btrfs: fix a race between scrub and block group removal/allocation
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
602cbe91 13#include "misc.h"
79154b1b
CM
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
925baedd 17#include "locking.h"
e02119d5 18#include "tree-log.h"
581bb050 19#include "inode-map.h"
733f4fbb 20#include "volumes.h"
8dabb742 21#include "dev-replace.h"
fcebe456 22#include "qgroup.h"
aac0023c 23#include "block-group.h"
9c343784 24#include "space-info.h"
79154b1b 25
0f7d52f4
CM
26#define BTRFS_ROOT_TRANS_TAG 0
27
61c047b5
QW
28/*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
e8c9f186 99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 100 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 103 __TRANS_ATTACH |
a6d155d2
FM
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
bcf3a3e7 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
a6d155d2
FM
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
bcf3a3e7 111 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
a6d155d2
FM
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
116};
117
724e2315 118void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 119{
9b64f57d
ER
120 WARN_ON(refcount_read(&transaction->use_count) == 0);
121 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 122 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
123 WARN_ON(!RB_EMPTY_ROOT(
124 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
125 WARN_ON(!RB_EMPTY_ROOT(
126 &transaction->delayed_refs.dirty_extent_root));
1262133b 127 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
128 btrfs_err(transaction->fs_info,
129 "pending csums is %llu",
130 transaction->delayed_refs.pending_csums);
7785a663
FM
131 /*
132 * If any block groups are found in ->deleted_bgs then it's
133 * because the transaction was aborted and a commit did not
134 * happen (things failed before writing the new superblock
135 * and calling btrfs_finish_extent_commit()), so we can not
136 * discard the physical locations of the block groups.
137 */
138 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 139 struct btrfs_block_group *cache;
7785a663
FM
140
141 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 142 struct btrfs_block_group,
7785a663
FM
143 bg_list);
144 list_del_init(&cache->bg_list);
145 btrfs_put_block_group_trimming(cache);
146 btrfs_put_block_group(cache);
147 }
bbbf7243 148 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 149 kfree(transaction);
78fae27e 150 }
79154b1b
CM
151}
152
889bfa39 153static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 154{
889bfa39 155 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 156 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8
JB
157 struct btrfs_root *root, *tmp;
158
159 down_write(&fs_info->commit_root_sem);
889bfa39 160 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
161 dirty_list) {
162 list_del_init(&root->dirty_list);
163 free_extent_buffer(root->commit_root);
164 root->commit_root = btrfs_root_node(root);
4fd786e6 165 if (is_fstree(root->root_key.objectid))
9e351cc8 166 btrfs_unpin_free_ino(root);
41e7acd3 167 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 168 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 169 }
2b9dbef2
JB
170
171 /* We can free old roots now. */
889bfa39
JB
172 spin_lock(&cur_trans->dropped_roots_lock);
173 while (!list_empty(&cur_trans->dropped_roots)) {
174 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
175 struct btrfs_root, root_list);
176 list_del_init(&root->root_list);
889bfa39
JB
177 spin_unlock(&cur_trans->dropped_roots_lock);
178 btrfs_free_log(trans, root);
2b9dbef2 179 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 180 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 181 }
889bfa39 182 spin_unlock(&cur_trans->dropped_roots_lock);
9e351cc8 183 up_write(&fs_info->commit_root_sem);
817d52f8
JB
184}
185
0860adfd
MX
186static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
187 unsigned int type)
188{
189 if (type & TRANS_EXTWRITERS)
190 atomic_inc(&trans->num_extwriters);
191}
192
193static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
194 unsigned int type)
195{
196 if (type & TRANS_EXTWRITERS)
197 atomic_dec(&trans->num_extwriters);
198}
199
200static inline void extwriter_counter_init(struct btrfs_transaction *trans,
201 unsigned int type)
202{
203 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
204}
205
206static inline int extwriter_counter_read(struct btrfs_transaction *trans)
207{
208 return atomic_read(&trans->num_extwriters);
178260b2
MX
209}
210
fb6dea26
JB
211/*
212 * To be called after all the new block groups attached to the transaction
213 * handle have been created (btrfs_create_pending_block_groups()).
214 */
215void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
216{
217 struct btrfs_fs_info *fs_info = trans->fs_info;
218
219 if (!trans->chunk_bytes_reserved)
220 return;
221
222 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
223
224 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 225 trans->chunk_bytes_reserved, NULL);
fb6dea26
JB
226 trans->chunk_bytes_reserved = 0;
227}
228
d352ac68
CM
229/*
230 * either allocate a new transaction or hop into the existing one
231 */
2ff7e61e
JM
232static noinline int join_transaction(struct btrfs_fs_info *fs_info,
233 unsigned int type)
79154b1b
CM
234{
235 struct btrfs_transaction *cur_trans;
a4abeea4 236
19ae4e81 237 spin_lock(&fs_info->trans_lock);
d43317dc 238loop:
49b25e05 239 /* The file system has been taken offline. No new transactions. */
87533c47 240 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
19ae4e81 241 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
242 return -EROFS;
243 }
244
19ae4e81 245 cur_trans = fs_info->running_transaction;
a4abeea4 246 if (cur_trans) {
bf31f87f 247 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 248 spin_unlock(&fs_info->trans_lock);
49b25e05 249 return cur_trans->aborted;
871383be 250 }
4a9d8bde 251 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
252 spin_unlock(&fs_info->trans_lock);
253 return -EBUSY;
254 }
9b64f57d 255 refcount_inc(&cur_trans->use_count);
13c5a93e 256 atomic_inc(&cur_trans->num_writers);
0860adfd 257 extwriter_counter_inc(cur_trans, type);
19ae4e81 258 spin_unlock(&fs_info->trans_lock);
a4abeea4 259 return 0;
79154b1b 260 }
19ae4e81 261 spin_unlock(&fs_info->trans_lock);
a4abeea4 262
354aa0fb
MX
263 /*
264 * If we are ATTACH, we just want to catch the current transaction,
265 * and commit it. If there is no transaction, just return ENOENT.
266 */
267 if (type == TRANS_ATTACH)
268 return -ENOENT;
269
4a9d8bde
MX
270 /*
271 * JOIN_NOLOCK only happens during the transaction commit, so
272 * it is impossible that ->running_transaction is NULL
273 */
274 BUG_ON(type == TRANS_JOIN_NOLOCK);
275
4b5faeac 276 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
277 if (!cur_trans)
278 return -ENOMEM;
d43317dc 279
19ae4e81
JS
280 spin_lock(&fs_info->trans_lock);
281 if (fs_info->running_transaction) {
d43317dc
CM
282 /*
283 * someone started a transaction after we unlocked. Make sure
4a9d8bde 284 * to redo the checks above
d43317dc 285 */
4b5faeac 286 kfree(cur_trans);
d43317dc 287 goto loop;
87533c47 288 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
e4b50e14 289 spin_unlock(&fs_info->trans_lock);
4b5faeac 290 kfree(cur_trans);
7b8b92af 291 return -EROFS;
79154b1b 292 }
d43317dc 293
ab8d0fc4 294 cur_trans->fs_info = fs_info;
a4abeea4 295 atomic_set(&cur_trans->num_writers, 1);
0860adfd 296 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
297 init_waitqueue_head(&cur_trans->writer_wait);
298 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 299 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
300 /*
301 * One for this trans handle, one so it will live on until we
302 * commit the transaction.
303 */
9b64f57d 304 refcount_set(&cur_trans->use_count, 2);
3204d33c 305 cur_trans->flags = 0;
afd48513 306 cur_trans->start_time = ktime_get_seconds();
a4abeea4 307
a099d0fd
AM
308 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
309
5c9d028b 310 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 311 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 312 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
313
314 /*
315 * although the tree mod log is per file system and not per transaction,
316 * the log must never go across transaction boundaries.
317 */
318 smp_mb();
31b1a2bd 319 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 320 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 321 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 322 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 323 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 324
a4abeea4
JB
325 spin_lock_init(&cur_trans->delayed_refs.lock);
326
327 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 328 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 329 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 330 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 331 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 332 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 333 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 334 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 335 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 336 spin_lock_init(&cur_trans->dropped_roots_lock);
19ae4e81 337 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 338 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
43eb5f29 339 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
fe119a6e
NB
340 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
341 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
342 fs_info->generation++;
343 cur_trans->transid = fs_info->generation;
344 fs_info->running_transaction = cur_trans;
49b25e05 345 cur_trans->aborted = 0;
19ae4e81 346 spin_unlock(&fs_info->trans_lock);
15ee9bc7 347
79154b1b
CM
348 return 0;
349}
350
d352ac68 351/*
d397712b
CM
352 * this does all the record keeping required to make sure that a reference
353 * counted root is properly recorded in a given transaction. This is required
354 * to make sure the old root from before we joined the transaction is deleted
355 * when the transaction commits
d352ac68 356 */
7585717f 357static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
358 struct btrfs_root *root,
359 int force)
6702ed49 360{
0b246afa
JM
361 struct btrfs_fs_info *fs_info = root->fs_info;
362
6426c7ad
QW
363 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
364 root->last_trans < trans->transid) || force) {
0b246afa 365 WARN_ON(root == fs_info->extent_root);
4d31778a 366 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 367
7585717f 368 /*
27cdeb70 369 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
370 * we have the reloc mutex held now, so there
371 * is only one writer in this function
372 */
27cdeb70 373 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 374
27cdeb70 375 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
376 * they find our root->last_trans update
377 */
378 smp_wmb();
379
0b246afa 380 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 381 if (root->last_trans == trans->transid && !force) {
0b246afa 382 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
383 return 0;
384 }
0b246afa
JM
385 radix_tree_tag_set(&fs_info->fs_roots_radix,
386 (unsigned long)root->root_key.objectid,
387 BTRFS_ROOT_TRANS_TAG);
388 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
389 root->last_trans = trans->transid;
390
391 /* this is pretty tricky. We don't want to
392 * take the relocation lock in btrfs_record_root_in_trans
393 * unless we're really doing the first setup for this root in
394 * this transaction.
395 *
396 * Normally we'd use root->last_trans as a flag to decide
397 * if we want to take the expensive mutex.
398 *
399 * But, we have to set root->last_trans before we
400 * init the relocation root, otherwise, we trip over warnings
401 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 402 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
403 * fixing up the reloc trees and everyone must wait.
404 *
405 * When this is zero, they can trust root->last_trans and fly
406 * through btrfs_record_root_in_trans without having to take the
407 * lock. smp_wmb() makes sure that all the writes above are
408 * done before we pop in the zero below
409 */
5d4f98a2 410 btrfs_init_reloc_root(trans, root);
c7548af6 411 smp_mb__before_atomic();
27cdeb70 412 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2
YZ
413 }
414 return 0;
415}
bcc63abb 416
7585717f 417
2b9dbef2
JB
418void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
419 struct btrfs_root *root)
420{
0b246afa 421 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
422 struct btrfs_transaction *cur_trans = trans->transaction;
423
424 /* Add ourselves to the transaction dropped list */
425 spin_lock(&cur_trans->dropped_roots_lock);
426 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
427 spin_unlock(&cur_trans->dropped_roots_lock);
428
429 /* Make sure we don't try to update the root at commit time */
0b246afa
JM
430 spin_lock(&fs_info->fs_roots_radix_lock);
431 radix_tree_tag_clear(&fs_info->fs_roots_radix,
2b9dbef2
JB
432 (unsigned long)root->root_key.objectid,
433 BTRFS_ROOT_TRANS_TAG);
0b246afa 434 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
435}
436
7585717f
CM
437int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
438 struct btrfs_root *root)
439{
0b246afa
JM
440 struct btrfs_fs_info *fs_info = root->fs_info;
441
27cdeb70 442 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
7585717f
CM
443 return 0;
444
445 /*
27cdeb70 446 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
447 * and barriers
448 */
449 smp_rmb();
450 if (root->last_trans == trans->transid &&
27cdeb70 451 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
452 return 0;
453
0b246afa 454 mutex_lock(&fs_info->reloc_mutex);
6426c7ad 455 record_root_in_trans(trans, root, 0);
0b246afa 456 mutex_unlock(&fs_info->reloc_mutex);
7585717f
CM
457
458 return 0;
459}
460
4a9d8bde
MX
461static inline int is_transaction_blocked(struct btrfs_transaction *trans)
462{
3296bf56 463 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 464 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 465 !TRANS_ABORTED(trans));
4a9d8bde
MX
466}
467
d352ac68
CM
468/* wait for commit against the current transaction to become unblocked
469 * when this is done, it is safe to start a new transaction, but the current
470 * transaction might not be fully on disk.
471 */
2ff7e61e 472static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 473{
f9295749 474 struct btrfs_transaction *cur_trans;
79154b1b 475
0b246afa
JM
476 spin_lock(&fs_info->trans_lock);
477 cur_trans = fs_info->running_transaction;
4a9d8bde 478 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 479 refcount_inc(&cur_trans->use_count);
0b246afa 480 spin_unlock(&fs_info->trans_lock);
72d63ed6 481
0b246afa 482 wait_event(fs_info->transaction_wait,
501407aa 483 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 484 TRANS_ABORTED(cur_trans));
724e2315 485 btrfs_put_transaction(cur_trans);
a4abeea4 486 } else {
0b246afa 487 spin_unlock(&fs_info->trans_lock);
f9295749 488 }
37d1aeee
CM
489}
490
2ff7e61e 491static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 492{
0b246afa 493 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
494 return 0;
495
92e2f7e3 496 if (type == TRANS_START)
a22285a6 497 return 1;
a4abeea4 498
a22285a6
YZ
499 return 0;
500}
501
20dd2cbf
MX
502static inline bool need_reserve_reloc_root(struct btrfs_root *root)
503{
0b246afa
JM
504 struct btrfs_fs_info *fs_info = root->fs_info;
505
506 if (!fs_info->reloc_ctl ||
27cdeb70 507 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
20dd2cbf
MX
508 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
509 root->reloc_root)
510 return false;
511
512 return true;
513}
514
08e007d2 515static struct btrfs_trans_handle *
5aed1dd8 516start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
517 unsigned int type, enum btrfs_reserve_flush_enum flush,
518 bool enforce_qgroups)
37d1aeee 519{
0b246afa 520 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 521 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
522 struct btrfs_trans_handle *h;
523 struct btrfs_transaction *cur_trans;
b5009945 524 u64 num_bytes = 0;
c5567237 525 u64 qgroup_reserved = 0;
20dd2cbf 526 bool reloc_reserved = false;
9c343784 527 bool do_chunk_alloc = false;
20dd2cbf 528 int ret;
acce952b 529
46c4e71e 530 /* Send isn't supposed to start transactions. */
2755a0de 531 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
46c4e71e 532
0b246afa 533 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
acce952b 534 return ERR_PTR(-EROFS);
2a1eb461 535
46c4e71e 536 if (current->journal_info) {
0860adfd 537 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 538 h = current->journal_info;
b50fff81
DS
539 refcount_inc(&h->use_count);
540 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
541 h->orig_rsv = h->block_rsv;
542 h->block_rsv = NULL;
543 goto got_it;
544 }
b5009945
JB
545
546 /*
547 * Do the reservation before we join the transaction so we can do all
548 * the appropriate flushing if need be.
549 */
003d7c59 550 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
551 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
552 u64 delayed_refs_bytes = 0;
553
0b246afa 554 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
555 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
556 enforce_qgroups);
7174109c
QW
557 if (ret)
558 return ERR_PTR(ret);
c5567237 559
ba2c4d4e
JB
560 /*
561 * We want to reserve all the bytes we may need all at once, so
562 * we only do 1 enospc flushing cycle per transaction start. We
563 * accomplish this by simply assuming we'll do 2 x num_items
564 * worth of delayed refs updates in this trans handle, and
565 * refill that amount for whatever is missing in the reserve.
566 */
2bd36e7b 567 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614
JB
568 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
569 delayed_refs_rsv->full == 0) {
ba2c4d4e
JB
570 delayed_refs_bytes = num_bytes;
571 num_bytes <<= 1;
572 }
573
20dd2cbf
MX
574 /*
575 * Do the reservation for the relocation root creation
576 */
ee39b432 577 if (need_reserve_reloc_root(root)) {
0b246afa 578 num_bytes += fs_info->nodesize;
20dd2cbf
MX
579 reloc_reserved = true;
580 }
581
ba2c4d4e
JB
582 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
583 if (ret)
584 goto reserve_fail;
585 if (delayed_refs_bytes) {
586 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
587 delayed_refs_bytes);
588 num_bytes -= delayed_refs_bytes;
589 }
9c343784
JB
590
591 if (rsv->space_info->force_alloc)
592 do_chunk_alloc = true;
ba2c4d4e
JB
593 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
594 !delayed_refs_rsv->full) {
595 /*
596 * Some people call with btrfs_start_transaction(root, 0)
597 * because they can be throttled, but have some other mechanism
598 * for reserving space. We still want these guys to refill the
599 * delayed block_rsv so just add 1 items worth of reservation
600 * here.
601 */
602 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 603 if (ret)
843fcf35 604 goto reserve_fail;
b5009945 605 }
a22285a6 606again:
f2f767e7 607 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
608 if (!h) {
609 ret = -ENOMEM;
610 goto alloc_fail;
611 }
37d1aeee 612
98114659
JB
613 /*
614 * If we are JOIN_NOLOCK we're already committing a transaction and
615 * waiting on this guy, so we don't need to do the sb_start_intwrite
616 * because we're already holding a ref. We need this because we could
617 * have raced in and did an fsync() on a file which can kick a commit
618 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
619 *
620 * If we are ATTACH, it means we just want to catch the current
621 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 622 */
0860adfd 623 if (type & __TRANS_FREEZABLE)
0b246afa 624 sb_start_intwrite(fs_info->sb);
b2b5ef5c 625
2ff7e61e
JM
626 if (may_wait_transaction(fs_info, type))
627 wait_current_trans(fs_info);
a22285a6 628
a4abeea4 629 do {
2ff7e61e 630 ret = join_transaction(fs_info, type);
178260b2 631 if (ret == -EBUSY) {
2ff7e61e 632 wait_current_trans(fs_info);
a6d155d2
FM
633 if (unlikely(type == TRANS_ATTACH ||
634 type == TRANS_JOIN_NOSTART))
178260b2
MX
635 ret = -ENOENT;
636 }
a4abeea4
JB
637 } while (ret == -EBUSY);
638
a43f7f82 639 if (ret < 0)
843fcf35 640 goto join_fail;
0f7d52f4 641
0b246afa 642 cur_trans = fs_info->running_transaction;
a22285a6
YZ
643
644 h->transid = cur_trans->transid;
645 h->transaction = cur_trans;
d13603ef 646 h->root = root;
b50fff81 647 refcount_set(&h->use_count, 1);
64b63580 648 h->fs_info = root->fs_info;
7174109c 649
a698d075 650 h->type = type;
d9a0540a 651 h->can_flush_pending_bgs = true;
ea658bad 652 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 653
a22285a6 654 smp_mb();
3296bf56 655 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 656 may_wait_transaction(fs_info, type)) {
abdd2e80 657 current->journal_info = h;
3a45bb20 658 btrfs_commit_transaction(h);
a22285a6
YZ
659 goto again;
660 }
661
b5009945 662 if (num_bytes) {
0b246afa 663 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 664 h->transid, num_bytes, 1);
0b246afa 665 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 666 h->bytes_reserved = num_bytes;
20dd2cbf 667 h->reloc_reserved = reloc_reserved;
a22285a6 668 }
9ed74f2d 669
2a1eb461 670got_it:
bcf3a3e7 671 if (!current->journal_info)
a22285a6 672 current->journal_info = h;
fcc99734 673
9c343784
JB
674 /*
675 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
676 * ALLOC_FORCE the first run through, and then we won't allocate for
677 * anybody else who races in later. We don't care about the return
678 * value here.
679 */
680 if (do_chunk_alloc && num_bytes) {
681 u64 flags = h->block_rsv->space_info->flags;
682
683 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
684 CHUNK_ALLOC_NO_FORCE);
685 }
686
fcc99734
QW
687 /*
688 * btrfs_record_root_in_trans() needs to alloc new extents, and may
689 * call btrfs_join_transaction() while we're also starting a
690 * transaction.
691 *
692 * Thus it need to be called after current->journal_info initialized,
693 * or we can deadlock.
694 */
695 btrfs_record_root_in_trans(h, root);
696
79154b1b 697 return h;
843fcf35
MX
698
699join_fail:
0860adfd 700 if (type & __TRANS_FREEZABLE)
0b246afa 701 sb_end_intwrite(fs_info->sb);
843fcf35
MX
702 kmem_cache_free(btrfs_trans_handle_cachep, h);
703alloc_fail:
704 if (num_bytes)
2ff7e61e 705 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 706 num_bytes, NULL);
843fcf35 707reserve_fail:
733e03a0 708 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 709 return ERR_PTR(ret);
79154b1b
CM
710}
711
f9295749 712struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 713 unsigned int num_items)
f9295749 714{
08e007d2 715 return start_transaction(root, num_items, TRANS_START,
003d7c59 716 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 717}
003d7c59 718
8eab77ff
FM
719struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
720 struct btrfs_root *root,
7f9fe614 721 unsigned int num_items)
8eab77ff 722{
7f9fe614
JB
723 return start_transaction(root, num_items, TRANS_START,
724 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 725}
8407aa46 726
7a7eaa40 727struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 728{
003d7c59
JM
729 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
730 true);
f9295749
CM
731}
732
8d510121 733struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 734{
575a75d6 735 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 736 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
737}
738
a6d155d2
FM
739/*
740 * Similar to regular join but it never starts a transaction when none is
741 * running or after waiting for the current one to finish.
742 */
743struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
744{
745 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
746 BTRFS_RESERVE_NO_FLUSH, true);
747}
748
d4edf39b
MX
749/*
750 * btrfs_attach_transaction() - catch the running transaction
751 *
752 * It is used when we want to commit the current the transaction, but
753 * don't want to start a new one.
754 *
755 * Note: If this function return -ENOENT, it just means there is no
756 * running transaction. But it is possible that the inactive transaction
757 * is still in the memory, not fully on disk. If you hope there is no
758 * inactive transaction in the fs when -ENOENT is returned, you should
759 * invoke
760 * btrfs_attach_transaction_barrier()
761 */
354aa0fb 762struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 763{
575a75d6 764 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 765 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
766}
767
d4edf39b 768/*
90b6d283 769 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 770 *
52042d8e 771 * It is similar to the above function, the difference is this one
d4edf39b
MX
772 * will wait for all the inactive transactions until they fully
773 * complete.
774 */
775struct btrfs_trans_handle *
776btrfs_attach_transaction_barrier(struct btrfs_root *root)
777{
778 struct btrfs_trans_handle *trans;
779
575a75d6 780 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 781 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 782 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 783 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
784
785 return trans;
786}
787
d352ac68 788/* wait for a transaction commit to be fully complete */
2ff7e61e 789static noinline void wait_for_commit(struct btrfs_transaction *commit)
89ce8a63 790{
4a9d8bde 791 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
89ce8a63
CM
792}
793
2ff7e61e 794int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
795{
796 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 797 int ret = 0;
46204592 798
46204592 799 if (transid) {
0b246afa 800 if (transid <= fs_info->last_trans_committed)
a4abeea4 801 goto out;
46204592
SW
802
803 /* find specified transaction */
0b246afa
JM
804 spin_lock(&fs_info->trans_lock);
805 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
806 if (t->transid == transid) {
807 cur_trans = t;
9b64f57d 808 refcount_inc(&cur_trans->use_count);
8cd2807f 809 ret = 0;
46204592
SW
810 break;
811 }
8cd2807f
MX
812 if (t->transid > transid) {
813 ret = 0;
46204592 814 break;
8cd2807f 815 }
46204592 816 }
0b246afa 817 spin_unlock(&fs_info->trans_lock);
42383020
SW
818
819 /*
820 * The specified transaction doesn't exist, or we
821 * raced with btrfs_commit_transaction
822 */
823 if (!cur_trans) {
0b246afa 824 if (transid > fs_info->last_trans_committed)
42383020 825 ret = -EINVAL;
8cd2807f 826 goto out;
42383020 827 }
46204592
SW
828 } else {
829 /* find newest transaction that is committing | committed */
0b246afa
JM
830 spin_lock(&fs_info->trans_lock);
831 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 832 list) {
4a9d8bde
MX
833 if (t->state >= TRANS_STATE_COMMIT_START) {
834 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 835 break;
46204592 836 cur_trans = t;
9b64f57d 837 refcount_inc(&cur_trans->use_count);
46204592
SW
838 break;
839 }
840 }
0b246afa 841 spin_unlock(&fs_info->trans_lock);
46204592 842 if (!cur_trans)
a4abeea4 843 goto out; /* nothing committing|committed */
46204592
SW
844 }
845
2ff7e61e 846 wait_for_commit(cur_trans);
724e2315 847 btrfs_put_transaction(cur_trans);
a4abeea4 848out:
46204592
SW
849 return ret;
850}
851
2ff7e61e 852void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 853{
92e2f7e3 854 wait_current_trans(fs_info);
37d1aeee
CM
855}
856
2ff7e61e 857static int should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 858{
2ff7e61e 859 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 860
64403612 861 if (btrfs_check_space_for_delayed_refs(fs_info))
1be41b78 862 return 1;
36ba022a 863
2ff7e61e 864 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
865}
866
3a45bb20 867int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
868{
869 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 870
a4abeea4 871 smp_mb();
3296bf56 872 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
4a9d8bde 873 cur_trans->delayed_refs.flushing)
8929ecfa
YZ
874 return 1;
875
2ff7e61e 876 return should_end_transaction(trans);
8929ecfa
YZ
877}
878
dc60c525
NB
879static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
880
0e34693f 881{
dc60c525
NB
882 struct btrfs_fs_info *fs_info = trans->fs_info;
883
0e34693f
NB
884 if (!trans->block_rsv) {
885 ASSERT(!trans->bytes_reserved);
886 return;
887 }
888
889 if (!trans->bytes_reserved)
890 return;
891
892 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
893 trace_btrfs_space_reservation(fs_info, "transaction",
894 trans->transid, trans->bytes_reserved, 0);
895 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 896 trans->bytes_reserved, NULL);
0e34693f
NB
897 trans->bytes_reserved = 0;
898}
899
89ce8a63 900static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 901 int throttle)
79154b1b 902{
3a45bb20 903 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 904 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 905 int err = 0;
c3e69d58 906
b50fff81
DS
907 if (refcount_read(&trans->use_count) > 1) {
908 refcount_dec(&trans->use_count);
2a1eb461
JB
909 trans->block_rsv = trans->orig_rsv;
910 return 0;
911 }
912
dc60c525 913 btrfs_trans_release_metadata(trans);
4c13d758 914 trans->block_rsv = NULL;
c5567237 915
119e80df 916 btrfs_create_pending_block_groups(trans);
ea658bad 917
4fbcdf66
FM
918 btrfs_trans_release_chunk_metadata(trans);
919
0860adfd 920 if (trans->type & __TRANS_FREEZABLE)
0b246afa 921 sb_end_intwrite(info->sb);
6df7881a 922
8929ecfa 923 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
924 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
925 atomic_dec(&cur_trans->num_writers);
0860adfd 926 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 927
093258e6 928 cond_wake_up(&cur_trans->writer_wait);
724e2315 929 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
930
931 if (current->journal_info == trans)
932 current->journal_info = NULL;
ab78c84d 933
24bbcf04 934 if (throttle)
2ff7e61e 935 btrfs_run_delayed_iputs(info);
24bbcf04 936
bf31f87f 937 if (TRANS_ABORTED(trans) ||
0b246afa 938 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
4e121c06 939 wake_up_process(info->transaction_kthread);
4edc2ca3 940 err = -EIO;
4e121c06 941 }
49b25e05 942
4edc2ca3
DJ
943 kmem_cache_free(btrfs_trans_handle_cachep, trans);
944 return err;
79154b1b
CM
945}
946
3a45bb20 947int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 948{
3a45bb20 949 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
950}
951
3a45bb20 952int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 953{
3a45bb20 954 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
955}
956
d352ac68
CM
957/*
958 * when btree blocks are allocated, they have some corresponding bits set for
959 * them in one of two extent_io trees. This is used to make sure all of
690587d1 960 * those extents are sent to disk but does not wait on them
d352ac68 961 */
2ff7e61e 962int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 963 struct extent_io_tree *dirty_pages, int mark)
79154b1b 964{
777e6bd7 965 int err = 0;
7c4452b9 966 int werr = 0;
0b246afa 967 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 968 struct extent_state *cached_state = NULL;
777e6bd7 969 u64 start = 0;
5f39d397 970 u64 end;
7c4452b9 971
6300463b 972 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 973 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 974 mark, &cached_state)) {
663dfbb0
FM
975 bool wait_writeback = false;
976
977 err = convert_extent_bit(dirty_pages, start, end,
978 EXTENT_NEED_WAIT,
210aa277 979 mark, &cached_state);
663dfbb0
FM
980 /*
981 * convert_extent_bit can return -ENOMEM, which is most of the
982 * time a temporary error. So when it happens, ignore the error
983 * and wait for writeback of this range to finish - because we
984 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
985 * to __btrfs_wait_marked_extents() would not know that
986 * writeback for this range started and therefore wouldn't
987 * wait for it to finish - we don't want to commit a
988 * superblock that points to btree nodes/leafs for which
989 * writeback hasn't finished yet (and without errors).
663dfbb0 990 * We cleanup any entries left in the io tree when committing
41e7acd3 991 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
992 */
993 if (err == -ENOMEM) {
994 err = 0;
995 wait_writeback = true;
996 }
997 if (!err)
998 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
999 if (err)
1000 werr = err;
663dfbb0
FM
1001 else if (wait_writeback)
1002 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1003 free_extent_state(cached_state);
663dfbb0 1004 cached_state = NULL;
1728366e
JB
1005 cond_resched();
1006 start = end + 1;
7c4452b9 1007 }
6300463b 1008 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1009 return werr;
1010}
1011
1012/*
1013 * when btree blocks are allocated, they have some corresponding bits set for
1014 * them in one of two extent_io trees. This is used to make sure all of
1015 * those extents are on disk for transaction or log commit. We wait
1016 * on all the pages and clear them from the dirty pages state tree
1017 */
bf89d38f
JM
1018static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1019 struct extent_io_tree *dirty_pages)
690587d1 1020{
690587d1
CM
1021 int err = 0;
1022 int werr = 0;
0b246afa 1023 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1024 struct extent_state *cached_state = NULL;
690587d1
CM
1025 u64 start = 0;
1026 u64 end;
777e6bd7 1027
1728366e 1028 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1029 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1030 /*
1031 * Ignore -ENOMEM errors returned by clear_extent_bit().
1032 * When committing the transaction, we'll remove any entries
1033 * left in the io tree. For a log commit, we don't remove them
1034 * after committing the log because the tree can be accessed
1035 * concurrently - we do it only at transaction commit time when
41e7acd3 1036 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1037 */
1038 err = clear_extent_bit(dirty_pages, start, end,
ae0f1625 1039 EXTENT_NEED_WAIT, 0, 0, &cached_state);
663dfbb0
FM
1040 if (err == -ENOMEM)
1041 err = 0;
1042 if (!err)
1043 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1044 if (err)
1045 werr = err;
e38e2ed7
FM
1046 free_extent_state(cached_state);
1047 cached_state = NULL;
1728366e
JB
1048 cond_resched();
1049 start = end + 1;
777e6bd7 1050 }
7c4452b9
CM
1051 if (err)
1052 werr = err;
bf89d38f
JM
1053 return werr;
1054}
656f30db 1055
b9fae2eb 1056static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1057 struct extent_io_tree *dirty_pages)
1058{
1059 bool errors = false;
1060 int err;
656f30db 1061
bf89d38f
JM
1062 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1063 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1064 errors = true;
1065
1066 if (errors && !err)
1067 err = -EIO;
1068 return err;
1069}
656f30db 1070
bf89d38f
JM
1071int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1072{
1073 struct btrfs_fs_info *fs_info = log_root->fs_info;
1074 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1075 bool errors = false;
1076 int err;
656f30db 1077
bf89d38f
JM
1078 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1079
1080 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1081 if ((mark & EXTENT_DIRTY) &&
1082 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1083 errors = true;
1084
1085 if ((mark & EXTENT_NEW) &&
1086 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1087 errors = true;
1088
1089 if (errors && !err)
1090 err = -EIO;
1091 return err;
79154b1b
CM
1092}
1093
690587d1 1094/*
c9b577c0
NB
1095 * When btree blocks are allocated the corresponding extents are marked dirty.
1096 * This function ensures such extents are persisted on disk for transaction or
1097 * log commit.
1098 *
1099 * @trans: transaction whose dirty pages we'd like to write
690587d1 1100 */
70458a58 1101static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1102{
1103 int ret;
1104 int ret2;
c9b577c0 1105 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1106 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1107 struct blk_plug plug;
690587d1 1108
c6adc9cc 1109 blk_start_plug(&plug);
c9b577c0 1110 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1111 blk_finish_plug(&plug);
bf89d38f 1112 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1113
41e7acd3 1114 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1115
bf0da8c1
CM
1116 if (ret)
1117 return ret;
c9b577c0 1118 else if (ret2)
bf0da8c1 1119 return ret2;
c9b577c0
NB
1120 else
1121 return 0;
d0c803c4
CM
1122}
1123
d352ac68
CM
1124/*
1125 * this is used to update the root pointer in the tree of tree roots.
1126 *
1127 * But, in the case of the extent allocation tree, updating the root
1128 * pointer may allocate blocks which may change the root of the extent
1129 * allocation tree.
1130 *
1131 * So, this loops and repeats and makes sure the cowonly root didn't
1132 * change while the root pointer was being updated in the metadata.
1133 */
0b86a832
CM
1134static int update_cowonly_root(struct btrfs_trans_handle *trans,
1135 struct btrfs_root *root)
79154b1b
CM
1136{
1137 int ret;
0b86a832 1138 u64 old_root_bytenr;
86b9f2ec 1139 u64 old_root_used;
0b246afa
JM
1140 struct btrfs_fs_info *fs_info = root->fs_info;
1141 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1142
86b9f2ec 1143 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1144
d397712b 1145 while (1) {
0b86a832 1146 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1147 if (old_root_bytenr == root->node->start &&
ea526d18 1148 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1149 break;
87ef2bb4 1150
5d4f98a2 1151 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1152 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1153 &root->root_key,
1154 &root->root_item);
49b25e05
JM
1155 if (ret)
1156 return ret;
56bec294 1157
86b9f2ec 1158 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1159 }
276e680d 1160
0b86a832
CM
1161 return 0;
1162}
1163
d352ac68
CM
1164/*
1165 * update all the cowonly tree roots on disk
49b25e05
JM
1166 *
1167 * The error handling in this function may not be obvious. Any of the
1168 * failures will cause the file system to go offline. We still need
1169 * to clean up the delayed refs.
d352ac68 1170 */
9386d8bc 1171static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1172{
9386d8bc 1173 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1174 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1175 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1176 struct list_head *next;
84234f3a 1177 struct extent_buffer *eb;
56bec294 1178 int ret;
84234f3a
YZ
1179
1180 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05
JM
1181 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1182 0, &eb);
84234f3a
YZ
1183 btrfs_tree_unlock(eb);
1184 free_extent_buffer(eb);
0b86a832 1185
49b25e05
JM
1186 if (ret)
1187 return ret;
1188
c79a70b1 1189 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
49b25e05
JM
1190 if (ret)
1191 return ret;
87ef2bb4 1192
196c9d8d 1193 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1194 if (ret)
1195 return ret;
2b584c68 1196 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1197 if (ret)
1198 return ret;
280f8bd2 1199 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1200 if (ret)
1201 return ret;
546adb0d 1202
bbebb3e0 1203 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1204 if (ret)
1205 return ret;
1206
546adb0d 1207 /* run_qgroups might have added some more refs */
c79a70b1 1208 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
c16ce190
JB
1209 if (ret)
1210 return ret;
ea526d18 1211again:
d397712b 1212 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1213 struct btrfs_root *root;
0b86a832
CM
1214 next = fs_info->dirty_cowonly_roots.next;
1215 list_del_init(next);
1216 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1217 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1218
9e351cc8
JB
1219 if (root != fs_info->extent_root)
1220 list_add_tail(&root->dirty_list,
1221 &trans->transaction->switch_commits);
49b25e05
JM
1222 ret = update_cowonly_root(trans, root);
1223 if (ret)
1224 return ret;
c79a70b1 1225 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1226 if (ret)
1227 return ret;
79154b1b 1228 }
276e680d 1229
1bbc621e 1230 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1231 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1232 if (ret)
1233 return ret;
c79a70b1 1234 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1235 if (ret)
1236 return ret;
1237 }
1238
1239 if (!list_empty(&fs_info->dirty_cowonly_roots))
1240 goto again;
1241
9e351cc8
JB
1242 list_add_tail(&fs_info->extent_root->dirty_list,
1243 &trans->transaction->switch_commits);
9f6cbcbb
DS
1244
1245 /* Update dev-replace pointer once everything is committed */
1246 fs_info->dev_replace.committed_cursor_left =
1247 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1248
79154b1b
CM
1249 return 0;
1250}
1251
d352ac68
CM
1252/*
1253 * dead roots are old snapshots that need to be deleted. This allocates
1254 * a dirty root struct and adds it into the list of dead roots that need to
1255 * be deleted
1256 */
cfad392b 1257void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1258{
0b246afa
JM
1259 struct btrfs_fs_info *fs_info = root->fs_info;
1260
1261 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1262 if (list_empty(&root->root_list)) {
1263 btrfs_grab_root(root);
0b246afa 1264 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1265 }
0b246afa 1266 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1267}
1268
d352ac68 1269/*
5d4f98a2 1270 * update all the cowonly tree roots on disk
d352ac68 1271 */
7e4443d9 1272static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1273{
7e4443d9 1274 struct btrfs_fs_info *fs_info = trans->fs_info;
0f7d52f4 1275 struct btrfs_root *gang[8];
0f7d52f4
CM
1276 int i;
1277 int ret;
54aa1f4d
CM
1278 int err = 0;
1279
a4abeea4 1280 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 1281 while (1) {
5d4f98a2
YZ
1282 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1283 (void **)gang, 0,
0f7d52f4
CM
1284 ARRAY_SIZE(gang),
1285 BTRFS_ROOT_TRANS_TAG);
1286 if (ret == 0)
1287 break;
1288 for (i = 0; i < ret; i++) {
5b4aacef 1289 struct btrfs_root *root = gang[i];
5d4f98a2
YZ
1290 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1291 (unsigned long)root->root_key.objectid,
1292 BTRFS_ROOT_TRANS_TAG);
a4abeea4 1293 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 1294
e02119d5 1295 btrfs_free_log(trans, root);
5d4f98a2 1296 btrfs_update_reloc_root(trans, root);
bcc63abb 1297
82d5902d
LZ
1298 btrfs_save_ino_cache(root, trans);
1299
f1ebcc74 1300 /* see comments in should_cow_block() */
27cdeb70 1301 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
c7548af6 1302 smp_mb__after_atomic();
f1ebcc74 1303
978d910d 1304 if (root->commit_root != root->node) {
9e351cc8
JB
1305 list_add_tail(&root->dirty_list,
1306 &trans->transaction->switch_commits);
978d910d
YZ
1307 btrfs_set_root_node(&root->root_item,
1308 root->node);
1309 }
5d4f98a2 1310
5d4f98a2 1311 err = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
1312 &root->root_key,
1313 &root->root_item);
a4abeea4 1314 spin_lock(&fs_info->fs_roots_radix_lock);
54aa1f4d
CM
1315 if (err)
1316 break;
733e03a0 1317 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1318 }
1319 }
a4abeea4 1320 spin_unlock(&fs_info->fs_roots_radix_lock);
54aa1f4d 1321 return err;
0f7d52f4
CM
1322}
1323
d352ac68 1324/*
de78b51a
ES
1325 * defrag a given btree.
1326 * Every leaf in the btree is read and defragged.
d352ac68 1327 */
de78b51a 1328int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1329{
1330 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1331 struct btrfs_trans_handle *trans;
8929ecfa 1332 int ret;
e9d0b13b 1333
27cdeb70 1334 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1335 return 0;
8929ecfa 1336
6b80053d 1337 while (1) {
8929ecfa
YZ
1338 trans = btrfs_start_transaction(root, 0);
1339 if (IS_ERR(trans))
1340 return PTR_ERR(trans);
1341
de78b51a 1342 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1343
3a45bb20 1344 btrfs_end_transaction(trans);
2ff7e61e 1345 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1346 cond_resched();
1347
ab8d0fc4 1348 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1349 break;
210549eb 1350
ab8d0fc4
JM
1351 if (btrfs_defrag_cancelled(info)) {
1352 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1353 ret = -EAGAIN;
1354 break;
1355 }
e9d0b13b 1356 }
27cdeb70 1357 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1358 return ret;
e9d0b13b
CM
1359}
1360
6426c7ad
QW
1361/*
1362 * Do all special snapshot related qgroup dirty hack.
1363 *
1364 * Will do all needed qgroup inherit and dirty hack like switch commit
1365 * roots inside one transaction and write all btree into disk, to make
1366 * qgroup works.
1367 */
1368static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *src,
1370 struct btrfs_root *parent,
1371 struct btrfs_qgroup_inherit *inherit,
1372 u64 dst_objectid)
1373{
1374 struct btrfs_fs_info *fs_info = src->fs_info;
1375 int ret;
1376
1377 /*
1378 * Save some performance in the case that qgroups are not
1379 * enabled. If this check races with the ioctl, rescan will
1380 * kick in anyway.
1381 */
9ea6e2b5 1382 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1383 return 0;
6426c7ad 1384
4d31778a 1385 /*
52042d8e 1386 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1387 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1388 * recorded root will never be updated again, causing an outdated root
1389 * item.
1390 */
1391 record_root_in_trans(trans, src, 1);
1392
6426c7ad
QW
1393 /*
1394 * We are going to commit transaction, see btrfs_commit_transaction()
1395 * comment for reason locking tree_log_mutex
1396 */
1397 mutex_lock(&fs_info->tree_log_mutex);
1398
7e4443d9 1399 ret = commit_fs_roots(trans);
6426c7ad
QW
1400 if (ret)
1401 goto out;
460fb20a 1402 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1403 if (ret < 0)
1404 goto out;
1405
1406 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1407 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1408 inherit);
1409 if (ret < 0)
1410 goto out;
1411
1412 /*
1413 * Now we do a simplified commit transaction, which will:
1414 * 1) commit all subvolume and extent tree
1415 * To ensure all subvolume and extent tree have a valid
1416 * commit_root to accounting later insert_dir_item()
1417 * 2) write all btree blocks onto disk
1418 * This is to make sure later btree modification will be cowed
1419 * Or commit_root can be populated and cause wrong qgroup numbers
1420 * In this simplified commit, we don't really care about other trees
1421 * like chunk and root tree, as they won't affect qgroup.
1422 * And we don't write super to avoid half committed status.
1423 */
9386d8bc 1424 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1425 if (ret)
1426 goto out;
889bfa39 1427 switch_commit_roots(trans);
70458a58 1428 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1429 if (ret)
f7af3934 1430 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1431 "Error while writing out transaction for qgroup");
1432
1433out:
1434 mutex_unlock(&fs_info->tree_log_mutex);
1435
1436 /*
1437 * Force parent root to be updated, as we recorded it before so its
1438 * last_trans == cur_transid.
1439 * Or it won't be committed again onto disk after later
1440 * insert_dir_item()
1441 */
1442 if (!ret)
1443 record_root_in_trans(trans, parent, 1);
1444 return ret;
1445}
1446
d352ac68
CM
1447/*
1448 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1449 * transaction commit. This does the actual creation.
1450 *
1451 * Note:
1452 * If the error which may affect the commitment of the current transaction
1453 * happens, we should return the error number. If the error which just affect
1454 * the creation of the pending snapshots, just return 0.
d352ac68 1455 */
80b6794d 1456static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1457 struct btrfs_pending_snapshot *pending)
1458{
08d50ca3
NB
1459
1460 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1461 struct btrfs_key key;
80b6794d 1462 struct btrfs_root_item *new_root_item;
3063d29f
CM
1463 struct btrfs_root *tree_root = fs_info->tree_root;
1464 struct btrfs_root *root = pending->root;
6bdb72de 1465 struct btrfs_root *parent_root;
98c9942a 1466 struct btrfs_block_rsv *rsv;
6bdb72de 1467 struct inode *parent_inode;
42874b3d
MX
1468 struct btrfs_path *path;
1469 struct btrfs_dir_item *dir_item;
a22285a6 1470 struct dentry *dentry;
3063d29f 1471 struct extent_buffer *tmp;
925baedd 1472 struct extent_buffer *old;
95582b00 1473 struct timespec64 cur_time;
aec8030a 1474 int ret = 0;
d68fc57b 1475 u64 to_reserve = 0;
6bdb72de 1476 u64 index = 0;
a22285a6 1477 u64 objectid;
b83cc969 1478 u64 root_flags;
3063d29f 1479
8546b570
DS
1480 ASSERT(pending->path);
1481 path = pending->path;
42874b3d 1482
b0c0ea63
DS
1483 ASSERT(pending->root_item);
1484 new_root_item = pending->root_item;
a22285a6 1485
aec8030a
MX
1486 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1487 if (pending->error)
6fa9700e 1488 goto no_free_objectid;
3063d29f 1489
d6726335
QW
1490 /*
1491 * Make qgroup to skip current new snapshot's qgroupid, as it is
1492 * accounted by later btrfs_qgroup_inherit().
1493 */
1494 btrfs_set_skip_qgroup(trans, objectid);
1495
147d256e 1496 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1497
1498 if (to_reserve > 0) {
aec8030a
MX
1499 pending->error = btrfs_block_rsv_add(root,
1500 &pending->block_rsv,
1501 to_reserve,
1502 BTRFS_RESERVE_NO_FLUSH);
1503 if (pending->error)
d6726335 1504 goto clear_skip_qgroup;
d68fc57b
YZ
1505 }
1506
3063d29f 1507 key.objectid = objectid;
a22285a6
YZ
1508 key.offset = (u64)-1;
1509 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1510
6fa9700e 1511 rsv = trans->block_rsv;
a22285a6 1512 trans->block_rsv = &pending->block_rsv;
2382c5cc 1513 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1514 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1515 trans->transid,
1516 trans->bytes_reserved, 1);
a22285a6 1517 dentry = pending->dentry;
e9662f70 1518 parent_inode = pending->dir;
a22285a6 1519 parent_root = BTRFS_I(parent_inode)->root;
6426c7ad 1520 record_root_in_trans(trans, parent_root, 0);
a22285a6 1521
c2050a45 1522 cur_time = current_time(parent_inode);
04b285f3 1523
3063d29f
CM
1524 /*
1525 * insert the directory item
1526 */
877574e2 1527 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1528 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1529
1530 /* check if there is a file/dir which has the same name. */
1531 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1532 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1533 dentry->d_name.name,
1534 dentry->d_name.len, 0);
1535 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1536 pending->error = -EEXIST;
aec8030a 1537 goto dir_item_existed;
42874b3d
MX
1538 } else if (IS_ERR(dir_item)) {
1539 ret = PTR_ERR(dir_item);
66642832 1540 btrfs_abort_transaction(trans, ret);
8732d44f 1541 goto fail;
79787eaa 1542 }
42874b3d 1543 btrfs_release_path(path);
52c26179 1544
e999376f
CM
1545 /*
1546 * pull in the delayed directory update
1547 * and the delayed inode item
1548 * otherwise we corrupt the FS during
1549 * snapshot
1550 */
e5c304e6 1551 ret = btrfs_run_delayed_items(trans);
8732d44f 1552 if (ret) { /* Transaction aborted */
66642832 1553 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1554 goto fail;
1555 }
e999376f 1556
6426c7ad 1557 record_root_in_trans(trans, root, 0);
6bdb72de
SW
1558 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1559 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1560 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1561
b83cc969
LZ
1562 root_flags = btrfs_root_flags(new_root_item);
1563 if (pending->readonly)
1564 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1565 else
1566 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1567 btrfs_set_root_flags(new_root_item, root_flags);
1568
8ea05e3a
AB
1569 btrfs_set_root_generation_v2(new_root_item,
1570 trans->transid);
807fc790 1571 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1572 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1573 BTRFS_UUID_SIZE);
70023da2
SB
1574 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1575 memset(new_root_item->received_uuid, 0,
1576 sizeof(new_root_item->received_uuid));
1577 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1578 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1579 btrfs_set_root_stransid(new_root_item, 0);
1580 btrfs_set_root_rtransid(new_root_item, 0);
1581 }
3cae210f
QW
1582 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1583 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1584 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1585
6bdb72de 1586 old = btrfs_lock_root_node(root);
49b25e05 1587 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
79787eaa
JM
1588 if (ret) {
1589 btrfs_tree_unlock(old);
1590 free_extent_buffer(old);
66642832 1591 btrfs_abort_transaction(trans, ret);
8732d44f 1592 goto fail;
79787eaa 1593 }
49b25e05 1594
8bead258 1595 btrfs_set_lock_blocking_write(old);
6bdb72de 1596
49b25e05 1597 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1598 /* clean up in any case */
6bdb72de
SW
1599 btrfs_tree_unlock(old);
1600 free_extent_buffer(old);
8732d44f 1601 if (ret) {
66642832 1602 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1603 goto fail;
1604 }
f1ebcc74 1605 /* see comments in should_cow_block() */
27cdeb70 1606 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1607 smp_wmb();
1608
6bdb72de 1609 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1610 /* record when the snapshot was created in key.offset */
1611 key.offset = trans->transid;
1612 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1613 btrfs_tree_unlock(tmp);
1614 free_extent_buffer(tmp);
8732d44f 1615 if (ret) {
66642832 1616 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1617 goto fail;
1618 }
6bdb72de 1619
a22285a6
YZ
1620 /*
1621 * insert root back/forward references
1622 */
6025c19f 1623 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1624 parent_root->root_key.objectid,
4a0cc7ca 1625 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1626 dentry->d_name.name, dentry->d_name.len);
8732d44f 1627 if (ret) {
66642832 1628 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1629 goto fail;
1630 }
0660b5af 1631
a22285a6 1632 key.offset = (u64)-1;
3619c94f 1633 pending->snap = btrfs_get_fs_root(fs_info, &key, true);
79787eaa
JM
1634 if (IS_ERR(pending->snap)) {
1635 ret = PTR_ERR(pending->snap);
66642832 1636 btrfs_abort_transaction(trans, ret);
8732d44f 1637 goto fail;
79787eaa 1638 }
d68fc57b 1639
49b25e05 1640 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1641 if (ret) {
66642832 1642 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1643 goto fail;
1644 }
361048f5 1645
c79a70b1 1646 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
8732d44f 1647 if (ret) {
66642832 1648 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1649 goto fail;
1650 }
42874b3d 1651
6426c7ad
QW
1652 /*
1653 * Do special qgroup accounting for snapshot, as we do some qgroup
1654 * snapshot hack to do fast snapshot.
1655 * To co-operate with that hack, we do hack again.
1656 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1657 */
1658 ret = qgroup_account_snapshot(trans, root, parent_root,
1659 pending->inherit, objectid);
1660 if (ret < 0)
1661 goto fail;
1662
684572df
LF
1663 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1664 dentry->d_name.len, BTRFS_I(parent_inode),
1665 &key, BTRFS_FT_DIR, index);
42874b3d 1666 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1667 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1668 if (ret) {
66642832 1669 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1670 goto fail;
1671 }
42874b3d 1672
6ef06d27 1673 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1674 dentry->d_name.len * 2);
04b285f3 1675 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 1676 current_time(parent_inode);
be6aef60 1677 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
dd5f9615 1678 if (ret) {
66642832 1679 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1680 goto fail;
1681 }
807fc790
AS
1682 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1683 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1684 objectid);
dd5f9615 1685 if (ret) {
66642832 1686 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1687 goto fail;
1688 }
1689 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1690 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1691 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1692 objectid);
1693 if (ret && ret != -EEXIST) {
66642832 1694 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1695 goto fail;
1696 }
1697 }
d6726335 1698
c79a70b1 1699 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
d6726335 1700 if (ret) {
66642832 1701 btrfs_abort_transaction(trans, ret);
d6726335
QW
1702 goto fail;
1703 }
1704
3063d29f 1705fail:
aec8030a
MX
1706 pending->error = ret;
1707dir_item_existed:
98c9942a 1708 trans->block_rsv = rsv;
2382c5cc 1709 trans->bytes_reserved = 0;
d6726335
QW
1710clear_skip_qgroup:
1711 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1712no_free_objectid:
1713 kfree(new_root_item);
b0c0ea63 1714 pending->root_item = NULL;
42874b3d 1715 btrfs_free_path(path);
8546b570
DS
1716 pending->path = NULL;
1717
49b25e05 1718 return ret;
3063d29f
CM
1719}
1720
d352ac68
CM
1721/*
1722 * create all the snapshots we've scheduled for creation
1723 */
08d50ca3 1724static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1725{
aec8030a 1726 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1727 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1728 int ret = 0;
3de4586c 1729
aec8030a
MX
1730 list_for_each_entry_safe(pending, next, head, list) {
1731 list_del(&pending->list);
08d50ca3 1732 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1733 if (ret)
1734 break;
1735 }
1736 return ret;
3de4586c
CM
1737}
1738
2ff7e61e 1739static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1740{
1741 struct btrfs_root_item *root_item;
1742 struct btrfs_super_block *super;
1743
0b246afa 1744 super = fs_info->super_copy;
5d4f98a2 1745
0b246afa 1746 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1747 super->chunk_root = root_item->bytenr;
1748 super->chunk_root_generation = root_item->generation;
1749 super->chunk_root_level = root_item->level;
5d4f98a2 1750
0b246afa 1751 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1752 super->root = root_item->bytenr;
1753 super->generation = root_item->generation;
1754 super->root_level = root_item->level;
0b246afa 1755 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1756 super->cache_generation = root_item->generation;
0b246afa 1757 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1758 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1759}
1760
f36f3042
CM
1761int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1762{
4a9d8bde 1763 struct btrfs_transaction *trans;
f36f3042 1764 int ret = 0;
4a9d8bde 1765
a4abeea4 1766 spin_lock(&info->trans_lock);
4a9d8bde
MX
1767 trans = info->running_transaction;
1768 if (trans)
1769 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1770 spin_unlock(&info->trans_lock);
f36f3042
CM
1771 return ret;
1772}
1773
8929ecfa
YZ
1774int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1775{
4a9d8bde 1776 struct btrfs_transaction *trans;
8929ecfa 1777 int ret = 0;
4a9d8bde 1778
a4abeea4 1779 spin_lock(&info->trans_lock);
4a9d8bde
MX
1780 trans = info->running_transaction;
1781 if (trans)
1782 ret = is_transaction_blocked(trans);
a4abeea4 1783 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1784 return ret;
1785}
1786
bb9c12c9
SW
1787/*
1788 * wait for the current transaction commit to start and block subsequent
1789 * transaction joins
1790 */
2ff7e61e 1791static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
bb9c12c9
SW
1792 struct btrfs_transaction *trans)
1793{
2ff7e61e 1794 wait_event(fs_info->transaction_blocked_wait,
bf31f87f
DS
1795 trans->state >= TRANS_STATE_COMMIT_START ||
1796 TRANS_ABORTED(trans));
bb9c12c9
SW
1797}
1798
1799/*
1800 * wait for the current transaction to start and then become unblocked.
1801 * caller holds ref.
1802 */
2ff7e61e
JM
1803static void wait_current_trans_commit_start_and_unblock(
1804 struct btrfs_fs_info *fs_info,
1805 struct btrfs_transaction *trans)
bb9c12c9 1806{
2ff7e61e 1807 wait_event(fs_info->transaction_wait,
bf31f87f
DS
1808 trans->state >= TRANS_STATE_UNBLOCKED ||
1809 TRANS_ABORTED(trans));
bb9c12c9
SW
1810}
1811
1812/*
1813 * commit transactions asynchronously. once btrfs_commit_transaction_async
1814 * returns, any subsequent transaction will not be allowed to join.
1815 */
1816struct btrfs_async_commit {
1817 struct btrfs_trans_handle *newtrans;
7892b5af 1818 struct work_struct work;
bb9c12c9
SW
1819};
1820
1821static void do_async_commit(struct work_struct *work)
1822{
1823 struct btrfs_async_commit *ac =
7892b5af 1824 container_of(work, struct btrfs_async_commit, work);
bb9c12c9 1825
6fc4e354
SW
1826 /*
1827 * We've got freeze protection passed with the transaction.
1828 * Tell lockdep about it.
1829 */
b1a06a4b 1830 if (ac->newtrans->type & __TRANS_FREEZABLE)
3a45bb20 1831 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
6fc4e354 1832
e209db7a
SW
1833 current->journal_info = ac->newtrans;
1834
3a45bb20 1835 btrfs_commit_transaction(ac->newtrans);
bb9c12c9
SW
1836 kfree(ac);
1837}
1838
1839int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
bb9c12c9
SW
1840 int wait_for_unblock)
1841{
3a45bb20 1842 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1843 struct btrfs_async_commit *ac;
1844 struct btrfs_transaction *cur_trans;
1845
1846 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1847 if (!ac)
1848 return -ENOMEM;
bb9c12c9 1849
7892b5af 1850 INIT_WORK(&ac->work, do_async_commit);
3a45bb20 1851 ac->newtrans = btrfs_join_transaction(trans->root);
3612b495
TI
1852 if (IS_ERR(ac->newtrans)) {
1853 int err = PTR_ERR(ac->newtrans);
1854 kfree(ac);
1855 return err;
1856 }
bb9c12c9
SW
1857
1858 /* take transaction reference */
bb9c12c9 1859 cur_trans = trans->transaction;
9b64f57d 1860 refcount_inc(&cur_trans->use_count);
bb9c12c9 1861
3a45bb20 1862 btrfs_end_transaction(trans);
6fc4e354
SW
1863
1864 /*
1865 * Tell lockdep we've released the freeze rwsem, since the
1866 * async commit thread will be the one to unlock it.
1867 */
b1a06a4b 1868 if (ac->newtrans->type & __TRANS_FREEZABLE)
0b246afa 1869 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
6fc4e354 1870
7892b5af 1871 schedule_work(&ac->work);
bb9c12c9
SW
1872
1873 /* wait for transaction to start and unblock */
bb9c12c9 1874 if (wait_for_unblock)
2ff7e61e 1875 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
bb9c12c9 1876 else
2ff7e61e 1877 wait_current_trans_commit_start(fs_info, cur_trans);
bb9c12c9 1878
38e88054
SW
1879 if (current->journal_info == trans)
1880 current->journal_info = NULL;
1881
724e2315 1882 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1883 return 0;
1884}
1885
49b25e05 1886
97cb39bb 1887static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1888{
97cb39bb 1889 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1890 struct btrfs_transaction *cur_trans = trans->transaction;
1891
b50fff81 1892 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1893
66642832 1894 btrfs_abort_transaction(trans, err);
7b8b92af 1895
0b246afa 1896 spin_lock(&fs_info->trans_lock);
66b6135b 1897
25d8c284
MX
1898 /*
1899 * If the transaction is removed from the list, it means this
1900 * transaction has been committed successfully, so it is impossible
1901 * to call the cleanup function.
1902 */
1903 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1904
49b25e05 1905 list_del_init(&cur_trans->list);
0b246afa 1906 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1907 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1908 spin_unlock(&fs_info->trans_lock);
f094ac32
LB
1909 wait_event(cur_trans->writer_wait,
1910 atomic_read(&cur_trans->num_writers) == 1);
1911
0b246afa 1912 spin_lock(&fs_info->trans_lock);
d7096fc3 1913 }
0b246afa 1914 spin_unlock(&fs_info->trans_lock);
49b25e05 1915
2ff7e61e 1916 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 1917
0b246afa
JM
1918 spin_lock(&fs_info->trans_lock);
1919 if (cur_trans == fs_info->running_transaction)
1920 fs_info->running_transaction = NULL;
1921 spin_unlock(&fs_info->trans_lock);
4a9d8bde 1922
e0228285 1923 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1924 sb_end_intwrite(fs_info->sb);
724e2315
JB
1925 btrfs_put_transaction(cur_trans);
1926 btrfs_put_transaction(cur_trans);
49b25e05 1927
97cb39bb 1928 trace_btrfs_transaction_commit(trans->root);
49b25e05 1929
49b25e05
JM
1930 if (current->journal_info == trans)
1931 current->journal_info = NULL;
0b246afa 1932 btrfs_scrub_cancel(fs_info);
49b25e05
JM
1933
1934 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1935}
1936
c7cc64a9
DS
1937/*
1938 * Release reserved delayed ref space of all pending block groups of the
1939 * transaction and remove them from the list
1940 */
1941static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1942{
1943 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 1944 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
1945
1946 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1947 btrfs_delayed_refs_rsv_release(fs_info, 1);
1948 list_del_init(&block_group->bg_list);
1949 }
1950}
1951
609e804d 1952static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
82436617 1953{
609e804d
FM
1954 struct btrfs_fs_info *fs_info = trans->fs_info;
1955
ce8ea7cc
JB
1956 /*
1957 * We use writeback_inodes_sb here because if we used
1958 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1959 * Currently are holding the fs freeze lock, if we do an async flush
1960 * we'll do btrfs_join_transaction() and deadlock because we need to
1961 * wait for the fs freeze lock. Using the direct flushing we benefit
1962 * from already being in a transaction and our join_transaction doesn't
1963 * have to re-take the fs freeze lock.
1964 */
609e804d 1965 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
ce8ea7cc 1966 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
609e804d
FM
1967 } else {
1968 struct btrfs_pending_snapshot *pending;
1969 struct list_head *head = &trans->transaction->pending_snapshots;
1970
1971 /*
1972 * Flush dellaloc for any root that is going to be snapshotted.
1973 * This is done to avoid a corrupted version of files, in the
1974 * snapshots, that had both buffered and direct IO writes (even
1975 * if they were done sequentially) due to an unordered update of
1976 * the inode's size on disk.
1977 */
1978 list_for_each_entry(pending, head, list) {
1979 int ret;
1980
1981 ret = btrfs_start_delalloc_snapshot(pending->root);
1982 if (ret)
1983 return ret;
1984 }
1985 }
82436617
MX
1986 return 0;
1987}
1988
609e804d 1989static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
82436617 1990{
609e804d
FM
1991 struct btrfs_fs_info *fs_info = trans->fs_info;
1992
1993 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
6374e57a 1994 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
609e804d
FM
1995 } else {
1996 struct btrfs_pending_snapshot *pending;
1997 struct list_head *head = &trans->transaction->pending_snapshots;
1998
1999 /*
2000 * Wait for any dellaloc that we started previously for the roots
2001 * that are going to be snapshotted. This is to avoid a corrupted
2002 * version of files in the snapshots that had both buffered and
2003 * direct IO writes (even if they were done sequentially).
2004 */
2005 list_for_each_entry(pending, head, list)
2006 btrfs_wait_ordered_extents(pending->root,
2007 U64_MAX, 0, U64_MAX);
2008 }
82436617
MX
2009}
2010
3a45bb20 2011int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2012{
3a45bb20 2013 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2014 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2015 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2016 int ret;
79154b1b 2017
35b814f3
NB
2018 ASSERT(refcount_read(&trans->use_count) == 1);
2019
d62b23c9
JB
2020 /*
2021 * Some places just start a transaction to commit it. We need to make
2022 * sure that if this commit fails that the abort code actually marks the
2023 * transaction as failed, so set trans->dirty to make the abort code do
2024 * the right thing.
2025 */
2026 trans->dirty = true;
2027
8d25a086 2028 /* Stop the commit early if ->aborted is set */
bf31f87f 2029 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2030 ret = cur_trans->aborted;
3a45bb20 2031 btrfs_end_transaction(trans);
e4a2bcac 2032 return ret;
25287e0a 2033 }
49b25e05 2034
f45c752b
JB
2035 btrfs_trans_release_metadata(trans);
2036 trans->block_rsv = NULL;
2037
56bec294
CM
2038 /* make a pass through all the delayed refs we have so far
2039 * any runnings procs may add more while we are here
2040 */
c79a70b1 2041 ret = btrfs_run_delayed_refs(trans, 0);
e4a2bcac 2042 if (ret) {
3a45bb20 2043 btrfs_end_transaction(trans);
e4a2bcac
JB
2044 return ret;
2045 }
56bec294 2046
b7ec40d7 2047 cur_trans = trans->transaction;
49b25e05 2048
56bec294
CM
2049 /*
2050 * set the flushing flag so procs in this transaction have to
2051 * start sending their work down.
2052 */
b7ec40d7 2053 cur_trans->delayed_refs.flushing = 1;
1be41b78 2054 smp_wmb();
56bec294 2055
119e80df 2056 btrfs_create_pending_block_groups(trans);
ea658bad 2057
c79a70b1 2058 ret = btrfs_run_delayed_refs(trans, 0);
e4a2bcac 2059 if (ret) {
3a45bb20 2060 btrfs_end_transaction(trans);
e4a2bcac
JB
2061 return ret;
2062 }
56bec294 2063
3204d33c 2064 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2065 int run_it = 0;
2066
2067 /* this mutex is also taken before trying to set
2068 * block groups readonly. We need to make sure
2069 * that nobody has set a block group readonly
2070 * after a extents from that block group have been
2071 * allocated for cache files. btrfs_set_block_group_ro
2072 * will wait for the transaction to commit if it
3204d33c 2073 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2074 *
3204d33c
JB
2075 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2076 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2077 * hurt to have more than one go through, but there's no
2078 * real advantage to it either.
2079 */
0b246afa 2080 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2081 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2082 &cur_trans->flags))
1bbc621e 2083 run_it = 1;
0b246afa 2084 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2085
f9cacae3 2086 if (run_it) {
21217054 2087 ret = btrfs_start_dirty_block_groups(trans);
f9cacae3
NB
2088 if (ret) {
2089 btrfs_end_transaction(trans);
2090 return ret;
2091 }
2092 }
1bbc621e
CM
2093 }
2094
0b246afa 2095 spin_lock(&fs_info->trans_lock);
4a9d8bde 2096 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
0b246afa 2097 spin_unlock(&fs_info->trans_lock);
9b64f57d 2098 refcount_inc(&cur_trans->use_count);
3a45bb20 2099 ret = btrfs_end_transaction(trans);
ccd467d6 2100
2ff7e61e 2101 wait_for_commit(cur_trans);
15ee9bc7 2102
bf31f87f 2103 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2104 ret = cur_trans->aborted;
2105
724e2315 2106 btrfs_put_transaction(cur_trans);
15ee9bc7 2107
49b25e05 2108 return ret;
79154b1b 2109 }
4313b399 2110
4a9d8bde 2111 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2112 wake_up(&fs_info->transaction_blocked_wait);
bb9c12c9 2113
0b246afa 2114 if (cur_trans->list.prev != &fs_info->trans_list) {
ccd467d6
CM
2115 prev_trans = list_entry(cur_trans->list.prev,
2116 struct btrfs_transaction, list);
4a9d8bde 2117 if (prev_trans->state != TRANS_STATE_COMPLETED) {
9b64f57d 2118 refcount_inc(&prev_trans->use_count);
0b246afa 2119 spin_unlock(&fs_info->trans_lock);
ccd467d6 2120
2ff7e61e 2121 wait_for_commit(prev_trans);
bf31f87f 2122 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2123
724e2315 2124 btrfs_put_transaction(prev_trans);
1f9b8c8f
FM
2125 if (ret)
2126 goto cleanup_transaction;
a4abeea4 2127 } else {
0b246afa 2128 spin_unlock(&fs_info->trans_lock);
ccd467d6 2129 }
a4abeea4 2130 } else {
0b246afa 2131 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2132 /*
2133 * The previous transaction was aborted and was already removed
2134 * from the list of transactions at fs_info->trans_list. So we
2135 * abort to prevent writing a new superblock that reflects a
2136 * corrupt state (pointing to trees with unwritten nodes/leafs).
2137 */
2138 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2139 ret = -EROFS;
2140 goto cleanup_transaction;
2141 }
ccd467d6 2142 }
15ee9bc7 2143
0860adfd
MX
2144 extwriter_counter_dec(cur_trans, trans->type);
2145
609e804d 2146 ret = btrfs_start_delalloc_flush(trans);
82436617
MX
2147 if (ret)
2148 goto cleanup_transaction;
2149
e5c304e6 2150 ret = btrfs_run_delayed_items(trans);
581227d0
MX
2151 if (ret)
2152 goto cleanup_transaction;
15ee9bc7 2153
581227d0
MX
2154 wait_event(cur_trans->writer_wait,
2155 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2156
581227d0 2157 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2158 ret = btrfs_run_delayed_items(trans);
ca469637
MX
2159 if (ret)
2160 goto cleanup_transaction;
2161
609e804d 2162 btrfs_wait_delalloc_flush(trans);
cb7ab021 2163
2ff7e61e 2164 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2165 /*
2166 * Ok now we need to make sure to block out any other joins while we
2167 * commit the transaction. We could have started a join before setting
4a9d8bde 2168 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2169 */
0b246afa 2170 spin_lock(&fs_info->trans_lock);
4a9d8bde 2171 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2172 spin_unlock(&fs_info->trans_lock);
ed0ca140
JB
2173 wait_event(cur_trans->writer_wait,
2174 atomic_read(&cur_trans->num_writers) == 1);
2175
bf31f87f 2176 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2177 ret = cur_trans->aborted;
6cf7f77e 2178 goto scrub_continue;
2cba30f1 2179 }
7585717f
CM
2180 /*
2181 * the reloc mutex makes sure that we stop
2182 * the balancing code from coming in and moving
2183 * extents around in the middle of the commit
2184 */
0b246afa 2185 mutex_lock(&fs_info->reloc_mutex);
7585717f 2186
42874b3d
MX
2187 /*
2188 * We needn't worry about the delayed items because we will
2189 * deal with them in create_pending_snapshot(), which is the
2190 * core function of the snapshot creation.
2191 */
08d50ca3 2192 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2193 if (ret)
2194 goto unlock_reloc;
3063d29f 2195
42874b3d
MX
2196 /*
2197 * We insert the dir indexes of the snapshots and update the inode
2198 * of the snapshots' parents after the snapshot creation, so there
2199 * are some delayed items which are not dealt with. Now deal with
2200 * them.
2201 *
2202 * We needn't worry that this operation will corrupt the snapshots,
2203 * because all the tree which are snapshoted will be forced to COW
2204 * the nodes and leaves.
2205 */
e5c304e6 2206 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2207 if (ret)
2208 goto unlock_reloc;
16cdcec7 2209
c79a70b1 2210 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2211 if (ret)
2212 goto unlock_reloc;
56bec294 2213
e999376f
CM
2214 /*
2215 * make sure none of the code above managed to slip in a
2216 * delayed item
2217 */
ccdf9b30 2218 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2219
2c90e5d6 2220 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2221
e02119d5
CM
2222 /* btrfs_commit_tree_roots is responsible for getting the
2223 * various roots consistent with each other. Every pointer
2224 * in the tree of tree roots has to point to the most up to date
2225 * root for every subvolume and other tree. So, we have to keep
2226 * the tree logging code from jumping in and changing any
2227 * of the trees.
2228 *
2229 * At this point in the commit, there can't be any tree-log
2230 * writers, but a little lower down we drop the trans mutex
2231 * and let new people in. By holding the tree_log_mutex
2232 * from now until after the super is written, we avoid races
2233 * with the tree-log code.
2234 */
0b246afa 2235 mutex_lock(&fs_info->tree_log_mutex);
e02119d5 2236
7e4443d9 2237 ret = commit_fs_roots(trans);
56e9f6ea
DS
2238 if (ret)
2239 goto unlock_tree_log;
54aa1f4d 2240
3818aea2 2241 /*
7e1876ac
DS
2242 * Since the transaction is done, we can apply the pending changes
2243 * before the next transaction.
3818aea2 2244 */
0b246afa 2245 btrfs_apply_pending_changes(fs_info);
3818aea2 2246
5d4f98a2 2247 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2248 * safe to free the root of tree log roots
2249 */
0b246afa 2250 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2251
82bafb38
QW
2252 /*
2253 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2254 * new delayed refs. Must handle them or qgroup can be wrong.
2255 */
c79a70b1 2256 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2257 if (ret)
2258 goto unlock_tree_log;
82bafb38 2259
0ed4792a
QW
2260 /*
2261 * Since fs roots are all committed, we can get a quite accurate
2262 * new_roots. So let's do quota accounting.
2263 */
460fb20a 2264 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea
DS
2265 if (ret < 0)
2266 goto unlock_tree_log;
0ed4792a 2267
9386d8bc 2268 ret = commit_cowonly_roots(trans);
56e9f6ea
DS
2269 if (ret)
2270 goto unlock_tree_log;
54aa1f4d 2271
2cba30f1
MX
2272 /*
2273 * The tasks which save the space cache and inode cache may also
2274 * update ->aborted, check it.
2275 */
bf31f87f 2276 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2277 ret = cur_trans->aborted;
56e9f6ea 2278 goto unlock_tree_log;
2cba30f1
MX
2279 }
2280
8b74c03e 2281 btrfs_prepare_extent_commit(fs_info);
11833d66 2282
0b246afa 2283 cur_trans = fs_info->running_transaction;
5d4f98a2 2284
0b246afa
JM
2285 btrfs_set_root_node(&fs_info->tree_root->root_item,
2286 fs_info->tree_root->node);
2287 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2288 &cur_trans->switch_commits);
5d4f98a2 2289
0b246afa
JM
2290 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2291 fs_info->chunk_root->node);
2292 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2293 &cur_trans->switch_commits);
2294
889bfa39 2295 switch_commit_roots(trans);
5d4f98a2 2296
ce93ec54 2297 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2298 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2299 update_super_roots(fs_info);
e02119d5 2300
0b246afa
JM
2301 btrfs_set_super_log_root(fs_info->super_copy, 0);
2302 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2303 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2304 sizeof(*fs_info->super_copy));
ccd467d6 2305
bbbf7243 2306 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2307
0b246afa
JM
2308 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2309 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2310
4fbcdf66
FM
2311 btrfs_trans_release_chunk_metadata(trans);
2312
0b246afa 2313 spin_lock(&fs_info->trans_lock);
4a9d8bde 2314 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2315 fs_info->running_transaction = NULL;
2316 spin_unlock(&fs_info->trans_lock);
2317 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2318
0b246afa 2319 wake_up(&fs_info->transaction_wait);
e6dcd2dc 2320
70458a58 2321 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2322 if (ret) {
0b246afa
JM
2323 btrfs_handle_fs_error(fs_info, ret,
2324 "Error while writing out transaction");
56e9f6ea
DS
2325 /*
2326 * reloc_mutex has been unlocked, tree_log_mutex is still held
2327 * but we can't jump to unlock_tree_log causing double unlock
2328 */
0b246afa 2329 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2330 goto scrub_continue;
49b25e05
JM
2331 }
2332
eece6a9c 2333 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2334 /*
2335 * the super is written, we can safely allow the tree-loggers
2336 * to go about their business
2337 */
0b246afa 2338 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2339 if (ret)
2340 goto scrub_continue;
e02119d5 2341
5ead2dd0 2342 btrfs_finish_extent_commit(trans);
4313b399 2343
3204d33c 2344 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2345 btrfs_clear_space_info_full(fs_info);
13212b54 2346
0b246afa 2347 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2348 /*
2349 * We needn't acquire the lock here because there is no other task
2350 * which can change it.
2351 */
2352 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2353 wake_up(&cur_trans->commit_wait);
a514d638 2354 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags);
3de4586c 2355
0b246afa 2356 spin_lock(&fs_info->trans_lock);
13c5a93e 2357 list_del_init(&cur_trans->list);
0b246afa 2358 spin_unlock(&fs_info->trans_lock);
a4abeea4 2359
724e2315
JB
2360 btrfs_put_transaction(cur_trans);
2361 btrfs_put_transaction(cur_trans);
58176a96 2362
0860adfd 2363 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2364 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2365
3a45bb20 2366 trace_btrfs_transaction_commit(trans->root);
1abe9b8a 2367
2ff7e61e 2368 btrfs_scrub_continue(fs_info);
a2de733c 2369
9ed74f2d
JB
2370 if (current->journal_info == trans)
2371 current->journal_info = NULL;
2372
2c90e5d6 2373 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2374
79154b1b 2375 return ret;
49b25e05 2376
56e9f6ea
DS
2377unlock_tree_log:
2378 mutex_unlock(&fs_info->tree_log_mutex);
2379unlock_reloc:
2380 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2381scrub_continue:
2ff7e61e 2382 btrfs_scrub_continue(fs_info);
49b25e05 2383cleanup_transaction:
dc60c525 2384 btrfs_trans_release_metadata(trans);
c7cc64a9 2385 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2386 btrfs_trans_release_chunk_metadata(trans);
0e721106 2387 trans->block_rsv = NULL;
0b246afa 2388 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2389 if (current->journal_info == trans)
2390 current->journal_info = NULL;
97cb39bb 2391 cleanup_transaction(trans, ret);
49b25e05
JM
2392
2393 return ret;
79154b1b
CM
2394}
2395
d352ac68 2396/*
9d1a2a3a
DS
2397 * return < 0 if error
2398 * 0 if there are no more dead_roots at the time of call
2399 * 1 there are more to be processed, call me again
2400 *
2401 * The return value indicates there are certainly more snapshots to delete, but
2402 * if there comes a new one during processing, it may return 0. We don't mind,
2403 * because btrfs_commit_super will poke cleaner thread and it will process it a
2404 * few seconds later.
d352ac68 2405 */
9d1a2a3a 2406int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
e9d0b13b 2407{
9d1a2a3a 2408 int ret;
5d4f98a2
YZ
2409 struct btrfs_fs_info *fs_info = root->fs_info;
2410
a4abeea4 2411 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2412 if (list_empty(&fs_info->dead_roots)) {
2413 spin_unlock(&fs_info->trans_lock);
2414 return 0;
2415 }
2416 root = list_first_entry(&fs_info->dead_roots,
2417 struct btrfs_root, root_list);
cfad392b 2418 list_del_init(&root->root_list);
a4abeea4 2419 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2420
4fd786e6 2421 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2422
9d1a2a3a 2423 btrfs_kill_all_delayed_nodes(root);
0e996e7f
JB
2424 if (root->ino_cache_inode) {
2425 iput(root->ino_cache_inode);
2426 root->ino_cache_inode = NULL;
2427 }
16cdcec7 2428
9d1a2a3a
DS
2429 if (btrfs_header_backref_rev(root->node) <
2430 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2431 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2432 else
0078a9f9 2433 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2434
dc9492c1 2435 btrfs_put_root(root);
6596a928 2436 return (ret < 0) ? 0 : 1;
e9d0b13b 2437}
572d9ab7
DS
2438
2439void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2440{
2441 unsigned long prev;
2442 unsigned long bit;
2443
6c9fe14f 2444 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2445 if (!prev)
2446 return;
2447
7e1876ac
DS
2448 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2449 if (prev & bit)
2450 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2451 prev &= ~bit;
2452
2453 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2454 if (prev & bit)
2455 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2456 prev &= ~bit;
2457
d51033d0
DS
2458 bit = 1 << BTRFS_PENDING_COMMIT;
2459 if (prev & bit)
2460 btrfs_debug(fs_info, "pending commit done");
2461 prev &= ~bit;
2462
572d9ab7
DS
2463 if (prev)
2464 btrfs_warn(fs_info,
2465 "unknown pending changes left 0x%lx, ignoring", prev);
2466}