btrfs: handle record_root_in_trans failure in btrfs_record_root_in_trans
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
602cbe91 13#include "misc.h"
79154b1b
CM
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
925baedd 17#include "locking.h"
e02119d5 18#include "tree-log.h"
733f4fbb 19#include "volumes.h"
8dabb742 20#include "dev-replace.h"
fcebe456 21#include "qgroup.h"
aac0023c 22#include "block-group.h"
9c343784 23#include "space-info.h"
d3575156 24#include "zoned.h"
79154b1b 25
0f7d52f4
CM
26#define BTRFS_ROOT_TRANS_TAG 0
27
61c047b5
QW
28/*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
e8c9f186 99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 100 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 103 __TRANS_ATTACH |
a6d155d2
FM
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
bcf3a3e7 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
a6d155d2
FM
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
bcf3a3e7 116 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
117 __TRANS_ATTACH |
118 __TRANS_JOIN |
a6d155d2
FM
119 __TRANS_JOIN_NOLOCK |
120 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
121};
122
724e2315 123void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 124{
9b64f57d
ER
125 WARN_ON(refcount_read(&transaction->use_count) == 0);
126 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 127 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
128 WARN_ON(!RB_EMPTY_ROOT(
129 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
130 WARN_ON(!RB_EMPTY_ROOT(
131 &transaction->delayed_refs.dirty_extent_root));
1262133b 132 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
133 btrfs_err(transaction->fs_info,
134 "pending csums is %llu",
135 transaction->delayed_refs.pending_csums);
7785a663
FM
136 /*
137 * If any block groups are found in ->deleted_bgs then it's
138 * because the transaction was aborted and a commit did not
139 * happen (things failed before writing the new superblock
140 * and calling btrfs_finish_extent_commit()), so we can not
141 * discard the physical locations of the block groups.
142 */
143 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 144 struct btrfs_block_group *cache;
7785a663
FM
145
146 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 147 struct btrfs_block_group,
7785a663
FM
148 bg_list);
149 list_del_init(&cache->bg_list);
6b7304af 150 btrfs_unfreeze_block_group(cache);
7785a663
FM
151 btrfs_put_block_group(cache);
152 }
bbbf7243 153 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 154 kfree(transaction);
78fae27e 155 }
79154b1b
CM
156}
157
889bfa39 158static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 159{
889bfa39 160 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 161 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8 162 struct btrfs_root *root, *tmp;
27d56e62 163 struct btrfs_caching_control *caching_ctl, *next;
9e351cc8
JB
164
165 down_write(&fs_info->commit_root_sem);
889bfa39 166 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
167 dirty_list) {
168 list_del_init(&root->dirty_list);
169 free_extent_buffer(root->commit_root);
170 root->commit_root = btrfs_root_node(root);
41e7acd3 171 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 172 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 173 }
2b9dbef2
JB
174
175 /* We can free old roots now. */
889bfa39
JB
176 spin_lock(&cur_trans->dropped_roots_lock);
177 while (!list_empty(&cur_trans->dropped_roots)) {
178 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
179 struct btrfs_root, root_list);
180 list_del_init(&root->root_list);
889bfa39
JB
181 spin_unlock(&cur_trans->dropped_roots_lock);
182 btrfs_free_log(trans, root);
2b9dbef2 183 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 184 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 185 }
889bfa39 186 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62
JB
187
188 /*
189 * We have to update the last_byte_to_unpin under the commit_root_sem,
190 * at the same time we swap out the commit roots.
191 *
192 * This is because we must have a real view of the last spot the caching
193 * kthreads were while caching. Consider the following views of the
194 * extent tree for a block group
195 *
196 * commit root
197 * +----+----+----+----+----+----+----+
198 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
199 * +----+----+----+----+----+----+----+
200 * 0 1 2 3 4 5 6 7
201 *
202 * new commit root
203 * +----+----+----+----+----+----+----+
204 * | | | |\\\\| | |\\\\|
205 * +----+----+----+----+----+----+----+
206 * 0 1 2 3 4 5 6 7
207 *
208 * If the cache_ctl->progress was at 3, then we are only allowed to
209 * unpin [0,1) and [2,3], because the caching thread has already
210 * processed those extents. We are not allowed to unpin [5,6), because
211 * the caching thread will re-start it's search from 3, and thus find
212 * the hole from [4,6) to add to the free space cache.
213 */
bbb86a37 214 spin_lock(&fs_info->block_group_cache_lock);
27d56e62
JB
215 list_for_each_entry_safe(caching_ctl, next,
216 &fs_info->caching_block_groups, list) {
217 struct btrfs_block_group *cache = caching_ctl->block_group;
218
219 if (btrfs_block_group_done(cache)) {
220 cache->last_byte_to_unpin = (u64)-1;
221 list_del_init(&caching_ctl->list);
222 btrfs_put_caching_control(caching_ctl);
223 } else {
224 cache->last_byte_to_unpin = caching_ctl->progress;
225 }
226 }
bbb86a37 227 spin_unlock(&fs_info->block_group_cache_lock);
9e351cc8 228 up_write(&fs_info->commit_root_sem);
817d52f8
JB
229}
230
0860adfd
MX
231static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
232 unsigned int type)
233{
234 if (type & TRANS_EXTWRITERS)
235 atomic_inc(&trans->num_extwriters);
236}
237
238static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
239 unsigned int type)
240{
241 if (type & TRANS_EXTWRITERS)
242 atomic_dec(&trans->num_extwriters);
243}
244
245static inline void extwriter_counter_init(struct btrfs_transaction *trans,
246 unsigned int type)
247{
248 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
249}
250
251static inline int extwriter_counter_read(struct btrfs_transaction *trans)
252{
253 return atomic_read(&trans->num_extwriters);
178260b2
MX
254}
255
fb6dea26
JB
256/*
257 * To be called after all the new block groups attached to the transaction
258 * handle have been created (btrfs_create_pending_block_groups()).
259 */
260void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
261{
262 struct btrfs_fs_info *fs_info = trans->fs_info;
eafa4fd0 263 struct btrfs_transaction *cur_trans = trans->transaction;
fb6dea26
JB
264
265 if (!trans->chunk_bytes_reserved)
266 return;
267
268 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
269
270 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 271 trans->chunk_bytes_reserved, NULL);
eafa4fd0
FM
272 atomic64_sub(trans->chunk_bytes_reserved, &cur_trans->chunk_bytes_reserved);
273 cond_wake_up(&cur_trans->chunk_reserve_wait);
fb6dea26
JB
274 trans->chunk_bytes_reserved = 0;
275}
276
d352ac68
CM
277/*
278 * either allocate a new transaction or hop into the existing one
279 */
2ff7e61e
JM
280static noinline int join_transaction(struct btrfs_fs_info *fs_info,
281 unsigned int type)
79154b1b
CM
282{
283 struct btrfs_transaction *cur_trans;
a4abeea4 284
19ae4e81 285 spin_lock(&fs_info->trans_lock);
d43317dc 286loop:
49b25e05 287 /* The file system has been taken offline. No new transactions. */
87533c47 288 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
19ae4e81 289 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
290 return -EROFS;
291 }
292
19ae4e81 293 cur_trans = fs_info->running_transaction;
a4abeea4 294 if (cur_trans) {
bf31f87f 295 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 296 spin_unlock(&fs_info->trans_lock);
49b25e05 297 return cur_trans->aborted;
871383be 298 }
4a9d8bde 299 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
300 spin_unlock(&fs_info->trans_lock);
301 return -EBUSY;
302 }
9b64f57d 303 refcount_inc(&cur_trans->use_count);
13c5a93e 304 atomic_inc(&cur_trans->num_writers);
0860adfd 305 extwriter_counter_inc(cur_trans, type);
19ae4e81 306 spin_unlock(&fs_info->trans_lock);
a4abeea4 307 return 0;
79154b1b 308 }
19ae4e81 309 spin_unlock(&fs_info->trans_lock);
a4abeea4 310
354aa0fb
MX
311 /*
312 * If we are ATTACH, we just want to catch the current transaction,
313 * and commit it. If there is no transaction, just return ENOENT.
314 */
315 if (type == TRANS_ATTACH)
316 return -ENOENT;
317
4a9d8bde
MX
318 /*
319 * JOIN_NOLOCK only happens during the transaction commit, so
320 * it is impossible that ->running_transaction is NULL
321 */
322 BUG_ON(type == TRANS_JOIN_NOLOCK);
323
4b5faeac 324 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
325 if (!cur_trans)
326 return -ENOMEM;
d43317dc 327
19ae4e81
JS
328 spin_lock(&fs_info->trans_lock);
329 if (fs_info->running_transaction) {
d43317dc
CM
330 /*
331 * someone started a transaction after we unlocked. Make sure
4a9d8bde 332 * to redo the checks above
d43317dc 333 */
4b5faeac 334 kfree(cur_trans);
d43317dc 335 goto loop;
87533c47 336 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
e4b50e14 337 spin_unlock(&fs_info->trans_lock);
4b5faeac 338 kfree(cur_trans);
7b8b92af 339 return -EROFS;
79154b1b 340 }
d43317dc 341
ab8d0fc4 342 cur_trans->fs_info = fs_info;
48778179
FM
343 atomic_set(&cur_trans->pending_ordered, 0);
344 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 345 atomic_set(&cur_trans->num_writers, 1);
0860adfd 346 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
347 init_waitqueue_head(&cur_trans->writer_wait);
348 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 349 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
350 /*
351 * One for this trans handle, one so it will live on until we
352 * commit the transaction.
353 */
9b64f57d 354 refcount_set(&cur_trans->use_count, 2);
3204d33c 355 cur_trans->flags = 0;
afd48513 356 cur_trans->start_time = ktime_get_seconds();
a4abeea4 357
a099d0fd
AM
358 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
359
5c9d028b 360 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 361 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 362 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
363
364 /*
365 * although the tree mod log is per file system and not per transaction,
366 * the log must never go across transaction boundaries.
367 */
368 smp_mb();
31b1a2bd 369 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 370 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 371 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 372 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 373 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 374
a4abeea4
JB
375 spin_lock_init(&cur_trans->delayed_refs.lock);
376
377 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 378 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 379 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 380 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 381 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 382 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 383 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 384 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 385 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 386 spin_lock_init(&cur_trans->dropped_roots_lock);
d3575156
NA
387 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
388 spin_lock_init(&cur_trans->releasing_ebs_lock);
eafa4fd0
FM
389 atomic64_set(&cur_trans->chunk_bytes_reserved, 0);
390 init_waitqueue_head(&cur_trans->chunk_reserve_wait);
19ae4e81 391 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 392 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
43eb5f29 393 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
fe119a6e
NB
394 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
395 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
396 fs_info->generation++;
397 cur_trans->transid = fs_info->generation;
398 fs_info->running_transaction = cur_trans;
49b25e05 399 cur_trans->aborted = 0;
19ae4e81 400 spin_unlock(&fs_info->trans_lock);
15ee9bc7 401
79154b1b
CM
402 return 0;
403}
404
d352ac68 405/*
92a7cc42
QW
406 * This does all the record keeping required to make sure that a shareable root
407 * is properly recorded in a given transaction. This is required to make sure
408 * the old root from before we joined the transaction is deleted when the
409 * transaction commits.
d352ac68 410 */
7585717f 411static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
412 struct btrfs_root *root,
413 int force)
6702ed49 414{
0b246afa
JM
415 struct btrfs_fs_info *fs_info = root->fs_info;
416
92a7cc42 417 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 418 root->last_trans < trans->transid) || force) {
0b246afa 419 WARN_ON(root == fs_info->extent_root);
4d31778a 420 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 421
7585717f 422 /*
27cdeb70 423 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
424 * we have the reloc mutex held now, so there
425 * is only one writer in this function
426 */
27cdeb70 427 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 428
27cdeb70 429 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
430 * they find our root->last_trans update
431 */
432 smp_wmb();
433
0b246afa 434 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 435 if (root->last_trans == trans->transid && !force) {
0b246afa 436 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
437 return 0;
438 }
0b246afa
JM
439 radix_tree_tag_set(&fs_info->fs_roots_radix,
440 (unsigned long)root->root_key.objectid,
441 BTRFS_ROOT_TRANS_TAG);
442 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
443 root->last_trans = trans->transid;
444
445 /* this is pretty tricky. We don't want to
446 * take the relocation lock in btrfs_record_root_in_trans
447 * unless we're really doing the first setup for this root in
448 * this transaction.
449 *
450 * Normally we'd use root->last_trans as a flag to decide
451 * if we want to take the expensive mutex.
452 *
453 * But, we have to set root->last_trans before we
454 * init the relocation root, otherwise, we trip over warnings
455 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 456 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
457 * fixing up the reloc trees and everyone must wait.
458 *
459 * When this is zero, they can trust root->last_trans and fly
460 * through btrfs_record_root_in_trans without having to take the
461 * lock. smp_wmb() makes sure that all the writes above are
462 * done before we pop in the zero below
463 */
5d4f98a2 464 btrfs_init_reloc_root(trans, root);
c7548af6 465 smp_mb__before_atomic();
27cdeb70 466 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2
YZ
467 }
468 return 0;
469}
bcc63abb 470
7585717f 471
2b9dbef2
JB
472void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
473 struct btrfs_root *root)
474{
0b246afa 475 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
476 struct btrfs_transaction *cur_trans = trans->transaction;
477
478 /* Add ourselves to the transaction dropped list */
479 spin_lock(&cur_trans->dropped_roots_lock);
480 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
481 spin_unlock(&cur_trans->dropped_roots_lock);
482
483 /* Make sure we don't try to update the root at commit time */
0b246afa
JM
484 spin_lock(&fs_info->fs_roots_radix_lock);
485 radix_tree_tag_clear(&fs_info->fs_roots_radix,
2b9dbef2
JB
486 (unsigned long)root->root_key.objectid,
487 BTRFS_ROOT_TRANS_TAG);
0b246afa 488 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
489}
490
7585717f
CM
491int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
492 struct btrfs_root *root)
493{
0b246afa 494 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 495 int ret;
0b246afa 496
92a7cc42 497 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
498 return 0;
499
500 /*
27cdeb70 501 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
502 * and barriers
503 */
504 smp_rmb();
505 if (root->last_trans == trans->transid &&
27cdeb70 506 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
507 return 0;
508
0b246afa 509 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 510 ret = record_root_in_trans(trans, root, 0);
0b246afa 511 mutex_unlock(&fs_info->reloc_mutex);
7585717f 512
1409e6cc 513 return ret;
7585717f
CM
514}
515
4a9d8bde
MX
516static inline int is_transaction_blocked(struct btrfs_transaction *trans)
517{
3296bf56 518 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 519 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 520 !TRANS_ABORTED(trans));
4a9d8bde
MX
521}
522
d352ac68
CM
523/* wait for commit against the current transaction to become unblocked
524 * when this is done, it is safe to start a new transaction, but the current
525 * transaction might not be fully on disk.
526 */
2ff7e61e 527static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 528{
f9295749 529 struct btrfs_transaction *cur_trans;
79154b1b 530
0b246afa
JM
531 spin_lock(&fs_info->trans_lock);
532 cur_trans = fs_info->running_transaction;
4a9d8bde 533 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 534 refcount_inc(&cur_trans->use_count);
0b246afa 535 spin_unlock(&fs_info->trans_lock);
72d63ed6 536
0b246afa 537 wait_event(fs_info->transaction_wait,
501407aa 538 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 539 TRANS_ABORTED(cur_trans));
724e2315 540 btrfs_put_transaction(cur_trans);
a4abeea4 541 } else {
0b246afa 542 spin_unlock(&fs_info->trans_lock);
f9295749 543 }
37d1aeee
CM
544}
545
2ff7e61e 546static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 547{
0b246afa 548 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
549 return 0;
550
92e2f7e3 551 if (type == TRANS_START)
a22285a6 552 return 1;
a4abeea4 553
a22285a6
YZ
554 return 0;
555}
556
20dd2cbf
MX
557static inline bool need_reserve_reloc_root(struct btrfs_root *root)
558{
0b246afa
JM
559 struct btrfs_fs_info *fs_info = root->fs_info;
560
561 if (!fs_info->reloc_ctl ||
92a7cc42 562 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
563 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
564 root->reloc_root)
565 return false;
566
567 return true;
568}
569
08e007d2 570static struct btrfs_trans_handle *
5aed1dd8 571start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
572 unsigned int type, enum btrfs_reserve_flush_enum flush,
573 bool enforce_qgroups)
37d1aeee 574{
0b246afa 575 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 576 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
577 struct btrfs_trans_handle *h;
578 struct btrfs_transaction *cur_trans;
b5009945 579 u64 num_bytes = 0;
c5567237 580 u64 qgroup_reserved = 0;
20dd2cbf 581 bool reloc_reserved = false;
9c343784 582 bool do_chunk_alloc = false;
20dd2cbf 583 int ret;
acce952b 584
46c4e71e 585 /* Send isn't supposed to start transactions. */
2755a0de 586 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
46c4e71e 587
0b246afa 588 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
acce952b 589 return ERR_PTR(-EROFS);
2a1eb461 590
46c4e71e 591 if (current->journal_info) {
0860adfd 592 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 593 h = current->journal_info;
b50fff81
DS
594 refcount_inc(&h->use_count);
595 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
596 h->orig_rsv = h->block_rsv;
597 h->block_rsv = NULL;
598 goto got_it;
599 }
b5009945
JB
600
601 /*
602 * Do the reservation before we join the transaction so we can do all
603 * the appropriate flushing if need be.
604 */
003d7c59 605 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
606 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
607 u64 delayed_refs_bytes = 0;
608
0b246afa 609 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
610 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
611 enforce_qgroups);
7174109c
QW
612 if (ret)
613 return ERR_PTR(ret);
c5567237 614
ba2c4d4e
JB
615 /*
616 * We want to reserve all the bytes we may need all at once, so
617 * we only do 1 enospc flushing cycle per transaction start. We
618 * accomplish this by simply assuming we'll do 2 x num_items
619 * worth of delayed refs updates in this trans handle, and
620 * refill that amount for whatever is missing in the reserve.
621 */
2bd36e7b 622 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614
JB
623 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
624 delayed_refs_rsv->full == 0) {
ba2c4d4e
JB
625 delayed_refs_bytes = num_bytes;
626 num_bytes <<= 1;
627 }
628
20dd2cbf
MX
629 /*
630 * Do the reservation for the relocation root creation
631 */
ee39b432 632 if (need_reserve_reloc_root(root)) {
0b246afa 633 num_bytes += fs_info->nodesize;
20dd2cbf
MX
634 reloc_reserved = true;
635 }
636
ba2c4d4e
JB
637 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
638 if (ret)
639 goto reserve_fail;
640 if (delayed_refs_bytes) {
641 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
642 delayed_refs_bytes);
643 num_bytes -= delayed_refs_bytes;
644 }
9c343784
JB
645
646 if (rsv->space_info->force_alloc)
647 do_chunk_alloc = true;
ba2c4d4e
JB
648 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
649 !delayed_refs_rsv->full) {
650 /*
651 * Some people call with btrfs_start_transaction(root, 0)
652 * because they can be throttled, but have some other mechanism
653 * for reserving space. We still want these guys to refill the
654 * delayed block_rsv so just add 1 items worth of reservation
655 * here.
656 */
657 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 658 if (ret)
843fcf35 659 goto reserve_fail;
b5009945 660 }
a22285a6 661again:
f2f767e7 662 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
663 if (!h) {
664 ret = -ENOMEM;
665 goto alloc_fail;
666 }
37d1aeee 667
98114659
JB
668 /*
669 * If we are JOIN_NOLOCK we're already committing a transaction and
670 * waiting on this guy, so we don't need to do the sb_start_intwrite
671 * because we're already holding a ref. We need this because we could
672 * have raced in and did an fsync() on a file which can kick a commit
673 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
674 *
675 * If we are ATTACH, it means we just want to catch the current
676 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 677 */
0860adfd 678 if (type & __TRANS_FREEZABLE)
0b246afa 679 sb_start_intwrite(fs_info->sb);
b2b5ef5c 680
2ff7e61e
JM
681 if (may_wait_transaction(fs_info, type))
682 wait_current_trans(fs_info);
a22285a6 683
a4abeea4 684 do {
2ff7e61e 685 ret = join_transaction(fs_info, type);
178260b2 686 if (ret == -EBUSY) {
2ff7e61e 687 wait_current_trans(fs_info);
a6d155d2
FM
688 if (unlikely(type == TRANS_ATTACH ||
689 type == TRANS_JOIN_NOSTART))
178260b2
MX
690 ret = -ENOENT;
691 }
a4abeea4
JB
692 } while (ret == -EBUSY);
693
a43f7f82 694 if (ret < 0)
843fcf35 695 goto join_fail;
0f7d52f4 696
0b246afa 697 cur_trans = fs_info->running_transaction;
a22285a6
YZ
698
699 h->transid = cur_trans->transid;
700 h->transaction = cur_trans;
d13603ef 701 h->root = root;
b50fff81 702 refcount_set(&h->use_count, 1);
64b63580 703 h->fs_info = root->fs_info;
7174109c 704
a698d075 705 h->type = type;
d9a0540a 706 h->can_flush_pending_bgs = true;
ea658bad 707 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 708
a22285a6 709 smp_mb();
3296bf56 710 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 711 may_wait_transaction(fs_info, type)) {
abdd2e80 712 current->journal_info = h;
3a45bb20 713 btrfs_commit_transaction(h);
a22285a6
YZ
714 goto again;
715 }
716
b5009945 717 if (num_bytes) {
0b246afa 718 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 719 h->transid, num_bytes, 1);
0b246afa 720 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 721 h->bytes_reserved = num_bytes;
20dd2cbf 722 h->reloc_reserved = reloc_reserved;
a22285a6 723 }
9ed74f2d 724
2a1eb461 725got_it:
bcf3a3e7 726 if (!current->journal_info)
a22285a6 727 current->journal_info = h;
fcc99734 728
9c343784
JB
729 /*
730 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
731 * ALLOC_FORCE the first run through, and then we won't allocate for
732 * anybody else who races in later. We don't care about the return
733 * value here.
734 */
735 if (do_chunk_alloc && num_bytes) {
736 u64 flags = h->block_rsv->space_info->flags;
737
738 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
739 CHUNK_ALLOC_NO_FORCE);
740 }
741
fcc99734
QW
742 /*
743 * btrfs_record_root_in_trans() needs to alloc new extents, and may
744 * call btrfs_join_transaction() while we're also starting a
745 * transaction.
746 *
747 * Thus it need to be called after current->journal_info initialized,
748 * or we can deadlock.
749 */
68075ea8
JB
750 ret = btrfs_record_root_in_trans(h, root);
751 if (ret) {
752 /*
753 * The transaction handle is fully initialized and linked with
754 * other structures so it needs to be ended in case of errors,
755 * not just freed.
756 */
757 btrfs_end_transaction(h);
758 return ERR_PTR(ret);
759 }
fcc99734 760
79154b1b 761 return h;
843fcf35
MX
762
763join_fail:
0860adfd 764 if (type & __TRANS_FREEZABLE)
0b246afa 765 sb_end_intwrite(fs_info->sb);
843fcf35
MX
766 kmem_cache_free(btrfs_trans_handle_cachep, h);
767alloc_fail:
768 if (num_bytes)
2ff7e61e 769 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 770 num_bytes, NULL);
843fcf35 771reserve_fail:
733e03a0 772 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 773 return ERR_PTR(ret);
79154b1b
CM
774}
775
f9295749 776struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 777 unsigned int num_items)
f9295749 778{
08e007d2 779 return start_transaction(root, num_items, TRANS_START,
003d7c59 780 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 781}
003d7c59 782
8eab77ff
FM
783struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
784 struct btrfs_root *root,
7f9fe614 785 unsigned int num_items)
8eab77ff 786{
7f9fe614
JB
787 return start_transaction(root, num_items, TRANS_START,
788 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 789}
8407aa46 790
7a7eaa40 791struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 792{
003d7c59
JM
793 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
794 true);
f9295749
CM
795}
796
8d510121 797struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 798{
575a75d6 799 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 800 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
801}
802
a6d155d2
FM
803/*
804 * Similar to regular join but it never starts a transaction when none is
805 * running or after waiting for the current one to finish.
806 */
807struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
808{
809 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
810 BTRFS_RESERVE_NO_FLUSH, true);
811}
812
d4edf39b
MX
813/*
814 * btrfs_attach_transaction() - catch the running transaction
815 *
816 * It is used when we want to commit the current the transaction, but
817 * don't want to start a new one.
818 *
819 * Note: If this function return -ENOENT, it just means there is no
820 * running transaction. But it is possible that the inactive transaction
821 * is still in the memory, not fully on disk. If you hope there is no
822 * inactive transaction in the fs when -ENOENT is returned, you should
823 * invoke
824 * btrfs_attach_transaction_barrier()
825 */
354aa0fb 826struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 827{
575a75d6 828 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 829 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
830}
831
d4edf39b 832/*
90b6d283 833 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 834 *
52042d8e 835 * It is similar to the above function, the difference is this one
d4edf39b
MX
836 * will wait for all the inactive transactions until they fully
837 * complete.
838 */
839struct btrfs_trans_handle *
840btrfs_attach_transaction_barrier(struct btrfs_root *root)
841{
842 struct btrfs_trans_handle *trans;
843
575a75d6 844 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 845 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 846 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 847 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
848
849 return trans;
850}
851
d0c2f4fa
FM
852/* Wait for a transaction commit to reach at least the given state. */
853static noinline void wait_for_commit(struct btrfs_transaction *commit,
854 const enum btrfs_trans_state min_state)
89ce8a63 855{
d0c2f4fa 856 wait_event(commit->commit_wait, commit->state >= min_state);
89ce8a63
CM
857}
858
2ff7e61e 859int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
860{
861 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 862 int ret = 0;
46204592 863
46204592 864 if (transid) {
0b246afa 865 if (transid <= fs_info->last_trans_committed)
a4abeea4 866 goto out;
46204592
SW
867
868 /* find specified transaction */
0b246afa
JM
869 spin_lock(&fs_info->trans_lock);
870 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
871 if (t->transid == transid) {
872 cur_trans = t;
9b64f57d 873 refcount_inc(&cur_trans->use_count);
8cd2807f 874 ret = 0;
46204592
SW
875 break;
876 }
8cd2807f
MX
877 if (t->transid > transid) {
878 ret = 0;
46204592 879 break;
8cd2807f 880 }
46204592 881 }
0b246afa 882 spin_unlock(&fs_info->trans_lock);
42383020
SW
883
884 /*
885 * The specified transaction doesn't exist, or we
886 * raced with btrfs_commit_transaction
887 */
888 if (!cur_trans) {
0b246afa 889 if (transid > fs_info->last_trans_committed)
42383020 890 ret = -EINVAL;
8cd2807f 891 goto out;
42383020 892 }
46204592
SW
893 } else {
894 /* find newest transaction that is committing | committed */
0b246afa
JM
895 spin_lock(&fs_info->trans_lock);
896 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 897 list) {
4a9d8bde
MX
898 if (t->state >= TRANS_STATE_COMMIT_START) {
899 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 900 break;
46204592 901 cur_trans = t;
9b64f57d 902 refcount_inc(&cur_trans->use_count);
46204592
SW
903 break;
904 }
905 }
0b246afa 906 spin_unlock(&fs_info->trans_lock);
46204592 907 if (!cur_trans)
a4abeea4 908 goto out; /* nothing committing|committed */
46204592
SW
909 }
910
d0c2f4fa 911 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 912 btrfs_put_transaction(cur_trans);
a4abeea4 913out:
46204592
SW
914 return ret;
915}
916
2ff7e61e 917void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 918{
92e2f7e3 919 wait_current_trans(fs_info);
37d1aeee
CM
920}
921
8a8f4dea 922static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 923{
2ff7e61e 924 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 925
64403612 926 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 927 return true;
36ba022a 928
2ff7e61e 929 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
930}
931
a2633b6a 932bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
933{
934 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 935
3296bf56 936 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 937 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 938 return true;
8929ecfa 939
2ff7e61e 940 return should_end_transaction(trans);
8929ecfa
YZ
941}
942
dc60c525
NB
943static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
944
0e34693f 945{
dc60c525
NB
946 struct btrfs_fs_info *fs_info = trans->fs_info;
947
0e34693f
NB
948 if (!trans->block_rsv) {
949 ASSERT(!trans->bytes_reserved);
950 return;
951 }
952
953 if (!trans->bytes_reserved)
954 return;
955
956 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
957 trace_btrfs_space_reservation(fs_info, "transaction",
958 trans->transid, trans->bytes_reserved, 0);
959 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 960 trans->bytes_reserved, NULL);
0e34693f
NB
961 trans->bytes_reserved = 0;
962}
963
89ce8a63 964static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 965 int throttle)
79154b1b 966{
3a45bb20 967 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 968 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 969 int err = 0;
c3e69d58 970
b50fff81
DS
971 if (refcount_read(&trans->use_count) > 1) {
972 refcount_dec(&trans->use_count);
2a1eb461
JB
973 trans->block_rsv = trans->orig_rsv;
974 return 0;
975 }
976
dc60c525 977 btrfs_trans_release_metadata(trans);
4c13d758 978 trans->block_rsv = NULL;
c5567237 979
119e80df 980 btrfs_create_pending_block_groups(trans);
ea658bad 981
4fbcdf66
FM
982 btrfs_trans_release_chunk_metadata(trans);
983
0860adfd 984 if (trans->type & __TRANS_FREEZABLE)
0b246afa 985 sb_end_intwrite(info->sb);
6df7881a 986
8929ecfa 987 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
988 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
989 atomic_dec(&cur_trans->num_writers);
0860adfd 990 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 991
093258e6 992 cond_wake_up(&cur_trans->writer_wait);
724e2315 993 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
994
995 if (current->journal_info == trans)
996 current->journal_info = NULL;
ab78c84d 997
24bbcf04 998 if (throttle)
2ff7e61e 999 btrfs_run_delayed_iputs(info);
24bbcf04 1000
bf31f87f 1001 if (TRANS_ABORTED(trans) ||
0b246afa 1002 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
4e121c06 1003 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1004 if (TRANS_ABORTED(trans))
1005 err = trans->aborted;
1006 else
1007 err = -EROFS;
4e121c06 1008 }
49b25e05 1009
4edc2ca3
DJ
1010 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1011 return err;
79154b1b
CM
1012}
1013
3a45bb20 1014int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1015{
3a45bb20 1016 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1017}
1018
3a45bb20 1019int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1020{
3a45bb20 1021 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1022}
1023
d352ac68
CM
1024/*
1025 * when btree blocks are allocated, they have some corresponding bits set for
1026 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1027 * those extents are sent to disk but does not wait on them
d352ac68 1028 */
2ff7e61e 1029int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1030 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1031{
777e6bd7 1032 int err = 0;
7c4452b9 1033 int werr = 0;
0b246afa 1034 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1035 struct extent_state *cached_state = NULL;
777e6bd7 1036 u64 start = 0;
5f39d397 1037 u64 end;
7c4452b9 1038
6300463b 1039 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1040 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1041 mark, &cached_state)) {
663dfbb0
FM
1042 bool wait_writeback = false;
1043
1044 err = convert_extent_bit(dirty_pages, start, end,
1045 EXTENT_NEED_WAIT,
210aa277 1046 mark, &cached_state);
663dfbb0
FM
1047 /*
1048 * convert_extent_bit can return -ENOMEM, which is most of the
1049 * time a temporary error. So when it happens, ignore the error
1050 * and wait for writeback of this range to finish - because we
1051 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1052 * to __btrfs_wait_marked_extents() would not know that
1053 * writeback for this range started and therefore wouldn't
1054 * wait for it to finish - we don't want to commit a
1055 * superblock that points to btree nodes/leafs for which
1056 * writeback hasn't finished yet (and without errors).
663dfbb0 1057 * We cleanup any entries left in the io tree when committing
41e7acd3 1058 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1059 */
1060 if (err == -ENOMEM) {
1061 err = 0;
1062 wait_writeback = true;
1063 }
1064 if (!err)
1065 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1066 if (err)
1067 werr = err;
663dfbb0
FM
1068 else if (wait_writeback)
1069 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1070 free_extent_state(cached_state);
663dfbb0 1071 cached_state = NULL;
1728366e
JB
1072 cond_resched();
1073 start = end + 1;
7c4452b9 1074 }
6300463b 1075 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1076 return werr;
1077}
1078
1079/*
1080 * when btree blocks are allocated, they have some corresponding bits set for
1081 * them in one of two extent_io trees. This is used to make sure all of
1082 * those extents are on disk for transaction or log commit. We wait
1083 * on all the pages and clear them from the dirty pages state tree
1084 */
bf89d38f
JM
1085static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1086 struct extent_io_tree *dirty_pages)
690587d1 1087{
690587d1
CM
1088 int err = 0;
1089 int werr = 0;
0b246afa 1090 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1091 struct extent_state *cached_state = NULL;
690587d1
CM
1092 u64 start = 0;
1093 u64 end;
777e6bd7 1094
1728366e 1095 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1096 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1097 /*
1098 * Ignore -ENOMEM errors returned by clear_extent_bit().
1099 * When committing the transaction, we'll remove any entries
1100 * left in the io tree. For a log commit, we don't remove them
1101 * after committing the log because the tree can be accessed
1102 * concurrently - we do it only at transaction commit time when
41e7acd3 1103 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1104 */
1105 err = clear_extent_bit(dirty_pages, start, end,
ae0f1625 1106 EXTENT_NEED_WAIT, 0, 0, &cached_state);
663dfbb0
FM
1107 if (err == -ENOMEM)
1108 err = 0;
1109 if (!err)
1110 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1111 if (err)
1112 werr = err;
e38e2ed7
FM
1113 free_extent_state(cached_state);
1114 cached_state = NULL;
1728366e
JB
1115 cond_resched();
1116 start = end + 1;
777e6bd7 1117 }
7c4452b9
CM
1118 if (err)
1119 werr = err;
bf89d38f
JM
1120 return werr;
1121}
656f30db 1122
b9fae2eb 1123static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1124 struct extent_io_tree *dirty_pages)
1125{
1126 bool errors = false;
1127 int err;
656f30db 1128
bf89d38f
JM
1129 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1130 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1131 errors = true;
1132
1133 if (errors && !err)
1134 err = -EIO;
1135 return err;
1136}
656f30db 1137
bf89d38f
JM
1138int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1139{
1140 struct btrfs_fs_info *fs_info = log_root->fs_info;
1141 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1142 bool errors = false;
1143 int err;
656f30db 1144
bf89d38f
JM
1145 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1146
1147 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1148 if ((mark & EXTENT_DIRTY) &&
1149 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1150 errors = true;
1151
1152 if ((mark & EXTENT_NEW) &&
1153 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1154 errors = true;
1155
1156 if (errors && !err)
1157 err = -EIO;
1158 return err;
79154b1b
CM
1159}
1160
690587d1 1161/*
c9b577c0
NB
1162 * When btree blocks are allocated the corresponding extents are marked dirty.
1163 * This function ensures such extents are persisted on disk for transaction or
1164 * log commit.
1165 *
1166 * @trans: transaction whose dirty pages we'd like to write
690587d1 1167 */
70458a58 1168static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1169{
1170 int ret;
1171 int ret2;
c9b577c0 1172 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1173 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1174 struct blk_plug plug;
690587d1 1175
c6adc9cc 1176 blk_start_plug(&plug);
c9b577c0 1177 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1178 blk_finish_plug(&plug);
bf89d38f 1179 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1180
41e7acd3 1181 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1182
bf0da8c1
CM
1183 if (ret)
1184 return ret;
c9b577c0 1185 else if (ret2)
bf0da8c1 1186 return ret2;
c9b577c0
NB
1187 else
1188 return 0;
d0c803c4
CM
1189}
1190
d352ac68
CM
1191/*
1192 * this is used to update the root pointer in the tree of tree roots.
1193 *
1194 * But, in the case of the extent allocation tree, updating the root
1195 * pointer may allocate blocks which may change the root of the extent
1196 * allocation tree.
1197 *
1198 * So, this loops and repeats and makes sure the cowonly root didn't
1199 * change while the root pointer was being updated in the metadata.
1200 */
0b86a832
CM
1201static int update_cowonly_root(struct btrfs_trans_handle *trans,
1202 struct btrfs_root *root)
79154b1b
CM
1203{
1204 int ret;
0b86a832 1205 u64 old_root_bytenr;
86b9f2ec 1206 u64 old_root_used;
0b246afa
JM
1207 struct btrfs_fs_info *fs_info = root->fs_info;
1208 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1209
86b9f2ec 1210 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1211
d397712b 1212 while (1) {
0b86a832 1213 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1214 if (old_root_bytenr == root->node->start &&
ea526d18 1215 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1216 break;
87ef2bb4 1217
5d4f98a2 1218 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1219 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1220 &root->root_key,
1221 &root->root_item);
49b25e05
JM
1222 if (ret)
1223 return ret;
56bec294 1224
86b9f2ec 1225 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1226 }
276e680d 1227
0b86a832
CM
1228 return 0;
1229}
1230
d352ac68
CM
1231/*
1232 * update all the cowonly tree roots on disk
49b25e05
JM
1233 *
1234 * The error handling in this function may not be obvious. Any of the
1235 * failures will cause the file system to go offline. We still need
1236 * to clean up the delayed refs.
d352ac68 1237 */
9386d8bc 1238static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1239{
9386d8bc 1240 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1241 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1242 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1243 struct list_head *next;
84234f3a 1244 struct extent_buffer *eb;
56bec294 1245 int ret;
84234f3a
YZ
1246
1247 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1248 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1249 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1250 btrfs_tree_unlock(eb);
1251 free_extent_buffer(eb);
0b86a832 1252
49b25e05
JM
1253 if (ret)
1254 return ret;
87ef2bb4 1255
196c9d8d 1256 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1257 if (ret)
1258 return ret;
2b584c68 1259 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1260 if (ret)
1261 return ret;
280f8bd2 1262 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1263 if (ret)
1264 return ret;
546adb0d 1265
bbebb3e0 1266 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1267 if (ret)
1268 return ret;
1269
ea526d18 1270again:
d397712b 1271 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1272 struct btrfs_root *root;
0b86a832
CM
1273 next = fs_info->dirty_cowonly_roots.next;
1274 list_del_init(next);
1275 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1276 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1277
9e351cc8
JB
1278 if (root != fs_info->extent_root)
1279 list_add_tail(&root->dirty_list,
1280 &trans->transaction->switch_commits);
49b25e05
JM
1281 ret = update_cowonly_root(trans, root);
1282 if (ret)
1283 return ret;
79154b1b 1284 }
276e680d 1285
488bc2a2
JB
1286 /* Now flush any delayed refs generated by updating all of the roots */
1287 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1288 if (ret)
1289 return ret;
1290
1bbc621e 1291 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1292 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1293 if (ret)
1294 return ret;
488bc2a2
JB
1295
1296 /*
1297 * We're writing the dirty block groups, which could generate
1298 * delayed refs, which could generate more dirty block groups,
1299 * so we want to keep this flushing in this loop to make sure
1300 * everything gets run.
1301 */
c79a70b1 1302 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1303 if (ret)
1304 return ret;
1305 }
1306
1307 if (!list_empty(&fs_info->dirty_cowonly_roots))
1308 goto again;
1309
9e351cc8
JB
1310 list_add_tail(&fs_info->extent_root->dirty_list,
1311 &trans->transaction->switch_commits);
9f6cbcbb
DS
1312
1313 /* Update dev-replace pointer once everything is committed */
1314 fs_info->dev_replace.committed_cursor_left =
1315 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1316
79154b1b
CM
1317 return 0;
1318}
1319
d352ac68
CM
1320/*
1321 * dead roots are old snapshots that need to be deleted. This allocates
1322 * a dirty root struct and adds it into the list of dead roots that need to
1323 * be deleted
1324 */
cfad392b 1325void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1326{
0b246afa
JM
1327 struct btrfs_fs_info *fs_info = root->fs_info;
1328
1329 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1330 if (list_empty(&root->root_list)) {
1331 btrfs_grab_root(root);
0b246afa 1332 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1333 }
0b246afa 1334 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1335}
1336
d352ac68 1337/*
5d4f98a2 1338 * update all the cowonly tree roots on disk
d352ac68 1339 */
7e4443d9 1340static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1341{
7e4443d9 1342 struct btrfs_fs_info *fs_info = trans->fs_info;
0f7d52f4 1343 struct btrfs_root *gang[8];
0f7d52f4
CM
1344 int i;
1345 int ret;
54aa1f4d 1346
a4abeea4 1347 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 1348 while (1) {
5d4f98a2
YZ
1349 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1350 (void **)gang, 0,
0f7d52f4
CM
1351 ARRAY_SIZE(gang),
1352 BTRFS_ROOT_TRANS_TAG);
1353 if (ret == 0)
1354 break;
1355 for (i = 0; i < ret; i++) {
5b4aacef 1356 struct btrfs_root *root = gang[i];
4f4317c1
JB
1357 int ret2;
1358
5d4f98a2
YZ
1359 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1360 (unsigned long)root->root_key.objectid,
1361 BTRFS_ROOT_TRANS_TAG);
a4abeea4 1362 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 1363
e02119d5 1364 btrfs_free_log(trans, root);
5d4f98a2 1365 btrfs_update_reloc_root(trans, root);
bcc63abb 1366
f1ebcc74 1367 /* see comments in should_cow_block() */
27cdeb70 1368 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
c7548af6 1369 smp_mb__after_atomic();
f1ebcc74 1370
978d910d 1371 if (root->commit_root != root->node) {
9e351cc8
JB
1372 list_add_tail(&root->dirty_list,
1373 &trans->transaction->switch_commits);
978d910d
YZ
1374 btrfs_set_root_node(&root->root_item,
1375 root->node);
1376 }
5d4f98a2 1377
4f4317c1 1378 ret2 = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
1379 &root->root_key,
1380 &root->root_item);
4f4317c1
JB
1381 if (ret2)
1382 return ret2;
a4abeea4 1383 spin_lock(&fs_info->fs_roots_radix_lock);
733e03a0 1384 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1385 }
1386 }
a4abeea4 1387 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1388 return 0;
0f7d52f4
CM
1389}
1390
d352ac68 1391/*
de78b51a
ES
1392 * defrag a given btree.
1393 * Every leaf in the btree is read and defragged.
d352ac68 1394 */
de78b51a 1395int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1396{
1397 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1398 struct btrfs_trans_handle *trans;
8929ecfa 1399 int ret;
e9d0b13b 1400
27cdeb70 1401 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1402 return 0;
8929ecfa 1403
6b80053d 1404 while (1) {
8929ecfa
YZ
1405 trans = btrfs_start_transaction(root, 0);
1406 if (IS_ERR(trans))
1407 return PTR_ERR(trans);
1408
de78b51a 1409 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1410
3a45bb20 1411 btrfs_end_transaction(trans);
2ff7e61e 1412 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1413 cond_resched();
1414
ab8d0fc4 1415 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1416 break;
210549eb 1417
ab8d0fc4
JM
1418 if (btrfs_defrag_cancelled(info)) {
1419 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1420 ret = -EAGAIN;
1421 break;
1422 }
e9d0b13b 1423 }
27cdeb70 1424 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1425 return ret;
e9d0b13b
CM
1426}
1427
6426c7ad
QW
1428/*
1429 * Do all special snapshot related qgroup dirty hack.
1430 *
1431 * Will do all needed qgroup inherit and dirty hack like switch commit
1432 * roots inside one transaction and write all btree into disk, to make
1433 * qgroup works.
1434 */
1435static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1436 struct btrfs_root *src,
1437 struct btrfs_root *parent,
1438 struct btrfs_qgroup_inherit *inherit,
1439 u64 dst_objectid)
1440{
1441 struct btrfs_fs_info *fs_info = src->fs_info;
1442 int ret;
1443
1444 /*
1445 * Save some performance in the case that qgroups are not
1446 * enabled. If this check races with the ioctl, rescan will
1447 * kick in anyway.
1448 */
9ea6e2b5 1449 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1450 return 0;
6426c7ad 1451
4d31778a 1452 /*
52042d8e 1453 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1454 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1455 * recorded root will never be updated again, causing an outdated root
1456 * item.
1457 */
1c442d22
JB
1458 ret = record_root_in_trans(trans, src, 1);
1459 if (ret)
1460 return ret;
4d31778a 1461
2a4d84c1
JB
1462 /*
1463 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1464 * src root, so we must run the delayed refs here.
1465 *
1466 * However this isn't particularly fool proof, because there's no
1467 * synchronization keeping us from changing the tree after this point
1468 * before we do the qgroup_inherit, or even from making changes while
1469 * we're doing the qgroup_inherit. But that's a problem for the future,
1470 * for now flush the delayed refs to narrow the race window where the
1471 * qgroup counters could end up wrong.
1472 */
1473 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1474 if (ret) {
1475 btrfs_abort_transaction(trans, ret);
1476 goto out;
1477 }
1478
6426c7ad
QW
1479 /*
1480 * We are going to commit transaction, see btrfs_commit_transaction()
1481 * comment for reason locking tree_log_mutex
1482 */
1483 mutex_lock(&fs_info->tree_log_mutex);
1484
7e4443d9 1485 ret = commit_fs_roots(trans);
6426c7ad
QW
1486 if (ret)
1487 goto out;
460fb20a 1488 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1489 if (ret < 0)
1490 goto out;
1491
1492 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1493 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1494 inherit);
1495 if (ret < 0)
1496 goto out;
1497
1498 /*
1499 * Now we do a simplified commit transaction, which will:
1500 * 1) commit all subvolume and extent tree
1501 * To ensure all subvolume and extent tree have a valid
1502 * commit_root to accounting later insert_dir_item()
1503 * 2) write all btree blocks onto disk
1504 * This is to make sure later btree modification will be cowed
1505 * Or commit_root can be populated and cause wrong qgroup numbers
1506 * In this simplified commit, we don't really care about other trees
1507 * like chunk and root tree, as they won't affect qgroup.
1508 * And we don't write super to avoid half committed status.
1509 */
9386d8bc 1510 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1511 if (ret)
1512 goto out;
889bfa39 1513 switch_commit_roots(trans);
70458a58 1514 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1515 if (ret)
f7af3934 1516 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1517 "Error while writing out transaction for qgroup");
1518
1519out:
1520 mutex_unlock(&fs_info->tree_log_mutex);
1521
1522 /*
1523 * Force parent root to be updated, as we recorded it before so its
1524 * last_trans == cur_transid.
1525 * Or it won't be committed again onto disk after later
1526 * insert_dir_item()
1527 */
1528 if (!ret)
1c442d22 1529 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1530 return ret;
1531}
1532
d352ac68
CM
1533/*
1534 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1535 * transaction commit. This does the actual creation.
1536 *
1537 * Note:
1538 * If the error which may affect the commitment of the current transaction
1539 * happens, we should return the error number. If the error which just affect
1540 * the creation of the pending snapshots, just return 0.
d352ac68 1541 */
80b6794d 1542static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1543 struct btrfs_pending_snapshot *pending)
1544{
08d50ca3
NB
1545
1546 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1547 struct btrfs_key key;
80b6794d 1548 struct btrfs_root_item *new_root_item;
3063d29f
CM
1549 struct btrfs_root *tree_root = fs_info->tree_root;
1550 struct btrfs_root *root = pending->root;
6bdb72de 1551 struct btrfs_root *parent_root;
98c9942a 1552 struct btrfs_block_rsv *rsv;
6bdb72de 1553 struct inode *parent_inode;
42874b3d
MX
1554 struct btrfs_path *path;
1555 struct btrfs_dir_item *dir_item;
a22285a6 1556 struct dentry *dentry;
3063d29f 1557 struct extent_buffer *tmp;
925baedd 1558 struct extent_buffer *old;
95582b00 1559 struct timespec64 cur_time;
aec8030a 1560 int ret = 0;
d68fc57b 1561 u64 to_reserve = 0;
6bdb72de 1562 u64 index = 0;
a22285a6 1563 u64 objectid;
b83cc969 1564 u64 root_flags;
3063d29f 1565
8546b570
DS
1566 ASSERT(pending->path);
1567 path = pending->path;
42874b3d 1568
b0c0ea63
DS
1569 ASSERT(pending->root_item);
1570 new_root_item = pending->root_item;
a22285a6 1571
543068a2 1572 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1573 if (pending->error)
6fa9700e 1574 goto no_free_objectid;
3063d29f 1575
d6726335
QW
1576 /*
1577 * Make qgroup to skip current new snapshot's qgroupid, as it is
1578 * accounted by later btrfs_qgroup_inherit().
1579 */
1580 btrfs_set_skip_qgroup(trans, objectid);
1581
147d256e 1582 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1583
1584 if (to_reserve > 0) {
aec8030a
MX
1585 pending->error = btrfs_block_rsv_add(root,
1586 &pending->block_rsv,
1587 to_reserve,
1588 BTRFS_RESERVE_NO_FLUSH);
1589 if (pending->error)
d6726335 1590 goto clear_skip_qgroup;
d68fc57b
YZ
1591 }
1592
3063d29f 1593 key.objectid = objectid;
a22285a6
YZ
1594 key.offset = (u64)-1;
1595 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1596
6fa9700e 1597 rsv = trans->block_rsv;
a22285a6 1598 trans->block_rsv = &pending->block_rsv;
2382c5cc 1599 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1600 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1601 trans->transid,
1602 trans->bytes_reserved, 1);
a22285a6 1603 dentry = pending->dentry;
e9662f70 1604 parent_inode = pending->dir;
a22285a6 1605 parent_root = BTRFS_I(parent_inode)->root;
6426c7ad 1606 record_root_in_trans(trans, parent_root, 0);
a22285a6 1607
c2050a45 1608 cur_time = current_time(parent_inode);
04b285f3 1609
3063d29f
CM
1610 /*
1611 * insert the directory item
1612 */
877574e2 1613 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1614 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1615
1616 /* check if there is a file/dir which has the same name. */
1617 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1618 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1619 dentry->d_name.name,
1620 dentry->d_name.len, 0);
1621 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1622 pending->error = -EEXIST;
aec8030a 1623 goto dir_item_existed;
42874b3d
MX
1624 } else if (IS_ERR(dir_item)) {
1625 ret = PTR_ERR(dir_item);
66642832 1626 btrfs_abort_transaction(trans, ret);
8732d44f 1627 goto fail;
79787eaa 1628 }
42874b3d 1629 btrfs_release_path(path);
52c26179 1630
e999376f
CM
1631 /*
1632 * pull in the delayed directory update
1633 * and the delayed inode item
1634 * otherwise we corrupt the FS during
1635 * snapshot
1636 */
e5c304e6 1637 ret = btrfs_run_delayed_items(trans);
8732d44f 1638 if (ret) { /* Transaction aborted */
66642832 1639 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1640 goto fail;
1641 }
e999376f 1642
6426c7ad 1643 record_root_in_trans(trans, root, 0);
6bdb72de
SW
1644 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1645 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1646 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1647
b83cc969
LZ
1648 root_flags = btrfs_root_flags(new_root_item);
1649 if (pending->readonly)
1650 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1651 else
1652 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1653 btrfs_set_root_flags(new_root_item, root_flags);
1654
8ea05e3a
AB
1655 btrfs_set_root_generation_v2(new_root_item,
1656 trans->transid);
807fc790 1657 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1658 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1659 BTRFS_UUID_SIZE);
70023da2
SB
1660 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1661 memset(new_root_item->received_uuid, 0,
1662 sizeof(new_root_item->received_uuid));
1663 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1664 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1665 btrfs_set_root_stransid(new_root_item, 0);
1666 btrfs_set_root_rtransid(new_root_item, 0);
1667 }
3cae210f
QW
1668 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1669 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1670 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1671
6bdb72de 1672 old = btrfs_lock_root_node(root);
9631e4cc
JB
1673 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1674 BTRFS_NESTING_COW);
79787eaa
JM
1675 if (ret) {
1676 btrfs_tree_unlock(old);
1677 free_extent_buffer(old);
66642832 1678 btrfs_abort_transaction(trans, ret);
8732d44f 1679 goto fail;
79787eaa 1680 }
49b25e05 1681
49b25e05 1682 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1683 /* clean up in any case */
6bdb72de
SW
1684 btrfs_tree_unlock(old);
1685 free_extent_buffer(old);
8732d44f 1686 if (ret) {
66642832 1687 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1688 goto fail;
1689 }
f1ebcc74 1690 /* see comments in should_cow_block() */
27cdeb70 1691 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1692 smp_wmb();
1693
6bdb72de 1694 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1695 /* record when the snapshot was created in key.offset */
1696 key.offset = trans->transid;
1697 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1698 btrfs_tree_unlock(tmp);
1699 free_extent_buffer(tmp);
8732d44f 1700 if (ret) {
66642832 1701 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1702 goto fail;
1703 }
6bdb72de 1704
a22285a6
YZ
1705 /*
1706 * insert root back/forward references
1707 */
6025c19f 1708 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1709 parent_root->root_key.objectid,
4a0cc7ca 1710 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1711 dentry->d_name.name, dentry->d_name.len);
8732d44f 1712 if (ret) {
66642832 1713 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1714 goto fail;
1715 }
0660b5af 1716
a22285a6 1717 key.offset = (u64)-1;
2dfb1e43 1718 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1719 if (IS_ERR(pending->snap)) {
1720 ret = PTR_ERR(pending->snap);
2d892ccd 1721 pending->snap = NULL;
66642832 1722 btrfs_abort_transaction(trans, ret);
8732d44f 1723 goto fail;
79787eaa 1724 }
d68fc57b 1725
49b25e05 1726 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1727 if (ret) {
66642832 1728 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1729 goto fail;
1730 }
361048f5 1731
6426c7ad
QW
1732 /*
1733 * Do special qgroup accounting for snapshot, as we do some qgroup
1734 * snapshot hack to do fast snapshot.
1735 * To co-operate with that hack, we do hack again.
1736 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1737 */
1738 ret = qgroup_account_snapshot(trans, root, parent_root,
1739 pending->inherit, objectid);
1740 if (ret < 0)
1741 goto fail;
1742
684572df
LF
1743 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1744 dentry->d_name.len, BTRFS_I(parent_inode),
1745 &key, BTRFS_FT_DIR, index);
42874b3d 1746 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1747 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1748 if (ret) {
66642832 1749 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1750 goto fail;
1751 }
42874b3d 1752
6ef06d27 1753 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1754 dentry->d_name.len * 2);
04b285f3 1755 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 1756 current_time(parent_inode);
729f7961 1757 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1758 if (ret) {
66642832 1759 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1760 goto fail;
1761 }
807fc790
AS
1762 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1763 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1764 objectid);
dd5f9615 1765 if (ret) {
66642832 1766 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1767 goto fail;
1768 }
1769 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1770 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1771 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1772 objectid);
1773 if (ret && ret != -EEXIST) {
66642832 1774 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1775 goto fail;
1776 }
1777 }
d6726335 1778
3063d29f 1779fail:
aec8030a
MX
1780 pending->error = ret;
1781dir_item_existed:
98c9942a 1782 trans->block_rsv = rsv;
2382c5cc 1783 trans->bytes_reserved = 0;
d6726335
QW
1784clear_skip_qgroup:
1785 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1786no_free_objectid:
1787 kfree(new_root_item);
b0c0ea63 1788 pending->root_item = NULL;
42874b3d 1789 btrfs_free_path(path);
8546b570
DS
1790 pending->path = NULL;
1791
49b25e05 1792 return ret;
3063d29f
CM
1793}
1794
d352ac68
CM
1795/*
1796 * create all the snapshots we've scheduled for creation
1797 */
08d50ca3 1798static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1799{
aec8030a 1800 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1801 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1802 int ret = 0;
3de4586c 1803
aec8030a
MX
1804 list_for_each_entry_safe(pending, next, head, list) {
1805 list_del(&pending->list);
08d50ca3 1806 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1807 if (ret)
1808 break;
1809 }
1810 return ret;
3de4586c
CM
1811}
1812
2ff7e61e 1813static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1814{
1815 struct btrfs_root_item *root_item;
1816 struct btrfs_super_block *super;
1817
0b246afa 1818 super = fs_info->super_copy;
5d4f98a2 1819
0b246afa 1820 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1821 super->chunk_root = root_item->bytenr;
1822 super->chunk_root_generation = root_item->generation;
1823 super->chunk_root_level = root_item->level;
5d4f98a2 1824
0b246afa 1825 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1826 super->root = root_item->bytenr;
1827 super->generation = root_item->generation;
1828 super->root_level = root_item->level;
0b246afa 1829 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1830 super->cache_generation = root_item->generation;
94846229
BB
1831 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1832 super->cache_generation = 0;
0b246afa 1833 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1834 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1835}
1836
f36f3042
CM
1837int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1838{
4a9d8bde 1839 struct btrfs_transaction *trans;
f36f3042 1840 int ret = 0;
4a9d8bde 1841
a4abeea4 1842 spin_lock(&info->trans_lock);
4a9d8bde
MX
1843 trans = info->running_transaction;
1844 if (trans)
1845 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1846 spin_unlock(&info->trans_lock);
f36f3042
CM
1847 return ret;
1848}
1849
8929ecfa
YZ
1850int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1851{
4a9d8bde 1852 struct btrfs_transaction *trans;
8929ecfa 1853 int ret = 0;
4a9d8bde 1854
a4abeea4 1855 spin_lock(&info->trans_lock);
4a9d8bde
MX
1856 trans = info->running_transaction;
1857 if (trans)
1858 ret = is_transaction_blocked(trans);
a4abeea4 1859 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1860 return ret;
1861}
1862
bb9c12c9
SW
1863/*
1864 * wait for the current transaction commit to start and block subsequent
1865 * transaction joins
1866 */
2ff7e61e 1867static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
bb9c12c9
SW
1868 struct btrfs_transaction *trans)
1869{
2ff7e61e 1870 wait_event(fs_info->transaction_blocked_wait,
bf31f87f
DS
1871 trans->state >= TRANS_STATE_COMMIT_START ||
1872 TRANS_ABORTED(trans));
bb9c12c9
SW
1873}
1874
1875/*
1876 * wait for the current transaction to start and then become unblocked.
1877 * caller holds ref.
1878 */
2ff7e61e
JM
1879static void wait_current_trans_commit_start_and_unblock(
1880 struct btrfs_fs_info *fs_info,
1881 struct btrfs_transaction *trans)
bb9c12c9 1882{
2ff7e61e 1883 wait_event(fs_info->transaction_wait,
bf31f87f
DS
1884 trans->state >= TRANS_STATE_UNBLOCKED ||
1885 TRANS_ABORTED(trans));
bb9c12c9
SW
1886}
1887
1888/*
1889 * commit transactions asynchronously. once btrfs_commit_transaction_async
1890 * returns, any subsequent transaction will not be allowed to join.
1891 */
1892struct btrfs_async_commit {
1893 struct btrfs_trans_handle *newtrans;
7892b5af 1894 struct work_struct work;
bb9c12c9
SW
1895};
1896
1897static void do_async_commit(struct work_struct *work)
1898{
1899 struct btrfs_async_commit *ac =
7892b5af 1900 container_of(work, struct btrfs_async_commit, work);
bb9c12c9 1901
6fc4e354
SW
1902 /*
1903 * We've got freeze protection passed with the transaction.
1904 * Tell lockdep about it.
1905 */
b1a06a4b 1906 if (ac->newtrans->type & __TRANS_FREEZABLE)
3a45bb20 1907 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
6fc4e354 1908
e209db7a
SW
1909 current->journal_info = ac->newtrans;
1910
3a45bb20 1911 btrfs_commit_transaction(ac->newtrans);
bb9c12c9
SW
1912 kfree(ac);
1913}
1914
1915int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
bb9c12c9
SW
1916 int wait_for_unblock)
1917{
3a45bb20 1918 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1919 struct btrfs_async_commit *ac;
1920 struct btrfs_transaction *cur_trans;
1921
1922 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1923 if (!ac)
1924 return -ENOMEM;
bb9c12c9 1925
7892b5af 1926 INIT_WORK(&ac->work, do_async_commit);
3a45bb20 1927 ac->newtrans = btrfs_join_transaction(trans->root);
3612b495
TI
1928 if (IS_ERR(ac->newtrans)) {
1929 int err = PTR_ERR(ac->newtrans);
1930 kfree(ac);
1931 return err;
1932 }
bb9c12c9
SW
1933
1934 /* take transaction reference */
bb9c12c9 1935 cur_trans = trans->transaction;
9b64f57d 1936 refcount_inc(&cur_trans->use_count);
bb9c12c9 1937
3a45bb20 1938 btrfs_end_transaction(trans);
6fc4e354
SW
1939
1940 /*
1941 * Tell lockdep we've released the freeze rwsem, since the
1942 * async commit thread will be the one to unlock it.
1943 */
b1a06a4b 1944 if (ac->newtrans->type & __TRANS_FREEZABLE)
0b246afa 1945 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
6fc4e354 1946
7892b5af 1947 schedule_work(&ac->work);
bb9c12c9
SW
1948
1949 /* wait for transaction to start and unblock */
bb9c12c9 1950 if (wait_for_unblock)
2ff7e61e 1951 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
bb9c12c9 1952 else
2ff7e61e 1953 wait_current_trans_commit_start(fs_info, cur_trans);
bb9c12c9 1954
38e88054
SW
1955 if (current->journal_info == trans)
1956 current->journal_info = NULL;
1957
724e2315 1958 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1959 return 0;
1960}
1961
49b25e05 1962
97cb39bb 1963static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1964{
97cb39bb 1965 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1966 struct btrfs_transaction *cur_trans = trans->transaction;
1967
b50fff81 1968 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1969
66642832 1970 btrfs_abort_transaction(trans, err);
7b8b92af 1971
0b246afa 1972 spin_lock(&fs_info->trans_lock);
66b6135b 1973
25d8c284
MX
1974 /*
1975 * If the transaction is removed from the list, it means this
1976 * transaction has been committed successfully, so it is impossible
1977 * to call the cleanup function.
1978 */
1979 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1980
49b25e05 1981 list_del_init(&cur_trans->list);
0b246afa 1982 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1983 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1984 spin_unlock(&fs_info->trans_lock);
f094ac32
LB
1985 wait_event(cur_trans->writer_wait,
1986 atomic_read(&cur_trans->num_writers) == 1);
1987
0b246afa 1988 spin_lock(&fs_info->trans_lock);
d7096fc3 1989 }
0b246afa 1990 spin_unlock(&fs_info->trans_lock);
49b25e05 1991
2ff7e61e 1992 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 1993
0b246afa
JM
1994 spin_lock(&fs_info->trans_lock);
1995 if (cur_trans == fs_info->running_transaction)
1996 fs_info->running_transaction = NULL;
1997 spin_unlock(&fs_info->trans_lock);
4a9d8bde 1998
e0228285 1999 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2000 sb_end_intwrite(fs_info->sb);
724e2315
JB
2001 btrfs_put_transaction(cur_trans);
2002 btrfs_put_transaction(cur_trans);
49b25e05 2003
97cb39bb 2004 trace_btrfs_transaction_commit(trans->root);
49b25e05 2005
49b25e05
JM
2006 if (current->journal_info == trans)
2007 current->journal_info = NULL;
0b246afa 2008 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2009
2010 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2011}
2012
c7cc64a9
DS
2013/*
2014 * Release reserved delayed ref space of all pending block groups of the
2015 * transaction and remove them from the list
2016 */
2017static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2018{
2019 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2020 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2021
2022 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2023 btrfs_delayed_refs_rsv_release(fs_info, 1);
2024 list_del_init(&block_group->bg_list);
2025 }
2026}
2027
88090ad3 2028static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2029{
ce8ea7cc
JB
2030 /*
2031 * We use writeback_inodes_sb here because if we used
2032 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2033 * Currently are holding the fs freeze lock, if we do an async flush
2034 * we'll do btrfs_join_transaction() and deadlock because we need to
2035 * wait for the fs freeze lock. Using the direct flushing we benefit
2036 * from already being in a transaction and our join_transaction doesn't
2037 * have to re-take the fs freeze lock.
2038 */
88090ad3 2039 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
ce8ea7cc 2040 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2041 return 0;
2042}
2043
88090ad3 2044static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2045{
88090ad3 2046 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2047 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2048}
2049
3a45bb20 2050int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2051{
3a45bb20 2052 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2053 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2054 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2055 int ret;
79154b1b 2056
35b814f3
NB
2057 ASSERT(refcount_read(&trans->use_count) == 1);
2058
d62b23c9
JB
2059 /*
2060 * Some places just start a transaction to commit it. We need to make
2061 * sure that if this commit fails that the abort code actually marks the
2062 * transaction as failed, so set trans->dirty to make the abort code do
2063 * the right thing.
2064 */
2065 trans->dirty = true;
2066
8d25a086 2067 /* Stop the commit early if ->aborted is set */
bf31f87f 2068 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2069 ret = cur_trans->aborted;
3a45bb20 2070 btrfs_end_transaction(trans);
e4a2bcac 2071 return ret;
25287e0a 2072 }
49b25e05 2073
f45c752b
JB
2074 btrfs_trans_release_metadata(trans);
2075 trans->block_rsv = NULL;
2076
56bec294 2077 /*
e19eb11f
JB
2078 * We only want one transaction commit doing the flushing so we do not
2079 * waste a bunch of time on lock contention on the extent root node.
56bec294 2080 */
e19eb11f
JB
2081 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2082 &cur_trans->delayed_refs.flags)) {
2083 /*
2084 * Make a pass through all the delayed refs we have so far.
2085 * Any running threads may add more while we are here.
2086 */
2087 ret = btrfs_run_delayed_refs(trans, 0);
2088 if (ret) {
2089 btrfs_end_transaction(trans);
2090 return ret;
2091 }
2092 }
56bec294 2093
119e80df 2094 btrfs_create_pending_block_groups(trans);
ea658bad 2095
3204d33c 2096 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2097 int run_it = 0;
2098
2099 /* this mutex is also taken before trying to set
2100 * block groups readonly. We need to make sure
2101 * that nobody has set a block group readonly
2102 * after a extents from that block group have been
2103 * allocated for cache files. btrfs_set_block_group_ro
2104 * will wait for the transaction to commit if it
3204d33c 2105 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2106 *
3204d33c
JB
2107 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2108 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2109 * hurt to have more than one go through, but there's no
2110 * real advantage to it either.
2111 */
0b246afa 2112 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2113 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2114 &cur_trans->flags))
1bbc621e 2115 run_it = 1;
0b246afa 2116 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2117
f9cacae3 2118 if (run_it) {
21217054 2119 ret = btrfs_start_dirty_block_groups(trans);
f9cacae3
NB
2120 if (ret) {
2121 btrfs_end_transaction(trans);
2122 return ret;
2123 }
2124 }
1bbc621e
CM
2125 }
2126
0b246afa 2127 spin_lock(&fs_info->trans_lock);
4a9d8bde 2128 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2129 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2130
0b246afa 2131 spin_unlock(&fs_info->trans_lock);
9b64f57d 2132 refcount_inc(&cur_trans->use_count);
ccd467d6 2133
d0c2f4fa
FM
2134 if (trans->in_fsync)
2135 want_state = TRANS_STATE_SUPER_COMMITTED;
2136 ret = btrfs_end_transaction(trans);
2137 wait_for_commit(cur_trans, want_state);
15ee9bc7 2138
bf31f87f 2139 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2140 ret = cur_trans->aborted;
2141
724e2315 2142 btrfs_put_transaction(cur_trans);
15ee9bc7 2143
49b25e05 2144 return ret;
79154b1b 2145 }
4313b399 2146
4a9d8bde 2147 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2148 wake_up(&fs_info->transaction_blocked_wait);
bb9c12c9 2149
0b246afa 2150 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2151 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2152
2153 if (trans->in_fsync)
2154 want_state = TRANS_STATE_SUPER_COMMITTED;
2155
ccd467d6
CM
2156 prev_trans = list_entry(cur_trans->list.prev,
2157 struct btrfs_transaction, list);
d0c2f4fa 2158 if (prev_trans->state < want_state) {
9b64f57d 2159 refcount_inc(&prev_trans->use_count);
0b246afa 2160 spin_unlock(&fs_info->trans_lock);
ccd467d6 2161
d0c2f4fa
FM
2162 wait_for_commit(prev_trans, want_state);
2163
bf31f87f 2164 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2165
724e2315 2166 btrfs_put_transaction(prev_trans);
1f9b8c8f
FM
2167 if (ret)
2168 goto cleanup_transaction;
a4abeea4 2169 } else {
0b246afa 2170 spin_unlock(&fs_info->trans_lock);
ccd467d6 2171 }
a4abeea4 2172 } else {
0b246afa 2173 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2174 /*
2175 * The previous transaction was aborted and was already removed
2176 * from the list of transactions at fs_info->trans_list. So we
2177 * abort to prevent writing a new superblock that reflects a
2178 * corrupt state (pointing to trees with unwritten nodes/leafs).
2179 */
2180 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2181 ret = -EROFS;
2182 goto cleanup_transaction;
2183 }
ccd467d6 2184 }
15ee9bc7 2185
0860adfd
MX
2186 extwriter_counter_dec(cur_trans, trans->type);
2187
88090ad3 2188 ret = btrfs_start_delalloc_flush(fs_info);
82436617
MX
2189 if (ret)
2190 goto cleanup_transaction;
2191
e5c304e6 2192 ret = btrfs_run_delayed_items(trans);
581227d0
MX
2193 if (ret)
2194 goto cleanup_transaction;
15ee9bc7 2195
581227d0
MX
2196 wait_event(cur_trans->writer_wait,
2197 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2198
581227d0 2199 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2200 ret = btrfs_run_delayed_items(trans);
ca469637
MX
2201 if (ret)
2202 goto cleanup_transaction;
2203
88090ad3 2204 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2205
48778179
FM
2206 /*
2207 * Wait for all ordered extents started by a fast fsync that joined this
2208 * transaction. Otherwise if this transaction commits before the ordered
2209 * extents complete we lose logged data after a power failure.
2210 */
2211 wait_event(cur_trans->pending_wait,
2212 atomic_read(&cur_trans->pending_ordered) == 0);
2213
2ff7e61e 2214 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2215 /*
2216 * Ok now we need to make sure to block out any other joins while we
2217 * commit the transaction. We could have started a join before setting
4a9d8bde 2218 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2219 */
0b246afa 2220 spin_lock(&fs_info->trans_lock);
4a9d8bde 2221 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2222 spin_unlock(&fs_info->trans_lock);
ed0ca140
JB
2223 wait_event(cur_trans->writer_wait,
2224 atomic_read(&cur_trans->num_writers) == 1);
2225
bf31f87f 2226 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2227 ret = cur_trans->aborted;
6cf7f77e 2228 goto scrub_continue;
2cba30f1 2229 }
7585717f
CM
2230 /*
2231 * the reloc mutex makes sure that we stop
2232 * the balancing code from coming in and moving
2233 * extents around in the middle of the commit
2234 */
0b246afa 2235 mutex_lock(&fs_info->reloc_mutex);
7585717f 2236
42874b3d
MX
2237 /*
2238 * We needn't worry about the delayed items because we will
2239 * deal with them in create_pending_snapshot(), which is the
2240 * core function of the snapshot creation.
2241 */
08d50ca3 2242 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2243 if (ret)
2244 goto unlock_reloc;
3063d29f 2245
42874b3d
MX
2246 /*
2247 * We insert the dir indexes of the snapshots and update the inode
2248 * of the snapshots' parents after the snapshot creation, so there
2249 * are some delayed items which are not dealt with. Now deal with
2250 * them.
2251 *
2252 * We needn't worry that this operation will corrupt the snapshots,
2253 * because all the tree which are snapshoted will be forced to COW
2254 * the nodes and leaves.
2255 */
e5c304e6 2256 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2257 if (ret)
2258 goto unlock_reloc;
16cdcec7 2259
c79a70b1 2260 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2261 if (ret)
2262 goto unlock_reloc;
56bec294 2263
e999376f
CM
2264 /*
2265 * make sure none of the code above managed to slip in a
2266 * delayed item
2267 */
ccdf9b30 2268 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2269
2c90e5d6 2270 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2271
e02119d5
CM
2272 /* btrfs_commit_tree_roots is responsible for getting the
2273 * various roots consistent with each other. Every pointer
2274 * in the tree of tree roots has to point to the most up to date
2275 * root for every subvolume and other tree. So, we have to keep
2276 * the tree logging code from jumping in and changing any
2277 * of the trees.
2278 *
2279 * At this point in the commit, there can't be any tree-log
2280 * writers, but a little lower down we drop the trans mutex
2281 * and let new people in. By holding the tree_log_mutex
2282 * from now until after the super is written, we avoid races
2283 * with the tree-log code.
2284 */
0b246afa 2285 mutex_lock(&fs_info->tree_log_mutex);
e02119d5 2286
7e4443d9 2287 ret = commit_fs_roots(trans);
56e9f6ea
DS
2288 if (ret)
2289 goto unlock_tree_log;
54aa1f4d 2290
3818aea2 2291 /*
7e1876ac
DS
2292 * Since the transaction is done, we can apply the pending changes
2293 * before the next transaction.
3818aea2 2294 */
0b246afa 2295 btrfs_apply_pending_changes(fs_info);
3818aea2 2296
5d4f98a2 2297 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2298 * safe to free the root of tree log roots
2299 */
0b246afa 2300 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2301
0ed4792a
QW
2302 /*
2303 * Since fs roots are all committed, we can get a quite accurate
2304 * new_roots. So let's do quota accounting.
2305 */
460fb20a 2306 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea
DS
2307 if (ret < 0)
2308 goto unlock_tree_log;
0ed4792a 2309
9386d8bc 2310 ret = commit_cowonly_roots(trans);
56e9f6ea
DS
2311 if (ret)
2312 goto unlock_tree_log;
54aa1f4d 2313
2cba30f1
MX
2314 /*
2315 * The tasks which save the space cache and inode cache may also
2316 * update ->aborted, check it.
2317 */
bf31f87f 2318 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2319 ret = cur_trans->aborted;
56e9f6ea 2320 goto unlock_tree_log;
2cba30f1
MX
2321 }
2322
0b246afa 2323 cur_trans = fs_info->running_transaction;
5d4f98a2 2324
0b246afa
JM
2325 btrfs_set_root_node(&fs_info->tree_root->root_item,
2326 fs_info->tree_root->node);
2327 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2328 &cur_trans->switch_commits);
5d4f98a2 2329
0b246afa
JM
2330 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2331 fs_info->chunk_root->node);
2332 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2333 &cur_trans->switch_commits);
2334
889bfa39 2335 switch_commit_roots(trans);
5d4f98a2 2336
ce93ec54 2337 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2338 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2339 update_super_roots(fs_info);
e02119d5 2340
0b246afa
JM
2341 btrfs_set_super_log_root(fs_info->super_copy, 0);
2342 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2343 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2344 sizeof(*fs_info->super_copy));
ccd467d6 2345
bbbf7243 2346 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2347
0b246afa
JM
2348 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2349 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2350
4fbcdf66
FM
2351 btrfs_trans_release_chunk_metadata(trans);
2352
0b246afa 2353 spin_lock(&fs_info->trans_lock);
4a9d8bde 2354 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2355 fs_info->running_transaction = NULL;
2356 spin_unlock(&fs_info->trans_lock);
2357 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2358
0b246afa 2359 wake_up(&fs_info->transaction_wait);
e6dcd2dc 2360
70458a58 2361 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2362 if (ret) {
0b246afa
JM
2363 btrfs_handle_fs_error(fs_info, ret,
2364 "Error while writing out transaction");
56e9f6ea
DS
2365 /*
2366 * reloc_mutex has been unlocked, tree_log_mutex is still held
2367 * but we can't jump to unlock_tree_log causing double unlock
2368 */
0b246afa 2369 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2370 goto scrub_continue;
49b25e05
JM
2371 }
2372
d3575156
NA
2373 /*
2374 * At this point, we should have written all the tree blocks allocated
2375 * in this transaction. So it's now safe to free the redirtyied extent
2376 * buffers.
2377 */
2378 btrfs_free_redirty_list(cur_trans);
2379
eece6a9c 2380 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2381 /*
2382 * the super is written, we can safely allow the tree-loggers
2383 * to go about their business
2384 */
0b246afa 2385 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2386 if (ret)
2387 goto scrub_continue;
e02119d5 2388
d0c2f4fa
FM
2389 /*
2390 * We needn't acquire the lock here because there is no other task
2391 * which can change it.
2392 */
2393 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2394 wake_up(&cur_trans->commit_wait);
2395
5ead2dd0 2396 btrfs_finish_extent_commit(trans);
4313b399 2397
3204d33c 2398 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2399 btrfs_clear_space_info_full(fs_info);
13212b54 2400
0b246afa 2401 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2402 /*
2403 * We needn't acquire the lock here because there is no other task
2404 * which can change it.
2405 */
2406 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2407 wake_up(&cur_trans->commit_wait);
3de4586c 2408
0b246afa 2409 spin_lock(&fs_info->trans_lock);
13c5a93e 2410 list_del_init(&cur_trans->list);
0b246afa 2411 spin_unlock(&fs_info->trans_lock);
a4abeea4 2412
724e2315
JB
2413 btrfs_put_transaction(cur_trans);
2414 btrfs_put_transaction(cur_trans);
58176a96 2415
0860adfd 2416 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2417 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2418
3a45bb20 2419 trace_btrfs_transaction_commit(trans->root);
1abe9b8a 2420
2ff7e61e 2421 btrfs_scrub_continue(fs_info);
a2de733c 2422
9ed74f2d
JB
2423 if (current->journal_info == trans)
2424 current->journal_info = NULL;
2425
2c90e5d6 2426 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2427
79154b1b 2428 return ret;
49b25e05 2429
56e9f6ea
DS
2430unlock_tree_log:
2431 mutex_unlock(&fs_info->tree_log_mutex);
2432unlock_reloc:
2433 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2434scrub_continue:
2ff7e61e 2435 btrfs_scrub_continue(fs_info);
49b25e05 2436cleanup_transaction:
dc60c525 2437 btrfs_trans_release_metadata(trans);
c7cc64a9 2438 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2439 btrfs_trans_release_chunk_metadata(trans);
0e721106 2440 trans->block_rsv = NULL;
0b246afa 2441 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2442 if (current->journal_info == trans)
2443 current->journal_info = NULL;
97cb39bb 2444 cleanup_transaction(trans, ret);
49b25e05
JM
2445
2446 return ret;
79154b1b
CM
2447}
2448
d352ac68 2449/*
9d1a2a3a
DS
2450 * return < 0 if error
2451 * 0 if there are no more dead_roots at the time of call
2452 * 1 there are more to be processed, call me again
2453 *
2454 * The return value indicates there are certainly more snapshots to delete, but
2455 * if there comes a new one during processing, it may return 0. We don't mind,
2456 * because btrfs_commit_super will poke cleaner thread and it will process it a
2457 * few seconds later.
d352ac68 2458 */
9d1a2a3a 2459int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
e9d0b13b 2460{
9d1a2a3a 2461 int ret;
5d4f98a2
YZ
2462 struct btrfs_fs_info *fs_info = root->fs_info;
2463
a4abeea4 2464 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2465 if (list_empty(&fs_info->dead_roots)) {
2466 spin_unlock(&fs_info->trans_lock);
2467 return 0;
2468 }
2469 root = list_first_entry(&fs_info->dead_roots,
2470 struct btrfs_root, root_list);
cfad392b 2471 list_del_init(&root->root_list);
a4abeea4 2472 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2473
4fd786e6 2474 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2475
9d1a2a3a 2476 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2477
9d1a2a3a
DS
2478 if (btrfs_header_backref_rev(root->node) <
2479 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2480 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2481 else
0078a9f9 2482 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2483
dc9492c1 2484 btrfs_put_root(root);
6596a928 2485 return (ret < 0) ? 0 : 1;
e9d0b13b 2486}
572d9ab7
DS
2487
2488void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2489{
2490 unsigned long prev;
2491 unsigned long bit;
2492
6c9fe14f 2493 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2494 if (!prev)
2495 return;
2496
d51033d0
DS
2497 bit = 1 << BTRFS_PENDING_COMMIT;
2498 if (prev & bit)
2499 btrfs_debug(fs_info, "pending commit done");
2500 prev &= ~bit;
2501
572d9ab7
DS
2502 if (prev)
2503 btrfs_warn(fs_info,
2504 "unknown pending changes left 0x%lx, ignoring", prev);
2505}