btrfs: handle record_root_in_trans failure in qgroup_account_snapshot
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
602cbe91 13#include "misc.h"
79154b1b
CM
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
925baedd 17#include "locking.h"
e02119d5 18#include "tree-log.h"
733f4fbb 19#include "volumes.h"
8dabb742 20#include "dev-replace.h"
fcebe456 21#include "qgroup.h"
aac0023c 22#include "block-group.h"
9c343784 23#include "space-info.h"
d3575156 24#include "zoned.h"
79154b1b 25
0f7d52f4
CM
26#define BTRFS_ROOT_TRANS_TAG 0
27
61c047b5
QW
28/*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
e8c9f186 99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 100 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 103 __TRANS_ATTACH |
a6d155d2
FM
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
bcf3a3e7 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
a6d155d2
FM
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
bcf3a3e7 116 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
117 __TRANS_ATTACH |
118 __TRANS_JOIN |
a6d155d2
FM
119 __TRANS_JOIN_NOLOCK |
120 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
121};
122
724e2315 123void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 124{
9b64f57d
ER
125 WARN_ON(refcount_read(&transaction->use_count) == 0);
126 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 127 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
128 WARN_ON(!RB_EMPTY_ROOT(
129 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
130 WARN_ON(!RB_EMPTY_ROOT(
131 &transaction->delayed_refs.dirty_extent_root));
1262133b 132 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
133 btrfs_err(transaction->fs_info,
134 "pending csums is %llu",
135 transaction->delayed_refs.pending_csums);
7785a663
FM
136 /*
137 * If any block groups are found in ->deleted_bgs then it's
138 * because the transaction was aborted and a commit did not
139 * happen (things failed before writing the new superblock
140 * and calling btrfs_finish_extent_commit()), so we can not
141 * discard the physical locations of the block groups.
142 */
143 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 144 struct btrfs_block_group *cache;
7785a663
FM
145
146 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 147 struct btrfs_block_group,
7785a663
FM
148 bg_list);
149 list_del_init(&cache->bg_list);
6b7304af 150 btrfs_unfreeze_block_group(cache);
7785a663
FM
151 btrfs_put_block_group(cache);
152 }
bbbf7243 153 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 154 kfree(transaction);
78fae27e 155 }
79154b1b
CM
156}
157
889bfa39 158static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 159{
889bfa39 160 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 161 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8 162 struct btrfs_root *root, *tmp;
27d56e62 163 struct btrfs_caching_control *caching_ctl, *next;
9e351cc8
JB
164
165 down_write(&fs_info->commit_root_sem);
889bfa39 166 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
167 dirty_list) {
168 list_del_init(&root->dirty_list);
169 free_extent_buffer(root->commit_root);
170 root->commit_root = btrfs_root_node(root);
41e7acd3 171 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 172 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 173 }
2b9dbef2
JB
174
175 /* We can free old roots now. */
889bfa39
JB
176 spin_lock(&cur_trans->dropped_roots_lock);
177 while (!list_empty(&cur_trans->dropped_roots)) {
178 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
179 struct btrfs_root, root_list);
180 list_del_init(&root->root_list);
889bfa39
JB
181 spin_unlock(&cur_trans->dropped_roots_lock);
182 btrfs_free_log(trans, root);
2b9dbef2 183 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 184 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 185 }
889bfa39 186 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62
JB
187
188 /*
189 * We have to update the last_byte_to_unpin under the commit_root_sem,
190 * at the same time we swap out the commit roots.
191 *
192 * This is because we must have a real view of the last spot the caching
193 * kthreads were while caching. Consider the following views of the
194 * extent tree for a block group
195 *
196 * commit root
197 * +----+----+----+----+----+----+----+
198 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
199 * +----+----+----+----+----+----+----+
200 * 0 1 2 3 4 5 6 7
201 *
202 * new commit root
203 * +----+----+----+----+----+----+----+
204 * | | | |\\\\| | |\\\\|
205 * +----+----+----+----+----+----+----+
206 * 0 1 2 3 4 5 6 7
207 *
208 * If the cache_ctl->progress was at 3, then we are only allowed to
209 * unpin [0,1) and [2,3], because the caching thread has already
210 * processed those extents. We are not allowed to unpin [5,6), because
211 * the caching thread will re-start it's search from 3, and thus find
212 * the hole from [4,6) to add to the free space cache.
213 */
bbb86a37 214 spin_lock(&fs_info->block_group_cache_lock);
27d56e62
JB
215 list_for_each_entry_safe(caching_ctl, next,
216 &fs_info->caching_block_groups, list) {
217 struct btrfs_block_group *cache = caching_ctl->block_group;
218
219 if (btrfs_block_group_done(cache)) {
220 cache->last_byte_to_unpin = (u64)-1;
221 list_del_init(&caching_ctl->list);
222 btrfs_put_caching_control(caching_ctl);
223 } else {
224 cache->last_byte_to_unpin = caching_ctl->progress;
225 }
226 }
bbb86a37 227 spin_unlock(&fs_info->block_group_cache_lock);
9e351cc8 228 up_write(&fs_info->commit_root_sem);
817d52f8
JB
229}
230
0860adfd
MX
231static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
232 unsigned int type)
233{
234 if (type & TRANS_EXTWRITERS)
235 atomic_inc(&trans->num_extwriters);
236}
237
238static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
239 unsigned int type)
240{
241 if (type & TRANS_EXTWRITERS)
242 atomic_dec(&trans->num_extwriters);
243}
244
245static inline void extwriter_counter_init(struct btrfs_transaction *trans,
246 unsigned int type)
247{
248 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
249}
250
251static inline int extwriter_counter_read(struct btrfs_transaction *trans)
252{
253 return atomic_read(&trans->num_extwriters);
178260b2
MX
254}
255
fb6dea26
JB
256/*
257 * To be called after all the new block groups attached to the transaction
258 * handle have been created (btrfs_create_pending_block_groups()).
259 */
260void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
261{
262 struct btrfs_fs_info *fs_info = trans->fs_info;
eafa4fd0 263 struct btrfs_transaction *cur_trans = trans->transaction;
fb6dea26
JB
264
265 if (!trans->chunk_bytes_reserved)
266 return;
267
268 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
269
270 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 271 trans->chunk_bytes_reserved, NULL);
eafa4fd0
FM
272 atomic64_sub(trans->chunk_bytes_reserved, &cur_trans->chunk_bytes_reserved);
273 cond_wake_up(&cur_trans->chunk_reserve_wait);
fb6dea26
JB
274 trans->chunk_bytes_reserved = 0;
275}
276
d352ac68
CM
277/*
278 * either allocate a new transaction or hop into the existing one
279 */
2ff7e61e
JM
280static noinline int join_transaction(struct btrfs_fs_info *fs_info,
281 unsigned int type)
79154b1b
CM
282{
283 struct btrfs_transaction *cur_trans;
a4abeea4 284
19ae4e81 285 spin_lock(&fs_info->trans_lock);
d43317dc 286loop:
49b25e05 287 /* The file system has been taken offline. No new transactions. */
87533c47 288 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
19ae4e81 289 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
290 return -EROFS;
291 }
292
19ae4e81 293 cur_trans = fs_info->running_transaction;
a4abeea4 294 if (cur_trans) {
bf31f87f 295 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 296 spin_unlock(&fs_info->trans_lock);
49b25e05 297 return cur_trans->aborted;
871383be 298 }
4a9d8bde 299 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
300 spin_unlock(&fs_info->trans_lock);
301 return -EBUSY;
302 }
9b64f57d 303 refcount_inc(&cur_trans->use_count);
13c5a93e 304 atomic_inc(&cur_trans->num_writers);
0860adfd 305 extwriter_counter_inc(cur_trans, type);
19ae4e81 306 spin_unlock(&fs_info->trans_lock);
a4abeea4 307 return 0;
79154b1b 308 }
19ae4e81 309 spin_unlock(&fs_info->trans_lock);
a4abeea4 310
354aa0fb
MX
311 /*
312 * If we are ATTACH, we just want to catch the current transaction,
313 * and commit it. If there is no transaction, just return ENOENT.
314 */
315 if (type == TRANS_ATTACH)
316 return -ENOENT;
317
4a9d8bde
MX
318 /*
319 * JOIN_NOLOCK only happens during the transaction commit, so
320 * it is impossible that ->running_transaction is NULL
321 */
322 BUG_ON(type == TRANS_JOIN_NOLOCK);
323
4b5faeac 324 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
325 if (!cur_trans)
326 return -ENOMEM;
d43317dc 327
19ae4e81
JS
328 spin_lock(&fs_info->trans_lock);
329 if (fs_info->running_transaction) {
d43317dc
CM
330 /*
331 * someone started a transaction after we unlocked. Make sure
4a9d8bde 332 * to redo the checks above
d43317dc 333 */
4b5faeac 334 kfree(cur_trans);
d43317dc 335 goto loop;
87533c47 336 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
e4b50e14 337 spin_unlock(&fs_info->trans_lock);
4b5faeac 338 kfree(cur_trans);
7b8b92af 339 return -EROFS;
79154b1b 340 }
d43317dc 341
ab8d0fc4 342 cur_trans->fs_info = fs_info;
48778179
FM
343 atomic_set(&cur_trans->pending_ordered, 0);
344 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 345 atomic_set(&cur_trans->num_writers, 1);
0860adfd 346 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
347 init_waitqueue_head(&cur_trans->writer_wait);
348 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 349 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
350 /*
351 * One for this trans handle, one so it will live on until we
352 * commit the transaction.
353 */
9b64f57d 354 refcount_set(&cur_trans->use_count, 2);
3204d33c 355 cur_trans->flags = 0;
afd48513 356 cur_trans->start_time = ktime_get_seconds();
a4abeea4 357
a099d0fd
AM
358 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
359
5c9d028b 360 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 361 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 362 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
363
364 /*
365 * although the tree mod log is per file system and not per transaction,
366 * the log must never go across transaction boundaries.
367 */
368 smp_mb();
31b1a2bd 369 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 370 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 371 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 372 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 373 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 374
a4abeea4
JB
375 spin_lock_init(&cur_trans->delayed_refs.lock);
376
377 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 378 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 379 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 380 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 381 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 382 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 383 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 384 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 385 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 386 spin_lock_init(&cur_trans->dropped_roots_lock);
d3575156
NA
387 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
388 spin_lock_init(&cur_trans->releasing_ebs_lock);
eafa4fd0
FM
389 atomic64_set(&cur_trans->chunk_bytes_reserved, 0);
390 init_waitqueue_head(&cur_trans->chunk_reserve_wait);
19ae4e81 391 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 392 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
43eb5f29 393 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
fe119a6e
NB
394 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
395 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
396 fs_info->generation++;
397 cur_trans->transid = fs_info->generation;
398 fs_info->running_transaction = cur_trans;
49b25e05 399 cur_trans->aborted = 0;
19ae4e81 400 spin_unlock(&fs_info->trans_lock);
15ee9bc7 401
79154b1b
CM
402 return 0;
403}
404
d352ac68 405/*
92a7cc42
QW
406 * This does all the record keeping required to make sure that a shareable root
407 * is properly recorded in a given transaction. This is required to make sure
408 * the old root from before we joined the transaction is deleted when the
409 * transaction commits.
d352ac68 410 */
7585717f 411static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
412 struct btrfs_root *root,
413 int force)
6702ed49 414{
0b246afa
JM
415 struct btrfs_fs_info *fs_info = root->fs_info;
416
92a7cc42 417 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 418 root->last_trans < trans->transid) || force) {
0b246afa 419 WARN_ON(root == fs_info->extent_root);
4d31778a 420 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 421
7585717f 422 /*
27cdeb70 423 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
424 * we have the reloc mutex held now, so there
425 * is only one writer in this function
426 */
27cdeb70 427 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 428
27cdeb70 429 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
430 * they find our root->last_trans update
431 */
432 smp_wmb();
433
0b246afa 434 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 435 if (root->last_trans == trans->transid && !force) {
0b246afa 436 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
437 return 0;
438 }
0b246afa
JM
439 radix_tree_tag_set(&fs_info->fs_roots_radix,
440 (unsigned long)root->root_key.objectid,
441 BTRFS_ROOT_TRANS_TAG);
442 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
443 root->last_trans = trans->transid;
444
445 /* this is pretty tricky. We don't want to
446 * take the relocation lock in btrfs_record_root_in_trans
447 * unless we're really doing the first setup for this root in
448 * this transaction.
449 *
450 * Normally we'd use root->last_trans as a flag to decide
451 * if we want to take the expensive mutex.
452 *
453 * But, we have to set root->last_trans before we
454 * init the relocation root, otherwise, we trip over warnings
455 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 456 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
457 * fixing up the reloc trees and everyone must wait.
458 *
459 * When this is zero, they can trust root->last_trans and fly
460 * through btrfs_record_root_in_trans without having to take the
461 * lock. smp_wmb() makes sure that all the writes above are
462 * done before we pop in the zero below
463 */
5d4f98a2 464 btrfs_init_reloc_root(trans, root);
c7548af6 465 smp_mb__before_atomic();
27cdeb70 466 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2
YZ
467 }
468 return 0;
469}
bcc63abb 470
7585717f 471
2b9dbef2
JB
472void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
473 struct btrfs_root *root)
474{
0b246afa 475 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
476 struct btrfs_transaction *cur_trans = trans->transaction;
477
478 /* Add ourselves to the transaction dropped list */
479 spin_lock(&cur_trans->dropped_roots_lock);
480 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
481 spin_unlock(&cur_trans->dropped_roots_lock);
482
483 /* Make sure we don't try to update the root at commit time */
0b246afa
JM
484 spin_lock(&fs_info->fs_roots_radix_lock);
485 radix_tree_tag_clear(&fs_info->fs_roots_radix,
2b9dbef2
JB
486 (unsigned long)root->root_key.objectid,
487 BTRFS_ROOT_TRANS_TAG);
0b246afa 488 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
489}
490
7585717f
CM
491int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
492 struct btrfs_root *root)
493{
0b246afa
JM
494 struct btrfs_fs_info *fs_info = root->fs_info;
495
92a7cc42 496 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
497 return 0;
498
499 /*
27cdeb70 500 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
501 * and barriers
502 */
503 smp_rmb();
504 if (root->last_trans == trans->transid &&
27cdeb70 505 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
506 return 0;
507
0b246afa 508 mutex_lock(&fs_info->reloc_mutex);
6426c7ad 509 record_root_in_trans(trans, root, 0);
0b246afa 510 mutex_unlock(&fs_info->reloc_mutex);
7585717f
CM
511
512 return 0;
513}
514
4a9d8bde
MX
515static inline int is_transaction_blocked(struct btrfs_transaction *trans)
516{
3296bf56 517 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 518 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 519 !TRANS_ABORTED(trans));
4a9d8bde
MX
520}
521
d352ac68
CM
522/* wait for commit against the current transaction to become unblocked
523 * when this is done, it is safe to start a new transaction, but the current
524 * transaction might not be fully on disk.
525 */
2ff7e61e 526static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 527{
f9295749 528 struct btrfs_transaction *cur_trans;
79154b1b 529
0b246afa
JM
530 spin_lock(&fs_info->trans_lock);
531 cur_trans = fs_info->running_transaction;
4a9d8bde 532 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 533 refcount_inc(&cur_trans->use_count);
0b246afa 534 spin_unlock(&fs_info->trans_lock);
72d63ed6 535
0b246afa 536 wait_event(fs_info->transaction_wait,
501407aa 537 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 538 TRANS_ABORTED(cur_trans));
724e2315 539 btrfs_put_transaction(cur_trans);
a4abeea4 540 } else {
0b246afa 541 spin_unlock(&fs_info->trans_lock);
f9295749 542 }
37d1aeee
CM
543}
544
2ff7e61e 545static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 546{
0b246afa 547 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
548 return 0;
549
92e2f7e3 550 if (type == TRANS_START)
a22285a6 551 return 1;
a4abeea4 552
a22285a6
YZ
553 return 0;
554}
555
20dd2cbf
MX
556static inline bool need_reserve_reloc_root(struct btrfs_root *root)
557{
0b246afa
JM
558 struct btrfs_fs_info *fs_info = root->fs_info;
559
560 if (!fs_info->reloc_ctl ||
92a7cc42 561 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
562 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
563 root->reloc_root)
564 return false;
565
566 return true;
567}
568
08e007d2 569static struct btrfs_trans_handle *
5aed1dd8 570start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
571 unsigned int type, enum btrfs_reserve_flush_enum flush,
572 bool enforce_qgroups)
37d1aeee 573{
0b246afa 574 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 575 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
576 struct btrfs_trans_handle *h;
577 struct btrfs_transaction *cur_trans;
b5009945 578 u64 num_bytes = 0;
c5567237 579 u64 qgroup_reserved = 0;
20dd2cbf 580 bool reloc_reserved = false;
9c343784 581 bool do_chunk_alloc = false;
20dd2cbf 582 int ret;
acce952b 583
46c4e71e 584 /* Send isn't supposed to start transactions. */
2755a0de 585 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
46c4e71e 586
0b246afa 587 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
acce952b 588 return ERR_PTR(-EROFS);
2a1eb461 589
46c4e71e 590 if (current->journal_info) {
0860adfd 591 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 592 h = current->journal_info;
b50fff81
DS
593 refcount_inc(&h->use_count);
594 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
595 h->orig_rsv = h->block_rsv;
596 h->block_rsv = NULL;
597 goto got_it;
598 }
b5009945
JB
599
600 /*
601 * Do the reservation before we join the transaction so we can do all
602 * the appropriate flushing if need be.
603 */
003d7c59 604 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
605 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
606 u64 delayed_refs_bytes = 0;
607
0b246afa 608 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
609 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
610 enforce_qgroups);
7174109c
QW
611 if (ret)
612 return ERR_PTR(ret);
c5567237 613
ba2c4d4e
JB
614 /*
615 * We want to reserve all the bytes we may need all at once, so
616 * we only do 1 enospc flushing cycle per transaction start. We
617 * accomplish this by simply assuming we'll do 2 x num_items
618 * worth of delayed refs updates in this trans handle, and
619 * refill that amount for whatever is missing in the reserve.
620 */
2bd36e7b 621 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614
JB
622 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
623 delayed_refs_rsv->full == 0) {
ba2c4d4e
JB
624 delayed_refs_bytes = num_bytes;
625 num_bytes <<= 1;
626 }
627
20dd2cbf
MX
628 /*
629 * Do the reservation for the relocation root creation
630 */
ee39b432 631 if (need_reserve_reloc_root(root)) {
0b246afa 632 num_bytes += fs_info->nodesize;
20dd2cbf
MX
633 reloc_reserved = true;
634 }
635
ba2c4d4e
JB
636 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
637 if (ret)
638 goto reserve_fail;
639 if (delayed_refs_bytes) {
640 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
641 delayed_refs_bytes);
642 num_bytes -= delayed_refs_bytes;
643 }
9c343784
JB
644
645 if (rsv->space_info->force_alloc)
646 do_chunk_alloc = true;
ba2c4d4e
JB
647 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
648 !delayed_refs_rsv->full) {
649 /*
650 * Some people call with btrfs_start_transaction(root, 0)
651 * because they can be throttled, but have some other mechanism
652 * for reserving space. We still want these guys to refill the
653 * delayed block_rsv so just add 1 items worth of reservation
654 * here.
655 */
656 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 657 if (ret)
843fcf35 658 goto reserve_fail;
b5009945 659 }
a22285a6 660again:
f2f767e7 661 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
662 if (!h) {
663 ret = -ENOMEM;
664 goto alloc_fail;
665 }
37d1aeee 666
98114659
JB
667 /*
668 * If we are JOIN_NOLOCK we're already committing a transaction and
669 * waiting on this guy, so we don't need to do the sb_start_intwrite
670 * because we're already holding a ref. We need this because we could
671 * have raced in and did an fsync() on a file which can kick a commit
672 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
673 *
674 * If we are ATTACH, it means we just want to catch the current
675 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 676 */
0860adfd 677 if (type & __TRANS_FREEZABLE)
0b246afa 678 sb_start_intwrite(fs_info->sb);
b2b5ef5c 679
2ff7e61e
JM
680 if (may_wait_transaction(fs_info, type))
681 wait_current_trans(fs_info);
a22285a6 682
a4abeea4 683 do {
2ff7e61e 684 ret = join_transaction(fs_info, type);
178260b2 685 if (ret == -EBUSY) {
2ff7e61e 686 wait_current_trans(fs_info);
a6d155d2
FM
687 if (unlikely(type == TRANS_ATTACH ||
688 type == TRANS_JOIN_NOSTART))
178260b2
MX
689 ret = -ENOENT;
690 }
a4abeea4
JB
691 } while (ret == -EBUSY);
692
a43f7f82 693 if (ret < 0)
843fcf35 694 goto join_fail;
0f7d52f4 695
0b246afa 696 cur_trans = fs_info->running_transaction;
a22285a6
YZ
697
698 h->transid = cur_trans->transid;
699 h->transaction = cur_trans;
d13603ef 700 h->root = root;
b50fff81 701 refcount_set(&h->use_count, 1);
64b63580 702 h->fs_info = root->fs_info;
7174109c 703
a698d075 704 h->type = type;
d9a0540a 705 h->can_flush_pending_bgs = true;
ea658bad 706 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 707
a22285a6 708 smp_mb();
3296bf56 709 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 710 may_wait_transaction(fs_info, type)) {
abdd2e80 711 current->journal_info = h;
3a45bb20 712 btrfs_commit_transaction(h);
a22285a6
YZ
713 goto again;
714 }
715
b5009945 716 if (num_bytes) {
0b246afa 717 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 718 h->transid, num_bytes, 1);
0b246afa 719 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 720 h->bytes_reserved = num_bytes;
20dd2cbf 721 h->reloc_reserved = reloc_reserved;
a22285a6 722 }
9ed74f2d 723
2a1eb461 724got_it:
bcf3a3e7 725 if (!current->journal_info)
a22285a6 726 current->journal_info = h;
fcc99734 727
9c343784
JB
728 /*
729 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
730 * ALLOC_FORCE the first run through, and then we won't allocate for
731 * anybody else who races in later. We don't care about the return
732 * value here.
733 */
734 if (do_chunk_alloc && num_bytes) {
735 u64 flags = h->block_rsv->space_info->flags;
736
737 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
738 CHUNK_ALLOC_NO_FORCE);
739 }
740
fcc99734
QW
741 /*
742 * btrfs_record_root_in_trans() needs to alloc new extents, and may
743 * call btrfs_join_transaction() while we're also starting a
744 * transaction.
745 *
746 * Thus it need to be called after current->journal_info initialized,
747 * or we can deadlock.
748 */
68075ea8
JB
749 ret = btrfs_record_root_in_trans(h, root);
750 if (ret) {
751 /*
752 * The transaction handle is fully initialized and linked with
753 * other structures so it needs to be ended in case of errors,
754 * not just freed.
755 */
756 btrfs_end_transaction(h);
757 return ERR_PTR(ret);
758 }
fcc99734 759
79154b1b 760 return h;
843fcf35
MX
761
762join_fail:
0860adfd 763 if (type & __TRANS_FREEZABLE)
0b246afa 764 sb_end_intwrite(fs_info->sb);
843fcf35
MX
765 kmem_cache_free(btrfs_trans_handle_cachep, h);
766alloc_fail:
767 if (num_bytes)
2ff7e61e 768 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 769 num_bytes, NULL);
843fcf35 770reserve_fail:
733e03a0 771 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 772 return ERR_PTR(ret);
79154b1b
CM
773}
774
f9295749 775struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 776 unsigned int num_items)
f9295749 777{
08e007d2 778 return start_transaction(root, num_items, TRANS_START,
003d7c59 779 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 780}
003d7c59 781
8eab77ff
FM
782struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
783 struct btrfs_root *root,
7f9fe614 784 unsigned int num_items)
8eab77ff 785{
7f9fe614
JB
786 return start_transaction(root, num_items, TRANS_START,
787 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 788}
8407aa46 789
7a7eaa40 790struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 791{
003d7c59
JM
792 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
793 true);
f9295749
CM
794}
795
8d510121 796struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 797{
575a75d6 798 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 799 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
800}
801
a6d155d2
FM
802/*
803 * Similar to regular join but it never starts a transaction when none is
804 * running or after waiting for the current one to finish.
805 */
806struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
807{
808 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
809 BTRFS_RESERVE_NO_FLUSH, true);
810}
811
d4edf39b
MX
812/*
813 * btrfs_attach_transaction() - catch the running transaction
814 *
815 * It is used when we want to commit the current the transaction, but
816 * don't want to start a new one.
817 *
818 * Note: If this function return -ENOENT, it just means there is no
819 * running transaction. But it is possible that the inactive transaction
820 * is still in the memory, not fully on disk. If you hope there is no
821 * inactive transaction in the fs when -ENOENT is returned, you should
822 * invoke
823 * btrfs_attach_transaction_barrier()
824 */
354aa0fb 825struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 826{
575a75d6 827 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 828 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
829}
830
d4edf39b 831/*
90b6d283 832 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 833 *
52042d8e 834 * It is similar to the above function, the difference is this one
d4edf39b
MX
835 * will wait for all the inactive transactions until they fully
836 * complete.
837 */
838struct btrfs_trans_handle *
839btrfs_attach_transaction_barrier(struct btrfs_root *root)
840{
841 struct btrfs_trans_handle *trans;
842
575a75d6 843 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 844 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 845 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 846 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
847
848 return trans;
849}
850
d0c2f4fa
FM
851/* Wait for a transaction commit to reach at least the given state. */
852static noinline void wait_for_commit(struct btrfs_transaction *commit,
853 const enum btrfs_trans_state min_state)
89ce8a63 854{
d0c2f4fa 855 wait_event(commit->commit_wait, commit->state >= min_state);
89ce8a63
CM
856}
857
2ff7e61e 858int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
859{
860 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 861 int ret = 0;
46204592 862
46204592 863 if (transid) {
0b246afa 864 if (transid <= fs_info->last_trans_committed)
a4abeea4 865 goto out;
46204592
SW
866
867 /* find specified transaction */
0b246afa
JM
868 spin_lock(&fs_info->trans_lock);
869 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
870 if (t->transid == transid) {
871 cur_trans = t;
9b64f57d 872 refcount_inc(&cur_trans->use_count);
8cd2807f 873 ret = 0;
46204592
SW
874 break;
875 }
8cd2807f
MX
876 if (t->transid > transid) {
877 ret = 0;
46204592 878 break;
8cd2807f 879 }
46204592 880 }
0b246afa 881 spin_unlock(&fs_info->trans_lock);
42383020
SW
882
883 /*
884 * The specified transaction doesn't exist, or we
885 * raced with btrfs_commit_transaction
886 */
887 if (!cur_trans) {
0b246afa 888 if (transid > fs_info->last_trans_committed)
42383020 889 ret = -EINVAL;
8cd2807f 890 goto out;
42383020 891 }
46204592
SW
892 } else {
893 /* find newest transaction that is committing | committed */
0b246afa
JM
894 spin_lock(&fs_info->trans_lock);
895 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 896 list) {
4a9d8bde
MX
897 if (t->state >= TRANS_STATE_COMMIT_START) {
898 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 899 break;
46204592 900 cur_trans = t;
9b64f57d 901 refcount_inc(&cur_trans->use_count);
46204592
SW
902 break;
903 }
904 }
0b246afa 905 spin_unlock(&fs_info->trans_lock);
46204592 906 if (!cur_trans)
a4abeea4 907 goto out; /* nothing committing|committed */
46204592
SW
908 }
909
d0c2f4fa 910 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 911 btrfs_put_transaction(cur_trans);
a4abeea4 912out:
46204592
SW
913 return ret;
914}
915
2ff7e61e 916void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 917{
92e2f7e3 918 wait_current_trans(fs_info);
37d1aeee
CM
919}
920
8a8f4dea 921static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 922{
2ff7e61e 923 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 924
64403612 925 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 926 return true;
36ba022a 927
2ff7e61e 928 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
929}
930
a2633b6a 931bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
932{
933 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 934
3296bf56 935 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 936 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 937 return true;
8929ecfa 938
2ff7e61e 939 return should_end_transaction(trans);
8929ecfa
YZ
940}
941
dc60c525
NB
942static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
943
0e34693f 944{
dc60c525
NB
945 struct btrfs_fs_info *fs_info = trans->fs_info;
946
0e34693f
NB
947 if (!trans->block_rsv) {
948 ASSERT(!trans->bytes_reserved);
949 return;
950 }
951
952 if (!trans->bytes_reserved)
953 return;
954
955 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
956 trace_btrfs_space_reservation(fs_info, "transaction",
957 trans->transid, trans->bytes_reserved, 0);
958 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 959 trans->bytes_reserved, NULL);
0e34693f
NB
960 trans->bytes_reserved = 0;
961}
962
89ce8a63 963static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 964 int throttle)
79154b1b 965{
3a45bb20 966 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 967 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 968 int err = 0;
c3e69d58 969
b50fff81
DS
970 if (refcount_read(&trans->use_count) > 1) {
971 refcount_dec(&trans->use_count);
2a1eb461
JB
972 trans->block_rsv = trans->orig_rsv;
973 return 0;
974 }
975
dc60c525 976 btrfs_trans_release_metadata(trans);
4c13d758 977 trans->block_rsv = NULL;
c5567237 978
119e80df 979 btrfs_create_pending_block_groups(trans);
ea658bad 980
4fbcdf66
FM
981 btrfs_trans_release_chunk_metadata(trans);
982
0860adfd 983 if (trans->type & __TRANS_FREEZABLE)
0b246afa 984 sb_end_intwrite(info->sb);
6df7881a 985
8929ecfa 986 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
987 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
988 atomic_dec(&cur_trans->num_writers);
0860adfd 989 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 990
093258e6 991 cond_wake_up(&cur_trans->writer_wait);
724e2315 992 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
993
994 if (current->journal_info == trans)
995 current->journal_info = NULL;
ab78c84d 996
24bbcf04 997 if (throttle)
2ff7e61e 998 btrfs_run_delayed_iputs(info);
24bbcf04 999
bf31f87f 1000 if (TRANS_ABORTED(trans) ||
0b246afa 1001 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
4e121c06 1002 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1003 if (TRANS_ABORTED(trans))
1004 err = trans->aborted;
1005 else
1006 err = -EROFS;
4e121c06 1007 }
49b25e05 1008
4edc2ca3
DJ
1009 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1010 return err;
79154b1b
CM
1011}
1012
3a45bb20 1013int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1014{
3a45bb20 1015 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1016}
1017
3a45bb20 1018int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1019{
3a45bb20 1020 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1021}
1022
d352ac68
CM
1023/*
1024 * when btree blocks are allocated, they have some corresponding bits set for
1025 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1026 * those extents are sent to disk but does not wait on them
d352ac68 1027 */
2ff7e61e 1028int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1029 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1030{
777e6bd7 1031 int err = 0;
7c4452b9 1032 int werr = 0;
0b246afa 1033 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1034 struct extent_state *cached_state = NULL;
777e6bd7 1035 u64 start = 0;
5f39d397 1036 u64 end;
7c4452b9 1037
6300463b 1038 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1039 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1040 mark, &cached_state)) {
663dfbb0
FM
1041 bool wait_writeback = false;
1042
1043 err = convert_extent_bit(dirty_pages, start, end,
1044 EXTENT_NEED_WAIT,
210aa277 1045 mark, &cached_state);
663dfbb0
FM
1046 /*
1047 * convert_extent_bit can return -ENOMEM, which is most of the
1048 * time a temporary error. So when it happens, ignore the error
1049 * and wait for writeback of this range to finish - because we
1050 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1051 * to __btrfs_wait_marked_extents() would not know that
1052 * writeback for this range started and therefore wouldn't
1053 * wait for it to finish - we don't want to commit a
1054 * superblock that points to btree nodes/leafs for which
1055 * writeback hasn't finished yet (and without errors).
663dfbb0 1056 * We cleanup any entries left in the io tree when committing
41e7acd3 1057 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1058 */
1059 if (err == -ENOMEM) {
1060 err = 0;
1061 wait_writeback = true;
1062 }
1063 if (!err)
1064 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1065 if (err)
1066 werr = err;
663dfbb0
FM
1067 else if (wait_writeback)
1068 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1069 free_extent_state(cached_state);
663dfbb0 1070 cached_state = NULL;
1728366e
JB
1071 cond_resched();
1072 start = end + 1;
7c4452b9 1073 }
6300463b 1074 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1075 return werr;
1076}
1077
1078/*
1079 * when btree blocks are allocated, they have some corresponding bits set for
1080 * them in one of two extent_io trees. This is used to make sure all of
1081 * those extents are on disk for transaction or log commit. We wait
1082 * on all the pages and clear them from the dirty pages state tree
1083 */
bf89d38f
JM
1084static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1085 struct extent_io_tree *dirty_pages)
690587d1 1086{
690587d1
CM
1087 int err = 0;
1088 int werr = 0;
0b246afa 1089 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1090 struct extent_state *cached_state = NULL;
690587d1
CM
1091 u64 start = 0;
1092 u64 end;
777e6bd7 1093
1728366e 1094 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1095 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1096 /*
1097 * Ignore -ENOMEM errors returned by clear_extent_bit().
1098 * When committing the transaction, we'll remove any entries
1099 * left in the io tree. For a log commit, we don't remove them
1100 * after committing the log because the tree can be accessed
1101 * concurrently - we do it only at transaction commit time when
41e7acd3 1102 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1103 */
1104 err = clear_extent_bit(dirty_pages, start, end,
ae0f1625 1105 EXTENT_NEED_WAIT, 0, 0, &cached_state);
663dfbb0
FM
1106 if (err == -ENOMEM)
1107 err = 0;
1108 if (!err)
1109 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1110 if (err)
1111 werr = err;
e38e2ed7
FM
1112 free_extent_state(cached_state);
1113 cached_state = NULL;
1728366e
JB
1114 cond_resched();
1115 start = end + 1;
777e6bd7 1116 }
7c4452b9
CM
1117 if (err)
1118 werr = err;
bf89d38f
JM
1119 return werr;
1120}
656f30db 1121
b9fae2eb 1122static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1123 struct extent_io_tree *dirty_pages)
1124{
1125 bool errors = false;
1126 int err;
656f30db 1127
bf89d38f
JM
1128 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1129 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1130 errors = true;
1131
1132 if (errors && !err)
1133 err = -EIO;
1134 return err;
1135}
656f30db 1136
bf89d38f
JM
1137int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1138{
1139 struct btrfs_fs_info *fs_info = log_root->fs_info;
1140 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1141 bool errors = false;
1142 int err;
656f30db 1143
bf89d38f
JM
1144 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1145
1146 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1147 if ((mark & EXTENT_DIRTY) &&
1148 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1149 errors = true;
1150
1151 if ((mark & EXTENT_NEW) &&
1152 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1153 errors = true;
1154
1155 if (errors && !err)
1156 err = -EIO;
1157 return err;
79154b1b
CM
1158}
1159
690587d1 1160/*
c9b577c0
NB
1161 * When btree blocks are allocated the corresponding extents are marked dirty.
1162 * This function ensures such extents are persisted on disk for transaction or
1163 * log commit.
1164 *
1165 * @trans: transaction whose dirty pages we'd like to write
690587d1 1166 */
70458a58 1167static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1168{
1169 int ret;
1170 int ret2;
c9b577c0 1171 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1172 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1173 struct blk_plug plug;
690587d1 1174
c6adc9cc 1175 blk_start_plug(&plug);
c9b577c0 1176 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1177 blk_finish_plug(&plug);
bf89d38f 1178 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1179
41e7acd3 1180 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1181
bf0da8c1
CM
1182 if (ret)
1183 return ret;
c9b577c0 1184 else if (ret2)
bf0da8c1 1185 return ret2;
c9b577c0
NB
1186 else
1187 return 0;
d0c803c4
CM
1188}
1189
d352ac68
CM
1190/*
1191 * this is used to update the root pointer in the tree of tree roots.
1192 *
1193 * But, in the case of the extent allocation tree, updating the root
1194 * pointer may allocate blocks which may change the root of the extent
1195 * allocation tree.
1196 *
1197 * So, this loops and repeats and makes sure the cowonly root didn't
1198 * change while the root pointer was being updated in the metadata.
1199 */
0b86a832
CM
1200static int update_cowonly_root(struct btrfs_trans_handle *trans,
1201 struct btrfs_root *root)
79154b1b
CM
1202{
1203 int ret;
0b86a832 1204 u64 old_root_bytenr;
86b9f2ec 1205 u64 old_root_used;
0b246afa
JM
1206 struct btrfs_fs_info *fs_info = root->fs_info;
1207 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1208
86b9f2ec 1209 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1210
d397712b 1211 while (1) {
0b86a832 1212 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1213 if (old_root_bytenr == root->node->start &&
ea526d18 1214 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1215 break;
87ef2bb4 1216
5d4f98a2 1217 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1218 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1219 &root->root_key,
1220 &root->root_item);
49b25e05
JM
1221 if (ret)
1222 return ret;
56bec294 1223
86b9f2ec 1224 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1225 }
276e680d 1226
0b86a832
CM
1227 return 0;
1228}
1229
d352ac68
CM
1230/*
1231 * update all the cowonly tree roots on disk
49b25e05
JM
1232 *
1233 * The error handling in this function may not be obvious. Any of the
1234 * failures will cause the file system to go offline. We still need
1235 * to clean up the delayed refs.
d352ac68 1236 */
9386d8bc 1237static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1238{
9386d8bc 1239 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1240 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1241 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1242 struct list_head *next;
84234f3a 1243 struct extent_buffer *eb;
56bec294 1244 int ret;
84234f3a
YZ
1245
1246 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1247 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1248 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1249 btrfs_tree_unlock(eb);
1250 free_extent_buffer(eb);
0b86a832 1251
49b25e05
JM
1252 if (ret)
1253 return ret;
87ef2bb4 1254
196c9d8d 1255 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1256 if (ret)
1257 return ret;
2b584c68 1258 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1259 if (ret)
1260 return ret;
280f8bd2 1261 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1262 if (ret)
1263 return ret;
546adb0d 1264
bbebb3e0 1265 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1266 if (ret)
1267 return ret;
1268
ea526d18 1269again:
d397712b 1270 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1271 struct btrfs_root *root;
0b86a832
CM
1272 next = fs_info->dirty_cowonly_roots.next;
1273 list_del_init(next);
1274 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1275 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1276
9e351cc8
JB
1277 if (root != fs_info->extent_root)
1278 list_add_tail(&root->dirty_list,
1279 &trans->transaction->switch_commits);
49b25e05
JM
1280 ret = update_cowonly_root(trans, root);
1281 if (ret)
1282 return ret;
79154b1b 1283 }
276e680d 1284
488bc2a2
JB
1285 /* Now flush any delayed refs generated by updating all of the roots */
1286 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1287 if (ret)
1288 return ret;
1289
1bbc621e 1290 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1291 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1292 if (ret)
1293 return ret;
488bc2a2
JB
1294
1295 /*
1296 * We're writing the dirty block groups, which could generate
1297 * delayed refs, which could generate more dirty block groups,
1298 * so we want to keep this flushing in this loop to make sure
1299 * everything gets run.
1300 */
c79a70b1 1301 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1302 if (ret)
1303 return ret;
1304 }
1305
1306 if (!list_empty(&fs_info->dirty_cowonly_roots))
1307 goto again;
1308
9e351cc8
JB
1309 list_add_tail(&fs_info->extent_root->dirty_list,
1310 &trans->transaction->switch_commits);
9f6cbcbb
DS
1311
1312 /* Update dev-replace pointer once everything is committed */
1313 fs_info->dev_replace.committed_cursor_left =
1314 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1315
79154b1b
CM
1316 return 0;
1317}
1318
d352ac68
CM
1319/*
1320 * dead roots are old snapshots that need to be deleted. This allocates
1321 * a dirty root struct and adds it into the list of dead roots that need to
1322 * be deleted
1323 */
cfad392b 1324void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1325{
0b246afa
JM
1326 struct btrfs_fs_info *fs_info = root->fs_info;
1327
1328 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1329 if (list_empty(&root->root_list)) {
1330 btrfs_grab_root(root);
0b246afa 1331 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1332 }
0b246afa 1333 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1334}
1335
d352ac68 1336/*
5d4f98a2 1337 * update all the cowonly tree roots on disk
d352ac68 1338 */
7e4443d9 1339static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1340{
7e4443d9 1341 struct btrfs_fs_info *fs_info = trans->fs_info;
0f7d52f4 1342 struct btrfs_root *gang[8];
0f7d52f4
CM
1343 int i;
1344 int ret;
54aa1f4d 1345
a4abeea4 1346 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 1347 while (1) {
5d4f98a2
YZ
1348 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1349 (void **)gang, 0,
0f7d52f4
CM
1350 ARRAY_SIZE(gang),
1351 BTRFS_ROOT_TRANS_TAG);
1352 if (ret == 0)
1353 break;
1354 for (i = 0; i < ret; i++) {
5b4aacef 1355 struct btrfs_root *root = gang[i];
4f4317c1
JB
1356 int ret2;
1357
5d4f98a2
YZ
1358 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1359 (unsigned long)root->root_key.objectid,
1360 BTRFS_ROOT_TRANS_TAG);
a4abeea4 1361 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 1362
e02119d5 1363 btrfs_free_log(trans, root);
5d4f98a2 1364 btrfs_update_reloc_root(trans, root);
bcc63abb 1365
f1ebcc74 1366 /* see comments in should_cow_block() */
27cdeb70 1367 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
c7548af6 1368 smp_mb__after_atomic();
f1ebcc74 1369
978d910d 1370 if (root->commit_root != root->node) {
9e351cc8
JB
1371 list_add_tail(&root->dirty_list,
1372 &trans->transaction->switch_commits);
978d910d
YZ
1373 btrfs_set_root_node(&root->root_item,
1374 root->node);
1375 }
5d4f98a2 1376
4f4317c1 1377 ret2 = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
1378 &root->root_key,
1379 &root->root_item);
4f4317c1
JB
1380 if (ret2)
1381 return ret2;
a4abeea4 1382 spin_lock(&fs_info->fs_roots_radix_lock);
733e03a0 1383 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1384 }
1385 }
a4abeea4 1386 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1387 return 0;
0f7d52f4
CM
1388}
1389
d352ac68 1390/*
de78b51a
ES
1391 * defrag a given btree.
1392 * Every leaf in the btree is read and defragged.
d352ac68 1393 */
de78b51a 1394int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1395{
1396 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1397 struct btrfs_trans_handle *trans;
8929ecfa 1398 int ret;
e9d0b13b 1399
27cdeb70 1400 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1401 return 0;
8929ecfa 1402
6b80053d 1403 while (1) {
8929ecfa
YZ
1404 trans = btrfs_start_transaction(root, 0);
1405 if (IS_ERR(trans))
1406 return PTR_ERR(trans);
1407
de78b51a 1408 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1409
3a45bb20 1410 btrfs_end_transaction(trans);
2ff7e61e 1411 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1412 cond_resched();
1413
ab8d0fc4 1414 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1415 break;
210549eb 1416
ab8d0fc4
JM
1417 if (btrfs_defrag_cancelled(info)) {
1418 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1419 ret = -EAGAIN;
1420 break;
1421 }
e9d0b13b 1422 }
27cdeb70 1423 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1424 return ret;
e9d0b13b
CM
1425}
1426
6426c7ad
QW
1427/*
1428 * Do all special snapshot related qgroup dirty hack.
1429 *
1430 * Will do all needed qgroup inherit and dirty hack like switch commit
1431 * roots inside one transaction and write all btree into disk, to make
1432 * qgroup works.
1433 */
1434static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1435 struct btrfs_root *src,
1436 struct btrfs_root *parent,
1437 struct btrfs_qgroup_inherit *inherit,
1438 u64 dst_objectid)
1439{
1440 struct btrfs_fs_info *fs_info = src->fs_info;
1441 int ret;
1442
1443 /*
1444 * Save some performance in the case that qgroups are not
1445 * enabled. If this check races with the ioctl, rescan will
1446 * kick in anyway.
1447 */
9ea6e2b5 1448 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1449 return 0;
6426c7ad 1450
4d31778a 1451 /*
52042d8e 1452 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1453 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1454 * recorded root will never be updated again, causing an outdated root
1455 * item.
1456 */
1c442d22
JB
1457 ret = record_root_in_trans(trans, src, 1);
1458 if (ret)
1459 return ret;
4d31778a 1460
2a4d84c1
JB
1461 /*
1462 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1463 * src root, so we must run the delayed refs here.
1464 *
1465 * However this isn't particularly fool proof, because there's no
1466 * synchronization keeping us from changing the tree after this point
1467 * before we do the qgroup_inherit, or even from making changes while
1468 * we're doing the qgroup_inherit. But that's a problem for the future,
1469 * for now flush the delayed refs to narrow the race window where the
1470 * qgroup counters could end up wrong.
1471 */
1472 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1473 if (ret) {
1474 btrfs_abort_transaction(trans, ret);
1475 goto out;
1476 }
1477
6426c7ad
QW
1478 /*
1479 * We are going to commit transaction, see btrfs_commit_transaction()
1480 * comment for reason locking tree_log_mutex
1481 */
1482 mutex_lock(&fs_info->tree_log_mutex);
1483
7e4443d9 1484 ret = commit_fs_roots(trans);
6426c7ad
QW
1485 if (ret)
1486 goto out;
460fb20a 1487 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1488 if (ret < 0)
1489 goto out;
1490
1491 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1492 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1493 inherit);
1494 if (ret < 0)
1495 goto out;
1496
1497 /*
1498 * Now we do a simplified commit transaction, which will:
1499 * 1) commit all subvolume and extent tree
1500 * To ensure all subvolume and extent tree have a valid
1501 * commit_root to accounting later insert_dir_item()
1502 * 2) write all btree blocks onto disk
1503 * This is to make sure later btree modification will be cowed
1504 * Or commit_root can be populated and cause wrong qgroup numbers
1505 * In this simplified commit, we don't really care about other trees
1506 * like chunk and root tree, as they won't affect qgroup.
1507 * And we don't write super to avoid half committed status.
1508 */
9386d8bc 1509 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1510 if (ret)
1511 goto out;
889bfa39 1512 switch_commit_roots(trans);
70458a58 1513 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1514 if (ret)
f7af3934 1515 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1516 "Error while writing out transaction for qgroup");
1517
1518out:
1519 mutex_unlock(&fs_info->tree_log_mutex);
1520
1521 /*
1522 * Force parent root to be updated, as we recorded it before so its
1523 * last_trans == cur_transid.
1524 * Or it won't be committed again onto disk after later
1525 * insert_dir_item()
1526 */
1527 if (!ret)
1c442d22 1528 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1529 return ret;
1530}
1531
d352ac68
CM
1532/*
1533 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1534 * transaction commit. This does the actual creation.
1535 *
1536 * Note:
1537 * If the error which may affect the commitment of the current transaction
1538 * happens, we should return the error number. If the error which just affect
1539 * the creation of the pending snapshots, just return 0.
d352ac68 1540 */
80b6794d 1541static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1542 struct btrfs_pending_snapshot *pending)
1543{
08d50ca3
NB
1544
1545 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1546 struct btrfs_key key;
80b6794d 1547 struct btrfs_root_item *new_root_item;
3063d29f
CM
1548 struct btrfs_root *tree_root = fs_info->tree_root;
1549 struct btrfs_root *root = pending->root;
6bdb72de 1550 struct btrfs_root *parent_root;
98c9942a 1551 struct btrfs_block_rsv *rsv;
6bdb72de 1552 struct inode *parent_inode;
42874b3d
MX
1553 struct btrfs_path *path;
1554 struct btrfs_dir_item *dir_item;
a22285a6 1555 struct dentry *dentry;
3063d29f 1556 struct extent_buffer *tmp;
925baedd 1557 struct extent_buffer *old;
95582b00 1558 struct timespec64 cur_time;
aec8030a 1559 int ret = 0;
d68fc57b 1560 u64 to_reserve = 0;
6bdb72de 1561 u64 index = 0;
a22285a6 1562 u64 objectid;
b83cc969 1563 u64 root_flags;
3063d29f 1564
8546b570
DS
1565 ASSERT(pending->path);
1566 path = pending->path;
42874b3d 1567
b0c0ea63
DS
1568 ASSERT(pending->root_item);
1569 new_root_item = pending->root_item;
a22285a6 1570
543068a2 1571 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1572 if (pending->error)
6fa9700e 1573 goto no_free_objectid;
3063d29f 1574
d6726335
QW
1575 /*
1576 * Make qgroup to skip current new snapshot's qgroupid, as it is
1577 * accounted by later btrfs_qgroup_inherit().
1578 */
1579 btrfs_set_skip_qgroup(trans, objectid);
1580
147d256e 1581 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1582
1583 if (to_reserve > 0) {
aec8030a
MX
1584 pending->error = btrfs_block_rsv_add(root,
1585 &pending->block_rsv,
1586 to_reserve,
1587 BTRFS_RESERVE_NO_FLUSH);
1588 if (pending->error)
d6726335 1589 goto clear_skip_qgroup;
d68fc57b
YZ
1590 }
1591
3063d29f 1592 key.objectid = objectid;
a22285a6
YZ
1593 key.offset = (u64)-1;
1594 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1595
6fa9700e 1596 rsv = trans->block_rsv;
a22285a6 1597 trans->block_rsv = &pending->block_rsv;
2382c5cc 1598 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1599 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1600 trans->transid,
1601 trans->bytes_reserved, 1);
a22285a6 1602 dentry = pending->dentry;
e9662f70 1603 parent_inode = pending->dir;
a22285a6 1604 parent_root = BTRFS_I(parent_inode)->root;
6426c7ad 1605 record_root_in_trans(trans, parent_root, 0);
a22285a6 1606
c2050a45 1607 cur_time = current_time(parent_inode);
04b285f3 1608
3063d29f
CM
1609 /*
1610 * insert the directory item
1611 */
877574e2 1612 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1613 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1614
1615 /* check if there is a file/dir which has the same name. */
1616 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1617 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1618 dentry->d_name.name,
1619 dentry->d_name.len, 0);
1620 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1621 pending->error = -EEXIST;
aec8030a 1622 goto dir_item_existed;
42874b3d
MX
1623 } else if (IS_ERR(dir_item)) {
1624 ret = PTR_ERR(dir_item);
66642832 1625 btrfs_abort_transaction(trans, ret);
8732d44f 1626 goto fail;
79787eaa 1627 }
42874b3d 1628 btrfs_release_path(path);
52c26179 1629
e999376f
CM
1630 /*
1631 * pull in the delayed directory update
1632 * and the delayed inode item
1633 * otherwise we corrupt the FS during
1634 * snapshot
1635 */
e5c304e6 1636 ret = btrfs_run_delayed_items(trans);
8732d44f 1637 if (ret) { /* Transaction aborted */
66642832 1638 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1639 goto fail;
1640 }
e999376f 1641
6426c7ad 1642 record_root_in_trans(trans, root, 0);
6bdb72de
SW
1643 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1644 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1645 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1646
b83cc969
LZ
1647 root_flags = btrfs_root_flags(new_root_item);
1648 if (pending->readonly)
1649 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1650 else
1651 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1652 btrfs_set_root_flags(new_root_item, root_flags);
1653
8ea05e3a
AB
1654 btrfs_set_root_generation_v2(new_root_item,
1655 trans->transid);
807fc790 1656 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1657 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1658 BTRFS_UUID_SIZE);
70023da2
SB
1659 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1660 memset(new_root_item->received_uuid, 0,
1661 sizeof(new_root_item->received_uuid));
1662 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1663 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1664 btrfs_set_root_stransid(new_root_item, 0);
1665 btrfs_set_root_rtransid(new_root_item, 0);
1666 }
3cae210f
QW
1667 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1668 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1669 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1670
6bdb72de 1671 old = btrfs_lock_root_node(root);
9631e4cc
JB
1672 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1673 BTRFS_NESTING_COW);
79787eaa
JM
1674 if (ret) {
1675 btrfs_tree_unlock(old);
1676 free_extent_buffer(old);
66642832 1677 btrfs_abort_transaction(trans, ret);
8732d44f 1678 goto fail;
79787eaa 1679 }
49b25e05 1680
49b25e05 1681 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1682 /* clean up in any case */
6bdb72de
SW
1683 btrfs_tree_unlock(old);
1684 free_extent_buffer(old);
8732d44f 1685 if (ret) {
66642832 1686 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1687 goto fail;
1688 }
f1ebcc74 1689 /* see comments in should_cow_block() */
27cdeb70 1690 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1691 smp_wmb();
1692
6bdb72de 1693 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1694 /* record when the snapshot was created in key.offset */
1695 key.offset = trans->transid;
1696 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1697 btrfs_tree_unlock(tmp);
1698 free_extent_buffer(tmp);
8732d44f 1699 if (ret) {
66642832 1700 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1701 goto fail;
1702 }
6bdb72de 1703
a22285a6
YZ
1704 /*
1705 * insert root back/forward references
1706 */
6025c19f 1707 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1708 parent_root->root_key.objectid,
4a0cc7ca 1709 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1710 dentry->d_name.name, dentry->d_name.len);
8732d44f 1711 if (ret) {
66642832 1712 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1713 goto fail;
1714 }
0660b5af 1715
a22285a6 1716 key.offset = (u64)-1;
2dfb1e43 1717 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1718 if (IS_ERR(pending->snap)) {
1719 ret = PTR_ERR(pending->snap);
2d892ccd 1720 pending->snap = NULL;
66642832 1721 btrfs_abort_transaction(trans, ret);
8732d44f 1722 goto fail;
79787eaa 1723 }
d68fc57b 1724
49b25e05 1725 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1726 if (ret) {
66642832 1727 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1728 goto fail;
1729 }
361048f5 1730
6426c7ad
QW
1731 /*
1732 * Do special qgroup accounting for snapshot, as we do some qgroup
1733 * snapshot hack to do fast snapshot.
1734 * To co-operate with that hack, we do hack again.
1735 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1736 */
1737 ret = qgroup_account_snapshot(trans, root, parent_root,
1738 pending->inherit, objectid);
1739 if (ret < 0)
1740 goto fail;
1741
684572df
LF
1742 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1743 dentry->d_name.len, BTRFS_I(parent_inode),
1744 &key, BTRFS_FT_DIR, index);
42874b3d 1745 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1746 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1747 if (ret) {
66642832 1748 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1749 goto fail;
1750 }
42874b3d 1751
6ef06d27 1752 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1753 dentry->d_name.len * 2);
04b285f3 1754 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 1755 current_time(parent_inode);
729f7961 1756 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1757 if (ret) {
66642832 1758 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1759 goto fail;
1760 }
807fc790
AS
1761 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1762 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1763 objectid);
dd5f9615 1764 if (ret) {
66642832 1765 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1766 goto fail;
1767 }
1768 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1769 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1770 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1771 objectid);
1772 if (ret && ret != -EEXIST) {
66642832 1773 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1774 goto fail;
1775 }
1776 }
d6726335 1777
3063d29f 1778fail:
aec8030a
MX
1779 pending->error = ret;
1780dir_item_existed:
98c9942a 1781 trans->block_rsv = rsv;
2382c5cc 1782 trans->bytes_reserved = 0;
d6726335
QW
1783clear_skip_qgroup:
1784 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1785no_free_objectid:
1786 kfree(new_root_item);
b0c0ea63 1787 pending->root_item = NULL;
42874b3d 1788 btrfs_free_path(path);
8546b570
DS
1789 pending->path = NULL;
1790
49b25e05 1791 return ret;
3063d29f
CM
1792}
1793
d352ac68
CM
1794/*
1795 * create all the snapshots we've scheduled for creation
1796 */
08d50ca3 1797static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1798{
aec8030a 1799 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1800 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1801 int ret = 0;
3de4586c 1802
aec8030a
MX
1803 list_for_each_entry_safe(pending, next, head, list) {
1804 list_del(&pending->list);
08d50ca3 1805 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1806 if (ret)
1807 break;
1808 }
1809 return ret;
3de4586c
CM
1810}
1811
2ff7e61e 1812static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1813{
1814 struct btrfs_root_item *root_item;
1815 struct btrfs_super_block *super;
1816
0b246afa 1817 super = fs_info->super_copy;
5d4f98a2 1818
0b246afa 1819 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1820 super->chunk_root = root_item->bytenr;
1821 super->chunk_root_generation = root_item->generation;
1822 super->chunk_root_level = root_item->level;
5d4f98a2 1823
0b246afa 1824 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1825 super->root = root_item->bytenr;
1826 super->generation = root_item->generation;
1827 super->root_level = root_item->level;
0b246afa 1828 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1829 super->cache_generation = root_item->generation;
94846229
BB
1830 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1831 super->cache_generation = 0;
0b246afa 1832 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1833 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1834}
1835
f36f3042
CM
1836int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1837{
4a9d8bde 1838 struct btrfs_transaction *trans;
f36f3042 1839 int ret = 0;
4a9d8bde 1840
a4abeea4 1841 spin_lock(&info->trans_lock);
4a9d8bde
MX
1842 trans = info->running_transaction;
1843 if (trans)
1844 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1845 spin_unlock(&info->trans_lock);
f36f3042
CM
1846 return ret;
1847}
1848
8929ecfa
YZ
1849int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1850{
4a9d8bde 1851 struct btrfs_transaction *trans;
8929ecfa 1852 int ret = 0;
4a9d8bde 1853
a4abeea4 1854 spin_lock(&info->trans_lock);
4a9d8bde
MX
1855 trans = info->running_transaction;
1856 if (trans)
1857 ret = is_transaction_blocked(trans);
a4abeea4 1858 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1859 return ret;
1860}
1861
bb9c12c9
SW
1862/*
1863 * wait for the current transaction commit to start and block subsequent
1864 * transaction joins
1865 */
2ff7e61e 1866static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
bb9c12c9
SW
1867 struct btrfs_transaction *trans)
1868{
2ff7e61e 1869 wait_event(fs_info->transaction_blocked_wait,
bf31f87f
DS
1870 trans->state >= TRANS_STATE_COMMIT_START ||
1871 TRANS_ABORTED(trans));
bb9c12c9
SW
1872}
1873
1874/*
1875 * wait for the current transaction to start and then become unblocked.
1876 * caller holds ref.
1877 */
2ff7e61e
JM
1878static void wait_current_trans_commit_start_and_unblock(
1879 struct btrfs_fs_info *fs_info,
1880 struct btrfs_transaction *trans)
bb9c12c9 1881{
2ff7e61e 1882 wait_event(fs_info->transaction_wait,
bf31f87f
DS
1883 trans->state >= TRANS_STATE_UNBLOCKED ||
1884 TRANS_ABORTED(trans));
bb9c12c9
SW
1885}
1886
1887/*
1888 * commit transactions asynchronously. once btrfs_commit_transaction_async
1889 * returns, any subsequent transaction will not be allowed to join.
1890 */
1891struct btrfs_async_commit {
1892 struct btrfs_trans_handle *newtrans;
7892b5af 1893 struct work_struct work;
bb9c12c9
SW
1894};
1895
1896static void do_async_commit(struct work_struct *work)
1897{
1898 struct btrfs_async_commit *ac =
7892b5af 1899 container_of(work, struct btrfs_async_commit, work);
bb9c12c9 1900
6fc4e354
SW
1901 /*
1902 * We've got freeze protection passed with the transaction.
1903 * Tell lockdep about it.
1904 */
b1a06a4b 1905 if (ac->newtrans->type & __TRANS_FREEZABLE)
3a45bb20 1906 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
6fc4e354 1907
e209db7a
SW
1908 current->journal_info = ac->newtrans;
1909
3a45bb20 1910 btrfs_commit_transaction(ac->newtrans);
bb9c12c9
SW
1911 kfree(ac);
1912}
1913
1914int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
bb9c12c9
SW
1915 int wait_for_unblock)
1916{
3a45bb20 1917 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1918 struct btrfs_async_commit *ac;
1919 struct btrfs_transaction *cur_trans;
1920
1921 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1922 if (!ac)
1923 return -ENOMEM;
bb9c12c9 1924
7892b5af 1925 INIT_WORK(&ac->work, do_async_commit);
3a45bb20 1926 ac->newtrans = btrfs_join_transaction(trans->root);
3612b495
TI
1927 if (IS_ERR(ac->newtrans)) {
1928 int err = PTR_ERR(ac->newtrans);
1929 kfree(ac);
1930 return err;
1931 }
bb9c12c9
SW
1932
1933 /* take transaction reference */
bb9c12c9 1934 cur_trans = trans->transaction;
9b64f57d 1935 refcount_inc(&cur_trans->use_count);
bb9c12c9 1936
3a45bb20 1937 btrfs_end_transaction(trans);
6fc4e354
SW
1938
1939 /*
1940 * Tell lockdep we've released the freeze rwsem, since the
1941 * async commit thread will be the one to unlock it.
1942 */
b1a06a4b 1943 if (ac->newtrans->type & __TRANS_FREEZABLE)
0b246afa 1944 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
6fc4e354 1945
7892b5af 1946 schedule_work(&ac->work);
bb9c12c9
SW
1947
1948 /* wait for transaction to start and unblock */
bb9c12c9 1949 if (wait_for_unblock)
2ff7e61e 1950 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
bb9c12c9 1951 else
2ff7e61e 1952 wait_current_trans_commit_start(fs_info, cur_trans);
bb9c12c9 1953
38e88054
SW
1954 if (current->journal_info == trans)
1955 current->journal_info = NULL;
1956
724e2315 1957 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1958 return 0;
1959}
1960
49b25e05 1961
97cb39bb 1962static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1963{
97cb39bb 1964 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1965 struct btrfs_transaction *cur_trans = trans->transaction;
1966
b50fff81 1967 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1968
66642832 1969 btrfs_abort_transaction(trans, err);
7b8b92af 1970
0b246afa 1971 spin_lock(&fs_info->trans_lock);
66b6135b 1972
25d8c284
MX
1973 /*
1974 * If the transaction is removed from the list, it means this
1975 * transaction has been committed successfully, so it is impossible
1976 * to call the cleanup function.
1977 */
1978 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1979
49b25e05 1980 list_del_init(&cur_trans->list);
0b246afa 1981 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1982 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1983 spin_unlock(&fs_info->trans_lock);
f094ac32
LB
1984 wait_event(cur_trans->writer_wait,
1985 atomic_read(&cur_trans->num_writers) == 1);
1986
0b246afa 1987 spin_lock(&fs_info->trans_lock);
d7096fc3 1988 }
0b246afa 1989 spin_unlock(&fs_info->trans_lock);
49b25e05 1990
2ff7e61e 1991 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 1992
0b246afa
JM
1993 spin_lock(&fs_info->trans_lock);
1994 if (cur_trans == fs_info->running_transaction)
1995 fs_info->running_transaction = NULL;
1996 spin_unlock(&fs_info->trans_lock);
4a9d8bde 1997
e0228285 1998 if (trans->type & __TRANS_FREEZABLE)
0b246afa 1999 sb_end_intwrite(fs_info->sb);
724e2315
JB
2000 btrfs_put_transaction(cur_trans);
2001 btrfs_put_transaction(cur_trans);
49b25e05 2002
97cb39bb 2003 trace_btrfs_transaction_commit(trans->root);
49b25e05 2004
49b25e05
JM
2005 if (current->journal_info == trans)
2006 current->journal_info = NULL;
0b246afa 2007 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2008
2009 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2010}
2011
c7cc64a9
DS
2012/*
2013 * Release reserved delayed ref space of all pending block groups of the
2014 * transaction and remove them from the list
2015 */
2016static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2017{
2018 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2019 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2020
2021 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2022 btrfs_delayed_refs_rsv_release(fs_info, 1);
2023 list_del_init(&block_group->bg_list);
2024 }
2025}
2026
88090ad3 2027static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2028{
ce8ea7cc
JB
2029 /*
2030 * We use writeback_inodes_sb here because if we used
2031 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2032 * Currently are holding the fs freeze lock, if we do an async flush
2033 * we'll do btrfs_join_transaction() and deadlock because we need to
2034 * wait for the fs freeze lock. Using the direct flushing we benefit
2035 * from already being in a transaction and our join_transaction doesn't
2036 * have to re-take the fs freeze lock.
2037 */
88090ad3 2038 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
ce8ea7cc 2039 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2040 return 0;
2041}
2042
88090ad3 2043static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2044{
88090ad3 2045 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2046 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2047}
2048
3a45bb20 2049int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2050{
3a45bb20 2051 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2052 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2053 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2054 int ret;
79154b1b 2055
35b814f3
NB
2056 ASSERT(refcount_read(&trans->use_count) == 1);
2057
d62b23c9
JB
2058 /*
2059 * Some places just start a transaction to commit it. We need to make
2060 * sure that if this commit fails that the abort code actually marks the
2061 * transaction as failed, so set trans->dirty to make the abort code do
2062 * the right thing.
2063 */
2064 trans->dirty = true;
2065
8d25a086 2066 /* Stop the commit early if ->aborted is set */
bf31f87f 2067 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2068 ret = cur_trans->aborted;
3a45bb20 2069 btrfs_end_transaction(trans);
e4a2bcac 2070 return ret;
25287e0a 2071 }
49b25e05 2072
f45c752b
JB
2073 btrfs_trans_release_metadata(trans);
2074 trans->block_rsv = NULL;
2075
56bec294 2076 /*
e19eb11f
JB
2077 * We only want one transaction commit doing the flushing so we do not
2078 * waste a bunch of time on lock contention on the extent root node.
56bec294 2079 */
e19eb11f
JB
2080 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2081 &cur_trans->delayed_refs.flags)) {
2082 /*
2083 * Make a pass through all the delayed refs we have so far.
2084 * Any running threads may add more while we are here.
2085 */
2086 ret = btrfs_run_delayed_refs(trans, 0);
2087 if (ret) {
2088 btrfs_end_transaction(trans);
2089 return ret;
2090 }
2091 }
56bec294 2092
119e80df 2093 btrfs_create_pending_block_groups(trans);
ea658bad 2094
3204d33c 2095 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2096 int run_it = 0;
2097
2098 /* this mutex is also taken before trying to set
2099 * block groups readonly. We need to make sure
2100 * that nobody has set a block group readonly
2101 * after a extents from that block group have been
2102 * allocated for cache files. btrfs_set_block_group_ro
2103 * will wait for the transaction to commit if it
3204d33c 2104 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2105 *
3204d33c
JB
2106 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2107 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2108 * hurt to have more than one go through, but there's no
2109 * real advantage to it either.
2110 */
0b246afa 2111 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2112 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2113 &cur_trans->flags))
1bbc621e 2114 run_it = 1;
0b246afa 2115 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2116
f9cacae3 2117 if (run_it) {
21217054 2118 ret = btrfs_start_dirty_block_groups(trans);
f9cacae3
NB
2119 if (ret) {
2120 btrfs_end_transaction(trans);
2121 return ret;
2122 }
2123 }
1bbc621e
CM
2124 }
2125
0b246afa 2126 spin_lock(&fs_info->trans_lock);
4a9d8bde 2127 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2128 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2129
0b246afa 2130 spin_unlock(&fs_info->trans_lock);
9b64f57d 2131 refcount_inc(&cur_trans->use_count);
ccd467d6 2132
d0c2f4fa
FM
2133 if (trans->in_fsync)
2134 want_state = TRANS_STATE_SUPER_COMMITTED;
2135 ret = btrfs_end_transaction(trans);
2136 wait_for_commit(cur_trans, want_state);
15ee9bc7 2137
bf31f87f 2138 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2139 ret = cur_trans->aborted;
2140
724e2315 2141 btrfs_put_transaction(cur_trans);
15ee9bc7 2142
49b25e05 2143 return ret;
79154b1b 2144 }
4313b399 2145
4a9d8bde 2146 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2147 wake_up(&fs_info->transaction_blocked_wait);
bb9c12c9 2148
0b246afa 2149 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2150 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2151
2152 if (trans->in_fsync)
2153 want_state = TRANS_STATE_SUPER_COMMITTED;
2154
ccd467d6
CM
2155 prev_trans = list_entry(cur_trans->list.prev,
2156 struct btrfs_transaction, list);
d0c2f4fa 2157 if (prev_trans->state < want_state) {
9b64f57d 2158 refcount_inc(&prev_trans->use_count);
0b246afa 2159 spin_unlock(&fs_info->trans_lock);
ccd467d6 2160
d0c2f4fa
FM
2161 wait_for_commit(prev_trans, want_state);
2162
bf31f87f 2163 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2164
724e2315 2165 btrfs_put_transaction(prev_trans);
1f9b8c8f
FM
2166 if (ret)
2167 goto cleanup_transaction;
a4abeea4 2168 } else {
0b246afa 2169 spin_unlock(&fs_info->trans_lock);
ccd467d6 2170 }
a4abeea4 2171 } else {
0b246afa 2172 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2173 /*
2174 * The previous transaction was aborted and was already removed
2175 * from the list of transactions at fs_info->trans_list. So we
2176 * abort to prevent writing a new superblock that reflects a
2177 * corrupt state (pointing to trees with unwritten nodes/leafs).
2178 */
2179 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2180 ret = -EROFS;
2181 goto cleanup_transaction;
2182 }
ccd467d6 2183 }
15ee9bc7 2184
0860adfd
MX
2185 extwriter_counter_dec(cur_trans, trans->type);
2186
88090ad3 2187 ret = btrfs_start_delalloc_flush(fs_info);
82436617
MX
2188 if (ret)
2189 goto cleanup_transaction;
2190
e5c304e6 2191 ret = btrfs_run_delayed_items(trans);
581227d0
MX
2192 if (ret)
2193 goto cleanup_transaction;
15ee9bc7 2194
581227d0
MX
2195 wait_event(cur_trans->writer_wait,
2196 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2197
581227d0 2198 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2199 ret = btrfs_run_delayed_items(trans);
ca469637
MX
2200 if (ret)
2201 goto cleanup_transaction;
2202
88090ad3 2203 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2204
48778179
FM
2205 /*
2206 * Wait for all ordered extents started by a fast fsync that joined this
2207 * transaction. Otherwise if this transaction commits before the ordered
2208 * extents complete we lose logged data after a power failure.
2209 */
2210 wait_event(cur_trans->pending_wait,
2211 atomic_read(&cur_trans->pending_ordered) == 0);
2212
2ff7e61e 2213 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2214 /*
2215 * Ok now we need to make sure to block out any other joins while we
2216 * commit the transaction. We could have started a join before setting
4a9d8bde 2217 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2218 */
0b246afa 2219 spin_lock(&fs_info->trans_lock);
4a9d8bde 2220 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2221 spin_unlock(&fs_info->trans_lock);
ed0ca140
JB
2222 wait_event(cur_trans->writer_wait,
2223 atomic_read(&cur_trans->num_writers) == 1);
2224
bf31f87f 2225 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2226 ret = cur_trans->aborted;
6cf7f77e 2227 goto scrub_continue;
2cba30f1 2228 }
7585717f
CM
2229 /*
2230 * the reloc mutex makes sure that we stop
2231 * the balancing code from coming in and moving
2232 * extents around in the middle of the commit
2233 */
0b246afa 2234 mutex_lock(&fs_info->reloc_mutex);
7585717f 2235
42874b3d
MX
2236 /*
2237 * We needn't worry about the delayed items because we will
2238 * deal with them in create_pending_snapshot(), which is the
2239 * core function of the snapshot creation.
2240 */
08d50ca3 2241 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2242 if (ret)
2243 goto unlock_reloc;
3063d29f 2244
42874b3d
MX
2245 /*
2246 * We insert the dir indexes of the snapshots and update the inode
2247 * of the snapshots' parents after the snapshot creation, so there
2248 * are some delayed items which are not dealt with. Now deal with
2249 * them.
2250 *
2251 * We needn't worry that this operation will corrupt the snapshots,
2252 * because all the tree which are snapshoted will be forced to COW
2253 * the nodes and leaves.
2254 */
e5c304e6 2255 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2256 if (ret)
2257 goto unlock_reloc;
16cdcec7 2258
c79a70b1 2259 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2260 if (ret)
2261 goto unlock_reloc;
56bec294 2262
e999376f
CM
2263 /*
2264 * make sure none of the code above managed to slip in a
2265 * delayed item
2266 */
ccdf9b30 2267 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2268
2c90e5d6 2269 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2270
e02119d5
CM
2271 /* btrfs_commit_tree_roots is responsible for getting the
2272 * various roots consistent with each other. Every pointer
2273 * in the tree of tree roots has to point to the most up to date
2274 * root for every subvolume and other tree. So, we have to keep
2275 * the tree logging code from jumping in and changing any
2276 * of the trees.
2277 *
2278 * At this point in the commit, there can't be any tree-log
2279 * writers, but a little lower down we drop the trans mutex
2280 * and let new people in. By holding the tree_log_mutex
2281 * from now until after the super is written, we avoid races
2282 * with the tree-log code.
2283 */
0b246afa 2284 mutex_lock(&fs_info->tree_log_mutex);
e02119d5 2285
7e4443d9 2286 ret = commit_fs_roots(trans);
56e9f6ea
DS
2287 if (ret)
2288 goto unlock_tree_log;
54aa1f4d 2289
3818aea2 2290 /*
7e1876ac
DS
2291 * Since the transaction is done, we can apply the pending changes
2292 * before the next transaction.
3818aea2 2293 */
0b246afa 2294 btrfs_apply_pending_changes(fs_info);
3818aea2 2295
5d4f98a2 2296 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2297 * safe to free the root of tree log roots
2298 */
0b246afa 2299 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2300
0ed4792a
QW
2301 /*
2302 * Since fs roots are all committed, we can get a quite accurate
2303 * new_roots. So let's do quota accounting.
2304 */
460fb20a 2305 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea
DS
2306 if (ret < 0)
2307 goto unlock_tree_log;
0ed4792a 2308
9386d8bc 2309 ret = commit_cowonly_roots(trans);
56e9f6ea
DS
2310 if (ret)
2311 goto unlock_tree_log;
54aa1f4d 2312
2cba30f1
MX
2313 /*
2314 * The tasks which save the space cache and inode cache may also
2315 * update ->aborted, check it.
2316 */
bf31f87f 2317 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2318 ret = cur_trans->aborted;
56e9f6ea 2319 goto unlock_tree_log;
2cba30f1
MX
2320 }
2321
0b246afa 2322 cur_trans = fs_info->running_transaction;
5d4f98a2 2323
0b246afa
JM
2324 btrfs_set_root_node(&fs_info->tree_root->root_item,
2325 fs_info->tree_root->node);
2326 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2327 &cur_trans->switch_commits);
5d4f98a2 2328
0b246afa
JM
2329 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2330 fs_info->chunk_root->node);
2331 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2332 &cur_trans->switch_commits);
2333
889bfa39 2334 switch_commit_roots(trans);
5d4f98a2 2335
ce93ec54 2336 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2337 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2338 update_super_roots(fs_info);
e02119d5 2339
0b246afa
JM
2340 btrfs_set_super_log_root(fs_info->super_copy, 0);
2341 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2342 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2343 sizeof(*fs_info->super_copy));
ccd467d6 2344
bbbf7243 2345 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2346
0b246afa
JM
2347 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2348 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2349
4fbcdf66
FM
2350 btrfs_trans_release_chunk_metadata(trans);
2351
0b246afa 2352 spin_lock(&fs_info->trans_lock);
4a9d8bde 2353 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2354 fs_info->running_transaction = NULL;
2355 spin_unlock(&fs_info->trans_lock);
2356 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2357
0b246afa 2358 wake_up(&fs_info->transaction_wait);
e6dcd2dc 2359
70458a58 2360 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2361 if (ret) {
0b246afa
JM
2362 btrfs_handle_fs_error(fs_info, ret,
2363 "Error while writing out transaction");
56e9f6ea
DS
2364 /*
2365 * reloc_mutex has been unlocked, tree_log_mutex is still held
2366 * but we can't jump to unlock_tree_log causing double unlock
2367 */
0b246afa 2368 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2369 goto scrub_continue;
49b25e05
JM
2370 }
2371
d3575156
NA
2372 /*
2373 * At this point, we should have written all the tree blocks allocated
2374 * in this transaction. So it's now safe to free the redirtyied extent
2375 * buffers.
2376 */
2377 btrfs_free_redirty_list(cur_trans);
2378
eece6a9c 2379 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2380 /*
2381 * the super is written, we can safely allow the tree-loggers
2382 * to go about their business
2383 */
0b246afa 2384 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2385 if (ret)
2386 goto scrub_continue;
e02119d5 2387
d0c2f4fa
FM
2388 /*
2389 * We needn't acquire the lock here because there is no other task
2390 * which can change it.
2391 */
2392 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2393 wake_up(&cur_trans->commit_wait);
2394
5ead2dd0 2395 btrfs_finish_extent_commit(trans);
4313b399 2396
3204d33c 2397 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2398 btrfs_clear_space_info_full(fs_info);
13212b54 2399
0b246afa 2400 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2401 /*
2402 * We needn't acquire the lock here because there is no other task
2403 * which can change it.
2404 */
2405 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2406 wake_up(&cur_trans->commit_wait);
3de4586c 2407
0b246afa 2408 spin_lock(&fs_info->trans_lock);
13c5a93e 2409 list_del_init(&cur_trans->list);
0b246afa 2410 spin_unlock(&fs_info->trans_lock);
a4abeea4 2411
724e2315
JB
2412 btrfs_put_transaction(cur_trans);
2413 btrfs_put_transaction(cur_trans);
58176a96 2414
0860adfd 2415 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2416 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2417
3a45bb20 2418 trace_btrfs_transaction_commit(trans->root);
1abe9b8a 2419
2ff7e61e 2420 btrfs_scrub_continue(fs_info);
a2de733c 2421
9ed74f2d
JB
2422 if (current->journal_info == trans)
2423 current->journal_info = NULL;
2424
2c90e5d6 2425 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2426
79154b1b 2427 return ret;
49b25e05 2428
56e9f6ea
DS
2429unlock_tree_log:
2430 mutex_unlock(&fs_info->tree_log_mutex);
2431unlock_reloc:
2432 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2433scrub_continue:
2ff7e61e 2434 btrfs_scrub_continue(fs_info);
49b25e05 2435cleanup_transaction:
dc60c525 2436 btrfs_trans_release_metadata(trans);
c7cc64a9 2437 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2438 btrfs_trans_release_chunk_metadata(trans);
0e721106 2439 trans->block_rsv = NULL;
0b246afa 2440 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2441 if (current->journal_info == trans)
2442 current->journal_info = NULL;
97cb39bb 2443 cleanup_transaction(trans, ret);
49b25e05
JM
2444
2445 return ret;
79154b1b
CM
2446}
2447
d352ac68 2448/*
9d1a2a3a
DS
2449 * return < 0 if error
2450 * 0 if there are no more dead_roots at the time of call
2451 * 1 there are more to be processed, call me again
2452 *
2453 * The return value indicates there are certainly more snapshots to delete, but
2454 * if there comes a new one during processing, it may return 0. We don't mind,
2455 * because btrfs_commit_super will poke cleaner thread and it will process it a
2456 * few seconds later.
d352ac68 2457 */
9d1a2a3a 2458int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
e9d0b13b 2459{
9d1a2a3a 2460 int ret;
5d4f98a2
YZ
2461 struct btrfs_fs_info *fs_info = root->fs_info;
2462
a4abeea4 2463 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2464 if (list_empty(&fs_info->dead_roots)) {
2465 spin_unlock(&fs_info->trans_lock);
2466 return 0;
2467 }
2468 root = list_first_entry(&fs_info->dead_roots,
2469 struct btrfs_root, root_list);
cfad392b 2470 list_del_init(&root->root_list);
a4abeea4 2471 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2472
4fd786e6 2473 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2474
9d1a2a3a 2475 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2476
9d1a2a3a
DS
2477 if (btrfs_header_backref_rev(root->node) <
2478 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2479 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2480 else
0078a9f9 2481 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2482
dc9492c1 2483 btrfs_put_root(root);
6596a928 2484 return (ret < 0) ? 0 : 1;
e9d0b13b 2485}
572d9ab7
DS
2486
2487void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2488{
2489 unsigned long prev;
2490 unsigned long bit;
2491
6c9fe14f 2492 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2493 if (!prev)
2494 return;
2495
d51033d0
DS
2496 bit = 1 << BTRFS_PENDING_COMMIT;
2497 if (prev & bit)
2498 btrfs_debug(fs_info, "pending commit done");
2499 prev &= ~bit;
2500
572d9ab7
DS
2501 if (prev)
2502 btrfs_warn(fs_info,
2503 "unknown pending changes left 0x%lx, ignoring", prev);
2504}