btrfs: zoned: implement sequential extent allocation
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
602cbe91 13#include "misc.h"
79154b1b
CM
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
925baedd 17#include "locking.h"
e02119d5 18#include "tree-log.h"
733f4fbb 19#include "volumes.h"
8dabb742 20#include "dev-replace.h"
fcebe456 21#include "qgroup.h"
aac0023c 22#include "block-group.h"
9c343784 23#include "space-info.h"
79154b1b 24
0f7d52f4
CM
25#define BTRFS_ROOT_TRANS_TAG 0
26
61c047b5
QW
27/*
28 * Transaction states and transitions
29 *
30 * No running transaction (fs tree blocks are not modified)
31 * |
32 * | To next stage:
33 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
34 * V
35 * Transaction N [[TRANS_STATE_RUNNING]]
36 * |
37 * | New trans handles can be attached to transaction N by calling all
38 * | start_transaction() variants.
39 * |
40 * | To next stage:
41 * | Call btrfs_commit_transaction() on any trans handle attached to
42 * | transaction N
43 * V
44 * Transaction N [[TRANS_STATE_COMMIT_START]]
45 * |
46 * | Will wait for previous running transaction to completely finish if there
47 * | is one
48 * |
49 * | Then one of the following happes:
50 * | - Wait for all other trans handle holders to release.
51 * | The btrfs_commit_transaction() caller will do the commit work.
52 * | - Wait for current transaction to be committed by others.
53 * | Other btrfs_commit_transaction() caller will do the commit work.
54 * |
55 * | At this stage, only btrfs_join_transaction*() variants can attach
56 * | to this running transaction.
57 * | All other variants will wait for current one to finish and attach to
58 * | transaction N+1.
59 * |
60 * | To next stage:
61 * | Caller is chosen to commit transaction N, and all other trans handle
62 * | haven been released.
63 * V
64 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
65 * |
66 * | The heavy lifting transaction work is started.
67 * | From running delayed refs (modifying extent tree) to creating pending
68 * | snapshots, running qgroups.
69 * | In short, modify supporting trees to reflect modifications of subvolume
70 * | trees.
71 * |
72 * | At this stage, all start_transaction() calls will wait for this
73 * | transaction to finish and attach to transaction N+1.
74 * |
75 * | To next stage:
76 * | Until all supporting trees are updated.
77 * V
78 * Transaction N [[TRANS_STATE_UNBLOCKED]]
79 * | Transaction N+1
80 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
81 * | need to write them back to disk and update |
82 * | super blocks. |
83 * | |
84 * | At this stage, new transaction is allowed to |
85 * | start. |
86 * | All new start_transaction() calls will be |
87 * | attached to transid N+1. |
88 * | |
89 * | To next stage: |
90 * | Until all tree blocks are super blocks are |
91 * | written to block devices |
92 * V |
93 * Transaction N [[TRANS_STATE_COMPLETED]] V
94 * All tree blocks and super blocks are written. Transaction N+1
95 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
96 * data structures will be cleaned up. | Life goes on
97 */
e8c9f186 98static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 99 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
100 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
101 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 102 __TRANS_ATTACH |
a6d155d2
FM
103 __TRANS_JOIN |
104 __TRANS_JOIN_NOSTART),
bcf3a3e7 105 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
106 __TRANS_ATTACH |
107 __TRANS_JOIN |
a6d155d2
FM
108 __TRANS_JOIN_NOLOCK |
109 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
110 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
111 __TRANS_ATTACH |
112 __TRANS_JOIN |
113 __TRANS_JOIN_NOLOCK |
114 __TRANS_JOIN_NOSTART),
bcf3a3e7 115 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
116 __TRANS_ATTACH |
117 __TRANS_JOIN |
a6d155d2
FM
118 __TRANS_JOIN_NOLOCK |
119 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
120};
121
724e2315 122void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 123{
9b64f57d
ER
124 WARN_ON(refcount_read(&transaction->use_count) == 0);
125 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 126 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
127 WARN_ON(!RB_EMPTY_ROOT(
128 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
129 WARN_ON(!RB_EMPTY_ROOT(
130 &transaction->delayed_refs.dirty_extent_root));
1262133b 131 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
132 btrfs_err(transaction->fs_info,
133 "pending csums is %llu",
134 transaction->delayed_refs.pending_csums);
7785a663
FM
135 /*
136 * If any block groups are found in ->deleted_bgs then it's
137 * because the transaction was aborted and a commit did not
138 * happen (things failed before writing the new superblock
139 * and calling btrfs_finish_extent_commit()), so we can not
140 * discard the physical locations of the block groups.
141 */
142 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 143 struct btrfs_block_group *cache;
7785a663
FM
144
145 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 146 struct btrfs_block_group,
7785a663
FM
147 bg_list);
148 list_del_init(&cache->bg_list);
6b7304af 149 btrfs_unfreeze_block_group(cache);
7785a663
FM
150 btrfs_put_block_group(cache);
151 }
bbbf7243 152 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 153 kfree(transaction);
78fae27e 154 }
79154b1b
CM
155}
156
889bfa39 157static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 158{
889bfa39 159 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 160 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8 161 struct btrfs_root *root, *tmp;
27d56e62 162 struct btrfs_caching_control *caching_ctl, *next;
9e351cc8
JB
163
164 down_write(&fs_info->commit_root_sem);
889bfa39 165 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
166 dirty_list) {
167 list_del_init(&root->dirty_list);
168 free_extent_buffer(root->commit_root);
169 root->commit_root = btrfs_root_node(root);
41e7acd3 170 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 171 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 172 }
2b9dbef2
JB
173
174 /* We can free old roots now. */
889bfa39
JB
175 spin_lock(&cur_trans->dropped_roots_lock);
176 while (!list_empty(&cur_trans->dropped_roots)) {
177 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
178 struct btrfs_root, root_list);
179 list_del_init(&root->root_list);
889bfa39
JB
180 spin_unlock(&cur_trans->dropped_roots_lock);
181 btrfs_free_log(trans, root);
2b9dbef2 182 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 183 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 184 }
889bfa39 185 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62
JB
186
187 /*
188 * We have to update the last_byte_to_unpin under the commit_root_sem,
189 * at the same time we swap out the commit roots.
190 *
191 * This is because we must have a real view of the last spot the caching
192 * kthreads were while caching. Consider the following views of the
193 * extent tree for a block group
194 *
195 * commit root
196 * +----+----+----+----+----+----+----+
197 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
198 * +----+----+----+----+----+----+----+
199 * 0 1 2 3 4 5 6 7
200 *
201 * new commit root
202 * +----+----+----+----+----+----+----+
203 * | | | |\\\\| | |\\\\|
204 * +----+----+----+----+----+----+----+
205 * 0 1 2 3 4 5 6 7
206 *
207 * If the cache_ctl->progress was at 3, then we are only allowed to
208 * unpin [0,1) and [2,3], because the caching thread has already
209 * processed those extents. We are not allowed to unpin [5,6), because
210 * the caching thread will re-start it's search from 3, and thus find
211 * the hole from [4,6) to add to the free space cache.
212 */
bbb86a37 213 spin_lock(&fs_info->block_group_cache_lock);
27d56e62
JB
214 list_for_each_entry_safe(caching_ctl, next,
215 &fs_info->caching_block_groups, list) {
216 struct btrfs_block_group *cache = caching_ctl->block_group;
217
218 if (btrfs_block_group_done(cache)) {
219 cache->last_byte_to_unpin = (u64)-1;
220 list_del_init(&caching_ctl->list);
221 btrfs_put_caching_control(caching_ctl);
222 } else {
223 cache->last_byte_to_unpin = caching_ctl->progress;
224 }
225 }
bbb86a37 226 spin_unlock(&fs_info->block_group_cache_lock);
9e351cc8 227 up_write(&fs_info->commit_root_sem);
817d52f8
JB
228}
229
0860adfd
MX
230static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
231 unsigned int type)
232{
233 if (type & TRANS_EXTWRITERS)
234 atomic_inc(&trans->num_extwriters);
235}
236
237static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
238 unsigned int type)
239{
240 if (type & TRANS_EXTWRITERS)
241 atomic_dec(&trans->num_extwriters);
242}
243
244static inline void extwriter_counter_init(struct btrfs_transaction *trans,
245 unsigned int type)
246{
247 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
248}
249
250static inline int extwriter_counter_read(struct btrfs_transaction *trans)
251{
252 return atomic_read(&trans->num_extwriters);
178260b2
MX
253}
254
fb6dea26
JB
255/*
256 * To be called after all the new block groups attached to the transaction
257 * handle have been created (btrfs_create_pending_block_groups()).
258 */
259void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
260{
261 struct btrfs_fs_info *fs_info = trans->fs_info;
262
263 if (!trans->chunk_bytes_reserved)
264 return;
265
266 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
267
268 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 269 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
270 trans->chunk_bytes_reserved = 0;
271}
272
d352ac68
CM
273/*
274 * either allocate a new transaction or hop into the existing one
275 */
2ff7e61e
JM
276static noinline int join_transaction(struct btrfs_fs_info *fs_info,
277 unsigned int type)
79154b1b
CM
278{
279 struct btrfs_transaction *cur_trans;
a4abeea4 280
19ae4e81 281 spin_lock(&fs_info->trans_lock);
d43317dc 282loop:
49b25e05 283 /* The file system has been taken offline. No new transactions. */
87533c47 284 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
19ae4e81 285 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
286 return -EROFS;
287 }
288
19ae4e81 289 cur_trans = fs_info->running_transaction;
a4abeea4 290 if (cur_trans) {
bf31f87f 291 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 292 spin_unlock(&fs_info->trans_lock);
49b25e05 293 return cur_trans->aborted;
871383be 294 }
4a9d8bde 295 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
296 spin_unlock(&fs_info->trans_lock);
297 return -EBUSY;
298 }
9b64f57d 299 refcount_inc(&cur_trans->use_count);
13c5a93e 300 atomic_inc(&cur_trans->num_writers);
0860adfd 301 extwriter_counter_inc(cur_trans, type);
19ae4e81 302 spin_unlock(&fs_info->trans_lock);
a4abeea4 303 return 0;
79154b1b 304 }
19ae4e81 305 spin_unlock(&fs_info->trans_lock);
a4abeea4 306
354aa0fb
MX
307 /*
308 * If we are ATTACH, we just want to catch the current transaction,
309 * and commit it. If there is no transaction, just return ENOENT.
310 */
311 if (type == TRANS_ATTACH)
312 return -ENOENT;
313
4a9d8bde
MX
314 /*
315 * JOIN_NOLOCK only happens during the transaction commit, so
316 * it is impossible that ->running_transaction is NULL
317 */
318 BUG_ON(type == TRANS_JOIN_NOLOCK);
319
4b5faeac 320 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
321 if (!cur_trans)
322 return -ENOMEM;
d43317dc 323
19ae4e81
JS
324 spin_lock(&fs_info->trans_lock);
325 if (fs_info->running_transaction) {
d43317dc
CM
326 /*
327 * someone started a transaction after we unlocked. Make sure
4a9d8bde 328 * to redo the checks above
d43317dc 329 */
4b5faeac 330 kfree(cur_trans);
d43317dc 331 goto loop;
87533c47 332 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
e4b50e14 333 spin_unlock(&fs_info->trans_lock);
4b5faeac 334 kfree(cur_trans);
7b8b92af 335 return -EROFS;
79154b1b 336 }
d43317dc 337
ab8d0fc4 338 cur_trans->fs_info = fs_info;
48778179
FM
339 atomic_set(&cur_trans->pending_ordered, 0);
340 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 341 atomic_set(&cur_trans->num_writers, 1);
0860adfd 342 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
343 init_waitqueue_head(&cur_trans->writer_wait);
344 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 345 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
346 /*
347 * One for this trans handle, one so it will live on until we
348 * commit the transaction.
349 */
9b64f57d 350 refcount_set(&cur_trans->use_count, 2);
3204d33c 351 cur_trans->flags = 0;
afd48513 352 cur_trans->start_time = ktime_get_seconds();
a4abeea4 353
a099d0fd
AM
354 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
355
5c9d028b 356 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 357 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 358 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
359
360 /*
361 * although the tree mod log is per file system and not per transaction,
362 * the log must never go across transaction boundaries.
363 */
364 smp_mb();
31b1a2bd 365 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 366 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 367 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 368 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 369 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 370
a4abeea4
JB
371 spin_lock_init(&cur_trans->delayed_refs.lock);
372
373 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 374 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 375 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 376 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 377 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 378 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 379 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 380 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 381 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 382 spin_lock_init(&cur_trans->dropped_roots_lock);
19ae4e81 383 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 384 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
43eb5f29 385 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
fe119a6e
NB
386 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
387 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
388 fs_info->generation++;
389 cur_trans->transid = fs_info->generation;
390 fs_info->running_transaction = cur_trans;
49b25e05 391 cur_trans->aborted = 0;
19ae4e81 392 spin_unlock(&fs_info->trans_lock);
15ee9bc7 393
79154b1b
CM
394 return 0;
395}
396
d352ac68 397/*
92a7cc42
QW
398 * This does all the record keeping required to make sure that a shareable root
399 * is properly recorded in a given transaction. This is required to make sure
400 * the old root from before we joined the transaction is deleted when the
401 * transaction commits.
d352ac68 402 */
7585717f 403static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
404 struct btrfs_root *root,
405 int force)
6702ed49 406{
0b246afa
JM
407 struct btrfs_fs_info *fs_info = root->fs_info;
408
92a7cc42 409 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 410 root->last_trans < trans->transid) || force) {
0b246afa 411 WARN_ON(root == fs_info->extent_root);
4d31778a 412 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 413
7585717f 414 /*
27cdeb70 415 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
416 * we have the reloc mutex held now, so there
417 * is only one writer in this function
418 */
27cdeb70 419 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 420
27cdeb70 421 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
422 * they find our root->last_trans update
423 */
424 smp_wmb();
425
0b246afa 426 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 427 if (root->last_trans == trans->transid && !force) {
0b246afa 428 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
429 return 0;
430 }
0b246afa
JM
431 radix_tree_tag_set(&fs_info->fs_roots_radix,
432 (unsigned long)root->root_key.objectid,
433 BTRFS_ROOT_TRANS_TAG);
434 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
435 root->last_trans = trans->transid;
436
437 /* this is pretty tricky. We don't want to
438 * take the relocation lock in btrfs_record_root_in_trans
439 * unless we're really doing the first setup for this root in
440 * this transaction.
441 *
442 * Normally we'd use root->last_trans as a flag to decide
443 * if we want to take the expensive mutex.
444 *
445 * But, we have to set root->last_trans before we
446 * init the relocation root, otherwise, we trip over warnings
447 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 448 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
449 * fixing up the reloc trees and everyone must wait.
450 *
451 * When this is zero, they can trust root->last_trans and fly
452 * through btrfs_record_root_in_trans without having to take the
453 * lock. smp_wmb() makes sure that all the writes above are
454 * done before we pop in the zero below
455 */
5d4f98a2 456 btrfs_init_reloc_root(trans, root);
c7548af6 457 smp_mb__before_atomic();
27cdeb70 458 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2
YZ
459 }
460 return 0;
461}
bcc63abb 462
7585717f 463
2b9dbef2
JB
464void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
465 struct btrfs_root *root)
466{
0b246afa 467 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
468 struct btrfs_transaction *cur_trans = trans->transaction;
469
470 /* Add ourselves to the transaction dropped list */
471 spin_lock(&cur_trans->dropped_roots_lock);
472 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
473 spin_unlock(&cur_trans->dropped_roots_lock);
474
475 /* Make sure we don't try to update the root at commit time */
0b246afa
JM
476 spin_lock(&fs_info->fs_roots_radix_lock);
477 radix_tree_tag_clear(&fs_info->fs_roots_radix,
2b9dbef2
JB
478 (unsigned long)root->root_key.objectid,
479 BTRFS_ROOT_TRANS_TAG);
0b246afa 480 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
481}
482
7585717f
CM
483int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
484 struct btrfs_root *root)
485{
0b246afa
JM
486 struct btrfs_fs_info *fs_info = root->fs_info;
487
92a7cc42 488 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
489 return 0;
490
491 /*
27cdeb70 492 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
493 * and barriers
494 */
495 smp_rmb();
496 if (root->last_trans == trans->transid &&
27cdeb70 497 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
498 return 0;
499
0b246afa 500 mutex_lock(&fs_info->reloc_mutex);
6426c7ad 501 record_root_in_trans(trans, root, 0);
0b246afa 502 mutex_unlock(&fs_info->reloc_mutex);
7585717f
CM
503
504 return 0;
505}
506
4a9d8bde
MX
507static inline int is_transaction_blocked(struct btrfs_transaction *trans)
508{
3296bf56 509 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 510 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 511 !TRANS_ABORTED(trans));
4a9d8bde
MX
512}
513
d352ac68
CM
514/* wait for commit against the current transaction to become unblocked
515 * when this is done, it is safe to start a new transaction, but the current
516 * transaction might not be fully on disk.
517 */
2ff7e61e 518static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 519{
f9295749 520 struct btrfs_transaction *cur_trans;
79154b1b 521
0b246afa
JM
522 spin_lock(&fs_info->trans_lock);
523 cur_trans = fs_info->running_transaction;
4a9d8bde 524 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 525 refcount_inc(&cur_trans->use_count);
0b246afa 526 spin_unlock(&fs_info->trans_lock);
72d63ed6 527
0b246afa 528 wait_event(fs_info->transaction_wait,
501407aa 529 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 530 TRANS_ABORTED(cur_trans));
724e2315 531 btrfs_put_transaction(cur_trans);
a4abeea4 532 } else {
0b246afa 533 spin_unlock(&fs_info->trans_lock);
f9295749 534 }
37d1aeee
CM
535}
536
2ff7e61e 537static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 538{
0b246afa 539 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
540 return 0;
541
92e2f7e3 542 if (type == TRANS_START)
a22285a6 543 return 1;
a4abeea4 544
a22285a6
YZ
545 return 0;
546}
547
20dd2cbf
MX
548static inline bool need_reserve_reloc_root(struct btrfs_root *root)
549{
0b246afa
JM
550 struct btrfs_fs_info *fs_info = root->fs_info;
551
552 if (!fs_info->reloc_ctl ||
92a7cc42 553 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
554 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
555 root->reloc_root)
556 return false;
557
558 return true;
559}
560
08e007d2 561static struct btrfs_trans_handle *
5aed1dd8 562start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
563 unsigned int type, enum btrfs_reserve_flush_enum flush,
564 bool enforce_qgroups)
37d1aeee 565{
0b246afa 566 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 567 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
568 struct btrfs_trans_handle *h;
569 struct btrfs_transaction *cur_trans;
b5009945 570 u64 num_bytes = 0;
c5567237 571 u64 qgroup_reserved = 0;
20dd2cbf 572 bool reloc_reserved = false;
9c343784 573 bool do_chunk_alloc = false;
20dd2cbf 574 int ret;
acce952b 575
46c4e71e 576 /* Send isn't supposed to start transactions. */
2755a0de 577 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
46c4e71e 578
0b246afa 579 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
acce952b 580 return ERR_PTR(-EROFS);
2a1eb461 581
46c4e71e 582 if (current->journal_info) {
0860adfd 583 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 584 h = current->journal_info;
b50fff81
DS
585 refcount_inc(&h->use_count);
586 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
587 h->orig_rsv = h->block_rsv;
588 h->block_rsv = NULL;
589 goto got_it;
590 }
b5009945
JB
591
592 /*
593 * Do the reservation before we join the transaction so we can do all
594 * the appropriate flushing if need be.
595 */
003d7c59 596 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
597 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
598 u64 delayed_refs_bytes = 0;
599
0b246afa 600 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
601 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
602 enforce_qgroups);
7174109c
QW
603 if (ret)
604 return ERR_PTR(ret);
c5567237 605
ba2c4d4e
JB
606 /*
607 * We want to reserve all the bytes we may need all at once, so
608 * we only do 1 enospc flushing cycle per transaction start. We
609 * accomplish this by simply assuming we'll do 2 x num_items
610 * worth of delayed refs updates in this trans handle, and
611 * refill that amount for whatever is missing in the reserve.
612 */
2bd36e7b 613 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614
JB
614 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
615 delayed_refs_rsv->full == 0) {
ba2c4d4e
JB
616 delayed_refs_bytes = num_bytes;
617 num_bytes <<= 1;
618 }
619
20dd2cbf
MX
620 /*
621 * Do the reservation for the relocation root creation
622 */
ee39b432 623 if (need_reserve_reloc_root(root)) {
0b246afa 624 num_bytes += fs_info->nodesize;
20dd2cbf
MX
625 reloc_reserved = true;
626 }
627
ba2c4d4e
JB
628 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
629 if (ret)
630 goto reserve_fail;
631 if (delayed_refs_bytes) {
632 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
633 delayed_refs_bytes);
634 num_bytes -= delayed_refs_bytes;
635 }
9c343784
JB
636
637 if (rsv->space_info->force_alloc)
638 do_chunk_alloc = true;
ba2c4d4e
JB
639 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
640 !delayed_refs_rsv->full) {
641 /*
642 * Some people call with btrfs_start_transaction(root, 0)
643 * because they can be throttled, but have some other mechanism
644 * for reserving space. We still want these guys to refill the
645 * delayed block_rsv so just add 1 items worth of reservation
646 * here.
647 */
648 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 649 if (ret)
843fcf35 650 goto reserve_fail;
b5009945 651 }
a22285a6 652again:
f2f767e7 653 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
654 if (!h) {
655 ret = -ENOMEM;
656 goto alloc_fail;
657 }
37d1aeee 658
98114659
JB
659 /*
660 * If we are JOIN_NOLOCK we're already committing a transaction and
661 * waiting on this guy, so we don't need to do the sb_start_intwrite
662 * because we're already holding a ref. We need this because we could
663 * have raced in and did an fsync() on a file which can kick a commit
664 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
665 *
666 * If we are ATTACH, it means we just want to catch the current
667 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 668 */
0860adfd 669 if (type & __TRANS_FREEZABLE)
0b246afa 670 sb_start_intwrite(fs_info->sb);
b2b5ef5c 671
2ff7e61e
JM
672 if (may_wait_transaction(fs_info, type))
673 wait_current_trans(fs_info);
a22285a6 674
a4abeea4 675 do {
2ff7e61e 676 ret = join_transaction(fs_info, type);
178260b2 677 if (ret == -EBUSY) {
2ff7e61e 678 wait_current_trans(fs_info);
a6d155d2
FM
679 if (unlikely(type == TRANS_ATTACH ||
680 type == TRANS_JOIN_NOSTART))
178260b2
MX
681 ret = -ENOENT;
682 }
a4abeea4
JB
683 } while (ret == -EBUSY);
684
a43f7f82 685 if (ret < 0)
843fcf35 686 goto join_fail;
0f7d52f4 687
0b246afa 688 cur_trans = fs_info->running_transaction;
a22285a6
YZ
689
690 h->transid = cur_trans->transid;
691 h->transaction = cur_trans;
d13603ef 692 h->root = root;
b50fff81 693 refcount_set(&h->use_count, 1);
64b63580 694 h->fs_info = root->fs_info;
7174109c 695
a698d075 696 h->type = type;
d9a0540a 697 h->can_flush_pending_bgs = true;
ea658bad 698 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 699
a22285a6 700 smp_mb();
3296bf56 701 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 702 may_wait_transaction(fs_info, type)) {
abdd2e80 703 current->journal_info = h;
3a45bb20 704 btrfs_commit_transaction(h);
a22285a6
YZ
705 goto again;
706 }
707
b5009945 708 if (num_bytes) {
0b246afa 709 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 710 h->transid, num_bytes, 1);
0b246afa 711 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 712 h->bytes_reserved = num_bytes;
20dd2cbf 713 h->reloc_reserved = reloc_reserved;
a22285a6 714 }
9ed74f2d 715
2a1eb461 716got_it:
bcf3a3e7 717 if (!current->journal_info)
a22285a6 718 current->journal_info = h;
fcc99734 719
9c343784
JB
720 /*
721 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
722 * ALLOC_FORCE the first run through, and then we won't allocate for
723 * anybody else who races in later. We don't care about the return
724 * value here.
725 */
726 if (do_chunk_alloc && num_bytes) {
727 u64 flags = h->block_rsv->space_info->flags;
728
729 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
730 CHUNK_ALLOC_NO_FORCE);
731 }
732
fcc99734
QW
733 /*
734 * btrfs_record_root_in_trans() needs to alloc new extents, and may
735 * call btrfs_join_transaction() while we're also starting a
736 * transaction.
737 *
738 * Thus it need to be called after current->journal_info initialized,
739 * or we can deadlock.
740 */
741 btrfs_record_root_in_trans(h, root);
742
79154b1b 743 return h;
843fcf35
MX
744
745join_fail:
0860adfd 746 if (type & __TRANS_FREEZABLE)
0b246afa 747 sb_end_intwrite(fs_info->sb);
843fcf35
MX
748 kmem_cache_free(btrfs_trans_handle_cachep, h);
749alloc_fail:
750 if (num_bytes)
2ff7e61e 751 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 752 num_bytes, NULL);
843fcf35 753reserve_fail:
733e03a0 754 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 755 return ERR_PTR(ret);
79154b1b
CM
756}
757
f9295749 758struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 759 unsigned int num_items)
f9295749 760{
08e007d2 761 return start_transaction(root, num_items, TRANS_START,
003d7c59 762 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 763}
003d7c59 764
8eab77ff
FM
765struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
766 struct btrfs_root *root,
7f9fe614 767 unsigned int num_items)
8eab77ff 768{
7f9fe614
JB
769 return start_transaction(root, num_items, TRANS_START,
770 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 771}
8407aa46 772
7a7eaa40 773struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 774{
003d7c59
JM
775 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
776 true);
f9295749
CM
777}
778
8d510121 779struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 780{
575a75d6 781 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 782 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
783}
784
a6d155d2
FM
785/*
786 * Similar to regular join but it never starts a transaction when none is
787 * running or after waiting for the current one to finish.
788 */
789struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
790{
791 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
792 BTRFS_RESERVE_NO_FLUSH, true);
793}
794
d4edf39b
MX
795/*
796 * btrfs_attach_transaction() - catch the running transaction
797 *
798 * It is used when we want to commit the current the transaction, but
799 * don't want to start a new one.
800 *
801 * Note: If this function return -ENOENT, it just means there is no
802 * running transaction. But it is possible that the inactive transaction
803 * is still in the memory, not fully on disk. If you hope there is no
804 * inactive transaction in the fs when -ENOENT is returned, you should
805 * invoke
806 * btrfs_attach_transaction_barrier()
807 */
354aa0fb 808struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 809{
575a75d6 810 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 811 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
812}
813
d4edf39b 814/*
90b6d283 815 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 816 *
52042d8e 817 * It is similar to the above function, the difference is this one
d4edf39b
MX
818 * will wait for all the inactive transactions until they fully
819 * complete.
820 */
821struct btrfs_trans_handle *
822btrfs_attach_transaction_barrier(struct btrfs_root *root)
823{
824 struct btrfs_trans_handle *trans;
825
575a75d6 826 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 827 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 828 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 829 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
830
831 return trans;
832}
833
d0c2f4fa
FM
834/* Wait for a transaction commit to reach at least the given state. */
835static noinline void wait_for_commit(struct btrfs_transaction *commit,
836 const enum btrfs_trans_state min_state)
89ce8a63 837{
d0c2f4fa 838 wait_event(commit->commit_wait, commit->state >= min_state);
89ce8a63
CM
839}
840
2ff7e61e 841int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
842{
843 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 844 int ret = 0;
46204592 845
46204592 846 if (transid) {
0b246afa 847 if (transid <= fs_info->last_trans_committed)
a4abeea4 848 goto out;
46204592
SW
849
850 /* find specified transaction */
0b246afa
JM
851 spin_lock(&fs_info->trans_lock);
852 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
853 if (t->transid == transid) {
854 cur_trans = t;
9b64f57d 855 refcount_inc(&cur_trans->use_count);
8cd2807f 856 ret = 0;
46204592
SW
857 break;
858 }
8cd2807f
MX
859 if (t->transid > transid) {
860 ret = 0;
46204592 861 break;
8cd2807f 862 }
46204592 863 }
0b246afa 864 spin_unlock(&fs_info->trans_lock);
42383020
SW
865
866 /*
867 * The specified transaction doesn't exist, or we
868 * raced with btrfs_commit_transaction
869 */
870 if (!cur_trans) {
0b246afa 871 if (transid > fs_info->last_trans_committed)
42383020 872 ret = -EINVAL;
8cd2807f 873 goto out;
42383020 874 }
46204592
SW
875 } else {
876 /* find newest transaction that is committing | committed */
0b246afa
JM
877 spin_lock(&fs_info->trans_lock);
878 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 879 list) {
4a9d8bde
MX
880 if (t->state >= TRANS_STATE_COMMIT_START) {
881 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 882 break;
46204592 883 cur_trans = t;
9b64f57d 884 refcount_inc(&cur_trans->use_count);
46204592
SW
885 break;
886 }
887 }
0b246afa 888 spin_unlock(&fs_info->trans_lock);
46204592 889 if (!cur_trans)
a4abeea4 890 goto out; /* nothing committing|committed */
46204592
SW
891 }
892
d0c2f4fa 893 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 894 btrfs_put_transaction(cur_trans);
a4abeea4 895out:
46204592
SW
896 return ret;
897}
898
2ff7e61e 899void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 900{
92e2f7e3 901 wait_current_trans(fs_info);
37d1aeee
CM
902}
903
8a8f4dea 904static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 905{
2ff7e61e 906 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 907
64403612 908 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 909 return true;
36ba022a 910
2ff7e61e 911 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
912}
913
a2633b6a 914bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
915{
916 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 917
3296bf56 918 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 919 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 920 return true;
8929ecfa 921
2ff7e61e 922 return should_end_transaction(trans);
8929ecfa
YZ
923}
924
dc60c525
NB
925static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
926
0e34693f 927{
dc60c525
NB
928 struct btrfs_fs_info *fs_info = trans->fs_info;
929
0e34693f
NB
930 if (!trans->block_rsv) {
931 ASSERT(!trans->bytes_reserved);
932 return;
933 }
934
935 if (!trans->bytes_reserved)
936 return;
937
938 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
939 trace_btrfs_space_reservation(fs_info, "transaction",
940 trans->transid, trans->bytes_reserved, 0);
941 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 942 trans->bytes_reserved, NULL);
0e34693f
NB
943 trans->bytes_reserved = 0;
944}
945
89ce8a63 946static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 947 int throttle)
79154b1b 948{
3a45bb20 949 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 950 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 951 int err = 0;
c3e69d58 952
b50fff81
DS
953 if (refcount_read(&trans->use_count) > 1) {
954 refcount_dec(&trans->use_count);
2a1eb461
JB
955 trans->block_rsv = trans->orig_rsv;
956 return 0;
957 }
958
dc60c525 959 btrfs_trans_release_metadata(trans);
4c13d758 960 trans->block_rsv = NULL;
c5567237 961
119e80df 962 btrfs_create_pending_block_groups(trans);
ea658bad 963
4fbcdf66
FM
964 btrfs_trans_release_chunk_metadata(trans);
965
0860adfd 966 if (trans->type & __TRANS_FREEZABLE)
0b246afa 967 sb_end_intwrite(info->sb);
6df7881a 968
8929ecfa 969 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
970 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
971 atomic_dec(&cur_trans->num_writers);
0860adfd 972 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 973
093258e6 974 cond_wake_up(&cur_trans->writer_wait);
724e2315 975 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
976
977 if (current->journal_info == trans)
978 current->journal_info = NULL;
ab78c84d 979
24bbcf04 980 if (throttle)
2ff7e61e 981 btrfs_run_delayed_iputs(info);
24bbcf04 982
bf31f87f 983 if (TRANS_ABORTED(trans) ||
0b246afa 984 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
4e121c06 985 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
986 if (TRANS_ABORTED(trans))
987 err = trans->aborted;
988 else
989 err = -EROFS;
4e121c06 990 }
49b25e05 991
4edc2ca3
DJ
992 kmem_cache_free(btrfs_trans_handle_cachep, trans);
993 return err;
79154b1b
CM
994}
995
3a45bb20 996int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 997{
3a45bb20 998 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
999}
1000
3a45bb20 1001int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1002{
3a45bb20 1003 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1004}
1005
d352ac68
CM
1006/*
1007 * when btree blocks are allocated, they have some corresponding bits set for
1008 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1009 * those extents are sent to disk but does not wait on them
d352ac68 1010 */
2ff7e61e 1011int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1012 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1013{
777e6bd7 1014 int err = 0;
7c4452b9 1015 int werr = 0;
0b246afa 1016 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1017 struct extent_state *cached_state = NULL;
777e6bd7 1018 u64 start = 0;
5f39d397 1019 u64 end;
7c4452b9 1020
6300463b 1021 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1022 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1023 mark, &cached_state)) {
663dfbb0
FM
1024 bool wait_writeback = false;
1025
1026 err = convert_extent_bit(dirty_pages, start, end,
1027 EXTENT_NEED_WAIT,
210aa277 1028 mark, &cached_state);
663dfbb0
FM
1029 /*
1030 * convert_extent_bit can return -ENOMEM, which is most of the
1031 * time a temporary error. So when it happens, ignore the error
1032 * and wait for writeback of this range to finish - because we
1033 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1034 * to __btrfs_wait_marked_extents() would not know that
1035 * writeback for this range started and therefore wouldn't
1036 * wait for it to finish - we don't want to commit a
1037 * superblock that points to btree nodes/leafs for which
1038 * writeback hasn't finished yet (and without errors).
663dfbb0 1039 * We cleanup any entries left in the io tree when committing
41e7acd3 1040 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1041 */
1042 if (err == -ENOMEM) {
1043 err = 0;
1044 wait_writeback = true;
1045 }
1046 if (!err)
1047 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1048 if (err)
1049 werr = err;
663dfbb0
FM
1050 else if (wait_writeback)
1051 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1052 free_extent_state(cached_state);
663dfbb0 1053 cached_state = NULL;
1728366e
JB
1054 cond_resched();
1055 start = end + 1;
7c4452b9 1056 }
6300463b 1057 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1058 return werr;
1059}
1060
1061/*
1062 * when btree blocks are allocated, they have some corresponding bits set for
1063 * them in one of two extent_io trees. This is used to make sure all of
1064 * those extents are on disk for transaction or log commit. We wait
1065 * on all the pages and clear them from the dirty pages state tree
1066 */
bf89d38f
JM
1067static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1068 struct extent_io_tree *dirty_pages)
690587d1 1069{
690587d1
CM
1070 int err = 0;
1071 int werr = 0;
0b246afa 1072 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1073 struct extent_state *cached_state = NULL;
690587d1
CM
1074 u64 start = 0;
1075 u64 end;
777e6bd7 1076
1728366e 1077 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1078 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1079 /*
1080 * Ignore -ENOMEM errors returned by clear_extent_bit().
1081 * When committing the transaction, we'll remove any entries
1082 * left in the io tree. For a log commit, we don't remove them
1083 * after committing the log because the tree can be accessed
1084 * concurrently - we do it only at transaction commit time when
41e7acd3 1085 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1086 */
1087 err = clear_extent_bit(dirty_pages, start, end,
ae0f1625 1088 EXTENT_NEED_WAIT, 0, 0, &cached_state);
663dfbb0
FM
1089 if (err == -ENOMEM)
1090 err = 0;
1091 if (!err)
1092 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1093 if (err)
1094 werr = err;
e38e2ed7
FM
1095 free_extent_state(cached_state);
1096 cached_state = NULL;
1728366e
JB
1097 cond_resched();
1098 start = end + 1;
777e6bd7 1099 }
7c4452b9
CM
1100 if (err)
1101 werr = err;
bf89d38f
JM
1102 return werr;
1103}
656f30db 1104
b9fae2eb 1105static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1106 struct extent_io_tree *dirty_pages)
1107{
1108 bool errors = false;
1109 int err;
656f30db 1110
bf89d38f
JM
1111 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1112 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1113 errors = true;
1114
1115 if (errors && !err)
1116 err = -EIO;
1117 return err;
1118}
656f30db 1119
bf89d38f
JM
1120int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1121{
1122 struct btrfs_fs_info *fs_info = log_root->fs_info;
1123 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1124 bool errors = false;
1125 int err;
656f30db 1126
bf89d38f
JM
1127 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1128
1129 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1130 if ((mark & EXTENT_DIRTY) &&
1131 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1132 errors = true;
1133
1134 if ((mark & EXTENT_NEW) &&
1135 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1136 errors = true;
1137
1138 if (errors && !err)
1139 err = -EIO;
1140 return err;
79154b1b
CM
1141}
1142
690587d1 1143/*
c9b577c0
NB
1144 * When btree blocks are allocated the corresponding extents are marked dirty.
1145 * This function ensures such extents are persisted on disk for transaction or
1146 * log commit.
1147 *
1148 * @trans: transaction whose dirty pages we'd like to write
690587d1 1149 */
70458a58 1150static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1151{
1152 int ret;
1153 int ret2;
c9b577c0 1154 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1155 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1156 struct blk_plug plug;
690587d1 1157
c6adc9cc 1158 blk_start_plug(&plug);
c9b577c0 1159 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1160 blk_finish_plug(&plug);
bf89d38f 1161 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1162
41e7acd3 1163 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1164
bf0da8c1
CM
1165 if (ret)
1166 return ret;
c9b577c0 1167 else if (ret2)
bf0da8c1 1168 return ret2;
c9b577c0
NB
1169 else
1170 return 0;
d0c803c4
CM
1171}
1172
d352ac68
CM
1173/*
1174 * this is used to update the root pointer in the tree of tree roots.
1175 *
1176 * But, in the case of the extent allocation tree, updating the root
1177 * pointer may allocate blocks which may change the root of the extent
1178 * allocation tree.
1179 *
1180 * So, this loops and repeats and makes sure the cowonly root didn't
1181 * change while the root pointer was being updated in the metadata.
1182 */
0b86a832
CM
1183static int update_cowonly_root(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root)
79154b1b
CM
1185{
1186 int ret;
0b86a832 1187 u64 old_root_bytenr;
86b9f2ec 1188 u64 old_root_used;
0b246afa
JM
1189 struct btrfs_fs_info *fs_info = root->fs_info;
1190 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1191
86b9f2ec 1192 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1193
d397712b 1194 while (1) {
0b86a832 1195 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1196 if (old_root_bytenr == root->node->start &&
ea526d18 1197 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1198 break;
87ef2bb4 1199
5d4f98a2 1200 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1201 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1202 &root->root_key,
1203 &root->root_item);
49b25e05
JM
1204 if (ret)
1205 return ret;
56bec294 1206
86b9f2ec 1207 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1208 }
276e680d 1209
0b86a832
CM
1210 return 0;
1211}
1212
d352ac68
CM
1213/*
1214 * update all the cowonly tree roots on disk
49b25e05
JM
1215 *
1216 * The error handling in this function may not be obvious. Any of the
1217 * failures will cause the file system to go offline. We still need
1218 * to clean up the delayed refs.
d352ac68 1219 */
9386d8bc 1220static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1221{
9386d8bc 1222 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1223 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1224 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1225 struct list_head *next;
84234f3a 1226 struct extent_buffer *eb;
56bec294 1227 int ret;
84234f3a
YZ
1228
1229 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1230 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1231 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1232 btrfs_tree_unlock(eb);
1233 free_extent_buffer(eb);
0b86a832 1234
49b25e05
JM
1235 if (ret)
1236 return ret;
87ef2bb4 1237
196c9d8d 1238 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1239 if (ret)
1240 return ret;
2b584c68 1241 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1242 if (ret)
1243 return ret;
280f8bd2 1244 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1245 if (ret)
1246 return ret;
546adb0d 1247
bbebb3e0 1248 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1249 if (ret)
1250 return ret;
1251
ea526d18 1252again:
d397712b 1253 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1254 struct btrfs_root *root;
0b86a832
CM
1255 next = fs_info->dirty_cowonly_roots.next;
1256 list_del_init(next);
1257 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1258 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1259
9e351cc8
JB
1260 if (root != fs_info->extent_root)
1261 list_add_tail(&root->dirty_list,
1262 &trans->transaction->switch_commits);
49b25e05
JM
1263 ret = update_cowonly_root(trans, root);
1264 if (ret)
1265 return ret;
79154b1b 1266 }
276e680d 1267
488bc2a2
JB
1268 /* Now flush any delayed refs generated by updating all of the roots */
1269 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1270 if (ret)
1271 return ret;
1272
1bbc621e 1273 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1274 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1275 if (ret)
1276 return ret;
488bc2a2
JB
1277
1278 /*
1279 * We're writing the dirty block groups, which could generate
1280 * delayed refs, which could generate more dirty block groups,
1281 * so we want to keep this flushing in this loop to make sure
1282 * everything gets run.
1283 */
c79a70b1 1284 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1285 if (ret)
1286 return ret;
1287 }
1288
1289 if (!list_empty(&fs_info->dirty_cowonly_roots))
1290 goto again;
1291
9e351cc8
JB
1292 list_add_tail(&fs_info->extent_root->dirty_list,
1293 &trans->transaction->switch_commits);
9f6cbcbb
DS
1294
1295 /* Update dev-replace pointer once everything is committed */
1296 fs_info->dev_replace.committed_cursor_left =
1297 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1298
79154b1b
CM
1299 return 0;
1300}
1301
d352ac68
CM
1302/*
1303 * dead roots are old snapshots that need to be deleted. This allocates
1304 * a dirty root struct and adds it into the list of dead roots that need to
1305 * be deleted
1306 */
cfad392b 1307void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1308{
0b246afa
JM
1309 struct btrfs_fs_info *fs_info = root->fs_info;
1310
1311 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1312 if (list_empty(&root->root_list)) {
1313 btrfs_grab_root(root);
0b246afa 1314 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1315 }
0b246afa 1316 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1317}
1318
d352ac68 1319/*
5d4f98a2 1320 * update all the cowonly tree roots on disk
d352ac68 1321 */
7e4443d9 1322static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1323{
7e4443d9 1324 struct btrfs_fs_info *fs_info = trans->fs_info;
0f7d52f4 1325 struct btrfs_root *gang[8];
0f7d52f4
CM
1326 int i;
1327 int ret;
54aa1f4d 1328
a4abeea4 1329 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 1330 while (1) {
5d4f98a2
YZ
1331 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1332 (void **)gang, 0,
0f7d52f4
CM
1333 ARRAY_SIZE(gang),
1334 BTRFS_ROOT_TRANS_TAG);
1335 if (ret == 0)
1336 break;
1337 for (i = 0; i < ret; i++) {
5b4aacef 1338 struct btrfs_root *root = gang[i];
4f4317c1
JB
1339 int ret2;
1340
5d4f98a2
YZ
1341 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1342 (unsigned long)root->root_key.objectid,
1343 BTRFS_ROOT_TRANS_TAG);
a4abeea4 1344 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 1345
e02119d5 1346 btrfs_free_log(trans, root);
5d4f98a2 1347 btrfs_update_reloc_root(trans, root);
bcc63abb 1348
f1ebcc74 1349 /* see comments in should_cow_block() */
27cdeb70 1350 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
c7548af6 1351 smp_mb__after_atomic();
f1ebcc74 1352
978d910d 1353 if (root->commit_root != root->node) {
9e351cc8
JB
1354 list_add_tail(&root->dirty_list,
1355 &trans->transaction->switch_commits);
978d910d
YZ
1356 btrfs_set_root_node(&root->root_item,
1357 root->node);
1358 }
5d4f98a2 1359
4f4317c1 1360 ret2 = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
1361 &root->root_key,
1362 &root->root_item);
4f4317c1
JB
1363 if (ret2)
1364 return ret2;
a4abeea4 1365 spin_lock(&fs_info->fs_roots_radix_lock);
733e03a0 1366 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1367 }
1368 }
a4abeea4 1369 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1370 return 0;
0f7d52f4
CM
1371}
1372
d352ac68 1373/*
de78b51a
ES
1374 * defrag a given btree.
1375 * Every leaf in the btree is read and defragged.
d352ac68 1376 */
de78b51a 1377int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1378{
1379 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1380 struct btrfs_trans_handle *trans;
8929ecfa 1381 int ret;
e9d0b13b 1382
27cdeb70 1383 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1384 return 0;
8929ecfa 1385
6b80053d 1386 while (1) {
8929ecfa
YZ
1387 trans = btrfs_start_transaction(root, 0);
1388 if (IS_ERR(trans))
1389 return PTR_ERR(trans);
1390
de78b51a 1391 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1392
3a45bb20 1393 btrfs_end_transaction(trans);
2ff7e61e 1394 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1395 cond_resched();
1396
ab8d0fc4 1397 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1398 break;
210549eb 1399
ab8d0fc4
JM
1400 if (btrfs_defrag_cancelled(info)) {
1401 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1402 ret = -EAGAIN;
1403 break;
1404 }
e9d0b13b 1405 }
27cdeb70 1406 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1407 return ret;
e9d0b13b
CM
1408}
1409
6426c7ad
QW
1410/*
1411 * Do all special snapshot related qgroup dirty hack.
1412 *
1413 * Will do all needed qgroup inherit and dirty hack like switch commit
1414 * roots inside one transaction and write all btree into disk, to make
1415 * qgroup works.
1416 */
1417static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1418 struct btrfs_root *src,
1419 struct btrfs_root *parent,
1420 struct btrfs_qgroup_inherit *inherit,
1421 u64 dst_objectid)
1422{
1423 struct btrfs_fs_info *fs_info = src->fs_info;
1424 int ret;
1425
1426 /*
1427 * Save some performance in the case that qgroups are not
1428 * enabled. If this check races with the ioctl, rescan will
1429 * kick in anyway.
1430 */
9ea6e2b5 1431 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1432 return 0;
6426c7ad 1433
4d31778a 1434 /*
52042d8e 1435 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1436 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1437 * recorded root will never be updated again, causing an outdated root
1438 * item.
1439 */
1440 record_root_in_trans(trans, src, 1);
1441
2a4d84c1
JB
1442 /*
1443 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1444 * src root, so we must run the delayed refs here.
1445 *
1446 * However this isn't particularly fool proof, because there's no
1447 * synchronization keeping us from changing the tree after this point
1448 * before we do the qgroup_inherit, or even from making changes while
1449 * we're doing the qgroup_inherit. But that's a problem for the future,
1450 * for now flush the delayed refs to narrow the race window where the
1451 * qgroup counters could end up wrong.
1452 */
1453 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1454 if (ret) {
1455 btrfs_abort_transaction(trans, ret);
1456 goto out;
1457 }
1458
6426c7ad
QW
1459 /*
1460 * We are going to commit transaction, see btrfs_commit_transaction()
1461 * comment for reason locking tree_log_mutex
1462 */
1463 mutex_lock(&fs_info->tree_log_mutex);
1464
7e4443d9 1465 ret = commit_fs_roots(trans);
6426c7ad
QW
1466 if (ret)
1467 goto out;
460fb20a 1468 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1469 if (ret < 0)
1470 goto out;
1471
1472 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1473 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1474 inherit);
1475 if (ret < 0)
1476 goto out;
1477
1478 /*
1479 * Now we do a simplified commit transaction, which will:
1480 * 1) commit all subvolume and extent tree
1481 * To ensure all subvolume and extent tree have a valid
1482 * commit_root to accounting later insert_dir_item()
1483 * 2) write all btree blocks onto disk
1484 * This is to make sure later btree modification will be cowed
1485 * Or commit_root can be populated and cause wrong qgroup numbers
1486 * In this simplified commit, we don't really care about other trees
1487 * like chunk and root tree, as they won't affect qgroup.
1488 * And we don't write super to avoid half committed status.
1489 */
9386d8bc 1490 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1491 if (ret)
1492 goto out;
889bfa39 1493 switch_commit_roots(trans);
70458a58 1494 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1495 if (ret)
f7af3934 1496 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1497 "Error while writing out transaction for qgroup");
1498
1499out:
1500 mutex_unlock(&fs_info->tree_log_mutex);
1501
1502 /*
1503 * Force parent root to be updated, as we recorded it before so its
1504 * last_trans == cur_transid.
1505 * Or it won't be committed again onto disk after later
1506 * insert_dir_item()
1507 */
1508 if (!ret)
1509 record_root_in_trans(trans, parent, 1);
1510 return ret;
1511}
1512
d352ac68
CM
1513/*
1514 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1515 * transaction commit. This does the actual creation.
1516 *
1517 * Note:
1518 * If the error which may affect the commitment of the current transaction
1519 * happens, we should return the error number. If the error which just affect
1520 * the creation of the pending snapshots, just return 0.
d352ac68 1521 */
80b6794d 1522static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1523 struct btrfs_pending_snapshot *pending)
1524{
08d50ca3
NB
1525
1526 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1527 struct btrfs_key key;
80b6794d 1528 struct btrfs_root_item *new_root_item;
3063d29f
CM
1529 struct btrfs_root *tree_root = fs_info->tree_root;
1530 struct btrfs_root *root = pending->root;
6bdb72de 1531 struct btrfs_root *parent_root;
98c9942a 1532 struct btrfs_block_rsv *rsv;
6bdb72de 1533 struct inode *parent_inode;
42874b3d
MX
1534 struct btrfs_path *path;
1535 struct btrfs_dir_item *dir_item;
a22285a6 1536 struct dentry *dentry;
3063d29f 1537 struct extent_buffer *tmp;
925baedd 1538 struct extent_buffer *old;
95582b00 1539 struct timespec64 cur_time;
aec8030a 1540 int ret = 0;
d68fc57b 1541 u64 to_reserve = 0;
6bdb72de 1542 u64 index = 0;
a22285a6 1543 u64 objectid;
b83cc969 1544 u64 root_flags;
3063d29f 1545
8546b570
DS
1546 ASSERT(pending->path);
1547 path = pending->path;
42874b3d 1548
b0c0ea63
DS
1549 ASSERT(pending->root_item);
1550 new_root_item = pending->root_item;
a22285a6 1551
543068a2 1552 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1553 if (pending->error)
6fa9700e 1554 goto no_free_objectid;
3063d29f 1555
d6726335
QW
1556 /*
1557 * Make qgroup to skip current new snapshot's qgroupid, as it is
1558 * accounted by later btrfs_qgroup_inherit().
1559 */
1560 btrfs_set_skip_qgroup(trans, objectid);
1561
147d256e 1562 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1563
1564 if (to_reserve > 0) {
aec8030a
MX
1565 pending->error = btrfs_block_rsv_add(root,
1566 &pending->block_rsv,
1567 to_reserve,
1568 BTRFS_RESERVE_NO_FLUSH);
1569 if (pending->error)
d6726335 1570 goto clear_skip_qgroup;
d68fc57b
YZ
1571 }
1572
3063d29f 1573 key.objectid = objectid;
a22285a6
YZ
1574 key.offset = (u64)-1;
1575 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1576
6fa9700e 1577 rsv = trans->block_rsv;
a22285a6 1578 trans->block_rsv = &pending->block_rsv;
2382c5cc 1579 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1580 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1581 trans->transid,
1582 trans->bytes_reserved, 1);
a22285a6 1583 dentry = pending->dentry;
e9662f70 1584 parent_inode = pending->dir;
a22285a6 1585 parent_root = BTRFS_I(parent_inode)->root;
6426c7ad 1586 record_root_in_trans(trans, parent_root, 0);
a22285a6 1587
c2050a45 1588 cur_time = current_time(parent_inode);
04b285f3 1589
3063d29f
CM
1590 /*
1591 * insert the directory item
1592 */
877574e2 1593 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1594 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1595
1596 /* check if there is a file/dir which has the same name. */
1597 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1598 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1599 dentry->d_name.name,
1600 dentry->d_name.len, 0);
1601 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1602 pending->error = -EEXIST;
aec8030a 1603 goto dir_item_existed;
42874b3d
MX
1604 } else if (IS_ERR(dir_item)) {
1605 ret = PTR_ERR(dir_item);
66642832 1606 btrfs_abort_transaction(trans, ret);
8732d44f 1607 goto fail;
79787eaa 1608 }
42874b3d 1609 btrfs_release_path(path);
52c26179 1610
e999376f
CM
1611 /*
1612 * pull in the delayed directory update
1613 * and the delayed inode item
1614 * otherwise we corrupt the FS during
1615 * snapshot
1616 */
e5c304e6 1617 ret = btrfs_run_delayed_items(trans);
8732d44f 1618 if (ret) { /* Transaction aborted */
66642832 1619 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1620 goto fail;
1621 }
e999376f 1622
6426c7ad 1623 record_root_in_trans(trans, root, 0);
6bdb72de
SW
1624 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1625 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1626 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1627
b83cc969
LZ
1628 root_flags = btrfs_root_flags(new_root_item);
1629 if (pending->readonly)
1630 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1631 else
1632 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1633 btrfs_set_root_flags(new_root_item, root_flags);
1634
8ea05e3a
AB
1635 btrfs_set_root_generation_v2(new_root_item,
1636 trans->transid);
807fc790 1637 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1638 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1639 BTRFS_UUID_SIZE);
70023da2
SB
1640 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1641 memset(new_root_item->received_uuid, 0,
1642 sizeof(new_root_item->received_uuid));
1643 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1644 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1645 btrfs_set_root_stransid(new_root_item, 0);
1646 btrfs_set_root_rtransid(new_root_item, 0);
1647 }
3cae210f
QW
1648 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1649 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1650 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1651
6bdb72de 1652 old = btrfs_lock_root_node(root);
9631e4cc
JB
1653 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1654 BTRFS_NESTING_COW);
79787eaa
JM
1655 if (ret) {
1656 btrfs_tree_unlock(old);
1657 free_extent_buffer(old);
66642832 1658 btrfs_abort_transaction(trans, ret);
8732d44f 1659 goto fail;
79787eaa 1660 }
49b25e05 1661
49b25e05 1662 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1663 /* clean up in any case */
6bdb72de
SW
1664 btrfs_tree_unlock(old);
1665 free_extent_buffer(old);
8732d44f 1666 if (ret) {
66642832 1667 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1668 goto fail;
1669 }
f1ebcc74 1670 /* see comments in should_cow_block() */
27cdeb70 1671 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1672 smp_wmb();
1673
6bdb72de 1674 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1675 /* record when the snapshot was created in key.offset */
1676 key.offset = trans->transid;
1677 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1678 btrfs_tree_unlock(tmp);
1679 free_extent_buffer(tmp);
8732d44f 1680 if (ret) {
66642832 1681 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1682 goto fail;
1683 }
6bdb72de 1684
a22285a6
YZ
1685 /*
1686 * insert root back/forward references
1687 */
6025c19f 1688 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1689 parent_root->root_key.objectid,
4a0cc7ca 1690 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1691 dentry->d_name.name, dentry->d_name.len);
8732d44f 1692 if (ret) {
66642832 1693 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1694 goto fail;
1695 }
0660b5af 1696
a22285a6 1697 key.offset = (u64)-1;
2dfb1e43 1698 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1699 if (IS_ERR(pending->snap)) {
1700 ret = PTR_ERR(pending->snap);
2d892ccd 1701 pending->snap = NULL;
66642832 1702 btrfs_abort_transaction(trans, ret);
8732d44f 1703 goto fail;
79787eaa 1704 }
d68fc57b 1705
49b25e05 1706 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1707 if (ret) {
66642832 1708 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1709 goto fail;
1710 }
361048f5 1711
6426c7ad
QW
1712 /*
1713 * Do special qgroup accounting for snapshot, as we do some qgroup
1714 * snapshot hack to do fast snapshot.
1715 * To co-operate with that hack, we do hack again.
1716 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1717 */
1718 ret = qgroup_account_snapshot(trans, root, parent_root,
1719 pending->inherit, objectid);
1720 if (ret < 0)
1721 goto fail;
1722
684572df
LF
1723 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1724 dentry->d_name.len, BTRFS_I(parent_inode),
1725 &key, BTRFS_FT_DIR, index);
42874b3d 1726 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1727 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1728 if (ret) {
66642832 1729 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1730 goto fail;
1731 }
42874b3d 1732
6ef06d27 1733 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1734 dentry->d_name.len * 2);
04b285f3 1735 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 1736 current_time(parent_inode);
729f7961 1737 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1738 if (ret) {
66642832 1739 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1740 goto fail;
1741 }
807fc790
AS
1742 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1743 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1744 objectid);
dd5f9615 1745 if (ret) {
66642832 1746 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1747 goto fail;
1748 }
1749 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1750 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1751 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1752 objectid);
1753 if (ret && ret != -EEXIST) {
66642832 1754 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1755 goto fail;
1756 }
1757 }
d6726335 1758
3063d29f 1759fail:
aec8030a
MX
1760 pending->error = ret;
1761dir_item_existed:
98c9942a 1762 trans->block_rsv = rsv;
2382c5cc 1763 trans->bytes_reserved = 0;
d6726335
QW
1764clear_skip_qgroup:
1765 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1766no_free_objectid:
1767 kfree(new_root_item);
b0c0ea63 1768 pending->root_item = NULL;
42874b3d 1769 btrfs_free_path(path);
8546b570
DS
1770 pending->path = NULL;
1771
49b25e05 1772 return ret;
3063d29f
CM
1773}
1774
d352ac68
CM
1775/*
1776 * create all the snapshots we've scheduled for creation
1777 */
08d50ca3 1778static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1779{
aec8030a 1780 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1781 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1782 int ret = 0;
3de4586c 1783
aec8030a
MX
1784 list_for_each_entry_safe(pending, next, head, list) {
1785 list_del(&pending->list);
08d50ca3 1786 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1787 if (ret)
1788 break;
1789 }
1790 return ret;
3de4586c
CM
1791}
1792
2ff7e61e 1793static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1794{
1795 struct btrfs_root_item *root_item;
1796 struct btrfs_super_block *super;
1797
0b246afa 1798 super = fs_info->super_copy;
5d4f98a2 1799
0b246afa 1800 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1801 super->chunk_root = root_item->bytenr;
1802 super->chunk_root_generation = root_item->generation;
1803 super->chunk_root_level = root_item->level;
5d4f98a2 1804
0b246afa 1805 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1806 super->root = root_item->bytenr;
1807 super->generation = root_item->generation;
1808 super->root_level = root_item->level;
0b246afa 1809 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1810 super->cache_generation = root_item->generation;
94846229
BB
1811 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1812 super->cache_generation = 0;
0b246afa 1813 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1814 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1815}
1816
f36f3042
CM
1817int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1818{
4a9d8bde 1819 struct btrfs_transaction *trans;
f36f3042 1820 int ret = 0;
4a9d8bde 1821
a4abeea4 1822 spin_lock(&info->trans_lock);
4a9d8bde
MX
1823 trans = info->running_transaction;
1824 if (trans)
1825 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1826 spin_unlock(&info->trans_lock);
f36f3042
CM
1827 return ret;
1828}
1829
8929ecfa
YZ
1830int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1831{
4a9d8bde 1832 struct btrfs_transaction *trans;
8929ecfa 1833 int ret = 0;
4a9d8bde 1834
a4abeea4 1835 spin_lock(&info->trans_lock);
4a9d8bde
MX
1836 trans = info->running_transaction;
1837 if (trans)
1838 ret = is_transaction_blocked(trans);
a4abeea4 1839 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1840 return ret;
1841}
1842
bb9c12c9
SW
1843/*
1844 * wait for the current transaction commit to start and block subsequent
1845 * transaction joins
1846 */
2ff7e61e 1847static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
bb9c12c9
SW
1848 struct btrfs_transaction *trans)
1849{
2ff7e61e 1850 wait_event(fs_info->transaction_blocked_wait,
bf31f87f
DS
1851 trans->state >= TRANS_STATE_COMMIT_START ||
1852 TRANS_ABORTED(trans));
bb9c12c9
SW
1853}
1854
1855/*
1856 * wait for the current transaction to start and then become unblocked.
1857 * caller holds ref.
1858 */
2ff7e61e
JM
1859static void wait_current_trans_commit_start_and_unblock(
1860 struct btrfs_fs_info *fs_info,
1861 struct btrfs_transaction *trans)
bb9c12c9 1862{
2ff7e61e 1863 wait_event(fs_info->transaction_wait,
bf31f87f
DS
1864 trans->state >= TRANS_STATE_UNBLOCKED ||
1865 TRANS_ABORTED(trans));
bb9c12c9
SW
1866}
1867
1868/*
1869 * commit transactions asynchronously. once btrfs_commit_transaction_async
1870 * returns, any subsequent transaction will not be allowed to join.
1871 */
1872struct btrfs_async_commit {
1873 struct btrfs_trans_handle *newtrans;
7892b5af 1874 struct work_struct work;
bb9c12c9
SW
1875};
1876
1877static void do_async_commit(struct work_struct *work)
1878{
1879 struct btrfs_async_commit *ac =
7892b5af 1880 container_of(work, struct btrfs_async_commit, work);
bb9c12c9 1881
6fc4e354
SW
1882 /*
1883 * We've got freeze protection passed with the transaction.
1884 * Tell lockdep about it.
1885 */
b1a06a4b 1886 if (ac->newtrans->type & __TRANS_FREEZABLE)
3a45bb20 1887 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
6fc4e354 1888
e209db7a
SW
1889 current->journal_info = ac->newtrans;
1890
3a45bb20 1891 btrfs_commit_transaction(ac->newtrans);
bb9c12c9
SW
1892 kfree(ac);
1893}
1894
1895int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
bb9c12c9
SW
1896 int wait_for_unblock)
1897{
3a45bb20 1898 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1899 struct btrfs_async_commit *ac;
1900 struct btrfs_transaction *cur_trans;
1901
1902 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1903 if (!ac)
1904 return -ENOMEM;
bb9c12c9 1905
7892b5af 1906 INIT_WORK(&ac->work, do_async_commit);
3a45bb20 1907 ac->newtrans = btrfs_join_transaction(trans->root);
3612b495
TI
1908 if (IS_ERR(ac->newtrans)) {
1909 int err = PTR_ERR(ac->newtrans);
1910 kfree(ac);
1911 return err;
1912 }
bb9c12c9
SW
1913
1914 /* take transaction reference */
bb9c12c9 1915 cur_trans = trans->transaction;
9b64f57d 1916 refcount_inc(&cur_trans->use_count);
bb9c12c9 1917
3a45bb20 1918 btrfs_end_transaction(trans);
6fc4e354
SW
1919
1920 /*
1921 * Tell lockdep we've released the freeze rwsem, since the
1922 * async commit thread will be the one to unlock it.
1923 */
b1a06a4b 1924 if (ac->newtrans->type & __TRANS_FREEZABLE)
0b246afa 1925 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
6fc4e354 1926
7892b5af 1927 schedule_work(&ac->work);
bb9c12c9
SW
1928
1929 /* wait for transaction to start and unblock */
bb9c12c9 1930 if (wait_for_unblock)
2ff7e61e 1931 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
bb9c12c9 1932 else
2ff7e61e 1933 wait_current_trans_commit_start(fs_info, cur_trans);
bb9c12c9 1934
38e88054
SW
1935 if (current->journal_info == trans)
1936 current->journal_info = NULL;
1937
724e2315 1938 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1939 return 0;
1940}
1941
49b25e05 1942
97cb39bb 1943static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1944{
97cb39bb 1945 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1946 struct btrfs_transaction *cur_trans = trans->transaction;
1947
b50fff81 1948 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1949
66642832 1950 btrfs_abort_transaction(trans, err);
7b8b92af 1951
0b246afa 1952 spin_lock(&fs_info->trans_lock);
66b6135b 1953
25d8c284
MX
1954 /*
1955 * If the transaction is removed from the list, it means this
1956 * transaction has been committed successfully, so it is impossible
1957 * to call the cleanup function.
1958 */
1959 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1960
49b25e05 1961 list_del_init(&cur_trans->list);
0b246afa 1962 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1963 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1964 spin_unlock(&fs_info->trans_lock);
f094ac32
LB
1965 wait_event(cur_trans->writer_wait,
1966 atomic_read(&cur_trans->num_writers) == 1);
1967
0b246afa 1968 spin_lock(&fs_info->trans_lock);
d7096fc3 1969 }
0b246afa 1970 spin_unlock(&fs_info->trans_lock);
49b25e05 1971
2ff7e61e 1972 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 1973
0b246afa
JM
1974 spin_lock(&fs_info->trans_lock);
1975 if (cur_trans == fs_info->running_transaction)
1976 fs_info->running_transaction = NULL;
1977 spin_unlock(&fs_info->trans_lock);
4a9d8bde 1978
e0228285 1979 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1980 sb_end_intwrite(fs_info->sb);
724e2315
JB
1981 btrfs_put_transaction(cur_trans);
1982 btrfs_put_transaction(cur_trans);
49b25e05 1983
97cb39bb 1984 trace_btrfs_transaction_commit(trans->root);
49b25e05 1985
49b25e05
JM
1986 if (current->journal_info == trans)
1987 current->journal_info = NULL;
0b246afa 1988 btrfs_scrub_cancel(fs_info);
49b25e05
JM
1989
1990 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1991}
1992
c7cc64a9
DS
1993/*
1994 * Release reserved delayed ref space of all pending block groups of the
1995 * transaction and remove them from the list
1996 */
1997static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1998{
1999 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2000 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2001
2002 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2003 btrfs_delayed_refs_rsv_release(fs_info, 1);
2004 list_del_init(&block_group->bg_list);
2005 }
2006}
2007
88090ad3 2008static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2009{
ce8ea7cc
JB
2010 /*
2011 * We use writeback_inodes_sb here because if we used
2012 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2013 * Currently are holding the fs freeze lock, if we do an async flush
2014 * we'll do btrfs_join_transaction() and deadlock because we need to
2015 * wait for the fs freeze lock. Using the direct flushing we benefit
2016 * from already being in a transaction and our join_transaction doesn't
2017 * have to re-take the fs freeze lock.
2018 */
88090ad3 2019 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
ce8ea7cc 2020 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2021 return 0;
2022}
2023
88090ad3 2024static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2025{
88090ad3 2026 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2027 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2028}
2029
3a45bb20 2030int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2031{
3a45bb20 2032 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2033 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2034 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2035 int ret;
79154b1b 2036
35b814f3
NB
2037 ASSERT(refcount_read(&trans->use_count) == 1);
2038
d62b23c9
JB
2039 /*
2040 * Some places just start a transaction to commit it. We need to make
2041 * sure that if this commit fails that the abort code actually marks the
2042 * transaction as failed, so set trans->dirty to make the abort code do
2043 * the right thing.
2044 */
2045 trans->dirty = true;
2046
8d25a086 2047 /* Stop the commit early if ->aborted is set */
bf31f87f 2048 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2049 ret = cur_trans->aborted;
3a45bb20 2050 btrfs_end_transaction(trans);
e4a2bcac 2051 return ret;
25287e0a 2052 }
49b25e05 2053
f45c752b
JB
2054 btrfs_trans_release_metadata(trans);
2055 trans->block_rsv = NULL;
2056
56bec294 2057 /*
e19eb11f
JB
2058 * We only want one transaction commit doing the flushing so we do not
2059 * waste a bunch of time on lock contention on the extent root node.
56bec294 2060 */
e19eb11f
JB
2061 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2062 &cur_trans->delayed_refs.flags)) {
2063 /*
2064 * Make a pass through all the delayed refs we have so far.
2065 * Any running threads may add more while we are here.
2066 */
2067 ret = btrfs_run_delayed_refs(trans, 0);
2068 if (ret) {
2069 btrfs_end_transaction(trans);
2070 return ret;
2071 }
2072 }
56bec294 2073
119e80df 2074 btrfs_create_pending_block_groups(trans);
ea658bad 2075
3204d33c 2076 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2077 int run_it = 0;
2078
2079 /* this mutex is also taken before trying to set
2080 * block groups readonly. We need to make sure
2081 * that nobody has set a block group readonly
2082 * after a extents from that block group have been
2083 * allocated for cache files. btrfs_set_block_group_ro
2084 * will wait for the transaction to commit if it
3204d33c 2085 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2086 *
3204d33c
JB
2087 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2088 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2089 * hurt to have more than one go through, but there's no
2090 * real advantage to it either.
2091 */
0b246afa 2092 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2093 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2094 &cur_trans->flags))
1bbc621e 2095 run_it = 1;
0b246afa 2096 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2097
f9cacae3 2098 if (run_it) {
21217054 2099 ret = btrfs_start_dirty_block_groups(trans);
f9cacae3
NB
2100 if (ret) {
2101 btrfs_end_transaction(trans);
2102 return ret;
2103 }
2104 }
1bbc621e
CM
2105 }
2106
0b246afa 2107 spin_lock(&fs_info->trans_lock);
4a9d8bde 2108 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2109 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2110
0b246afa 2111 spin_unlock(&fs_info->trans_lock);
9b64f57d 2112 refcount_inc(&cur_trans->use_count);
ccd467d6 2113
d0c2f4fa
FM
2114 if (trans->in_fsync)
2115 want_state = TRANS_STATE_SUPER_COMMITTED;
2116 ret = btrfs_end_transaction(trans);
2117 wait_for_commit(cur_trans, want_state);
15ee9bc7 2118
bf31f87f 2119 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2120 ret = cur_trans->aborted;
2121
724e2315 2122 btrfs_put_transaction(cur_trans);
15ee9bc7 2123
49b25e05 2124 return ret;
79154b1b 2125 }
4313b399 2126
4a9d8bde 2127 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2128 wake_up(&fs_info->transaction_blocked_wait);
bb9c12c9 2129
0b246afa 2130 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2131 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2132
2133 if (trans->in_fsync)
2134 want_state = TRANS_STATE_SUPER_COMMITTED;
2135
ccd467d6
CM
2136 prev_trans = list_entry(cur_trans->list.prev,
2137 struct btrfs_transaction, list);
d0c2f4fa 2138 if (prev_trans->state < want_state) {
9b64f57d 2139 refcount_inc(&prev_trans->use_count);
0b246afa 2140 spin_unlock(&fs_info->trans_lock);
ccd467d6 2141
d0c2f4fa
FM
2142 wait_for_commit(prev_trans, want_state);
2143
bf31f87f 2144 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2145
724e2315 2146 btrfs_put_transaction(prev_trans);
1f9b8c8f
FM
2147 if (ret)
2148 goto cleanup_transaction;
a4abeea4 2149 } else {
0b246afa 2150 spin_unlock(&fs_info->trans_lock);
ccd467d6 2151 }
a4abeea4 2152 } else {
0b246afa 2153 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2154 /*
2155 * The previous transaction was aborted and was already removed
2156 * from the list of transactions at fs_info->trans_list. So we
2157 * abort to prevent writing a new superblock that reflects a
2158 * corrupt state (pointing to trees with unwritten nodes/leafs).
2159 */
2160 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2161 ret = -EROFS;
2162 goto cleanup_transaction;
2163 }
ccd467d6 2164 }
15ee9bc7 2165
0860adfd
MX
2166 extwriter_counter_dec(cur_trans, trans->type);
2167
88090ad3 2168 ret = btrfs_start_delalloc_flush(fs_info);
82436617
MX
2169 if (ret)
2170 goto cleanup_transaction;
2171
e5c304e6 2172 ret = btrfs_run_delayed_items(trans);
581227d0
MX
2173 if (ret)
2174 goto cleanup_transaction;
15ee9bc7 2175
581227d0
MX
2176 wait_event(cur_trans->writer_wait,
2177 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2178
581227d0 2179 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2180 ret = btrfs_run_delayed_items(trans);
ca469637
MX
2181 if (ret)
2182 goto cleanup_transaction;
2183
88090ad3 2184 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2185
48778179
FM
2186 /*
2187 * Wait for all ordered extents started by a fast fsync that joined this
2188 * transaction. Otherwise if this transaction commits before the ordered
2189 * extents complete we lose logged data after a power failure.
2190 */
2191 wait_event(cur_trans->pending_wait,
2192 atomic_read(&cur_trans->pending_ordered) == 0);
2193
2ff7e61e 2194 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2195 /*
2196 * Ok now we need to make sure to block out any other joins while we
2197 * commit the transaction. We could have started a join before setting
4a9d8bde 2198 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2199 */
0b246afa 2200 spin_lock(&fs_info->trans_lock);
4a9d8bde 2201 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2202 spin_unlock(&fs_info->trans_lock);
ed0ca140
JB
2203 wait_event(cur_trans->writer_wait,
2204 atomic_read(&cur_trans->num_writers) == 1);
2205
bf31f87f 2206 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2207 ret = cur_trans->aborted;
6cf7f77e 2208 goto scrub_continue;
2cba30f1 2209 }
7585717f
CM
2210 /*
2211 * the reloc mutex makes sure that we stop
2212 * the balancing code from coming in and moving
2213 * extents around in the middle of the commit
2214 */
0b246afa 2215 mutex_lock(&fs_info->reloc_mutex);
7585717f 2216
42874b3d
MX
2217 /*
2218 * We needn't worry about the delayed items because we will
2219 * deal with them in create_pending_snapshot(), which is the
2220 * core function of the snapshot creation.
2221 */
08d50ca3 2222 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2223 if (ret)
2224 goto unlock_reloc;
3063d29f 2225
42874b3d
MX
2226 /*
2227 * We insert the dir indexes of the snapshots and update the inode
2228 * of the snapshots' parents after the snapshot creation, so there
2229 * are some delayed items which are not dealt with. Now deal with
2230 * them.
2231 *
2232 * We needn't worry that this operation will corrupt the snapshots,
2233 * because all the tree which are snapshoted will be forced to COW
2234 * the nodes and leaves.
2235 */
e5c304e6 2236 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2237 if (ret)
2238 goto unlock_reloc;
16cdcec7 2239
c79a70b1 2240 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2241 if (ret)
2242 goto unlock_reloc;
56bec294 2243
e999376f
CM
2244 /*
2245 * make sure none of the code above managed to slip in a
2246 * delayed item
2247 */
ccdf9b30 2248 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2249
2c90e5d6 2250 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2251
e02119d5
CM
2252 /* btrfs_commit_tree_roots is responsible for getting the
2253 * various roots consistent with each other. Every pointer
2254 * in the tree of tree roots has to point to the most up to date
2255 * root for every subvolume and other tree. So, we have to keep
2256 * the tree logging code from jumping in and changing any
2257 * of the trees.
2258 *
2259 * At this point in the commit, there can't be any tree-log
2260 * writers, but a little lower down we drop the trans mutex
2261 * and let new people in. By holding the tree_log_mutex
2262 * from now until after the super is written, we avoid races
2263 * with the tree-log code.
2264 */
0b246afa 2265 mutex_lock(&fs_info->tree_log_mutex);
e02119d5 2266
7e4443d9 2267 ret = commit_fs_roots(trans);
56e9f6ea
DS
2268 if (ret)
2269 goto unlock_tree_log;
54aa1f4d 2270
3818aea2 2271 /*
7e1876ac
DS
2272 * Since the transaction is done, we can apply the pending changes
2273 * before the next transaction.
3818aea2 2274 */
0b246afa 2275 btrfs_apply_pending_changes(fs_info);
3818aea2 2276
5d4f98a2 2277 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2278 * safe to free the root of tree log roots
2279 */
0b246afa 2280 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2281
0ed4792a
QW
2282 /*
2283 * Since fs roots are all committed, we can get a quite accurate
2284 * new_roots. So let's do quota accounting.
2285 */
460fb20a 2286 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea
DS
2287 if (ret < 0)
2288 goto unlock_tree_log;
0ed4792a 2289
9386d8bc 2290 ret = commit_cowonly_roots(trans);
56e9f6ea
DS
2291 if (ret)
2292 goto unlock_tree_log;
54aa1f4d 2293
2cba30f1
MX
2294 /*
2295 * The tasks which save the space cache and inode cache may also
2296 * update ->aborted, check it.
2297 */
bf31f87f 2298 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2299 ret = cur_trans->aborted;
56e9f6ea 2300 goto unlock_tree_log;
2cba30f1
MX
2301 }
2302
0b246afa 2303 cur_trans = fs_info->running_transaction;
5d4f98a2 2304
0b246afa
JM
2305 btrfs_set_root_node(&fs_info->tree_root->root_item,
2306 fs_info->tree_root->node);
2307 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2308 &cur_trans->switch_commits);
5d4f98a2 2309
0b246afa
JM
2310 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2311 fs_info->chunk_root->node);
2312 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2313 &cur_trans->switch_commits);
2314
889bfa39 2315 switch_commit_roots(trans);
5d4f98a2 2316
ce93ec54 2317 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2318 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2319 update_super_roots(fs_info);
e02119d5 2320
0b246afa
JM
2321 btrfs_set_super_log_root(fs_info->super_copy, 0);
2322 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2323 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2324 sizeof(*fs_info->super_copy));
ccd467d6 2325
bbbf7243 2326 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2327
0b246afa
JM
2328 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2329 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2330
4fbcdf66
FM
2331 btrfs_trans_release_chunk_metadata(trans);
2332
0b246afa 2333 spin_lock(&fs_info->trans_lock);
4a9d8bde 2334 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2335 fs_info->running_transaction = NULL;
2336 spin_unlock(&fs_info->trans_lock);
2337 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2338
0b246afa 2339 wake_up(&fs_info->transaction_wait);
e6dcd2dc 2340
70458a58 2341 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2342 if (ret) {
0b246afa
JM
2343 btrfs_handle_fs_error(fs_info, ret,
2344 "Error while writing out transaction");
56e9f6ea
DS
2345 /*
2346 * reloc_mutex has been unlocked, tree_log_mutex is still held
2347 * but we can't jump to unlock_tree_log causing double unlock
2348 */
0b246afa 2349 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2350 goto scrub_continue;
49b25e05
JM
2351 }
2352
eece6a9c 2353 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2354 /*
2355 * the super is written, we can safely allow the tree-loggers
2356 * to go about their business
2357 */
0b246afa 2358 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2359 if (ret)
2360 goto scrub_continue;
e02119d5 2361
d0c2f4fa
FM
2362 /*
2363 * We needn't acquire the lock here because there is no other task
2364 * which can change it.
2365 */
2366 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2367 wake_up(&cur_trans->commit_wait);
2368
5ead2dd0 2369 btrfs_finish_extent_commit(trans);
4313b399 2370
3204d33c 2371 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2372 btrfs_clear_space_info_full(fs_info);
13212b54 2373
0b246afa 2374 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2375 /*
2376 * We needn't acquire the lock here because there is no other task
2377 * which can change it.
2378 */
2379 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2380 wake_up(&cur_trans->commit_wait);
3de4586c 2381
0b246afa 2382 spin_lock(&fs_info->trans_lock);
13c5a93e 2383 list_del_init(&cur_trans->list);
0b246afa 2384 spin_unlock(&fs_info->trans_lock);
a4abeea4 2385
724e2315
JB
2386 btrfs_put_transaction(cur_trans);
2387 btrfs_put_transaction(cur_trans);
58176a96 2388
0860adfd 2389 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2390 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2391
3a45bb20 2392 trace_btrfs_transaction_commit(trans->root);
1abe9b8a 2393
2ff7e61e 2394 btrfs_scrub_continue(fs_info);
a2de733c 2395
9ed74f2d
JB
2396 if (current->journal_info == trans)
2397 current->journal_info = NULL;
2398
2c90e5d6 2399 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2400
79154b1b 2401 return ret;
49b25e05 2402
56e9f6ea
DS
2403unlock_tree_log:
2404 mutex_unlock(&fs_info->tree_log_mutex);
2405unlock_reloc:
2406 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2407scrub_continue:
2ff7e61e 2408 btrfs_scrub_continue(fs_info);
49b25e05 2409cleanup_transaction:
dc60c525 2410 btrfs_trans_release_metadata(trans);
c7cc64a9 2411 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2412 btrfs_trans_release_chunk_metadata(trans);
0e721106 2413 trans->block_rsv = NULL;
0b246afa 2414 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2415 if (current->journal_info == trans)
2416 current->journal_info = NULL;
97cb39bb 2417 cleanup_transaction(trans, ret);
49b25e05
JM
2418
2419 return ret;
79154b1b
CM
2420}
2421
d352ac68 2422/*
9d1a2a3a
DS
2423 * return < 0 if error
2424 * 0 if there are no more dead_roots at the time of call
2425 * 1 there are more to be processed, call me again
2426 *
2427 * The return value indicates there are certainly more snapshots to delete, but
2428 * if there comes a new one during processing, it may return 0. We don't mind,
2429 * because btrfs_commit_super will poke cleaner thread and it will process it a
2430 * few seconds later.
d352ac68 2431 */
9d1a2a3a 2432int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
e9d0b13b 2433{
9d1a2a3a 2434 int ret;
5d4f98a2
YZ
2435 struct btrfs_fs_info *fs_info = root->fs_info;
2436
a4abeea4 2437 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2438 if (list_empty(&fs_info->dead_roots)) {
2439 spin_unlock(&fs_info->trans_lock);
2440 return 0;
2441 }
2442 root = list_first_entry(&fs_info->dead_roots,
2443 struct btrfs_root, root_list);
cfad392b 2444 list_del_init(&root->root_list);
a4abeea4 2445 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2446
4fd786e6 2447 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2448
9d1a2a3a 2449 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2450
9d1a2a3a
DS
2451 if (btrfs_header_backref_rev(root->node) <
2452 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2453 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2454 else
0078a9f9 2455 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2456
dc9492c1 2457 btrfs_put_root(root);
6596a928 2458 return (ret < 0) ? 0 : 1;
e9d0b13b 2459}
572d9ab7
DS
2460
2461void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2462{
2463 unsigned long prev;
2464 unsigned long bit;
2465
6c9fe14f 2466 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2467 if (!prev)
2468 return;
2469
d51033d0
DS
2470 bit = 1 << BTRFS_PENDING_COMMIT;
2471 if (prev & bit)
2472 btrfs_debug(fs_info, "pending commit done");
2473 prev &= ~bit;
2474
572d9ab7
DS
2475 if (prev)
2476 btrfs_warn(fs_info,
2477 "unknown pending changes left 0x%lx, ignoring", prev);
2478}