Btrfs: create special free space cache inode
[linux-2.6-block.git] / fs / btrfs / transaction.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
79154b1b 19#include <linux/fs.h>
5a0e3ad6 20#include <linux/slab.h>
34088780 21#include <linux/sched.h>
d3c2fdcf 22#include <linux/writeback.h>
5f39d397 23#include <linux/pagemap.h>
5f2cc086 24#include <linux/blkdev.h>
79154b1b
CM
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
79154b1b 30
0f7d52f4
CM
31#define BTRFS_ROOT_TRANS_TAG 0
32
80b6794d 33static noinline void put_transaction(struct btrfs_transaction *transaction)
79154b1b 34{
2c90e5d6 35 WARN_ON(transaction->use_count == 0);
79154b1b 36 transaction->use_count--;
78fae27e 37 if (transaction->use_count == 0) {
8fd17795 38 list_del_init(&transaction->list);
2c90e5d6
CM
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
78fae27e 41 }
79154b1b
CM
42}
43
817d52f8
JB
44static noinline void switch_commit_root(struct btrfs_root *root)
45{
817d52f8
JB
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
817d52f8
JB
48}
49
d352ac68
CM
50/*
51 * either allocate a new transaction or hop into the existing one
52 */
80b6794d 53static noinline int join_transaction(struct btrfs_root *root)
79154b1b
CM
54{
55 struct btrfs_transaction *cur_trans;
56 cur_trans = root->fs_info->running_transaction;
57 if (!cur_trans) {
2c90e5d6
CM
58 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 GFP_NOFS);
79154b1b 60 BUG_ON(!cur_trans);
0f7d52f4 61 root->fs_info->generation++;
15ee9bc7
JB
62 cur_trans->num_writers = 1;
63 cur_trans->num_joined = 0;
0f7d52f4 64 cur_trans->transid = root->fs_info->generation;
79154b1b
CM
65 init_waitqueue_head(&cur_trans->writer_wait);
66 init_waitqueue_head(&cur_trans->commit_wait);
67 cur_trans->in_commit = 0;
f9295749 68 cur_trans->blocked = 0;
d5719762 69 cur_trans->use_count = 1;
79154b1b 70 cur_trans->commit_done = 0;
08607c1b 71 cur_trans->start_time = get_seconds();
56bec294 72
6bef4d31 73 cur_trans->delayed_refs.root = RB_ROOT;
56bec294 74 cur_trans->delayed_refs.num_entries = 0;
c3e69d58
CM
75 cur_trans->delayed_refs.num_heads_ready = 0;
76 cur_trans->delayed_refs.num_heads = 0;
56bec294 77 cur_trans->delayed_refs.flushing = 0;
c3e69d58 78 cur_trans->delayed_refs.run_delayed_start = 0;
56bec294
CM
79 spin_lock_init(&cur_trans->delayed_refs.lock);
80
3063d29f 81 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
8fd17795 82 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
d1310b2e 83 extent_io_tree_init(&cur_trans->dirty_pages,
5f39d397
CM
84 root->fs_info->btree_inode->i_mapping,
85 GFP_NOFS);
48ec2cf8
CM
86 spin_lock(&root->fs_info->new_trans_lock);
87 root->fs_info->running_transaction = cur_trans;
88 spin_unlock(&root->fs_info->new_trans_lock);
15ee9bc7
JB
89 } else {
90 cur_trans->num_writers++;
91 cur_trans->num_joined++;
79154b1b 92 }
15ee9bc7 93
79154b1b
CM
94 return 0;
95}
96
d352ac68 97/*
d397712b
CM
98 * this does all the record keeping required to make sure that a reference
99 * counted root is properly recorded in a given transaction. This is required
100 * to make sure the old root from before we joined the transaction is deleted
101 * when the transaction commits
d352ac68 102 */
5d4f98a2
YZ
103static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root)
6702ed49 105{
5d4f98a2 106 if (root->ref_cows && root->last_trans < trans->transid) {
6702ed49 107 WARN_ON(root == root->fs_info->extent_root);
5d4f98a2
YZ
108 WARN_ON(root->commit_root != root->node);
109
110 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 (unsigned long)root->root_key.objectid,
112 BTRFS_ROOT_TRANS_TAG);
113 root->last_trans = trans->transid;
114 btrfs_init_reloc_root(trans, root);
115 }
116 return 0;
117}
bcc63abb 118
5d4f98a2
YZ
119int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 struct btrfs_root *root)
121{
122 if (!root->ref_cows)
123 return 0;
bcc63abb 124
5d4f98a2
YZ
125 mutex_lock(&root->fs_info->trans_mutex);
126 if (root->last_trans == trans->transid) {
127 mutex_unlock(&root->fs_info->trans_mutex);
128 return 0;
6702ed49 129 }
5d4f98a2
YZ
130
131 record_root_in_trans(trans, root);
132 mutex_unlock(&root->fs_info->trans_mutex);
6702ed49
CM
133 return 0;
134}
135
d352ac68
CM
136/* wait for commit against the current transaction to become unblocked
137 * when this is done, it is safe to start a new transaction, but the current
138 * transaction might not be fully on disk.
139 */
37d1aeee 140static void wait_current_trans(struct btrfs_root *root)
79154b1b 141{
f9295749 142 struct btrfs_transaction *cur_trans;
79154b1b 143
f9295749 144 cur_trans = root->fs_info->running_transaction;
37d1aeee 145 if (cur_trans && cur_trans->blocked) {
f9295749
CM
146 DEFINE_WAIT(wait);
147 cur_trans->use_count++;
d397712b 148 while (1) {
f9295749
CM
149 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 TASK_UNINTERRUPTIBLE);
471fa17d 151 if (!cur_trans->blocked)
f9295749 152 break;
471fa17d
ZL
153 mutex_unlock(&root->fs_info->trans_mutex);
154 schedule();
155 mutex_lock(&root->fs_info->trans_mutex);
f9295749 156 }
471fa17d 157 finish_wait(&root->fs_info->transaction_wait, &wait);
f9295749
CM
158 put_transaction(cur_trans);
159 }
37d1aeee
CM
160}
161
249ac1e5
JB
162enum btrfs_trans_type {
163 TRANS_START,
164 TRANS_JOIN,
165 TRANS_USERSPACE,
0af3d00b 166 TRANS_JOIN_NOLOCK,
249ac1e5
JB
167};
168
a22285a6
YZ
169static int may_wait_transaction(struct btrfs_root *root, int type)
170{
171 if (!root->fs_info->log_root_recovering &&
172 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
173 type == TRANS_USERSPACE))
174 return 1;
175 return 0;
176}
177
e02119d5 178static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
a22285a6 179 u64 num_items, int type)
37d1aeee 180{
a22285a6
YZ
181 struct btrfs_trans_handle *h;
182 struct btrfs_transaction *cur_trans;
183 int retries = 0;
37d1aeee 184 int ret;
a22285a6
YZ
185again:
186 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
187 if (!h)
188 return ERR_PTR(-ENOMEM);
37d1aeee 189
0af3d00b
JB
190 if (type != TRANS_JOIN_NOLOCK)
191 mutex_lock(&root->fs_info->trans_mutex);
a22285a6 192 if (may_wait_transaction(root, type))
37d1aeee 193 wait_current_trans(root);
a22285a6 194
79154b1b
CM
195 ret = join_transaction(root);
196 BUG_ON(ret);
0f7d52f4 197
a22285a6
YZ
198 cur_trans = root->fs_info->running_transaction;
199 cur_trans->use_count++;
0af3d00b
JB
200 if (type != TRANS_JOIN_NOLOCK)
201 mutex_unlock(&root->fs_info->trans_mutex);
a22285a6
YZ
202
203 h->transid = cur_trans->transid;
204 h->transaction = cur_trans;
79154b1b 205 h->blocks_used = 0;
d2fb3437 206 h->block_group = 0;
a22285a6 207 h->bytes_reserved = 0;
56bec294 208 h->delayed_ref_updates = 0;
f0486c68 209 h->block_rsv = NULL;
b7ec40d7 210
a22285a6
YZ
211 smp_mb();
212 if (cur_trans->blocked && may_wait_transaction(root, type)) {
213 btrfs_commit_transaction(h, root);
214 goto again;
215 }
216
217 if (num_items > 0) {
218 ret = btrfs_trans_reserve_metadata(h, root, num_items,
219 &retries);
220 if (ret == -EAGAIN) {
221 btrfs_commit_transaction(h, root);
222 goto again;
223 }
224 if (ret < 0) {
225 btrfs_end_transaction(h, root);
226 return ERR_PTR(ret);
227 }
228 }
9ed74f2d 229
0af3d00b
JB
230 if (type != TRANS_JOIN_NOLOCK)
231 mutex_lock(&root->fs_info->trans_mutex);
5d4f98a2 232 record_root_in_trans(h, root);
0af3d00b
JB
233 if (type != TRANS_JOIN_NOLOCK)
234 mutex_unlock(&root->fs_info->trans_mutex);
a22285a6
YZ
235
236 if (!current->journal_info && type != TRANS_USERSPACE)
237 current->journal_info = h;
79154b1b
CM
238 return h;
239}
240
f9295749 241struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
a22285a6 242 int num_items)
f9295749 243{
a22285a6 244 return start_transaction(root, num_items, TRANS_START);
f9295749
CM
245}
246struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
247 int num_blocks)
248{
a22285a6 249 return start_transaction(root, 0, TRANS_JOIN);
f9295749
CM
250}
251
0af3d00b
JB
252struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root,
253 int num_blocks)
254{
255 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
256}
257
9ca9ee09
SW
258struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
259 int num_blocks)
260{
a22285a6 261 return start_transaction(r, 0, TRANS_USERSPACE);
9ca9ee09
SW
262}
263
d352ac68 264/* wait for a transaction commit to be fully complete */
89ce8a63
CM
265static noinline int wait_for_commit(struct btrfs_root *root,
266 struct btrfs_transaction *commit)
267{
268 DEFINE_WAIT(wait);
269 mutex_lock(&root->fs_info->trans_mutex);
d397712b 270 while (!commit->commit_done) {
89ce8a63
CM
271 prepare_to_wait(&commit->commit_wait, &wait,
272 TASK_UNINTERRUPTIBLE);
273 if (commit->commit_done)
274 break;
275 mutex_unlock(&root->fs_info->trans_mutex);
276 schedule();
277 mutex_lock(&root->fs_info->trans_mutex);
278 }
279 mutex_unlock(&root->fs_info->trans_mutex);
280 finish_wait(&commit->commit_wait, &wait);
281 return 0;
282}
283
5d4f98a2 284#if 0
d352ac68 285/*
d397712b
CM
286 * rate limit against the drop_snapshot code. This helps to slow down new
287 * operations if the drop_snapshot code isn't able to keep up.
d352ac68 288 */
37d1aeee 289static void throttle_on_drops(struct btrfs_root *root)
ab78c84d
CM
290{
291 struct btrfs_fs_info *info = root->fs_info;
2dd3e67b 292 int harder_count = 0;
ab78c84d 293
2dd3e67b 294harder:
ab78c84d
CM
295 if (atomic_read(&info->throttles)) {
296 DEFINE_WAIT(wait);
297 int thr;
ab78c84d
CM
298 thr = atomic_read(&info->throttle_gen);
299
300 do {
301 prepare_to_wait(&info->transaction_throttle,
302 &wait, TASK_UNINTERRUPTIBLE);
303 if (!atomic_read(&info->throttles)) {
304 finish_wait(&info->transaction_throttle, &wait);
305 break;
306 }
307 schedule();
308 finish_wait(&info->transaction_throttle, &wait);
309 } while (thr == atomic_read(&info->throttle_gen));
2dd3e67b
CM
310 harder_count++;
311
312 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
313 harder_count < 2)
314 goto harder;
315
316 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
317 harder_count < 10)
318 goto harder;
319
320 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
321 harder_count < 20)
322 goto harder;
ab78c84d
CM
323 }
324}
5d4f98a2 325#endif
ab78c84d 326
37d1aeee
CM
327void btrfs_throttle(struct btrfs_root *root)
328{
329 mutex_lock(&root->fs_info->trans_mutex);
9ca9ee09
SW
330 if (!root->fs_info->open_ioctl_trans)
331 wait_current_trans(root);
37d1aeee 332 mutex_unlock(&root->fs_info->trans_mutex);
37d1aeee
CM
333}
334
8929ecfa
YZ
335static int should_end_transaction(struct btrfs_trans_handle *trans,
336 struct btrfs_root *root)
337{
338 int ret;
339 ret = btrfs_block_rsv_check(trans, root,
340 &root->fs_info->global_block_rsv, 0, 5);
341 return ret ? 1 : 0;
342}
343
344int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
345 struct btrfs_root *root)
346{
347 struct btrfs_transaction *cur_trans = trans->transaction;
348 int updates;
349
350 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
351 return 1;
352
353 updates = trans->delayed_ref_updates;
354 trans->delayed_ref_updates = 0;
355 if (updates)
356 btrfs_run_delayed_refs(trans, root, updates);
357
358 return should_end_transaction(trans, root);
359}
360
89ce8a63 361static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
0af3d00b 362 struct btrfs_root *root, int throttle, int lock)
79154b1b 363{
8929ecfa 364 struct btrfs_transaction *cur_trans = trans->transaction;
ab78c84d 365 struct btrfs_fs_info *info = root->fs_info;
c3e69d58
CM
366 int count = 0;
367
368 while (count < 4) {
369 unsigned long cur = trans->delayed_ref_updates;
370 trans->delayed_ref_updates = 0;
371 if (cur &&
372 trans->transaction->delayed_refs.num_heads_ready > 64) {
373 trans->delayed_ref_updates = 0;
b7ec40d7
CM
374
375 /*
376 * do a full flush if the transaction is trying
377 * to close
378 */
379 if (trans->transaction->delayed_refs.flushing)
380 cur = 0;
c3e69d58
CM
381 btrfs_run_delayed_refs(trans, root, cur);
382 } else {
383 break;
384 }
385 count++;
56bec294
CM
386 }
387
a22285a6
YZ
388 btrfs_trans_release_metadata(trans, root);
389
0af3d00b 390 if (lock && !root->fs_info->open_ioctl_trans &&
8929ecfa
YZ
391 should_end_transaction(trans, root))
392 trans->transaction->blocked = 1;
393
0af3d00b 394 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
8929ecfa
YZ
395 if (throttle)
396 return btrfs_commit_transaction(trans, root);
397 else
398 wake_up_process(info->transaction_kthread);
399 }
400
0af3d00b
JB
401 if (lock)
402 mutex_lock(&info->trans_mutex);
8929ecfa 403 WARN_ON(cur_trans != info->running_transaction);
d5719762 404 WARN_ON(cur_trans->num_writers < 1);
ccd467d6 405 cur_trans->num_writers--;
89ce8a63 406
79154b1b
CM
407 if (waitqueue_active(&cur_trans->writer_wait))
408 wake_up(&cur_trans->writer_wait);
79154b1b 409 put_transaction(cur_trans);
0af3d00b
JB
410 if (lock)
411 mutex_unlock(&info->trans_mutex);
9ed74f2d
JB
412
413 if (current->journal_info == trans)
414 current->journal_info = NULL;
d6025579 415 memset(trans, 0, sizeof(*trans));
2c90e5d6 416 kmem_cache_free(btrfs_trans_handle_cachep, trans);
ab78c84d 417
24bbcf04
YZ
418 if (throttle)
419 btrfs_run_delayed_iputs(root);
420
79154b1b
CM
421 return 0;
422}
423
89ce8a63
CM
424int btrfs_end_transaction(struct btrfs_trans_handle *trans,
425 struct btrfs_root *root)
426{
0af3d00b 427 return __btrfs_end_transaction(trans, root, 0, 1);
89ce8a63
CM
428}
429
430int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
431 struct btrfs_root *root)
432{
0af3d00b
JB
433 return __btrfs_end_transaction(trans, root, 1, 1);
434}
435
436int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
437 struct btrfs_root *root)
438{
439 return __btrfs_end_transaction(trans, root, 0, 0);
89ce8a63
CM
440}
441
d352ac68
CM
442/*
443 * when btree blocks are allocated, they have some corresponding bits set for
444 * them in one of two extent_io trees. This is used to make sure all of
690587d1 445 * those extents are sent to disk but does not wait on them
d352ac68 446 */
690587d1 447int btrfs_write_marked_extents(struct btrfs_root *root,
8cef4e16 448 struct extent_io_tree *dirty_pages, int mark)
79154b1b 449{
7c4452b9 450 int ret;
777e6bd7 451 int err = 0;
7c4452b9
CM
452 int werr = 0;
453 struct page *page;
7c4452b9 454 struct inode *btree_inode = root->fs_info->btree_inode;
777e6bd7 455 u64 start = 0;
5f39d397
CM
456 u64 end;
457 unsigned long index;
7c4452b9 458
d397712b 459 while (1) {
777e6bd7 460 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
8cef4e16 461 mark);
5f39d397 462 if (ret)
7c4452b9 463 break;
d397712b 464 while (start <= end) {
777e6bd7
CM
465 cond_resched();
466
5f39d397 467 index = start >> PAGE_CACHE_SHIFT;
35ebb934 468 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
4bef0848 469 page = find_get_page(btree_inode->i_mapping, index);
7c4452b9
CM
470 if (!page)
471 continue;
4bef0848
CM
472
473 btree_lock_page_hook(page);
474 if (!page->mapping) {
475 unlock_page(page);
476 page_cache_release(page);
477 continue;
478 }
479
6702ed49
CM
480 if (PageWriteback(page)) {
481 if (PageDirty(page))
482 wait_on_page_writeback(page);
483 else {
484 unlock_page(page);
485 page_cache_release(page);
486 continue;
487 }
488 }
7c4452b9
CM
489 err = write_one_page(page, 0);
490 if (err)
491 werr = err;
492 page_cache_release(page);
493 }
494 }
690587d1
CM
495 if (err)
496 werr = err;
497 return werr;
498}
499
500/*
501 * when btree blocks are allocated, they have some corresponding bits set for
502 * them in one of two extent_io trees. This is used to make sure all of
503 * those extents are on disk for transaction or log commit. We wait
504 * on all the pages and clear them from the dirty pages state tree
505 */
506int btrfs_wait_marked_extents(struct btrfs_root *root,
8cef4e16 507 struct extent_io_tree *dirty_pages, int mark)
690587d1
CM
508{
509 int ret;
510 int err = 0;
511 int werr = 0;
512 struct page *page;
513 struct inode *btree_inode = root->fs_info->btree_inode;
514 u64 start = 0;
515 u64 end;
516 unsigned long index;
517
d397712b 518 while (1) {
8cef4e16
YZ
519 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
520 mark);
777e6bd7
CM
521 if (ret)
522 break;
523
8cef4e16 524 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
d397712b 525 while (start <= end) {
777e6bd7
CM
526 index = start >> PAGE_CACHE_SHIFT;
527 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
528 page = find_get_page(btree_inode->i_mapping, index);
529 if (!page)
530 continue;
531 if (PageDirty(page)) {
4bef0848
CM
532 btree_lock_page_hook(page);
533 wait_on_page_writeback(page);
777e6bd7
CM
534 err = write_one_page(page, 0);
535 if (err)
536 werr = err;
537 }
105d931d 538 wait_on_page_writeback(page);
777e6bd7
CM
539 page_cache_release(page);
540 cond_resched();
541 }
542 }
7c4452b9
CM
543 if (err)
544 werr = err;
545 return werr;
79154b1b
CM
546}
547
690587d1
CM
548/*
549 * when btree blocks are allocated, they have some corresponding bits set for
550 * them in one of two extent_io trees. This is used to make sure all of
551 * those extents are on disk for transaction or log commit
552 */
553int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
8cef4e16 554 struct extent_io_tree *dirty_pages, int mark)
690587d1
CM
555{
556 int ret;
557 int ret2;
558
8cef4e16
YZ
559 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
560 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
690587d1
CM
561 return ret || ret2;
562}
563
d0c803c4
CM
564int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
565 struct btrfs_root *root)
566{
567 if (!trans || !trans->transaction) {
568 struct inode *btree_inode;
569 btree_inode = root->fs_info->btree_inode;
570 return filemap_write_and_wait(btree_inode->i_mapping);
571 }
572 return btrfs_write_and_wait_marked_extents(root,
8cef4e16
YZ
573 &trans->transaction->dirty_pages,
574 EXTENT_DIRTY);
d0c803c4
CM
575}
576
d352ac68
CM
577/*
578 * this is used to update the root pointer in the tree of tree roots.
579 *
580 * But, in the case of the extent allocation tree, updating the root
581 * pointer may allocate blocks which may change the root of the extent
582 * allocation tree.
583 *
584 * So, this loops and repeats and makes sure the cowonly root didn't
585 * change while the root pointer was being updated in the metadata.
586 */
0b86a832
CM
587static int update_cowonly_root(struct btrfs_trans_handle *trans,
588 struct btrfs_root *root)
79154b1b
CM
589{
590 int ret;
0b86a832 591 u64 old_root_bytenr;
86b9f2ec 592 u64 old_root_used;
0b86a832 593 struct btrfs_root *tree_root = root->fs_info->tree_root;
79154b1b 594
86b9f2ec 595 old_root_used = btrfs_root_used(&root->root_item);
0b86a832 596 btrfs_write_dirty_block_groups(trans, root);
56bec294 597
d397712b 598 while (1) {
0b86a832 599 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
86b9f2ec
YZ
600 if (old_root_bytenr == root->node->start &&
601 old_root_used == btrfs_root_used(&root->root_item))
79154b1b 602 break;
87ef2bb4 603
5d4f98a2 604 btrfs_set_root_node(&root->root_item, root->node);
79154b1b 605 ret = btrfs_update_root(trans, tree_root,
0b86a832
CM
606 &root->root_key,
607 &root->root_item);
79154b1b 608 BUG_ON(ret);
56bec294 609
86b9f2ec 610 old_root_used = btrfs_root_used(&root->root_item);
4a8c9a62 611 ret = btrfs_write_dirty_block_groups(trans, root);
56bec294 612 BUG_ON(ret);
0b86a832 613 }
276e680d
YZ
614
615 if (root != root->fs_info->extent_root)
616 switch_commit_root(root);
617
0b86a832
CM
618 return 0;
619}
620
d352ac68
CM
621/*
622 * update all the cowonly tree roots on disk
623 */
5d4f98a2
YZ
624static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
625 struct btrfs_root *root)
0b86a832
CM
626{
627 struct btrfs_fs_info *fs_info = root->fs_info;
628 struct list_head *next;
84234f3a 629 struct extent_buffer *eb;
56bec294 630 int ret;
84234f3a 631
56bec294
CM
632 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
633 BUG_ON(ret);
87ef2bb4 634
84234f3a 635 eb = btrfs_lock_root_node(fs_info->tree_root);
9fa8cfe7 636 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
84234f3a
YZ
637 btrfs_tree_unlock(eb);
638 free_extent_buffer(eb);
0b86a832 639
56bec294
CM
640 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
641 BUG_ON(ret);
87ef2bb4 642
d397712b 643 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
0b86a832
CM
644 next = fs_info->dirty_cowonly_roots.next;
645 list_del_init(next);
646 root = list_entry(next, struct btrfs_root, dirty_list);
87ef2bb4 647
0b86a832 648 update_cowonly_root(trans, root);
79154b1b 649 }
276e680d
YZ
650
651 down_write(&fs_info->extent_commit_sem);
652 switch_commit_root(fs_info->extent_root);
653 up_write(&fs_info->extent_commit_sem);
654
79154b1b
CM
655 return 0;
656}
657
d352ac68
CM
658/*
659 * dead roots are old snapshots that need to be deleted. This allocates
660 * a dirty root struct and adds it into the list of dead roots that need to
661 * be deleted
662 */
5d4f98a2 663int btrfs_add_dead_root(struct btrfs_root *root)
5eda7b5e 664{
b48652c1 665 mutex_lock(&root->fs_info->trans_mutex);
5d4f98a2 666 list_add(&root->root_list, &root->fs_info->dead_roots);
b48652c1 667 mutex_unlock(&root->fs_info->trans_mutex);
5eda7b5e
CM
668 return 0;
669}
670
d352ac68 671/*
5d4f98a2 672 * update all the cowonly tree roots on disk
d352ac68 673 */
5d4f98a2
YZ
674static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
675 struct btrfs_root *root)
0f7d52f4 676{
0f7d52f4 677 struct btrfs_root *gang[8];
5d4f98a2 678 struct btrfs_fs_info *fs_info = root->fs_info;
0f7d52f4
CM
679 int i;
680 int ret;
54aa1f4d
CM
681 int err = 0;
682
d397712b 683 while (1) {
5d4f98a2
YZ
684 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
685 (void **)gang, 0,
0f7d52f4
CM
686 ARRAY_SIZE(gang),
687 BTRFS_ROOT_TRANS_TAG);
688 if (ret == 0)
689 break;
690 for (i = 0; i < ret; i++) {
691 root = gang[i];
5d4f98a2
YZ
692 radix_tree_tag_clear(&fs_info->fs_roots_radix,
693 (unsigned long)root->root_key.objectid,
694 BTRFS_ROOT_TRANS_TAG);
31153d81 695
e02119d5 696 btrfs_free_log(trans, root);
5d4f98a2 697 btrfs_update_reloc_root(trans, root);
d68fc57b 698 btrfs_orphan_commit_root(trans, root);
bcc63abb 699
978d910d 700 if (root->commit_root != root->node) {
817d52f8 701 switch_commit_root(root);
978d910d
YZ
702 btrfs_set_root_node(&root->root_item,
703 root->node);
704 }
5d4f98a2 705
5d4f98a2 706 err = btrfs_update_root(trans, fs_info->tree_root,
0f7d52f4
CM
707 &root->root_key,
708 &root->root_item);
54aa1f4d
CM
709 if (err)
710 break;
0f7d52f4
CM
711 }
712 }
54aa1f4d 713 return err;
0f7d52f4
CM
714}
715
d352ac68
CM
716/*
717 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
718 * otherwise every leaf in the btree is read and defragged.
719 */
e9d0b13b
CM
720int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
721{
722 struct btrfs_fs_info *info = root->fs_info;
e9d0b13b 723 struct btrfs_trans_handle *trans;
8929ecfa 724 int ret;
d3c2fdcf 725 unsigned long nr;
e9d0b13b 726
8929ecfa 727 if (xchg(&root->defrag_running, 1))
e9d0b13b 728 return 0;
8929ecfa 729
6b80053d 730 while (1) {
8929ecfa
YZ
731 trans = btrfs_start_transaction(root, 0);
732 if (IS_ERR(trans))
733 return PTR_ERR(trans);
734
e9d0b13b 735 ret = btrfs_defrag_leaves(trans, root, cacheonly);
8929ecfa 736
d3c2fdcf 737 nr = trans->blocks_used;
e9d0b13b 738 btrfs_end_transaction(trans, root);
d3c2fdcf 739 btrfs_btree_balance_dirty(info->tree_root, nr);
e9d0b13b
CM
740 cond_resched();
741
3f157a2f 742 if (root->fs_info->closing || ret != -EAGAIN)
e9d0b13b
CM
743 break;
744 }
745 root->defrag_running = 0;
8929ecfa 746 return ret;
e9d0b13b
CM
747}
748
2c47e605 749#if 0
b7ec40d7
CM
750/*
751 * when dropping snapshots, we generate a ton of delayed refs, and it makes
752 * sense not to join the transaction while it is trying to flush the current
753 * queue of delayed refs out.
754 *
755 * This is used by the drop snapshot code only
756 */
757static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
758{
759 DEFINE_WAIT(wait);
760
761 mutex_lock(&info->trans_mutex);
762 while (info->running_transaction &&
763 info->running_transaction->delayed_refs.flushing) {
764 prepare_to_wait(&info->transaction_wait, &wait,
765 TASK_UNINTERRUPTIBLE);
766 mutex_unlock(&info->trans_mutex);
59bc5c75 767
b7ec40d7 768 schedule();
59bc5c75 769
b7ec40d7
CM
770 mutex_lock(&info->trans_mutex);
771 finish_wait(&info->transaction_wait, &wait);
772 }
773 mutex_unlock(&info->trans_mutex);
774 return 0;
775}
776
d352ac68
CM
777/*
778 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
779 * all of them
780 */
5d4f98a2 781int btrfs_drop_dead_root(struct btrfs_root *root)
0f7d52f4 782{
0f7d52f4 783 struct btrfs_trans_handle *trans;
5d4f98a2 784 struct btrfs_root *tree_root = root->fs_info->tree_root;
d3c2fdcf 785 unsigned long nr;
5d4f98a2 786 int ret;
58176a96 787
5d4f98a2
YZ
788 while (1) {
789 /*
790 * we don't want to jump in and create a bunch of
791 * delayed refs if the transaction is starting to close
792 */
793 wait_transaction_pre_flush(tree_root->fs_info);
794 trans = btrfs_start_transaction(tree_root, 1);
a2135011 795
5d4f98a2
YZ
796 /*
797 * we've joined a transaction, make sure it isn't
798 * closing right now
799 */
800 if (trans->transaction->delayed_refs.flushing) {
801 btrfs_end_transaction(trans, tree_root);
802 continue;
9f3a7427 803 }
58176a96 804
5d4f98a2
YZ
805 ret = btrfs_drop_snapshot(trans, root);
806 if (ret != -EAGAIN)
807 break;
a2135011 808
5d4f98a2
YZ
809 ret = btrfs_update_root(trans, tree_root,
810 &root->root_key,
811 &root->root_item);
812 if (ret)
54aa1f4d 813 break;
bcc63abb 814
d3c2fdcf 815 nr = trans->blocks_used;
0f7d52f4
CM
816 ret = btrfs_end_transaction(trans, tree_root);
817 BUG_ON(ret);
5eda7b5e 818
d3c2fdcf 819 btrfs_btree_balance_dirty(tree_root, nr);
4dc11904 820 cond_resched();
0f7d52f4 821 }
5d4f98a2
YZ
822 BUG_ON(ret);
823
824 ret = btrfs_del_root(trans, tree_root, &root->root_key);
825 BUG_ON(ret);
826
827 nr = trans->blocks_used;
828 ret = btrfs_end_transaction(trans, tree_root);
829 BUG_ON(ret);
830
831 free_extent_buffer(root->node);
832 free_extent_buffer(root->commit_root);
833 kfree(root);
834
835 btrfs_btree_balance_dirty(tree_root, nr);
54aa1f4d 836 return ret;
0f7d52f4 837}
2c47e605 838#endif
0f7d52f4 839
d352ac68
CM
840/*
841 * new snapshots need to be created at a very specific time in the
842 * transaction commit. This does the actual creation
843 */
80b6794d 844static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
3063d29f
CM
845 struct btrfs_fs_info *fs_info,
846 struct btrfs_pending_snapshot *pending)
847{
848 struct btrfs_key key;
80b6794d 849 struct btrfs_root_item *new_root_item;
3063d29f
CM
850 struct btrfs_root *tree_root = fs_info->tree_root;
851 struct btrfs_root *root = pending->root;
6bdb72de
SW
852 struct btrfs_root *parent_root;
853 struct inode *parent_inode;
a22285a6 854 struct dentry *dentry;
3063d29f 855 struct extent_buffer *tmp;
925baedd 856 struct extent_buffer *old;
3063d29f 857 int ret;
d68fc57b
YZ
858 int retries = 0;
859 u64 to_reserve = 0;
6bdb72de 860 u64 index = 0;
a22285a6 861 u64 objectid;
3063d29f 862
80b6794d
CM
863 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
864 if (!new_root_item) {
a22285a6 865 pending->error = -ENOMEM;
80b6794d
CM
866 goto fail;
867 }
a22285a6 868
3063d29f 869 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
a22285a6
YZ
870 if (ret) {
871 pending->error = ret;
3063d29f 872 goto fail;
a22285a6 873 }
3063d29f 874
3fd0a558 875 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
d68fc57b
YZ
876 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
877
878 if (to_reserve > 0) {
879 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
880 to_reserve, &retries);
881 if (ret) {
882 pending->error = ret;
883 goto fail;
884 }
885 }
886
3063d29f 887 key.objectid = objectid;
a22285a6
YZ
888 key.offset = (u64)-1;
889 key.type = BTRFS_ROOT_ITEM_KEY;
3063d29f 890
a22285a6 891 trans->block_rsv = &pending->block_rsv;
3de4586c 892
a22285a6
YZ
893 dentry = pending->dentry;
894 parent_inode = dentry->d_parent->d_inode;
895 parent_root = BTRFS_I(parent_inode)->root;
6bdb72de 896 record_root_in_trans(trans, parent_root);
a22285a6 897
3063d29f
CM
898 /*
899 * insert the directory item
900 */
3de4586c 901 ret = btrfs_set_inode_index(parent_inode, &index);
6bdb72de 902 BUG_ON(ret);
0660b5af 903 ret = btrfs_insert_dir_item(trans, parent_root,
a22285a6
YZ
904 dentry->d_name.name, dentry->d_name.len,
905 parent_inode->i_ino, &key,
906 BTRFS_FT_DIR, index);
6bdb72de 907 BUG_ON(ret);
0660b5af 908
a22285a6
YZ
909 btrfs_i_size_write(parent_inode, parent_inode->i_size +
910 dentry->d_name.len * 2);
52c26179
YZ
911 ret = btrfs_update_inode(trans, parent_root, parent_inode);
912 BUG_ON(ret);
913
6bdb72de
SW
914 record_root_in_trans(trans, root);
915 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
916 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
917
918 old = btrfs_lock_root_node(root);
919 btrfs_cow_block(trans, root, old, NULL, 0, &old);
920 btrfs_set_lock_blocking(old);
921
922 btrfs_copy_root(trans, root, old, &tmp, objectid);
923 btrfs_tree_unlock(old);
924 free_extent_buffer(old);
925
926 btrfs_set_root_node(new_root_item, tmp);
a22285a6
YZ
927 /* record when the snapshot was created in key.offset */
928 key.offset = trans->transid;
929 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
6bdb72de
SW
930 btrfs_tree_unlock(tmp);
931 free_extent_buffer(tmp);
a22285a6 932 BUG_ON(ret);
6bdb72de 933
a22285a6
YZ
934 /*
935 * insert root back/forward references
936 */
937 ret = btrfs_add_root_ref(trans, tree_root, objectid,
0660b5af 938 parent_root->root_key.objectid,
a22285a6
YZ
939 parent_inode->i_ino, index,
940 dentry->d_name.name, dentry->d_name.len);
0660b5af
CM
941 BUG_ON(ret);
942
a22285a6
YZ
943 key.offset = (u64)-1;
944 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
945 BUG_ON(IS_ERR(pending->snap));
d68fc57b 946
3fd0a558 947 btrfs_reloc_post_snapshot(trans, pending);
d68fc57b 948 btrfs_orphan_post_snapshot(trans, pending);
3063d29f 949fail:
6bdb72de 950 kfree(new_root_item);
a22285a6
YZ
951 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
952 return 0;
3063d29f
CM
953}
954
d352ac68
CM
955/*
956 * create all the snapshots we've scheduled for creation
957 */
80b6794d
CM
958static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
959 struct btrfs_fs_info *fs_info)
3de4586c
CM
960{
961 struct btrfs_pending_snapshot *pending;
962 struct list_head *head = &trans->transaction->pending_snapshots;
3de4586c
CM
963 int ret;
964
c6e30871 965 list_for_each_entry(pending, head, list) {
3de4586c
CM
966 ret = create_pending_snapshot(trans, fs_info, pending);
967 BUG_ON(ret);
968 }
969 return 0;
970}
971
5d4f98a2
YZ
972static void update_super_roots(struct btrfs_root *root)
973{
974 struct btrfs_root_item *root_item;
975 struct btrfs_super_block *super;
976
977 super = &root->fs_info->super_copy;
978
979 root_item = &root->fs_info->chunk_root->root_item;
980 super->chunk_root = root_item->bytenr;
981 super->chunk_root_generation = root_item->generation;
982 super->chunk_root_level = root_item->level;
983
984 root_item = &root->fs_info->tree_root->root_item;
985 super->root = root_item->bytenr;
986 super->generation = root_item->generation;
987 super->root_level = root_item->level;
0af3d00b
JB
988 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
989 super->cache_generation = root_item->generation;
5d4f98a2
YZ
990}
991
f36f3042
CM
992int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
993{
994 int ret = 0;
995 spin_lock(&info->new_trans_lock);
996 if (info->running_transaction)
997 ret = info->running_transaction->in_commit;
998 spin_unlock(&info->new_trans_lock);
999 return ret;
1000}
1001
8929ecfa
YZ
1002int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1003{
1004 int ret = 0;
1005 spin_lock(&info->new_trans_lock);
1006 if (info->running_transaction)
1007 ret = info->running_transaction->blocked;
1008 spin_unlock(&info->new_trans_lock);
1009 return ret;
1010}
1011
79154b1b
CM
1012int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1013 struct btrfs_root *root)
1014{
15ee9bc7
JB
1015 unsigned long joined = 0;
1016 unsigned long timeout = 1;
79154b1b 1017 struct btrfs_transaction *cur_trans;
8fd17795 1018 struct btrfs_transaction *prev_trans = NULL;
79154b1b 1019 DEFINE_WAIT(wait);
15ee9bc7 1020 int ret;
89573b9c
CM
1021 int should_grow = 0;
1022 unsigned long now = get_seconds();
dccae999 1023 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
79154b1b 1024
5a3f23d5
CM
1025 btrfs_run_ordered_operations(root, 0);
1026
56bec294
CM
1027 /* make a pass through all the delayed refs we have so far
1028 * any runnings procs may add more while we are here
1029 */
1030 ret = btrfs_run_delayed_refs(trans, root, 0);
1031 BUG_ON(ret);
1032
a22285a6
YZ
1033 btrfs_trans_release_metadata(trans, root);
1034
b7ec40d7 1035 cur_trans = trans->transaction;
56bec294
CM
1036 /*
1037 * set the flushing flag so procs in this transaction have to
1038 * start sending their work down.
1039 */
b7ec40d7 1040 cur_trans->delayed_refs.flushing = 1;
56bec294 1041
c3e69d58 1042 ret = btrfs_run_delayed_refs(trans, root, 0);
56bec294
CM
1043 BUG_ON(ret);
1044
79154b1b 1045 mutex_lock(&root->fs_info->trans_mutex);
b7ec40d7
CM
1046 if (cur_trans->in_commit) {
1047 cur_trans->use_count++;
ccd467d6 1048 mutex_unlock(&root->fs_info->trans_mutex);
79154b1b 1049 btrfs_end_transaction(trans, root);
ccd467d6 1050
79154b1b
CM
1051 ret = wait_for_commit(root, cur_trans);
1052 BUG_ON(ret);
15ee9bc7
JB
1053
1054 mutex_lock(&root->fs_info->trans_mutex);
79154b1b 1055 put_transaction(cur_trans);
15ee9bc7
JB
1056 mutex_unlock(&root->fs_info->trans_mutex);
1057
79154b1b
CM
1058 return 0;
1059 }
4313b399 1060
2c90e5d6 1061 trans->transaction->in_commit = 1;
f9295749 1062 trans->transaction->blocked = 1;
ccd467d6
CM
1063 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1064 prev_trans = list_entry(cur_trans->list.prev,
1065 struct btrfs_transaction, list);
1066 if (!prev_trans->commit_done) {
1067 prev_trans->use_count++;
ccd467d6
CM
1068 mutex_unlock(&root->fs_info->trans_mutex);
1069
1070 wait_for_commit(root, prev_trans);
ccd467d6 1071
ccd467d6 1072 mutex_lock(&root->fs_info->trans_mutex);
15ee9bc7 1073 put_transaction(prev_trans);
ccd467d6
CM
1074 }
1075 }
15ee9bc7 1076
89573b9c
CM
1077 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1078 should_grow = 1;
1079
15ee9bc7 1080 do {
7ea394f1 1081 int snap_pending = 0;
15ee9bc7 1082 joined = cur_trans->num_joined;
7ea394f1
YZ
1083 if (!list_empty(&trans->transaction->pending_snapshots))
1084 snap_pending = 1;
1085
2c90e5d6 1086 WARN_ON(cur_trans != trans->transaction);
15ee9bc7
JB
1087 if (cur_trans->num_writers > 1)
1088 timeout = MAX_SCHEDULE_TIMEOUT;
89573b9c 1089 else if (should_grow)
15ee9bc7
JB
1090 timeout = 1;
1091
79154b1b 1092 mutex_unlock(&root->fs_info->trans_mutex);
15ee9bc7 1093
0bdb1db2 1094 if (flush_on_commit || snap_pending) {
24bbcf04
YZ
1095 btrfs_start_delalloc_inodes(root, 1);
1096 ret = btrfs_wait_ordered_extents(root, 0, 1);
ebecd3d9 1097 BUG_ON(ret);
7ea394f1
YZ
1098 }
1099
5a3f23d5
CM
1100 /*
1101 * rename don't use btrfs_join_transaction, so, once we
1102 * set the transaction to blocked above, we aren't going
1103 * to get any new ordered operations. We can safely run
1104 * it here and no for sure that nothing new will be added
1105 * to the list
1106 */
1107 btrfs_run_ordered_operations(root, 1);
1108
ed3b3d31
CM
1109 prepare_to_wait(&cur_trans->writer_wait, &wait,
1110 TASK_UNINTERRUPTIBLE);
1111
89573b9c
CM
1112 smp_mb();
1113 if (cur_trans->num_writers > 1 || should_grow)
1114 schedule_timeout(timeout);
15ee9bc7 1115
79154b1b 1116 mutex_lock(&root->fs_info->trans_mutex);
15ee9bc7
JB
1117 finish_wait(&cur_trans->writer_wait, &wait);
1118 } while (cur_trans->num_writers > 1 ||
89573b9c 1119 (should_grow && cur_trans->num_joined != joined));
15ee9bc7 1120
3063d29f
CM
1121 ret = create_pending_snapshots(trans, root->fs_info);
1122 BUG_ON(ret);
1123
56bec294
CM
1124 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1125 BUG_ON(ret);
1126
2c90e5d6 1127 WARN_ON(cur_trans != trans->transaction);
dc17ff8f 1128
e02119d5
CM
1129 /* btrfs_commit_tree_roots is responsible for getting the
1130 * various roots consistent with each other. Every pointer
1131 * in the tree of tree roots has to point to the most up to date
1132 * root for every subvolume and other tree. So, we have to keep
1133 * the tree logging code from jumping in and changing any
1134 * of the trees.
1135 *
1136 * At this point in the commit, there can't be any tree-log
1137 * writers, but a little lower down we drop the trans mutex
1138 * and let new people in. By holding the tree_log_mutex
1139 * from now until after the super is written, we avoid races
1140 * with the tree-log code.
1141 */
1142 mutex_lock(&root->fs_info->tree_log_mutex);
1143
5d4f98a2 1144 ret = commit_fs_roots(trans, root);
54aa1f4d
CM
1145 BUG_ON(ret);
1146
5d4f98a2 1147 /* commit_fs_roots gets rid of all the tree log roots, it is now
e02119d5
CM
1148 * safe to free the root of tree log roots
1149 */
1150 btrfs_free_log_root_tree(trans, root->fs_info);
1151
5d4f98a2 1152 ret = commit_cowonly_roots(trans, root);
79154b1b 1153 BUG_ON(ret);
54aa1f4d 1154
11833d66
YZ
1155 btrfs_prepare_extent_commit(trans, root);
1156
78fae27e 1157 cur_trans = root->fs_info->running_transaction;
cee36a03 1158 spin_lock(&root->fs_info->new_trans_lock);
78fae27e 1159 root->fs_info->running_transaction = NULL;
cee36a03 1160 spin_unlock(&root->fs_info->new_trans_lock);
5d4f98a2
YZ
1161
1162 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1163 root->fs_info->tree_root->node);
817d52f8 1164 switch_commit_root(root->fs_info->tree_root);
5d4f98a2
YZ
1165
1166 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1167 root->fs_info->chunk_root->node);
817d52f8 1168 switch_commit_root(root->fs_info->chunk_root);
5d4f98a2
YZ
1169
1170 update_super_roots(root);
e02119d5
CM
1171
1172 if (!root->fs_info->log_root_recovering) {
1173 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1174 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1175 }
1176
a061fc8d
CM
1177 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1178 sizeof(root->fs_info->super_copy));
ccd467d6 1179
f9295749 1180 trans->transaction->blocked = 0;
b7ec40d7 1181
f9295749 1182 wake_up(&root->fs_info->transaction_wait);
e6dcd2dc 1183
78fae27e 1184 mutex_unlock(&root->fs_info->trans_mutex);
79154b1b
CM
1185 ret = btrfs_write_and_wait_transaction(trans, root);
1186 BUG_ON(ret);
a512bbf8 1187 write_ctree_super(trans, root, 0);
4313b399 1188
e02119d5
CM
1189 /*
1190 * the super is written, we can safely allow the tree-loggers
1191 * to go about their business
1192 */
1193 mutex_unlock(&root->fs_info->tree_log_mutex);
1194
11833d66 1195 btrfs_finish_extent_commit(trans, root);
4313b399 1196
1a40e23b
ZY
1197 mutex_lock(&root->fs_info->trans_mutex);
1198
2c90e5d6 1199 cur_trans->commit_done = 1;
b7ec40d7 1200
15ee9bc7 1201 root->fs_info->last_trans_committed = cur_trans->transid;
817d52f8 1202
2c90e5d6 1203 wake_up(&cur_trans->commit_wait);
3de4586c 1204
78fae27e 1205 put_transaction(cur_trans);
79154b1b 1206 put_transaction(cur_trans);
58176a96 1207
78fae27e 1208 mutex_unlock(&root->fs_info->trans_mutex);
3de4586c 1209
9ed74f2d
JB
1210 if (current->journal_info == trans)
1211 current->journal_info = NULL;
1212
2c90e5d6 1213 kmem_cache_free(btrfs_trans_handle_cachep, trans);
24bbcf04
YZ
1214
1215 if (current != root->fs_info->transaction_kthread)
1216 btrfs_run_delayed_iputs(root);
1217
79154b1b
CM
1218 return ret;
1219}
1220
d352ac68
CM
1221/*
1222 * interface function to delete all the snapshots we have scheduled for deletion
1223 */
e9d0b13b
CM
1224int btrfs_clean_old_snapshots(struct btrfs_root *root)
1225{
5d4f98a2
YZ
1226 LIST_HEAD(list);
1227 struct btrfs_fs_info *fs_info = root->fs_info;
1228
1229 mutex_lock(&fs_info->trans_mutex);
1230 list_splice_init(&fs_info->dead_roots, &list);
1231 mutex_unlock(&fs_info->trans_mutex);
e9d0b13b 1232
5d4f98a2
YZ
1233 while (!list_empty(&list)) {
1234 root = list_entry(list.next, struct btrfs_root, root_list);
76dda93c
YZ
1235 list_del(&root->root_list);
1236
1237 if (btrfs_header_backref_rev(root->node) <
1238 BTRFS_MIXED_BACKREF_REV)
3fd0a558 1239 btrfs_drop_snapshot(root, NULL, 0);
76dda93c 1240 else
3fd0a558 1241 btrfs_drop_snapshot(root, NULL, 1);
e9d0b13b
CM
1242 }
1243 return 0;
1244}