btrfs: scan device in non-exclusive mode
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
ab3c5c18 9#include <linux/sched/mm.h>
d3c2fdcf 10#include <linux/writeback.h>
5f39d397 11#include <linux/pagemap.h>
5f2cc086 12#include <linux/blkdev.h>
8ea05e3a 13#include <linux/uuid.h>
e55958c8 14#include <linux/timekeeping.h>
602cbe91 15#include "misc.h"
79154b1b
CM
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
925baedd 19#include "locking.h"
e02119d5 20#include "tree-log.h"
733f4fbb 21#include "volumes.h"
8dabb742 22#include "dev-replace.h"
fcebe456 23#include "qgroup.h"
aac0023c 24#include "block-group.h"
9c343784 25#include "space-info.h"
d3575156 26#include "zoned.h"
c7f13d42 27#include "fs.h"
07e81dc9 28#include "accessors.h"
a0231804 29#include "extent-tree.h"
45c40c8f 30#include "root-tree.h"
59b818e0 31#include "defrag.h"
f2b39277 32#include "dir-item.h"
c7a03b52 33#include "uuid-tree.h"
7572dec8 34#include "ioctl.h"
67707479 35#include "relocation.h"
2fc6822c 36#include "scrub.h"
79154b1b 37
956504a3
JB
38static struct kmem_cache *btrfs_trans_handle_cachep;
39
fc7cbcd4 40#define BTRFS_ROOT_TRANS_TAG 0
0f7d52f4 41
61c047b5
QW
42/*
43 * Transaction states and transitions
44 *
45 * No running transaction (fs tree blocks are not modified)
46 * |
47 * | To next stage:
48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49 * V
50 * Transaction N [[TRANS_STATE_RUNNING]]
51 * |
52 * | New trans handles can be attached to transaction N by calling all
53 * | start_transaction() variants.
54 * |
55 * | To next stage:
56 * | Call btrfs_commit_transaction() on any trans handle attached to
57 * | transaction N
58 * V
59 * Transaction N [[TRANS_STATE_COMMIT_START]]
60 * |
61 * | Will wait for previous running transaction to completely finish if there
62 * | is one
63 * |
64 * | Then one of the following happes:
65 * | - Wait for all other trans handle holders to release.
66 * | The btrfs_commit_transaction() caller will do the commit work.
67 * | - Wait for current transaction to be committed by others.
68 * | Other btrfs_commit_transaction() caller will do the commit work.
69 * |
70 * | At this stage, only btrfs_join_transaction*() variants can attach
71 * | to this running transaction.
72 * | All other variants will wait for current one to finish and attach to
73 * | transaction N+1.
74 * |
75 * | To next stage:
76 * | Caller is chosen to commit transaction N, and all other trans handle
77 * | haven been released.
78 * V
79 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
80 * |
81 * | The heavy lifting transaction work is started.
82 * | From running delayed refs (modifying extent tree) to creating pending
83 * | snapshots, running qgroups.
84 * | In short, modify supporting trees to reflect modifications of subvolume
85 * | trees.
86 * |
87 * | At this stage, all start_transaction() calls will wait for this
88 * | transaction to finish and attach to transaction N+1.
89 * |
90 * | To next stage:
91 * | Until all supporting trees are updated.
92 * V
93 * Transaction N [[TRANS_STATE_UNBLOCKED]]
94 * | Transaction N+1
95 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
96 * | need to write them back to disk and update |
97 * | super blocks. |
98 * | |
99 * | At this stage, new transaction is allowed to |
100 * | start. |
101 * | All new start_transaction() calls will be |
102 * | attached to transid N+1. |
103 * | |
104 * | To next stage: |
105 * | Until all tree blocks are super blocks are |
106 * | written to block devices |
107 * V |
108 * Transaction N [[TRANS_STATE_COMPLETED]] V
109 * All tree blocks and super blocks are written. Transaction N+1
110 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
111 * data structures will be cleaned up. | Life goes on
112 */
e8c9f186 113static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 114 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
115 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
116 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 117 __TRANS_ATTACH |
a6d155d2
FM
118 __TRANS_JOIN |
119 __TRANS_JOIN_NOSTART),
bcf3a3e7 120 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
121 __TRANS_ATTACH |
122 __TRANS_JOIN |
a6d155d2
FM
123 __TRANS_JOIN_NOLOCK |
124 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
125 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
126 __TRANS_ATTACH |
127 __TRANS_JOIN |
128 __TRANS_JOIN_NOLOCK |
129 __TRANS_JOIN_NOSTART),
bcf3a3e7 130 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
131 __TRANS_ATTACH |
132 __TRANS_JOIN |
a6d155d2
FM
133 __TRANS_JOIN_NOLOCK |
134 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
135};
136
724e2315 137void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 138{
9b64f57d
ER
139 WARN_ON(refcount_read(&transaction->use_count) == 0);
140 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 141 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
142 WARN_ON(!RB_EMPTY_ROOT(
143 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
144 WARN_ON(!RB_EMPTY_ROOT(
145 &transaction->delayed_refs.dirty_extent_root));
1262133b 146 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
7785a663
FM
150 /*
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
156 */
157 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 158 struct btrfs_block_group *cache;
7785a663
FM
159
160 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 161 struct btrfs_block_group,
7785a663
FM
162 bg_list);
163 list_del_init(&cache->bg_list);
6b7304af 164 btrfs_unfreeze_block_group(cache);
7785a663
FM
165 btrfs_put_block_group(cache);
166 }
bbbf7243 167 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 168 kfree(transaction);
78fae27e 169 }
79154b1b
CM
170}
171
889bfa39 172static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 173{
889bfa39 174 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 175 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
176 struct btrfs_root *root, *tmp;
177
dfba78dc
FM
178 /*
179 * At this point no one can be using this transaction to modify any tree
180 * and no one can start another transaction to modify any tree either.
181 */
182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183
9e351cc8 184 down_write(&fs_info->commit_root_sem);
d96b3424
FM
185
186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 fs_info->last_reloc_trans = trans->transid;
188
889bfa39 189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
190 dirty_list) {
191 list_del_init(&root->dirty_list);
192 free_extent_buffer(root->commit_root);
193 root->commit_root = btrfs_root_node(root);
41e7acd3 194 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 195 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 196 }
2b9dbef2
JB
197
198 /* We can free old roots now. */
889bfa39
JB
199 spin_lock(&cur_trans->dropped_roots_lock);
200 while (!list_empty(&cur_trans->dropped_roots)) {
201 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
202 struct btrfs_root, root_list);
203 list_del_init(&root->root_list);
889bfa39
JB
204 spin_unlock(&cur_trans->dropped_roots_lock);
205 btrfs_free_log(trans, root);
2b9dbef2 206 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 207 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 208 }
889bfa39 209 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62 210
9e351cc8 211 up_write(&fs_info->commit_root_sem);
817d52f8
JB
212}
213
0860adfd
MX
214static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215 unsigned int type)
216{
217 if (type & TRANS_EXTWRITERS)
218 atomic_inc(&trans->num_extwriters);
219}
220
221static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222 unsigned int type)
223{
224 if (type & TRANS_EXTWRITERS)
225 atomic_dec(&trans->num_extwriters);
226}
227
228static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229 unsigned int type)
230{
231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232}
233
234static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235{
236 return atomic_read(&trans->num_extwriters);
178260b2
MX
237}
238
fb6dea26 239/*
79bd3712
FM
240 * To be called after doing the chunk btree updates right after allocating a new
241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242 * chunk after all chunk btree updates and after finishing the second phase of
243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244 * group had its chunk item insertion delayed to the second phase.
fb6dea26
JB
245 */
246void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247{
248 struct btrfs_fs_info *fs_info = trans->fs_info;
249
250 if (!trans->chunk_bytes_reserved)
251 return;
252
fb6dea26 253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 254 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
255 trans->chunk_bytes_reserved = 0;
256}
257
d352ac68
CM
258/*
259 * either allocate a new transaction or hop into the existing one
260 */
2ff7e61e
JM
261static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262 unsigned int type)
79154b1b
CM
263{
264 struct btrfs_transaction *cur_trans;
a4abeea4 265
19ae4e81 266 spin_lock(&fs_info->trans_lock);
d43317dc 267loop:
49b25e05 268 /* The file system has been taken offline. No new transactions. */
84961539 269 if (BTRFS_FS_ERROR(fs_info)) {
19ae4e81 270 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
271 return -EROFS;
272 }
273
19ae4e81 274 cur_trans = fs_info->running_transaction;
a4abeea4 275 if (cur_trans) {
bf31f87f 276 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 277 spin_unlock(&fs_info->trans_lock);
49b25e05 278 return cur_trans->aborted;
871383be 279 }
4a9d8bde 280 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
281 spin_unlock(&fs_info->trans_lock);
282 return -EBUSY;
283 }
9b64f57d 284 refcount_inc(&cur_trans->use_count);
13c5a93e 285 atomic_inc(&cur_trans->num_writers);
0860adfd 286 extwriter_counter_inc(cur_trans, type);
19ae4e81 287 spin_unlock(&fs_info->trans_lock);
e1489b4f 288 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 289 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
a4abeea4 290 return 0;
79154b1b 291 }
19ae4e81 292 spin_unlock(&fs_info->trans_lock);
a4abeea4 293
354aa0fb
MX
294 /*
295 * If we are ATTACH, we just want to catch the current transaction,
296 * and commit it. If there is no transaction, just return ENOENT.
297 */
298 if (type == TRANS_ATTACH)
299 return -ENOENT;
300
4a9d8bde
MX
301 /*
302 * JOIN_NOLOCK only happens during the transaction commit, so
303 * it is impossible that ->running_transaction is NULL
304 */
305 BUG_ON(type == TRANS_JOIN_NOLOCK);
306
4b5faeac 307 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
308 if (!cur_trans)
309 return -ENOMEM;
d43317dc 310
e1489b4f 311 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
5a9ba670 312 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
e1489b4f 313
19ae4e81
JS
314 spin_lock(&fs_info->trans_lock);
315 if (fs_info->running_transaction) {
d43317dc
CM
316 /*
317 * someone started a transaction after we unlocked. Make sure
4a9d8bde 318 * to redo the checks above
d43317dc 319 */
5a9ba670 320 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 321 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 322 kfree(cur_trans);
d43317dc 323 goto loop;
84961539 324 } else if (BTRFS_FS_ERROR(fs_info)) {
e4b50e14 325 spin_unlock(&fs_info->trans_lock);
5a9ba670 326 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f 327 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
4b5faeac 328 kfree(cur_trans);
7b8b92af 329 return -EROFS;
79154b1b 330 }
d43317dc 331
ab8d0fc4 332 cur_trans->fs_info = fs_info;
48778179
FM
333 atomic_set(&cur_trans->pending_ordered, 0);
334 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 335 atomic_set(&cur_trans->num_writers, 1);
0860adfd 336 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
337 init_waitqueue_head(&cur_trans->writer_wait);
338 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 339 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
340 /*
341 * One for this trans handle, one so it will live on until we
342 * commit the transaction.
343 */
9b64f57d 344 refcount_set(&cur_trans->use_count, 2);
3204d33c 345 cur_trans->flags = 0;
afd48513 346 cur_trans->start_time = ktime_get_seconds();
a4abeea4 347
a099d0fd
AM
348 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
349
5c9d028b 350 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 351 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 352 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
353
354 /*
355 * although the tree mod log is per file system and not per transaction,
356 * the log must never go across transaction boundaries.
357 */
358 smp_mb();
31b1a2bd 359 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 360 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 361 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 362 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 363 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 364
a4abeea4
JB
365 spin_lock_init(&cur_trans->delayed_refs.lock);
366
367 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 368 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 369 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 370 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 371 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 372 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 373 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 374 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 375 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 376 spin_lock_init(&cur_trans->dropped_roots_lock);
d3575156
NA
377 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
378 spin_lock_init(&cur_trans->releasing_ebs_lock);
19ae4e81 379 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 380 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
35da5a7e 381 IO_TREE_TRANS_DIRTY_PAGES);
fe119a6e 382 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
35da5a7e 383 IO_TREE_FS_PINNED_EXTENTS);
19ae4e81
JS
384 fs_info->generation++;
385 cur_trans->transid = fs_info->generation;
386 fs_info->running_transaction = cur_trans;
49b25e05 387 cur_trans->aborted = 0;
19ae4e81 388 spin_unlock(&fs_info->trans_lock);
15ee9bc7 389
79154b1b
CM
390 return 0;
391}
392
d352ac68 393/*
92a7cc42
QW
394 * This does all the record keeping required to make sure that a shareable root
395 * is properly recorded in a given transaction. This is required to make sure
396 * the old root from before we joined the transaction is deleted when the
397 * transaction commits.
d352ac68 398 */
7585717f 399static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
400 struct btrfs_root *root,
401 int force)
6702ed49 402{
0b246afa 403 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 404 int ret = 0;
0b246afa 405
92a7cc42 406 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 407 root->last_trans < trans->transid) || force) {
4d31778a 408 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 409
7585717f 410 /*
27cdeb70 411 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
412 * we have the reloc mutex held now, so there
413 * is only one writer in this function
414 */
27cdeb70 415 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 416
27cdeb70 417 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
418 * they find our root->last_trans update
419 */
420 smp_wmb();
421
fc7cbcd4 422 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 423 if (root->last_trans == trans->transid && !force) {
fc7cbcd4 424 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
425 return 0;
426 }
fc7cbcd4
DS
427 radix_tree_tag_set(&fs_info->fs_roots_radix,
428 (unsigned long)root->root_key.objectid,
429 BTRFS_ROOT_TRANS_TAG);
430 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
431 root->last_trans = trans->transid;
432
433 /* this is pretty tricky. We don't want to
434 * take the relocation lock in btrfs_record_root_in_trans
435 * unless we're really doing the first setup for this root in
436 * this transaction.
437 *
438 * Normally we'd use root->last_trans as a flag to decide
439 * if we want to take the expensive mutex.
440 *
441 * But, we have to set root->last_trans before we
442 * init the relocation root, otherwise, we trip over warnings
443 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 444 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
445 * fixing up the reloc trees and everyone must wait.
446 *
447 * When this is zero, they can trust root->last_trans and fly
448 * through btrfs_record_root_in_trans without having to take the
449 * lock. smp_wmb() makes sure that all the writes above are
450 * done before we pop in the zero below
451 */
03a7e111 452 ret = btrfs_init_reloc_root(trans, root);
c7548af6 453 smp_mb__before_atomic();
27cdeb70 454 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 455 }
03a7e111 456 return ret;
5d4f98a2 457}
bcc63abb 458
7585717f 459
2b9dbef2
JB
460void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461 struct btrfs_root *root)
462{
0b246afa 463 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
464 struct btrfs_transaction *cur_trans = trans->transaction;
465
466 /* Add ourselves to the transaction dropped list */
467 spin_lock(&cur_trans->dropped_roots_lock);
468 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469 spin_unlock(&cur_trans->dropped_roots_lock);
470
471 /* Make sure we don't try to update the root at commit time */
fc7cbcd4
DS
472 spin_lock(&fs_info->fs_roots_radix_lock);
473 radix_tree_tag_clear(&fs_info->fs_roots_radix,
474 (unsigned long)root->root_key.objectid,
475 BTRFS_ROOT_TRANS_TAG);
476 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
477}
478
7585717f
CM
479int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root)
481{
0b246afa 482 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 483 int ret;
0b246afa 484
92a7cc42 485 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
486 return 0;
487
488 /*
27cdeb70 489 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
490 * and barriers
491 */
492 smp_rmb();
493 if (root->last_trans == trans->transid &&
27cdeb70 494 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
495 return 0;
496
0b246afa 497 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 498 ret = record_root_in_trans(trans, root, 0);
0b246afa 499 mutex_unlock(&fs_info->reloc_mutex);
7585717f 500
1409e6cc 501 return ret;
7585717f
CM
502}
503
4a9d8bde
MX
504static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505{
3296bf56 506 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 507 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 508 !TRANS_ABORTED(trans));
4a9d8bde
MX
509}
510
d352ac68
CM
511/* wait for commit against the current transaction to become unblocked
512 * when this is done, it is safe to start a new transaction, but the current
513 * transaction might not be fully on disk.
514 */
2ff7e61e 515static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 516{
f9295749 517 struct btrfs_transaction *cur_trans;
79154b1b 518
0b246afa
JM
519 spin_lock(&fs_info->trans_lock);
520 cur_trans = fs_info->running_transaction;
4a9d8bde 521 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 522 refcount_inc(&cur_trans->use_count);
0b246afa 523 spin_unlock(&fs_info->trans_lock);
72d63ed6 524
3e738c53 525 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
0b246afa 526 wait_event(fs_info->transaction_wait,
501407aa 527 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 528 TRANS_ABORTED(cur_trans));
724e2315 529 btrfs_put_transaction(cur_trans);
a4abeea4 530 } else {
0b246afa 531 spin_unlock(&fs_info->trans_lock);
f9295749 532 }
37d1aeee
CM
533}
534
2ff7e61e 535static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 536{
0b246afa 537 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
538 return 0;
539
92e2f7e3 540 if (type == TRANS_START)
a22285a6 541 return 1;
a4abeea4 542
a22285a6
YZ
543 return 0;
544}
545
20dd2cbf
MX
546static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547{
0b246afa
JM
548 struct btrfs_fs_info *fs_info = root->fs_info;
549
550 if (!fs_info->reloc_ctl ||
92a7cc42 551 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
552 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
553 root->reloc_root)
554 return false;
555
556 return true;
557}
558
08e007d2 559static struct btrfs_trans_handle *
5aed1dd8 560start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
561 unsigned int type, enum btrfs_reserve_flush_enum flush,
562 bool enforce_qgroups)
37d1aeee 563{
0b246afa 564 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 565 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
566 struct btrfs_trans_handle *h;
567 struct btrfs_transaction *cur_trans;
b5009945 568 u64 num_bytes = 0;
c5567237 569 u64 qgroup_reserved = 0;
20dd2cbf 570 bool reloc_reserved = false;
9c343784 571 bool do_chunk_alloc = false;
20dd2cbf 572 int ret;
acce952b 573
84961539 574 if (BTRFS_FS_ERROR(fs_info))
acce952b 575 return ERR_PTR(-EROFS);
2a1eb461 576
46c4e71e 577 if (current->journal_info) {
0860adfd 578 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 579 h = current->journal_info;
b50fff81
DS
580 refcount_inc(&h->use_count);
581 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
582 h->orig_rsv = h->block_rsv;
583 h->block_rsv = NULL;
584 goto got_it;
585 }
b5009945
JB
586
587 /*
588 * Do the reservation before we join the transaction so we can do all
589 * the appropriate flushing if need be.
590 */
003d7c59 591 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
592 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
593 u64 delayed_refs_bytes = 0;
594
0b246afa 595 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
596 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
597 enforce_qgroups);
7174109c
QW
598 if (ret)
599 return ERR_PTR(ret);
c5567237 600
ba2c4d4e
JB
601 /*
602 * We want to reserve all the bytes we may need all at once, so
603 * we only do 1 enospc flushing cycle per transaction start. We
604 * accomplish this by simply assuming we'll do 2 x num_items
605 * worth of delayed refs updates in this trans handle, and
606 * refill that amount for whatever is missing in the reserve.
607 */
2bd36e7b 608 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614 609 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 610 btrfs_block_rsv_full(delayed_refs_rsv) == 0) {
ba2c4d4e
JB
611 delayed_refs_bytes = num_bytes;
612 num_bytes <<= 1;
613 }
614
20dd2cbf
MX
615 /*
616 * Do the reservation for the relocation root creation
617 */
ee39b432 618 if (need_reserve_reloc_root(root)) {
0b246afa 619 num_bytes += fs_info->nodesize;
20dd2cbf
MX
620 reloc_reserved = true;
621 }
622
9270501c 623 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
ba2c4d4e
JB
624 if (ret)
625 goto reserve_fail;
626 if (delayed_refs_bytes) {
627 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
628 delayed_refs_bytes);
629 num_bytes -= delayed_refs_bytes;
630 }
9c343784
JB
631
632 if (rsv->space_info->force_alloc)
633 do_chunk_alloc = true;
ba2c4d4e 634 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
748f553c 635 !btrfs_block_rsv_full(delayed_refs_rsv)) {
ba2c4d4e
JB
636 /*
637 * Some people call with btrfs_start_transaction(root, 0)
638 * because they can be throttled, but have some other mechanism
639 * for reserving space. We still want these guys to refill the
640 * delayed block_rsv so just add 1 items worth of reservation
641 * here.
642 */
643 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 644 if (ret)
843fcf35 645 goto reserve_fail;
b5009945 646 }
a22285a6 647again:
f2f767e7 648 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
649 if (!h) {
650 ret = -ENOMEM;
651 goto alloc_fail;
652 }
37d1aeee 653
98114659
JB
654 /*
655 * If we are JOIN_NOLOCK we're already committing a transaction and
656 * waiting on this guy, so we don't need to do the sb_start_intwrite
657 * because we're already holding a ref. We need this because we could
658 * have raced in and did an fsync() on a file which can kick a commit
659 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
660 *
661 * If we are ATTACH, it means we just want to catch the current
662 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 663 */
0860adfd 664 if (type & __TRANS_FREEZABLE)
0b246afa 665 sb_start_intwrite(fs_info->sb);
b2b5ef5c 666
2ff7e61e
JM
667 if (may_wait_transaction(fs_info, type))
668 wait_current_trans(fs_info);
a22285a6 669
a4abeea4 670 do {
2ff7e61e 671 ret = join_transaction(fs_info, type);
178260b2 672 if (ret == -EBUSY) {
2ff7e61e 673 wait_current_trans(fs_info);
a6d155d2
FM
674 if (unlikely(type == TRANS_ATTACH ||
675 type == TRANS_JOIN_NOSTART))
178260b2
MX
676 ret = -ENOENT;
677 }
a4abeea4
JB
678 } while (ret == -EBUSY);
679
a43f7f82 680 if (ret < 0)
843fcf35 681 goto join_fail;
0f7d52f4 682
0b246afa 683 cur_trans = fs_info->running_transaction;
a22285a6
YZ
684
685 h->transid = cur_trans->transid;
686 h->transaction = cur_trans;
b50fff81 687 refcount_set(&h->use_count, 1);
64b63580 688 h->fs_info = root->fs_info;
7174109c 689
a698d075 690 h->type = type;
ea658bad 691 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 692
a22285a6 693 smp_mb();
3296bf56 694 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 695 may_wait_transaction(fs_info, type)) {
abdd2e80 696 current->journal_info = h;
3a45bb20 697 btrfs_commit_transaction(h);
a22285a6
YZ
698 goto again;
699 }
700
b5009945 701 if (num_bytes) {
0b246afa 702 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 703 h->transid, num_bytes, 1);
0b246afa 704 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 705 h->bytes_reserved = num_bytes;
20dd2cbf 706 h->reloc_reserved = reloc_reserved;
a22285a6 707 }
9ed74f2d 708
2a1eb461 709got_it:
bcf3a3e7 710 if (!current->journal_info)
a22285a6 711 current->journal_info = h;
fcc99734 712
9c343784
JB
713 /*
714 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
715 * ALLOC_FORCE the first run through, and then we won't allocate for
716 * anybody else who races in later. We don't care about the return
717 * value here.
718 */
719 if (do_chunk_alloc && num_bytes) {
720 u64 flags = h->block_rsv->space_info->flags;
721
722 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
723 CHUNK_ALLOC_NO_FORCE);
724 }
725
fcc99734
QW
726 /*
727 * btrfs_record_root_in_trans() needs to alloc new extents, and may
728 * call btrfs_join_transaction() while we're also starting a
729 * transaction.
730 *
731 * Thus it need to be called after current->journal_info initialized,
732 * or we can deadlock.
733 */
68075ea8
JB
734 ret = btrfs_record_root_in_trans(h, root);
735 if (ret) {
736 /*
737 * The transaction handle is fully initialized and linked with
738 * other structures so it needs to be ended in case of errors,
739 * not just freed.
740 */
741 btrfs_end_transaction(h);
742 return ERR_PTR(ret);
743 }
fcc99734 744
79154b1b 745 return h;
843fcf35
MX
746
747join_fail:
0860adfd 748 if (type & __TRANS_FREEZABLE)
0b246afa 749 sb_end_intwrite(fs_info->sb);
843fcf35
MX
750 kmem_cache_free(btrfs_trans_handle_cachep, h);
751alloc_fail:
752 if (num_bytes)
2ff7e61e 753 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 754 num_bytes, NULL);
843fcf35 755reserve_fail:
733e03a0 756 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 757 return ERR_PTR(ret);
79154b1b
CM
758}
759
f9295749 760struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 761 unsigned int num_items)
f9295749 762{
08e007d2 763 return start_transaction(root, num_items, TRANS_START,
003d7c59 764 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 765}
003d7c59 766
8eab77ff
FM
767struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
768 struct btrfs_root *root,
7f9fe614 769 unsigned int num_items)
8eab77ff 770{
7f9fe614
JB
771 return start_transaction(root, num_items, TRANS_START,
772 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 773}
8407aa46 774
7a7eaa40 775struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 776{
003d7c59
JM
777 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
778 true);
f9295749
CM
779}
780
8d510121 781struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 782{
575a75d6 783 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 784 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
785}
786
a6d155d2
FM
787/*
788 * Similar to regular join but it never starts a transaction when none is
789 * running or after waiting for the current one to finish.
790 */
791struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
792{
793 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
794 BTRFS_RESERVE_NO_FLUSH, true);
795}
796
d4edf39b
MX
797/*
798 * btrfs_attach_transaction() - catch the running transaction
799 *
800 * It is used when we want to commit the current the transaction, but
801 * don't want to start a new one.
802 *
803 * Note: If this function return -ENOENT, it just means there is no
804 * running transaction. But it is possible that the inactive transaction
805 * is still in the memory, not fully on disk. If you hope there is no
806 * inactive transaction in the fs when -ENOENT is returned, you should
807 * invoke
808 * btrfs_attach_transaction_barrier()
809 */
354aa0fb 810struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 811{
575a75d6 812 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 813 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
814}
815
d4edf39b 816/*
90b6d283 817 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 818 *
52042d8e 819 * It is similar to the above function, the difference is this one
d4edf39b
MX
820 * will wait for all the inactive transactions until they fully
821 * complete.
822 */
823struct btrfs_trans_handle *
824btrfs_attach_transaction_barrier(struct btrfs_root *root)
825{
826 struct btrfs_trans_handle *trans;
827
575a75d6 828 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 829 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 830 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 831 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
832
833 return trans;
834}
835
d0c2f4fa
FM
836/* Wait for a transaction commit to reach at least the given state. */
837static noinline void wait_for_commit(struct btrfs_transaction *commit,
838 const enum btrfs_trans_state min_state)
89ce8a63 839{
5fd76bf3
OS
840 struct btrfs_fs_info *fs_info = commit->fs_info;
841 u64 transid = commit->transid;
842 bool put = false;
843
3e738c53
IA
844 /*
845 * At the moment this function is called with min_state either being
846 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
847 */
848 if (min_state == TRANS_STATE_COMPLETED)
849 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
850 else
851 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
852
5fd76bf3
OS
853 while (1) {
854 wait_event(commit->commit_wait, commit->state >= min_state);
855 if (put)
856 btrfs_put_transaction(commit);
857
858 if (min_state < TRANS_STATE_COMPLETED)
859 break;
860
861 /*
862 * A transaction isn't really completed until all of the
863 * previous transactions are completed, but with fsync we can
864 * end up with SUPER_COMMITTED transactions before a COMPLETED
865 * transaction. Wait for those.
866 */
867
868 spin_lock(&fs_info->trans_lock);
869 commit = list_first_entry_or_null(&fs_info->trans_list,
870 struct btrfs_transaction,
871 list);
872 if (!commit || commit->transid > transid) {
873 spin_unlock(&fs_info->trans_lock);
874 break;
875 }
876 refcount_inc(&commit->use_count);
877 put = true;
878 spin_unlock(&fs_info->trans_lock);
879 }
89ce8a63
CM
880}
881
2ff7e61e 882int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
883{
884 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 885 int ret = 0;
46204592 886
46204592 887 if (transid) {
0b246afa 888 if (transid <= fs_info->last_trans_committed)
a4abeea4 889 goto out;
46204592
SW
890
891 /* find specified transaction */
0b246afa
JM
892 spin_lock(&fs_info->trans_lock);
893 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
894 if (t->transid == transid) {
895 cur_trans = t;
9b64f57d 896 refcount_inc(&cur_trans->use_count);
8cd2807f 897 ret = 0;
46204592
SW
898 break;
899 }
8cd2807f
MX
900 if (t->transid > transid) {
901 ret = 0;
46204592 902 break;
8cd2807f 903 }
46204592 904 }
0b246afa 905 spin_unlock(&fs_info->trans_lock);
42383020
SW
906
907 /*
908 * The specified transaction doesn't exist, or we
909 * raced with btrfs_commit_transaction
910 */
911 if (!cur_trans) {
0b246afa 912 if (transid > fs_info->last_trans_committed)
42383020 913 ret = -EINVAL;
8cd2807f 914 goto out;
42383020 915 }
46204592
SW
916 } else {
917 /* find newest transaction that is committing | committed */
0b246afa
JM
918 spin_lock(&fs_info->trans_lock);
919 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 920 list) {
4a9d8bde
MX
921 if (t->state >= TRANS_STATE_COMMIT_START) {
922 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 923 break;
46204592 924 cur_trans = t;
9b64f57d 925 refcount_inc(&cur_trans->use_count);
46204592
SW
926 break;
927 }
928 }
0b246afa 929 spin_unlock(&fs_info->trans_lock);
46204592 930 if (!cur_trans)
a4abeea4 931 goto out; /* nothing committing|committed */
46204592
SW
932 }
933
d0c2f4fa 934 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 935 btrfs_put_transaction(cur_trans);
a4abeea4 936out:
46204592
SW
937 return ret;
938}
939
2ff7e61e 940void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 941{
92e2f7e3 942 wait_current_trans(fs_info);
37d1aeee
CM
943}
944
8a8f4dea 945static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 946{
2ff7e61e 947 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 948
64403612 949 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 950 return true;
36ba022a 951
428c8e03 952 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 50);
8929ecfa
YZ
953}
954
a2633b6a 955bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
956{
957 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 958
3296bf56 959 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 960 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 961 return true;
8929ecfa 962
2ff7e61e 963 return should_end_transaction(trans);
8929ecfa
YZ
964}
965
dc60c525
NB
966static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
967
0e34693f 968{
dc60c525
NB
969 struct btrfs_fs_info *fs_info = trans->fs_info;
970
0e34693f
NB
971 if (!trans->block_rsv) {
972 ASSERT(!trans->bytes_reserved);
973 return;
974 }
975
976 if (!trans->bytes_reserved)
977 return;
978
979 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
980 trace_btrfs_space_reservation(fs_info, "transaction",
981 trans->transid, trans->bytes_reserved, 0);
982 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 983 trans->bytes_reserved, NULL);
0e34693f
NB
984 trans->bytes_reserved = 0;
985}
986
89ce8a63 987static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 988 int throttle)
79154b1b 989{
3a45bb20 990 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 991 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 992 int err = 0;
c3e69d58 993
b50fff81
DS
994 if (refcount_read(&trans->use_count) > 1) {
995 refcount_dec(&trans->use_count);
2a1eb461
JB
996 trans->block_rsv = trans->orig_rsv;
997 return 0;
998 }
999
dc60c525 1000 btrfs_trans_release_metadata(trans);
4c13d758 1001 trans->block_rsv = NULL;
c5567237 1002
119e80df 1003 btrfs_create_pending_block_groups(trans);
ea658bad 1004
4fbcdf66
FM
1005 btrfs_trans_release_chunk_metadata(trans);
1006
0860adfd 1007 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1008 sb_end_intwrite(info->sb);
6df7881a 1009
8929ecfa 1010 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
1011 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1012 atomic_dec(&cur_trans->num_writers);
0860adfd 1013 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 1014
093258e6 1015 cond_wake_up(&cur_trans->writer_wait);
e1489b4f 1016
5a9ba670 1017 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
e1489b4f
IA
1018 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1019
724e2315 1020 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
1021
1022 if (current->journal_info == trans)
1023 current->journal_info = NULL;
ab78c84d 1024
24bbcf04 1025 if (throttle)
2ff7e61e 1026 btrfs_run_delayed_iputs(info);
24bbcf04 1027
84961539 1028 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
4e121c06 1029 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1030 if (TRANS_ABORTED(trans))
1031 err = trans->aborted;
1032 else
1033 err = -EROFS;
4e121c06 1034 }
49b25e05 1035
4edc2ca3
DJ
1036 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1037 return err;
79154b1b
CM
1038}
1039
3a45bb20 1040int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1041{
3a45bb20 1042 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1043}
1044
3a45bb20 1045int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1046{
3a45bb20 1047 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1048}
1049
d352ac68
CM
1050/*
1051 * when btree blocks are allocated, they have some corresponding bits set for
1052 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1053 * those extents are sent to disk but does not wait on them
d352ac68 1054 */
2ff7e61e 1055int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1056 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1057{
777e6bd7 1058 int err = 0;
7c4452b9 1059 int werr = 0;
0b246afa 1060 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1061 struct extent_state *cached_state = NULL;
777e6bd7 1062 u64 start = 0;
5f39d397 1063 u64 end;
7c4452b9 1064
6300463b 1065 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1066 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1067 mark, &cached_state)) {
663dfbb0
FM
1068 bool wait_writeback = false;
1069
1070 err = convert_extent_bit(dirty_pages, start, end,
1071 EXTENT_NEED_WAIT,
210aa277 1072 mark, &cached_state);
663dfbb0
FM
1073 /*
1074 * convert_extent_bit can return -ENOMEM, which is most of the
1075 * time a temporary error. So when it happens, ignore the error
1076 * and wait for writeback of this range to finish - because we
1077 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1078 * to __btrfs_wait_marked_extents() would not know that
1079 * writeback for this range started and therefore wouldn't
1080 * wait for it to finish - we don't want to commit a
1081 * superblock that points to btree nodes/leafs for which
1082 * writeback hasn't finished yet (and without errors).
663dfbb0 1083 * We cleanup any entries left in the io tree when committing
41e7acd3 1084 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1085 */
1086 if (err == -ENOMEM) {
1087 err = 0;
1088 wait_writeback = true;
1089 }
1090 if (!err)
1091 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1092 if (err)
1093 werr = err;
663dfbb0
FM
1094 else if (wait_writeback)
1095 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1096 free_extent_state(cached_state);
663dfbb0 1097 cached_state = NULL;
1728366e
JB
1098 cond_resched();
1099 start = end + 1;
7c4452b9 1100 }
6300463b 1101 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1102 return werr;
1103}
1104
1105/*
1106 * when btree blocks are allocated, they have some corresponding bits set for
1107 * them in one of two extent_io trees. This is used to make sure all of
1108 * those extents are on disk for transaction or log commit. We wait
1109 * on all the pages and clear them from the dirty pages state tree
1110 */
bf89d38f
JM
1111static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1112 struct extent_io_tree *dirty_pages)
690587d1 1113{
690587d1
CM
1114 int err = 0;
1115 int werr = 0;
0b246afa 1116 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1117 struct extent_state *cached_state = NULL;
690587d1
CM
1118 u64 start = 0;
1119 u64 end;
777e6bd7 1120
1728366e 1121 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1122 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1123 /*
1124 * Ignore -ENOMEM errors returned by clear_extent_bit().
1125 * When committing the transaction, we'll remove any entries
1126 * left in the io tree. For a log commit, we don't remove them
1127 * after committing the log because the tree can be accessed
1128 * concurrently - we do it only at transaction commit time when
41e7acd3 1129 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1130 */
1131 err = clear_extent_bit(dirty_pages, start, end,
bd015294 1132 EXTENT_NEED_WAIT, &cached_state);
663dfbb0
FM
1133 if (err == -ENOMEM)
1134 err = 0;
1135 if (!err)
1136 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1137 if (err)
1138 werr = err;
e38e2ed7
FM
1139 free_extent_state(cached_state);
1140 cached_state = NULL;
1728366e
JB
1141 cond_resched();
1142 start = end + 1;
777e6bd7 1143 }
7c4452b9
CM
1144 if (err)
1145 werr = err;
bf89d38f
JM
1146 return werr;
1147}
656f30db 1148
b9fae2eb 1149static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1150 struct extent_io_tree *dirty_pages)
1151{
1152 bool errors = false;
1153 int err;
656f30db 1154
bf89d38f
JM
1155 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1156 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1157 errors = true;
1158
1159 if (errors && !err)
1160 err = -EIO;
1161 return err;
1162}
656f30db 1163
bf89d38f
JM
1164int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1165{
1166 struct btrfs_fs_info *fs_info = log_root->fs_info;
1167 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1168 bool errors = false;
1169 int err;
656f30db 1170
bf89d38f
JM
1171 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1172
1173 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1174 if ((mark & EXTENT_DIRTY) &&
1175 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1176 errors = true;
1177
1178 if ((mark & EXTENT_NEW) &&
1179 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1180 errors = true;
1181
1182 if (errors && !err)
1183 err = -EIO;
1184 return err;
79154b1b
CM
1185}
1186
690587d1 1187/*
c9b577c0
NB
1188 * When btree blocks are allocated the corresponding extents are marked dirty.
1189 * This function ensures such extents are persisted on disk for transaction or
1190 * log commit.
1191 *
1192 * @trans: transaction whose dirty pages we'd like to write
690587d1 1193 */
70458a58 1194static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1195{
1196 int ret;
1197 int ret2;
c9b577c0 1198 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1199 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1200 struct blk_plug plug;
690587d1 1201
c6adc9cc 1202 blk_start_plug(&plug);
c9b577c0 1203 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1204 blk_finish_plug(&plug);
bf89d38f 1205 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1206
41e7acd3 1207 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1208
bf0da8c1
CM
1209 if (ret)
1210 return ret;
c9b577c0 1211 else if (ret2)
bf0da8c1 1212 return ret2;
c9b577c0
NB
1213 else
1214 return 0;
d0c803c4
CM
1215}
1216
d352ac68
CM
1217/*
1218 * this is used to update the root pointer in the tree of tree roots.
1219 *
1220 * But, in the case of the extent allocation tree, updating the root
1221 * pointer may allocate blocks which may change the root of the extent
1222 * allocation tree.
1223 *
1224 * So, this loops and repeats and makes sure the cowonly root didn't
1225 * change while the root pointer was being updated in the metadata.
1226 */
0b86a832
CM
1227static int update_cowonly_root(struct btrfs_trans_handle *trans,
1228 struct btrfs_root *root)
79154b1b
CM
1229{
1230 int ret;
0b86a832 1231 u64 old_root_bytenr;
86b9f2ec 1232 u64 old_root_used;
0b246afa
JM
1233 struct btrfs_fs_info *fs_info = root->fs_info;
1234 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1235
86b9f2ec 1236 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1237
d397712b 1238 while (1) {
0b86a832 1239 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1240 if (old_root_bytenr == root->node->start &&
ea526d18 1241 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1242 break;
87ef2bb4 1243
5d4f98a2 1244 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1245 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1246 &root->root_key,
1247 &root->root_item);
49b25e05
JM
1248 if (ret)
1249 return ret;
56bec294 1250
86b9f2ec 1251 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1252 }
276e680d 1253
0b86a832
CM
1254 return 0;
1255}
1256
d352ac68
CM
1257/*
1258 * update all the cowonly tree roots on disk
49b25e05
JM
1259 *
1260 * The error handling in this function may not be obvious. Any of the
1261 * failures will cause the file system to go offline. We still need
1262 * to clean up the delayed refs.
d352ac68 1263 */
9386d8bc 1264static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1265{
9386d8bc 1266 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1267 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1268 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1269 struct list_head *next;
84234f3a 1270 struct extent_buffer *eb;
56bec294 1271 int ret;
84234f3a 1272
dfba78dc
FM
1273 /*
1274 * At this point no one can be using this transaction to modify any tree
1275 * and no one can start another transaction to modify any tree either.
1276 */
1277 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1278
84234f3a 1279 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1280 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1281 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1282 btrfs_tree_unlock(eb);
1283 free_extent_buffer(eb);
0b86a832 1284
49b25e05
JM
1285 if (ret)
1286 return ret;
87ef2bb4 1287
196c9d8d 1288 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1289 if (ret)
1290 return ret;
2b584c68 1291 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1292 if (ret)
1293 return ret;
280f8bd2 1294 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1295 if (ret)
1296 return ret;
546adb0d 1297
bbebb3e0 1298 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1299 if (ret)
1300 return ret;
1301
ea526d18 1302again:
d397712b 1303 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1304 struct btrfs_root *root;
0b86a832
CM
1305 next = fs_info->dirty_cowonly_roots.next;
1306 list_del_init(next);
1307 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1308 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1309
826582ca
JB
1310 list_add_tail(&root->dirty_list,
1311 &trans->transaction->switch_commits);
49b25e05
JM
1312 ret = update_cowonly_root(trans, root);
1313 if (ret)
1314 return ret;
79154b1b 1315 }
276e680d 1316
488bc2a2
JB
1317 /* Now flush any delayed refs generated by updating all of the roots */
1318 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1319 if (ret)
1320 return ret;
1321
1bbc621e 1322 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1323 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1324 if (ret)
1325 return ret;
488bc2a2
JB
1326
1327 /*
1328 * We're writing the dirty block groups, which could generate
1329 * delayed refs, which could generate more dirty block groups,
1330 * so we want to keep this flushing in this loop to make sure
1331 * everything gets run.
1332 */
c79a70b1 1333 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1334 if (ret)
1335 return ret;
1336 }
1337
1338 if (!list_empty(&fs_info->dirty_cowonly_roots))
1339 goto again;
1340
9f6cbcbb
DS
1341 /* Update dev-replace pointer once everything is committed */
1342 fs_info->dev_replace.committed_cursor_left =
1343 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1344
79154b1b
CM
1345 return 0;
1346}
1347
b4be6aef
JB
1348/*
1349 * If we had a pending drop we need to see if there are any others left in our
1350 * dead roots list, and if not clear our bit and wake any waiters.
1351 */
1352void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1353{
1354 /*
1355 * We put the drop in progress roots at the front of the list, so if the
1356 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1357 * up.
1358 */
1359 spin_lock(&fs_info->trans_lock);
1360 if (!list_empty(&fs_info->dead_roots)) {
1361 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1362 struct btrfs_root,
1363 root_list);
1364 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1365 spin_unlock(&fs_info->trans_lock);
1366 return;
1367 }
1368 }
1369 spin_unlock(&fs_info->trans_lock);
1370
1371 btrfs_wake_unfinished_drop(fs_info);
1372}
1373
d352ac68
CM
1374/*
1375 * dead roots are old snapshots that need to be deleted. This allocates
1376 * a dirty root struct and adds it into the list of dead roots that need to
1377 * be deleted
1378 */
cfad392b 1379void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1380{
0b246afa
JM
1381 struct btrfs_fs_info *fs_info = root->fs_info;
1382
1383 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1384 if (list_empty(&root->root_list)) {
1385 btrfs_grab_root(root);
b4be6aef
JB
1386
1387 /* We want to process the partially complete drops first. */
1388 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1389 list_add(&root->root_list, &fs_info->dead_roots);
1390 else
1391 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1392 }
0b246afa 1393 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1394}
1395
d352ac68 1396/*
dfba78dc
FM
1397 * Update each subvolume root and its relocation root, if it exists, in the tree
1398 * of tree roots. Also free log roots if they exist.
d352ac68 1399 */
7e4443d9 1400static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1401{
7e4443d9 1402 struct btrfs_fs_info *fs_info = trans->fs_info;
fc7cbcd4
DS
1403 struct btrfs_root *gang[8];
1404 int i;
1405 int ret;
54aa1f4d 1406
dfba78dc
FM
1407 /*
1408 * At this point no one can be using this transaction to modify any tree
1409 * and no one can start another transaction to modify any tree either.
1410 */
1411 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1412
fc7cbcd4
DS
1413 spin_lock(&fs_info->fs_roots_radix_lock);
1414 while (1) {
1415 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1416 (void **)gang, 0,
1417 ARRAY_SIZE(gang),
1418 BTRFS_ROOT_TRANS_TAG);
1419 if (ret == 0)
1420 break;
1421 for (i = 0; i < ret; i++) {
1422 struct btrfs_root *root = gang[i];
1423 int ret2;
1424
1425 /*
1426 * At this point we can neither have tasks logging inodes
1427 * from a root nor trying to commit a log tree.
1428 */
1429 ASSERT(atomic_read(&root->log_writers) == 0);
1430 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1431 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1432
1433 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1434 (unsigned long)root->root_key.objectid,
1435 BTRFS_ROOT_TRANS_TAG);
1436 spin_unlock(&fs_info->fs_roots_radix_lock);
1437
1438 btrfs_free_log(trans, root);
1439 ret2 = btrfs_update_reloc_root(trans, root);
1440 if (ret2)
1441 return ret2;
1442
1443 /* see comments in should_cow_block() */
1444 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1445 smp_mb__after_atomic();
1446
1447 if (root->commit_root != root->node) {
1448 list_add_tail(&root->dirty_list,
1449 &trans->transaction->switch_commits);
1450 btrfs_set_root_node(&root->root_item,
1451 root->node);
1452 }
48b36a60 1453
fc7cbcd4
DS
1454 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1455 &root->root_key,
1456 &root->root_item);
1457 if (ret2)
1458 return ret2;
1459 spin_lock(&fs_info->fs_roots_radix_lock);
1460 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1461 }
1462 }
fc7cbcd4 1463 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1464 return 0;
0f7d52f4
CM
1465}
1466
d352ac68 1467/*
de78b51a
ES
1468 * defrag a given btree.
1469 * Every leaf in the btree is read and defragged.
d352ac68 1470 */
de78b51a 1471int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1472{
1473 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1474 struct btrfs_trans_handle *trans;
8929ecfa 1475 int ret;
e9d0b13b 1476
27cdeb70 1477 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1478 return 0;
8929ecfa 1479
6b80053d 1480 while (1) {
8929ecfa 1481 trans = btrfs_start_transaction(root, 0);
6819703f
DS
1482 if (IS_ERR(trans)) {
1483 ret = PTR_ERR(trans);
1484 break;
1485 }
8929ecfa 1486
de78b51a 1487 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1488
3a45bb20 1489 btrfs_end_transaction(trans);
2ff7e61e 1490 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1491 cond_resched();
1492
ab8d0fc4 1493 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1494 break;
210549eb 1495
ab8d0fc4
JM
1496 if (btrfs_defrag_cancelled(info)) {
1497 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1498 ret = -EAGAIN;
1499 break;
1500 }
e9d0b13b 1501 }
27cdeb70 1502 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1503 return ret;
e9d0b13b
CM
1504}
1505
6426c7ad
QW
1506/*
1507 * Do all special snapshot related qgroup dirty hack.
1508 *
1509 * Will do all needed qgroup inherit and dirty hack like switch commit
1510 * roots inside one transaction and write all btree into disk, to make
1511 * qgroup works.
1512 */
1513static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1514 struct btrfs_root *src,
1515 struct btrfs_root *parent,
1516 struct btrfs_qgroup_inherit *inherit,
1517 u64 dst_objectid)
1518{
1519 struct btrfs_fs_info *fs_info = src->fs_info;
1520 int ret;
1521
1522 /*
1523 * Save some performance in the case that qgroups are not
1524 * enabled. If this check races with the ioctl, rescan will
1525 * kick in anyway.
1526 */
9ea6e2b5 1527 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1528 return 0;
6426c7ad 1529
4d31778a 1530 /*
52042d8e 1531 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1532 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1533 * recorded root will never be updated again, causing an outdated root
1534 * item.
1535 */
1c442d22
JB
1536 ret = record_root_in_trans(trans, src, 1);
1537 if (ret)
1538 return ret;
4d31778a 1539
2a4d84c1
JB
1540 /*
1541 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1542 * src root, so we must run the delayed refs here.
1543 *
1544 * However this isn't particularly fool proof, because there's no
1545 * synchronization keeping us from changing the tree after this point
1546 * before we do the qgroup_inherit, or even from making changes while
1547 * we're doing the qgroup_inherit. But that's a problem for the future,
1548 * for now flush the delayed refs to narrow the race window where the
1549 * qgroup counters could end up wrong.
1550 */
1551 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1552 if (ret) {
1553 btrfs_abort_transaction(trans, ret);
44365827 1554 return ret;
2a4d84c1
JB
1555 }
1556
7e4443d9 1557 ret = commit_fs_roots(trans);
6426c7ad
QW
1558 if (ret)
1559 goto out;
460fb20a 1560 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1561 if (ret < 0)
1562 goto out;
1563
1564 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1565 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1566 inherit);
1567 if (ret < 0)
1568 goto out;
1569
1570 /*
1571 * Now we do a simplified commit transaction, which will:
1572 * 1) commit all subvolume and extent tree
1573 * To ensure all subvolume and extent tree have a valid
1574 * commit_root to accounting later insert_dir_item()
1575 * 2) write all btree blocks onto disk
1576 * This is to make sure later btree modification will be cowed
1577 * Or commit_root can be populated and cause wrong qgroup numbers
1578 * In this simplified commit, we don't really care about other trees
1579 * like chunk and root tree, as they won't affect qgroup.
1580 * And we don't write super to avoid half committed status.
1581 */
9386d8bc 1582 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1583 if (ret)
1584 goto out;
889bfa39 1585 switch_commit_roots(trans);
70458a58 1586 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1587 if (ret)
f7af3934 1588 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1589 "Error while writing out transaction for qgroup");
1590
1591out:
6426c7ad
QW
1592 /*
1593 * Force parent root to be updated, as we recorded it before so its
1594 * last_trans == cur_transid.
1595 * Or it won't be committed again onto disk after later
1596 * insert_dir_item()
1597 */
1598 if (!ret)
1c442d22 1599 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1600 return ret;
1601}
1602
d352ac68
CM
1603/*
1604 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1605 * transaction commit. This does the actual creation.
1606 *
1607 * Note:
1608 * If the error which may affect the commitment of the current transaction
1609 * happens, we should return the error number. If the error which just affect
1610 * the creation of the pending snapshots, just return 0.
d352ac68 1611 */
80b6794d 1612static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1613 struct btrfs_pending_snapshot *pending)
1614{
08d50ca3
NB
1615
1616 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1617 struct btrfs_key key;
80b6794d 1618 struct btrfs_root_item *new_root_item;
3063d29f
CM
1619 struct btrfs_root *tree_root = fs_info->tree_root;
1620 struct btrfs_root *root = pending->root;
6bdb72de 1621 struct btrfs_root *parent_root;
98c9942a 1622 struct btrfs_block_rsv *rsv;
ab3c5c18 1623 struct inode *parent_inode = pending->dir;
42874b3d
MX
1624 struct btrfs_path *path;
1625 struct btrfs_dir_item *dir_item;
3063d29f 1626 struct extent_buffer *tmp;
925baedd 1627 struct extent_buffer *old;
95582b00 1628 struct timespec64 cur_time;
aec8030a 1629 int ret = 0;
d68fc57b 1630 u64 to_reserve = 0;
6bdb72de 1631 u64 index = 0;
a22285a6 1632 u64 objectid;
b83cc969 1633 u64 root_flags;
ab3c5c18
STD
1634 unsigned int nofs_flags;
1635 struct fscrypt_name fname;
3063d29f 1636
8546b570
DS
1637 ASSERT(pending->path);
1638 path = pending->path;
42874b3d 1639
b0c0ea63
DS
1640 ASSERT(pending->root_item);
1641 new_root_item = pending->root_item;
a22285a6 1642
ab3c5c18
STD
1643 /*
1644 * We're inside a transaction and must make sure that any potential
1645 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1646 * filesystem.
1647 */
1648 nofs_flags = memalloc_nofs_save();
1649 pending->error = fscrypt_setup_filename(parent_inode,
1650 &pending->dentry->d_name, 0,
1651 &fname);
1652 memalloc_nofs_restore(nofs_flags);
1653 if (pending->error)
1654 goto free_pending;
ab3c5c18 1655
543068a2 1656 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1657 if (pending->error)
ab3c5c18 1658 goto free_fname;
3063d29f 1659
d6726335
QW
1660 /*
1661 * Make qgroup to skip current new snapshot's qgroupid, as it is
1662 * accounted by later btrfs_qgroup_inherit().
1663 */
1664 btrfs_set_skip_qgroup(trans, objectid);
1665
147d256e 1666 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1667
1668 if (to_reserve > 0) {
9270501c 1669 pending->error = btrfs_block_rsv_add(fs_info,
aec8030a
MX
1670 &pending->block_rsv,
1671 to_reserve,
1672 BTRFS_RESERVE_NO_FLUSH);
1673 if (pending->error)
d6726335 1674 goto clear_skip_qgroup;
d68fc57b
YZ
1675 }
1676
3063d29f 1677 key.objectid = objectid;
a22285a6
YZ
1678 key.offset = (u64)-1;
1679 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1680
6fa9700e 1681 rsv = trans->block_rsv;
a22285a6 1682 trans->block_rsv = &pending->block_rsv;
2382c5cc 1683 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1684 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1685 trans->transid,
1686 trans->bytes_reserved, 1);
a22285a6 1687 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1688 ret = record_root_in_trans(trans, parent_root, 0);
1689 if (ret)
1690 goto fail;
c2050a45 1691 cur_time = current_time(parent_inode);
04b285f3 1692
3063d29f
CM
1693 /*
1694 * insert the directory item
1695 */
877574e2 1696 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1697 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1698
1699 /* check if there is a file/dir which has the same name. */
1700 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1701 btrfs_ino(BTRFS_I(parent_inode)),
6db75318 1702 &fname.disk_name, 0);
42874b3d 1703 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1704 pending->error = -EEXIST;
aec8030a 1705 goto dir_item_existed;
42874b3d
MX
1706 } else if (IS_ERR(dir_item)) {
1707 ret = PTR_ERR(dir_item);
66642832 1708 btrfs_abort_transaction(trans, ret);
8732d44f 1709 goto fail;
79787eaa 1710 }
42874b3d 1711 btrfs_release_path(path);
52c26179 1712
e999376f
CM
1713 /*
1714 * pull in the delayed directory update
1715 * and the delayed inode item
1716 * otherwise we corrupt the FS during
1717 * snapshot
1718 */
e5c304e6 1719 ret = btrfs_run_delayed_items(trans);
8732d44f 1720 if (ret) { /* Transaction aborted */
66642832 1721 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1722 goto fail;
1723 }
e999376f 1724
f0118cb6
JB
1725 ret = record_root_in_trans(trans, root, 0);
1726 if (ret) {
1727 btrfs_abort_transaction(trans, ret);
1728 goto fail;
1729 }
6bdb72de
SW
1730 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1731 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1732 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1733
b83cc969
LZ
1734 root_flags = btrfs_root_flags(new_root_item);
1735 if (pending->readonly)
1736 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1737 else
1738 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1739 btrfs_set_root_flags(new_root_item, root_flags);
1740
8ea05e3a
AB
1741 btrfs_set_root_generation_v2(new_root_item,
1742 trans->transid);
807fc790 1743 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1744 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1745 BTRFS_UUID_SIZE);
70023da2
SB
1746 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1747 memset(new_root_item->received_uuid, 0,
1748 sizeof(new_root_item->received_uuid));
1749 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1750 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1751 btrfs_set_root_stransid(new_root_item, 0);
1752 btrfs_set_root_rtransid(new_root_item, 0);
1753 }
3cae210f
QW
1754 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1755 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1756 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1757
6bdb72de 1758 old = btrfs_lock_root_node(root);
9631e4cc
JB
1759 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1760 BTRFS_NESTING_COW);
79787eaa
JM
1761 if (ret) {
1762 btrfs_tree_unlock(old);
1763 free_extent_buffer(old);
66642832 1764 btrfs_abort_transaction(trans, ret);
8732d44f 1765 goto fail;
79787eaa 1766 }
49b25e05 1767
49b25e05 1768 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1769 /* clean up in any case */
6bdb72de
SW
1770 btrfs_tree_unlock(old);
1771 free_extent_buffer(old);
8732d44f 1772 if (ret) {
66642832 1773 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1774 goto fail;
1775 }
f1ebcc74 1776 /* see comments in should_cow_block() */
27cdeb70 1777 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1778 smp_wmb();
1779
6bdb72de 1780 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1781 /* record when the snapshot was created in key.offset */
1782 key.offset = trans->transid;
1783 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1784 btrfs_tree_unlock(tmp);
1785 free_extent_buffer(tmp);
8732d44f 1786 if (ret) {
66642832 1787 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1788 goto fail;
1789 }
6bdb72de 1790
a22285a6
YZ
1791 /*
1792 * insert root back/forward references
1793 */
6025c19f 1794 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1795 parent_root->root_key.objectid,
4a0cc7ca 1796 btrfs_ino(BTRFS_I(parent_inode)), index,
6db75318 1797 &fname.disk_name);
8732d44f 1798 if (ret) {
66642832 1799 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1800 goto fail;
1801 }
0660b5af 1802
a22285a6 1803 key.offset = (u64)-1;
2dfb1e43 1804 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1805 if (IS_ERR(pending->snap)) {
1806 ret = PTR_ERR(pending->snap);
2d892ccd 1807 pending->snap = NULL;
66642832 1808 btrfs_abort_transaction(trans, ret);
8732d44f 1809 goto fail;
79787eaa 1810 }
d68fc57b 1811
49b25e05 1812 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1813 if (ret) {
66642832 1814 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1815 goto fail;
1816 }
361048f5 1817
6426c7ad
QW
1818 /*
1819 * Do special qgroup accounting for snapshot, as we do some qgroup
1820 * snapshot hack to do fast snapshot.
1821 * To co-operate with that hack, we do hack again.
1822 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1823 */
1824 ret = qgroup_account_snapshot(trans, root, parent_root,
1825 pending->inherit, objectid);
1826 if (ret < 0)
1827 goto fail;
1828
6db75318
STD
1829 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1830 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1831 index);
42874b3d 1832 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1833 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1834 if (ret) {
66642832 1835 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1836 goto fail;
1837 }
42874b3d 1838
6ef06d27 1839 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
6db75318 1840 fname.disk_name.len * 2);
c1867eb3
DS
1841 parent_inode->i_mtime = current_time(parent_inode);
1842 parent_inode->i_ctime = parent_inode->i_mtime;
729f7961 1843 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1844 if (ret) {
66642832 1845 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1846 goto fail;
1847 }
807fc790
AS
1848 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1849 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1850 objectid);
dd5f9615 1851 if (ret) {
66642832 1852 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1853 goto fail;
1854 }
1855 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1856 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1857 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1858 objectid);
1859 if (ret && ret != -EEXIST) {
66642832 1860 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1861 goto fail;
1862 }
1863 }
d6726335 1864
3063d29f 1865fail:
aec8030a
MX
1866 pending->error = ret;
1867dir_item_existed:
98c9942a 1868 trans->block_rsv = rsv;
2382c5cc 1869 trans->bytes_reserved = 0;
d6726335
QW
1870clear_skip_qgroup:
1871 btrfs_clear_skip_qgroup(trans);
ab3c5c18
STD
1872free_fname:
1873 fscrypt_free_filename(&fname);
1874free_pending:
6fa9700e 1875 kfree(new_root_item);
b0c0ea63 1876 pending->root_item = NULL;
42874b3d 1877 btrfs_free_path(path);
8546b570
DS
1878 pending->path = NULL;
1879
49b25e05 1880 return ret;
3063d29f
CM
1881}
1882
d352ac68
CM
1883/*
1884 * create all the snapshots we've scheduled for creation
1885 */
08d50ca3 1886static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1887{
aec8030a 1888 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1889 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1890 int ret = 0;
3de4586c 1891
aec8030a
MX
1892 list_for_each_entry_safe(pending, next, head, list) {
1893 list_del(&pending->list);
08d50ca3 1894 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1895 if (ret)
1896 break;
1897 }
1898 return ret;
3de4586c
CM
1899}
1900
2ff7e61e 1901static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1902{
1903 struct btrfs_root_item *root_item;
1904 struct btrfs_super_block *super;
1905
0b246afa 1906 super = fs_info->super_copy;
5d4f98a2 1907
0b246afa 1908 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1909 super->chunk_root = root_item->bytenr;
1910 super->chunk_root_generation = root_item->generation;
1911 super->chunk_root_level = root_item->level;
5d4f98a2 1912
0b246afa 1913 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1914 super->root = root_item->bytenr;
1915 super->generation = root_item->generation;
1916 super->root_level = root_item->level;
0b246afa 1917 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1918 super->cache_generation = root_item->generation;
94846229
BB
1919 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1920 super->cache_generation = 0;
0b246afa 1921 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1922 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1923}
1924
f36f3042
CM
1925int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1926{
4a9d8bde 1927 struct btrfs_transaction *trans;
f36f3042 1928 int ret = 0;
4a9d8bde 1929
a4abeea4 1930 spin_lock(&info->trans_lock);
4a9d8bde
MX
1931 trans = info->running_transaction;
1932 if (trans)
1933 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1934 spin_unlock(&info->trans_lock);
f36f3042
CM
1935 return ret;
1936}
1937
8929ecfa
YZ
1938int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1939{
4a9d8bde 1940 struct btrfs_transaction *trans;
8929ecfa 1941 int ret = 0;
4a9d8bde 1942
a4abeea4 1943 spin_lock(&info->trans_lock);
4a9d8bde
MX
1944 trans = info->running_transaction;
1945 if (trans)
1946 ret = is_transaction_blocked(trans);
a4abeea4 1947 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1948 return ret;
1949}
1950
fdfbf020 1951void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
bb9c12c9 1952{
3a45bb20 1953 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1954 struct btrfs_transaction *cur_trans;
1955
fdfbf020
JB
1956 /* Kick the transaction kthread. */
1957 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1958 wake_up_process(fs_info->transaction_kthread);
bb9c12c9
SW
1959
1960 /* take transaction reference */
bb9c12c9 1961 cur_trans = trans->transaction;
9b64f57d 1962 refcount_inc(&cur_trans->use_count);
bb9c12c9 1963
3a45bb20 1964 btrfs_end_transaction(trans);
6fc4e354 1965
ae5d29d4
DS
1966 /*
1967 * Wait for the current transaction commit to start and block
1968 * subsequent transaction joins
1969 */
3e738c53 1970 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
ae5d29d4
DS
1971 wait_event(fs_info->transaction_blocked_wait,
1972 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1973 TRANS_ABORTED(cur_trans));
724e2315 1974 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1975}
1976
97cb39bb 1977static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1978{
97cb39bb 1979 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1980 struct btrfs_transaction *cur_trans = trans->transaction;
1981
b50fff81 1982 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1983
66642832 1984 btrfs_abort_transaction(trans, err);
7b8b92af 1985
0b246afa 1986 spin_lock(&fs_info->trans_lock);
66b6135b 1987
25d8c284
MX
1988 /*
1989 * If the transaction is removed from the list, it means this
1990 * transaction has been committed successfully, so it is impossible
1991 * to call the cleanup function.
1992 */
1993 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1994
0b246afa 1995 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1996 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1997 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
1998
1999 /*
2000 * The thread has already released the lockdep map as reader
2001 * already in btrfs_commit_transaction().
2002 */
2003 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
f094ac32
LB
2004 wait_event(cur_trans->writer_wait,
2005 atomic_read(&cur_trans->num_writers) == 1);
2006
0b246afa 2007 spin_lock(&fs_info->trans_lock);
d7096fc3 2008 }
061dde82
FM
2009
2010 /*
2011 * Now that we know no one else is still using the transaction we can
2012 * remove the transaction from the list of transactions. This avoids
2013 * the transaction kthread from cleaning up the transaction while some
2014 * other task is still using it, which could result in a use-after-free
2015 * on things like log trees, as it forces the transaction kthread to
2016 * wait for this transaction to be cleaned up by us.
2017 */
2018 list_del_init(&cur_trans->list);
2019
0b246afa 2020 spin_unlock(&fs_info->trans_lock);
49b25e05 2021
2ff7e61e 2022 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 2023
0b246afa
JM
2024 spin_lock(&fs_info->trans_lock);
2025 if (cur_trans == fs_info->running_transaction)
2026 fs_info->running_transaction = NULL;
2027 spin_unlock(&fs_info->trans_lock);
4a9d8bde 2028
e0228285 2029 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2030 sb_end_intwrite(fs_info->sb);
724e2315
JB
2031 btrfs_put_transaction(cur_trans);
2032 btrfs_put_transaction(cur_trans);
49b25e05 2033
2e4e97ab 2034 trace_btrfs_transaction_commit(fs_info);
49b25e05 2035
49b25e05
JM
2036 if (current->journal_info == trans)
2037 current->journal_info = NULL;
0b246afa 2038 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2039
2040 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2041}
2042
c7cc64a9
DS
2043/*
2044 * Release reserved delayed ref space of all pending block groups of the
2045 * transaction and remove them from the list
2046 */
2047static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2048{
2049 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2050 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2051
2052 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2053 btrfs_delayed_refs_rsv_release(fs_info, 1);
2054 list_del_init(&block_group->bg_list);
2055 }
2056}
2057
88090ad3 2058static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2059{
ce8ea7cc 2060 /*
a0f0cf83 2061 * We use try_to_writeback_inodes_sb() here because if we used
ce8ea7cc
JB
2062 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2063 * Currently are holding the fs freeze lock, if we do an async flush
2064 * we'll do btrfs_join_transaction() and deadlock because we need to
2065 * wait for the fs freeze lock. Using the direct flushing we benefit
2066 * from already being in a transaction and our join_transaction doesn't
2067 * have to re-take the fs freeze lock.
a0f0cf83
FM
2068 *
2069 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2070 * if it can read lock sb->s_umount. It will always be able to lock it,
2071 * except when the filesystem is being unmounted or being frozen, but in
2072 * those cases sync_filesystem() is called, which results in calling
2073 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2074 * Note that we don't call writeback_inodes_sb() directly, because it
2075 * will emit a warning if sb->s_umount is not locked.
ce8ea7cc 2076 */
88090ad3 2077 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
a0f0cf83 2078 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2079 return 0;
2080}
2081
88090ad3 2082static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2083{
88090ad3 2084 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2085 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2086}
2087
28b21c55
FM
2088/*
2089 * Add a pending snapshot associated with the given transaction handle to the
2090 * respective handle. This must be called after the transaction commit started
2091 * and while holding fs_info->trans_lock.
2092 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2093 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2094 * returns an error.
2095 */
2096static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2097{
2098 struct btrfs_transaction *cur_trans = trans->transaction;
2099
2100 if (!trans->pending_snapshot)
2101 return;
2102
2103 lockdep_assert_held(&trans->fs_info->trans_lock);
2104 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2105
2106 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2107}
2108
e55958c8
IA
2109static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2110{
2111 fs_info->commit_stats.commit_count++;
2112 fs_info->commit_stats.last_commit_dur = interval;
2113 fs_info->commit_stats.max_commit_dur =
2114 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2115 fs_info->commit_stats.total_commit_dur += interval;
2116}
2117
3a45bb20 2118int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2119{
3a45bb20 2120 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2121 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2122 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2123 int ret;
e55958c8
IA
2124 ktime_t start_time;
2125 ktime_t interval;
79154b1b 2126
35b814f3 2127 ASSERT(refcount_read(&trans->use_count) == 1);
3e738c53 2128 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
35b814f3 2129
c52cc7b7
JB
2130 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2131
8d25a086 2132 /* Stop the commit early if ->aborted is set */
bf31f87f 2133 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2134 ret = cur_trans->aborted;
3e738c53 2135 goto lockdep_trans_commit_start_release;
25287e0a 2136 }
49b25e05 2137
f45c752b
JB
2138 btrfs_trans_release_metadata(trans);
2139 trans->block_rsv = NULL;
2140
56bec294 2141 /*
e19eb11f
JB
2142 * We only want one transaction commit doing the flushing so we do not
2143 * waste a bunch of time on lock contention on the extent root node.
56bec294 2144 */
e19eb11f
JB
2145 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2146 &cur_trans->delayed_refs.flags)) {
2147 /*
2148 * Make a pass through all the delayed refs we have so far.
2149 * Any running threads may add more while we are here.
2150 */
2151 ret = btrfs_run_delayed_refs(trans, 0);
3e738c53
IA
2152 if (ret)
2153 goto lockdep_trans_commit_start_release;
e19eb11f 2154 }
56bec294 2155
119e80df 2156 btrfs_create_pending_block_groups(trans);
ea658bad 2157
3204d33c 2158 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2159 int run_it = 0;
2160
2161 /* this mutex is also taken before trying to set
2162 * block groups readonly. We need to make sure
2163 * that nobody has set a block group readonly
2164 * after a extents from that block group have been
2165 * allocated for cache files. btrfs_set_block_group_ro
2166 * will wait for the transaction to commit if it
3204d33c 2167 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2168 *
3204d33c
JB
2169 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2170 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2171 * hurt to have more than one go through, but there's no
2172 * real advantage to it either.
2173 */
0b246afa 2174 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2175 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2176 &cur_trans->flags))
1bbc621e 2177 run_it = 1;
0b246afa 2178 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2179
f9cacae3 2180 if (run_it) {
21217054 2181 ret = btrfs_start_dirty_block_groups(trans);
3e738c53
IA
2182 if (ret)
2183 goto lockdep_trans_commit_start_release;
f9cacae3 2184 }
1bbc621e
CM
2185 }
2186
0b246afa 2187 spin_lock(&fs_info->trans_lock);
4a9d8bde 2188 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2189 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2190
28b21c55
FM
2191 add_pending_snapshot(trans);
2192
0b246afa 2193 spin_unlock(&fs_info->trans_lock);
9b64f57d 2194 refcount_inc(&cur_trans->use_count);
ccd467d6 2195
d0c2f4fa
FM
2196 if (trans->in_fsync)
2197 want_state = TRANS_STATE_SUPER_COMMITTED;
3e738c53
IA
2198
2199 btrfs_trans_state_lockdep_release(fs_info,
2200 BTRFS_LOCKDEP_TRANS_COMMIT_START);
d0c2f4fa
FM
2201 ret = btrfs_end_transaction(trans);
2202 wait_for_commit(cur_trans, want_state);
15ee9bc7 2203
bf31f87f 2204 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2205 ret = cur_trans->aborted;
2206
724e2315 2207 btrfs_put_transaction(cur_trans);
15ee9bc7 2208
49b25e05 2209 return ret;
79154b1b 2210 }
4313b399 2211
4a9d8bde 2212 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2213 wake_up(&fs_info->transaction_blocked_wait);
3e738c53 2214 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
bb9c12c9 2215
0b246afa 2216 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2217 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2218
2219 if (trans->in_fsync)
2220 want_state = TRANS_STATE_SUPER_COMMITTED;
2221
ccd467d6
CM
2222 prev_trans = list_entry(cur_trans->list.prev,
2223 struct btrfs_transaction, list);
d0c2f4fa 2224 if (prev_trans->state < want_state) {
9b64f57d 2225 refcount_inc(&prev_trans->use_count);
0b246afa 2226 spin_unlock(&fs_info->trans_lock);
ccd467d6 2227
d0c2f4fa
FM
2228 wait_for_commit(prev_trans, want_state);
2229
bf31f87f 2230 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2231
724e2315 2232 btrfs_put_transaction(prev_trans);
1f9b8c8f 2233 if (ret)
e1489b4f 2234 goto lockdep_release;
a4abeea4 2235 } else {
0b246afa 2236 spin_unlock(&fs_info->trans_lock);
ccd467d6 2237 }
a4abeea4 2238 } else {
0b246afa 2239 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2240 /*
2241 * The previous transaction was aborted and was already removed
2242 * from the list of transactions at fs_info->trans_list. So we
2243 * abort to prevent writing a new superblock that reflects a
2244 * corrupt state (pointing to trees with unwritten nodes/leafs).
2245 */
84961539 2246 if (BTRFS_FS_ERROR(fs_info)) {
cb2d3dad 2247 ret = -EROFS;
e1489b4f 2248 goto lockdep_release;
cb2d3dad 2249 }
ccd467d6 2250 }
15ee9bc7 2251
e55958c8
IA
2252 /*
2253 * Get the time spent on the work done by the commit thread and not
2254 * the time spent waiting on a previous commit
2255 */
2256 start_time = ktime_get_ns();
2257
0860adfd
MX
2258 extwriter_counter_dec(cur_trans, trans->type);
2259
88090ad3 2260 ret = btrfs_start_delalloc_flush(fs_info);
82436617 2261 if (ret)
e1489b4f 2262 goto lockdep_release;
82436617 2263
e5c304e6 2264 ret = btrfs_run_delayed_items(trans);
581227d0 2265 if (ret)
e1489b4f 2266 goto lockdep_release;
15ee9bc7 2267
5a9ba670
IA
2268 /*
2269 * The thread has started/joined the transaction thus it holds the
2270 * lockdep map as a reader. It has to release it before acquiring the
2271 * lockdep map as a writer.
2272 */
2273 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2274 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
581227d0
MX
2275 wait_event(cur_trans->writer_wait,
2276 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2277
581227d0 2278 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2279 ret = btrfs_run_delayed_items(trans);
e1489b4f
IA
2280 if (ret) {
2281 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
ca469637 2282 goto cleanup_transaction;
e1489b4f 2283 }
ca469637 2284
88090ad3 2285 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2286
48778179
FM
2287 /*
2288 * Wait for all ordered extents started by a fast fsync that joined this
2289 * transaction. Otherwise if this transaction commits before the ordered
2290 * extents complete we lose logged data after a power failure.
2291 */
8b53779e 2292 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
48778179
FM
2293 wait_event(cur_trans->pending_wait,
2294 atomic_read(&cur_trans->pending_ordered) == 0);
2295
2ff7e61e 2296 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2297 /*
2298 * Ok now we need to make sure to block out any other joins while we
2299 * commit the transaction. We could have started a join before setting
4a9d8bde 2300 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2301 */
0b246afa 2302 spin_lock(&fs_info->trans_lock);
28b21c55 2303 add_pending_snapshot(trans);
4a9d8bde 2304 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2305 spin_unlock(&fs_info->trans_lock);
e1489b4f
IA
2306
2307 /*
2308 * The thread has started/joined the transaction thus it holds the
2309 * lockdep map as a reader. It has to release it before acquiring the
2310 * lockdep map as a writer.
2311 */
2312 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2313 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
ed0ca140
JB
2314 wait_event(cur_trans->writer_wait,
2315 atomic_read(&cur_trans->num_writers) == 1);
2316
3e738c53
IA
2317 /*
2318 * Make lockdep happy by acquiring the state locks after
2319 * btrfs_trans_num_writers is released. If we acquired the state locks
2320 * before releasing the btrfs_trans_num_writers lock then lockdep would
2321 * complain because we did not follow the reverse order unlocking rule.
2322 */
2323 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2324 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2325 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2326
fdfbf020
JB
2327 /*
2328 * We've started the commit, clear the flag in case we were triggered to
2329 * do an async commit but somebody else started before the transaction
2330 * kthread could do the work.
2331 */
2332 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2333
bf31f87f 2334 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2335 ret = cur_trans->aborted;
3e738c53 2336 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2337 goto scrub_continue;
2cba30f1 2338 }
7585717f
CM
2339 /*
2340 * the reloc mutex makes sure that we stop
2341 * the balancing code from coming in and moving
2342 * extents around in the middle of the commit
2343 */
0b246afa 2344 mutex_lock(&fs_info->reloc_mutex);
7585717f 2345
42874b3d
MX
2346 /*
2347 * We needn't worry about the delayed items because we will
2348 * deal with them in create_pending_snapshot(), which is the
2349 * core function of the snapshot creation.
2350 */
08d50ca3 2351 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2352 if (ret)
2353 goto unlock_reloc;
3063d29f 2354
42874b3d
MX
2355 /*
2356 * We insert the dir indexes of the snapshots and update the inode
2357 * of the snapshots' parents after the snapshot creation, so there
2358 * are some delayed items which are not dealt with. Now deal with
2359 * them.
2360 *
2361 * We needn't worry that this operation will corrupt the snapshots,
2362 * because all the tree which are snapshoted will be forced to COW
2363 * the nodes and leaves.
2364 */
e5c304e6 2365 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2366 if (ret)
2367 goto unlock_reloc;
16cdcec7 2368
c79a70b1 2369 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2370 if (ret)
2371 goto unlock_reloc;
56bec294 2372
e999376f
CM
2373 /*
2374 * make sure none of the code above managed to slip in a
2375 * delayed item
2376 */
ccdf9b30 2377 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2378
2c90e5d6 2379 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2380
7e4443d9 2381 ret = commit_fs_roots(trans);
56e9f6ea 2382 if (ret)
dfba78dc 2383 goto unlock_reloc;
54aa1f4d 2384
5d4f98a2 2385 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2386 * safe to free the root of tree log roots
2387 */
0b246afa 2388 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2389
0ed4792a
QW
2390 /*
2391 * Since fs roots are all committed, we can get a quite accurate
2392 * new_roots. So let's do quota accounting.
2393 */
460fb20a 2394 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea 2395 if (ret < 0)
dfba78dc 2396 goto unlock_reloc;
0ed4792a 2397
9386d8bc 2398 ret = commit_cowonly_roots(trans);
56e9f6ea 2399 if (ret)
dfba78dc 2400 goto unlock_reloc;
54aa1f4d 2401
2cba30f1
MX
2402 /*
2403 * The tasks which save the space cache and inode cache may also
2404 * update ->aborted, check it.
2405 */
bf31f87f 2406 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2407 ret = cur_trans->aborted;
dfba78dc 2408 goto unlock_reloc;
2cba30f1
MX
2409 }
2410
0b246afa 2411 cur_trans = fs_info->running_transaction;
5d4f98a2 2412
0b246afa
JM
2413 btrfs_set_root_node(&fs_info->tree_root->root_item,
2414 fs_info->tree_root->node);
2415 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2416 &cur_trans->switch_commits);
5d4f98a2 2417
0b246afa
JM
2418 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2419 fs_info->chunk_root->node);
2420 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2421 &cur_trans->switch_commits);
2422
f7238e50
JB
2423 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2424 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2425 fs_info->block_group_root->node);
2426 list_add_tail(&fs_info->block_group_root->dirty_list,
2427 &cur_trans->switch_commits);
2428 }
2429
889bfa39 2430 switch_commit_roots(trans);
5d4f98a2 2431
ce93ec54 2432 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2433 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2434 update_super_roots(fs_info);
e02119d5 2435
0b246afa
JM
2436 btrfs_set_super_log_root(fs_info->super_copy, 0);
2437 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2438 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2439 sizeof(*fs_info->super_copy));
ccd467d6 2440
bbbf7243 2441 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2442
0b246afa
JM
2443 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2444 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2445
4fbcdf66
FM
2446 btrfs_trans_release_chunk_metadata(trans);
2447
dfba78dc
FM
2448 /*
2449 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2450 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2451 * make sure that before we commit our superblock, no other task can
2452 * start a new transaction and commit a log tree before we commit our
2453 * superblock. Anyone trying to commit a log tree locks this mutex before
2454 * writing its superblock.
2455 */
2456 mutex_lock(&fs_info->tree_log_mutex);
2457
0b246afa 2458 spin_lock(&fs_info->trans_lock);
4a9d8bde 2459 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2460 fs_info->running_transaction = NULL;
2461 spin_unlock(&fs_info->trans_lock);
2462 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2463
0b246afa 2464 wake_up(&fs_info->transaction_wait);
3e738c53 2465 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
e6dcd2dc 2466
b7625f46
QW
2467 /* If we have features changed, wake up the cleaner to update sysfs. */
2468 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2469 fs_info->cleaner_kthread)
2470 wake_up_process(fs_info->cleaner_kthread);
2471
70458a58 2472 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2473 if (ret) {
0b246afa
JM
2474 btrfs_handle_fs_error(fs_info, ret,
2475 "Error while writing out transaction");
2476 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2477 goto scrub_continue;
49b25e05
JM
2478 }
2479
d3575156
NA
2480 /*
2481 * At this point, we should have written all the tree blocks allocated
2482 * in this transaction. So it's now safe to free the redirtyied extent
2483 * buffers.
2484 */
2485 btrfs_free_redirty_list(cur_trans);
2486
eece6a9c 2487 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2488 /*
2489 * the super is written, we can safely allow the tree-loggers
2490 * to go about their business
2491 */
0b246afa 2492 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2493 if (ret)
2494 goto scrub_continue;
e02119d5 2495
d0c2f4fa
FM
2496 /*
2497 * We needn't acquire the lock here because there is no other task
2498 * which can change it.
2499 */
2500 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2501 wake_up(&cur_trans->commit_wait);
3e738c53 2502 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
d0c2f4fa 2503
5ead2dd0 2504 btrfs_finish_extent_commit(trans);
4313b399 2505
3204d33c 2506 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2507 btrfs_clear_space_info_full(fs_info);
13212b54 2508
0b246afa 2509 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2510 /*
2511 * We needn't acquire the lock here because there is no other task
2512 * which can change it.
2513 */
2514 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2515 wake_up(&cur_trans->commit_wait);
3e738c53 2516 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
3de4586c 2517
0b246afa 2518 spin_lock(&fs_info->trans_lock);
13c5a93e 2519 list_del_init(&cur_trans->list);
0b246afa 2520 spin_unlock(&fs_info->trans_lock);
a4abeea4 2521
724e2315
JB
2522 btrfs_put_transaction(cur_trans);
2523 btrfs_put_transaction(cur_trans);
58176a96 2524
0860adfd 2525 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2526 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2527
2e4e97ab 2528 trace_btrfs_transaction_commit(fs_info);
1abe9b8a 2529
e55958c8
IA
2530 interval = ktime_get_ns() - start_time;
2531
2ff7e61e 2532 btrfs_scrub_continue(fs_info);
a2de733c 2533
9ed74f2d
JB
2534 if (current->journal_info == trans)
2535 current->journal_info = NULL;
2536
2c90e5d6 2537 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2538
e55958c8
IA
2539 update_commit_stats(fs_info, interval);
2540
79154b1b 2541 return ret;
49b25e05 2542
56e9f6ea
DS
2543unlock_reloc:
2544 mutex_unlock(&fs_info->reloc_mutex);
3e738c53 2545 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
6cf7f77e 2546scrub_continue:
3e738c53
IA
2547 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2548 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2ff7e61e 2549 btrfs_scrub_continue(fs_info);
49b25e05 2550cleanup_transaction:
dc60c525 2551 btrfs_trans_release_metadata(trans);
c7cc64a9 2552 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2553 btrfs_trans_release_chunk_metadata(trans);
0e721106 2554 trans->block_rsv = NULL;
0b246afa 2555 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2556 if (current->journal_info == trans)
2557 current->journal_info = NULL;
97cb39bb 2558 cleanup_transaction(trans, ret);
49b25e05
JM
2559
2560 return ret;
e1489b4f
IA
2561
2562lockdep_release:
5a9ba670 2563 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
e1489b4f
IA
2564 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2565 goto cleanup_transaction;
3e738c53
IA
2566
2567lockdep_trans_commit_start_release:
2568 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2569 btrfs_end_transaction(trans);
2570 return ret;
79154b1b
CM
2571}
2572
d352ac68 2573/*
9d1a2a3a
DS
2574 * return < 0 if error
2575 * 0 if there are no more dead_roots at the time of call
2576 * 1 there are more to be processed, call me again
2577 *
2578 * The return value indicates there are certainly more snapshots to delete, but
2579 * if there comes a new one during processing, it may return 0. We don't mind,
2580 * because btrfs_commit_super will poke cleaner thread and it will process it a
2581 * few seconds later.
d352ac68 2582 */
33c44184 2583int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
e9d0b13b 2584{
33c44184 2585 struct btrfs_root *root;
9d1a2a3a 2586 int ret;
5d4f98a2 2587
a4abeea4 2588 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2589 if (list_empty(&fs_info->dead_roots)) {
2590 spin_unlock(&fs_info->trans_lock);
2591 return 0;
2592 }
2593 root = list_first_entry(&fs_info->dead_roots,
2594 struct btrfs_root, root_list);
cfad392b 2595 list_del_init(&root->root_list);
a4abeea4 2596 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2597
4fd786e6 2598 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2599
9d1a2a3a 2600 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2601
9d1a2a3a
DS
2602 if (btrfs_header_backref_rev(root->node) <
2603 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2604 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2605 else
0078a9f9 2606 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2607
dc9492c1 2608 btrfs_put_root(root);
6596a928 2609 return (ret < 0) ? 0 : 1;
e9d0b13b 2610}
572d9ab7 2611
fccf0c84
JB
2612/*
2613 * We only mark the transaction aborted and then set the file system read-only.
2614 * This will prevent new transactions from starting or trying to join this
2615 * one.
2616 *
2617 * This means that error recovery at the call site is limited to freeing
2618 * any local memory allocations and passing the error code up without
2619 * further cleanup. The transaction should complete as it normally would
2620 * in the call path but will return -EIO.
2621 *
2622 * We'll complete the cleanup in btrfs_end_transaction and
2623 * btrfs_commit_transaction.
2624 */
2625void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2626 const char *function,
2627 unsigned int line, int errno, bool first_hit)
2628{
2629 struct btrfs_fs_info *fs_info = trans->fs_info;
2630
2631 WRITE_ONCE(trans->aborted, errno);
2632 WRITE_ONCE(trans->transaction->aborted, errno);
2633 if (first_hit && errno == -ENOSPC)
2634 btrfs_dump_space_info_for_trans_abort(fs_info);
2635 /* Wake up anybody who may be waiting on this transaction */
2636 wake_up(&fs_info->transaction_wait);
2637 wake_up(&fs_info->transaction_blocked_wait);
2638 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2639}
2640
956504a3
JB
2641int __init btrfs_transaction_init(void)
2642{
2643 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2644 sizeof(struct btrfs_trans_handle), 0,
2645 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2646 if (!btrfs_trans_handle_cachep)
2647 return -ENOMEM;
2648 return 0;
2649}
2650
2651void __cold btrfs_transaction_exit(void)
2652{
2653 kmem_cache_destroy(btrfs_trans_handle_cachep);
2654}