * waste a bunch of time on lock contention on the extent root node.
56bec294 2143 */
e19eb11f
JB
2144 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2145 &cur_trans->delayed_refs.flags)) {
2146 /*
2147 * Make a pass through all the delayed refs we have so far.
2148 * Any running threads may add more while we are here.
2149 */
2150 ret = btrfs_run_delayed_refs(trans, 0);
3e738c53
IA
2151 if (ret)
2152 goto lockdep_trans_commit_start_release;
e19eb11f 2153 }
56bec294 2154
119e80df 2155 btrfs_create_pending_block_groups(trans);
ea658bad 2156
3204d33c 2157 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2158 int run_it = 0;
2159
2160 /* this mutex is also taken before trying to set
2161 * block groups readonly. We need to make sure
2162 * that nobody has set a block group readonly
2163 * after a extents from that block group have been
2164 * allocated for cache files. btrfs_set_block_group_ro
2165 * will wait for the transaction to commit if it
3204d33c 2166 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2167 *
3204d33c
JB
2168 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2169 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2170 * hurt to have more than one go through, but there's no
2171 * real advantage to it either.
2172 */
0b246afa 2173 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2174 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2175 &cur_trans->flags))
1bbc621e 2176 run_it = 1;
0b246afa 2177 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2178
f9cacae3 2179 if (run_it) {
21217054 2180 ret = btrfs_start_dirty_block_groups(trans);
3e738c53
IA
2181 if (ret)
2182 goto lockdep_trans_commit_start_release;
f9cacae3 2183 }
1bbc621e
CM
2184 }
2185
0b246afa 2186 spin_lock(&fs_info->trans_lock);
4a9d8bde 2187 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2188 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2189
28b21c55
FM
2190 add_pending_snapshot(trans);
2191
0b246afa 2192 spin_unlock(&fs_info->trans_lock);
9b64f57d 2193 refcount_inc(&cur_trans->use_count);
ccd467d6 2194
d0c2f4fa
FM
2195 if (trans->in_fsync)
2196 want_state = TRANS_STATE_SUPER_COMMITTED;
3e738c53
IA
2197
2198 btrfs_trans_state_lockdep_release(fs_info,
2199 BTRFS_LOCKDEP_TRANS_COMMIT_START);
d0c2f4fa
FM
2200 ret = btrfs_end_transaction(trans);
2201 wait_for_commit(cur_trans, want_state);
15ee9bc7 2202
bf31f87f 2203 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2204 ret = cur_trans->aborted;
2205
724e2315 2206 btrfs_put_transaction(cur_trans);
15ee9bc7 2207
49b25e05 2208 return ret;
79154b1b 2209 }
4313b399 2210
4a9d8bde 2211 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2212 wake_up(&fs_info->transaction_blocked_wait);
3e738c53 2213 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
bb9c12c9 2214
0b246afa 2215 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2216 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2217
2218 if (trans->in_fsync)
2219 want_state = TRANS_STATE_SUPER_COMMITTED;
2220
ccd467d6
CM
2221 prev_trans = list_entry(cur_trans->list.prev,
2222 struct btrfs_transaction, list);
d0c2f4fa 2223 if (prev_trans->state < want_state) {
9b64f57d 2224 refcount_inc(&prev_trans->use_count);
0b246afa 2225 spin_unlock(&fs_info->trans_lock);
ccd467d6 2226
d0c2f4fa
FM
2227 wait_for_commit(prev_trans, want_state);
2228
bf31f87f 2229 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2230
724e2315 2231 btrfs_put_transaction(prev_trans);
1f9b8c8f 2232 if (ret)
e1489b4f 2233 goto lockdep_release;
a4abeea4 2234 } else {
0b246afa 2235 spin_unlock(&fs_info->trans_lock);
ccd467d6 2236 }
a4abeea4 2237 } else {
0b246afa 2238 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2239 /*
2240 * The previous transaction was aborted and was already removed
2241 * from the list of transactions at fs_info->trans_list. So we
2242 * abort to prevent writing a new superblock that reflects a
2243 * corrupt state (pointing to trees with unwritten nodes/leafs).
2244 */
84961539 2245 if (BTRFS_FS_ERROR(fs_info)) {
cb2d3dad 2246 ret = -EROFS;
e1489b4f 2247 goto lockdep_release;
cb2d3dad 2248 }
ccd467d6 2249 }
15ee9bc7 2250
e55958c8
IA
2251 /*
2252 * Get the time spent on the work done by the commit thread and not
2253 * the time spent waiting on a previous commit
2254 */
2255 start_time = ktime_get_ns();
2256
0860adfd
MX
2257 extwriter_counter_dec(cur_trans, trans->type);
2258
88090ad3 2259 ret = btrfs_start_delalloc_flush(fs_info);
82436617 2260 if (ret)
e1489b4f 2261 goto lockdep_release;
82436617 2262
e5c304e6 2263 ret = btrfs_run_delayed_items(trans);
581227d0 2264 if (ret)
e1489b4f 2265 goto lockdep_release;
15ee9bc7 2266
5a9ba670
IA
2267 /*
2268 * The thread has started/joined the transaction thus it holds the
2269 * lockdep map as a reader. It has to release it before acquiring the
2270 * lockdep map as a writer.
2271 */
2272 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2273 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
581227d0
MX
2274 wait_event(cur_trans->writer_wait,
2275 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2276
581227d0 2277 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2278 ret = btrfs_run_delayed_items(trans);
e1489b4f
IA
2279 if (ret) {
2280 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
ca469637 2281 goto cleanup_transaction;
e1489b4f 2282 }
ca469637 2283
88090ad3 2284 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2285
48778179
FM
2286 /*
2287 * Wait for all ordered extents started by a fast fsync that joined this
2288 * transaction. Otherwise if this transaction commits before the ordered
2289 * extents complete we lose logged data after a power failure.
2290 */
8b53779e 2291 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
48778179
FM
2292 wait_event(cur_trans->pending_wait,
2293 atomic_read(&cur_trans->pending_ordered) == 0);
2294
2ff7e61e 2295 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2296 /*
2297 * Ok now we need to make sure to block out any other joins while we
2298 * commit the transaction. We could have started a join before setting
4a9d8bde 2299 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2300 */
0b246afa 2301 spin_lock(&fs_info->trans_lock);
28b21c55 2302 add_pending_snapshot(trans);
4a9d8bde 2303 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2304 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2305
2306 /*
2307 * The thread has started/joined the transaction thus it holds the
2308 * lockdep map as a reader. It has to release it before acquiring the
2309 * lockdep map as a writer.
2310 */
2311 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2312 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
ed0ca140
JB
2313 wait_event(cur_trans->writer_wait,
2314 atomic_read(&cur_trans->num_writers) == 1);
2315
3e738c53
IA
2316 /*
2317 * Make lockdep happy by acquiring the state locks after
2318 * btrfs_trans_num_writers is released. If we acquired the state locks
2319 * before releasing the btrfs_trans_num_writers lock then lockdep would
2320 * complain because we did not follow the reverse order unlocking rule.
2321 */
2322 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2323 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2324 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2325
fdfbf020
JB
2326 /*
2327 * We've started the commit, clear the flag in case we were triggered to
2328 * do an async commit but somebody else started before the transaction
2329 * kthread could do the work.
2330 */
2331 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2332
bf31f87f 2333 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2334 ret = cur_trans->aborted;
3e738c53 2335 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2336 goto scrub_continue;
2cba30f1 2337 }
7585717f
CM
2338 /*
2339 * the reloc mutex makes sure that we stop
2340 * the balancing code from coming in and moving
2341 * extents around in the middle of the commit
2342 */
0b246afa 2343 mutex_lock(&fs_info->reloc_mutex);
7585717f 2344
42874b3d
MX
2345 /*
2346 * We needn't worry about the delayed items because we will
2347 * deal with them in create_pending_snapshot(), which is the
2348 * core function of the snapshot creation.
2349 */
08d50ca3 2350 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2351 if (ret)
2352 goto unlock_reloc;
3063d29f 2353
42874b3d
MX
2354 /*
2355 * We insert the dir indexes of the snapshots and update the inode
2356 * of the snapshots' parents after the snapshot creation, so there
2357 * are some delayed items which are not dealt with. Now deal with
2358 * them.
2359 *
2360 * We needn't worry that this operation will corrupt the snapshots,
2361 * because all the tree which are snapshoted will be forced to COW
2362 * the nodes and leaves.
2363 */
e5c304e6 2364 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2365 if (ret)
2366 goto unlock_reloc;
16cdcec7 2367
c79a70b1 2368 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2369 if (ret)
2370 goto unlock_reloc;
56bec294 2371
e999376f
CM
2372 /*
2373 * make sure none of the code above managed to slip in a
2374 * delayed item
2375 */
ccdf9b30 2376 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2377
2c90e5d6 2378 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2379
7e4443d9 2380 ret = commit_fs_roots(trans);
56e9f6ea 2381 if (ret)
dfba78dc 2382 goto unlock_reloc;
54aa1f4d 2383
5d4f98a2 2384 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2385 * safe to free the root of tree log roots
2386 */
0b246afa 2387 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2388
0ed4792a
QW
2389 /*
2390 * Since fs roots are all committed, we can get a quite accurate
2391 * new_roots. So let's do quota accounting.
2392 */
460fb20a 2393 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea 2394 if (ret < 0)
dfba78dc 2395 goto unlock_reloc;
0ed4792a 2396
9386d8bc 2397 ret = commit_cowonly_roots(trans);
56e9f6ea 2398 if (ret)
dfba78dc 2399 goto unlock_reloc;
54aa1f4d 2400
2cba30f1
MX
2401 /*
2402 * The tasks which save the space cache and inode cache may also
2403 * update ->aborted, check it.
2404 */
bf31f87f 2405 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2406 ret = cur_trans->aborted;
dfba78dc 2407 goto unlock_reloc;
2cba30f1
MX
2408 }
2409
0b246afa 2410 cur_trans = fs_info->running_transaction;
5d4f98a2 2411
0b246afa
JM
2412 btrfs_set_root_node(&fs_info->tree_root->root_item,
2413 fs_info->tree_root->node);
2414 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2415 &cur_trans->switch_commits);
5d4f98a2 2416
0b246afa
JM
2417 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2418 fs_info->chunk_root->node);
2419 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2420 &cur_trans->switch_commits);
2421
f7238e50
JB
2422 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2423 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2424 fs_info->block_group_root->node);
2425 list_add_tail(&fs_info->block_group_root->dirty_list,
2426 &cur_trans->switch_commits);
2427 }
2428
889bfa39 2429 switch_commit_roots(trans);
5d4f98a2 2430
ce93ec54 2431 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2432 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2433 update_super_roots(fs_info);
e02119d5 2434
0b246afa
JM
2435 btrfs_set_super_log_root(fs_info->super_copy, 0);
2436 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2437 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2438 sizeof(*fs_info->super_copy));
ccd467d6 2439
bbbf7243 2440 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2441
0b246afa
JM
2442 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2443 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2444
4fbcdf66
FM
2445 btrfs_trans_release_chunk_metadata(trans);
2446
dfba78dc
FM
2447 /*
2448 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2449 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2450 * make sure that before we commit our superblock, no other task can
2451 * start a new transaction and commit a log tree before we commit our
2452 * superblock. Anyone trying to commit a log tree locks this mutex before
2453 * writing its superblock.
2454 */
2455 mutex_lock(&fs_info->tree_log_mutex);
2456
0b246afa 2457 spin_lock(&fs_info->trans_lock);
4a9d8bde 2458 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2459 fs_info->running_transaction = NULL;
2460 spin_unlock(&fs_info->trans_lock);
2461 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2462
0b246afa 2463 wake_up(&fs_info->transaction_wait);
3e738c53 2464 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
e6dcd2dc 2465
70458a58 2466 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2467 if (ret) {
0b246afa
JM
2468 btrfs_handle_fs_error(fs_info, ret,
2469 "Error while writing out transaction");
2470 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2471 goto scrub_continue;
49b25e05
JM
2472 }
2473
d3575156
NA
2474 /*
2475 * At this point, we should have written all the tree blocks allocated
2476 * in this transaction. So it's now safe to free the redirtyied extent
2477 * buffers.
2478 */
2479 btrfs_free_redirty_list(cur_trans);
2480
eece6a9c 2481 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2482 /*
2483 * the super is written, we can safely allow the tree-loggers
2484 * to go about their business
2485 */
0b246afa 2486 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2487 if (ret)
2488 goto scrub_continue;
e02119d5 2489
d0c2f4fa
FM
2490 /*
2491 * We needn't acquire the lock here because there is no other task
2492 * which can change it.
2493 */
2494 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2495 wake_up(&cur_trans->commit_wait);
3e738c53 2496 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
d0c2f4fa 2497
5ead2dd0 2498 btrfs_finish_extent_commit(trans);
4313b399 2499
3204d33c 2500 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2501 btrfs_clear_space_info_full(fs_info);
13212b54 2502
0b246afa 2503 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2504 /*
2505 * We needn't acquire the lock here because there is no other task
2506 * which can change it.
2507 */
2508 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2509 wake_up(&cur_trans->commit_wait);
3e738c53 2510 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
3de4586c 2511
0b246afa 2512 spin_lock(&fs_info->trans_lock);
13c5a93e 2513 list_del_init(&cur_trans->list);
0b246afa 2514 spin_unlock(&fs_info->trans_lock);
a4abeea4 2515
724e2315
JB
2516 btrfs_put_transaction(cur_trans);
2517 btrfs_put_transaction(cur_trans);
58176a96 2518
0860adfd 2519 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2520 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2521
2e4e97ab 2522 trace_btrfs_transaction_commit(fs_info);
1abe9b8a 2523
e55958c8
IA
2524 interval = ktime_get_ns() - start_time;
2525
2ff7e61e 2526 btrfs_scrub_continue(fs_info);
a2de733c 2527
9ed74f2d
JB
2528 if (current->journal_info == trans)
2529 current->journal_info = NULL;
2530
2c90e5d6 2531 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2532
e55958c8
IA
2533 update_commit_stats(fs_info, interval);
2534
79154b1b 2535 return ret;
49b25e05 2536
56e9f6ea
DS
2537unlock_reloc:
2538 mutex_unlock(&fs_info->reloc_mutex);
3e738c53 2539 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2540scrub_continue:
3e738c53
IA
2541 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2542 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2ff7e61e 2543 btrfs_scrub_continue(fs_info);
49b25e05 2544cleanup_transaction:
dc60c525 2545 btrfs_trans_release_metadata(trans);
c7cc64a9 2546 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2547 btrfs_trans_release_chunk_metadata(trans);
0e721106 2548 trans->block_rsv = NULL;
0b246afa 2549 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2550 if (current->journal_info == trans)
2551 current->journal_info = NULL;
97cb39bb 2552 cleanup_transaction(trans, ret);
49b25e05
JM
2553
2554 return ret;
e1489b4f
IA
2555
2556lockdep_release:
5a9ba670 2557 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f
IA
2558 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2559 goto cleanup_transaction;
3e738c53
IA
2560
2561lockdep_trans_commit_start_release:
2562 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2563 btrfs_end_transaction(trans);
2564 return ret;
79154b1b
CM
2565}
2566
d352ac68 2567/*
9d1a2a3a
DS
2568 * return < 0 if error
2569 * 0 if there are no more dead_roots at the time of call
2570 * 1 there are more to be processed, call me again
2571 *
2572 * The return value indicates there are certainly more snapshots to delete, but
2573 * if there comes a new one during processing, it may return 0. We don't mind,
2574 * because btrfs_commit_super will poke cleaner thread and it will process it a
2575 * few seconds later.
d352ac68 2576 */
33c44184 2577int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
e9d0b13b 2578{
33c44184 2579 struct btrfs_root *root;
9d1a2a3a 2580 int ret;
5d4f98a2 2581
a4abeea4 2582 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2583 if (list_empty(&fs_info->dead_roots)) {
2584 spin_unlock(&fs_info->trans_lock);
2585 return 0;
2586 }
2587 root = list_first_entry(&fs_info->dead_roots,
2588 struct btrfs_root, root_list);
cfad392b 2589 list_del_init(&root->root_list);
a4abeea4 2590 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2591
4fd786e6 2592 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2593
9d1a2a3a 2594 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2595
9d1a2a3a
DS
2596 if (btrfs_header_backref_rev(root->node) <
2597 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2598 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2599 else
0078a9f9 2600 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2601
dc9492c1 2602 btrfs_put_root(root);
6596a928 2603 return (ret < 0) ? 0 : 1;
e9d0b13b 2604}
572d9ab7 2605
956504a3
JB
2606int __init btrfs_transaction_init(void)
2607{
2608 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2609 sizeof(struct btrfs_trans_handle), 0,
2610 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2611 if (!btrfs_trans_handle_cachep)
2612 return -ENOMEM;
2613 return 0;
2614}
2615
2616void __cold btrfs_transaction_exit(void)
2617{
2618 kmem_cache_destroy(btrfs_trans_handle_cachep);
2619}