btrfs: move defrag related prototypes to their own header
[linux-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
ab3c5c18 9#include <linux/sched/mm.h>
d3c2fdcf 10#include <linux/writeback.h>
5f39d397 11#include <linux/pagemap.h>
5f2cc086 12#include <linux/blkdev.h>
8ea05e3a 13#include <linux/uuid.h>
e55958c8 14#include <linux/timekeeping.h>
602cbe91 15#include "misc.h"
79154b1b
CM
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
925baedd 19#include "locking.h"
e02119d5 20#include "tree-log.h"
733f4fbb 21#include "volumes.h"
8dabb742 22#include "dev-replace.h"
fcebe456 23#include "qgroup.h"
aac0023c 24#include "block-group.h"
9c343784 25#include "space-info.h"
d3575156 26#include "zoned.h"
c7f13d42 27#include "fs.h"
07e81dc9 28#include "accessors.h"
a0231804 29#include "extent-tree.h"
45c40c8f 30#include "root-tree.h"
59b818e0 31#include "defrag.h"
79154b1b 32
956504a3
JB
33static struct kmem_cache *btrfs_trans_handle_cachep;
34
fc7cbcd4 35#define BTRFS_ROOT_TRANS_TAG 0
0f7d52f4 36
61c047b5
QW
37/*
38 * Transaction states and transitions
39 *
40 * No running transaction (fs tree blocks are not modified)
41 * |
42 * | To next stage:
43 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
44 * V
45 * Transaction N [[TRANS_STATE_RUNNING]]
46 * |
47 * | New trans handles can be attached to transaction N by calling all
48 * | start_transaction() variants.
49 * |
50 * | To next stage:
51 * | Call btrfs_commit_transaction() on any trans handle attached to
52 * | transaction N
53 * V
54 * Transaction N [[TRANS_STATE_COMMIT_START]]
55 * |
56 * | Will wait for previous running transaction to completely finish if there
57 * | is one
58 * |
59 * | Then one of the following happes:
60 * | - Wait for all other trans handle holders to release.
61 * | The btrfs_commit_transaction() caller will do the commit work.
62 * | - Wait for current transaction to be committed by others.
63 * | Other btrfs_commit_transaction() caller will do the commit work.
64 * |
65 * | At this stage, only btrfs_join_transaction*() variants can attach
66 * | to this running transaction.
67 * | All other variants will wait for current one to finish and attach to
68 * | transaction N+1.
69 * |
70 * | To next stage:
71 * | Caller is chosen to commit transaction N, and all other trans handle
72 * | haven been released.
73 * V
74 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
75 * |
76 * | The heavy lifting transaction work is started.
77 * | From running delayed refs (modifying extent tree) to creating pending
78 * | snapshots, running qgroups.
79 * | In short, modify supporting trees to reflect modifications of subvolume
80 * | trees.
81 * |
82 * | At this stage, all start_transaction() calls will wait for this
83 * | transaction to finish and attach to transaction N+1.
84 * |
85 * | To next stage:
86 * | Until all supporting trees are updated.
87 * V
88 * Transaction N [[TRANS_STATE_UNBLOCKED]]
89 * | Transaction N+1
90 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
91 * | need to write them back to disk and update |
92 * | super blocks. |
93 * | |
94 * | At this stage, new transaction is allowed to |
95 * | start. |
96 * | All new start_transaction() calls will be |
97 * | attached to transid N+1. |
98 * | |
99 * | To next stage: |
100 * | Until all tree blocks are super blocks are |
101 * | written to block devices |
102 * V |
103 * Transaction N [[TRANS_STATE_COMPLETED]] V
104 * All tree blocks and super blocks are written. Transaction N+1
105 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
106 * data structures will be cleaned up. | Life goes on
107 */
e8c9f186 108static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 109 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
110 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
111 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 112 __TRANS_ATTACH |
a6d155d2
FM
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOSTART),
bcf3a3e7 115 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
116 __TRANS_ATTACH |
117 __TRANS_JOIN |
a6d155d2
FM
118 __TRANS_JOIN_NOLOCK |
119 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
120 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
121 __TRANS_ATTACH |
122 __TRANS_JOIN |
123 __TRANS_JOIN_NOLOCK |
124 __TRANS_JOIN_NOSTART),
bcf3a3e7 125 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
126 __TRANS_ATTACH |
127 __TRANS_JOIN |
a6d155d2
FM
128 __TRANS_JOIN_NOLOCK |
129 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
130};
131
724e2315 132void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 133{
9b64f57d
ER
134 WARN_ON(refcount_read(&transaction->use_count) == 0);
135 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 136 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
137 WARN_ON(!RB_EMPTY_ROOT(
138 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
139 WARN_ON(!RB_EMPTY_ROOT(
140 &transaction->delayed_refs.dirty_extent_root));
1262133b 141 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
142 btrfs_err(transaction->fs_info,
143 "pending csums is %llu",
144 transaction->delayed_refs.pending_csums);
7785a663
FM
145 /*
146 * If any block groups are found in ->deleted_bgs then it's
147 * because the transaction was aborted and a commit did not
148 * happen (things failed before writing the new superblock
149 * and calling btrfs_finish_extent_commit()), so we can not
150 * discard the physical locations of the block groups.
151 */
152 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 153 struct btrfs_block_group *cache;
7785a663
FM
154
155 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 156 struct btrfs_block_group,
7785a663
FM
157 bg_list);
158 list_del_init(&cache->bg_list);
6b7304af 159 btrfs_unfreeze_block_group(cache);
7785a663
FM
160 btrfs_put_block_group(cache);
161 }
bbbf7243 162 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 163 kfree(transaction);
78fae27e 164 }
79154b1b
CM
165}
166
889bfa39 167static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 168{
889bfa39 169 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 170 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
171 struct btrfs_root *root, *tmp;
172
dfba78dc
FM
173 /*
174 * At this point no one can be using this transaction to modify any tree
175 * and no one can start another transaction to modify any tree either.
176 */
177 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
178
9e351cc8 179 down_write(&fs_info->commit_root_sem);
d96b3424
FM
180
181 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
182 fs_info->last_reloc_trans = trans->transid;
183
889bfa39 184 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
185 dirty_list) {
186 list_del_init(&root->dirty_list);
187 free_extent_buffer(root->commit_root);
188 root->commit_root = btrfs_root_node(root);
41e7acd3 189 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 190 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 191 }
2b9dbef2
JB
192
193 /* We can free old roots now. */
889bfa39
JB
194 spin_lock(&cur_trans->dropped_roots_lock);
195 while (!list_empty(&cur_trans->dropped_roots)) {
196 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
197 struct btrfs_root, root_list);
198 list_del_init(&root->root_list);
889bfa39
JB
199 spin_unlock(&cur_trans->dropped_roots_lock);
200 btrfs_free_log(trans, root);
2b9dbef2 201 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 202 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 203 }
889bfa39 204 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62 205
9e351cc8 206 up_write(&fs_info->commit_root_sem);
817d52f8
JB
207}
208
0860adfd
MX
209static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
210 unsigned int type)
211{
212 if (type & TRANS_EXTWRITERS)
213 atomic_inc(&trans->num_extwriters);
214}
215
216static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
217 unsigned int type)
218{
219 if (type & TRANS_EXTWRITERS)
220 atomic_dec(&trans->num_extwriters);
221}
222
223static inline void extwriter_counter_init(struct btrfs_transaction *trans,
224 unsigned int type)
225{
226 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
227}
228
229static inline int extwriter_counter_read(struct btrfs_transaction *trans)
230{
231 return atomic_read(&trans->num_extwriters);
178260b2
MX
232}
233
fb6dea26 234/*
79bd3712
FM
235 * To be called after doing the chunk btree updates right after allocating a new
236 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
237 * chunk after all chunk btree updates and after finishing the second phase of
238 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
239 * group had its chunk item insertion delayed to the second phase.
fb6dea26
JB
240 */
241void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
242{
243 struct btrfs_fs_info *fs_info = trans->fs_info;
244
245 if (!trans->chunk_bytes_reserved)
246 return;
247
fb6dea26 248 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 249 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
250 trans->chunk_bytes_reserved = 0;
251}
252
d352ac68
CM
253/*
254 * either allocate a new transaction or hop into the existing one
255 */
2ff7e61e
JM
256static noinline int join_transaction(struct btrfs_fs_info *fs_info,
257 unsigned int type)
79154b1b
CM
258{
259 struct btrfs_transaction *cur_trans;
a4abeea4 260
19ae4e81 261 spin_lock(&fs_info->trans_lock);
d43317dc 262loop:
49b25e05 263 /* The file system has been taken offline. No new transactions. */
84961539 264 if (BTRFS_FS_ERROR(fs_info)) {
19ae4e81 265 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
266 return -EROFS;
267 }
268
19ae4e81 269 cur_trans = fs_info->running_transaction;
a4abeea4 270 if (cur_trans) {
bf31f87f 271 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 272 spin_unlock(&fs_info->trans_lock);
49b25e05 273 return cur_trans->aborted;
871383be 274 }
4a9d8bde 275 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
276 spin_unlock(&fs_info->trans_lock);
277 return -EBUSY;
278 }
9b64f57d 279 refcount_inc(&cur_trans->use_count);
13c5a93e 280 atomic_inc(&cur_trans->num_writers);
0860adfd 281 extwriter_counter_inc(cur_trans, type);
19ae4e81 282 spin_unlock(&fs_info->trans_lock);
e1489b4f 283 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 284 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
a4abeea4 285 return 0;
79154b1b 286 }
19ae4e81 287 spin_unlock(&fs_info->trans_lock);
a4abeea4 288
354aa0fb
MX
289 /*
290 * If we are ATTACH, we just want to catch the current transaction,
291 * and commit it. If there is no transaction, just return ENOENT.
292 */
293 if (type == TRANS_ATTACH)
294 return -ENOENT;
295
4a9d8bde
MX
296 /*
297 * JOIN_NOLOCK only happens during the transaction commit, so
298 * it is impossible that ->running_transaction is NULL
299 */
300 BUG_ON(type == TRANS_JOIN_NOLOCK);
301
4b5faeac 302 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
303 if (!cur_trans)
304 return -ENOMEM;
d43317dc 305
e1489b4f 306 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 307 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
e1489b4f 308
19ae4e81
JS
309 spin_lock(&fs_info->trans_lock);
310 if (fs_info->running_transaction) {
d43317dc
CM
311 /*
312 * someone started a transaction after we unlocked. Make sure
4a9d8bde 313 * to redo the checks above
d43317dc 314 */
5a9ba670 315 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 316 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 317 kfree(cur_trans);
d43317dc 318 goto loop;
84961539 319 } else if (BTRFS_FS_ERROR(fs_info)) {
e4b50e14 320 spin_unlock(&fs_info->trans_lock);
5a9ba670 321 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 322 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 323 kfree(cur_trans);
7b8b92af 324 return -EROFS;
79154b1b 325 }
d43317dc 326
ab8d0fc4 327 cur_trans->fs_info = fs_info;
48778179
FM
328 atomic_set(&cur_trans->pending_ordered, 0);
329 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 330 atomic_set(&cur_trans->num_writers, 1);
0860adfd 331 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
332 init_waitqueue_head(&cur_trans->writer_wait);
333 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 334 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
335 /*
336 * One for this trans handle, one so it will live on until we
337 * commit the transaction.
338 */
9b64f57d 339 refcount_set(&cur_trans->use_count, 2);
3204d33c 340 cur_trans->flags = 0;
afd48513 341 cur_trans->start_time = ktime_get_seconds();
a4abeea4 342
a099d0fd
AM
343 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
344
5c9d028b 345 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 346 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 347 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
348
349 /*
350 * although the tree mod log is per file system and not per transaction,
351 * the log must never go across transaction boundaries.
352 */
353 smp_mb();
31b1a2bd 354 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 355 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 356 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 357 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 358 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 359
a4abeea4
JB
360 spin_lock_init(&cur_trans->delayed_refs.lock);
361
362 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 363 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 364 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 365 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 366 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 367 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 368 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 369 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 370 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 371 spin_lock_init(&cur_trans->dropped_roots_lock);
d3575156
NA
372 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
373 spin_lock_init(&cur_trans->releasing_ebs_lock);
19ae4e81 374 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 375 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
efb0645b 376 IO_TREE_TRANS_DIRTY_PAGES, NULL);
fe119a6e
NB
377 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
378 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
379 fs_info->generation++;
380 cur_trans->transid = fs_info->generation;
381 fs_info->running_transaction = cur_trans;
49b25e05 382 cur_trans->aborted = 0;
19ae4e81 383 spin_unlock(&fs_info->trans_lock);
15ee9bc7 384
79154b1b
CM
385 return 0;
386}
387
d352ac68 388/*
92a7cc42
QW
389 * This does all the record keeping required to make sure that a shareable root
390 * is properly recorded in a given transaction. This is required to make sure
391 * the old root from before we joined the transaction is deleted when the
392 * transaction commits.
d352ac68 393 */
7585717f 394static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
395 struct btrfs_root *root,
396 int force)
6702ed49 397{
0b246afa 398 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 399 int ret = 0;
0b246afa 400
92a7cc42 401 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 402 root->last_trans < trans->transid) || force) {
4d31778a 403 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 404
7585717f 405 /*
27cdeb70 406 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
407 * we have the reloc mutex held now, so there
408 * is only one writer in this function
409 */
27cdeb70 410 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 411
27cdeb70 412 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
413 * they find our root->last_trans update
414 */
415 smp_wmb();
416
fc7cbcd4 417 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 418 if (root->last_trans == trans->transid && !force) {
fc7cbcd4 419 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
420 return 0;
421 }
fc7cbcd4
DS
422 radix_tree_tag_set(&fs_info->fs_roots_radix,
423 (unsigned long)root->root_key.objectid,
424 BTRFS_ROOT_TRANS_TAG);
425 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
426 root->last_trans = trans->transid;
427
428 /* this is pretty tricky. We don't want to
429 * take the relocation lock in btrfs_record_root_in_trans
430 * unless we're really doing the first setup for this root in
431 * this transaction.
432 *
433 * Normally we'd use root->last_trans as a flag to decide
434 * if we want to take the expensive mutex.
435 *
436 * But, we have to set root->last_trans before we
437 * init the relocation root, otherwise, we trip over warnings
438 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 439 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
440 * fixing up the reloc trees and everyone must wait.
441 *
442 * When this is zero, they can trust root->last_trans and fly
443 * through btrfs_record_root_in_trans without having to take the
444 * lock. smp_wmb() makes sure that all the writes above are
445 * done before we pop in the zero below
446 */
03a7e111 447 ret = btrfs_init_reloc_root(trans, root);
c7548af6 448 smp_mb__before_atomic();
27cdeb70 449 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 450 }
03a7e111 451 return ret;
5d4f98a2 452}
bcc63abb 453
7585717f 454
2b9dbef2
JB
455void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
456 struct btrfs_root *root)
457{
0b246afa 458 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
459 struct btrfs_transaction *cur_trans = trans->transaction;
460
461 /* Add ourselves to the transaction dropped list */
462 spin_lock(&cur_trans->dropped_roots_lock);
463 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
464 spin_unlock(&cur_trans->dropped_roots_lock);
465
466 /* Make sure we don't try to update the root at commit time */
fc7cbcd4
DS
467 spin_lock(&fs_info->fs_roots_radix_lock);
468 radix_tree_tag_clear(&fs_info->fs_roots_radix,
469 (unsigned long)root->root_key.objectid,
470 BTRFS_ROOT_TRANS_TAG);
471 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
472}
473
7585717f
CM
474int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
475 struct btrfs_root *root)
476{
0b246afa 477 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 478 int ret;
0b246afa 479
92a7cc42 480 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
481 return 0;
482
483 /*
27cdeb70 484 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
485 * and barriers
486 */
487 smp_rmb();
488 if (root->last_trans == trans->transid &&
27cdeb70 489 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
490 return 0;
491
0b246afa 492 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 493 ret = record_root_in_trans(trans, root, 0);
0b246afa 494 mutex_unlock(&fs_info->reloc_mutex);
7585717f 495
1409e6cc 496 return ret;
7585717f
CM
497}
498
4a9d8bde
MX
499static inline int is_transaction_blocked(struct btrfs_transaction *trans)
500{
3296bf56 501 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 502 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 503 !TRANS_ABORTED(trans));
4a9d8bde
MX
504}
505
d352ac68
CM
506/* wait for commit against the current transaction to become unblocked
507 * when this is done, it is safe to start a new transaction, but the current
508 * transaction might not be fully on disk.
509 */
2ff7e61e 510static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 511{
f9295749 512 struct btrfs_transaction *cur_trans;
79154b1b 513
0b246afa
JM
514 spin_lock(&fs_info->trans_lock);
515 cur_trans = fs_info->running_transaction;
4a9d8bde 516 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 517 refcount_inc(&cur_trans->use_count);
0b246afa 518 spin_unlock(&fs_info->trans_lock);
72d63ed6 519
3e738c53 520 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
0b246afa 521 wait_event(fs_info->transaction_wait,
501407aa 522 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 523 TRANS_ABORTED(cur_trans));
724e2315 524 btrfs_put_transaction(cur_trans);
a4abeea4 525 } else {
0b246afa 526 spin_unlock(&fs_info->trans_lock);
f9295749 527 }
37d1aeee
CM
528}
529
2ff7e61e 530static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 531{
0b246afa 532 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
533 return 0;
534
92e2f7e3 535 if (type == TRANS_START)
a22285a6 536 return 1;
a4abeea4 537
a22285a6
YZ
538 return 0;
539}
540
20dd2cbf
MX
541static inline bool need_reserve_reloc_root(struct btrfs_root *root)
542{
0b246afa
JM
543 struct btrfs_fs_info *fs_info = root->fs_info;
544
545 if (!fs_info->reloc_ctl ||
92a7cc42 546 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
547 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
548 root->reloc_root)
549 return false;
550
551 return true;
552}
553
08e007d2 554static struct btrfs_trans_handle *
5aed1dd8 555start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
556 unsigned int type, enum btrfs_reserve_flush_enum flush,
557 bool enforce_qgroups)
37d1aeee 558{
0b246afa 559 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 560 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
561 struct btrfs_trans_handle *h;
562 struct btrfs_transaction *cur_trans;
b5009945 563 u64 num_bytes = 0;
c5567237 564 u64 qgroup_reserved = 0;
20dd2cbf 565 bool reloc_reserved = false;
9c343784 566 bool do_chunk_alloc = false;
20dd2cbf 567 int ret;
acce952b 568
84961539 569 if (BTRFS_FS_ERROR(fs_info))
acce952b 570 return ERR_PTR(-EROFS);
2a1eb461 571
46c4e71e 572 if (current->journal_info) {
0860adfd 573 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 574 h = current->journal_info;
b50fff81
DS
575 refcount_inc(&h->use_count);
576 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
577 h->orig_rsv = h->block_rsv;
578 h->block_rsv = NULL;
579 goto got_it;
580 }
b5009945
JB
581
582 /*
583 * Do the reservation before we join the transaction so we can do all
584 * the appropriate flushing if need be.
585 */
003d7c59 586 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
587 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
588 u64 delayed_refs_bytes = 0;
589
0b246afa 590 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
591 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
592 enforce_qgroups);
7174109c
QW
593 if (ret)
594 return ERR_PTR(ret);
c5567237 595
ba2c4d4e
JB
596 /*
597 * We want to reserve all the bytes we may need all at once, so
598 * we only do 1 enospc flushing cycle per transaction start. We
599 * accomplish this by simply assuming we'll do 2 x num_items
600 * worth of delayed refs updates in this trans handle, and
601 * refill that amount for whatever is missing in the reserve.
602 */
2bd36e7b 603 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614 604 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 605 btrfs_block_rsv_full(delayed_refs_rsv) == 0) {
ba2c4d4e
JB
606 delayed_refs_bytes = num_bytes;
607 num_bytes <<= 1;
608 }
609
20dd2cbf
MX
610 /*
611 * Do the reservation for the relocation root creation
612 */
ee39b432 613 if (need_reserve_reloc_root(root)) {
0b246afa 614 num_bytes += fs_info->nodesize;
20dd2cbf
MX
615 reloc_reserved = true;
616 }
617
9270501c 618 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
ba2c4d4e
JB
619 if (ret)
620 goto reserve_fail;
621 if (delayed_refs_bytes) {
622 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
623 delayed_refs_bytes);
624 num_bytes -= delayed_refs_bytes;
625 }
9c343784
JB
626
627 if (rsv->space_info->force_alloc)
628 do_chunk_alloc = true;
ba2c4d4e 629 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 630 !btrfs_block_rsv_full(delayed_refs_rsv)) {
ba2c4d4e
JB
631 /*
632 * Some people call with btrfs_start_transaction(root, 0)
633 * because they can be throttled, but have some other mechanism
634 * for reserving space. We still want these guys to refill the
635 * delayed block_rsv so just add 1 items worth of reservation
636 * here.
637 */
638 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 639 if (ret)
843fcf35 640 goto reserve_fail;
b5009945 641 }
a22285a6 642again:
f2f767e7 643 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
644 if (!h) {
645 ret = -ENOMEM;
646 goto alloc_fail;
647 }
37d1aeee 648
98114659
JB
649 /*
650 * If we are JOIN_NOLOCK we're already committing a transaction and
651 * waiting on this guy, so we don't need to do the sb_start_intwrite
652 * because we're already holding a ref. We need this because we could
653 * have raced in and did an fsync() on a file which can kick a commit
654 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
655 *
656 * If we are ATTACH, it means we just want to catch the current
657 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 658 */
0860adfd 659 if (type & __TRANS_FREEZABLE)
0b246afa 660 sb_start_intwrite(fs_info->sb);
b2b5ef5c 661
2ff7e61e
JM
662 if (may_wait_transaction(fs_info, type))
663 wait_current_trans(fs_info);
a22285a6 664
a4abeea4 665 do {
2ff7e61e 666 ret = join_transaction(fs_info, type);
178260b2 667 if (ret == -EBUSY) {
2ff7e61e 668 wait_current_trans(fs_info);
a6d155d2
FM
669 if (unlikely(type == TRANS_ATTACH ||
670 type == TRANS_JOIN_NOSTART))
178260b2
MX
671 ret = -ENOENT;
672 }
a4abeea4
JB
673 } while (ret == -EBUSY);
674
a43f7f82 675 if (ret < 0)
843fcf35 676 goto join_fail;
0f7d52f4 677
0b246afa 678 cur_trans = fs_info->running_transaction;
a22285a6
YZ
679
680 h->transid = cur_trans->transid;
681 h->transaction = cur_trans;
b50fff81 682 refcount_set(&h->use_count, 1);
64b63580 683 h->fs_info = root->fs_info;
7174109c 684
a698d075 685 h->type = type;
ea658bad 686 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 687
a22285a6 688 smp_mb();
3296bf56 689 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 690 may_wait_transaction(fs_info, type)) {
abdd2e80 691 current->journal_info = h;
3a45bb20 692 btrfs_commit_transaction(h);
a22285a6
YZ
693 goto again;
694 }
695
b5009945 696 if (num_bytes) {
0b246afa 697 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 698 h->transid, num_bytes, 1);
0b246afa 699 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 700 h->bytes_reserved = num_bytes;
20dd2cbf 701 h->reloc_reserved = reloc_reserved;
a22285a6 702 }
9ed74f2d 703
2a1eb461 704got_it:
bcf3a3e7 705 if (!current->journal_info)
a22285a6 706 current->journal_info = h;
fcc99734 707
9c343784
JB
708 /*
709 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
710 * ALLOC_FORCE the first run through, and then we won't allocate for
711 * anybody else who races in later. We don't care about the return
712 * value here.
713 */
714 if (do_chunk_alloc && num_bytes) {
715 u64 flags = h->block_rsv->space_info->flags;
716
717 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
718 CHUNK_ALLOC_NO_FORCE);
719 }
720
fcc99734
QW
721 /*
722 * btrfs_record_root_in_trans() needs to alloc new extents, and may
723 * call btrfs_join_transaction() while we're also starting a
724 * transaction.
725 *
726 * Thus it need to be called after current->journal_info initialized,
727 * or we can deadlock.
728 */
68075ea8
JB
729 ret = btrfs_record_root_in_trans(h, root);
730 if (ret) {
731 /*
732 * The transaction handle is fully initialized and linked with
733 * other structures so it needs to be ended in case of errors,
734 * not just freed.
735 */
736 btrfs_end_transaction(h);
737 return ERR_PTR(ret);
738 }
fcc99734 739
79154b1b 740 return h;
843fcf35
MX
741
742join_fail:
0860adfd 743 if (type & __TRANS_FREEZABLE)
0b246afa 744 sb_end_intwrite(fs_info->sb);
843fcf35
MX
745 kmem_cache_free(btrfs_trans_handle_cachep, h);
746alloc_fail:
747 if (num_bytes)
2ff7e61e 748 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 749 num_bytes, NULL);
843fcf35 750reserve_fail:
733e03a0 751 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 752 return ERR_PTR(ret);
79154b1b
CM
753}
754
f9295749 755struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 756 unsigned int num_items)
f9295749 757{
08e007d2 758 return start_transaction(root, num_items, TRANS_START,
003d7c59 759 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 760}
003d7c59 761
8eab77ff
FM
762struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
763 struct btrfs_root *root,
7f9fe614 764 unsigned int num_items)
8eab77ff 765{
7f9fe614
JB
766 return start_transaction(root, num_items, TRANS_START,
767 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 768}
8407aa46 769
7a7eaa40 770struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 771{
003d7c59
JM
772 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
773 true);
f9295749
CM
774}
775
8d510121 776struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 777{
575a75d6 778 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 779 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
780}
781
a6d155d2
FM
782/*
783 * Similar to regular join but it never starts a transaction when none is
784 * running or after waiting for the current one to finish.
785 */
786struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
787{
788 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
789 BTRFS_RESERVE_NO_FLUSH, true);
790}
791
d4edf39b
MX
792/*
793 * btrfs_attach_transaction() - catch the running transaction
794 *
795 * It is used when we want to commit the current the transaction, but
796 * don't want to start a new one.
797 *
798 * Note: If this function return -ENOENT, it just means there is no
799 * running transaction. But it is possible that the inactive transaction
800 * is still in the memory, not fully on disk. If you hope there is no
801 * inactive transaction in the fs when -ENOENT is returned, you should
802 * invoke
803 * btrfs_attach_transaction_barrier()
804 */
354aa0fb 805struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 806{
575a75d6 807 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 808 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
809}
810
d4edf39b 811/*
90b6d283 812 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 813 *
52042d8e 814 * It is similar to the above function, the difference is this one
d4edf39b
MX
815 * will wait for all the inactive transactions until they fully
816 * complete.
817 */
818struct btrfs_trans_handle *
819btrfs_attach_transaction_barrier(struct btrfs_root *root)
820{
821 struct btrfs_trans_handle *trans;
822
575a75d6 823 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 824 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 825 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 826 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
827
828 return trans;
829}
830
d0c2f4fa
FM
831/* Wait for a transaction commit to reach at least the given state. */
832static noinline void wait_for_commit(struct btrfs_transaction *commit,
833 const enum btrfs_trans_state min_state)
89ce8a63 834{
5fd76bf3
OS
835 struct btrfs_fs_info *fs_info = commit->fs_info;
836 u64 transid = commit->transid;
837 bool put = false;
838
3e738c53
IA
839 /*
840 * At the moment this function is called with min_state either being
841 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
842 */
843 if (min_state == TRANS_STATE_COMPLETED)
844 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
845 else
846 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
847
5fd76bf3
OS
848 while (1) {
849 wait_event(commit->commit_wait, commit->state >= min_state);
850 if (put)
851 btrfs_put_transaction(commit);
852
853 if (min_state < TRANS_STATE_COMPLETED)
854 break;
855
856 /*
857 * A transaction isn't really completed until all of the
858 * previous transactions are completed, but with fsync we can
859 * end up with SUPER_COMMITTED transactions before a COMPLETED
860 * transaction. Wait for those.
861 */
862
863 spin_lock(&fs_info->trans_lock);
864 commit = list_first_entry_or_null(&fs_info->trans_list,
865 struct btrfs_transaction,
866 list);
867 if (!commit || commit->transid > transid) {
868 spin_unlock(&fs_info->trans_lock);
869 break;
870 }
871 refcount_inc(&commit->use_count);
872 put = true;
873 spin_unlock(&fs_info->trans_lock);
874 }
89ce8a63
CM
875}
876
2ff7e61e 877int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
878{
879 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 880 int ret = 0;
46204592 881
46204592 882 if (transid) {
0b246afa 883 if (transid <= fs_info->last_trans_committed)
a4abeea4 884 goto out;
46204592
SW
885
886 /* find specified transaction */
0b246afa
JM
887 spin_lock(&fs_info->trans_lock);
888 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
889 if (t->transid == transid) {
890 cur_trans = t;
9b64f57d 891 refcount_inc(&cur_trans->use_count);
8cd2807f 892 ret = 0;
46204592
SW
893 break;
894 }
8cd2807f
MX
895 if (t->transid > transid) {
896 ret = 0;
46204592 897 break;
8cd2807f 898 }
46204592 899 }
0b246afa 900 spin_unlock(&fs_info->trans_lock);
42383020
SW
901
902 /*
903 * The specified transaction doesn't exist, or we
904 * raced with btrfs_commit_transaction
905 */
906 if (!cur_trans) {
0b246afa 907 if (transid > fs_info->last_trans_committed)
42383020 908 ret = -EINVAL;
8cd2807f 909 goto out;
42383020 910 }
46204592
SW
911 } else {
912 /* find newest transaction that is committing | committed */
0b246afa
JM
913 spin_lock(&fs_info->trans_lock);
914 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 915 list) {
4a9d8bde
MX
916 if (t->state >= TRANS_STATE_COMMIT_START) {
917 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 918 break;
46204592 919 cur_trans = t;
9b64f57d 920 refcount_inc(&cur_trans->use_count);
46204592
SW
921 break;
922 }
923 }
0b246afa 924 spin_unlock(&fs_info->trans_lock);
46204592 925 if (!cur_trans)
a4abeea4 926 goto out; /* nothing committing|committed */
46204592
SW
927 }
928
d0c2f4fa 929 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 930 btrfs_put_transaction(cur_trans);
a4abeea4 931out:
46204592
SW
932 return ret;
933}
934
2ff7e61e 935void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 936{
92e2f7e3 937 wait_current_trans(fs_info);
37d1aeee
CM
938}
939
8a8f4dea 940static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 941{
2ff7e61e 942 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 943
64403612 944 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 945 return true;
36ba022a 946
2ff7e61e 947 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
948}
949
a2633b6a 950bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
951{
952 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 953
3296bf56 954 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 955 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 956 return true;
8929ecfa 957
2ff7e61e 958 return should_end_transaction(trans);
8929ecfa
YZ
959}
960
dc60c525
NB
961static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
962
0e34693f 963{
dc60c525
NB
964 struct btrfs_fs_info *fs_info = trans->fs_info;
965
0e34693f
NB
966 if (!trans->block_rsv) {
967 ASSERT(!trans->bytes_reserved);
968 return;
969 }
970
971 if (!trans->bytes_reserved)
972 return;
973
974 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
975 trace_btrfs_space_reservation(fs_info, "transaction",
976 trans->transid, trans->bytes_reserved, 0);
977 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 978 trans->bytes_reserved, NULL);
0e34693f
NB
979 trans->bytes_reserved = 0;
980}
981
89ce8a63 982static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 983 int throttle)
79154b1b 984{
3a45bb20 985 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 986 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 987 int err = 0;
c3e69d58 988
b50fff81
DS
989 if (refcount_read(&trans->use_count) > 1) {
990 refcount_dec(&trans->use_count);
2a1eb461
JB
991 trans->block_rsv = trans->orig_rsv;
992 return 0;
993 }
994
dc60c525 995 btrfs_trans_release_metadata(trans);
4c13d758 996 trans->block_rsv = NULL;
c5567237 997
119e80df 998 btrfs_create_pending_block_groups(trans);
ea658bad 999
4fbcdf66
FM
1000 btrfs_trans_release_chunk_metadata(trans);
1001
0860adfd 1002 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1003 sb_end_intwrite(info->sb);
6df7881a 1004
8929ecfa 1005 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
1006 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1007 atomic_dec(&cur_trans->num_writers);
0860adfd 1008 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 1009
093258e6 1010 cond_wake_up(&cur_trans->writer_wait);
e1489b4f 1011
5a9ba670 1012 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
e1489b4f
IA
1013 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1014
724e2315 1015 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
1016
1017 if (current->journal_info == trans)
1018 current->journal_info = NULL;
ab78c84d 1019
24bbcf04 1020 if (throttle)
2ff7e61e 1021 btrfs_run_delayed_iputs(info);
24bbcf04 1022
84961539 1023 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
4e121c06 1024 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1025 if (TRANS_ABORTED(trans))
1026 err = trans->aborted;
1027 else
1028 err = -EROFS;
4e121c06 1029 }
49b25e05 1030
4edc2ca3
DJ
1031 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1032 return err;
79154b1b
CM
1033}
1034
3a45bb20 1035int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1036{
3a45bb20 1037 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1038}
1039
3a45bb20 1040int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1041{
3a45bb20 1042 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1043}
1044
d352ac68
CM
1045/*
1046 * when btree blocks are allocated, they have some corresponding bits set for
1047 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1048 * those extents are sent to disk but does not wait on them
d352ac68 1049 */
2ff7e61e 1050int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1051 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1052{
777e6bd7 1053 int err = 0;
7c4452b9 1054 int werr = 0;
0b246afa 1055 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1056 struct extent_state *cached_state = NULL;
777e6bd7 1057 u64 start = 0;
5f39d397 1058 u64 end;
7c4452b9 1059
6300463b 1060 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1061 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1062 mark, &cached_state)) {
663dfbb0
FM
1063 bool wait_writeback = false;
1064
1065 err = convert_extent_bit(dirty_pages, start, end,
1066 EXTENT_NEED_WAIT,
210aa277 1067 mark, &cached_state);
663dfbb0
FM
1068 /*
1069 * convert_extent_bit can return -ENOMEM, which is most of the
1070 * time a temporary error. So when it happens, ignore the error
1071 * and wait for writeback of this range to finish - because we
1072 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1073 * to __btrfs_wait_marked_extents() would not know that
1074 * writeback for this range started and therefore wouldn't
1075 * wait for it to finish - we don't want to commit a
1076 * superblock that points to btree nodes/leafs for which
1077 * writeback hasn't finished yet (and without errors).
663dfbb0 1078 * We cleanup any entries left in the io tree when committing
41e7acd3 1079 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1080 */
1081 if (err == -ENOMEM) {
1082 err = 0;
1083 wait_writeback = true;
1084 }
1085 if (!err)
1086 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1087 if (err)
1088 werr = err;
663dfbb0
FM
1089 else if (wait_writeback)
1090 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1091 free_extent_state(cached_state);
663dfbb0 1092 cached_state = NULL;
1728366e
JB
1093 cond_resched();
1094 start = end + 1;
7c4452b9 1095 }
6300463b 1096 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1097 return werr;
1098}
1099
1100/*
1101 * when btree blocks are allocated, they have some corresponding bits set for
1102 * them in one of two extent_io trees. This is used to make sure all of
1103 * those extents are on disk for transaction or log commit. We wait
1104 * on all the pages and clear them from the dirty pages state tree
1105 */
bf89d38f
JM
1106static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1107 struct extent_io_tree *dirty_pages)
690587d1 1108{
690587d1
CM
1109 int err = 0;
1110 int werr = 0;
0b246afa 1111 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1112 struct extent_state *cached_state = NULL;
690587d1
CM
1113 u64 start = 0;
1114 u64 end;
777e6bd7 1115
1728366e 1116 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1117 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1118 /*
1119 * Ignore -ENOMEM errors returned by clear_extent_bit().
1120 * When committing the transaction, we'll remove any entries
1121 * left in the io tree. For a log commit, we don't remove them
1122 * after committing the log because the tree can be accessed
1123 * concurrently - we do it only at transaction commit time when
41e7acd3 1124 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1125 */
1126 err = clear_extent_bit(dirty_pages, start, end,
bd015294 1127 EXTENT_NEED_WAIT, &cached_state);
663dfbb0
FM
1128 if (err == -ENOMEM)
1129 err = 0;
1130 if (!err)
1131 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1132 if (err)
1133 werr = err;
e38e2ed7
FM
1134 free_extent_state(cached_state);
1135 cached_state = NULL;
1728366e
JB
1136 cond_resched();
1137 start = end + 1;
777e6bd7 1138 }
7c4452b9
CM
1139 if (err)
1140 werr = err;
bf89d38f
JM
1141 return werr;
1142}
656f30db 1143
b9fae2eb 1144static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1145 struct extent_io_tree *dirty_pages)
1146{
1147 bool errors = false;
1148 int err;
656f30db 1149
bf89d38f
JM
1150 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1151 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1152 errors = true;
1153
1154 if (errors && !err)
1155 err = -EIO;
1156 return err;
1157}
656f30db 1158
bf89d38f
JM
1159int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1160{
1161 struct btrfs_fs_info *fs_info = log_root->fs_info;
1162 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1163 bool errors = false;
1164 int err;
656f30db 1165
bf89d38f
JM
1166 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1167
1168 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1169 if ((mark & EXTENT_DIRTY) &&
1170 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1171 errors = true;
1172
1173 if ((mark & EXTENT_NEW) &&
1174 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1175 errors = true;
1176
1177 if (errors && !err)
1178 err = -EIO;
1179 return err;
79154b1b
CM
1180}
1181
690587d1 1182/*
c9b577c0
NB
1183 * When btree blocks are allocated the corresponding extents are marked dirty.
1184 * This function ensures such extents are persisted on disk for transaction or
1185 * log commit.
1186 *
1187 * @trans: transaction whose dirty pages we'd like to write
690587d1 1188 */
70458a58 1189static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1190{
1191 int ret;
1192 int ret2;
c9b577c0 1193 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1194 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1195 struct blk_plug plug;
690587d1 1196
c6adc9cc 1197 blk_start_plug(&plug);
c9b577c0 1198 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1199 blk_finish_plug(&plug);
bf89d38f 1200 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1201
41e7acd3 1202 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1203
bf0da8c1
CM
1204 if (ret)
1205 return ret;
c9b577c0 1206 else if (ret2)
bf0da8c1 1207 return ret2;
c9b577c0
NB
1208 else
1209 return 0;
d0c803c4
CM
1210}
1211
d352ac68
CM
1212/*
1213 * this is used to update the root pointer in the tree of tree roots.
1214 *
1215 * But, in the case of the extent allocation tree, updating the root
1216 * pointer may allocate blocks which may change the root of the extent
1217 * allocation tree.
1218 *
1219 * So, this loops and repeats and makes sure the cowonly root didn't
1220 * change while the root pointer was being updated in the metadata.
1221 */
0b86a832
CM
1222static int update_cowonly_root(struct btrfs_trans_handle *trans,
1223 struct btrfs_root *root)
79154b1b
CM
1224{
1225 int ret;
0b86a832 1226 u64 old_root_bytenr;
86b9f2ec 1227 u64 old_root_used;
0b246afa
JM
1228 struct btrfs_fs_info *fs_info = root->fs_info;
1229 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1230
86b9f2ec 1231 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1232
d397712b 1233 while (1) {
0b86a832 1234 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1235 if (old_root_bytenr == root->node->start &&
ea526d18 1236 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1237 break;
87ef2bb4 1238
5d4f98a2 1239 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1240 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1241 &root->root_key,
1242 &root->root_item);
49b25e05
JM
1243 if (ret)
1244 return ret;
56bec294 1245
86b9f2ec 1246 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1247 }
276e680d 1248
0b86a832
CM
1249 return 0;
1250}
1251
d352ac68
CM
1252/*
1253 * update all the cowonly tree roots on disk
49b25e05
JM
1254 *
1255 * The error handling in this function may not be obvious. Any of the
1256 * failures will cause the file system to go offline. We still need
1257 * to clean up the delayed refs.
d352ac68 1258 */
9386d8bc 1259static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1260{
9386d8bc 1261 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1262 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1263 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1264 struct list_head *next;
84234f3a 1265 struct extent_buffer *eb;
56bec294 1266 int ret;
84234f3a 1267
dfba78dc
FM
1268 /*
1269 * At this point no one can be using this transaction to modify any tree
1270 * and no one can start another transaction to modify any tree either.
1271 */
1272 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1273
84234f3a 1274 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1275 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1276 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1277 btrfs_tree_unlock(eb);
1278 free_extent_buffer(eb);
0b86a832 1279
49b25e05
JM
1280 if (ret)
1281 return ret;
87ef2bb4 1282
196c9d8d 1283 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1284 if (ret)
1285 return ret;
2b584c68 1286 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1287 if (ret)
1288 return ret;
280f8bd2 1289 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1290 if (ret)
1291 return ret;
546adb0d 1292
bbebb3e0 1293 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1294 if (ret)
1295 return ret;
1296
ea526d18 1297again:
d397712b 1298 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1299 struct btrfs_root *root;
0b86a832
CM
1300 next = fs_info->dirty_cowonly_roots.next;
1301 list_del_init(next);
1302 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1303 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1304
826582ca
JB
1305 list_add_tail(&root->dirty_list,
1306 &trans->transaction->switch_commits);
49b25e05
JM
1307 ret = update_cowonly_root(trans, root);
1308 if (ret)
1309 return ret;
79154b1b 1310 }
276e680d 1311
488bc2a2
JB
1312 /* Now flush any delayed refs generated by updating all of the roots */
1313 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1314 if (ret)
1315 return ret;
1316
1bbc621e 1317 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1318 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1319 if (ret)
1320 return ret;
488bc2a2
JB
1321
1322 /*
1323 * We're writing the dirty block groups, which could generate
1324 * delayed refs, which could generate more dirty block groups,
1325 * so we want to keep this flushing in this loop to make sure
1326 * everything gets run.
1327 */
c79a70b1 1328 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1329 if (ret)
1330 return ret;
1331 }
1332
1333 if (!list_empty(&fs_info->dirty_cowonly_roots))
1334 goto again;
1335
9f6cbcbb
DS
1336 /* Update dev-replace pointer once everything is committed */
1337 fs_info->dev_replace.committed_cursor_left =
1338 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1339
79154b1b
CM
1340 return 0;
1341}
1342
b4be6aef
JB
1343/*
1344 * If we had a pending drop we need to see if there are any others left in our
1345 * dead roots list, and if not clear our bit and wake any waiters.
1346 */
1347void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1348{
1349 /*
1350 * We put the drop in progress roots at the front of the list, so if the
1351 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1352 * up.
1353 */
1354 spin_lock(&fs_info->trans_lock);
1355 if (!list_empty(&fs_info->dead_roots)) {
1356 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1357 struct btrfs_root,
1358 root_list);
1359 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1360 spin_unlock(&fs_info->trans_lock);
1361 return;
1362 }
1363 }
1364 spin_unlock(&fs_info->trans_lock);
1365
1366 btrfs_wake_unfinished_drop(fs_info);
1367}
1368
d352ac68
CM
1369/*
1370 * dead roots are old snapshots that need to be deleted. This allocates
1371 * a dirty root struct and adds it into the list of dead roots that need to
1372 * be deleted
1373 */
cfad392b 1374void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1375{
0b246afa
JM
1376 struct btrfs_fs_info *fs_info = root->fs_info;
1377
1378 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1379 if (list_empty(&root->root_list)) {
1380 btrfs_grab_root(root);
b4be6aef
JB
1381
1382 /* We want to process the partially complete drops first. */
1383 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1384 list_add(&root->root_list, &fs_info->dead_roots);
1385 else
1386 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1387 }
0b246afa 1388 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1389}
1390
d352ac68 1391/*
dfba78dc
FM
1392 * Update each subvolume root and its relocation root, if it exists, in the tree
1393 * of tree roots. Also free log roots if they exist.
d352ac68 1394 */
7e4443d9 1395static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1396{
7e4443d9 1397 struct btrfs_fs_info *fs_info = trans->fs_info;
fc7cbcd4
DS
1398 struct btrfs_root *gang[8];
1399 int i;
1400 int ret;
54aa1f4d 1401
dfba78dc
FM
1402 /*
1403 * At this point no one can be using this transaction to modify any tree
1404 * and no one can start another transaction to modify any tree either.
1405 */
1406 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1407
fc7cbcd4
DS
1408 spin_lock(&fs_info->fs_roots_radix_lock);
1409 while (1) {
1410 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1411 (void **)gang, 0,
1412 ARRAY_SIZE(gang),
1413 BTRFS_ROOT_TRANS_TAG);
1414 if (ret == 0)
1415 break;
1416 for (i = 0; i < ret; i++) {
1417 struct btrfs_root *root = gang[i];
1418 int ret2;
1419
1420 /*
1421 * At this point we can neither have tasks logging inodes
1422 * from a root nor trying to commit a log tree.
1423 */
1424 ASSERT(atomic_read(&root->log_writers) == 0);
1425 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1426 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1427
1428 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1429 (unsigned long)root->root_key.objectid,
1430 BTRFS_ROOT_TRANS_TAG);
1431 spin_unlock(&fs_info->fs_roots_radix_lock);
1432
1433 btrfs_free_log(trans, root);
1434 ret2 = btrfs_update_reloc_root(trans, root);
1435 if (ret2)
1436 return ret2;
1437
1438 /* see comments in should_cow_block() */
1439 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1440 smp_mb__after_atomic();
1441
1442 if (root->commit_root != root->node) {
1443 list_add_tail(&root->dirty_list,
1444 &trans->transaction->switch_commits);
1445 btrfs_set_root_node(&root->root_item,
1446 root->node);
1447 }
48b36a60 1448
fc7cbcd4
DS
1449 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1450 &root->root_key,
1451 &root->root_item);
1452 if (ret2)
1453 return ret2;
1454 spin_lock(&fs_info->fs_roots_radix_lock);
1455 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1456 }
1457 }
fc7cbcd4 1458 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1459 return 0;
0f7d52f4
CM
1460}
1461
d352ac68 1462/*
de78b51a
ES
1463 * defrag a given btree.
1464 * Every leaf in the btree is read and defragged.
d352ac68 1465 */
de78b51a 1466int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1467{
1468 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1469 struct btrfs_trans_handle *trans;
8929ecfa 1470 int ret;
e9d0b13b 1471
27cdeb70 1472 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1473 return 0;
8929ecfa 1474
6b80053d 1475 while (1) {
8929ecfa 1476 trans = btrfs_start_transaction(root, 0);
6819703f
DS
1477 if (IS_ERR(trans)) {
1478 ret = PTR_ERR(trans);
1479 break;
1480 }
8929ecfa 1481
de78b51a 1482 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1483
3a45bb20 1484 btrfs_end_transaction(trans);
2ff7e61e 1485 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1486 cond_resched();
1487
ab8d0fc4 1488 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1489 break;
210549eb 1490
ab8d0fc4
JM
1491 if (btrfs_defrag_cancelled(info)) {
1492 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1493 ret = -EAGAIN;
1494 break;
1495 }
e9d0b13b 1496 }
27cdeb70 1497 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1498 return ret;
e9d0b13b
CM
1499}
1500
6426c7ad
QW
1501/*
1502 * Do all special snapshot related qgroup dirty hack.
1503 *
1504 * Will do all needed qgroup inherit and dirty hack like switch commit
1505 * roots inside one transaction and write all btree into disk, to make
1506 * qgroup works.
1507 */
1508static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1509 struct btrfs_root *src,
1510 struct btrfs_root *parent,
1511 struct btrfs_qgroup_inherit *inherit,
1512 u64 dst_objectid)
1513{
1514 struct btrfs_fs_info *fs_info = src->fs_info;
1515 int ret;
1516
1517 /*
1518 * Save some performance in the case that qgroups are not
1519 * enabled. If this check races with the ioctl, rescan will
1520 * kick in anyway.
1521 */
9ea6e2b5 1522 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1523 return 0;
6426c7ad 1524
4d31778a 1525 /*
52042d8e 1526 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1527 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1528 * recorded root will never be updated again, causing an outdated root
1529 * item.
1530 */
1c442d22
JB
1531 ret = record_root_in_trans(trans, src, 1);
1532 if (ret)
1533 return ret;
4d31778a 1534
2a4d84c1
JB
1535 /*
1536 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1537 * src root, so we must run the delayed refs here.
1538 *
1539 * However this isn't particularly fool proof, because there's no
1540 * synchronization keeping us from changing the tree after this point
1541 * before we do the qgroup_inherit, or even from making changes while
1542 * we're doing the qgroup_inherit. But that's a problem for the future,
1543 * for now flush the delayed refs to narrow the race window where the
1544 * qgroup counters could end up wrong.
1545 */
1546 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1547 if (ret) {
1548 btrfs_abort_transaction(trans, ret);
44365827 1549 return ret;
2a4d84c1
JB
1550 }
1551
7e4443d9 1552 ret = commit_fs_roots(trans);
6426c7ad
QW
1553 if (ret)
1554 goto out;
460fb20a 1555 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1556 if (ret < 0)
1557 goto out;
1558
1559 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1560 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1561 inherit);
1562 if (ret < 0)
1563 goto out;
1564
1565 /*
1566 * Now we do a simplified commit transaction, which will:
1567 * 1) commit all subvolume and extent tree
1568 * To ensure all subvolume and extent tree have a valid
1569 * commit_root to accounting later insert_dir_item()
1570 * 2) write all btree blocks onto disk
1571 * This is to make sure later btree modification will be cowed
1572 * Or commit_root can be populated and cause wrong qgroup numbers
1573 * In this simplified commit, we don't really care about other trees
1574 * like chunk and root tree, as they won't affect qgroup.
1575 * And we don't write super to avoid half committed status.
1576 */
9386d8bc 1577 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1578 if (ret)
1579 goto out;
889bfa39 1580 switch_commit_roots(trans);
70458a58 1581 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1582 if (ret)
f7af3934 1583 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1584 "Error while writing out transaction for qgroup");
1585
1586out:
6426c7ad
QW
1587 /*
1588 * Force parent root to be updated, as we recorded it before so its
1589 * last_trans == cur_transid.
1590 * Or it won't be committed again onto disk after later
1591 * insert_dir_item()
1592 */
1593 if (!ret)
1c442d22 1594 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1595 return ret;
1596}
1597
d352ac68
CM
1598/*
1599 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1600 * transaction commit. This does the actual creation.
1601 *
1602 * Note:
1603 * If the error which may affect the commitment of the current transaction
1604 * happens, we should return the error number. If the error which just affect
1605 * the creation of the pending snapshots, just return 0.
d352ac68 1606 */
80b6794d 1607static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1608 struct btrfs_pending_snapshot *pending)
1609{
08d50ca3
NB
1610
1611 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1612 struct btrfs_key key;
80b6794d 1613 struct btrfs_root_item *new_root_item;
3063d29f
CM
1614 struct btrfs_root *tree_root = fs_info->tree_root;
1615 struct btrfs_root *root = pending->root;
6bdb72de 1616 struct btrfs_root *parent_root;
98c9942a 1617 struct btrfs_block_rsv *rsv;
ab3c5c18 1618 struct inode *parent_inode = pending->dir;
42874b3d
MX
1619 struct btrfs_path *path;
1620 struct btrfs_dir_item *dir_item;
3063d29f 1621 struct extent_buffer *tmp;
925baedd 1622 struct extent_buffer *old;
95582b00 1623 struct timespec64 cur_time;
aec8030a 1624 int ret = 0;
d68fc57b 1625 u64 to_reserve = 0;
6bdb72de 1626 u64 index = 0;
a22285a6 1627 u64 objectid;
b83cc969 1628 u64 root_flags;
ab3c5c18
STD
1629 unsigned int nofs_flags;
1630 struct fscrypt_name fname;
3063d29f 1631
8546b570
DS
1632 ASSERT(pending->path);
1633 path = pending->path;
42874b3d 1634
b0c0ea63
DS
1635 ASSERT(pending->root_item);
1636 new_root_item = pending->root_item;
a22285a6 1637
ab3c5c18
STD
1638 /*
1639 * We're inside a transaction and must make sure that any potential
1640 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1641 * filesystem.
1642 */
1643 nofs_flags = memalloc_nofs_save();
1644 pending->error = fscrypt_setup_filename(parent_inode,
1645 &pending->dentry->d_name, 0,
1646 &fname);
1647 memalloc_nofs_restore(nofs_flags);
1648 if (pending->error)
1649 goto free_pending;
ab3c5c18 1650
543068a2 1651 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1652 if (pending->error)
ab3c5c18 1653 goto free_fname;
3063d29f 1654
d6726335
QW
1655 /*
1656 * Make qgroup to skip current new snapshot's qgroupid, as it is
1657 * accounted by later btrfs_qgroup_inherit().
1658 */
1659 btrfs_set_skip_qgroup(trans, objectid);
1660
147d256e 1661 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1662
1663 if (to_reserve > 0) {
9270501c 1664 pending->error = btrfs_block_rsv_add(fs_info,
aec8030a
MX
1665 &pending->block_rsv,
1666 to_reserve,
1667 BTRFS_RESERVE_NO_FLUSH);
1668 if (pending->error)
d6726335 1669 goto clear_skip_qgroup;
d68fc57b
YZ
1670 }
1671
3063d29f 1672 key.objectid = objectid;
a22285a6
YZ
1673 key.offset = (u64)-1;
1674 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1675
6fa9700e 1676 rsv = trans->block_rsv;
a22285a6 1677 trans->block_rsv = &pending->block_rsv;
2382c5cc 1678 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1679 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1680 trans->transid,
1681 trans->bytes_reserved, 1);
a22285a6 1682 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1683 ret = record_root_in_trans(trans, parent_root, 0);
1684 if (ret)
1685 goto fail;
c2050a45 1686 cur_time = current_time(parent_inode);
04b285f3 1687
3063d29f
CM
1688 /*
1689 * insert the directory item
1690 */
877574e2 1691 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1692 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1693
1694 /* check if there is a file/dir which has the same name. */
1695 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1696 btrfs_ino(BTRFS_I(parent_inode)),
6db75318 1697 &fname.disk_name, 0);
42874b3d 1698 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1699 pending->error = -EEXIST;
aec8030a 1700 goto dir_item_existed;
42874b3d
MX
1701 } else if (IS_ERR(dir_item)) {
1702 ret = PTR_ERR(dir_item);
66642832 1703 btrfs_abort_transaction(trans, ret);
8732d44f 1704 goto fail;
79787eaa 1705 }
42874b3d 1706 btrfs_release_path(path);
52c26179 1707
e999376f
CM
1708 /*
1709 * pull in the delayed directory update
1710 * and the delayed inode item
1711 * otherwise we corrupt the FS during
1712 * snapshot
1713 */
e5c304e6 1714 ret = btrfs_run_delayed_items(trans);
8732d44f 1715 if (ret) { /* Transaction aborted */
66642832 1716 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1717 goto fail;
1718 }
e999376f 1719
f0118cb6
JB
1720 ret = record_root_in_trans(trans, root, 0);
1721 if (ret) {
1722 btrfs_abort_transaction(trans, ret);
1723 goto fail;
1724 }
6bdb72de
SW
1725 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1726 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1727 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1728
b83cc969
LZ
1729 root_flags = btrfs_root_flags(new_root_item);
1730 if (pending->readonly)
1731 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1732 else
1733 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1734 btrfs_set_root_flags(new_root_item, root_flags);
1735
8ea05e3a
AB
1736 btrfs_set_root_generation_v2(new_root_item,
1737 trans->transid);
807fc790 1738 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1739 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1740 BTRFS_UUID_SIZE);
70023da2
SB
1741 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1742 memset(new_root_item->received_uuid, 0,
1743 sizeof(new_root_item->received_uuid));
1744 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1745 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1746 btrfs_set_root_stransid(new_root_item, 0);
1747 btrfs_set_root_rtransid(new_root_item, 0);
1748 }
3cae210f
QW
1749 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1750 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1751 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1752
6bdb72de 1753 old = btrfs_lock_root_node(root);
9631e4cc
JB
1754 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1755 BTRFS_NESTING_COW);
79787eaa
JM
1756 if (ret) {
1757 btrfs_tree_unlock(old);
1758 free_extent_buffer(old);
66642832 1759 btrfs_abort_transaction(trans, ret);
8732d44f 1760 goto fail;
79787eaa 1761 }
49b25e05 1762
49b25e05 1763 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1764 /* clean up in any case */
6bdb72de
SW
1765 btrfs_tree_unlock(old);
1766 free_extent_buffer(old);
8732d44f 1767 if (ret) {
66642832 1768 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1769 goto fail;
1770 }
f1ebcc74 1771 /* see comments in should_cow_block() */
27cdeb70 1772 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1773 smp_wmb();
1774
6bdb72de 1775 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1776 /* record when the snapshot was created in key.offset */
1777 key.offset = trans->transid;
1778 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1779 btrfs_tree_unlock(tmp);
1780 free_extent_buffer(tmp);
8732d44f 1781 if (ret) {
66642832 1782 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1783 goto fail;
1784 }
6bdb72de 1785
a22285a6
YZ
1786 /*
1787 * insert root back/forward references
1788 */
6025c19f 1789 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1790 parent_root->root_key.objectid,
4a0cc7ca 1791 btrfs_ino(BTRFS_I(parent_inode)), index,
6db75318 1792 &fname.disk_name);
8732d44f 1793 if (ret) {
66642832 1794 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1795 goto fail;
1796 }
0660b5af 1797
a22285a6 1798 key.offset = (u64)-1;
2dfb1e43 1799 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1800 if (IS_ERR(pending->snap)) {
1801 ret = PTR_ERR(pending->snap);
2d892ccd 1802 pending->snap = NULL;
66642832 1803 btrfs_abort_transaction(trans, ret);
8732d44f 1804 goto fail;
79787eaa 1805 }
d68fc57b 1806
49b25e05 1807 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1808 if (ret) {
66642832 1809 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1810 goto fail;
1811 }
361048f5 1812
6426c7ad
QW
1813 /*
1814 * Do special qgroup accounting for snapshot, as we do some qgroup
1815 * snapshot hack to do fast snapshot.
1816 * To co-operate with that hack, we do hack again.
1817 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1818 */
1819 ret = qgroup_account_snapshot(trans, root, parent_root,
1820 pending->inherit, objectid);
1821 if (ret < 0)
1822 goto fail;
1823
6db75318
STD
1824 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1825 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1826 index);
42874b3d 1827 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1828 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1829 if (ret) {
66642832 1830 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1831 goto fail;
1832 }
42874b3d 1833
6ef06d27 1834 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
6db75318 1835 fname.disk_name.len * 2);
c1867eb3
DS
1836 parent_inode->i_mtime = current_time(parent_inode);
1837 parent_inode->i_ctime = parent_inode->i_mtime;
729f7961 1838 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1839 if (ret) {
66642832 1840 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1841 goto fail;
1842 }
807fc790
AS
1843 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1844 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1845 objectid);
dd5f9615 1846 if (ret) {
66642832 1847 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1848 goto fail;
1849 }
1850 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1851 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1852 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1853 objectid);
1854 if (ret && ret != -EEXIST) {
66642832 1855 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1856 goto fail;
1857 }
1858 }
d6726335 1859
3063d29f 1860fail:
aec8030a
MX
1861 pending->error = ret;
1862dir_item_existed:
98c9942a 1863 trans->block_rsv = rsv;
2382c5cc 1864 trans->bytes_reserved = 0;
d6726335
QW
1865clear_skip_qgroup:
1866 btrfs_clear_skip_qgroup(trans);
ab3c5c18
STD
1867free_fname:
1868 fscrypt_free_filename(&fname);
1869free_pending:
6fa9700e 1870 kfree(new_root_item);
b0c0ea63 1871 pending->root_item = NULL;
42874b3d 1872 btrfs_free_path(path);
8546b570
DS
1873 pending->path = NULL;
1874
49b25e05 1875 return ret;
3063d29f
CM
1876}
1877
d352ac68
CM
1878/*
1879 * create all the snapshots we've scheduled for creation
1880 */
08d50ca3 1881static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1882{
aec8030a 1883 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1884 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1885 int ret = 0;
3de4586c 1886
aec8030a
MX
1887 list_for_each_entry_safe(pending, next, head, list) {
1888 list_del(&pending->list);
08d50ca3 1889 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1890 if (ret)
1891 break;
1892 }
1893 return ret;
3de4586c
CM
1894}
1895
2ff7e61e 1896static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1897{
1898 struct btrfs_root_item *root_item;
1899 struct btrfs_super_block *super;
1900
0b246afa 1901 super = fs_info->super_copy;
5d4f98a2 1902
0b246afa 1903 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1904 super->chunk_root = root_item->bytenr;
1905 super->chunk_root_generation = root_item->generation;
1906 super->chunk_root_level = root_item->level;
5d4f98a2 1907
0b246afa 1908 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1909 super->root = root_item->bytenr;
1910 super->generation = root_item->generation;
1911 super->root_level = root_item->level;
0b246afa 1912 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1913 super->cache_generation = root_item->generation;
94846229
BB
1914 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1915 super->cache_generation = 0;
0b246afa 1916 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1917 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1918}
1919
f36f3042
CM
1920int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1921{
4a9d8bde 1922 struct btrfs_transaction *trans;
f36f3042 1923 int ret = 0;
4a9d8bde 1924
a4abeea4 1925 spin_lock(&info->trans_lock);
4a9d8bde
MX
1926 trans = info->running_transaction;
1927 if (trans)
1928 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1929 spin_unlock(&info->trans_lock);
f36f3042
CM
1930 return ret;
1931}
1932
8929ecfa
YZ
1933int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1934{
4a9d8bde 1935 struct btrfs_transaction *trans;
8929ecfa 1936 int ret = 0;
4a9d8bde 1937
a4abeea4 1938 spin_lock(&info->trans_lock);
4a9d8bde
MX
1939 trans = info->running_transaction;
1940 if (trans)
1941 ret = is_transaction_blocked(trans);
a4abeea4 1942 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1943 return ret;
1944}
1945
fdfbf020 1946void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 1947{
3a45bb20 1948 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1949 struct btrfs_transaction *cur_trans;
1950
fdfbf020
JB
1951 /* Kick the transaction kthread. */
1952 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1953 wake_up_process(fs_info->transaction_kthread);
bb9c12c9
SW
1954
1955 /* take transaction reference */
bb9c12c9 1956 cur_trans = trans->transaction;
9b64f57d 1957 refcount_inc(&cur_trans->use_count);
bb9c12c9 1958
3a45bb20 1959 btrfs_end_transaction(trans);
6fc4e354 1960
ae5d29d4
DS
1961 /*
1962 * Wait for the current transaction commit to start and block
1963 * subsequent transaction joins
1964 */
3e738c53 1965 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
ae5d29d4
DS
1966 wait_event(fs_info->transaction_blocked_wait,
1967 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1968 TRANS_ABORTED(cur_trans));
724e2315 1969 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1970}
1971
97cb39bb 1972static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1973{
97cb39bb 1974 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1975 struct btrfs_transaction *cur_trans = trans->transaction;
1976
b50fff81 1977 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1978
66642832 1979 btrfs_abort_transaction(trans, err);
7b8b92af 1980
0b246afa 1981 spin_lock(&fs_info->trans_lock);
66b6135b 1982
25d8c284
MX
1983 /*
1984 * If the transaction is removed from the list, it means this
1985 * transaction has been committed successfully, so it is impossible
1986 * to call the cleanup function.
1987 */
1988 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1989
0b246afa 1990 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1991 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1992 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
1993
1994 /*
1995 * The thread has already released the lockdep map as reader
1996 * already in btrfs_commit_transaction().
1997 */
1998 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
f094ac32
LB
1999 wait_event(cur_trans->writer_wait,
2000 atomic_read(&cur_trans->num_writers) == 1);
2001
0b246afa 2002 spin_lock(&fs_info->trans_lock);
d7096fc3 2003 }
061dde82
FM
2004
2005 /*
2006 * Now that we know no one else is still using the transaction we can
2007 * remove the transaction from the list of transactions. This avoids
2008 * the transaction kthread from cleaning up the transaction while some
2009 * other task is still using it, which could result in a use-after-free
2010 * on things like log trees, as it forces the transaction kthread to
2011 * wait for this transaction to be cleaned up by us.
2012 */
2013 list_del_init(&cur_trans->list);
2014
0b246afa 2015 spin_unlock(&fs_info->trans_lock);
49b25e05 2016
2ff7e61e 2017 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 2018
0b246afa
JM
2019 spin_lock(&fs_info->trans_lock);
2020 if (cur_trans == fs_info->running_transaction)
2021 fs_info->running_transaction = NULL;
2022 spin_unlock(&fs_info->trans_lock);
4a9d8bde 2023
e0228285 2024 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2025 sb_end_intwrite(fs_info->sb);
724e2315
JB
2026 btrfs_put_transaction(cur_trans);
2027 btrfs_put_transaction(cur_trans);
49b25e05 2028
2e4e97ab 2029 trace_btrfs_transaction_commit(fs_info);
49b25e05 2030
49b25e05
JM
2031 if (current->journal_info == trans)
2032 current->journal_info = NULL;
0b246afa 2033 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2034
2035 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2036}
2037
c7cc64a9
DS
2038/*
2039 * Release reserved delayed ref space of all pending block groups of the
2040 * transaction and remove them from the list
2041 */
2042static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2043{
2044 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2045 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2046
2047 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2048 btrfs_delayed_refs_rsv_release(fs_info, 1);
2049 list_del_init(&block_group->bg_list);
2050 }
2051}
2052
88090ad3 2053static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2054{
ce8ea7cc 2055 /*
a0f0cf83 2056 * We use try_to_writeback_inodes_sb() here because if we used
ce8ea7cc
JB
2057 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2058 * Currently are holding the fs freeze lock, if we do an async flush
2059 * we'll do btrfs_join_transaction() and deadlock because we need to
2060 * wait for the fs freeze lock. Using the direct flushing we benefit
2061 * from already being in a transaction and our join_transaction doesn't
2062 * have to re-take the fs freeze lock.
a0f0cf83
FM
2063 *
2064 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2065 * if it can read lock sb->s_umount. It will always be able to lock it,
2066 * except when the filesystem is being unmounted or being frozen, but in
2067 * those cases sync_filesystem() is called, which results in calling
2068 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2069 * Note that we don't call writeback_inodes_sb() directly, because it
2070 * will emit a warning if sb->s_umount is not locked.
ce8ea7cc 2071 */
88090ad3 2072 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
a0f0cf83 2073 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2074 return 0;
2075}
2076
88090ad3 2077static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2078{
88090ad3 2079 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2080 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2081}
2082
28b21c55
FM
2083/*
2084 * Add a pending snapshot associated with the given transaction handle to the
2085 * respective handle. This must be called after the transaction commit started
2086 * and while holding fs_info->trans_lock.
2087 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2088 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2089 * returns an error.
2090 */
2091static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2092{
2093 struct btrfs_transaction *cur_trans = trans->transaction;
2094
2095 if (!trans->pending_snapshot)
2096 return;
2097
2098 lockdep_assert_held(&trans->fs_info->trans_lock);
2099 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2100
2101 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2102}
2103
e55958c8
IA
2104static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2105{
2106 fs_info->commit_stats.commit_count++;
2107 fs_info->commit_stats.last_commit_dur = interval;
2108 fs_info->commit_stats.max_commit_dur =
2109 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2110 fs_info->commit_stats.total_commit_dur += interval;
2111}
2112
3a45bb20 2113int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2114{
3a45bb20 2115 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2116 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2117 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2118 int ret;
e55958c8
IA
2119 ktime_t start_time;
2120 ktime_t interval;
79154b1b 2121
35b814f3 2122 ASSERT(refcount_read(&trans->use_count) == 1);
3e738c53 2123 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
35b814f3 2124
c52cc7b7
JB
2125 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2126
8d25a086 2127 /* Stop the commit early if ->aborted is set */
bf31f87f 2128 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2129 ret = cur_trans->aborted;
3e738c53 2130 goto lockdep_trans_commit_start_release;
25287e0a 2131 }
49b25e05 2132
f45c752b
JB
2133 btrfs_trans_release_metadata(trans);
2134 trans->block_rsv = NULL;
2135
56bec294 2136 /*
e19eb11f
JB
2137 * We only want one transaction commit doing the flushing so we do not
2138 * waste a bunch of time on lock contention on the extent root node.
56bec294 2139 */
e19eb11f
JB
2140 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2141 &cur_trans->delayed_refs.flags)) {
2142 /*
2143 * Make a pass through all the delayed refs we have so far.
2144 * Any running threads may add more while we are here.
2145 */
2146 ret = btrfs_run_delayed_refs(trans, 0);
3e738c53
IA
2147 if (ret)
2148 goto lockdep_trans_commit_start_release;
e19eb11f 2149 }
56bec294 2150
119e80df 2151 btrfs_create_pending_block_groups(trans);
ea658bad 2152
3204d33c 2153 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2154 int run_it = 0;
2155
2156 /* this mutex is also taken before trying to set
2157 * block groups readonly. We need to make sure
2158 * that nobody has set a block group readonly
2159 * after a extents from that block group have been
2160 * allocated for cache files. btrfs_set_block_group_ro
2161 * will wait for the transaction to commit if it
3204d33c 2162 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2163 *
3204d33c
JB
2164 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2165 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2166 * hurt to have more than one go through, but there's no
2167 * real advantage to it either.
2168 */
0b246afa 2169 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2170 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2171 &cur_trans->flags))
1bbc621e 2172 run_it = 1;
0b246afa 2173 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2174
f9cacae3 2175 if (run_it) {
21217054 2176 ret = btrfs_start_dirty_block_groups(trans);
3e738c53
IA
2177 if (ret)
2178 goto lockdep_trans_commit_start_release;
f9cacae3 2179 }
1bbc621e
CM
2180 }
2181
0b246afa 2182 spin_lock(&fs_info->trans_lock);
4a9d8bde 2183 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2184 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2185
28b21c55
FM
2186 add_pending_snapshot(trans);
2187
0b246afa 2188 spin_unlock(&fs_info->trans_lock);
9b64f57d 2189 refcount_inc(&cur_trans->use_count);
ccd467d6 2190
d0c2f4fa
FM
2191 if (trans->in_fsync)
2192 want_state = TRANS_STATE_SUPER_COMMITTED;
3e738c53
IA
2193
2194 btrfs_trans_state_lockdep_release(fs_info,
2195 BTRFS_LOCKDEP_TRANS_COMMIT_START);
d0c2f4fa
FM
2196 ret = btrfs_end_transaction(trans);
2197 wait_for_commit(cur_trans, want_state);
15ee9bc7 2198
bf31f87f 2199 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2200 ret = cur_trans->aborted;
2201
724e2315 2202 btrfs_put_transaction(cur_trans);
15ee9bc7 2203
49b25e05 2204 return ret;
79154b1b 2205 }
4313b399 2206
4a9d8bde 2207 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2208 wake_up(&fs_info->transaction_blocked_wait);
3e738c53 2209 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
bb9c12c9 2210
0b246afa 2211 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2212 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2213
2214 if (trans->in_fsync)
2215 want_state = TRANS_STATE_SUPER_COMMITTED;
2216
ccd467d6
CM
2217 prev_trans = list_entry(cur_trans->list.prev,
2218 struct btrfs_transaction, list);
d0c2f4fa 2219 if (prev_trans->state < want_state) {
9b64f57d 2220 refcount_inc(&prev_trans->use_count);
0b246afa 2221 spin_unlock(&fs_info->trans_lock);
ccd467d6 2222
d0c2f4fa
FM
2223 wait_for_commit(prev_trans, want_state);
2224
bf31f87f 2225 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2226
724e2315 2227 btrfs_put_transaction(prev_trans);
1f9b8c8f 2228 if (ret)
e1489b4f 2229 goto lockdep_release;
a4abeea4 2230 } else {
0b246afa 2231 spin_unlock(&fs_info->trans_lock);
ccd467d6 2232 }
a4abeea4 2233 } else {
0b246afa 2234 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2235 /*
2236 * The previous transaction was aborted and was already removed
2237 * from the list of transactions at fs_info->trans_list. So we
2238 * abort to prevent writing a new superblock that reflects a
2239 * corrupt state (pointing to trees with unwritten nodes/leafs).
2240 */
84961539 2241 if (BTRFS_FS_ERROR(fs_info)) {
cb2d3dad 2242 ret = -EROFS;
e1489b4f 2243 goto lockdep_release;
cb2d3dad 2244 }
ccd467d6 2245 }
15ee9bc7 2246
e55958c8
IA
2247 /*
2248 * Get the time spent on the work done by the commit thread and not
2249 * the time spent waiting on a previous commit
2250 */
2251 start_time = ktime_get_ns();
2252
0860adfd
MX
2253 extwriter_counter_dec(cur_trans, trans->type);
2254
88090ad3 2255 ret = btrfs_start_delalloc_flush(fs_info);
82436617 2256 if (ret)
e1489b4f 2257 goto lockdep_release;
82436617 2258
e5c304e6 2259 ret = btrfs_run_delayed_items(trans);
581227d0 2260 if (ret)
e1489b4f 2261 goto lockdep_release;
15ee9bc7 2262
5a9ba670
IA
2263 /*
2264 * The thread has started/joined the transaction thus it holds the
2265 * lockdep map as a reader. It has to release it before acquiring the
2266 * lockdep map as a writer.
2267 */
2268 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2269 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
581227d0
MX
2270 wait_event(cur_trans->writer_wait,
2271 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2272
581227d0 2273 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2274 ret = btrfs_run_delayed_items(trans);
e1489b4f
IA
2275 if (ret) {
2276 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
ca469637 2277 goto cleanup_transaction;
e1489b4f 2278 }
ca469637 2279
88090ad3 2280 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2281
48778179
FM
2282 /*
2283 * Wait for all ordered extents started by a fast fsync that joined this
2284 * transaction. Otherwise if this transaction commits before the ordered
2285 * extents complete we lose logged data after a power failure.
2286 */
8b53779e 2287 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
48778179
FM
2288 wait_event(cur_trans->pending_wait,
2289 atomic_read(&cur_trans->pending_ordered) == 0);
2290
2ff7e61e 2291 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2292 /*
2293 * Ok now we need to make sure to block out any other joins while we
2294 * commit the transaction. We could have started a join before setting
4a9d8bde 2295 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2296 */
0b246afa 2297 spin_lock(&fs_info->trans_lock);
28b21c55 2298 add_pending_snapshot(trans);
4a9d8bde 2299 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2300 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2301
2302 /*
2303 * The thread has started/joined the transaction thus it holds the
2304 * lockdep map as a reader. It has to release it before acquiring the
2305 * lockdep map as a writer.
2306 */
2307 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2308 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
ed0ca140
JB
2309 wait_event(cur_trans->writer_wait,
2310 atomic_read(&cur_trans->num_writers) == 1);
2311
3e738c53
IA
2312 /*
2313 * Make lockdep happy by acquiring the state locks after
2314 * btrfs_trans_num_writers is released. If we acquired the state locks
2315 * before releasing the btrfs_trans_num_writers lock then lockdep would
2316 * complain because we did not follow the reverse order unlocking rule.
2317 */
2318 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2319 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2320 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2321
fdfbf020
JB
2322 /*
2323 * We've started the commit, clear the flag in case we were triggered to
2324 * do an async commit but somebody else started before the transaction
2325 * kthread could do the work.
2326 */
2327 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2328
bf31f87f 2329 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2330 ret = cur_trans->aborted;
3e738c53 2331 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2332 goto scrub_continue;
2cba30f1 2333 }
7585717f
CM
2334 /*
2335 * the reloc mutex makes sure that we stop
2336 * the balancing code from coming in and moving
2337 * extents around in the middle of the commit
2338 */
0b246afa 2339 mutex_lock(&fs_info->reloc_mutex);
7585717f 2340
42874b3d
MX
2341 /*
2342 * We needn't worry about the delayed items because we will
2343 * deal with them in create_pending_snapshot(), which is the
2344 * core function of the snapshot creation.
2345 */
08d50ca3 2346 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2347 if (ret)
2348 goto unlock_reloc;
3063d29f 2349
42874b3d
MX
2350 /*
2351 * We insert the dir indexes of the snapshots and update the inode
2352 * of the snapshots' parents after the snapshot creation, so there
2353 * are some delayed items which are not dealt with. Now deal with
2354 * them.
2355 *
2356 * We needn't worry that this operation will corrupt the snapshots,
2357 * because all the tree which are snapshoted will be forced to COW
2358 * the nodes and leaves.
2359 */
e5c304e6 2360 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2361 if (ret)
2362 goto unlock_reloc;
16cdcec7 2363
c79a70b1 2364 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2365 if (ret)
2366 goto unlock_reloc;
56bec294 2367
e999376f
CM
2368 /*
2369 * make sure none of the code above managed to slip in a
2370 * delayed item
2371 */
ccdf9b30 2372 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2373
2c90e5d6 2374 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2375
7e4443d9 2376 ret = commit_fs_roots(trans);
56e9f6ea 2377 if (ret)
dfba78dc 2378 goto unlock_reloc;
54aa1f4d 2379
5d4f98a2 2380 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2381 * safe to free the root of tree log roots
2382 */
0b246afa 2383 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2384
0ed4792a
QW
2385 /*
2386 * Since fs roots are all committed, we can get a quite accurate
2387 * new_roots. So let's do quota accounting.
2388 */
460fb20a 2389 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea 2390 if (ret < 0)
dfba78dc 2391 goto unlock_reloc;
0ed4792a 2392
9386d8bc 2393 ret = commit_cowonly_roots(trans);
56e9f6ea 2394 if (ret)
dfba78dc 2395 goto unlock_reloc;
54aa1f4d 2396
2cba30f1
MX
2397 /*
2398 * The tasks which save the space cache and inode cache may also
2399 * update ->aborted, check it.
2400 */
bf31f87f 2401 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2402 ret = cur_trans->aborted;
dfba78dc 2403 goto unlock_reloc;
2cba30f1
MX
2404 }
2405
0b246afa 2406 cur_trans = fs_info->running_transaction;
5d4f98a2 2407
0b246afa
JM
2408 btrfs_set_root_node(&fs_info->tree_root->root_item,
2409 fs_info->tree_root->node);
2410 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2411 &cur_trans->switch_commits);
5d4f98a2 2412
0b246afa
JM
2413 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2414 fs_info->chunk_root->node);
2415 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2416 &cur_trans->switch_commits);
2417
f7238e50
JB
2418 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2419 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2420 fs_info->block_group_root->node);
2421 list_add_tail(&fs_info->block_group_root->dirty_list,
2422 &cur_trans->switch_commits);
2423 }
2424
889bfa39 2425 switch_commit_roots(trans);
5d4f98a2 2426
ce93ec54 2427 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2428 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2429 update_super_roots(fs_info);
e02119d5 2430
0b246afa
JM
2431 btrfs_set_super_log_root(fs_info->super_copy, 0);
2432 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2433 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2434 sizeof(*fs_info->super_copy));
ccd467d6 2435
bbbf7243 2436 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2437
0b246afa
JM
2438 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2439 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2440
4fbcdf66
FM
2441 btrfs_trans_release_chunk_metadata(trans);
2442
dfba78dc
FM
2443 /*
2444 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2445 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2446 * make sure that before we commit our superblock, no other task can
2447 * start a new transaction and commit a log tree before we commit our
2448 * superblock. Anyone trying to commit a log tree locks this mutex before
2449 * writing its superblock.
2450 */
2451 mutex_lock(&fs_info->tree_log_mutex);
2452
0b246afa 2453 spin_lock(&fs_info->trans_lock);
4a9d8bde 2454 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2455 fs_info->running_transaction = NULL;
2456 spin_unlock(&fs_info->trans_lock);
2457 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2458
0b246afa 2459 wake_up(&fs_info->transaction_wait);
3e738c53 2460 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
e6dcd2dc 2461
70458a58 2462 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2463 if (ret) {
0b246afa
JM
2464 btrfs_handle_fs_error(fs_info, ret,
2465 "Error while writing out transaction");
2466 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2467 goto scrub_continue;
49b25e05
JM
2468 }
2469
d3575156
NA
2470 /*
2471 * At this point, we should have written all the tree blocks allocated
2472 * in this transaction. So it's now safe to free the redirtyied extent
2473 * buffers.
2474 */
2475 btrfs_free_redirty_list(cur_trans);
2476
eece6a9c 2477 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2478 /*
2479 * the super is written, we can safely allow the tree-loggers
2480 * to go about their business
2481 */
0b246afa 2482 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2483 if (ret)
2484 goto scrub_continue;
e02119d5 2485
d0c2f4fa
FM
2486 /*
2487 * We needn't acquire the lock here because there is no other task
2488 * which can change it.
2489 */
2490 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2491 wake_up(&cur_trans->commit_wait);
3e738c53 2492 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
d0c2f4fa 2493
5ead2dd0 2494 btrfs_finish_extent_commit(trans);
4313b399 2495
3204d33c 2496 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2497 btrfs_clear_space_info_full(fs_info);
13212b54 2498
0b246afa 2499 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2500 /*
2501 * We needn't acquire the lock here because there is no other task
2502 * which can change it.
2503 */
2504 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2505 wake_up(&cur_trans->commit_wait);
3e738c53 2506 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
3de4586c 2507
0b246afa 2508 spin_lock(&fs_info->trans_lock);
13c5a93e 2509 list_del_init(&cur_trans->list);
0b246afa 2510 spin_unlock(&fs_info->trans_lock);
a4abeea4 2511
724e2315
JB
2512 btrfs_put_transaction(cur_trans);
2513 btrfs_put_transaction(cur_trans);
58176a96 2514
0860adfd 2515 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2516 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2517
2e4e97ab 2518 trace_btrfs_transaction_commit(fs_info);
1abe9b8a 2519
e55958c8
IA
2520 interval = ktime_get_ns() - start_time;
2521
2ff7e61e 2522 btrfs_scrub_continue(fs_info);
a2de733c 2523
9ed74f2d
JB
2524 if (current->journal_info == trans)
2525 current->journal_info = NULL;
2526
2c90e5d6 2527 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2528
e55958c8
IA
2529 update_commit_stats(fs_info, interval);
2530
79154b1b 2531 return ret;
49b25e05 2532
56e9f6ea
DS
2533unlock_reloc:
2534 mutex_unlock(&fs_info->reloc_mutex);
3e738c53 2535 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2536scrub_continue:
3e738c53
IA
2537 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2538 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2ff7e61e 2539 btrfs_scrub_continue(fs_info);
49b25e05 2540cleanup_transaction:
dc60c525 2541 btrfs_trans_release_metadata(trans);
c7cc64a9 2542 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2543 btrfs_trans_release_chunk_metadata(trans);
0e721106 2544 trans->block_rsv = NULL;
0b246afa 2545 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2546 if (current->journal_info == trans)
2547 current->journal_info = NULL;
97cb39bb 2548 cleanup_transaction(trans, ret);
49b25e05
JM
2549
2550 return ret;
e1489b4f
IA
2551
2552lockdep_release:
5a9ba670 2553 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f
IA
2554 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2555 goto cleanup_transaction;
3e738c53
IA
2556
2557lockdep_trans_commit_start_release:
2558 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2559 btrfs_end_transaction(trans);
2560 return ret;
79154b1b
CM
2561}
2562
d352ac68 2563/*
9d1a2a3a
DS
2564 * return < 0 if error
2565 * 0 if there are no more dead_roots at the time of call
2566 * 1 there are more to be processed, call me again
2567 *
2568 * The return value indicates there are certainly more snapshots to delete, but
2569 * if there comes a new one during processing, it may return 0. We don't mind,
2570 * because btrfs_commit_super will poke cleaner thread and it will process it a
2571 * few seconds later.
d352ac68 2572 */
33c44184 2573int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
e9d0b13b 2574{
33c44184 2575 struct btrfs_root *root;
9d1a2a3a 2576 int ret;
5d4f98a2 2577
a4abeea4 2578 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2579 if (list_empty(&fs_info->dead_roots)) {
2580 spin_unlock(&fs_info->trans_lock);
2581 return 0;
2582 }
2583 root = list_first_entry(&fs_info->dead_roots,
2584 struct btrfs_root, root_list);
cfad392b 2585 list_del_init(&root->root_list);
a4abeea4 2586 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2587
4fd786e6 2588 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2589
9d1a2a3a 2590 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2591
9d1a2a3a
DS
2592 if (btrfs_header_backref_rev(root->node) <
2593 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2594 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2595 else
0078a9f9 2596 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2597
dc9492c1 2598 btrfs_put_root(root);
6596a928 2599 return (ret < 0) ? 0 : 1;
e9d0b13b 2600}
572d9ab7 2601
956504a3
JB
2602int __init btrfs_transaction_init(void)
2603{
2604 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2605 sizeof(struct btrfs_trans_handle), 0,
2606 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2607 if (!btrfs_trans_handle_cachep)
2608 return -ENOMEM;
2609 return 0;
2610}
2611
2612void __cold btrfs_transaction_exit(void)
2613{
2614 kmem_cache_destroy(btrfs_trans_handle_cachep);
2615}