Linux 6.17-rc6
[linux-2.6-block.git] / fs / btrfs / super.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
4b82d6e4 6#include <linux/blkdev.h>
2e635a27
CM
7#include <linux/module.h>
8#include <linux/fs.h>
9#include <linux/pagemap.h>
10#include <linux/highmem.h>
11#include <linux/time.h>
12#include <linux/init.h>
a9572a15 13#include <linux/seq_file.h>
2e635a27 14#include <linux/string.h>
2e635a27 15#include <linux/backing-dev.h>
4b82d6e4 16#include <linux/mount.h>
75dfe396 17#include <linux/writeback.h>
8fd17795 18#include <linux/statfs.h>
08607c1b 19#include <linux/compat.h>
95e05289 20#include <linux/parser.h>
c59f8951 21#include <linux/ctype.h>
6da6abae 22#include <linux/namei.h>
a9218f6b 23#include <linux/miscdevice.h>
1bcbf313 24#include <linux/magic.h>
5a0e3ad6 25#include <linux/slab.h>
22c44fe6 26#include <linux/ratelimit.h>
9678c543 27#include <linux/crc32c.h>
55e301fd 28#include <linux/btrfs.h>
c60a2880 29#include <linux/security.h>
15ddcdd3 30#include <linux/fs_parser.h>
9b569ea0 31#include "messages.h"
16cdcec7 32#include "delayed-inode.h"
2e635a27 33#include "ctree.h"
e20d96d6 34#include "disk-io.h"
d5719762 35#include "transaction.h"
2c90e5d6 36#include "btrfs_inode.h"
9aa29a20 37#include "direct-io.h"
63541927 38#include "props.h"
5103e947 39#include "xattr.h"
103c1972 40#include "bio.h"
be6e8dc0 41#include "export.h"
c8b97818 42#include "compression.h"
8dabb742 43#include "dev-replace.h"
74255aa0 44#include "free-space-cache.h"
b9e9a6cb 45#include "backref.h"
8719aaae 46#include "space-info.h"
89439109 47#include "sysfs.h"
b70f5097 48#include "zoned.h"
dc11dd5d 49#include "tests/btrfs-tests.h"
aac0023c 50#include "block-group.h"
b0643e59 51#include "discard.h"
d3982100 52#include "qgroup.h"
b8bea09a 53#include "raid56.h"
c7f13d42 54#include "fs.h"
07e81dc9 55#include "accessors.h"
59b818e0 56#include "defrag.h"
f2b39277 57#include "dir-item.h"
7572dec8 58#include "ioctl.h"
2fc6822c 59#include "scrub.h"
5c11adcc 60#include "verity.h"
c03b2207 61#include "super.h"
cfc2de0f 62#include "extent-tree.h"
1abe9b8a 63#define CREATE_TRACE_POINTS
64#include <trace/events/btrfs.h>
65
b87221de 66static const struct super_operations btrfs_super_ops;
830c4adb 67static struct file_system_type btrfs_fs_type;
0723a047 68
d397712b 69static void btrfs_put_super(struct super_block *sb)
b18c6685 70{
2db31320
QW
71 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
72
73 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
74 close_ctree(fs_info);
75dfe396
CM
75}
76
17b36120
JB
77/* Store the mount options related information. */
78struct btrfs_fs_context {
79 char *subvol_name;
80 u64 subvol_objectid;
81 u64 max_inline;
82 u32 commit_interval;
83 u32 metadata_ratio;
84 u32 thread_pool_size;
c3ece6b7 85 unsigned long long mount_opt;
17b36120 86 unsigned long compress_type:4;
da798fa5 87 int compress_level;
3bb17a25 88 refcount_t refs;
17b36120
JB
89};
90
b435ab55
KO
91static void btrfs_emit_options(struct btrfs_fs_info *info,
92 struct btrfs_fs_context *old);
93
95e05289 94enum {
6941823c 95 Opt_acl,
416a7202
DS
96 Opt_clear_cache,
97 Opt_commit_interval,
98 Opt_compress,
99 Opt_compress_force,
100 Opt_compress_force_type,
101 Opt_compress_type,
102 Opt_degraded,
103 Opt_device,
104 Opt_fatal_errors,
6941823c 105 Opt_flushoncommit,
416a7202 106 Opt_max_inline,
6941823c
JB
107 Opt_barrier,
108 Opt_datacow,
109 Opt_datasum,
110 Opt_defrag,
111 Opt_discard,
b0643e59 112 Opt_discard_mode,
416a7202
DS
113 Opt_ratio,
114 Opt_rescan_uuid_tree,
115 Opt_skip_balance,
6941823c 116 Opt_space_cache,
416a7202 117 Opt_space_cache_version,
6941823c
JB
118 Opt_ssd,
119 Opt_ssd_spread,
416a7202 120 Opt_subvol,
37becec9 121 Opt_subvol_empty,
416a7202
DS
122 Opt_subvolid,
123 Opt_thread_pool,
6941823c 124 Opt_treelog,
416a7202 125 Opt_user_subvol_rm_allowed,
440861b1 126 Opt_norecovery,
416a7202 127
74ef0018
QW
128 /* Rescue options */
129 Opt_rescue,
130 Opt_usebackuproot,
74ef0018 131
416a7202 132 /* Debugging options */
6941823c 133 Opt_enospc_debug,
d0bd4560 134#ifdef CONFIG_BTRFS_DEBUG
15ddcdd3 135 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
fb592373
JB
136#endif
137#ifdef CONFIG_BTRFS_FS_REF_VERIFY
138 Opt_ref_verify,
d0bd4560 139#endif
9555c6c1 140 Opt_err,
95e05289
CM
141};
142
15ddcdd3
JB
143enum {
144 Opt_fatal_errors_panic,
145 Opt_fatal_errors_bug,
146};
416a7202 147
15ddcdd3
JB
148static const struct constant_table btrfs_parameter_fatal_errors[] = {
149 { "panic", Opt_fatal_errors_panic },
150 { "bug", Opt_fatal_errors_bug },
151 {}
152};
153
154enum {
155 Opt_discard_sync,
156 Opt_discard_async,
157};
158
159static const struct constant_table btrfs_parameter_discard[] = {
160 { "sync", Opt_discard_sync },
161 { "async", Opt_discard_async },
162 {}
163};
164
165enum {
166 Opt_space_cache_v1,
167 Opt_space_cache_v2,
168};
169
170static const struct constant_table btrfs_parameter_space_cache[] = {
171 { "v1", Opt_space_cache_v1 },
172 { "v2", Opt_space_cache_v2 },
173 {}
174};
175
176enum {
177 Opt_rescue_usebackuproot,
178 Opt_rescue_nologreplay,
179 Opt_rescue_ignorebadroots,
180 Opt_rescue_ignoredatacsums,
169aaaf2 181 Opt_rescue_ignoremetacsums,
32e62165 182 Opt_rescue_ignoresuperflags,
15ddcdd3
JB
183 Opt_rescue_parameter_all,
184};
185
186static const struct constant_table btrfs_parameter_rescue[] = {
187 { "usebackuproot", Opt_rescue_usebackuproot },
188 { "nologreplay", Opt_rescue_nologreplay },
189 { "ignorebadroots", Opt_rescue_ignorebadroots },
190 { "ibadroots", Opt_rescue_ignorebadroots },
191 { "ignoredatacsums", Opt_rescue_ignoredatacsums },
169aaaf2 192 { "ignoremetacsums", Opt_rescue_ignoremetacsums},
32e62165 193 { "ignoresuperflags", Opt_rescue_ignoresuperflags},
15ddcdd3 194 { "idatacsums", Opt_rescue_ignoredatacsums },
169aaaf2 195 { "imetacsums", Opt_rescue_ignoremetacsums},
32e62165 196 { "isuperflags", Opt_rescue_ignoresuperflags},
15ddcdd3
JB
197 { "all", Opt_rescue_parameter_all },
198 {}
199};
200
201#ifdef CONFIG_BTRFS_DEBUG
202enum {
203 Opt_fragment_parameter_data,
204 Opt_fragment_parameter_metadata,
205 Opt_fragment_parameter_all,
206};
207
208static const struct constant_table btrfs_parameter_fragment[] = {
209 { "data", Opt_fragment_parameter_data },
210 { "metadata", Opt_fragment_parameter_metadata },
211 { "all", Opt_fragment_parameter_all },
212 {}
213};
214#endif
215
ad21f15b 216static const struct fs_parameter_spec btrfs_fs_parameters[] = {
15ddcdd3
JB
217 fsparam_flag_no("acl", Opt_acl),
218 fsparam_flag_no("autodefrag", Opt_defrag),
219 fsparam_flag_no("barrier", Opt_barrier),
220 fsparam_flag("clear_cache", Opt_clear_cache),
221 fsparam_u32("commit", Opt_commit_interval),
222 fsparam_flag("compress", Opt_compress),
223 fsparam_string("compress", Opt_compress_type),
224 fsparam_flag("compress-force", Opt_compress_force),
225 fsparam_string("compress-force", Opt_compress_force_type),
226 fsparam_flag_no("datacow", Opt_datacow),
227 fsparam_flag_no("datasum", Opt_datasum),
228 fsparam_flag("degraded", Opt_degraded),
229 fsparam_string("device", Opt_device),
230 fsparam_flag_no("discard", Opt_discard),
231 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
232 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
233 fsparam_flag_no("flushoncommit", Opt_flushoncommit),
15ddcdd3
JB
234 fsparam_string("max_inline", Opt_max_inline),
235 fsparam_u32("metadata_ratio", Opt_ratio),
236 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
237 fsparam_flag("skip_balance", Opt_skip_balance),
238 fsparam_flag_no("space_cache", Opt_space_cache),
239 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
240 fsparam_flag_no("ssd", Opt_ssd),
241 fsparam_flag_no("ssd_spread", Opt_ssd_spread),
242 fsparam_string("subvol", Opt_subvol),
243 fsparam_flag("subvol=", Opt_subvol_empty),
244 fsparam_u64("subvolid", Opt_subvolid),
245 fsparam_u32("thread_pool", Opt_thread_pool),
246 fsparam_flag_no("treelog", Opt_treelog),
247 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
248
249 /* Rescue options. */
250 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
74ef0018 251 /* Deprecated, with alias rescue=usebackuproot */
15ddcdd3 252 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
440861b1
QW
253 /* For compatibility only, alias for "rescue=nologreplay". */
254 fsparam_flag("norecovery", Opt_norecovery),
74ef0018 255
15ddcdd3
JB
256 /* Debugging options. */
257 fsparam_flag_no("enospc_debug", Opt_enospc_debug),
d0bd4560 258#ifdef CONFIG_BTRFS_DEBUG
15ddcdd3 259 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
fb592373
JB
260#endif
261#ifdef CONFIG_BTRFS_FS_REF_VERIFY
15ddcdd3 262 fsparam_flag("ref_verify", Opt_ref_verify),
d0bd4560 263#endif
15ddcdd3 264 {}
95e05289
CM
265};
266
3f093ccb
DV
267static bool btrfs_match_compress_type(const char *string, const char *type, bool may_have_level)
268{
269 const int len = strlen(type);
270
271 return (strncmp(string, type, len) == 0) &&
272 ((may_have_level && string[len] == ':') || string[len] == '\0');
273}
274
3f0e865a
DV
275static int btrfs_parse_compress(struct btrfs_fs_context *ctx,
276 const struct fs_parameter *param, int opt)
277{
3f093ccb
DV
278 const char *string = param->string;
279
3f0e865a
DV
280 /*
281 * Provide the same semantics as older kernels that don't use fs
282 * context, specifying the "compress" option clears "force-compress"
283 * without the need to pass "compress-force=[no|none]" before
284 * specifying "compress".
285 */
286 if (opt != Opt_compress_force && opt != Opt_compress_force_type)
287 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
288
289 if (opt == Opt_compress || opt == Opt_compress_force) {
290 ctx->compress_type = BTRFS_COMPRESS_ZLIB;
291 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
292 btrfs_set_opt(ctx->mount_opt, COMPRESS);
293 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
294 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
3f093ccb 295 } else if (btrfs_match_compress_type(string, "zlib", true)) {
3f0e865a
DV
296 ctx->compress_type = BTRFS_COMPRESS_ZLIB;
297 ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
3f093ccb 298 string + 4);
3f0e865a
DV
299 btrfs_set_opt(ctx->mount_opt, COMPRESS);
300 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
301 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
6db1df41 302 } else if (btrfs_match_compress_type(string, "lzo", true)) {
3f0e865a 303 ctx->compress_type = BTRFS_COMPRESS_LZO;
6db1df41
CO
304 ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_LZO,
305 string + 3);
306 if (string[3] == ':' && string[4])
307 btrfs_warn(NULL, "Compression level ignored for LZO");
3f0e865a
DV
308 btrfs_set_opt(ctx->mount_opt, COMPRESS);
309 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
310 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
3f093ccb 311 } else if (btrfs_match_compress_type(string, "zstd", true)) {
3f0e865a
DV
312 ctx->compress_type = BTRFS_COMPRESS_ZSTD;
313 ctx->compress_level = btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
3f093ccb 314 string + 4);
3f0e865a
DV
315 btrfs_set_opt(ctx->mount_opt, COMPRESS);
316 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
317 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
3f093ccb
DV
318 } else if (btrfs_match_compress_type(string, "no", false) ||
319 btrfs_match_compress_type(string, "none", false)) {
3f0e865a
DV
320 ctx->compress_level = 0;
321 ctx->compress_type = 0;
322 btrfs_clear_opt(ctx->mount_opt, COMPRESS);
323 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
324 } else {
3f093ccb 325 btrfs_err(NULL, "unrecognized compression value %s", string);
3f0e865a
DV
326 return -EINVAL;
327 }
328 return 0;
329}
330
17b36120 331static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
74ef0018 332{
17b36120
JB
333 struct btrfs_fs_context *ctx = fc->fs_private;
334 struct fs_parse_result result;
335 int opt;
74ef0018 336
17b36120
JB
337 opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
338 if (opt < 0)
339 return opt;
74ef0018 340
17b36120
JB
341 switch (opt) {
342 case Opt_degraded:
343 btrfs_set_opt(ctx->mount_opt, DEGRADED);
344 break;
345 case Opt_subvol_empty:
346 /*
347 * This exists because we used to allow it on accident, so we're
348 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow
349 * empty subvol= again").
350 */
351 break;
352 case Opt_subvol:
353 kfree(ctx->subvol_name);
354 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
355 if (!ctx->subvol_name)
356 return -ENOMEM;
357 break;
358 case Opt_subvolid:
359 ctx->subvol_objectid = result.uint_64;
74ef0018 360
17b36120
JB
361 /* subvolid=0 means give me the original fs_tree. */
362 if (!ctx->subvol_objectid)
363 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
364 break;
365 case Opt_device: {
366 struct btrfs_device *device;
74ef0018 367
17b36120 368 mutex_lock(&uuid_mutex);
ae818824 369 device = btrfs_scan_one_device(param->string, false);
17b36120
JB
370 mutex_unlock(&uuid_mutex);
371 if (IS_ERR(device))
372 return PTR_ERR(device);
373 break;
74ef0018 374 }
17b36120
JB
375 case Opt_datasum:
376 if (result.negated) {
377 btrfs_set_opt(ctx->mount_opt, NODATASUM);
5d1ab66c 378 } else {
17b36120
JB
379 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
380 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
5d1ab66c 381 }
17b36120
JB
382 break;
383 case Opt_datacow:
384 if (result.negated) {
385 btrfs_clear_opt(ctx->mount_opt, COMPRESS);
386 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
387 btrfs_set_opt(ctx->mount_opt, NODATACOW);
388 btrfs_set_opt(ctx->mount_opt, NODATASUM);
389 } else {
390 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
391 }
392 break;
393 case Opt_compress_force:
394 case Opt_compress_force_type:
395 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
396 fallthrough;
397 case Opt_compress:
398 case Opt_compress_type:
3f0e865a 399 if (btrfs_parse_compress(ctx, param, opt))
17b36120 400 return -EINVAL;
17b36120
JB
401 break;
402 case Opt_ssd:
403 if (result.negated) {
404 btrfs_set_opt(ctx->mount_opt, NOSSD);
405 btrfs_clear_opt(ctx->mount_opt, SSD);
406 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
407 } else {
408 btrfs_set_opt(ctx->mount_opt, SSD);
409 btrfs_clear_opt(ctx->mount_opt, NOSSD);
410 }
411 break;
412 case Opt_ssd_spread:
413 if (result.negated) {
414 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
415 } else {
416 btrfs_set_opt(ctx->mount_opt, SSD);
417 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
418 btrfs_clear_opt(ctx->mount_opt, NOSSD);
419 }
420 break;
421 case Opt_barrier:
422 if (result.negated)
423 btrfs_set_opt(ctx->mount_opt, NOBARRIER);
424 else
425 btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
426 break;
427 case Opt_thread_pool:
428 if (result.uint_32 == 0) {
429 btrfs_err(NULL, "invalid value 0 for thread_pool");
430 return -EINVAL;
431 }
432 ctx->thread_pool_size = result.uint_32;
433 break;
434 case Opt_max_inline:
435 ctx->max_inline = memparse(param->string, NULL);
436 break;
437 case Opt_acl:
438 if (result.negated) {
439 fc->sb_flags &= ~SB_POSIXACL;
440 } else {
45ff35d6 441#ifdef CONFIG_BTRFS_FS_POSIX_ACL
17b36120 442 fc->sb_flags |= SB_POSIXACL;
45ff35d6 443#else
17b36120
JB
444 btrfs_err(NULL, "support for ACL not compiled in");
445 return -EINVAL;
45ff35d6 446#endif
17b36120
JB
447 }
448 /*
449 * VFS limits the ability to toggle ACL on and off via remount,
450 * despite every file system allowing this. This seems to be
451 * an oversight since we all do, but it'll fail if we're
452 * remounting. So don't set the mask here, we'll check it in
453 * btrfs_reconfigure and do the toggling ourselves.
454 */
455 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
456 fc->sb_flags_mask |= SB_POSIXACL;
457 break;
458 case Opt_treelog:
459 if (result.negated)
460 btrfs_set_opt(ctx->mount_opt, NOTREELOG);
461 else
462 btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
463 break;
440861b1
QW
464 case Opt_norecovery:
465 btrfs_info(NULL,
466"'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
467 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
468 break;
17b36120
JB
469 case Opt_flushoncommit:
470 if (result.negated)
471 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
472 else
473 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
474 break;
475 case Opt_ratio:
476 ctx->metadata_ratio = result.uint_32;
477 break;
478 case Opt_discard:
479 if (result.negated) {
480 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
481 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
482 btrfs_set_opt(ctx->mount_opt, NODISCARD);
483 } else {
484 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
485 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
486 }
487 break;
488 case Opt_discard_mode:
489 switch (result.uint_32) {
490 case Opt_discard_sync:
491 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
492 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
0af3d00b 493 break;
17b36120
JB
494 case Opt_discard_async:
495 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
496 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
4260f7c7 497 break;
17b36120
JB
498 default:
499 btrfs_err(NULL, "unrecognized discard mode value %s",
500 param->key);
501 return -EINVAL;
502 }
503 btrfs_clear_opt(ctx->mount_opt, NODISCARD);
504 break;
505 case Opt_space_cache:
506 if (result.negated) {
507 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
508 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
509 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
510 } else {
511 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
512 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
513 }
514 break;
515 case Opt_space_cache_version:
516 switch (result.uint_32) {
517 case Opt_space_cache_v1:
518 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
519 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
91435650 520 break;
17b36120
JB
521 case Opt_space_cache_v2:
522 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
523 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
53036293 524 break;
17b36120
JB
525 default:
526 btrfs_err(NULL, "unrecognized space_cache value %s",
527 param->key);
528 return -EINVAL;
529 }
530 break;
531 case Opt_rescan_uuid_tree:
532 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
533 break;
17b36120
JB
534 case Opt_clear_cache:
535 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
536 break;
537 case Opt_user_subvol_rm_allowed:
538 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
539 break;
540 case Opt_enospc_debug:
541 if (result.negated)
542 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
543 else
544 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
545 break;
546 case Opt_defrag:
547 if (result.negated)
548 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
549 else
550 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
551 break;
552 case Opt_usebackuproot:
553 btrfs_warn(NULL,
554 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
555 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
9fb3b1a7
JB
556
557 /* If we're loading the backup roots we can't trust the space cache. */
558 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
17b36120
JB
559 break;
560 case Opt_skip_balance:
561 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
562 break;
563 case Opt_fatal_errors:
564 switch (result.uint_32) {
565 case Opt_fatal_errors_panic:
566 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
4cb5300b 567 break;
17b36120
JB
568 case Opt_fatal_errors_bug:
569 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
fc0ca9af 570 break;
17b36120
JB
571 default:
572 btrfs_err(NULL, "unrecognized fatal_errors value %s",
573 param->key);
574 return -EINVAL;
575 }
576 break;
577 case Opt_commit_interval:
578 ctx->commit_interval = result.uint_32;
4ce2affc
KO
579 if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) {
580 btrfs_warn(NULL, "excessive commit interval %u, use with care",
581 ctx->commit_interval);
582 }
17b36120
JB
583 if (ctx->commit_interval == 0)
584 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
585 break;
586 case Opt_rescue:
587 switch (result.uint_32) {
588 case Opt_rescue_usebackuproot:
589 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
af31f5e5 590 break;
17b36120
JB
591 case Opt_rescue_nologreplay:
592 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
9555c6c1 593 break;
17b36120
JB
594 case Opt_rescue_ignorebadroots:
595 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
8c342930 596 break;
17b36120
JB
597 case Opt_rescue_ignoredatacsums:
598 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
8b87dc17 599 break;
169aaaf2
QW
600 case Opt_rescue_ignoremetacsums:
601 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
602 break;
32e62165
QW
603 case Opt_rescue_ignoresuperflags:
604 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
605 break;
17b36120
JB
606 case Opt_rescue_parameter_all:
607 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
169aaaf2 608 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
32e62165 609 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
17b36120
JB
610 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
611 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
74ef0018 612 break;
17b36120
JB
613 default:
614 btrfs_info(NULL, "unrecognized rescue option '%s'",
615 param->key);
616 return -EINVAL;
617 }
618 break;
d0bd4560 619#ifdef CONFIG_BTRFS_DEBUG
17b36120
JB
620 case Opt_fragment:
621 switch (result.uint_32) {
622 case Opt_fragment_parameter_all:
623 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
624 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
d0bd4560 625 break;
17b36120
JB
626 case Opt_fragment_parameter_metadata:
627 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
d0bd4560 628 break;
17b36120
JB
629 case Opt_fragment_parameter_data:
630 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
d0bd4560 631 break;
17b36120
JB
632 default:
633 btrfs_info(NULL, "unrecognized fragment option '%s'",
634 param->key);
635 return -EINVAL;
636 }
637 break;
fb592373
JB
638#endif
639#ifdef CONFIG_BTRFS_FS_REF_VERIFY
17b36120
JB
640 case Opt_ref_verify:
641 btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
642 break;
d0bd4560 643#endif
17b36120
JB
644 default:
645 btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
646 return -EINVAL;
95e05289 647 }
d70bf748 648
17b36120 649 return 0;
edf24abe
CH
650}
651
652/*
83e3a40a
JB
653 * Some options only have meaning at mount time and shouldn't persist across
654 * remounts, or be displayed. Clear these at the end of mount and remount code
655 * paths.
edf24abe 656 */
83e3a40a 657static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
edf24abe 658{
83e3a40a
JB
659 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
660 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
661 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
662}
d7407606 663
2917f741 664static bool check_ro_option(const struct btrfs_fs_info *fs_info,
c3ece6b7 665 unsigned long long mount_opt, unsigned long long opt,
d70bf748
JB
666 const char *opt_name)
667{
eddb1a43 668 if (mount_opt & opt) {
d70bf748
JB
669 btrfs_err(fs_info, "%s must be used with ro mount option",
670 opt_name);
671 return true;
672 }
673 return false;
674}
5139cff5 675
c3ece6b7
QW
676bool btrfs_check_options(const struct btrfs_fs_info *info,
677 unsigned long long *mount_opt,
ad21f15b 678 unsigned long flags)
2b41b19d
JB
679{
680 bool ret = true;
d7407606 681
2b41b19d 682 if (!(flags & SB_RDONLY) &&
eddb1a43
JB
683 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
684 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
169aaaf2 685 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
32e62165
QW
686 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
687 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
2b41b19d 688 ret = false;
d7407606 689
2b41b19d 690 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
eddb1a43
JB
691 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
692 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
2b41b19d
JB
693 btrfs_err(info, "cannot disable free-space-tree");
694 ret = false;
695 }
696 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
eddb1a43 697 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
2b41b19d
JB
698 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
699 ret = false;
700 }
d7407606 701
eddb1a43 702 if (btrfs_check_mountopts_zoned(info, mount_opt))
2b41b19d 703 ret = false;
d7407606 704
2b41b19d 705 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
1e7bec1f 706 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
1e7bec1f
JB
707 btrfs_warn(info,
708"space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
709 }
d7407606
MT
710 }
711
2b41b19d 712 return ret;
d7407606
MT
713}
714
715/*
a6a8f22a
JB
716 * This is subtle, we only call this during open_ctree(). We need to pre-load
717 * the mount options with the on-disk settings. Before the new mount API took
718 * effect we would do this on mount and remount. With the new mount API we'll
719 * only do this on the initial mount.
d7407606 720 *
a6a8f22a
JB
721 * This isn't a change in behavior, because we're using the current state of the
722 * file system to set the current mount options. If you mounted with special
723 * options to disable these features and then remounted we wouldn't revert the
724 * settings, because mounting without these features cleared the on-disk
725 * settings, so this being called on re-mount is not needed.
d7407606 726 */
a6a8f22a 727void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
d7407606 728{
a6a8f22a
JB
729 if (fs_info->sectorsize < PAGE_SIZE) {
730 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
731 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
732 btrfs_info(fs_info,
733 "forcing free space tree for sector size %u with page size %lu",
734 fs_info->sectorsize, PAGE_SIZE);
735 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
736 }
737 }
edf24abe
CH
738
739 /*
ad21f15b
JB
740 * At this point our mount options are populated, so we only mess with
741 * these settings if we don't have any settings already.
edf24abe 742 */
ad21f15b
JB
743 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
744 return;
edf24abe 745
ad21f15b
JB
746 if (btrfs_is_zoned(fs_info) &&
747 btrfs_free_space_cache_v1_active(fs_info)) {
748 btrfs_info(fs_info, "zoned: clearing existing space cache");
749 btrfs_set_super_cache_generation(fs_info->super_copy, 0);
750 return;
751 }
edf24abe 752
ad21f15b
JB
753 if (btrfs_test_opt(fs_info, SPACE_CACHE))
754 return;
ccb0e7d1 755
ad21f15b
JB
756 if (btrfs_test_opt(fs_info, NOSPACECACHE))
757 return;
ccb0e7d1 758
ad21f15b
JB
759 /*
760 * At this point we don't have explicit options set by the user, set
761 * them ourselves based on the state of the file system.
762 */
763 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
764 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
765 else if (btrfs_free_space_cache_v1_active(fs_info))
766 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
a6a8f22a 767}
edf24abe 768
41d46b29
JB
769static void set_device_specific_options(struct btrfs_fs_info *fs_info)
770{
771 if (!btrfs_test_opt(fs_info, NOSSD) &&
772 !fs_info->fs_devices->rotating)
773 btrfs_set_opt(fs_info->mount_opt, SSD);
774
775 /*
776 * For devices supporting discard turn on discard=async automatically,
777 * unless it's already set or disabled. This could be turned off by
778 * nodiscard for the same mount.
779 *
780 * The zoned mode piggy backs on the discard functionality for
781 * resetting a zone. There is no reason to delay the zone reset as it is
782 * fast enough. So, do not enable async discard for zoned mode.
783 */
784 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
785 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
786 btrfs_test_opt(fs_info, NODISCARD)) &&
787 fs_info->fs_devices->discardable &&
788 !btrfs_is_zoned(fs_info))
789 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
95e05289
CM
790}
791
c0c907a4
MPS
792char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
793 u64 subvol_objectid)
73f73415 794{
815745cf 795 struct btrfs_root *root = fs_info->tree_root;
5168489a 796 struct btrfs_root *fs_root = NULL;
05dbe683
OS
797 struct btrfs_root_ref *root_ref;
798 struct btrfs_inode_ref *inode_ref;
799 struct btrfs_key key;
800 struct btrfs_path *path = NULL;
801 char *name = NULL, *ptr;
802 u64 dirid;
803 int len;
804 int ret;
805
806 path = btrfs_alloc_path();
807 if (!path) {
808 ret = -ENOMEM;
809 goto err;
810 }
05dbe683 811
3ec83621 812 name = kmalloc(PATH_MAX, GFP_KERNEL);
05dbe683
OS
813 if (!name) {
814 ret = -ENOMEM;
815 goto err;
816 }
817 ptr = name + PATH_MAX - 1;
818 ptr[0] = '\0';
73f73415
JB
819
820 /*
05dbe683
OS
821 * Walk up the subvolume trees in the tree of tree roots by root
822 * backrefs until we hit the top-level subvolume.
73f73415 823 */
05dbe683
OS
824 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
825 key.objectid = subvol_objectid;
826 key.type = BTRFS_ROOT_BACKREF_KEY;
827 key.offset = (u64)-1;
828
0ff40a91 829 ret = btrfs_search_backwards(root, &key, path);
05dbe683
OS
830 if (ret < 0) {
831 goto err;
832 } else if (ret > 0) {
0ff40a91
MPS
833 ret = -ENOENT;
834 goto err;
05dbe683
OS
835 }
836
05dbe683
OS
837 subvol_objectid = key.offset;
838
839 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
840 struct btrfs_root_ref);
841 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
842 ptr -= len + 1;
843 if (ptr < name) {
844 ret = -ENAMETOOLONG;
845 goto err;
846 }
847 read_extent_buffer(path->nodes[0], ptr + 1,
848 (unsigned long)(root_ref + 1), len);
849 ptr[0] = '/';
850 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
851 btrfs_release_path(path);
852
56e9357a 853 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
05dbe683
OS
854 if (IS_ERR(fs_root)) {
855 ret = PTR_ERR(fs_root);
5168489a
JB
856 fs_root = NULL;
857 goto err;
858 }
05dbe683
OS
859
860 /*
861 * Walk up the filesystem tree by inode refs until we hit the
862 * root directory.
863 */
864 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
865 key.objectid = dirid;
866 key.type = BTRFS_INODE_REF_KEY;
867 key.offset = (u64)-1;
868
0ff40a91 869 ret = btrfs_search_backwards(fs_root, &key, path);
05dbe683
OS
870 if (ret < 0) {
871 goto err;
872 } else if (ret > 0) {
0ff40a91
MPS
873 ret = -ENOENT;
874 goto err;
05dbe683
OS
875 }
876
05dbe683
OS
877 dirid = key.offset;
878
879 inode_ref = btrfs_item_ptr(path->nodes[0],
880 path->slots[0],
881 struct btrfs_inode_ref);
882 len = btrfs_inode_ref_name_len(path->nodes[0],
883 inode_ref);
884 ptr -= len + 1;
885 if (ptr < name) {
886 ret = -ENAMETOOLONG;
887 goto err;
888 }
889 read_extent_buffer(path->nodes[0], ptr + 1,
890 (unsigned long)(inode_ref + 1), len);
891 ptr[0] = '/';
892 btrfs_release_path(path);
893 }
00246528 894 btrfs_put_root(fs_root);
5168489a 895 fs_root = NULL;
73f73415
JB
896 }
897
05dbe683
OS
898 btrfs_free_path(path);
899 if (ptr == name + PATH_MAX - 1) {
900 name[0] = '/';
901 name[1] = '\0';
902 } else {
903 memmove(name, ptr, name + PATH_MAX - ptr);
904 }
905 return name;
906
907err:
00246528 908 btrfs_put_root(fs_root);
05dbe683
OS
909 btrfs_free_path(path);
910 kfree(name);
911 return ERR_PTR(ret);
912}
913
914static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
915{
916 struct btrfs_root *root = fs_info->tree_root;
917 struct btrfs_dir_item *di;
918 struct btrfs_path *path;
919 struct btrfs_key location;
6db75318 920 struct fscrypt_str name = FSTR_INIT("default", 7);
05dbe683
OS
921 u64 dir_id;
922
73f73415
JB
923 path = btrfs_alloc_path();
924 if (!path)
05dbe683 925 return -ENOMEM;
73f73415
JB
926
927 /*
928 * Find the "default" dir item which points to the root item that we
929 * will mount by default if we haven't been given a specific subvolume
930 * to mount.
931 */
815745cf 932 dir_id = btrfs_super_root_dir(fs_info->super_copy);
e43eec81 933 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
b0839166
JL
934 if (IS_ERR(di)) {
935 btrfs_free_path(path);
05dbe683 936 return PTR_ERR(di);
b0839166 937 }
73f73415
JB
938 if (!di) {
939 /*
940 * Ok the default dir item isn't there. This is weird since
941 * it's always been there, but don't freak out, just try and
05dbe683 942 * mount the top-level subvolume.
73f73415
JB
943 */
944 btrfs_free_path(path);
05dbe683
OS
945 *objectid = BTRFS_FS_TREE_OBJECTID;
946 return 0;
73f73415
JB
947 }
948
949 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
950 btrfs_free_path(path);
05dbe683
OS
951 *objectid = location.objectid;
952 return 0;
73f73415
JB
953}
954
d397712b 955static int btrfs_fill_super(struct super_block *sb,
01c5db78 956 struct btrfs_fs_devices *fs_devices)
75dfe396 957{
b204e5c7 958 struct btrfs_inode *inode;
815745cf 959 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
148961da 960 int ret;
a429e513 961
39279cc3
CM
962 sb->s_maxbytes = MAX_LFS_FILESIZE;
963 sb->s_magic = BTRFS_SUPER_MAGIC;
964 sb->s_op = &btrfs_super_ops;
05fb0e66 965 set_default_d_op(sb, &btrfs_dentry_operations);
be6e8dc0 966 sb->s_export_op = &btrfs_export_ops;
14605409
BB
967#ifdef CONFIG_FS_VERITY
968 sb->s_vop = &btrfs_verityops;
969#endif
5103e947 970 sb->s_xattr = btrfs_xattr_handlers;
39279cc3 971 sb->s_time_gran = 1;
5121711e 972 sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM;
9e11ceee 973
148961da
DS
974 ret = super_setup_bdi(sb);
975 if (ret) {
9e11ceee 976 btrfs_err(fs_info, "super_setup_bdi failed");
148961da 977 return ret;
9e11ceee
JK
978 }
979
148961da
DS
980 ret = open_ctree(sb, fs_devices);
981 if (ret) {
982 btrfs_err(fs_info, "open_ctree failed: %d", ret);
983 return ret;
a429e513
CM
984 }
985
b435ab55
KO
986 btrfs_emit_options(fs_info, NULL);
987
d13240dd 988 inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
5d4f98a2 989 if (IS_ERR(inode)) {
148961da
DS
990 ret = PTR_ERR(inode);
991 btrfs_handle_fs_error(fs_info, ret, NULL);
39279cc3 992 goto fail_close;
f254e52c 993 }
f254e52c 994
b204e5c7 995 sb->s_root = d_make_root(&inode->vfs_inode);
48fde701 996 if (!sb->s_root) {
148961da 997 ret = -ENOMEM;
39279cc3 998 goto fail_close;
f254e52c 999 }
58176a96 1000
1751e8a6 1001 sb->s_flags |= SB_ACTIVE;
2619ba1f 1002 return 0;
39279cc3
CM
1003
1004fail_close:
6bccf3ab 1005 close_ctree(fs_info);
148961da 1006 return ret;
2619ba1f
CM
1007}
1008
6bf13c0c 1009int btrfs_sync_fs(struct super_block *sb, int wait)
c5739bba
CM
1010{
1011 struct btrfs_trans_handle *trans;
815745cf
AV
1012 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1013 struct btrfs_root *root = fs_info->tree_root;
2619ba1f 1014
bc074524 1015 trace_btrfs_sync_fs(fs_info, wait);
1abe9b8a 1016
39279cc3 1017 if (!wait) {
815745cf 1018 filemap_flush(fs_info->btree_inode->i_mapping);
39279cc3
CM
1019 return 0;
1020 }
771ed689 1021
42317ab4 1022 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
771ed689 1023
d4edf39b 1024 trans = btrfs_attach_transaction_barrier(root);
60376ce4 1025 if (IS_ERR(trans)) {
354aa0fb 1026 /* no transaction, don't bother */
6b5fe46d
DS
1027 if (PTR_ERR(trans) == -ENOENT) {
1028 /*
1029 * Exit unless we have some pending changes
1030 * that need to go through commit
1031 */
c52cc7b7
JB
1032 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1033 &fs_info->flags))
6b5fe46d 1034 return 0;
a53f4f8e
QW
1035 /*
1036 * A non-blocking test if the fs is frozen. We must not
1037 * start a new transaction here otherwise a deadlock
1038 * happens. The pending operations are delayed to the
1039 * next commit after thawing.
1040 */
a7e3c5f2
RP
1041 if (sb_start_write_trylock(sb))
1042 sb_end_write(sb);
a53f4f8e
QW
1043 else
1044 return 0;
6b5fe46d 1045 trans = btrfs_start_transaction(root, 0);
6b5fe46d 1046 }
98bd5c54
DS
1047 if (IS_ERR(trans))
1048 return PTR_ERR(trans);
60376ce4 1049 }
3a45bb20 1050 return btrfs_commit_transaction(trans);
2c90e5d6
CM
1051}
1052
ab0b4a3e
JB
1053static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1054{
1055 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1056 *printed = true;
1057}
1058
34c80b1d 1059static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
a9572a15 1060{
815745cf 1061 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
0f628c63 1062 const char *compress_type;
3ef3959b 1063 const char *subvol_name;
ab0b4a3e 1064 bool printed = false;
a9572a15 1065
3cdde224 1066 if (btrfs_test_opt(info, DEGRADED))
a9572a15 1067 seq_puts(seq, ",degraded");
3cdde224 1068 if (btrfs_test_opt(info, NODATASUM))
a9572a15 1069 seq_puts(seq, ",nodatasum");
3cdde224 1070 if (btrfs_test_opt(info, NODATACOW))
a9572a15 1071 seq_puts(seq, ",nodatacow");
3cdde224 1072 if (btrfs_test_opt(info, NOBARRIER))
a9572a15 1073 seq_puts(seq, ",nobarrier");
95ac567a 1074 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
c1c9ff7c 1075 seq_printf(seq, ",max_inline=%llu", info->max_inline);
a9572a15
EP
1076 if (info->thread_pool_size != min_t(unsigned long,
1077 num_online_cpus() + 2, 8))
f7b885be 1078 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
3cdde224 1079 if (btrfs_test_opt(info, COMPRESS)) {
0f628c63 1080 compress_type = btrfs_compress_type2str(info->compress_type);
3cdde224 1081 if (btrfs_test_opt(info, FORCE_COMPRESS))
200da64e
TI
1082 seq_printf(seq, ",compress-force=%s", compress_type);
1083 else
1084 seq_printf(seq, ",compress=%s", compress_type);
6db1df41 1085 if (info->compress_level && info->compress_type != BTRFS_COMPRESS_LZO)
fa4d885a 1086 seq_printf(seq, ":%d", info->compress_level);
200da64e 1087 }
3cdde224 1088 if (btrfs_test_opt(info, NOSSD))
c289811c 1089 seq_puts(seq, ",nossd");
3cdde224 1090 if (btrfs_test_opt(info, SSD_SPREAD))
451d7585 1091 seq_puts(seq, ",ssd_spread");
3cdde224 1092 else if (btrfs_test_opt(info, SSD))
a9572a15 1093 seq_puts(seq, ",ssd");
3cdde224 1094 if (btrfs_test_opt(info, NOTREELOG))
6b65c5c6 1095 seq_puts(seq, ",notreelog");
3cdde224 1096 if (btrfs_test_opt(info, NOLOGREPLAY))
ab0b4a3e 1097 print_rescue_option(seq, "nologreplay", &printed);
68319c18
JB
1098 if (btrfs_test_opt(info, USEBACKUPROOT))
1099 print_rescue_option(seq, "usebackuproot", &printed);
42437a63
JB
1100 if (btrfs_test_opt(info, IGNOREBADROOTS))
1101 print_rescue_option(seq, "ignorebadroots", &printed);
882dbe0c
JB
1102 if (btrfs_test_opt(info, IGNOREDATACSUMS))
1103 print_rescue_option(seq, "ignoredatacsums", &printed);
169aaaf2
QW
1104 if (btrfs_test_opt(info, IGNOREMETACSUMS))
1105 print_rescue_option(seq, "ignoremetacsums", &printed);
32e62165
QW
1106 if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1107 print_rescue_option(seq, "ignoresuperflags", &printed);
3cdde224 1108 if (btrfs_test_opt(info, FLUSHONCOMMIT))
6b65c5c6 1109 seq_puts(seq, ",flushoncommit");
46b27f50 1110 if (btrfs_test_opt(info, DISCARD_SYNC))
20a5239a 1111 seq_puts(seq, ",discard");
b0643e59
DZ
1112 if (btrfs_test_opt(info, DISCARD_ASYNC))
1113 seq_puts(seq, ",discard=async");
1751e8a6 1114 if (!(info->sb->s_flags & SB_POSIXACL))
a9572a15 1115 seq_puts(seq, ",noacl");
04c41559 1116 if (btrfs_free_space_cache_v1_active(info))
200da64e 1117 seq_puts(seq, ",space_cache");
04c41559 1118 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
70f6d82e 1119 seq_puts(seq, ",space_cache=v2");
73bc1876 1120 else
8965593e 1121 seq_puts(seq, ",nospace_cache");
3cdde224 1122 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
f420ee1e 1123 seq_puts(seq, ",rescan_uuid_tree");
3cdde224 1124 if (btrfs_test_opt(info, CLEAR_CACHE))
200da64e 1125 seq_puts(seq, ",clear_cache");
3cdde224 1126 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
200da64e 1127 seq_puts(seq, ",user_subvol_rm_allowed");
3cdde224 1128 if (btrfs_test_opt(info, ENOSPC_DEBUG))
0942caa3 1129 seq_puts(seq, ",enospc_debug");
3cdde224 1130 if (btrfs_test_opt(info, AUTO_DEFRAG))
0942caa3 1131 seq_puts(seq, ",autodefrag");
3cdde224 1132 if (btrfs_test_opt(info, SKIP_BALANCE))
9555c6c1 1133 seq_puts(seq, ",skip_balance");
8507d216 1134 if (info->metadata_ratio)
764cb8b4 1135 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
3cdde224 1136 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
8c342930 1137 seq_puts(seq, ",fatal_errors=panic");
8b87dc17 1138 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
d3740608 1139 seq_printf(seq, ",commit=%u", info->commit_interval);
d0bd4560 1140#ifdef CONFIG_BTRFS_DEBUG
3cdde224 1141 if (btrfs_test_opt(info, FRAGMENT_DATA))
d0bd4560 1142 seq_puts(seq, ",fragment=data");
3cdde224 1143 if (btrfs_test_opt(info, FRAGMENT_METADATA))
d0bd4560
JB
1144 seq_puts(seq, ",fragment=metadata");
1145#endif
fb592373
JB
1146 if (btrfs_test_opt(info, REF_VERIFY))
1147 seq_puts(seq, ",ref_verify");
e094f480 1148 seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
3ef3959b 1149 subvol_name = btrfs_get_subvol_name_from_objectid(info,
e094f480 1150 btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
3ef3959b 1151 if (!IS_ERR(subvol_name)) {
dc08c586 1152 seq_show_option(seq, "subvol", subvol_name);
3ef3959b
JB
1153 kfree(subvol_name);
1154 }
a9572a15
EP
1155 return 0;
1156}
1157
f9d9ef62
DS
1158/*
1159 * subvolumes are identified by ino 256
1160 */
f963e012 1161static inline bool is_subvolume_inode(struct inode *inode)
f9d9ef62
DS
1162{
1163 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
f963e012
DS
1164 return true;
1165 return false;
f9d9ef62
DS
1166}
1167
bb289b7b 1168static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
ae0bc863 1169 struct vfsmount *mnt)
830c4adb 1170{
830c4adb 1171 struct dentry *root;
fa330659 1172 int ret;
830c4adb 1173
05dbe683
OS
1174 if (!subvol_name) {
1175 if (!subvol_objectid) {
1176 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1177 &subvol_objectid);
1178 if (ret) {
1179 root = ERR_PTR(ret);
1180 goto out;
1181 }
1182 }
c0c907a4
MPS
1183 subvol_name = btrfs_get_subvol_name_from_objectid(
1184 btrfs_sb(mnt->mnt_sb), subvol_objectid);
05dbe683
OS
1185 if (IS_ERR(subvol_name)) {
1186 root = ERR_CAST(subvol_name);
1187 subvol_name = NULL;
1188 goto out;
1189 }
1190
1191 }
1192
ea441d11 1193 root = mount_subtree(mnt, subvol_name);
fa330659
OS
1194 /* mount_subtree() drops our reference on the vfsmount. */
1195 mnt = NULL;
830c4adb 1196
bb289b7b 1197 if (!IS_ERR(root)) {
ea441d11 1198 struct super_block *s = root->d_sb;
ab8d0fc4 1199 struct btrfs_fs_info *fs_info = btrfs_sb(s);
bb289b7b 1200 struct inode *root_inode = d_inode(root);
e094f480 1201 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
bb289b7b
OS
1202
1203 ret = 0;
1204 if (!is_subvolume_inode(root_inode)) {
ab8d0fc4 1205 btrfs_err(fs_info, "'%s' is not a valid subvolume",
bb289b7b
OS
1206 subvol_name);
1207 ret = -EINVAL;
1208 }
1209 if (subvol_objectid && root_objectid != subvol_objectid) {
05dbe683
OS
1210 /*
1211 * This will also catch a race condition where a
1212 * subvolume which was passed by ID is renamed and
1213 * another subvolume is renamed over the old location.
1214 */
ab8d0fc4
JM
1215 btrfs_err(fs_info,
1216 "subvol '%s' does not match subvolid %llu",
1217 subvol_name, subvol_objectid);
bb289b7b
OS
1218 ret = -EINVAL;
1219 }
1220 if (ret) {
1221 dput(root);
1222 root = ERR_PTR(ret);
1223 deactivate_locked_super(s);
1224 }
f9d9ef62
DS
1225 }
1226
fa330659
OS
1227out:
1228 mntput(mnt);
fa330659 1229 kfree(subvol_name);
830c4adb
JB
1230 return root;
1231}
450ba0ea 1232
0d2450ab 1233static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
f7b885be 1234 u32 new_pool_size, u32 old_pool_size)
72fa39f5 1235{
0d2450ab
ST
1236 if (new_pool_size == old_pool_size)
1237 return;
72fa39f5 1238
0d2450ab 1239 fs_info->thread_pool_size = new_pool_size;
72fa39f5 1240
efe120a0 1241 btrfs_info(fs_info, "resize thread pool %d -> %d",
0d2450ab 1242 old_pool_size, new_pool_size);
72fa39f5 1243
5cdc7ad3 1244 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
afe3d242 1245 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
e66f0bb1 1246 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
40fac647
CH
1247 workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1248 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
fccb5d86
QW
1249 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1250 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
5b3bc44e 1251 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
0d2450ab
ST
1252}
1253
f42a34b2 1254static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
c3ece6b7 1255 unsigned long long old_opts, int flags)
f42a34b2 1256{
dc81cdc5
MX
1257 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1258 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1751e8a6 1259 (flags & SB_RDONLY))) {
dc81cdc5
MX
1260 /* wait for any defraggers to finish */
1261 wait_event(fs_info->transaction_wait,
1262 (atomic_read(&fs_info->defrag_running) == 0));
1751e8a6 1263 if (flags & SB_RDONLY)
dc81cdc5 1264 sync_filesystem(fs_info->sb);
81ffd56b 1265 }
dc81cdc5
MX
1266}
1267
1268static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
c3ece6b7 1269 unsigned long long old_opts)
dc81cdc5 1270{
94846229 1271 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
399f7f4c 1272
bc27d6f0 1273 /*
180e4d47
LB
1274 * We need to cleanup all defragable inodes if the autodefragment is
1275 * close or the filesystem is read only.
bc27d6f0 1276 */
dc81cdc5 1277 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
bc98a42c 1278 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
dc81cdc5 1279 btrfs_cleanup_defrag_inodes(fs_info);
81ffd56b 1280 }
399f7f4c 1281
b0643e59
DZ
1282 /* If we toggled discard async */
1283 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1284 btrfs_test_opt(fs_info, DISCARD_ASYNC))
1285 btrfs_discard_resume(fs_info);
1286 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1287 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1288 btrfs_discard_cleanup(fs_info);
399f7f4c 1289
94846229
BB
1290 /* If we toggled space cache */
1291 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1292 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
dc81cdc5 1293}
72fa39f5 1294
9ef40c2e
JB
1295static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1296{
1297 int ret;
72fa39f5 1298
9ef40c2e
JB
1299 if (BTRFS_FS_ERROR(fs_info)) {
1300 btrfs_err(fs_info,
1301 "remounting read-write after error is not allowed");
1302 return -EINVAL;
72fa39f5
MT
1303 }
1304
9ef40c2e
JB
1305 if (fs_info->fs_devices->rw_devices == 0)
1306 return -EACCES;
1307
1308 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1309 btrfs_warn(fs_info,
1310 "too many missing devices, writable remount is not allowed");
1311 return -EACCES;
72fa39f5 1312 }
9ef40c2e
JB
1313
1314 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1315 btrfs_warn(fs_info,
1316 "mount required to replay tree-log, cannot remount read-write");
1317 return -EINVAL;
72fa39f5
MT
1318 }
1319
9ef40c2e
JB
1320 /*
1321 * NOTE: when remounting with a change that does writes, don't put it
1322 * anywhere above this point, as we are not sure to be safe to write
1323 * until we pass the above checks.
1324 */
1325 ret = btrfs_start_pre_rw_mount(fs_info);
1326 if (ret)
1327 return ret;
72fa39f5 1328
9ef40c2e
JB
1329 btrfs_clear_sb_rdonly(fs_info->sb);
1330
1331 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1332
1333 /*
1334 * If we've gone from readonly -> read-write, we need to get our
1335 * sync/async discard lists in the right state.
1336 */
1337 btrfs_discard_resume(fs_info);
1338
1339 return 0;
72fa39f5 1340}
312c89fb 1341
9ef40c2e 1342static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
4b82d6e4 1343{
9ef40c2e
JB
1344 /*
1345 * This also happens on 'umount -rf' or on shutdown, when the
1346 * filesystem is busy.
1347 */
1348 cancel_work_sync(&fs_info->async_reclaim_work);
1349 cancel_work_sync(&fs_info->async_data_reclaim_work);
4b82d6e4 1350
9ef40c2e 1351 btrfs_discard_cleanup(fs_info);
edf24abe 1352
9ef40c2e
JB
1353 /* Wait for the uuid_scan task to finish */
1354 down(&fs_info->uuid_tree_rescan_sem);
1355 /* Avoid complains from lockdep et al. */
1356 up(&fs_info->uuid_tree_rescan_sem);
4b82d6e4 1357
9ef40c2e 1358 btrfs_set_sb_rdonly(fs_info->sb);
4b82d6e4 1359
9ef40c2e
JB
1360 /*
1361 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1362 * loop if it's already active. If it's already asleep, we'll leave
1363 * unused block groups on disk until we're mounted read-write again
1364 * unless we clean them up here.
1365 */
1366 btrfs_delete_unused_bgs(fs_info);
4b82d6e4 1367
9ef40c2e
JB
1368 /*
1369 * The cleaner task could be already running before we set the flag
1370 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make
1371 * sure that after we finish the remount, i.e. after we call
1372 * btrfs_commit_super(), the cleaner can no longer start a transaction
1373 * - either because it was dropping a dead root, running delayed iputs
1374 * or deleting an unused block group (the cleaner picked a block
1375 * group from the list of unused block groups before we were able to
1376 * in the previous call to btrfs_delete_unused_bgs()).
1377 */
1378 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
2e635a27 1379
9ef40c2e
JB
1380 /*
1381 * We've set the superblock to RO mode, so we might have made the
1382 * cleaner task sleep without running all pending delayed iputs. Go
1383 * through all the delayed iputs here, so that if an unmount happens
1384 * without remounting RW we don't end up at finishing close_ctree()
1385 * with a non-empty list of delayed iputs.
1386 */
1387 btrfs_run_delayed_iputs(fs_info);
0d2450ab 1388
9ef40c2e
JB
1389 btrfs_dev_replace_suspend_for_unmount(fs_info);
1390 btrfs_scrub_cancel(fs_info);
1391 btrfs_pause_balance(fs_info);
0d2450ab 1392
9ef40c2e
JB
1393 /*
1394 * Pause the qgroup rescan worker if it is running. We don't want it to
1395 * be still running after we are in RO mode, as after that, by the time
1396 * we unmount, it might have left a transaction open, so we would leak
1397 * the transaction and/or crash.
1398 */
1399 btrfs_qgroup_wait_for_completion(fs_info, false);
0d2450ab 1400
9ef40c2e
JB
1401 return btrfs_commit_super(fs_info);
1402}
1403
eddb1a43
JB
1404static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1405{
1406 fs_info->max_inline = ctx->max_inline;
1407 fs_info->commit_interval = ctx->commit_interval;
1408 fs_info->metadata_ratio = ctx->metadata_ratio;
1409 fs_info->thread_pool_size = ctx->thread_pool_size;
1410 fs_info->mount_opt = ctx->mount_opt;
1411 fs_info->compress_type = ctx->compress_type;
1412 fs_info->compress_level = ctx->compress_level;
0d2450ab
ST
1413}
1414
eddb1a43 1415static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
f42a34b2 1416{
eddb1a43
JB
1417 ctx->max_inline = fs_info->max_inline;
1418 ctx->commit_interval = fs_info->commit_interval;
1419 ctx->metadata_ratio = fs_info->metadata_ratio;
1420 ctx->thread_pool_size = fs_info->thread_pool_size;
1421 ctx->mount_opt = fs_info->mount_opt;
1422 ctx->compress_type = fs_info->compress_type;
1423 ctx->compress_level = fs_info->compress_level;
dc81cdc5
MX
1424}
1425
eddb1a43
JB
1426#define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \
1427do { \
1428 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1429 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \
1430 btrfs_info(fs_info, fmt, ##args); \
1431} while (0)
1432
1433#define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \
1434do { \
1435 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1436 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \
1437 btrfs_info(fs_info, fmt, ##args); \
1438} while (0)
1439
1440static void btrfs_emit_options(struct btrfs_fs_info *info,
1441 struct btrfs_fs_context *old)
dc81cdc5 1442{
eddb1a43
JB
1443 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1444 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
74857fdc 1445 btrfs_info_if_set(info, old, NODATACOW, "setting nodatacow");
eddb1a43
JB
1446 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1447 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1448 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1449 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1450 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1451 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1452 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1453 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1454 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1455 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1456 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1457 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1458 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1459 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1460 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1461 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1462 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1463 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
169aaaf2 1464 btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
32e62165 1465 btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
eddb1a43 1466
74857fdc 1467 btrfs_info_if_unset(info, old, NODATASUM, "setting datasum");
eddb1a43
JB
1468 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1469 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1470 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
edf842ab 1471 btrfs_info_if_unset(info, old, NOBARRIER, "turning on barriers");
eddb1a43
JB
1472 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1473 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1474 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1475 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1476 btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1477
1478 /* Did the compression settings change? */
1479 if (btrfs_test_opt(info, COMPRESS) &&
1480 (!old ||
1481 old->compress_type != info->compress_type ||
1482 old->compress_level != info->compress_level ||
1483 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1484 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1485 const char *compress_type = btrfs_compress_type2str(info->compress_type);
1486
1487 btrfs_info(info, "%s %s compression, level %d",
1488 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1489 compress_type, info->compress_level);
dc81cdc5
MX
1490 }
1491
eddb1a43
JB
1492 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1493 btrfs_info(info, "max_inline set to %llu", info->max_inline);
dc81cdc5
MX
1494}
1495
eddb1a43 1496static int btrfs_reconfigure(struct fs_context *fc)
c146afad 1497{
eddb1a43 1498 struct super_block *sb = fc->root->d_sb;
815745cf 1499 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
eddb1a43
JB
1500 struct btrfs_fs_context *ctx = fc->fs_private;
1501 struct btrfs_fs_context old_ctx;
1502 int ret = 0;
f044b318 1503 bool mount_reconfigure = (fc->s_fs_info != NULL);
eddb1a43
JB
1504
1505 btrfs_info_to_ctx(fs_info, &old_ctx);
c146afad 1506
2018ef1d
JB
1507 /*
1508 * This is our "bind mount" trick, we don't want to allow the user to do
1509 * anything other than mount a different ro/rw and a different subvol,
1510 * all of the mount options should be maintained.
1511 */
1512 if (mount_reconfigure)
1513 ctx->mount_opt = old_ctx.mount_opt;
1514
02b9984d 1515 sync_filesystem(sb);
88c4703f 1516 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
dc81cdc5 1517
3c36a72c 1518 if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
eddb1a43 1519 return -EINVAL;
b288052e 1520
eddb1a43 1521 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
d7f67ac9 1522 if (ret < 0)
eddb1a43 1523 return ret;
d7f67ac9 1524
eddb1a43
JB
1525 btrfs_ctx_to_info(fs_info, ctx);
1526 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1527 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1528 old_ctx.thread_pool_size);
0d2450ab 1529
c55a4319
BB
1530 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1531 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
eddb1a43 1532 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
2838d255 1533 btrfs_warn(fs_info,
eddb1a43
JB
1534 "remount supports changing free space tree only from RO to RW");
1535 /* Make sure free space cache options match the state on disk. */
2838d255
BB
1536 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1537 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1538 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1539 }
1540 if (btrfs_free_space_cache_v1_active(fs_info)) {
1541 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1542 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1543 }
1544 }
1545
eddb1a43
JB
1546 ret = 0;
1547 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1548 ret = btrfs_remount_ro(fs_info);
1549 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1550 ret = btrfs_remount_rw(fs_info);
1551 if (ret)
1552 goto restore;
981a37ba 1553
faa00889 1554 /*
eddb1a43
JB
1555 * If we set the mask during the parameter parsing VFS would reject the
1556 * remount. Here we can set the mask and the value will be updated
1557 * appropriately.
faa00889 1558 */
eddb1a43
JB
1559 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1560 fc->sb_flags_mask |= SB_POSIXACL;
faa00889 1561
eddb1a43 1562 btrfs_emit_options(fs_info, &old_ctx);
2c6a92b0 1563 wake_up_process(fs_info->transaction_kthread);
eddb1a43 1564 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
8cd29088 1565 btrfs_clear_oneshot_options(fs_info);
88c4703f
JT
1566 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1567
c146afad 1568 return 0;
49b25e05 1569restore:
eddb1a43
JB
1570 btrfs_ctx_to_info(fs_info, &old_ctx);
1571 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
88c4703f 1572 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
49b25e05 1573 return ret;
c146afad
YZ
1574}
1575
bcd53741 1576/* Used to sort the devices by max_avail(descending sort) */
214cc184 1577static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
bcd53741 1578{
214cc184
DS
1579 const struct btrfs_device_info *dev_info1 = a;
1580 const struct btrfs_device_info *dev_info2 = b;
1581
1582 if (dev_info1->max_avail > dev_info2->max_avail)
bcd53741 1583 return -1;
214cc184 1584 else if (dev_info1->max_avail < dev_info2->max_avail)
bcd53741 1585 return 1;
bcd53741
AJ
1586 return 0;
1587}
1588
1589/*
1590 * sort the devices by max_avail, in which max free extent size of each device
1591 * is stored.(Descending Sort)
1592 */
1593static inline void btrfs_descending_sort_devices(
1594 struct btrfs_device_info *devices,
1595 size_t nr_devices)
1596{
1597 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1598 btrfs_cmp_device_free_bytes, NULL);
1599}
1600
6d07bcec
MX
1601/*
1602 * The helper to calc the free space on the devices that can be used to store
1603 * file data.
1604 */
7e17916b
AB
1605static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1606 u64 *free_bytes)
6d07bcec 1607{
6d07bcec
MX
1608 struct btrfs_device_info *devices_info;
1609 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1610 struct btrfs_device *device;
6d07bcec
MX
1611 u64 type;
1612 u64 avail_space;
6d07bcec 1613 u64 min_stripe_size;
559ca6ea 1614 int num_stripes = 1;
6d07bcec 1615 int i = 0, nr_devices;
4f080f57 1616 const struct btrfs_raid_attr *rattr;
6d07bcec 1617
7e33fd99 1618 /*
01327610 1619 * We aren't under the device list lock, so this is racy-ish, but good
7e33fd99
JB
1620 * enough for our purposes.
1621 */
b772a86e 1622 nr_devices = fs_info->fs_devices->open_devices;
7e33fd99
JB
1623 if (!nr_devices) {
1624 smp_mb();
1625 nr_devices = fs_info->fs_devices->open_devices;
1626 ASSERT(nr_devices);
1627 if (!nr_devices) {
1628 *free_bytes = 0;
1629 return 0;
1630 }
1631 }
6d07bcec 1632
d9b0d9ba 1633 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
6a44517d 1634 GFP_KERNEL);
6d07bcec
MX
1635 if (!devices_info)
1636 return -ENOMEM;
1637
01327610 1638 /* calc min stripe number for data space allocation */
1b86826d 1639 type = btrfs_data_alloc_profile(fs_info);
4f080f57
DS
1640 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1641
e1ea2bee 1642 if (type & BTRFS_BLOCK_GROUP_RAID0)
39fb26c3 1643 num_stripes = nr_devices;
d09cb9e1
DS
1644 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1645 num_stripes = rattr->ncopies;
e1ea2bee 1646 else if (type & BTRFS_BLOCK_GROUP_RAID10)
39fb26c3 1647 num_stripes = 4;
6d07bcec 1648
4f080f57
DS
1649 /* Adjust for more than 1 stripe per device */
1650 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
6d07bcec 1651
7e33fd99
JB
1652 rcu_read_lock();
1653 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
e12c9621
AJ
1654 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1655 &device->dev_state) ||
401e29c1
AJ
1656 !device->bdev ||
1657 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
6d07bcec
MX
1658 continue;
1659
7e33fd99
JB
1660 if (i >= nr_devices)
1661 break;
1662
6d07bcec
MX
1663 avail_space = device->total_bytes - device->bytes_used;
1664
1665 /* align with stripe_len */
559ca6ea 1666 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
6d07bcec
MX
1667
1668 /*
37f85ec3
QW
1669 * Ensure we have at least min_stripe_size on top of the
1670 * reserved space on the device.
6d07bcec 1671 */
37f85ec3 1672 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
6d07bcec
MX
1673 continue;
1674
37f85ec3 1675 avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
559ca6ea 1676
6d07bcec
MX
1677 devices_info[i].dev = device;
1678 devices_info[i].max_avail = avail_space;
1679
1680 i++;
1681 }
7e33fd99 1682 rcu_read_unlock();
6d07bcec
MX
1683
1684 nr_devices = i;
1685
1686 btrfs_descending_sort_devices(devices_info, nr_devices);
1687
1688 i = nr_devices - 1;
1689 avail_space = 0;
559ca6ea
NB
1690 while (nr_devices >= rattr->devs_min) {
1691 num_stripes = min(num_stripes, nr_devices);
39fb26c3 1692
6d07bcec
MX
1693 if (devices_info[i].max_avail >= min_stripe_size) {
1694 int j;
1695 u64 alloc_size;
1696
39fb26c3 1697 avail_space += devices_info[i].max_avail * num_stripes;
6d07bcec 1698 alloc_size = devices_info[i].max_avail;
39fb26c3 1699 for (j = i + 1 - num_stripes; j <= i; j++)
6d07bcec
MX
1700 devices_info[j].max_avail -= alloc_size;
1701 }
1702 i--;
1703 nr_devices--;
1704 }
1705
1706 kfree(devices_info);
1707 *free_bytes = avail_space;
1708 return 0;
1709}
1710
ba7b6e62
DS
1711/*
1712 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1713 *
1714 * If there's a redundant raid level at DATA block groups, use the respective
1715 * multiplier to scale the sizes.
1716 *
1717 * Unused device space usage is based on simulating the chunk allocator
0d0c71b3
DS
1718 * algorithm that respects the device sizes and order of allocations. This is
1719 * a close approximation of the actual use but there are other factors that may
1720 * change the result (like a new metadata chunk).
ba7b6e62 1721 *
ca8a51b3 1722 * If metadata is exhausted, f_bavail will be 0.
ba7b6e62 1723 */
8fd17795
CM
1724static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1725{
815745cf
AV
1726 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1727 struct btrfs_super_block *disk_super = fs_info->super_copy;
bd4d1088
JB
1728 struct btrfs_space_info *found;
1729 u64 total_used = 0;
6d07bcec 1730 u64 total_free_data = 0;
ca8a51b3 1731 u64 total_free_meta = 0;
265fdfa6 1732 u32 bits = fs_info->sectorsize_bits;
de37aa51 1733 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
ba7b6e62
DS
1734 unsigned factor = 1;
1735 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
6d07bcec 1736 int ret;
ca8a51b3 1737 u64 thresh = 0;
ae02d1bd 1738 int mixed = 0;
8fd17795 1739
72804905 1740 list_for_each_entry(found, &fs_info->space_info, list) {
6d07bcec 1741 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
ba7b6e62
DS
1742 int i;
1743
6d07bcec
MX
1744 total_free_data += found->disk_total - found->disk_used;
1745 total_free_data -=
1746 btrfs_account_ro_block_groups_free_space(found);
ba7b6e62
DS
1747
1748 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
46df06b8
DS
1749 if (!list_empty(&found->block_groups[i]))
1750 factor = btrfs_bg_type_to_factor(
1751 btrfs_raid_array[i].bg_flag);
ba7b6e62 1752 }
6d07bcec 1753 }
ae02d1bd
LB
1754
1755 /*
67da05b3 1756 * Metadata in mixed block group profiles are accounted in data
ae02d1bd
LB
1757 */
1758 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1759 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1760 mixed = 1;
1761 else
1762 total_free_meta += found->disk_total -
1763 found->disk_used;
1764 }
6d07bcec 1765
b742bb82 1766 total_used += found->disk_used;
89a55897 1767 }
ba7b6e62 1768
ba7b6e62
DS
1769 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1770 buf->f_blocks >>= bits;
1771 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1772
1773 /* Account global block reserve as used, it's in logical size already */
1774 spin_lock(&block_rsv->lock);
41b34acc
LB
1775 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
1776 if (buf->f_bfree >= block_rsv->size >> bits)
1777 buf->f_bfree -= block_rsv->size >> bits;
1778 else
1779 buf->f_bfree = 0;
ba7b6e62
DS
1780 spin_unlock(&block_rsv->lock);
1781
0d95c1be 1782 buf->f_bavail = div_u64(total_free_data, factor);
6bccf3ab 1783 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
7e33fd99 1784 if (ret)
6d07bcec 1785 return ret;
ba7b6e62 1786 buf->f_bavail += div_u64(total_free_data, factor);
6d07bcec 1787 buf->f_bavail = buf->f_bavail >> bits;
d397712b 1788
ca8a51b3
DS
1789 /*
1790 * We calculate the remaining metadata space minus global reserve. If
1791 * this is (supposedly) smaller than zero, there's no space. But this
1792 * does not hold in practice, the exhausted state happens where's still
1793 * some positive delta. So we apply some guesswork and compare the
1794 * delta to a 4M threshold. (Practically observed delta was ~2M.)
1795 *
1796 * We probably cannot calculate the exact threshold value because this
1797 * depends on the internal reservations requested by various
1798 * operations, so some operations that consume a few metadata will
1799 * succeed even if the Avail is zero. But this is better than the other
1800 * way around.
1801 */
d4417e22 1802 thresh = SZ_4M;
ca8a51b3 1803
d55966c4
JB
1804 /*
1805 * We only want to claim there's no available space if we can no longer
1806 * allocate chunks for our metadata profile and our global reserve will
1807 * not fit in the free metadata space. If we aren't ->full then we
1808 * still can allocate chunks and thus are fine using the currently
1809 * calculated f_bavail.
1810 */
1811 if (!mixed && block_rsv->space_info->full &&
58bfe2cc 1812 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
ca8a51b3
DS
1813 buf->f_bavail = 0;
1814
ba7b6e62 1815 buf->f_type = BTRFS_SUPER_MAGIC;
4e00422e 1816 buf->f_bsize = fs_info->sectorsize;
ba7b6e62
DS
1817 buf->f_namelen = BTRFS_NAME_LEN;
1818
9d03632e 1819 /* We treat it as constant endianness (it doesn't matter _which_)
d397712b 1820 because we want the fsid to come out the same whether mounted
9d03632e
DW
1821 on a big-endian or little-endian host */
1822 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1823 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
32d48fa1 1824 /* Mask in the root object ID too, to disambiguate subvols */
e094f480
JB
1825 buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1826 buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
32d48fa1 1827
8fd17795
CM
1828 return 0;
1829}
b5133862 1830
3bb17a25
JB
1831static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1832{
1833 struct btrfs_fs_info *p = fc->s_fs_info;
1834 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1835
1836 return fs_info->fs_devices == p->fs_devices;
1837}
1838
1839static int btrfs_get_tree_super(struct fs_context *fc)
1840{
1841 struct btrfs_fs_info *fs_info = fc->s_fs_info;
1842 struct btrfs_fs_context *ctx = fc->fs_private;
1843 struct btrfs_fs_devices *fs_devices = NULL;
3bb17a25
JB
1844 struct btrfs_device *device;
1845 struct super_block *sb;
736bd9d2 1846 blk_mode_t mode = sb_open_mode(fc->sb_flags);
3bb17a25
JB
1847 int ret;
1848
1849 btrfs_ctx_to_info(fs_info, ctx);
1850 mutex_lock(&uuid_mutex);
1851
1852 /*
1853 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1854 * either a valid device or an error.
1855 */
ae818824 1856 device = btrfs_scan_one_device(fc->source, true);
3bb17a25
JB
1857 ASSERT(device != NULL);
1858 if (IS_ERR(device)) {
1859 mutex_unlock(&uuid_mutex);
1860 return PTR_ERR(device);
1861 }
3bb17a25 1862 fs_devices = device->fs_devices;
bddf57a7
QW
1863 /*
1864 * We cannot hold uuid_mutex calling sget_fc(), it will lead to a
1865 * locking order reversal with s_umount.
1866 *
1867 * So here we increase the holding number of fs_devices, this will ensure
1868 * the fs_devices itself won't be freed.
1869 */
1870 btrfs_fs_devices_inc_holding(fs_devices);
3bb17a25 1871 fs_info->fs_devices = fs_devices;
3bb17a25 1872 mutex_unlock(&uuid_mutex);
3bb17a25 1873
3bb17a25 1874
3bb17a25 1875 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
bddf57a7
QW
1876 if (IS_ERR(sb)) {
1877 mutex_lock(&uuid_mutex);
1878 btrfs_fs_devices_dec_holding(fs_devices);
1879 /*
1880 * Since the fs_devices is not opened, it can be freed at any
1881 * time after unlocking uuid_mutex. We need to avoid double
1882 * free through put_fs_context()->btrfs_free_fs_info().
1883 * So here we reset fs_info->fs_devices to NULL, and let the
1884 * regular fs_devices reclaim path to handle it.
1885 *
1886 * This applies to all later branches where no fs_devices is
1887 * opened.
1888 */
1889 fs_info->fs_devices = NULL;
1890 mutex_unlock(&uuid_mutex);
9f43d0ff 1891 return PTR_ERR(sb);
bddf57a7 1892 }
3bb17a25 1893
41d46b29
JB
1894 set_device_specific_options(fs_info);
1895
3bb17a25 1896 if (sb->s_root) {
2936a6ac
QW
1897 /*
1898 * Not the first mount of the fs thus got an existing super block.
1899 * Will reuse the returned super block, fs_info and fs_devices.
9f43d0ff 1900 *
2936a6ac
QW
1901 * fc->s_fs_info is not touched and will be later freed by
1902 * put_fs_context() through btrfs_free_fs_context().
2936a6ac 1903 */
9f43d0ff
CH
1904 ASSERT(fc->s_fs_info == fs_info);
1905
bddf57a7
QW
1906 mutex_lock(&uuid_mutex);
1907 btrfs_fs_devices_dec_holding(fs_devices);
1908 fs_info->fs_devices = NULL;
1909 mutex_unlock(&uuid_mutex);
951a3f59
QW
1910 /*
1911 * At this stage we may have RO flag mismatch between
1912 * fc->sb_flags and sb->s_flags. Caller should detect such
1913 * mismatch and reconfigure with sb->s_umount rwsem held if
1914 * needed.
1915 */
3bb17a25 1916 } else {
bddf57a7
QW
1917 struct block_device *bdev;
1918
2936a6ac
QW
1919 /*
1920 * The first mount of the fs thus a new superblock, fc->s_fs_info
1921 * must be NULL, and the ownership of our fs_info and fs_devices is
1922 * transferred to the super block.
1923 */
1924 ASSERT(fc->s_fs_info == NULL);
1925
bddf57a7
QW
1926 mutex_lock(&uuid_mutex);
1927 btrfs_fs_devices_dec_holding(fs_devices);
40426dd1 1928 ret = btrfs_open_devices(fs_devices, mode, sb);
bddf57a7
QW
1929 if (ret < 0)
1930 fs_info->fs_devices = NULL;
1931 mutex_unlock(&uuid_mutex);
1932 if (ret < 0) {
1933 deactivate_locked_super(sb);
1934 return ret;
1935 }
1936 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1937 deactivate_locked_super(sb);
1938 return -EACCES;
1939 }
1940 bdev = fs_devices->latest_dev->bdev;
3bb17a25
JB
1941 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1942 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
01c5db78 1943 ret = btrfs_fill_super(sb, fs_devices);
951a3f59
QW
1944 if (ret) {
1945 deactivate_locked_super(sb);
1946 return ret;
1947 }
3bb17a25
JB
1948 }
1949
83e3a40a
JB
1950 btrfs_clear_oneshot_options(fs_info);
1951
3bb17a25
JB
1952 fc->root = dget(sb->s_root);
1953 return 0;
3bb17a25
JB
1954}
1955
f044b318
JB
1956/*
1957 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1958 * with different ro/rw options") the following works:
1959 *
1960 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1961 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1962 *
1963 * which looks nice and innocent but is actually pretty intricate and deserves
1964 * a long comment.
1965 *
1966 * On another filesystem a subvolume mount is close to something like:
1967 *
1968 * (iii) # create rw superblock + initial mount
1969 * mount -t xfs /dev/sdb /opt/
1970 *
1971 * # create ro bind mount
1972 * mount --bind -o ro /opt/foo /mnt/foo
1973 *
1974 * # unmount initial mount
1975 * umount /opt
1976 *
1977 * Of course, there's some special subvolume sauce and there's the fact that the
1978 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1979 * it's very close and will help us understand the issue.
1980 *
1981 * The old mount API didn't cleanly distinguish between a mount being made ro
1982 * and a superblock being made ro. The only way to change the ro state of
1983 * either object was by passing ms_rdonly. If a new mount was created via
1984 * mount(2) such as:
1985 *
1986 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1987 *
1988 * the MS_RDONLY flag being specified had two effects:
1989 *
1990 * (1) MNT_READONLY was raised -> the resulting mount got
1991 * @mnt->mnt_flags |= MNT_READONLY raised.
1992 *
1993 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1994 * made the superblock ro. Note, how SB_RDONLY has the same value as
1995 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1996 *
1997 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1998 * subtree mounted ro.
1999 *
2000 * But consider the effect on the old mount API on btrfs subvolume mounting
2001 * which combines the distinct step in (iii) into a single step.
2002 *
2003 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
2004 * is issued the superblock is ro and thus even if the mount created for (ii) is
2005 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
2006 * to rw for (ii) which it did using an internal remount call.
2007 *
2008 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
2009 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
2010 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
2011 * passed by mount(8) to mount(2).
2012 *
2013 * Enter the new mount API. The new mount API disambiguates making a mount ro
2014 * and making a superblock ro.
2015 *
2016 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
2017 * fsmount() or mount_setattr() this is a pure VFS level change for a
2018 * specific mount or mount tree that is never seen by the filesystem itself.
2019 *
2020 * (4) To turn a superblock ro the "ro" flag must be used with
2021 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
2022 * in fc->sb_flags.
2023 *
cda7163d
QW
2024 * But, currently the util-linux mount command already utilizes the new mount
2025 * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
2026 * btrfs or not, setting the whole super block RO. To make per-subvolume mounting
2027 * work with different options work we need to keep backward compatibility.
f044b318 2028 */
75764b41 2029static int btrfs_reconfigure_for_mount(struct fs_context *fc)
f044b318 2030{
951a3f59 2031 int ret = 0;
f044b318 2032
75764b41 2033 if (!(fc->sb_flags & SB_RDONLY) && (fc->root->d_sb->s_flags & SB_RDONLY))
951a3f59 2034 ret = btrfs_reconfigure(fc);
75764b41 2035
951a3f59 2036 return ret;
f044b318
JB
2037}
2038
3bb17a25
JB
2039static int btrfs_get_tree_subvol(struct fs_context *fc)
2040{
2041 struct btrfs_fs_info *fs_info = NULL;
2042 struct btrfs_fs_context *ctx = fc->fs_private;
2043 struct fs_context *dup_fc;
2044 struct dentry *dentry;
2045 struct vfsmount *mnt;
951a3f59 2046 int ret = 0;
3bb17a25
JB
2047
2048 /*
2049 * Setup a dummy root and fs_info for test/set super. This is because
2050 * we don't actually fill this stuff out until open_ctree, but we need
2051 * then open_ctree will properly initialize the file system specific
2052 * settings later. btrfs_init_fs_info initializes the static elements
2053 * of the fs_info (locks and such) to make cleanup easier if we find a
2054 * superblock with our given fs_devices later on at sget() time.
2055 */
2056 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2057 if (!fs_info)
2058 return -ENOMEM;
2059
2060 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2061 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2062 if (!fs_info->super_copy || !fs_info->super_for_commit) {
2063 btrfs_free_fs_info(fs_info);
2064 return -ENOMEM;
2065 }
2066 btrfs_init_fs_info(fs_info);
2067
2068 dup_fc = vfs_dup_fs_context(fc);
2069 if (IS_ERR(dup_fc)) {
2070 btrfs_free_fs_info(fs_info);
2071 return PTR_ERR(dup_fc);
2072 }
2073
2074 /*
2075 * When we do the sget_fc this gets transferred to the sb, so we only
2076 * need to set it on the dup_fc as this is what creates the super block.
2077 */
2078 dup_fc->s_fs_info = fs_info;
2079
35ea448b 2080 ret = btrfs_get_tree_super(dup_fc);
75764b41
AV
2081 if (ret)
2082 goto error;
2083
2084 ret = btrfs_reconfigure_for_mount(dup_fc);
2085 up_write(&dup_fc->root->d_sb->s_umount);
2086 if (ret)
2087 goto error;
2088 mnt = vfs_create_mount(dup_fc);
951a3f59 2089 put_fs_context(dup_fc);
75764b41
AV
2090 if (IS_ERR(mnt))
2091 return PTR_ERR(mnt);
3bb17a25
JB
2092
2093 /*
2094 * This free's ->subvol_name, because if it isn't set we have to
2095 * allocate a buffer to hold the subvol_name, so we just drop our
2096 * reference to it here.
2097 */
2098 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2099 ctx->subvol_name = NULL;
2100 if (IS_ERR(dentry))
2101 return PTR_ERR(dentry);
2102
2103 fc->root = dentry;
2104 return 0;
75764b41
AV
2105error:
2106 put_fs_context(dup_fc);
2107 return ret;
3bb17a25
JB
2108}
2109
2110static int btrfs_get_tree(struct fs_context *fc)
2111{
35ea448b
QW
2112 ASSERT(fc->s_fs_info == NULL);
2113
3bb17a25
JB
2114 return btrfs_get_tree_subvol(fc);
2115}
2116
aea52e19
AV
2117static void btrfs_kill_super(struct super_block *sb)
2118{
815745cf 2119 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
aea52e19 2120 kill_anon_super(sb);
0d4b0463 2121 btrfs_free_fs_info(fs_info);
aea52e19
AV
2122}
2123
0f85e244
JB
2124static void btrfs_free_fs_context(struct fs_context *fc)
2125{
2126 struct btrfs_fs_context *ctx = fc->fs_private;
3bb17a25 2127 struct btrfs_fs_info *fs_info = fc->s_fs_info;
0f85e244 2128
3bb17a25
JB
2129 if (fs_info)
2130 btrfs_free_fs_info(fs_info);
2131
2132 if (ctx && refcount_dec_and_test(&ctx->refs)) {
2133 kfree(ctx->subvol_name);
2134 kfree(ctx);
2135 }
2136}
0f85e244 2137
3bb17a25
JB
2138static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2139{
2140 struct btrfs_fs_context *ctx = src_fc->fs_private;
2141
2142 /*
2143 * Give a ref to our ctx to this dup, as we want to keep it around for
2144 * our original fc so we can have the subvolume name or objectid.
2145 *
2146 * We unset ->source in the original fc because the dup needs it for
2147 * mounting, and then once we free the dup it'll free ->source, so we
2148 * need to make sure we're only pointing to it in one fc.
2149 */
2150 refcount_inc(&ctx->refs);
2151 fc->fs_private = ctx;
2152 fc->source = src_fc->source;
2153 src_fc->source = NULL;
2154 return 0;
0f85e244 2155}
72fa39f5 2156
0f85e244 2157static const struct fs_context_operations btrfs_fs_context_ops = {
17b36120 2158 .parse_param = btrfs_parse_param,
eddb1a43 2159 .reconfigure = btrfs_reconfigure,
3bb17a25
JB
2160 .get_tree = btrfs_get_tree,
2161 .dup = btrfs_dup_fs_context,
0f85e244 2162 .free = btrfs_free_fs_context,
72fa39f5
MT
2163};
2164
ad21f15b 2165static int btrfs_init_fs_context(struct fs_context *fc)
0f85e244
JB
2166{
2167 struct btrfs_fs_context *ctx;
2168
2169 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2170 if (!ctx)
2171 return -ENOMEM;
2172
3bb17a25 2173 refcount_set(&ctx->refs, 1);
0f85e244
JB
2174 fc->fs_private = ctx;
2175 fc->ops = &btrfs_fs_context_ops;
2176
eddb1a43
JB
2177 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2178 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2179 } else {
2180 ctx->thread_pool_size =
2181 min_t(unsigned long, num_online_cpus() + 2, 8);
2182 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2183 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2184 }
2185
ad21f15b
JB
2186#ifdef CONFIG_BTRFS_FS_POSIX_ACL
2187 fc->sb_flags |= SB_POSIXACL;
2188#endif
2189 fc->sb_flags |= SB_I_VERSION;
2190
0f85e244
JB
2191 return 0;
2192}
2193
2e635a27 2194static struct file_system_type btrfs_fs_type = {
ad21f15b
JB
2195 .owner = THIS_MODULE,
2196 .name = "btrfs",
2197 .init_fs_context = btrfs_init_fs_context,
2198 .parameters = btrfs_fs_parameters,
2199 .kill_sb = btrfs_kill_super,
e2e801d6
JL
2200 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2201 FS_ALLOW_IDMAP | FS_MGTIME,
ad21f15b 2202 };
72fa39f5 2203
7f78e035 2204MODULE_ALIAS_FS("btrfs");
a9218f6b 2205
d8620958
TVB
2206static int btrfs_control_open(struct inode *inode, struct file *file)
2207{
2208 /*
2209 * The control file's private_data is used to hold the
2210 * transaction when it is started and is used to keep
2211 * track of whether a transaction is already in progress.
2212 */
2213 file->private_data = NULL;
2214 return 0;
2215}
2216
d352ac68 2217/*
cfe953c8 2218 * Used by /dev/btrfs-control for devices ioctls.
d352ac68 2219 */
8a4b83cc
CM
2220static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2221 unsigned long arg)
2222{
2223 struct btrfs_ioctl_vol_args *vol;
36350e95 2224 struct btrfs_device *device = NULL;
16cab91a 2225 dev_t devt = 0;
c071fcfd 2226 int ret = -ENOTTY;
8a4b83cc 2227
e441d54d
CM
2228 if (!capable(CAP_SYS_ADMIN))
2229 return -EPERM;
2230
dae7b665
LZ
2231 vol = memdup_user((void __user *)arg, sizeof(*vol));
2232 if (IS_ERR(vol))
2233 return PTR_ERR(vol);
5ab2b180
DS
2234 ret = btrfs_check_ioctl_vol_args_path(vol);
2235 if (ret < 0)
2236 goto out;
c071fcfd 2237
8a4b83cc
CM
2238 switch (cmd) {
2239 case BTRFS_IOC_SCAN_DEV:
899f9307 2240 mutex_lock(&uuid_mutex);
bc27d6f0
AJ
2241 /*
2242 * Scanning outside of mount can return NULL which would turn
2243 * into 0 error code.
2244 */
ae818824 2245 device = btrfs_scan_one_device(vol->name, false);
36350e95 2246 ret = PTR_ERR_OR_ZERO(device);
899f9307 2247 mutex_unlock(&uuid_mutex);
8a4b83cc 2248 break;
228a73ab 2249 case BTRFS_IOC_FORGET_DEV:
16cab91a
AJ
2250 if (vol->name[0] != 0) {
2251 ret = lookup_bdev(vol->name, &devt);
2252 if (ret)
2253 break;
2254 }
2255 ret = btrfs_forget_devices(devt);
228a73ab 2256 break;
02db0844 2257 case BTRFS_IOC_DEVICES_READY:
899f9307 2258 mutex_lock(&uuid_mutex);
bc27d6f0
AJ
2259 /*
2260 * Scanning outside of mount can return NULL which would turn
2261 * into 0 error code.
2262 */
ae818824 2263 device = btrfs_scan_one_device(vol->name, false);
bc27d6f0 2264 if (IS_ERR_OR_NULL(device)) {
899f9307 2265 mutex_unlock(&uuid_mutex);
2342d659
FM
2266 if (IS_ERR(device))
2267 ret = PTR_ERR(device);
2268 else
2269 ret = 0;
02db0844 2270 break;
899f9307 2271 }
36350e95
GJ
2272 ret = !(device->fs_devices->num_devices ==
2273 device->fs_devices->total_devices);
899f9307 2274 mutex_unlock(&uuid_mutex);
02db0844 2275 break;
c5868f83 2276 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
d5131b65 2277 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
c5868f83 2278 break;
8a4b83cc 2279 }
dae7b665 2280
5ab2b180 2281out:
8a4b83cc 2282 kfree(vol);
f819d837 2283 return ret;
8a4b83cc
CM
2284}
2285
0176260f 2286static int btrfs_freeze(struct super_block *sb)
ed0dab6b 2287{
0b246afa 2288 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
354aa0fb 2289
fac03c8d 2290 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
9e7cc91a
WX
2291 /*
2292 * We don't need a barrier here, we'll wait for any transaction that
2293 * could be in progress on other threads (and do delayed iputs that
2294 * we want to avoid on a frozen filesystem), or do the commit
2295 * ourselves.
2296 */
ded980eb 2297 return btrfs_commit_current_transaction(fs_info->tree_root);
ed0dab6b
Y
2298}
2299
a05d3c91
QW
2300static int check_dev_super(struct btrfs_device *dev)
2301{
2302 struct btrfs_fs_info *fs_info = dev->fs_info;
2303 struct btrfs_super_block *sb;
0124855f 2304 u64 last_trans;
3d17adea 2305 u16 csum_type;
a05d3c91
QW
2306 int ret = 0;
2307
2308 /* This should be called with fs still frozen. */
2309 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2310
2311 /* Missing dev, no need to check. */
2312 if (!dev->bdev)
2313 return 0;
2314
2315 /* Only need to check the primary super block. */
63f32b7b 2316 sb = btrfs_read_disk_super(dev->bdev, 0, true);
a05d3c91
QW
2317 if (IS_ERR(sb))
2318 return PTR_ERR(sb);
2319
3d17adea
QW
2320 /* Verify the checksum. */
2321 csum_type = btrfs_super_csum_type(sb);
2322 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2323 btrfs_err(fs_info, "csum type changed, has %u expect %u",
2324 csum_type, btrfs_super_csum_type(fs_info->super_copy));
2325 ret = -EUCLEAN;
2326 goto out;
2327 }
2328
2329 if (btrfs_check_super_csum(fs_info, sb)) {
2330 btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2331 ret = -EUCLEAN;
2332 goto out;
2333 }
2334
a05d3c91
QW
2335 /* Btrfs_validate_super() includes fsid check against super->fsid. */
2336 ret = btrfs_validate_super(fs_info, sb, 0);
2337 if (ret < 0)
2338 goto out;
2339
0124855f
FM
2340 last_trans = btrfs_get_last_trans_committed(fs_info);
2341 if (btrfs_super_generation(sb) != last_trans) {
a05d3c91 2342 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
0124855f 2343 btrfs_super_generation(sb), last_trans);
a05d3c91
QW
2344 ret = -EUCLEAN;
2345 goto out;
2346 }
2347out:
2348 btrfs_release_disk_super(sb);
2349 return ret;
2350}
2351
9e7cc91a
WX
2352static int btrfs_unfreeze(struct super_block *sb)
2353{
fac03c8d 2354 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
a05d3c91
QW
2355 struct btrfs_device *device;
2356 int ret = 0;
fac03c8d 2357
a05d3c91
QW
2358 /*
2359 * Make sure the fs is not changed by accident (like hibernation then
2360 * modified by other OS).
2361 * If we found anything wrong, we mark the fs error immediately.
2362 *
2363 * And since the fs is frozen, no one can modify the fs yet, thus
2364 * we don't need to hold device_list_mutex.
2365 */
2366 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2367 ret = check_dev_super(device);
2368 if (ret < 0) {
2369 btrfs_handle_fs_error(fs_info, ret,
2370 "super block on devid %llu got modified unexpectedly",
2371 device->devid);
2372 break;
2373 }
2374 }
fac03c8d 2375 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
a05d3c91
QW
2376
2377 /*
2378 * We still return 0, to allow VFS layer to unfreeze the fs even the
2379 * above checks failed. Since the fs is either fine or read-only, we're
2380 * safe to continue, without causing further damage.
2381 */
9e7cc91a
WX
2382 return 0;
2383}
2384
9c5085c1
JB
2385static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2386{
2387 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
9c5085c1 2388
88c14590 2389 /*
6605fd2f
AJ
2390 * There should be always a valid pointer in latest_dev, it may be stale
2391 * for a short moment in case it's being deleted but still valid until
2392 * the end of RCU grace period.
88c14590
DS
2393 */
2394 rcu_read_lock();
cb3e217b 2395 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
88c14590 2396 rcu_read_unlock();
6605fd2f 2397
9c5085c1
JB
2398 return 0;
2399}
2400
956a17d9
FM
2401static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2402{
2403 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
0d89a15e 2404 const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
956a17d9 2405
0d89a15e
FM
2406 trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2407
a8371fcc 2408 return nr;
956a17d9
FM
2409}
2410
2411static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2412{
2413 const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2414 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2415
10204438 2416 btrfs_free_extent_maps(fs_info, nr_to_scan);
ae1e766f 2417
10204438
FM
2418 /* The extent map shrinker runs asynchronously, so always return 0. */
2419 return 0;
956a17d9
FM
2420}
2421
b87221de 2422static const struct super_operations btrfs_super_ops = {
76dda93c 2423 .drop_inode = btrfs_drop_inode,
bd555975 2424 .evict_inode = btrfs_evict_inode,
e20d96d6 2425 .put_super = btrfs_put_super,
d5719762 2426 .sync_fs = btrfs_sync_fs,
a9572a15 2427 .show_options = btrfs_show_options,
9c5085c1 2428 .show_devname = btrfs_show_devname,
2c90e5d6
CM
2429 .alloc_inode = btrfs_alloc_inode,
2430 .destroy_inode = btrfs_destroy_inode,
26602cab 2431 .free_inode = btrfs_free_inode,
8fd17795 2432 .statfs = btrfs_statfs,
0176260f 2433 .freeze_fs = btrfs_freeze,
9e7cc91a 2434 .unfreeze_fs = btrfs_unfreeze,
956a17d9
FM
2435 .nr_cached_objects = btrfs_nr_cached_objects,
2436 .free_cached_objects = btrfs_free_cached_objects,
e20d96d6 2437};
a9218f6b
CM
2438
2439static const struct file_operations btrfs_ctl_fops = {
d8620958 2440 .open = btrfs_control_open,
a9218f6b 2441 .unlocked_ioctl = btrfs_control_ioctl,
1832f2d8 2442 .compat_ioctl = compat_ptr_ioctl,
a9218f6b 2443 .owner = THIS_MODULE,
6038f373 2444 .llseek = noop_llseek,
a9218f6b
CM
2445};
2446
2447static struct miscdevice btrfs_misc = {
578454ff 2448 .minor = BTRFS_MINOR,
a9218f6b
CM
2449 .name = "btrfs-control",
2450 .fops = &btrfs_ctl_fops
2451};
2452
578454ff
KS
2453MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2454MODULE_ALIAS("devname:btrfs-control");
2455
f5c29bd9 2456static int __init btrfs_interface_init(void)
a9218f6b
CM
2457{
2458 return misc_register(&btrfs_misc);
2459}
2460
e67c718b 2461static __cold void btrfs_interface_exit(void)
a9218f6b 2462{
f368ed60 2463 misc_deregister(&btrfs_misc);
a9218f6b
CM
2464}
2465
5565b8e0 2466static int __init btrfs_print_mod_info(void)
85965600 2467{
edf57cbf 2468 static const char options[] = ""
bb4715e9
AJ
2469#ifdef CONFIG_BTRFS_EXPERIMENTAL
2470 ", experimental=on"
2471#endif
85965600
DS
2472#ifdef CONFIG_BTRFS_DEBUG
2473 ", debug=on"
2474#endif
79556c3d
SB
2475#ifdef CONFIG_BTRFS_ASSERT
2476 ", assert=on"
2477#endif
fb592373
JB
2478#ifdef CONFIG_BTRFS_FS_REF_VERIFY
2479 ", ref-verify=on"
5b316468
NA
2480#endif
2481#ifdef CONFIG_BLK_DEV_ZONED
2482 ", zoned=yes"
2483#else
2484 ", zoned=no"
ea3dc7d2
DS
2485#endif
2486#ifdef CONFIG_FS_VERITY
2487 ", fsverity=yes"
2488#else
2489 ", fsverity=no"
85965600 2490#endif
edf57cbf 2491 ;
3681dbe0
AJ
2492
2493#ifdef CONFIG_BTRFS_EXPERIMENTAL
2494 if (btrfs_get_mod_read_policy() == NULL)
2495 pr_info("Btrfs loaded%s\n", options);
2496 else
2497 pr_info("Btrfs loaded%s, read_policy=%s\n",
2498 options, btrfs_get_mod_read_policy());
2499#else
6e7a367e 2500 pr_info("Btrfs loaded%s\n", options);
3681dbe0
AJ
2501#endif
2502
5565b8e0 2503 return 0;
85965600
DS
2504}
2505
5565b8e0 2506static int register_btrfs(void)
2e635a27 2507{
5565b8e0
QW
2508 return register_filesystem(&btrfs_fs_type);
2509}
97eb6b69 2510
5565b8e0
QW
2511static void unregister_btrfs(void)
2512{
2513 unregister_filesystem(&btrfs_fs_type);
2514}
dc11dd5d 2515
5565b8e0
QW
2516/* Helper structure for long init/exit functions. */
2517struct init_sequence {
2518 int (*init_func)(void);
2519 /* Can be NULL if the init_func doesn't need cleanup. */
2520 void (*exit_func)(void);
2521};
dc11dd5d 2522
5565b8e0
QW
2523static const struct init_sequence mod_init_seq[] = {
2524 {
2525 .init_func = btrfs_props_init,
2526 .exit_func = NULL,
2527 }, {
2528 .init_func = btrfs_init_sysfs,
2529 .exit_func = btrfs_exit_sysfs,
2530 }, {
2531 .init_func = btrfs_init_compress,
2532 .exit_func = btrfs_exit_compress,
2533 }, {
2534 .init_func = btrfs_init_cachep,
2535 .exit_func = btrfs_destroy_cachep,
9aa29a20
FM
2536 }, {
2537 .init_func = btrfs_init_dio,
2538 .exit_func = btrfs_destroy_dio,
5565b8e0
QW
2539 }, {
2540 .init_func = btrfs_transaction_init,
2541 .exit_func = btrfs_transaction_exit,
2542 }, {
2543 .init_func = btrfs_ctree_init,
2544 .exit_func = btrfs_ctree_exit,
2545 }, {
2546 .init_func = btrfs_free_space_init,
2547 .exit_func = btrfs_free_space_exit,
2548 }, {
94bd699a
FM
2549 .init_func = btrfs_extent_state_init_cachep,
2550 .exit_func = btrfs_extent_state_free_cachep,
5565b8e0
QW
2551 }, {
2552 .init_func = extent_buffer_init_cachep,
2553 .exit_func = extent_buffer_free_cachep,
2554 }, {
2555 .init_func = btrfs_bioset_init,
2556 .exit_func = btrfs_bioset_exit,
2557 }, {
d846a6d3
FM
2558 .init_func = btrfs_extent_map_init,
2559 .exit_func = btrfs_extent_map_exit,
e426286c
AJ
2560#ifdef CONFIG_BTRFS_EXPERIMENTAL
2561 }, {
2562 .init_func = btrfs_read_policy_init,
2563 .exit_func = NULL,
2564#endif
5565b8e0
QW
2565 }, {
2566 .init_func = ordered_data_init,
2567 .exit_func = ordered_data_exit,
2568 }, {
2569 .init_func = btrfs_delayed_inode_init,
2570 .exit_func = btrfs_delayed_inode_exit,
2571 }, {
2572 .init_func = btrfs_auto_defrag_init,
2573 .exit_func = btrfs_auto_defrag_exit,
2574 }, {
2575 .init_func = btrfs_delayed_ref_init,
2576 .exit_func = btrfs_delayed_ref_exit,
2577 }, {
2578 .init_func = btrfs_prelim_ref_init,
2579 .exit_func = btrfs_prelim_ref_exit,
2580 }, {
2581 .init_func = btrfs_interface_init,
2582 .exit_func = btrfs_interface_exit,
2583 }, {
2584 .init_func = btrfs_print_mod_info,
2585 .exit_func = NULL,
2586 }, {
2587 .init_func = btrfs_run_sanity_tests,
2588 .exit_func = NULL,
2589 }, {
2590 .init_func = register_btrfs,
2591 .exit_func = unregister_btrfs,
2592 }
2593};
74255aa0 2594
5565b8e0 2595static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2f4cbe64 2596
82c0efd3 2597static __always_inline void btrfs_exit_btrfs_fs(void)
5565b8e0
QW
2598{
2599 int i;
9678c543 2600
5565b8e0
QW
2601 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2602 if (!mod_init_result[i])
2603 continue;
2604 if (mod_init_seq[i].exit_func)
2605 mod_init_seq[i].exit_func();
2606 mod_init_result[i] = false;
2607 }
2e635a27
CM
2608}
2609
82c0efd3
AJ
2610static void __exit exit_btrfs_fs(void)
2611{
2612 btrfs_exit_btrfs_fs();
c68f7290 2613 btrfs_cleanup_fs_uuids();
82c0efd3
AJ
2614}
2615
5565b8e0 2616static int __init init_btrfs_fs(void)
2e635a27 2617{
5565b8e0
QW
2618 int ret;
2619 int i;
2620
2621 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2622 ASSERT(!mod_init_result[i]);
2623 ret = mod_init_seq[i].init_func();
82c0efd3
AJ
2624 if (ret < 0) {
2625 btrfs_exit_btrfs_fs();
2626 return ret;
2627 }
5565b8e0
QW
2628 mod_init_result[i] = true;
2629 }
2630 return 0;
2e635a27
CM
2631}
2632
60efa5eb 2633late_initcall(init_btrfs_fs);
2e635a27
CM
2634module_exit(exit_btrfs_fs)
2635
95359f63 2636MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2e635a27 2637MODULE_LICENSE("GPL");
d5178578 2638MODULE_SOFTDEP("pre: crc32c");
3951e7f0 2639MODULE_SOFTDEP("pre: xxhash64");
3831bf00 2640MODULE_SOFTDEP("pre: sha256");
352ae07b 2641MODULE_SOFTDEP("pre: blake2b-256");