Merge tag 'leds-5.13-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/pavel...
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
79154b1b 6#include <linux/fs.h>
5a0e3ad6 7#include <linux/slab.h>
34088780 8#include <linux/sched.h>
d3c2fdcf 9#include <linux/writeback.h>
5f39d397 10#include <linux/pagemap.h>
5f2cc086 11#include <linux/blkdev.h>
8ea05e3a 12#include <linux/uuid.h>
602cbe91 13#include "misc.h"
79154b1b
CM
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
925baedd 17#include "locking.h"
e02119d5 18#include "tree-log.h"
733f4fbb 19#include "volumes.h"
8dabb742 20#include "dev-replace.h"
fcebe456 21#include "qgroup.h"
aac0023c 22#include "block-group.h"
9c343784 23#include "space-info.h"
d3575156 24#include "zoned.h"
79154b1b 25
0f7d52f4
CM
26#define BTRFS_ROOT_TRANS_TAG 0
27
61c047b5
QW
28/*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
e8c9f186 99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
4a9d8bde 100 [TRANS_STATE_RUNNING] = 0U,
bcf3a3e7
NB
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
4a9d8bde 103 __TRANS_ATTACH |
a6d155d2
FM
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
bcf3a3e7 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
4a9d8bde
MX
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
a6d155d2
FM
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
d0c2f4fa
FM
111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
bcf3a3e7 116 [TRANS_STATE_COMPLETED] = (__TRANS_START |
4a9d8bde
MX
117 __TRANS_ATTACH |
118 __TRANS_JOIN |
a6d155d2
FM
119 __TRANS_JOIN_NOLOCK |
120 __TRANS_JOIN_NOSTART),
4a9d8bde
MX
121};
122
724e2315 123void btrfs_put_transaction(struct btrfs_transaction *transaction)
79154b1b 124{
9b64f57d
ER
125 WARN_ON(refcount_read(&transaction->use_count) == 0);
126 if (refcount_dec_and_test(&transaction->use_count)) {
a4abeea4 127 BUG_ON(!list_empty(&transaction->list));
5c9d028b
LB
128 WARN_ON(!RB_EMPTY_ROOT(
129 &transaction->delayed_refs.href_root.rb_root));
81f7eb00
JM
130 WARN_ON(!RB_EMPTY_ROOT(
131 &transaction->delayed_refs.dirty_extent_root));
1262133b 132 if (transaction->delayed_refs.pending_csums)
ab8d0fc4
JM
133 btrfs_err(transaction->fs_info,
134 "pending csums is %llu",
135 transaction->delayed_refs.pending_csums);
7785a663
FM
136 /*
137 * If any block groups are found in ->deleted_bgs then it's
138 * because the transaction was aborted and a commit did not
139 * happen (things failed before writing the new superblock
140 * and calling btrfs_finish_extent_commit()), so we can not
141 * discard the physical locations of the block groups.
142 */
143 while (!list_empty(&transaction->deleted_bgs)) {
32da5386 144 struct btrfs_block_group *cache;
7785a663
FM
145
146 cache = list_first_entry(&transaction->deleted_bgs,
32da5386 147 struct btrfs_block_group,
7785a663
FM
148 bg_list);
149 list_del_init(&cache->bg_list);
6b7304af 150 btrfs_unfreeze_block_group(cache);
7785a663
FM
151 btrfs_put_block_group(cache);
152 }
bbbf7243 153 WARN_ON(!list_empty(&transaction->dev_update_list));
4b5faeac 154 kfree(transaction);
78fae27e 155 }
79154b1b
CM
156}
157
889bfa39 158static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
817d52f8 159{
889bfa39 160 struct btrfs_transaction *cur_trans = trans->transaction;
16916a88 161 struct btrfs_fs_info *fs_info = trans->fs_info;
9e351cc8 162 struct btrfs_root *root, *tmp;
27d56e62 163 struct btrfs_caching_control *caching_ctl, *next;
9e351cc8
JB
164
165 down_write(&fs_info->commit_root_sem);
889bfa39 166 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
9e351cc8
JB
167 dirty_list) {
168 list_del_init(&root->dirty_list);
169 free_extent_buffer(root->commit_root);
170 root->commit_root = btrfs_root_node(root);
41e7acd3 171 extent_io_tree_release(&root->dirty_log_pages);
370a11b8 172 btrfs_qgroup_clean_swapped_blocks(root);
9e351cc8 173 }
2b9dbef2
JB
174
175 /* We can free old roots now. */
889bfa39
JB
176 spin_lock(&cur_trans->dropped_roots_lock);
177 while (!list_empty(&cur_trans->dropped_roots)) {
178 root = list_first_entry(&cur_trans->dropped_roots,
2b9dbef2
JB
179 struct btrfs_root, root_list);
180 list_del_init(&root->root_list);
889bfa39
JB
181 spin_unlock(&cur_trans->dropped_roots_lock);
182 btrfs_free_log(trans, root);
2b9dbef2 183 btrfs_drop_and_free_fs_root(fs_info, root);
889bfa39 184 spin_lock(&cur_trans->dropped_roots_lock);
2b9dbef2 185 }
889bfa39 186 spin_unlock(&cur_trans->dropped_roots_lock);
27d56e62
JB
187
188 /*
189 * We have to update the last_byte_to_unpin under the commit_root_sem,
190 * at the same time we swap out the commit roots.
191 *
192 * This is because we must have a real view of the last spot the caching
193 * kthreads were while caching. Consider the following views of the
194 * extent tree for a block group
195 *
196 * commit root
197 * +----+----+----+----+----+----+----+
198 * |\\\\| |\\\\|\\\\| |\\\\|\\\\|
199 * +----+----+----+----+----+----+----+
200 * 0 1 2 3 4 5 6 7
201 *
202 * new commit root
203 * +----+----+----+----+----+----+----+
204 * | | | |\\\\| | |\\\\|
205 * +----+----+----+----+----+----+----+
206 * 0 1 2 3 4 5 6 7
207 *
208 * If the cache_ctl->progress was at 3, then we are only allowed to
209 * unpin [0,1) and [2,3], because the caching thread has already
210 * processed those extents. We are not allowed to unpin [5,6), because
211 * the caching thread will re-start it's search from 3, and thus find
212 * the hole from [4,6) to add to the free space cache.
213 */
bbb86a37 214 spin_lock(&fs_info->block_group_cache_lock);
27d56e62
JB
215 list_for_each_entry_safe(caching_ctl, next,
216 &fs_info->caching_block_groups, list) {
217 struct btrfs_block_group *cache = caching_ctl->block_group;
218
219 if (btrfs_block_group_done(cache)) {
220 cache->last_byte_to_unpin = (u64)-1;
221 list_del_init(&caching_ctl->list);
222 btrfs_put_caching_control(caching_ctl);
223 } else {
224 cache->last_byte_to_unpin = caching_ctl->progress;
225 }
226 }
bbb86a37 227 spin_unlock(&fs_info->block_group_cache_lock);
9e351cc8 228 up_write(&fs_info->commit_root_sem);
817d52f8
JB
229}
230
0860adfd
MX
231static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
232 unsigned int type)
233{
234 if (type & TRANS_EXTWRITERS)
235 atomic_inc(&trans->num_extwriters);
236}
237
238static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
239 unsigned int type)
240{
241 if (type & TRANS_EXTWRITERS)
242 atomic_dec(&trans->num_extwriters);
243}
244
245static inline void extwriter_counter_init(struct btrfs_transaction *trans,
246 unsigned int type)
247{
248 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
249}
250
251static inline int extwriter_counter_read(struct btrfs_transaction *trans)
252{
253 return atomic_read(&trans->num_extwriters);
178260b2
MX
254}
255
fb6dea26
JB
256/*
257 * To be called after all the new block groups attached to the transaction
258 * handle have been created (btrfs_create_pending_block_groups()).
259 */
260void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
261{
262 struct btrfs_fs_info *fs_info = trans->fs_info;
eafa4fd0 263 struct btrfs_transaction *cur_trans = trans->transaction;
fb6dea26
JB
264
265 if (!trans->chunk_bytes_reserved)
266 return;
267
268 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
269
270 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
63f018be 271 trans->chunk_bytes_reserved, NULL);
eafa4fd0
FM
272 atomic64_sub(trans->chunk_bytes_reserved, &cur_trans->chunk_bytes_reserved);
273 cond_wake_up(&cur_trans->chunk_reserve_wait);
fb6dea26
JB
274 trans->chunk_bytes_reserved = 0;
275}
276
d352ac68
CM
277/*
278 * either allocate a new transaction or hop into the existing one
279 */
2ff7e61e
JM
280static noinline int join_transaction(struct btrfs_fs_info *fs_info,
281 unsigned int type)
79154b1b
CM
282{
283 struct btrfs_transaction *cur_trans;
a4abeea4 284
19ae4e81 285 spin_lock(&fs_info->trans_lock);
d43317dc 286loop:
49b25e05 287 /* The file system has been taken offline. No new transactions. */
87533c47 288 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
19ae4e81 289 spin_unlock(&fs_info->trans_lock);
49b25e05
JM
290 return -EROFS;
291 }
292
19ae4e81 293 cur_trans = fs_info->running_transaction;
a4abeea4 294 if (cur_trans) {
bf31f87f 295 if (TRANS_ABORTED(cur_trans)) {
19ae4e81 296 spin_unlock(&fs_info->trans_lock);
49b25e05 297 return cur_trans->aborted;
871383be 298 }
4a9d8bde 299 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
178260b2
MX
300 spin_unlock(&fs_info->trans_lock);
301 return -EBUSY;
302 }
9b64f57d 303 refcount_inc(&cur_trans->use_count);
13c5a93e 304 atomic_inc(&cur_trans->num_writers);
0860adfd 305 extwriter_counter_inc(cur_trans, type);
19ae4e81 306 spin_unlock(&fs_info->trans_lock);
a4abeea4 307 return 0;
79154b1b 308 }
19ae4e81 309 spin_unlock(&fs_info->trans_lock);
a4abeea4 310
354aa0fb
MX
311 /*
312 * If we are ATTACH, we just want to catch the current transaction,
313 * and commit it. If there is no transaction, just return ENOENT.
314 */
315 if (type == TRANS_ATTACH)
316 return -ENOENT;
317
4a9d8bde
MX
318 /*
319 * JOIN_NOLOCK only happens during the transaction commit, so
320 * it is impossible that ->running_transaction is NULL
321 */
322 BUG_ON(type == TRANS_JOIN_NOLOCK);
323
4b5faeac 324 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
a4abeea4
JB
325 if (!cur_trans)
326 return -ENOMEM;
d43317dc 327
19ae4e81
JS
328 spin_lock(&fs_info->trans_lock);
329 if (fs_info->running_transaction) {
d43317dc
CM
330 /*
331 * someone started a transaction after we unlocked. Make sure
4a9d8bde 332 * to redo the checks above
d43317dc 333 */
4b5faeac 334 kfree(cur_trans);
d43317dc 335 goto loop;
87533c47 336 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
e4b50e14 337 spin_unlock(&fs_info->trans_lock);
4b5faeac 338 kfree(cur_trans);
7b8b92af 339 return -EROFS;
79154b1b 340 }
d43317dc 341
ab8d0fc4 342 cur_trans->fs_info = fs_info;
48778179
FM
343 atomic_set(&cur_trans->pending_ordered, 0);
344 init_waitqueue_head(&cur_trans->pending_wait);
a4abeea4 345 atomic_set(&cur_trans->num_writers, 1);
0860adfd 346 extwriter_counter_init(cur_trans, type);
a4abeea4
JB
347 init_waitqueue_head(&cur_trans->writer_wait);
348 init_waitqueue_head(&cur_trans->commit_wait);
4a9d8bde 349 cur_trans->state = TRANS_STATE_RUNNING;
a4abeea4
JB
350 /*
351 * One for this trans handle, one so it will live on until we
352 * commit the transaction.
353 */
9b64f57d 354 refcount_set(&cur_trans->use_count, 2);
3204d33c 355 cur_trans->flags = 0;
afd48513 356 cur_trans->start_time = ktime_get_seconds();
a4abeea4 357
a099d0fd
AM
358 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
359
5c9d028b 360 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
3368d001 361 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
d7df2c79 362 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
20b297d6
JS
363
364 /*
365 * although the tree mod log is per file system and not per transaction,
366 * the log must never go across transaction boundaries.
367 */
368 smp_mb();
31b1a2bd 369 if (!list_empty(&fs_info->tree_mod_seq_list))
5d163e0e 370 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
31b1a2bd 371 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
5d163e0e 372 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
fc36ed7e 373 atomic64_set(&fs_info->tree_mod_seq, 0);
20b297d6 374
a4abeea4
JB
375 spin_lock_init(&cur_trans->delayed_refs.lock);
376
377 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
bbbf7243 378 INIT_LIST_HEAD(&cur_trans->dev_update_list);
9e351cc8 379 INIT_LIST_HEAD(&cur_trans->switch_commits);
ce93ec54 380 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
1bbc621e 381 INIT_LIST_HEAD(&cur_trans->io_bgs);
2b9dbef2 382 INIT_LIST_HEAD(&cur_trans->dropped_roots);
1bbc621e 383 mutex_init(&cur_trans->cache_write_mutex);
ce93ec54 384 spin_lock_init(&cur_trans->dirty_bgs_lock);
e33e17ee 385 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
2b9dbef2 386 spin_lock_init(&cur_trans->dropped_roots_lock);
d3575156
NA
387 INIT_LIST_HEAD(&cur_trans->releasing_ebs);
388 spin_lock_init(&cur_trans->releasing_ebs_lock);
eafa4fd0
FM
389 atomic64_set(&cur_trans->chunk_bytes_reserved, 0);
390 init_waitqueue_head(&cur_trans->chunk_reserve_wait);
19ae4e81 391 list_add_tail(&cur_trans->list, &fs_info->trans_list);
c258d6e3 392 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
43eb5f29 393 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
fe119a6e
NB
394 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
395 IO_TREE_FS_PINNED_EXTENTS, NULL);
19ae4e81
JS
396 fs_info->generation++;
397 cur_trans->transid = fs_info->generation;
398 fs_info->running_transaction = cur_trans;
49b25e05 399 cur_trans->aborted = 0;
19ae4e81 400 spin_unlock(&fs_info->trans_lock);
15ee9bc7 401
79154b1b
CM
402 return 0;
403}
404
d352ac68 405/*
92a7cc42
QW
406 * This does all the record keeping required to make sure that a shareable root
407 * is properly recorded in a given transaction. This is required to make sure
408 * the old root from before we joined the transaction is deleted when the
409 * transaction commits.
d352ac68 410 */
7585717f 411static int record_root_in_trans(struct btrfs_trans_handle *trans,
6426c7ad
QW
412 struct btrfs_root *root,
413 int force)
6702ed49 414{
0b246afa 415 struct btrfs_fs_info *fs_info = root->fs_info;
03a7e111 416 int ret = 0;
0b246afa 417
92a7cc42 418 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
6426c7ad 419 root->last_trans < trans->transid) || force) {
0b246afa 420 WARN_ON(root == fs_info->extent_root);
4d31778a 421 WARN_ON(!force && root->commit_root != root->node);
5d4f98a2 422
7585717f 423 /*
27cdeb70 424 * see below for IN_TRANS_SETUP usage rules
7585717f
CM
425 * we have the reloc mutex held now, so there
426 * is only one writer in this function
427 */
27cdeb70 428 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
7585717f 429
27cdeb70 430 /* make sure readers find IN_TRANS_SETUP before
7585717f
CM
431 * they find our root->last_trans update
432 */
433 smp_wmb();
434
0b246afa 435 spin_lock(&fs_info->fs_roots_radix_lock);
6426c7ad 436 if (root->last_trans == trans->transid && !force) {
0b246afa 437 spin_unlock(&fs_info->fs_roots_radix_lock);
a4abeea4
JB
438 return 0;
439 }
0b246afa
JM
440 radix_tree_tag_set(&fs_info->fs_roots_radix,
441 (unsigned long)root->root_key.objectid,
442 BTRFS_ROOT_TRANS_TAG);
443 spin_unlock(&fs_info->fs_roots_radix_lock);
7585717f
CM
444 root->last_trans = trans->transid;
445
446 /* this is pretty tricky. We don't want to
447 * take the relocation lock in btrfs_record_root_in_trans
448 * unless we're really doing the first setup for this root in
449 * this transaction.
450 *
451 * Normally we'd use root->last_trans as a flag to decide
452 * if we want to take the expensive mutex.
453 *
454 * But, we have to set root->last_trans before we
455 * init the relocation root, otherwise, we trip over warnings
456 * in ctree.c. The solution used here is to flag ourselves
27cdeb70 457 * with root IN_TRANS_SETUP. When this is 1, we're still
7585717f
CM
458 * fixing up the reloc trees and everyone must wait.
459 *
460 * When this is zero, they can trust root->last_trans and fly
461 * through btrfs_record_root_in_trans without having to take the
462 * lock. smp_wmb() makes sure that all the writes above are
463 * done before we pop in the zero below
464 */
03a7e111 465 ret = btrfs_init_reloc_root(trans, root);
c7548af6 466 smp_mb__before_atomic();
27cdeb70 467 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
5d4f98a2 468 }
03a7e111 469 return ret;
5d4f98a2 470}
bcc63abb 471
7585717f 472
2b9dbef2
JB
473void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
474 struct btrfs_root *root)
475{
0b246afa 476 struct btrfs_fs_info *fs_info = root->fs_info;
2b9dbef2
JB
477 struct btrfs_transaction *cur_trans = trans->transaction;
478
479 /* Add ourselves to the transaction dropped list */
480 spin_lock(&cur_trans->dropped_roots_lock);
481 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
482 spin_unlock(&cur_trans->dropped_roots_lock);
483
484 /* Make sure we don't try to update the root at commit time */
0b246afa
JM
485 spin_lock(&fs_info->fs_roots_radix_lock);
486 radix_tree_tag_clear(&fs_info->fs_roots_radix,
2b9dbef2
JB
487 (unsigned long)root->root_key.objectid,
488 BTRFS_ROOT_TRANS_TAG);
0b246afa 489 spin_unlock(&fs_info->fs_roots_radix_lock);
2b9dbef2
JB
490}
491
7585717f
CM
492int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
493 struct btrfs_root *root)
494{
0b246afa 495 struct btrfs_fs_info *fs_info = root->fs_info;
1409e6cc 496 int ret;
0b246afa 497
92a7cc42 498 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
7585717f
CM
499 return 0;
500
501 /*
27cdeb70 502 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
7585717f
CM
503 * and barriers
504 */
505 smp_rmb();
506 if (root->last_trans == trans->transid &&
27cdeb70 507 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
7585717f
CM
508 return 0;
509
0b246afa 510 mutex_lock(&fs_info->reloc_mutex);
1409e6cc 511 ret = record_root_in_trans(trans, root, 0);
0b246afa 512 mutex_unlock(&fs_info->reloc_mutex);
7585717f 513
1409e6cc 514 return ret;
7585717f
CM
515}
516
4a9d8bde
MX
517static inline int is_transaction_blocked(struct btrfs_transaction *trans)
518{
3296bf56 519 return (trans->state >= TRANS_STATE_COMMIT_START &&
501407aa 520 trans->state < TRANS_STATE_UNBLOCKED &&
bf31f87f 521 !TRANS_ABORTED(trans));
4a9d8bde
MX
522}
523
d352ac68
CM
524/* wait for commit against the current transaction to become unblocked
525 * when this is done, it is safe to start a new transaction, but the current
526 * transaction might not be fully on disk.
527 */
2ff7e61e 528static void wait_current_trans(struct btrfs_fs_info *fs_info)
79154b1b 529{
f9295749 530 struct btrfs_transaction *cur_trans;
79154b1b 531
0b246afa
JM
532 spin_lock(&fs_info->trans_lock);
533 cur_trans = fs_info->running_transaction;
4a9d8bde 534 if (cur_trans && is_transaction_blocked(cur_trans)) {
9b64f57d 535 refcount_inc(&cur_trans->use_count);
0b246afa 536 spin_unlock(&fs_info->trans_lock);
72d63ed6 537
0b246afa 538 wait_event(fs_info->transaction_wait,
501407aa 539 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
bf31f87f 540 TRANS_ABORTED(cur_trans));
724e2315 541 btrfs_put_transaction(cur_trans);
a4abeea4 542 } else {
0b246afa 543 spin_unlock(&fs_info->trans_lock);
f9295749 544 }
37d1aeee
CM
545}
546
2ff7e61e 547static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
a22285a6 548{
0b246afa 549 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
a4abeea4
JB
550 return 0;
551
92e2f7e3 552 if (type == TRANS_START)
a22285a6 553 return 1;
a4abeea4 554
a22285a6
YZ
555 return 0;
556}
557
20dd2cbf
MX
558static inline bool need_reserve_reloc_root(struct btrfs_root *root)
559{
0b246afa
JM
560 struct btrfs_fs_info *fs_info = root->fs_info;
561
562 if (!fs_info->reloc_ctl ||
92a7cc42 563 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
20dd2cbf
MX
564 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
565 root->reloc_root)
566 return false;
567
568 return true;
569}
570
08e007d2 571static struct btrfs_trans_handle *
5aed1dd8 572start_transaction(struct btrfs_root *root, unsigned int num_items,
003d7c59
JM
573 unsigned int type, enum btrfs_reserve_flush_enum flush,
574 bool enforce_qgroups)
37d1aeee 575{
0b246afa 576 struct btrfs_fs_info *fs_info = root->fs_info;
ba2c4d4e 577 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
a22285a6
YZ
578 struct btrfs_trans_handle *h;
579 struct btrfs_transaction *cur_trans;
b5009945 580 u64 num_bytes = 0;
c5567237 581 u64 qgroup_reserved = 0;
20dd2cbf 582 bool reloc_reserved = false;
9c343784 583 bool do_chunk_alloc = false;
20dd2cbf 584 int ret;
acce952b 585
46c4e71e 586 /* Send isn't supposed to start transactions. */
2755a0de 587 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
46c4e71e 588
0b246afa 589 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
acce952b 590 return ERR_PTR(-EROFS);
2a1eb461 591
46c4e71e 592 if (current->journal_info) {
0860adfd 593 WARN_ON(type & TRANS_EXTWRITERS);
2a1eb461 594 h = current->journal_info;
b50fff81
DS
595 refcount_inc(&h->use_count);
596 WARN_ON(refcount_read(&h->use_count) > 2);
2a1eb461
JB
597 h->orig_rsv = h->block_rsv;
598 h->block_rsv = NULL;
599 goto got_it;
600 }
b5009945
JB
601
602 /*
603 * Do the reservation before we join the transaction so we can do all
604 * the appropriate flushing if need be.
605 */
003d7c59 606 if (num_items && root != fs_info->chunk_root) {
ba2c4d4e
JB
607 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
608 u64 delayed_refs_bytes = 0;
609
0b246afa 610 qgroup_reserved = num_items * fs_info->nodesize;
733e03a0
QW
611 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
612 enforce_qgroups);
7174109c
QW
613 if (ret)
614 return ERR_PTR(ret);
c5567237 615
ba2c4d4e
JB
616 /*
617 * We want to reserve all the bytes we may need all at once, so
618 * we only do 1 enospc flushing cycle per transaction start. We
619 * accomplish this by simply assuming we'll do 2 x num_items
620 * worth of delayed refs updates in this trans handle, and
621 * refill that amount for whatever is missing in the reserve.
622 */
2bd36e7b 623 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
7f9fe614
JB
624 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
625 delayed_refs_rsv->full == 0) {
ba2c4d4e
JB
626 delayed_refs_bytes = num_bytes;
627 num_bytes <<= 1;
628 }
629
20dd2cbf
MX
630 /*
631 * Do the reservation for the relocation root creation
632 */
ee39b432 633 if (need_reserve_reloc_root(root)) {
0b246afa 634 num_bytes += fs_info->nodesize;
20dd2cbf
MX
635 reloc_reserved = true;
636 }
637
ba2c4d4e
JB
638 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
639 if (ret)
640 goto reserve_fail;
641 if (delayed_refs_bytes) {
642 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
643 delayed_refs_bytes);
644 num_bytes -= delayed_refs_bytes;
645 }
9c343784
JB
646
647 if (rsv->space_info->force_alloc)
648 do_chunk_alloc = true;
ba2c4d4e
JB
649 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
650 !delayed_refs_rsv->full) {
651 /*
652 * Some people call with btrfs_start_transaction(root, 0)
653 * because they can be throttled, but have some other mechanism
654 * for reserving space. We still want these guys to refill the
655 * delayed block_rsv so just add 1 items worth of reservation
656 * here.
657 */
658 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
b5009945 659 if (ret)
843fcf35 660 goto reserve_fail;
b5009945 661 }
a22285a6 662again:
f2f767e7 663 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
843fcf35
MX
664 if (!h) {
665 ret = -ENOMEM;
666 goto alloc_fail;
667 }
37d1aeee 668
98114659
JB
669 /*
670 * If we are JOIN_NOLOCK we're already committing a transaction and
671 * waiting on this guy, so we don't need to do the sb_start_intwrite
672 * because we're already holding a ref. We need this because we could
673 * have raced in and did an fsync() on a file which can kick a commit
674 * and then we deadlock with somebody doing a freeze.
354aa0fb
MX
675 *
676 * If we are ATTACH, it means we just want to catch the current
677 * transaction and commit it, so we needn't do sb_start_intwrite().
98114659 678 */
0860adfd 679 if (type & __TRANS_FREEZABLE)
0b246afa 680 sb_start_intwrite(fs_info->sb);
b2b5ef5c 681
2ff7e61e
JM
682 if (may_wait_transaction(fs_info, type))
683 wait_current_trans(fs_info);
a22285a6 684
a4abeea4 685 do {
2ff7e61e 686 ret = join_transaction(fs_info, type);
178260b2 687 if (ret == -EBUSY) {
2ff7e61e 688 wait_current_trans(fs_info);
a6d155d2
FM
689 if (unlikely(type == TRANS_ATTACH ||
690 type == TRANS_JOIN_NOSTART))
178260b2
MX
691 ret = -ENOENT;
692 }
a4abeea4
JB
693 } while (ret == -EBUSY);
694
a43f7f82 695 if (ret < 0)
843fcf35 696 goto join_fail;
0f7d52f4 697
0b246afa 698 cur_trans = fs_info->running_transaction;
a22285a6
YZ
699
700 h->transid = cur_trans->transid;
701 h->transaction = cur_trans;
d13603ef 702 h->root = root;
b50fff81 703 refcount_set(&h->use_count, 1);
64b63580 704 h->fs_info = root->fs_info;
7174109c 705
a698d075 706 h->type = type;
d9a0540a 707 h->can_flush_pending_bgs = true;
ea658bad 708 INIT_LIST_HEAD(&h->new_bgs);
b7ec40d7 709
a22285a6 710 smp_mb();
3296bf56 711 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
2ff7e61e 712 may_wait_transaction(fs_info, type)) {
abdd2e80 713 current->journal_info = h;
3a45bb20 714 btrfs_commit_transaction(h);
a22285a6
YZ
715 goto again;
716 }
717
b5009945 718 if (num_bytes) {
0b246afa 719 trace_btrfs_space_reservation(fs_info, "transaction",
2bcc0328 720 h->transid, num_bytes, 1);
0b246afa 721 h->block_rsv = &fs_info->trans_block_rsv;
b5009945 722 h->bytes_reserved = num_bytes;
20dd2cbf 723 h->reloc_reserved = reloc_reserved;
a22285a6 724 }
9ed74f2d 725
2a1eb461 726got_it:
bcf3a3e7 727 if (!current->journal_info)
a22285a6 728 current->journal_info = h;
fcc99734 729
9c343784
JB
730 /*
731 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
732 * ALLOC_FORCE the first run through, and then we won't allocate for
733 * anybody else who races in later. We don't care about the return
734 * value here.
735 */
736 if (do_chunk_alloc && num_bytes) {
737 u64 flags = h->block_rsv->space_info->flags;
738
739 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
740 CHUNK_ALLOC_NO_FORCE);
741 }
742
fcc99734
QW
743 /*
744 * btrfs_record_root_in_trans() needs to alloc new extents, and may
745 * call btrfs_join_transaction() while we're also starting a
746 * transaction.
747 *
748 * Thus it need to be called after current->journal_info initialized,
749 * or we can deadlock.
750 */
68075ea8
JB
751 ret = btrfs_record_root_in_trans(h, root);
752 if (ret) {
753 /*
754 * The transaction handle is fully initialized and linked with
755 * other structures so it needs to be ended in case of errors,
756 * not just freed.
757 */
758 btrfs_end_transaction(h);
759 return ERR_PTR(ret);
760 }
fcc99734 761
79154b1b 762 return h;
843fcf35
MX
763
764join_fail:
0860adfd 765 if (type & __TRANS_FREEZABLE)
0b246afa 766 sb_end_intwrite(fs_info->sb);
843fcf35
MX
767 kmem_cache_free(btrfs_trans_handle_cachep, h);
768alloc_fail:
769 if (num_bytes)
2ff7e61e 770 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
63f018be 771 num_bytes, NULL);
843fcf35 772reserve_fail:
733e03a0 773 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
843fcf35 774 return ERR_PTR(ret);
79154b1b
CM
775}
776
f9295749 777struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
5aed1dd8 778 unsigned int num_items)
f9295749 779{
08e007d2 780 return start_transaction(root, num_items, TRANS_START,
003d7c59 781 BTRFS_RESERVE_FLUSH_ALL, true);
f9295749 782}
003d7c59 783
8eab77ff
FM
784struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
785 struct btrfs_root *root,
7f9fe614 786 unsigned int num_items)
8eab77ff 787{
7f9fe614
JB
788 return start_transaction(root, num_items, TRANS_START,
789 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
8eab77ff 790}
8407aa46 791
7a7eaa40 792struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
f9295749 793{
003d7c59
JM
794 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
795 true);
f9295749
CM
796}
797
8d510121 798struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
0af3d00b 799{
575a75d6 800 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
003d7c59 801 BTRFS_RESERVE_NO_FLUSH, true);
0af3d00b
JB
802}
803
a6d155d2
FM
804/*
805 * Similar to regular join but it never starts a transaction when none is
806 * running or after waiting for the current one to finish.
807 */
808struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
809{
810 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
811 BTRFS_RESERVE_NO_FLUSH, true);
812}
813
d4edf39b
MX
814/*
815 * btrfs_attach_transaction() - catch the running transaction
816 *
817 * It is used when we want to commit the current the transaction, but
818 * don't want to start a new one.
819 *
820 * Note: If this function return -ENOENT, it just means there is no
821 * running transaction. But it is possible that the inactive transaction
822 * is still in the memory, not fully on disk. If you hope there is no
823 * inactive transaction in the fs when -ENOENT is returned, you should
824 * invoke
825 * btrfs_attach_transaction_barrier()
826 */
354aa0fb 827struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
60376ce4 828{
575a75d6 829 return start_transaction(root, 0, TRANS_ATTACH,
003d7c59 830 BTRFS_RESERVE_NO_FLUSH, true);
60376ce4
JB
831}
832
d4edf39b 833/*
90b6d283 834 * btrfs_attach_transaction_barrier() - catch the running transaction
d4edf39b 835 *
52042d8e 836 * It is similar to the above function, the difference is this one
d4edf39b
MX
837 * will wait for all the inactive transactions until they fully
838 * complete.
839 */
840struct btrfs_trans_handle *
841btrfs_attach_transaction_barrier(struct btrfs_root *root)
842{
843 struct btrfs_trans_handle *trans;
844
575a75d6 845 trans = start_transaction(root, 0, TRANS_ATTACH,
003d7c59 846 BTRFS_RESERVE_NO_FLUSH, true);
8d9e220c 847 if (trans == ERR_PTR(-ENOENT))
2ff7e61e 848 btrfs_wait_for_commit(root->fs_info, 0);
d4edf39b
MX
849
850 return trans;
851}
852
d0c2f4fa
FM
853/* Wait for a transaction commit to reach at least the given state. */
854static noinline void wait_for_commit(struct btrfs_transaction *commit,
855 const enum btrfs_trans_state min_state)
89ce8a63 856{
d0c2f4fa 857 wait_event(commit->commit_wait, commit->state >= min_state);
89ce8a63
CM
858}
859
2ff7e61e 860int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
46204592
SW
861{
862 struct btrfs_transaction *cur_trans = NULL, *t;
8cd2807f 863 int ret = 0;
46204592 864
46204592 865 if (transid) {
0b246afa 866 if (transid <= fs_info->last_trans_committed)
a4abeea4 867 goto out;
46204592
SW
868
869 /* find specified transaction */
0b246afa
JM
870 spin_lock(&fs_info->trans_lock);
871 list_for_each_entry(t, &fs_info->trans_list, list) {
46204592
SW
872 if (t->transid == transid) {
873 cur_trans = t;
9b64f57d 874 refcount_inc(&cur_trans->use_count);
8cd2807f 875 ret = 0;
46204592
SW
876 break;
877 }
8cd2807f
MX
878 if (t->transid > transid) {
879 ret = 0;
46204592 880 break;
8cd2807f 881 }
46204592 882 }
0b246afa 883 spin_unlock(&fs_info->trans_lock);
42383020
SW
884
885 /*
886 * The specified transaction doesn't exist, or we
887 * raced with btrfs_commit_transaction
888 */
889 if (!cur_trans) {
0b246afa 890 if (transid > fs_info->last_trans_committed)
42383020 891 ret = -EINVAL;
8cd2807f 892 goto out;
42383020 893 }
46204592
SW
894 } else {
895 /* find newest transaction that is committing | committed */
0b246afa
JM
896 spin_lock(&fs_info->trans_lock);
897 list_for_each_entry_reverse(t, &fs_info->trans_list,
46204592 898 list) {
4a9d8bde
MX
899 if (t->state >= TRANS_STATE_COMMIT_START) {
900 if (t->state == TRANS_STATE_COMPLETED)
3473f3c0 901 break;
46204592 902 cur_trans = t;
9b64f57d 903 refcount_inc(&cur_trans->use_count);
46204592
SW
904 break;
905 }
906 }
0b246afa 907 spin_unlock(&fs_info->trans_lock);
46204592 908 if (!cur_trans)
a4abeea4 909 goto out; /* nothing committing|committed */
46204592
SW
910 }
911
d0c2f4fa 912 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
724e2315 913 btrfs_put_transaction(cur_trans);
a4abeea4 914out:
46204592
SW
915 return ret;
916}
917
2ff7e61e 918void btrfs_throttle(struct btrfs_fs_info *fs_info)
37d1aeee 919{
92e2f7e3 920 wait_current_trans(fs_info);
37d1aeee
CM
921}
922
8a8f4dea 923static bool should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa 924{
2ff7e61e 925 struct btrfs_fs_info *fs_info = trans->fs_info;
0b246afa 926
64403612 927 if (btrfs_check_space_for_delayed_refs(fs_info))
8a8f4dea 928 return true;
36ba022a 929
2ff7e61e 930 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
8929ecfa
YZ
931}
932
a2633b6a 933bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
8929ecfa
YZ
934{
935 struct btrfs_transaction *cur_trans = trans->transaction;
8929ecfa 936
3296bf56 937 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
e19eb11f 938 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
a2633b6a 939 return true;
8929ecfa 940
2ff7e61e 941 return should_end_transaction(trans);
8929ecfa
YZ
942}
943
dc60c525
NB
944static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
945
0e34693f 946{
dc60c525
NB
947 struct btrfs_fs_info *fs_info = trans->fs_info;
948
0e34693f
NB
949 if (!trans->block_rsv) {
950 ASSERT(!trans->bytes_reserved);
951 return;
952 }
953
954 if (!trans->bytes_reserved)
955 return;
956
957 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
958 trace_btrfs_space_reservation(fs_info, "transaction",
959 trans->transid, trans->bytes_reserved, 0);
960 btrfs_block_rsv_release(fs_info, trans->block_rsv,
63f018be 961 trans->bytes_reserved, NULL);
0e34693f
NB
962 trans->bytes_reserved = 0;
963}
964
89ce8a63 965static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
3a45bb20 966 int throttle)
79154b1b 967{
3a45bb20 968 struct btrfs_fs_info *info = trans->fs_info;
8929ecfa 969 struct btrfs_transaction *cur_trans = trans->transaction;
4edc2ca3 970 int err = 0;
c3e69d58 971
b50fff81
DS
972 if (refcount_read(&trans->use_count) > 1) {
973 refcount_dec(&trans->use_count);
2a1eb461
JB
974 trans->block_rsv = trans->orig_rsv;
975 return 0;
976 }
977
dc60c525 978 btrfs_trans_release_metadata(trans);
4c13d758 979 trans->block_rsv = NULL;
c5567237 980
119e80df 981 btrfs_create_pending_block_groups(trans);
ea658bad 982
4fbcdf66
FM
983 btrfs_trans_release_chunk_metadata(trans);
984
0860adfd 985 if (trans->type & __TRANS_FREEZABLE)
0b246afa 986 sb_end_intwrite(info->sb);
6df7881a 987
8929ecfa 988 WARN_ON(cur_trans != info->running_transaction);
13c5a93e
JB
989 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
990 atomic_dec(&cur_trans->num_writers);
0860adfd 991 extwriter_counter_dec(cur_trans, trans->type);
89ce8a63 992
093258e6 993 cond_wake_up(&cur_trans->writer_wait);
724e2315 994 btrfs_put_transaction(cur_trans);
9ed74f2d
JB
995
996 if (current->journal_info == trans)
997 current->journal_info = NULL;
ab78c84d 998
24bbcf04 999 if (throttle)
2ff7e61e 1000 btrfs_run_delayed_iputs(info);
24bbcf04 1001
bf31f87f 1002 if (TRANS_ABORTED(trans) ||
0b246afa 1003 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
4e121c06 1004 wake_up_process(info->transaction_kthread);
fbabd4a3
JB
1005 if (TRANS_ABORTED(trans))
1006 err = trans->aborted;
1007 else
1008 err = -EROFS;
4e121c06 1009 }
49b25e05 1010
4edc2ca3
DJ
1011 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1012 return err;
79154b1b
CM
1013}
1014
3a45bb20 1015int btrfs_end_transaction(struct btrfs_trans_handle *trans)
89ce8a63 1016{
3a45bb20 1017 return __btrfs_end_transaction(trans, 0);
89ce8a63
CM
1018}
1019
3a45bb20 1020int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
89ce8a63 1021{
3a45bb20 1022 return __btrfs_end_transaction(trans, 1);
16cdcec7
MX
1023}
1024
d352ac68
CM
1025/*
1026 * when btree blocks are allocated, they have some corresponding bits set for
1027 * them in one of two extent_io trees. This is used to make sure all of
690587d1 1028 * those extents are sent to disk but does not wait on them
d352ac68 1029 */
2ff7e61e 1030int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
8cef4e16 1031 struct extent_io_tree *dirty_pages, int mark)
79154b1b 1032{
777e6bd7 1033 int err = 0;
7c4452b9 1034 int werr = 0;
0b246afa 1035 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1036 struct extent_state *cached_state = NULL;
777e6bd7 1037 u64 start = 0;
5f39d397 1038 u64 end;
7c4452b9 1039
6300463b 1040 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1728366e 1041 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1042 mark, &cached_state)) {
663dfbb0
FM
1043 bool wait_writeback = false;
1044
1045 err = convert_extent_bit(dirty_pages, start, end,
1046 EXTENT_NEED_WAIT,
210aa277 1047 mark, &cached_state);
663dfbb0
FM
1048 /*
1049 * convert_extent_bit can return -ENOMEM, which is most of the
1050 * time a temporary error. So when it happens, ignore the error
1051 * and wait for writeback of this range to finish - because we
1052 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
bf89d38f
JM
1053 * to __btrfs_wait_marked_extents() would not know that
1054 * writeback for this range started and therefore wouldn't
1055 * wait for it to finish - we don't want to commit a
1056 * superblock that points to btree nodes/leafs for which
1057 * writeback hasn't finished yet (and without errors).
663dfbb0 1058 * We cleanup any entries left in the io tree when committing
41e7acd3 1059 * the transaction (through extent_io_tree_release()).
663dfbb0
FM
1060 */
1061 if (err == -ENOMEM) {
1062 err = 0;
1063 wait_writeback = true;
1064 }
1065 if (!err)
1066 err = filemap_fdatawrite_range(mapping, start, end);
1728366e
JB
1067 if (err)
1068 werr = err;
663dfbb0
FM
1069 else if (wait_writeback)
1070 werr = filemap_fdatawait_range(mapping, start, end);
e38e2ed7 1071 free_extent_state(cached_state);
663dfbb0 1072 cached_state = NULL;
1728366e
JB
1073 cond_resched();
1074 start = end + 1;
7c4452b9 1075 }
6300463b 1076 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
690587d1
CM
1077 return werr;
1078}
1079
1080/*
1081 * when btree blocks are allocated, they have some corresponding bits set for
1082 * them in one of two extent_io trees. This is used to make sure all of
1083 * those extents are on disk for transaction or log commit. We wait
1084 * on all the pages and clear them from the dirty pages state tree
1085 */
bf89d38f
JM
1086static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1087 struct extent_io_tree *dirty_pages)
690587d1 1088{
690587d1
CM
1089 int err = 0;
1090 int werr = 0;
0b246afa 1091 struct address_space *mapping = fs_info->btree_inode->i_mapping;
e6138876 1092 struct extent_state *cached_state = NULL;
690587d1
CM
1093 u64 start = 0;
1094 u64 end;
777e6bd7 1095
1728366e 1096 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 1097 EXTENT_NEED_WAIT, &cached_state)) {
663dfbb0
FM
1098 /*
1099 * Ignore -ENOMEM errors returned by clear_extent_bit().
1100 * When committing the transaction, we'll remove any entries
1101 * left in the io tree. For a log commit, we don't remove them
1102 * after committing the log because the tree can be accessed
1103 * concurrently - we do it only at transaction commit time when
41e7acd3 1104 * it's safe to do it (through extent_io_tree_release()).
663dfbb0
FM
1105 */
1106 err = clear_extent_bit(dirty_pages, start, end,
ae0f1625 1107 EXTENT_NEED_WAIT, 0, 0, &cached_state);
663dfbb0
FM
1108 if (err == -ENOMEM)
1109 err = 0;
1110 if (!err)
1111 err = filemap_fdatawait_range(mapping, start, end);
1728366e
JB
1112 if (err)
1113 werr = err;
e38e2ed7
FM
1114 free_extent_state(cached_state);
1115 cached_state = NULL;
1728366e
JB
1116 cond_resched();
1117 start = end + 1;
777e6bd7 1118 }
7c4452b9
CM
1119 if (err)
1120 werr = err;
bf89d38f
JM
1121 return werr;
1122}
656f30db 1123
b9fae2eb 1124static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
bf89d38f
JM
1125 struct extent_io_tree *dirty_pages)
1126{
1127 bool errors = false;
1128 int err;
656f30db 1129
bf89d38f
JM
1130 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1131 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1132 errors = true;
1133
1134 if (errors && !err)
1135 err = -EIO;
1136 return err;
1137}
656f30db 1138
bf89d38f
JM
1139int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1140{
1141 struct btrfs_fs_info *fs_info = log_root->fs_info;
1142 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1143 bool errors = false;
1144 int err;
656f30db 1145
bf89d38f
JM
1146 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1147
1148 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1149 if ((mark & EXTENT_DIRTY) &&
1150 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1151 errors = true;
1152
1153 if ((mark & EXTENT_NEW) &&
1154 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1155 errors = true;
1156
1157 if (errors && !err)
1158 err = -EIO;
1159 return err;
79154b1b
CM
1160}
1161
690587d1 1162/*
c9b577c0
NB
1163 * When btree blocks are allocated the corresponding extents are marked dirty.
1164 * This function ensures such extents are persisted on disk for transaction or
1165 * log commit.
1166 *
1167 * @trans: transaction whose dirty pages we'd like to write
690587d1 1168 */
70458a58 1169static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
690587d1
CM
1170{
1171 int ret;
1172 int ret2;
c9b577c0 1173 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
70458a58 1174 struct btrfs_fs_info *fs_info = trans->fs_info;
c6adc9cc 1175 struct blk_plug plug;
690587d1 1176
c6adc9cc 1177 blk_start_plug(&plug);
c9b577c0 1178 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
c6adc9cc 1179 blk_finish_plug(&plug);
bf89d38f 1180 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
bf0da8c1 1181
41e7acd3 1182 extent_io_tree_release(&trans->transaction->dirty_pages);
c9b577c0 1183
bf0da8c1
CM
1184 if (ret)
1185 return ret;
c9b577c0 1186 else if (ret2)
bf0da8c1 1187 return ret2;
c9b577c0
NB
1188 else
1189 return 0;
d0c803c4
CM
1190}
1191
d352ac68
CM
1192/*
1193 * this is used to update the root pointer in the tree of tree roots.
1194 *
1195 * But, in the case of the extent allocation tree, updating the root
1196 * pointer may allocate blocks which may change the root of the extent
1197 * allocation tree.
1198 *
1199 * So, this loops and repeats and makes sure the cowonly root didn't
1200 * change while the root pointer was being updated in the metadata.
1201 */
0b86a832
CM
1202static int update_cowonly_root(struct btrfs_trans_handle *trans,
1203 struct btrfs_root *root)
79154b1b
CM
1204{
1205 int ret;
0b86a832 1206 u64 old_root_bytenr;
86b9f2ec 1207 u64 old_root_used;
0b246afa
JM
1208 struct btrfs_fs_info *fs_info = root->fs_info;
1209 struct btrfs_root *tree_root = fs_info->tree_root;
79154b1b 1210
86b9f2ec 1211 old_root_used = btrfs_root_used(&root->root_item);
56bec294 1212
d397712b 1213 while (1) {
0b86a832 1214 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec 1215 if (old_root_bytenr == root->node->start &&
ea526d18 1216 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 1217 break;
87ef2bb4 1218
5d4f98a2 1219 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 1220 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
1221 &root->root_key,
1222 &root->root_item);
49b25e05
JM
1223 if (ret)
1224 return ret;
56bec294 1225
86b9f2ec 1226 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 1227 }
276e680d 1228
0b86a832
CM
1229 return 0;
1230}
1231
d352ac68
CM
1232/*
1233 * update all the cowonly tree roots on disk
49b25e05
JM
1234 *
1235 * The error handling in this function may not be obvious. Any of the
1236 * failures will cause the file system to go offline. We still need
1237 * to clean up the delayed refs.
d352ac68 1238 */
9386d8bc 1239static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
0b86a832 1240{
9386d8bc 1241 struct btrfs_fs_info *fs_info = trans->fs_info;
ea526d18 1242 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1bbc621e 1243 struct list_head *io_bgs = &trans->transaction->io_bgs;
0b86a832 1244 struct list_head *next;
84234f3a 1245 struct extent_buffer *eb;
56bec294 1246 int ret;
84234f3a
YZ
1247
1248 eb = btrfs_lock_root_node(fs_info->tree_root);
49b25e05 1249 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
9631e4cc 1250 0, &eb, BTRFS_NESTING_COW);
84234f3a
YZ
1251 btrfs_tree_unlock(eb);
1252 free_extent_buffer(eb);
0b86a832 1253
49b25e05
JM
1254 if (ret)
1255 return ret;
87ef2bb4 1256
196c9d8d 1257 ret = btrfs_run_dev_stats(trans);
c16ce190
JB
1258 if (ret)
1259 return ret;
2b584c68 1260 ret = btrfs_run_dev_replace(trans);
c16ce190
JB
1261 if (ret)
1262 return ret;
280f8bd2 1263 ret = btrfs_run_qgroups(trans);
c16ce190
JB
1264 if (ret)
1265 return ret;
546adb0d 1266
bbebb3e0 1267 ret = btrfs_setup_space_cache(trans);
dcdf7f6d
JB
1268 if (ret)
1269 return ret;
1270
ea526d18 1271again:
d397712b 1272 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
2ff7e61e 1273 struct btrfs_root *root;
0b86a832
CM
1274 next = fs_info->dirty_cowonly_roots.next;
1275 list_del_init(next);
1276 root = list_entry(next, struct btrfs_root, dirty_list);
e7070be1 1277 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
87ef2bb4 1278
9e351cc8
JB
1279 if (root != fs_info->extent_root)
1280 list_add_tail(&root->dirty_list,
1281 &trans->transaction->switch_commits);
49b25e05
JM
1282 ret = update_cowonly_root(trans, root);
1283 if (ret)
1284 return ret;
79154b1b 1285 }
276e680d 1286
488bc2a2
JB
1287 /* Now flush any delayed refs generated by updating all of the roots */
1288 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1289 if (ret)
1290 return ret;
1291
1bbc621e 1292 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
5742d15f 1293 ret = btrfs_write_dirty_block_groups(trans);
ea526d18
JB
1294 if (ret)
1295 return ret;
488bc2a2
JB
1296
1297 /*
1298 * We're writing the dirty block groups, which could generate
1299 * delayed refs, which could generate more dirty block groups,
1300 * so we want to keep this flushing in this loop to make sure
1301 * everything gets run.
1302 */
c79a70b1 1303 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
ea526d18
JB
1304 if (ret)
1305 return ret;
1306 }
1307
1308 if (!list_empty(&fs_info->dirty_cowonly_roots))
1309 goto again;
1310
9e351cc8
JB
1311 list_add_tail(&fs_info->extent_root->dirty_list,
1312 &trans->transaction->switch_commits);
9f6cbcbb
DS
1313
1314 /* Update dev-replace pointer once everything is committed */
1315 fs_info->dev_replace.committed_cursor_left =
1316 fs_info->dev_replace.cursor_left_last_write_of_item;
8dabb742 1317
79154b1b
CM
1318 return 0;
1319}
1320
d352ac68
CM
1321/*
1322 * dead roots are old snapshots that need to be deleted. This allocates
1323 * a dirty root struct and adds it into the list of dead roots that need to
1324 * be deleted
1325 */
cfad392b 1326void btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 1327{
0b246afa
JM
1328 struct btrfs_fs_info *fs_info = root->fs_info;
1329
1330 spin_lock(&fs_info->trans_lock);
dc9492c1
JB
1331 if (list_empty(&root->root_list)) {
1332 btrfs_grab_root(root);
0b246afa 1333 list_add_tail(&root->root_list, &fs_info->dead_roots);
dc9492c1 1334 }
0b246afa 1335 spin_unlock(&fs_info->trans_lock);
5eda7b5e
CM
1336}
1337
d352ac68 1338/*
5d4f98a2 1339 * update all the cowonly tree roots on disk
d352ac68 1340 */
7e4443d9 1341static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
0f7d52f4 1342{
7e4443d9 1343 struct btrfs_fs_info *fs_info = trans->fs_info;
0f7d52f4 1344 struct btrfs_root *gang[8];
0f7d52f4
CM
1345 int i;
1346 int ret;
54aa1f4d 1347
a4abeea4 1348 spin_lock(&fs_info->fs_roots_radix_lock);
d397712b 1349 while (1) {
5d4f98a2
YZ
1350 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1351 (void **)gang, 0,
0f7d52f4
CM
1352 ARRAY_SIZE(gang),
1353 BTRFS_ROOT_TRANS_TAG);
1354 if (ret == 0)
1355 break;
1356 for (i = 0; i < ret; i++) {
5b4aacef 1357 struct btrfs_root *root = gang[i];
4f4317c1
JB
1358 int ret2;
1359
5d4f98a2
YZ
1360 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1361 (unsigned long)root->root_key.objectid,
1362 BTRFS_ROOT_TRANS_TAG);
a4abeea4 1363 spin_unlock(&fs_info->fs_roots_radix_lock);
31153d81 1364
e02119d5 1365 btrfs_free_log(trans, root);
2dd8298e
JB
1366 ret2 = btrfs_update_reloc_root(trans, root);
1367 if (ret2)
1368 return ret2;
bcc63abb 1369
f1ebcc74 1370 /* see comments in should_cow_block() */
27cdeb70 1371 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
c7548af6 1372 smp_mb__after_atomic();
f1ebcc74 1373
978d910d 1374 if (root->commit_root != root->node) {
9e351cc8
JB
1375 list_add_tail(&root->dirty_list,
1376 &trans->transaction->switch_commits);
978d910d
YZ
1377 btrfs_set_root_node(&root->root_item,
1378 root->node);
1379 }
5d4f98a2 1380
4f4317c1 1381 ret2 = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
1382 &root->root_key,
1383 &root->root_item);
4f4317c1
JB
1384 if (ret2)
1385 return ret2;
a4abeea4 1386 spin_lock(&fs_info->fs_roots_radix_lock);
733e03a0 1387 btrfs_qgroup_free_meta_all_pertrans(root);
0f7d52f4
CM
1388 }
1389 }
a4abeea4 1390 spin_unlock(&fs_info->fs_roots_radix_lock);
4f4317c1 1391 return 0;
0f7d52f4
CM
1392}
1393
d352ac68 1394/*
de78b51a
ES
1395 * defrag a given btree.
1396 * Every leaf in the btree is read and defragged.
d352ac68 1397 */
de78b51a 1398int btrfs_defrag_root(struct btrfs_root *root)
e9d0b13b
CM
1399{
1400 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 1401 struct btrfs_trans_handle *trans;
8929ecfa 1402 int ret;
e9d0b13b 1403
27cdeb70 1404 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
e9d0b13b 1405 return 0;
8929ecfa 1406
6b80053d 1407 while (1) {
8929ecfa
YZ
1408 trans = btrfs_start_transaction(root, 0);
1409 if (IS_ERR(trans))
1410 return PTR_ERR(trans);
1411
de78b51a 1412 ret = btrfs_defrag_leaves(trans, root);
8929ecfa 1413
3a45bb20 1414 btrfs_end_transaction(trans);
2ff7e61e 1415 btrfs_btree_balance_dirty(info);
e9d0b13b
CM
1416 cond_resched();
1417
ab8d0fc4 1418 if (btrfs_fs_closing(info) || ret != -EAGAIN)
e9d0b13b 1419 break;
210549eb 1420
ab8d0fc4
JM
1421 if (btrfs_defrag_cancelled(info)) {
1422 btrfs_debug(info, "defrag_root cancelled");
210549eb
DS
1423 ret = -EAGAIN;
1424 break;
1425 }
e9d0b13b 1426 }
27cdeb70 1427 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
8929ecfa 1428 return ret;
e9d0b13b
CM
1429}
1430
6426c7ad
QW
1431/*
1432 * Do all special snapshot related qgroup dirty hack.
1433 *
1434 * Will do all needed qgroup inherit and dirty hack like switch commit
1435 * roots inside one transaction and write all btree into disk, to make
1436 * qgroup works.
1437 */
1438static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1439 struct btrfs_root *src,
1440 struct btrfs_root *parent,
1441 struct btrfs_qgroup_inherit *inherit,
1442 u64 dst_objectid)
1443{
1444 struct btrfs_fs_info *fs_info = src->fs_info;
1445 int ret;
1446
1447 /*
1448 * Save some performance in the case that qgroups are not
1449 * enabled. If this check races with the ioctl, rescan will
1450 * kick in anyway.
1451 */
9ea6e2b5 1452 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
6426c7ad 1453 return 0;
6426c7ad 1454
4d31778a 1455 /*
52042d8e 1456 * Ensure dirty @src will be committed. Or, after coming
4d31778a
QW
1457 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1458 * recorded root will never be updated again, causing an outdated root
1459 * item.
1460 */
1c442d22
JB
1461 ret = record_root_in_trans(trans, src, 1);
1462 if (ret)
1463 return ret;
4d31778a 1464
2a4d84c1
JB
1465 /*
1466 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1467 * src root, so we must run the delayed refs here.
1468 *
1469 * However this isn't particularly fool proof, because there's no
1470 * synchronization keeping us from changing the tree after this point
1471 * before we do the qgroup_inherit, or even from making changes while
1472 * we're doing the qgroup_inherit. But that's a problem for the future,
1473 * for now flush the delayed refs to narrow the race window where the
1474 * qgroup counters could end up wrong.
1475 */
1476 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1477 if (ret) {
1478 btrfs_abort_transaction(trans, ret);
1479 goto out;
1480 }
1481
6426c7ad
QW
1482 /*
1483 * We are going to commit transaction, see btrfs_commit_transaction()
1484 * comment for reason locking tree_log_mutex
1485 */
1486 mutex_lock(&fs_info->tree_log_mutex);
1487
7e4443d9 1488 ret = commit_fs_roots(trans);
6426c7ad
QW
1489 if (ret)
1490 goto out;
460fb20a 1491 ret = btrfs_qgroup_account_extents(trans);
6426c7ad
QW
1492 if (ret < 0)
1493 goto out;
1494
1495 /* Now qgroup are all updated, we can inherit it to new qgroups */
a9377422 1496 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
6426c7ad
QW
1497 inherit);
1498 if (ret < 0)
1499 goto out;
1500
1501 /*
1502 * Now we do a simplified commit transaction, which will:
1503 * 1) commit all subvolume and extent tree
1504 * To ensure all subvolume and extent tree have a valid
1505 * commit_root to accounting later insert_dir_item()
1506 * 2) write all btree blocks onto disk
1507 * This is to make sure later btree modification will be cowed
1508 * Or commit_root can be populated and cause wrong qgroup numbers
1509 * In this simplified commit, we don't really care about other trees
1510 * like chunk and root tree, as they won't affect qgroup.
1511 * And we don't write super to avoid half committed status.
1512 */
9386d8bc 1513 ret = commit_cowonly_roots(trans);
6426c7ad
QW
1514 if (ret)
1515 goto out;
889bfa39 1516 switch_commit_roots(trans);
70458a58 1517 ret = btrfs_write_and_wait_transaction(trans);
6426c7ad 1518 if (ret)
f7af3934 1519 btrfs_handle_fs_error(fs_info, ret,
6426c7ad
QW
1520 "Error while writing out transaction for qgroup");
1521
1522out:
1523 mutex_unlock(&fs_info->tree_log_mutex);
1524
1525 /*
1526 * Force parent root to be updated, as we recorded it before so its
1527 * last_trans == cur_transid.
1528 * Or it won't be committed again onto disk after later
1529 * insert_dir_item()
1530 */
1531 if (!ret)
1c442d22 1532 ret = record_root_in_trans(trans, parent, 1);
6426c7ad
QW
1533 return ret;
1534}
1535
d352ac68
CM
1536/*
1537 * new snapshots need to be created at a very specific time in the
aec8030a
MX
1538 * transaction commit. This does the actual creation.
1539 *
1540 * Note:
1541 * If the error which may affect the commitment of the current transaction
1542 * happens, we should return the error number. If the error which just affect
1543 * the creation of the pending snapshots, just return 0.
d352ac68 1544 */
80b6794d 1545static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
1546 struct btrfs_pending_snapshot *pending)
1547{
08d50ca3
NB
1548
1549 struct btrfs_fs_info *fs_info = trans->fs_info;
3063d29f 1550 struct btrfs_key key;
80b6794d 1551 struct btrfs_root_item *new_root_item;
3063d29f
CM
1552 struct btrfs_root *tree_root = fs_info->tree_root;
1553 struct btrfs_root *root = pending->root;
6bdb72de 1554 struct btrfs_root *parent_root;
98c9942a 1555 struct btrfs_block_rsv *rsv;
6bdb72de 1556 struct inode *parent_inode;
42874b3d
MX
1557 struct btrfs_path *path;
1558 struct btrfs_dir_item *dir_item;
a22285a6 1559 struct dentry *dentry;
3063d29f 1560 struct extent_buffer *tmp;
925baedd 1561 struct extent_buffer *old;
95582b00 1562 struct timespec64 cur_time;
aec8030a 1563 int ret = 0;
d68fc57b 1564 u64 to_reserve = 0;
6bdb72de 1565 u64 index = 0;
a22285a6 1566 u64 objectid;
b83cc969 1567 u64 root_flags;
3063d29f 1568
8546b570
DS
1569 ASSERT(pending->path);
1570 path = pending->path;
42874b3d 1571
b0c0ea63
DS
1572 ASSERT(pending->root_item);
1573 new_root_item = pending->root_item;
a22285a6 1574
543068a2 1575 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
aec8030a 1576 if (pending->error)
6fa9700e 1577 goto no_free_objectid;
3063d29f 1578
d6726335
QW
1579 /*
1580 * Make qgroup to skip current new snapshot's qgroupid, as it is
1581 * accounted by later btrfs_qgroup_inherit().
1582 */
1583 btrfs_set_skip_qgroup(trans, objectid);
1584
147d256e 1585 btrfs_reloc_pre_snapshot(pending, &to_reserve);
d68fc57b
YZ
1586
1587 if (to_reserve > 0) {
aec8030a
MX
1588 pending->error = btrfs_block_rsv_add(root,
1589 &pending->block_rsv,
1590 to_reserve,
1591 BTRFS_RESERVE_NO_FLUSH);
1592 if (pending->error)
d6726335 1593 goto clear_skip_qgroup;
d68fc57b
YZ
1594 }
1595
3063d29f 1596 key.objectid = objectid;
a22285a6
YZ
1597 key.offset = (u64)-1;
1598 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 1599
6fa9700e 1600 rsv = trans->block_rsv;
a22285a6 1601 trans->block_rsv = &pending->block_rsv;
2382c5cc 1602 trans->bytes_reserved = trans->block_rsv->reserved;
0b246afa 1603 trace_btrfs_space_reservation(fs_info, "transaction",
88d3a5aa
JB
1604 trans->transid,
1605 trans->bytes_reserved, 1);
a22285a6 1606 dentry = pending->dentry;
e9662f70 1607 parent_inode = pending->dir;
a22285a6 1608 parent_root = BTRFS_I(parent_inode)->root;
f0118cb6
JB
1609 ret = record_root_in_trans(trans, parent_root, 0);
1610 if (ret)
1611 goto fail;
c2050a45 1612 cur_time = current_time(parent_inode);
04b285f3 1613
3063d29f
CM
1614 /*
1615 * insert the directory item
1616 */
877574e2 1617 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
49b25e05 1618 BUG_ON(ret); /* -ENOMEM */
42874b3d
MX
1619
1620 /* check if there is a file/dir which has the same name. */
1621 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
4a0cc7ca 1622 btrfs_ino(BTRFS_I(parent_inode)),
42874b3d
MX
1623 dentry->d_name.name,
1624 dentry->d_name.len, 0);
1625 if (dir_item != NULL && !IS_ERR(dir_item)) {
fe66a05a 1626 pending->error = -EEXIST;
aec8030a 1627 goto dir_item_existed;
42874b3d
MX
1628 } else if (IS_ERR(dir_item)) {
1629 ret = PTR_ERR(dir_item);
66642832 1630 btrfs_abort_transaction(trans, ret);
8732d44f 1631 goto fail;
79787eaa 1632 }
42874b3d 1633 btrfs_release_path(path);
52c26179 1634
e999376f
CM
1635 /*
1636 * pull in the delayed directory update
1637 * and the delayed inode item
1638 * otherwise we corrupt the FS during
1639 * snapshot
1640 */
e5c304e6 1641 ret = btrfs_run_delayed_items(trans);
8732d44f 1642 if (ret) { /* Transaction aborted */
66642832 1643 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1644 goto fail;
1645 }
e999376f 1646
f0118cb6
JB
1647 ret = record_root_in_trans(trans, root, 0);
1648 if (ret) {
1649 btrfs_abort_transaction(trans, ret);
1650 goto fail;
1651 }
6bdb72de
SW
1652 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1653 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
08fe4db1 1654 btrfs_check_and_init_root_item(new_root_item);
6bdb72de 1655
b83cc969
LZ
1656 root_flags = btrfs_root_flags(new_root_item);
1657 if (pending->readonly)
1658 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1659 else
1660 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1661 btrfs_set_root_flags(new_root_item, root_flags);
1662
8ea05e3a
AB
1663 btrfs_set_root_generation_v2(new_root_item,
1664 trans->transid);
807fc790 1665 generate_random_guid(new_root_item->uuid);
8ea05e3a
AB
1666 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1667 BTRFS_UUID_SIZE);
70023da2
SB
1668 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1669 memset(new_root_item->received_uuid, 0,
1670 sizeof(new_root_item->received_uuid));
1671 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1672 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1673 btrfs_set_root_stransid(new_root_item, 0);
1674 btrfs_set_root_rtransid(new_root_item, 0);
1675 }
3cae210f
QW
1676 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1677 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
8ea05e3a 1678 btrfs_set_root_otransid(new_root_item, trans->transid);
8ea05e3a 1679
6bdb72de 1680 old = btrfs_lock_root_node(root);
9631e4cc
JB
1681 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1682 BTRFS_NESTING_COW);
79787eaa
JM
1683 if (ret) {
1684 btrfs_tree_unlock(old);
1685 free_extent_buffer(old);
66642832 1686 btrfs_abort_transaction(trans, ret);
8732d44f 1687 goto fail;
79787eaa 1688 }
49b25e05 1689
49b25e05 1690 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
79787eaa 1691 /* clean up in any case */
6bdb72de
SW
1692 btrfs_tree_unlock(old);
1693 free_extent_buffer(old);
8732d44f 1694 if (ret) {
66642832 1695 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1696 goto fail;
1697 }
f1ebcc74 1698 /* see comments in should_cow_block() */
27cdeb70 1699 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
f1ebcc74
LB
1700 smp_wmb();
1701
6bdb72de 1702 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
1703 /* record when the snapshot was created in key.offset */
1704 key.offset = trans->transid;
1705 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
1706 btrfs_tree_unlock(tmp);
1707 free_extent_buffer(tmp);
8732d44f 1708 if (ret) {
66642832 1709 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1710 goto fail;
1711 }
6bdb72de 1712
a22285a6
YZ
1713 /*
1714 * insert root back/forward references
1715 */
6025c19f 1716 ret = btrfs_add_root_ref(trans, objectid,
0660b5af 1717 parent_root->root_key.objectid,
4a0cc7ca 1718 btrfs_ino(BTRFS_I(parent_inode)), index,
a22285a6 1719 dentry->d_name.name, dentry->d_name.len);
8732d44f 1720 if (ret) {
66642832 1721 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1722 goto fail;
1723 }
0660b5af 1724
a22285a6 1725 key.offset = (u64)-1;
2dfb1e43 1726 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
79787eaa
JM
1727 if (IS_ERR(pending->snap)) {
1728 ret = PTR_ERR(pending->snap);
2d892ccd 1729 pending->snap = NULL;
66642832 1730 btrfs_abort_transaction(trans, ret);
8732d44f 1731 goto fail;
79787eaa 1732 }
d68fc57b 1733
49b25e05 1734 ret = btrfs_reloc_post_snapshot(trans, pending);
8732d44f 1735 if (ret) {
66642832 1736 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1737 goto fail;
1738 }
361048f5 1739
6426c7ad
QW
1740 /*
1741 * Do special qgroup accounting for snapshot, as we do some qgroup
1742 * snapshot hack to do fast snapshot.
1743 * To co-operate with that hack, we do hack again.
1744 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1745 */
1746 ret = qgroup_account_snapshot(trans, root, parent_root,
1747 pending->inherit, objectid);
1748 if (ret < 0)
1749 goto fail;
1750
684572df
LF
1751 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1752 dentry->d_name.len, BTRFS_I(parent_inode),
1753 &key, BTRFS_FT_DIR, index);
42874b3d 1754 /* We have check then name at the beginning, so it is impossible. */
9c52057c 1755 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
8732d44f 1756 if (ret) {
66642832 1757 btrfs_abort_transaction(trans, ret);
8732d44f
MX
1758 goto fail;
1759 }
42874b3d 1760
6ef06d27 1761 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
42874b3d 1762 dentry->d_name.len * 2);
04b285f3 1763 parent_inode->i_mtime = parent_inode->i_ctime =
c2050a45 1764 current_time(parent_inode);
729f7961 1765 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
dd5f9615 1766 if (ret) {
66642832 1767 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1768 goto fail;
1769 }
807fc790
AS
1770 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1771 BTRFS_UUID_KEY_SUBVOL,
cdb345a8 1772 objectid);
dd5f9615 1773 if (ret) {
66642832 1774 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1775 goto fail;
1776 }
1777 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
cdb345a8 1778 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
dd5f9615
SB
1779 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1780 objectid);
1781 if (ret && ret != -EEXIST) {
66642832 1782 btrfs_abort_transaction(trans, ret);
dd5f9615
SB
1783 goto fail;
1784 }
1785 }
d6726335 1786
3063d29f 1787fail:
aec8030a
MX
1788 pending->error = ret;
1789dir_item_existed:
98c9942a 1790 trans->block_rsv = rsv;
2382c5cc 1791 trans->bytes_reserved = 0;
d6726335
QW
1792clear_skip_qgroup:
1793 btrfs_clear_skip_qgroup(trans);
6fa9700e
MX
1794no_free_objectid:
1795 kfree(new_root_item);
b0c0ea63 1796 pending->root_item = NULL;
42874b3d 1797 btrfs_free_path(path);
8546b570
DS
1798 pending->path = NULL;
1799
49b25e05 1800 return ret;
3063d29f
CM
1801}
1802
d352ac68
CM
1803/*
1804 * create all the snapshots we've scheduled for creation
1805 */
08d50ca3 1806static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
3de4586c 1807{
aec8030a 1808 struct btrfs_pending_snapshot *pending, *next;
3de4586c 1809 struct list_head *head = &trans->transaction->pending_snapshots;
aec8030a 1810 int ret = 0;
3de4586c 1811
aec8030a
MX
1812 list_for_each_entry_safe(pending, next, head, list) {
1813 list_del(&pending->list);
08d50ca3 1814 ret = create_pending_snapshot(trans, pending);
aec8030a
MX
1815 if (ret)
1816 break;
1817 }
1818 return ret;
3de4586c
CM
1819}
1820
2ff7e61e 1821static void update_super_roots(struct btrfs_fs_info *fs_info)
5d4f98a2
YZ
1822{
1823 struct btrfs_root_item *root_item;
1824 struct btrfs_super_block *super;
1825
0b246afa 1826 super = fs_info->super_copy;
5d4f98a2 1827
0b246afa 1828 root_item = &fs_info->chunk_root->root_item;
093e037c
DS
1829 super->chunk_root = root_item->bytenr;
1830 super->chunk_root_generation = root_item->generation;
1831 super->chunk_root_level = root_item->level;
5d4f98a2 1832
0b246afa 1833 root_item = &fs_info->tree_root->root_item;
093e037c
DS
1834 super->root = root_item->bytenr;
1835 super->generation = root_item->generation;
1836 super->root_level = root_item->level;
0b246afa 1837 if (btrfs_test_opt(fs_info, SPACE_CACHE))
093e037c 1838 super->cache_generation = root_item->generation;
94846229
BB
1839 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1840 super->cache_generation = 0;
0b246afa 1841 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
093e037c 1842 super->uuid_tree_generation = root_item->generation;
5d4f98a2
YZ
1843}
1844
f36f3042
CM
1845int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1846{
4a9d8bde 1847 struct btrfs_transaction *trans;
f36f3042 1848 int ret = 0;
4a9d8bde 1849
a4abeea4 1850 spin_lock(&info->trans_lock);
4a9d8bde
MX
1851 trans = info->running_transaction;
1852 if (trans)
1853 ret = (trans->state >= TRANS_STATE_COMMIT_START);
a4abeea4 1854 spin_unlock(&info->trans_lock);
f36f3042
CM
1855 return ret;
1856}
1857
8929ecfa
YZ
1858int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1859{
4a9d8bde 1860 struct btrfs_transaction *trans;
8929ecfa 1861 int ret = 0;
4a9d8bde 1862
a4abeea4 1863 spin_lock(&info->trans_lock);
4a9d8bde
MX
1864 trans = info->running_transaction;
1865 if (trans)
1866 ret = is_transaction_blocked(trans);
a4abeea4 1867 spin_unlock(&info->trans_lock);
8929ecfa
YZ
1868 return ret;
1869}
1870
bb9c12c9
SW
1871/*
1872 * wait for the current transaction commit to start and block subsequent
1873 * transaction joins
1874 */
2ff7e61e 1875static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
bb9c12c9
SW
1876 struct btrfs_transaction *trans)
1877{
2ff7e61e 1878 wait_event(fs_info->transaction_blocked_wait,
bf31f87f
DS
1879 trans->state >= TRANS_STATE_COMMIT_START ||
1880 TRANS_ABORTED(trans));
bb9c12c9
SW
1881}
1882
1883/*
1884 * wait for the current transaction to start and then become unblocked.
1885 * caller holds ref.
1886 */
2ff7e61e
JM
1887static void wait_current_trans_commit_start_and_unblock(
1888 struct btrfs_fs_info *fs_info,
1889 struct btrfs_transaction *trans)
bb9c12c9 1890{
2ff7e61e 1891 wait_event(fs_info->transaction_wait,
bf31f87f
DS
1892 trans->state >= TRANS_STATE_UNBLOCKED ||
1893 TRANS_ABORTED(trans));
bb9c12c9
SW
1894}
1895
1896/*
1897 * commit transactions asynchronously. once btrfs_commit_transaction_async
1898 * returns, any subsequent transaction will not be allowed to join.
1899 */
1900struct btrfs_async_commit {
1901 struct btrfs_trans_handle *newtrans;
7892b5af 1902 struct work_struct work;
bb9c12c9
SW
1903};
1904
1905static void do_async_commit(struct work_struct *work)
1906{
1907 struct btrfs_async_commit *ac =
7892b5af 1908 container_of(work, struct btrfs_async_commit, work);
bb9c12c9 1909
6fc4e354
SW
1910 /*
1911 * We've got freeze protection passed with the transaction.
1912 * Tell lockdep about it.
1913 */
b1a06a4b 1914 if (ac->newtrans->type & __TRANS_FREEZABLE)
3a45bb20 1915 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
6fc4e354 1916
e209db7a
SW
1917 current->journal_info = ac->newtrans;
1918
3a45bb20 1919 btrfs_commit_transaction(ac->newtrans);
bb9c12c9
SW
1920 kfree(ac);
1921}
1922
1923int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
bb9c12c9
SW
1924 int wait_for_unblock)
1925{
3a45bb20 1926 struct btrfs_fs_info *fs_info = trans->fs_info;
bb9c12c9
SW
1927 struct btrfs_async_commit *ac;
1928 struct btrfs_transaction *cur_trans;
1929
1930 ac = kmalloc(sizeof(*ac), GFP_NOFS);
db5b493a
TI
1931 if (!ac)
1932 return -ENOMEM;
bb9c12c9 1933
7892b5af 1934 INIT_WORK(&ac->work, do_async_commit);
3a45bb20 1935 ac->newtrans = btrfs_join_transaction(trans->root);
3612b495
TI
1936 if (IS_ERR(ac->newtrans)) {
1937 int err = PTR_ERR(ac->newtrans);
1938 kfree(ac);
1939 return err;
1940 }
bb9c12c9
SW
1941
1942 /* take transaction reference */
bb9c12c9 1943 cur_trans = trans->transaction;
9b64f57d 1944 refcount_inc(&cur_trans->use_count);
bb9c12c9 1945
3a45bb20 1946 btrfs_end_transaction(trans);
6fc4e354
SW
1947
1948 /*
1949 * Tell lockdep we've released the freeze rwsem, since the
1950 * async commit thread will be the one to unlock it.
1951 */
b1a06a4b 1952 if (ac->newtrans->type & __TRANS_FREEZABLE)
0b246afa 1953 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
6fc4e354 1954
7892b5af 1955 schedule_work(&ac->work);
bb9c12c9
SW
1956
1957 /* wait for transaction to start and unblock */
bb9c12c9 1958 if (wait_for_unblock)
2ff7e61e 1959 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
bb9c12c9 1960 else
2ff7e61e 1961 wait_current_trans_commit_start(fs_info, cur_trans);
bb9c12c9 1962
38e88054
SW
1963 if (current->journal_info == trans)
1964 current->journal_info = NULL;
1965
724e2315 1966 btrfs_put_transaction(cur_trans);
bb9c12c9
SW
1967 return 0;
1968}
1969
49b25e05 1970
97cb39bb 1971static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
49b25e05 1972{
97cb39bb 1973 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05
JM
1974 struct btrfs_transaction *cur_trans = trans->transaction;
1975
b50fff81 1976 WARN_ON(refcount_read(&trans->use_count) > 1);
49b25e05 1977
66642832 1978 btrfs_abort_transaction(trans, err);
7b8b92af 1979
0b246afa 1980 spin_lock(&fs_info->trans_lock);
66b6135b 1981
25d8c284
MX
1982 /*
1983 * If the transaction is removed from the list, it means this
1984 * transaction has been committed successfully, so it is impossible
1985 * to call the cleanup function.
1986 */
1987 BUG_ON(list_empty(&cur_trans->list));
66b6135b 1988
0b246afa 1989 if (cur_trans == fs_info->running_transaction) {
4a9d8bde 1990 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 1991 spin_unlock(&fs_info->trans_lock);
f094ac32
LB
1992 wait_event(cur_trans->writer_wait,
1993 atomic_read(&cur_trans->num_writers) == 1);
1994
0b246afa 1995 spin_lock(&fs_info->trans_lock);
d7096fc3 1996 }
061dde82
FM
1997
1998 /*
1999 * Now that we know no one else is still using the transaction we can
2000 * remove the transaction from the list of transactions. This avoids
2001 * the transaction kthread from cleaning up the transaction while some
2002 * other task is still using it, which could result in a use-after-free
2003 * on things like log trees, as it forces the transaction kthread to
2004 * wait for this transaction to be cleaned up by us.
2005 */
2006 list_del_init(&cur_trans->list);
2007
0b246afa 2008 spin_unlock(&fs_info->trans_lock);
49b25e05 2009
2ff7e61e 2010 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
49b25e05 2011
0b246afa
JM
2012 spin_lock(&fs_info->trans_lock);
2013 if (cur_trans == fs_info->running_transaction)
2014 fs_info->running_transaction = NULL;
2015 spin_unlock(&fs_info->trans_lock);
4a9d8bde 2016
e0228285 2017 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2018 sb_end_intwrite(fs_info->sb);
724e2315
JB
2019 btrfs_put_transaction(cur_trans);
2020 btrfs_put_transaction(cur_trans);
49b25e05 2021
97cb39bb 2022 trace_btrfs_transaction_commit(trans->root);
49b25e05 2023
49b25e05
JM
2024 if (current->journal_info == trans)
2025 current->journal_info = NULL;
0b246afa 2026 btrfs_scrub_cancel(fs_info);
49b25e05
JM
2027
2028 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2029}
2030
c7cc64a9
DS
2031/*
2032 * Release reserved delayed ref space of all pending block groups of the
2033 * transaction and remove them from the list
2034 */
2035static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2036{
2037 struct btrfs_fs_info *fs_info = trans->fs_info;
32da5386 2038 struct btrfs_block_group *block_group, *tmp;
c7cc64a9
DS
2039
2040 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2041 btrfs_delayed_refs_rsv_release(fs_info, 1);
2042 list_del_init(&block_group->bg_list);
2043 }
2044}
2045
88090ad3 2046static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2047{
ce8ea7cc
JB
2048 /*
2049 * We use writeback_inodes_sb here because if we used
2050 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2051 * Currently are holding the fs freeze lock, if we do an async flush
2052 * we'll do btrfs_join_transaction() and deadlock because we need to
2053 * wait for the fs freeze lock. Using the direct flushing we benefit
2054 * from already being in a transaction and our join_transaction doesn't
2055 * have to re-take the fs freeze lock.
2056 */
88090ad3 2057 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
ce8ea7cc 2058 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
82436617
MX
2059 return 0;
2060}
2061
88090ad3 2062static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
82436617 2063{
88090ad3 2064 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
6374e57a 2065 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
82436617
MX
2066}
2067
3a45bb20 2068int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
79154b1b 2069{
3a45bb20 2070 struct btrfs_fs_info *fs_info = trans->fs_info;
49b25e05 2071 struct btrfs_transaction *cur_trans = trans->transaction;
8fd17795 2072 struct btrfs_transaction *prev_trans = NULL;
25287e0a 2073 int ret;
79154b1b 2074
35b814f3
NB
2075 ASSERT(refcount_read(&trans->use_count) == 1);
2076
d62b23c9
JB
2077 /*
2078 * Some places just start a transaction to commit it. We need to make
2079 * sure that if this commit fails that the abort code actually marks the
2080 * transaction as failed, so set trans->dirty to make the abort code do
2081 * the right thing.
2082 */
2083 trans->dirty = true;
2084
8d25a086 2085 /* Stop the commit early if ->aborted is set */
bf31f87f 2086 if (TRANS_ABORTED(cur_trans)) {
25287e0a 2087 ret = cur_trans->aborted;
3a45bb20 2088 btrfs_end_transaction(trans);
e4a2bcac 2089 return ret;
25287e0a 2090 }
49b25e05 2091
f45c752b
JB
2092 btrfs_trans_release_metadata(trans);
2093 trans->block_rsv = NULL;
2094
56bec294 2095 /*
e19eb11f
JB
2096 * We only want one transaction commit doing the flushing so we do not
2097 * waste a bunch of time on lock contention on the extent root node.
56bec294 2098 */
e19eb11f
JB
2099 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2100 &cur_trans->delayed_refs.flags)) {
2101 /*
2102 * Make a pass through all the delayed refs we have so far.
2103 * Any running threads may add more while we are here.
2104 */
2105 ret = btrfs_run_delayed_refs(trans, 0);
2106 if (ret) {
2107 btrfs_end_transaction(trans);
2108 return ret;
2109 }
2110 }
56bec294 2111
119e80df 2112 btrfs_create_pending_block_groups(trans);
ea658bad 2113
3204d33c 2114 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1bbc621e
CM
2115 int run_it = 0;
2116
2117 /* this mutex is also taken before trying to set
2118 * block groups readonly. We need to make sure
2119 * that nobody has set a block group readonly
2120 * after a extents from that block group have been
2121 * allocated for cache files. btrfs_set_block_group_ro
2122 * will wait for the transaction to commit if it
3204d33c 2123 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1bbc621e 2124 *
3204d33c
JB
2125 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2126 * only one process starts all the block group IO. It wouldn't
1bbc621e
CM
2127 * hurt to have more than one go through, but there's no
2128 * real advantage to it either.
2129 */
0b246afa 2130 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c
JB
2131 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2132 &cur_trans->flags))
1bbc621e 2133 run_it = 1;
0b246afa 2134 mutex_unlock(&fs_info->ro_block_group_mutex);
1bbc621e 2135
f9cacae3 2136 if (run_it) {
21217054 2137 ret = btrfs_start_dirty_block_groups(trans);
f9cacae3
NB
2138 if (ret) {
2139 btrfs_end_transaction(trans);
2140 return ret;
2141 }
2142 }
1bbc621e
CM
2143 }
2144
0b246afa 2145 spin_lock(&fs_info->trans_lock);
4a9d8bde 2146 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
d0c2f4fa
FM
2147 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2148
0b246afa 2149 spin_unlock(&fs_info->trans_lock);
9b64f57d 2150 refcount_inc(&cur_trans->use_count);
ccd467d6 2151
d0c2f4fa
FM
2152 if (trans->in_fsync)
2153 want_state = TRANS_STATE_SUPER_COMMITTED;
2154 ret = btrfs_end_transaction(trans);
2155 wait_for_commit(cur_trans, want_state);
15ee9bc7 2156
bf31f87f 2157 if (TRANS_ABORTED(cur_trans))
b4924a0f
LB
2158 ret = cur_trans->aborted;
2159
724e2315 2160 btrfs_put_transaction(cur_trans);
15ee9bc7 2161
49b25e05 2162 return ret;
79154b1b 2163 }
4313b399 2164
4a9d8bde 2165 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 2166 wake_up(&fs_info->transaction_blocked_wait);
bb9c12c9 2167
0b246afa 2168 if (cur_trans->list.prev != &fs_info->trans_list) {
d0c2f4fa
FM
2169 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2170
2171 if (trans->in_fsync)
2172 want_state = TRANS_STATE_SUPER_COMMITTED;
2173
ccd467d6
CM
2174 prev_trans = list_entry(cur_trans->list.prev,
2175 struct btrfs_transaction, list);
d0c2f4fa 2176 if (prev_trans->state < want_state) {
9b64f57d 2177 refcount_inc(&prev_trans->use_count);
0b246afa 2178 spin_unlock(&fs_info->trans_lock);
ccd467d6 2179
d0c2f4fa
FM
2180 wait_for_commit(prev_trans, want_state);
2181
bf31f87f 2182 ret = READ_ONCE(prev_trans->aborted);
ccd467d6 2183
724e2315 2184 btrfs_put_transaction(prev_trans);
1f9b8c8f
FM
2185 if (ret)
2186 goto cleanup_transaction;
a4abeea4 2187 } else {
0b246afa 2188 spin_unlock(&fs_info->trans_lock);
ccd467d6 2189 }
a4abeea4 2190 } else {
0b246afa 2191 spin_unlock(&fs_info->trans_lock);
cb2d3dad
FM
2192 /*
2193 * The previous transaction was aborted and was already removed
2194 * from the list of transactions at fs_info->trans_list. So we
2195 * abort to prevent writing a new superblock that reflects a
2196 * corrupt state (pointing to trees with unwritten nodes/leafs).
2197 */
2198 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2199 ret = -EROFS;
2200 goto cleanup_transaction;
2201 }
ccd467d6 2202 }
15ee9bc7 2203
0860adfd
MX
2204 extwriter_counter_dec(cur_trans, trans->type);
2205
88090ad3 2206 ret = btrfs_start_delalloc_flush(fs_info);
82436617
MX
2207 if (ret)
2208 goto cleanup_transaction;
2209
e5c304e6 2210 ret = btrfs_run_delayed_items(trans);
581227d0
MX
2211 if (ret)
2212 goto cleanup_transaction;
15ee9bc7 2213
581227d0
MX
2214 wait_event(cur_trans->writer_wait,
2215 extwriter_counter_read(cur_trans) == 0);
15ee9bc7 2216
581227d0 2217 /* some pending stuffs might be added after the previous flush. */
e5c304e6 2218 ret = btrfs_run_delayed_items(trans);
ca469637
MX
2219 if (ret)
2220 goto cleanup_transaction;
2221
88090ad3 2222 btrfs_wait_delalloc_flush(fs_info);
cb7ab021 2223
48778179
FM
2224 /*
2225 * Wait for all ordered extents started by a fast fsync that joined this
2226 * transaction. Otherwise if this transaction commits before the ordered
2227 * extents complete we lose logged data after a power failure.
2228 */
2229 wait_event(cur_trans->pending_wait,
2230 atomic_read(&cur_trans->pending_ordered) == 0);
2231
2ff7e61e 2232 btrfs_scrub_pause(fs_info);
ed0ca140
JB
2233 /*
2234 * Ok now we need to make sure to block out any other joins while we
2235 * commit the transaction. We could have started a join before setting
4a9d8bde 2236 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
ed0ca140 2237 */
0b246afa 2238 spin_lock(&fs_info->trans_lock);
4a9d8bde 2239 cur_trans->state = TRANS_STATE_COMMIT_DOING;
0b246afa 2240 spin_unlock(&fs_info->trans_lock);
ed0ca140
JB
2241 wait_event(cur_trans->writer_wait,
2242 atomic_read(&cur_trans->num_writers) == 1);
2243
bf31f87f 2244 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2245 ret = cur_trans->aborted;
6cf7f77e 2246 goto scrub_continue;
2cba30f1 2247 }
7585717f
CM
2248 /*
2249 * the reloc mutex makes sure that we stop
2250 * the balancing code from coming in and moving
2251 * extents around in the middle of the commit
2252 */
0b246afa 2253 mutex_lock(&fs_info->reloc_mutex);
7585717f 2254
42874b3d
MX
2255 /*
2256 * We needn't worry about the delayed items because we will
2257 * deal with them in create_pending_snapshot(), which is the
2258 * core function of the snapshot creation.
2259 */
08d50ca3 2260 ret = create_pending_snapshots(trans);
56e9f6ea
DS
2261 if (ret)
2262 goto unlock_reloc;
3063d29f 2263
42874b3d
MX
2264 /*
2265 * We insert the dir indexes of the snapshots and update the inode
2266 * of the snapshots' parents after the snapshot creation, so there
2267 * are some delayed items which are not dealt with. Now deal with
2268 * them.
2269 *
2270 * We needn't worry that this operation will corrupt the snapshots,
2271 * because all the tree which are snapshoted will be forced to COW
2272 * the nodes and leaves.
2273 */
e5c304e6 2274 ret = btrfs_run_delayed_items(trans);
56e9f6ea
DS
2275 if (ret)
2276 goto unlock_reloc;
16cdcec7 2277
c79a70b1 2278 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
56e9f6ea
DS
2279 if (ret)
2280 goto unlock_reloc;
56bec294 2281
e999376f
CM
2282 /*
2283 * make sure none of the code above managed to slip in a
2284 * delayed item
2285 */
ccdf9b30 2286 btrfs_assert_delayed_root_empty(fs_info);
e999376f 2287
2c90e5d6 2288 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 2289
e02119d5
CM
2290 /* btrfs_commit_tree_roots is responsible for getting the
2291 * various roots consistent with each other. Every pointer
2292 * in the tree of tree roots has to point to the most up to date
2293 * root for every subvolume and other tree. So, we have to keep
2294 * the tree logging code from jumping in and changing any
2295 * of the trees.
2296 *
2297 * At this point in the commit, there can't be any tree-log
2298 * writers, but a little lower down we drop the trans mutex
2299 * and let new people in. By holding the tree_log_mutex
2300 * from now until after the super is written, we avoid races
2301 * with the tree-log code.
2302 */
0b246afa 2303 mutex_lock(&fs_info->tree_log_mutex);
e02119d5 2304
7e4443d9 2305 ret = commit_fs_roots(trans);
56e9f6ea
DS
2306 if (ret)
2307 goto unlock_tree_log;
54aa1f4d 2308
3818aea2 2309 /*
7e1876ac
DS
2310 * Since the transaction is done, we can apply the pending changes
2311 * before the next transaction.
3818aea2 2312 */
0b246afa 2313 btrfs_apply_pending_changes(fs_info);
3818aea2 2314
5d4f98a2 2315 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
2316 * safe to free the root of tree log roots
2317 */
0b246afa 2318 btrfs_free_log_root_tree(trans, fs_info);
e02119d5 2319
0ed4792a
QW
2320 /*
2321 * Since fs roots are all committed, we can get a quite accurate
2322 * new_roots. So let's do quota accounting.
2323 */
460fb20a 2324 ret = btrfs_qgroup_account_extents(trans);
56e9f6ea
DS
2325 if (ret < 0)
2326 goto unlock_tree_log;
0ed4792a 2327
9386d8bc 2328 ret = commit_cowonly_roots(trans);
56e9f6ea
DS
2329 if (ret)
2330 goto unlock_tree_log;
54aa1f4d 2331
2cba30f1
MX
2332 /*
2333 * The tasks which save the space cache and inode cache may also
2334 * update ->aborted, check it.
2335 */
bf31f87f 2336 if (TRANS_ABORTED(cur_trans)) {
2cba30f1 2337 ret = cur_trans->aborted;
56e9f6ea 2338 goto unlock_tree_log;
2cba30f1
MX
2339 }
2340
0b246afa 2341 cur_trans = fs_info->running_transaction;
5d4f98a2 2342
0b246afa
JM
2343 btrfs_set_root_node(&fs_info->tree_root->root_item,
2344 fs_info->tree_root->node);
2345 list_add_tail(&fs_info->tree_root->dirty_list,
9e351cc8 2346 &cur_trans->switch_commits);
5d4f98a2 2347
0b246afa
JM
2348 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2349 fs_info->chunk_root->node);
2350 list_add_tail(&fs_info->chunk_root->dirty_list,
9e351cc8
JB
2351 &cur_trans->switch_commits);
2352
889bfa39 2353 switch_commit_roots(trans);
5d4f98a2 2354
ce93ec54 2355 ASSERT(list_empty(&cur_trans->dirty_bgs));
1bbc621e 2356 ASSERT(list_empty(&cur_trans->io_bgs));
2ff7e61e 2357 update_super_roots(fs_info);
e02119d5 2358
0b246afa
JM
2359 btrfs_set_super_log_root(fs_info->super_copy, 0);
2360 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2361 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2362 sizeof(*fs_info->super_copy));
ccd467d6 2363
bbbf7243 2364 btrfs_commit_device_sizes(cur_trans);
935e5cc9 2365
0b246afa
JM
2366 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2367 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
656f30db 2368
4fbcdf66
FM
2369 btrfs_trans_release_chunk_metadata(trans);
2370
0b246afa 2371 spin_lock(&fs_info->trans_lock);
4a9d8bde 2372 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa
JM
2373 fs_info->running_transaction = NULL;
2374 spin_unlock(&fs_info->trans_lock);
2375 mutex_unlock(&fs_info->reloc_mutex);
b7ec40d7 2376
0b246afa 2377 wake_up(&fs_info->transaction_wait);
e6dcd2dc 2378
70458a58 2379 ret = btrfs_write_and_wait_transaction(trans);
49b25e05 2380 if (ret) {
0b246afa
JM
2381 btrfs_handle_fs_error(fs_info, ret,
2382 "Error while writing out transaction");
56e9f6ea
DS
2383 /*
2384 * reloc_mutex has been unlocked, tree_log_mutex is still held
2385 * but we can't jump to unlock_tree_log causing double unlock
2386 */
0b246afa 2387 mutex_unlock(&fs_info->tree_log_mutex);
6cf7f77e 2388 goto scrub_continue;
49b25e05
JM
2389 }
2390
d3575156
NA
2391 /*
2392 * At this point, we should have written all the tree blocks allocated
2393 * in this transaction. So it's now safe to free the redirtyied extent
2394 * buffers.
2395 */
2396 btrfs_free_redirty_list(cur_trans);
2397
eece6a9c 2398 ret = write_all_supers(fs_info, 0);
e02119d5
CM
2399 /*
2400 * the super is written, we can safely allow the tree-loggers
2401 * to go about their business
2402 */
0b246afa 2403 mutex_unlock(&fs_info->tree_log_mutex);
c1f32b7c
AJ
2404 if (ret)
2405 goto scrub_continue;
e02119d5 2406
d0c2f4fa
FM
2407 /*
2408 * We needn't acquire the lock here because there is no other task
2409 * which can change it.
2410 */
2411 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2412 wake_up(&cur_trans->commit_wait);
2413
5ead2dd0 2414 btrfs_finish_extent_commit(trans);
4313b399 2415
3204d33c 2416 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
0b246afa 2417 btrfs_clear_space_info_full(fs_info);
13212b54 2418
0b246afa 2419 fs_info->last_trans_committed = cur_trans->transid;
4a9d8bde
MX
2420 /*
2421 * We needn't acquire the lock here because there is no other task
2422 * which can change it.
2423 */
2424 cur_trans->state = TRANS_STATE_COMPLETED;
2c90e5d6 2425 wake_up(&cur_trans->commit_wait);
3de4586c 2426
0b246afa 2427 spin_lock(&fs_info->trans_lock);
13c5a93e 2428 list_del_init(&cur_trans->list);
0b246afa 2429 spin_unlock(&fs_info->trans_lock);
a4abeea4 2430
724e2315
JB
2431 btrfs_put_transaction(cur_trans);
2432 btrfs_put_transaction(cur_trans);
58176a96 2433
0860adfd 2434 if (trans->type & __TRANS_FREEZABLE)
0b246afa 2435 sb_end_intwrite(fs_info->sb);
b2b5ef5c 2436
3a45bb20 2437 trace_btrfs_transaction_commit(trans->root);
1abe9b8a 2438
2ff7e61e 2439 btrfs_scrub_continue(fs_info);
a2de733c 2440
9ed74f2d
JB
2441 if (current->journal_info == trans)
2442 current->journal_info = NULL;
2443
2c90e5d6 2444 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04 2445
79154b1b 2446 return ret;
49b25e05 2447
56e9f6ea
DS
2448unlock_tree_log:
2449 mutex_unlock(&fs_info->tree_log_mutex);
2450unlock_reloc:
2451 mutex_unlock(&fs_info->reloc_mutex);
6cf7f77e 2452scrub_continue:
2ff7e61e 2453 btrfs_scrub_continue(fs_info);
49b25e05 2454cleanup_transaction:
dc60c525 2455 btrfs_trans_release_metadata(trans);
c7cc64a9 2456 btrfs_cleanup_pending_block_groups(trans);
4fbcdf66 2457 btrfs_trans_release_chunk_metadata(trans);
0e721106 2458 trans->block_rsv = NULL;
0b246afa 2459 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
49b25e05
JM
2460 if (current->journal_info == trans)
2461 current->journal_info = NULL;
97cb39bb 2462 cleanup_transaction(trans, ret);
49b25e05
JM
2463
2464 return ret;
79154b1b
CM
2465}
2466
d352ac68 2467/*
9d1a2a3a
DS
2468 * return < 0 if error
2469 * 0 if there are no more dead_roots at the time of call
2470 * 1 there are more to be processed, call me again
2471 *
2472 * The return value indicates there are certainly more snapshots to delete, but
2473 * if there comes a new one during processing, it may return 0. We don't mind,
2474 * because btrfs_commit_super will poke cleaner thread and it will process it a
2475 * few seconds later.
d352ac68 2476 */
9d1a2a3a 2477int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
e9d0b13b 2478{
9d1a2a3a 2479 int ret;
5d4f98a2
YZ
2480 struct btrfs_fs_info *fs_info = root->fs_info;
2481
a4abeea4 2482 spin_lock(&fs_info->trans_lock);
9d1a2a3a
DS
2483 if (list_empty(&fs_info->dead_roots)) {
2484 spin_unlock(&fs_info->trans_lock);
2485 return 0;
2486 }
2487 root = list_first_entry(&fs_info->dead_roots,
2488 struct btrfs_root, root_list);
cfad392b 2489 list_del_init(&root->root_list);
a4abeea4 2490 spin_unlock(&fs_info->trans_lock);
e9d0b13b 2491
4fd786e6 2492 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
76dda93c 2493
9d1a2a3a 2494 btrfs_kill_all_delayed_nodes(root);
16cdcec7 2495
9d1a2a3a
DS
2496 if (btrfs_header_backref_rev(root->node) <
2497 BTRFS_MIXED_BACKREF_REV)
0078a9f9 2498 ret = btrfs_drop_snapshot(root, 0, 0);
9d1a2a3a 2499 else
0078a9f9 2500 ret = btrfs_drop_snapshot(root, 1, 0);
32471dc2 2501
dc9492c1 2502 btrfs_put_root(root);
6596a928 2503 return (ret < 0) ? 0 : 1;
e9d0b13b 2504}
572d9ab7
DS
2505
2506void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2507{
2508 unsigned long prev;
2509 unsigned long bit;
2510
6c9fe14f 2511 prev = xchg(&fs_info->pending_changes, 0);
572d9ab7
DS
2512 if (!prev)
2513 return;
2514
d51033d0
DS
2515 bit = 1 << BTRFS_PENDING_COMMIT;
2516 if (prev & bit)
2517 btrfs_debug(fs_info, "pending commit done");
2518 prev &= ~bit;
2519
572d9ab7
DS
2520 if (prev)
2521 btrfs_warn(fs_info,
2522 "unknown pending changes left 0x%lx, ignoring", prev);
2523}