btrfs: move extent-tree helpers into their own header file
[linux-block.git] / fs / btrfs / space-info.c
CommitLineData
280c2908
JB
1// SPDX-License-Identifier: GPL-2.0
2
784352fe 3#include "misc.h"
280c2908
JB
4#include "ctree.h"
5#include "space-info.h"
6#include "sysfs.h"
7#include "volumes.h"
5da6afeb 8#include "free-space-cache.h"
0d9764f6
JB
9#include "ordered-data.h"
10#include "transaction.h"
aac0023c 11#include "block-group.h"
b0931513 12#include "zoned.h"
c7f13d42 13#include "fs.h"
07e81dc9 14#include "accessors.h"
a0231804 15#include "extent-tree.h"
280c2908 16
4b8b0528
JB
17/*
18 * HOW DOES SPACE RESERVATION WORK
19 *
20 * If you want to know about delalloc specifically, there is a separate comment
21 * for that with the delalloc code. This comment is about how the whole system
22 * works generally.
23 *
24 * BASIC CONCEPTS
25 *
26 * 1) space_info. This is the ultimate arbiter of how much space we can use.
27 * There's a description of the bytes_ fields with the struct declaration,
28 * refer to that for specifics on each field. Suffice it to say that for
29 * reservations we care about total_bytes - SUM(space_info->bytes_) when
30 * determining if there is space to make an allocation. There is a space_info
31 * for METADATA, SYSTEM, and DATA areas.
32 *
33 * 2) block_rsv's. These are basically buckets for every different type of
34 * metadata reservation we have. You can see the comment in the block_rsv
35 * code on the rules for each type, but generally block_rsv->reserved is how
36 * much space is accounted for in space_info->bytes_may_use.
37 *
38 * 3) btrfs_calc*_size. These are the worst case calculations we used based
39 * on the number of items we will want to modify. We have one for changing
40 * items, and one for inserting new items. Generally we use these helpers to
41 * determine the size of the block reserves, and then use the actual bytes
42 * values to adjust the space_info counters.
43 *
44 * MAKING RESERVATIONS, THE NORMAL CASE
45 *
46 * We call into either btrfs_reserve_data_bytes() or
47 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48 * num_bytes we want to reserve.
49 *
50 * ->reserve
51 * space_info->bytes_may_reserve += num_bytes
52 *
53 * ->extent allocation
54 * Call btrfs_add_reserved_bytes() which does
55 * space_info->bytes_may_reserve -= num_bytes
56 * space_info->bytes_reserved += extent_bytes
57 *
58 * ->insert reference
59 * Call btrfs_update_block_group() which does
60 * space_info->bytes_reserved -= extent_bytes
61 * space_info->bytes_used += extent_bytes
62 *
63 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64 *
65 * Assume we are unable to simply make the reservation because we do not have
66 * enough space
67 *
68 * -> __reserve_bytes
69 * create a reserve_ticket with ->bytes set to our reservation, add it to
70 * the tail of space_info->tickets, kick async flush thread
71 *
72 * ->handle_reserve_ticket
73 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74 * on the ticket.
75 *
76 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77 * Flushes various things attempting to free up space.
78 *
79 * -> btrfs_try_granting_tickets()
80 * This is called by anything that either subtracts space from
81 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82 * space_info->total_bytes. This loops through the ->priority_tickets and
83 * then the ->tickets list checking to see if the reservation can be
84 * completed. If it can the space is added to space_info->bytes_may_use and
85 * the ticket is woken up.
86 *
87 * -> ticket wakeup
88 * Check if ->bytes == 0, if it does we got our reservation and we can carry
89 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90 * were interrupted.)
91 *
92 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93 *
94 * Same as the above, except we add ourselves to the
95 * space_info->priority_tickets, and we do not use ticket->wait, we simply
96 * call flush_space() ourselves for the states that are safe for us to call
97 * without deadlocking and hope for the best.
98 *
99 * THE FLUSHING STATES
100 *
101 * Generally speaking we will have two cases for each state, a "nice" state
102 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
103 * reduce the locking over head on the various trees, and even to keep from
104 * doing any work at all in the case of delayed refs. Each of these delayed
105 * things however hold reservations, and so letting them run allows us to
106 * reclaim space so we can make new reservations.
107 *
108 * FLUSH_DELAYED_ITEMS
109 * Every inode has a delayed item to update the inode. Take a simple write
110 * for example, we would update the inode item at write time to update the
111 * mtime, and then again at finish_ordered_io() time in order to update the
112 * isize or bytes. We keep these delayed items to coalesce these operations
113 * into a single operation done on demand. These are an easy way to reclaim
114 * metadata space.
115 *
116 * FLUSH_DELALLOC
117 * Look at the delalloc comment to get an idea of how much space is reserved
118 * for delayed allocation. We can reclaim some of this space simply by
119 * running delalloc, but usually we need to wait for ordered extents to
120 * reclaim the bulk of this space.
121 *
122 * FLUSH_DELAYED_REFS
123 * We have a block reserve for the outstanding delayed refs space, and every
124 * delayed ref operation holds a reservation. Running these is a quick way
125 * to reclaim space, but we want to hold this until the end because COW can
126 * churn a lot and we can avoid making some extent tree modifications if we
127 * are able to delay for as long as possible.
128 *
129 * ALLOC_CHUNK
130 * We will skip this the first time through space reservation, because of
131 * overcommit and we don't want to have a lot of useless metadata space when
132 * our worst case reservations will likely never come true.
133 *
134 * RUN_DELAYED_IPUTS
135 * If we're freeing inodes we're likely freeing checksums, file extent
136 * items, and extent tree items. Loads of space could be freed up by these
137 * operations, however they won't be usable until the transaction commits.
138 *
139 * COMMIT_TRANS
c416a30c
JB
140 * This will commit the transaction. Historically we had a lot of logic
141 * surrounding whether or not we'd commit the transaction, but this waits born
142 * out of a pre-tickets era where we could end up committing the transaction
143 * thousands of times in a row without making progress. Now thanks to our
144 * ticketing system we know if we're not making progress and can error
145 * everybody out after a few commits rather than burning the disk hoping for
146 * a different answer.
f00c42dd 147 *
4b8b0528
JB
148 * OVERCOMMIT
149 *
150 * Because we hold so many reservations for metadata we will allow you to
151 * reserve more space than is currently free in the currently allocate
152 * metadata space. This only happens with metadata, data does not allow
153 * overcommitting.
154 *
155 * You can see the current logic for when we allow overcommit in
156 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
157 * is no unallocated space to be had, all reservations are kept within the
158 * free space in the allocated metadata chunks.
159 *
160 * Because of overcommitting, you generally want to use the
161 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
162 * thing with or without extra unallocated space.
163 */
164
e1f60a65 165u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
280c2908
JB
166 bool may_use_included)
167{
168 ASSERT(s_info);
169 return s_info->bytes_used + s_info->bytes_reserved +
170 s_info->bytes_pinned + s_info->bytes_readonly +
169e0da9 171 s_info->bytes_zone_unusable +
280c2908
JB
172 (may_use_included ? s_info->bytes_may_use : 0);
173}
174
175/*
176 * after adding space to the filesystem, we need to clear the full flags
177 * on all the space infos.
178 */
179void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180{
181 struct list_head *head = &info->space_info;
182 struct btrfs_space_info *found;
183
72804905 184 list_for_each_entry(found, head, list)
280c2908 185 found->full = 0;
280c2908
JB
186}
187
bb5a098d
JB
188/*
189 * Block groups with more than this value (percents) of unusable space will be
190 * scheduled for background reclaim.
191 */
192#define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75)
193
f6fca391
SR
194/*
195 * Calculate chunk size depending on volume type (regular or zoned).
196 */
197static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198{
199 if (btrfs_is_zoned(fs_info))
200 return fs_info->zone_size;
201
202 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203
204 if (flags & BTRFS_BLOCK_GROUP_DATA)
5da431b7 205 return BTRFS_MAX_DATA_CHUNK_SIZE;
f6fca391
SR
206 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207 return SZ_32M;
208
209 /* Handle BTRFS_BLOCK_GROUP_METADATA */
210 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211 return SZ_1G;
212
213 return SZ_256M;
214}
215
216/*
217 * Update default chunk size.
218 */
219void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220 u64 chunk_size)
221{
222 WRITE_ONCE(space_info->chunk_size, chunk_size);
223}
224
280c2908
JB
225static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226{
227
228 struct btrfs_space_info *space_info;
229 int i;
230 int ret;
231
232 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233 if (!space_info)
234 return -ENOMEM;
235
280c2908
JB
236 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237 INIT_LIST_HEAD(&space_info->block_groups[i]);
238 init_rwsem(&space_info->groups_sem);
239 spin_lock_init(&space_info->lock);
240 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
280c2908
JB
242 INIT_LIST_HEAD(&space_info->ro_bgs);
243 INIT_LIST_HEAD(&space_info->tickets);
244 INIT_LIST_HEAD(&space_info->priority_tickets);
88a777a6 245 space_info->clamp = 1;
f6fca391 246 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
280c2908 247
bb5a098d
JB
248 if (btrfs_is_zoned(info))
249 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250
b882327a
DS
251 ret = btrfs_sysfs_add_space_info_type(info, space_info);
252 if (ret)
280c2908 253 return ret;
280c2908 254
72804905 255 list_add(&space_info->list, &info->space_info);
280c2908
JB
256 if (flags & BTRFS_BLOCK_GROUP_DATA)
257 info->data_sinfo = space_info;
258
259 return ret;
260}
261
262int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263{
264 struct btrfs_super_block *disk_super;
265 u64 features;
266 u64 flags;
267 int mixed = 0;
268 int ret;
269
270 disk_super = fs_info->super_copy;
271 if (!btrfs_super_root(disk_super))
272 return -EINVAL;
273
274 features = btrfs_super_incompat_flags(disk_super);
275 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276 mixed = 1;
277
278 flags = BTRFS_BLOCK_GROUP_SYSTEM;
279 ret = create_space_info(fs_info, flags);
280 if (ret)
281 goto out;
282
283 if (mixed) {
284 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285 ret = create_space_info(fs_info, flags);
286 } else {
287 flags = BTRFS_BLOCK_GROUP_METADATA;
288 ret = create_space_info(fs_info, flags);
289 if (ret)
290 goto out;
291
292 flags = BTRFS_BLOCK_GROUP_DATA;
293 ret = create_space_info(fs_info, flags);
294 }
295out:
296 return ret;
297}
298
9d4b0a12 299void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
723de71d 300 struct btrfs_block_group *block_group)
280c2908
JB
301{
302 struct btrfs_space_info *found;
723de71d 303 int factor, index;
280c2908 304
9d4b0a12 305 factor = btrfs_bg_type_to_factor(block_group->flags);
280c2908 306
9d4b0a12 307 found = btrfs_find_space_info(info, block_group->flags);
280c2908
JB
308 ASSERT(found);
309 spin_lock(&found->lock);
9d4b0a12 310 found->total_bytes += block_group->length;
3349b57f 311 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
9d4b0a12
JB
312 found->active_total_bytes += block_group->length;
313 found->disk_total += block_group->length * factor;
314 found->bytes_used += block_group->used;
315 found->disk_used += block_group->used * factor;
316 found->bytes_readonly += block_group->bytes_super;
317 found->bytes_zone_unusable += block_group->zone_unusable;
318 if (block_group->length > 0)
280c2908 319 found->full = 0;
18fa2284 320 btrfs_try_granting_tickets(info, found);
280c2908 321 spin_unlock(&found->lock);
723de71d
JB
322
323 block_group->space_info = found;
324
325 index = btrfs_bg_flags_to_raid_index(block_group->flags);
326 down_write(&found->groups_sem);
327 list_add_tail(&block_group->list, &found->block_groups[index]);
328 up_write(&found->groups_sem);
280c2908
JB
329}
330
331struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
332 u64 flags)
333{
334 struct list_head *head = &info->space_info;
335 struct btrfs_space_info *found;
336
337 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
338
72804905
JB
339 list_for_each_entry(found, head, list) {
340 if (found->flags & flags)
280c2908 341 return found;
280c2908 342 }
280c2908
JB
343 return NULL;
344}
41783ef2 345
fa121a26
JB
346static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
347 struct btrfs_space_info *space_info,
348 enum btrfs_reserve_flush_enum flush)
41783ef2 349{
41783ef2 350 u64 profile;
41783ef2 351 u64 avail;
41783ef2
JB
352 int factor;
353
9f246926 354 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
41783ef2
JB
355 profile = btrfs_system_alloc_profile(fs_info);
356 else
357 profile = btrfs_metadata_alloc_profile(fs_info);
358
41783ef2
JB
359 avail = atomic64_read(&fs_info->free_chunk_space);
360
361 /*
362 * If we have dup, raid1 or raid10 then only half of the free
363 * space is actually usable. For raid56, the space info used
364 * doesn't include the parity drive, so we don't have to
365 * change the math
366 */
367 factor = btrfs_bg_type_to_factor(profile);
368 avail = div_u64(avail, factor);
369
370 /*
371 * If we aren't flushing all things, let us overcommit up to
372 * 1/2th of the space. If we can flush, don't let us overcommit
373 * too much, let it overcommit up to 1/8 of the space.
374 */
375 if (flush == BTRFS_RESERVE_FLUSH_ALL)
376 avail >>= 3;
377 else
378 avail >>= 1;
fa121a26
JB
379 return avail;
380}
381
6a921de5
NA
382static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info,
383 struct btrfs_space_info *space_info)
384{
385 /*
386 * On regular filesystem, all total_bytes are always writable. On zoned
387 * filesystem, there may be a limitation imposed by max_active_zones.
388 * For metadata allocation, we cannot finish an existing active block
389 * group to avoid a deadlock. Thus, we need to consider only the active
390 * groups to be writable for metadata space.
391 */
392 if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
393 return space_info->total_bytes;
394
395 return space_info->active_total_bytes;
396}
397
fa121a26
JB
398int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
399 struct btrfs_space_info *space_info, u64 bytes,
400 enum btrfs_reserve_flush_enum flush)
401{
402 u64 avail;
403 u64 used;
404
405 /* Don't overcommit when in mixed mode */
406 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
407 return 0;
408
409 used = btrfs_space_info_used(space_info, true);
79417d04
NA
410 if (btrfs_is_zoned(fs_info) && (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
411 avail = 0;
412 else
413 avail = calc_available_free_space(fs_info, space_info, flush);
41783ef2 414
6a921de5 415 if (used + bytes < writable_total_bytes(fs_info, space_info) + avail)
41783ef2
JB
416 return 1;
417 return 0;
418}
b338b013 419
d611add4
FM
420static void remove_ticket(struct btrfs_space_info *space_info,
421 struct reserve_ticket *ticket)
422{
423 if (!list_empty(&ticket->list)) {
424 list_del_init(&ticket->list);
425 ASSERT(space_info->reclaim_size >= ticket->bytes);
426 space_info->reclaim_size -= ticket->bytes;
427 }
428}
429
b338b013
JB
430/*
431 * This is for space we already have accounted in space_info->bytes_may_use, so
432 * basically when we're returning space from block_rsv's.
433 */
18fa2284
JB
434void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
435 struct btrfs_space_info *space_info)
b338b013 436{
b338b013 437 struct list_head *head;
b338b013 438 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
b338b013 439
18fa2284 440 lockdep_assert_held(&space_info->lock);
b338b013 441
18fa2284 442 head = &space_info->priority_tickets;
b338b013 443again:
91182645
JB
444 while (!list_empty(head)) {
445 struct reserve_ticket *ticket;
446 u64 used = btrfs_space_info_used(space_info, true);
447
448 ticket = list_first_entry(head, struct reserve_ticket, list);
449
1a9fd417 450 /* Check and see if our ticket can be satisfied now. */
6a921de5 451 if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) ||
a30a3d20
JB
452 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
453 flush)) {
91182645
JB
454 btrfs_space_info_update_bytes_may_use(fs_info,
455 space_info,
456 ticket->bytes);
d611add4 457 remove_ticket(space_info, ticket);
b338b013
JB
458 ticket->bytes = 0;
459 space_info->tickets_id++;
460 wake_up(&ticket->wait);
461 } else {
91182645 462 break;
b338b013
JB
463 }
464 }
465
91182645 466 if (head == &space_info->priority_tickets) {
b338b013
JB
467 head = &space_info->tickets;
468 flush = BTRFS_RESERVE_FLUSH_ALL;
469 goto again;
470 }
b338b013 471}
5da6afeb
JB
472
473#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
474do { \
475 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
476 spin_lock(&__rsv->lock); \
477 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
478 __rsv->size, __rsv->reserved); \
479 spin_unlock(&__rsv->lock); \
480} while (0)
481
25a860c4
QW
482static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
483{
484 switch (space_info->flags) {
485 case BTRFS_BLOCK_GROUP_SYSTEM:
486 return "SYSTEM";
487 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
488 return "DATA+METADATA";
489 case BTRFS_BLOCK_GROUP_DATA:
490 return "DATA";
491 case BTRFS_BLOCK_GROUP_METADATA:
492 return "METADATA";
493 default:
494 return "UNKNOWN";
495 }
496}
497
8e327b9c
QW
498static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
499{
500 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
501 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
502 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
503 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
504 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
505}
506
84fe47a4
JB
507static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
508 struct btrfs_space_info *info)
5da6afeb 509{
25a860c4 510 const char *flag_str = space_info_flag_to_str(info);
84fe47a4 511 lockdep_assert_held(&info->lock);
5da6afeb 512
0619b790 513 /* The free space could be negative in case of overcommit */
25a860c4
QW
514 btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
515 flag_str,
0619b790 516 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
5da6afeb
JB
517 info->full ? "" : "not ");
518 btrfs_info(fs_info,
25a860c4 519"space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
5da6afeb
JB
520 info->total_bytes, info->bytes_used, info->bytes_pinned,
521 info->bytes_reserved, info->bytes_may_use,
169e0da9 522 info->bytes_readonly, info->bytes_zone_unusable);
84fe47a4
JB
523}
524
525void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
526 struct btrfs_space_info *info, u64 bytes,
527 int dump_block_groups)
528{
32da5386 529 struct btrfs_block_group *cache;
84fe47a4
JB
530 int index = 0;
531
532 spin_lock(&info->lock);
533 __btrfs_dump_space_info(fs_info, info);
8e327b9c 534 dump_global_block_rsv(fs_info);
84fe47a4
JB
535 spin_unlock(&info->lock);
536
5da6afeb
JB
537 if (!dump_block_groups)
538 return;
539
540 down_read(&info->groups_sem);
541again:
542 list_for_each_entry(cache, &info->block_groups[index], list) {
543 spin_lock(&cache->lock);
544 btrfs_info(fs_info,
169e0da9 545 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
b3470b5d 546 cache->start, cache->length, cache->used, cache->pinned,
169e0da9
NA
547 cache->reserved, cache->zone_unusable,
548 cache->ro ? "[readonly]" : "");
5da6afeb 549 spin_unlock(&cache->lock);
ab0db043 550 btrfs_dump_free_space(cache, bytes);
5da6afeb
JB
551 }
552 if (++index < BTRFS_NR_RAID_TYPES)
553 goto again;
554 up_read(&info->groups_sem);
555}
0d9764f6 556
0d9764f6
JB
557static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
558 u64 to_reclaim)
559{
560 u64 bytes;
561 u64 nr;
562
2bd36e7b 563 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
0d9764f6
JB
564 nr = div64_u64(to_reclaim, bytes);
565 if (!nr)
566 nr = 1;
567 return nr;
568}
569
570#define EXTENT_SIZE_PER_ITEM SZ_256K
571
572/*
573 * shrink metadata reservation for delalloc
574 */
920a9958
JB
575static void shrink_delalloc(struct btrfs_fs_info *fs_info,
576 struct btrfs_space_info *space_info,
385f421f
JB
577 u64 to_reclaim, bool wait_ordered,
578 bool for_preempt)
0d9764f6 579{
0d9764f6
JB
580 struct btrfs_trans_handle *trans;
581 u64 delalloc_bytes;
5deb17e1 582 u64 ordered_bytes;
0d9764f6
JB
583 u64 items;
584 long time_left;
0d9764f6
JB
585 int loops;
586
03fe78cc
JB
587 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
588 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
589 if (delalloc_bytes == 0 && ordered_bytes == 0)
590 return;
591
0d9764f6 592 /* Calc the number of the pages we need flush for space reservation */
d7f81fac
JB
593 if (to_reclaim == U64_MAX) {
594 items = U64_MAX;
595 } else {
596 /*
597 * to_reclaim is set to however much metadata we need to
598 * reclaim, but reclaiming that much data doesn't really track
03fe78cc
JB
599 * exactly. What we really want to do is reclaim full inode's
600 * worth of reservations, however that's not available to us
601 * here. We will take a fraction of the delalloc bytes for our
602 * flushing loops and hope for the best. Delalloc will expand
603 * the amount we write to cover an entire dirty extent, which
604 * will reclaim the metadata reservation for that range. If
605 * it's not enough subsequent flush stages will be more
606 * aggressive.
d7f81fac 607 */
03fe78cc 608 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
d7f81fac 609 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
d7f81fac 610 }
0d9764f6 611
0d031dc4 612 trans = current->journal_info;
0d9764f6 613
0d9764f6
JB
614 /*
615 * If we are doing more ordered than delalloc we need to just wait on
616 * ordered extents, otherwise we'll waste time trying to flush delalloc
617 * that likely won't give us the space back we need.
618 */
385f421f 619 if (ordered_bytes > delalloc_bytes && !for_preempt)
0d9764f6
JB
620 wait_ordered = true;
621
622 loops = 0;
5deb17e1 623 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
9db4dc24
NB
624 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
625 long nr_pages = min_t(u64, temp, LONG_MAX);
e1646070 626 int async_pages;
e076ab2a
JB
627
628 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
0d9764f6 629
e1646070
JB
630 /*
631 * We need to make sure any outstanding async pages are now
632 * processed before we continue. This is because things like
633 * sync_inode() try to be smart and skip writing if the inode is
634 * marked clean. We don't use filemap_fwrite for flushing
635 * because we want to control how many pages we write out at a
636 * time, thus this is the only safe way to make sure we've
637 * waited for outstanding compressed workers to have started
638 * their jobs and thus have ordered extents set up properly.
639 *
640 * This exists because we do not want to wait for each
641 * individual inode to finish its async work, we simply want to
642 * start the IO on everybody, and then come back here and wait
643 * for all of the async work to catch up. Once we're done with
644 * that we know we'll have ordered extents for everything and we
645 * can decide if we wait for that or not.
646 *
647 * If we choose to replace this in the future, make absolutely
648 * sure that the proper waiting is being done in the async case,
649 * as there have been bugs in that area before.
650 */
651 async_pages = atomic_read(&fs_info->async_delalloc_pages);
652 if (!async_pages)
653 goto skip_async;
654
655 /*
656 * We don't want to wait forever, if we wrote less pages in this
657 * loop than we have outstanding, only wait for that number of
658 * pages, otherwise we can wait for all async pages to finish
659 * before continuing.
660 */
661 if (async_pages > nr_pages)
662 async_pages -= nr_pages;
663 else
664 async_pages = 0;
665 wait_event(fs_info->async_submit_wait,
666 atomic_read(&fs_info->async_delalloc_pages) <=
667 async_pages);
668skip_async:
0d9764f6
JB
669 loops++;
670 if (wait_ordered && !trans) {
671 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
672 } else {
673 time_left = schedule_timeout_killable(1);
674 if (time_left)
675 break;
676 }
448b966b 677
385f421f
JB
678 /*
679 * If we are for preemption we just want a one-shot of delalloc
680 * flushing so we can stop flushing if we decide we don't need
681 * to anymore.
682 */
683 if (for_preempt)
684 break;
685
448b966b
JB
686 spin_lock(&space_info->lock);
687 if (list_empty(&space_info->tickets) &&
688 list_empty(&space_info->priority_tickets)) {
689 spin_unlock(&space_info->lock);
690 break;
691 }
692 spin_unlock(&space_info->lock);
693
0d9764f6
JB
694 delalloc_bytes = percpu_counter_sum_positive(
695 &fs_info->delalloc_bytes);
5deb17e1
JB
696 ordered_bytes = percpu_counter_sum_positive(
697 &fs_info->ordered_bytes);
0d9764f6
JB
698 }
699}
700
0d9764f6
JB
701/*
702 * Try to flush some data based on policy set by @state. This is only advisory
703 * and may fail for various reasons. The caller is supposed to examine the
704 * state of @space_info to detect the outcome.
705 */
706static void flush_space(struct btrfs_fs_info *fs_info,
707 struct btrfs_space_info *space_info, u64 num_bytes,
4b02b00f 708 enum btrfs_flush_state state, bool for_preempt)
0d9764f6 709{
ce5603d0 710 struct btrfs_root *root = fs_info->tree_root;
0d9764f6
JB
711 struct btrfs_trans_handle *trans;
712 int nr;
713 int ret = 0;
714
715 switch (state) {
716 case FLUSH_DELAYED_ITEMS_NR:
717 case FLUSH_DELAYED_ITEMS:
718 if (state == FLUSH_DELAYED_ITEMS_NR)
719 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
720 else
721 nr = -1;
722
723 trans = btrfs_join_transaction(root);
724 if (IS_ERR(trans)) {
725 ret = PTR_ERR(trans);
726 break;
727 }
728 ret = btrfs_run_delayed_items_nr(trans, nr);
729 btrfs_end_transaction(trans);
730 break;
731 case FLUSH_DELALLOC:
732 case FLUSH_DELALLOC_WAIT:
03fe78cc
JB
733 case FLUSH_DELALLOC_FULL:
734 if (state == FLUSH_DELALLOC_FULL)
735 num_bytes = U64_MAX;
920a9958 736 shrink_delalloc(fs_info, space_info, num_bytes,
03fe78cc 737 state != FLUSH_DELALLOC, for_preempt);
0d9764f6
JB
738 break;
739 case FLUSH_DELAYED_REFS_NR:
740 case FLUSH_DELAYED_REFS:
741 trans = btrfs_join_transaction(root);
742 if (IS_ERR(trans)) {
743 ret = PTR_ERR(trans);
744 break;
745 }
746 if (state == FLUSH_DELAYED_REFS_NR)
747 nr = calc_reclaim_items_nr(fs_info, num_bytes);
748 else
749 nr = 0;
750 btrfs_run_delayed_refs(trans, nr);
751 btrfs_end_transaction(trans);
752 break;
753 case ALLOC_CHUNK:
754 case ALLOC_CHUNK_FORCE:
b0931513
NA
755 /*
756 * For metadata space on zoned filesystem, reaching here means we
757 * don't have enough space left in active_total_bytes. Try to
758 * activate a block group first, because we may have inactive
759 * block group already allocated.
760 */
761 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
762 if (ret < 0)
763 break;
764 else if (ret == 1)
765 break;
766
0d9764f6
JB
767 trans = btrfs_join_transaction(root);
768 if (IS_ERR(trans)) {
769 ret = PTR_ERR(trans);
770 break;
771 }
772 ret = btrfs_chunk_alloc(trans,
c6c45303 773 btrfs_get_alloc_profile(fs_info, space_info->flags),
0d9764f6
JB
774 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
775 CHUNK_ALLOC_FORCE);
776 btrfs_end_transaction(trans);
b0931513
NA
777
778 /*
779 * For metadata space on zoned filesystem, allocating a new chunk
780 * is not enough. We still need to activate the block * group.
781 * Active the newly allocated block group by (maybe) finishing
782 * a block group.
783 */
784 if (ret == 1) {
785 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
786 /*
787 * Revert to the original ret regardless we could finish
788 * one block group or not.
789 */
790 if (ret >= 0)
791 ret = 1;
792 }
793
0d9764f6
JB
794 if (ret > 0 || ret == -ENOSPC)
795 ret = 0;
796 break;
844245b4 797 case RUN_DELAYED_IPUTS:
0d9764f6
JB
798 /*
799 * If we have pending delayed iputs then we could free up a
800 * bunch of pinned space, so make sure we run the iputs before
801 * we do our pinned bytes check below.
802 */
803 btrfs_run_delayed_iputs(fs_info);
804 btrfs_wait_on_delayed_iputs(fs_info);
844245b4
JB
805 break;
806 case COMMIT_TRANS:
c416a30c 807 ASSERT(current->journal_info == NULL);
f00c42dd
JB
808 trans = btrfs_join_transaction(root);
809 if (IS_ERR(trans)) {
810 ret = PTR_ERR(trans);
811 break;
812 }
813 ret = btrfs_commit_transaction(trans);
814 break;
0d9764f6
JB
815 default:
816 ret = -ENOSPC;
817 break;
818 }
819
820 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4b02b00f 821 ret, for_preempt);
0d9764f6
JB
822 return;
823}
824
825static inline u64
826btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
9f246926 827 struct btrfs_space_info *space_info)
0d9764f6 828{
0d9764f6 829 u64 used;
fa121a26 830 u64 avail;
6a921de5 831 u64 total;
db161806 832 u64 to_reclaim = space_info->reclaim_size;
0d9764f6 833
db161806 834 lockdep_assert_held(&space_info->lock);
fa121a26
JB
835
836 avail = calc_available_free_space(fs_info, space_info,
837 BTRFS_RESERVE_FLUSH_ALL);
838 used = btrfs_space_info_used(space_info, true);
839
840 /*
841 * We may be flushing because suddenly we have less space than we had
842 * before, and now we're well over-committed based on our current free
843 * space. If that's the case add in our overage so we make sure to put
844 * appropriate pressure on the flushing state machine.
845 */
6a921de5
NA
846 total = writable_total_bytes(fs_info, space_info);
847 if (total + avail < used)
848 to_reclaim += used - (total + avail);
fa121a26 849
0d9764f6
JB
850 return to_reclaim;
851}
852
ae7913ba 853static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
2e294c60 854 struct btrfs_space_info *space_info)
0d9764f6 855{
610a6ef4 856 u64 global_rsv_size = fs_info->global_block_rsv.reserved;
2e294c60 857 u64 ordered, delalloc;
6a921de5
NA
858 u64 total = writable_total_bytes(fs_info, space_info);
859 u64 thresh;
2e294c60 860 u64 used;
0d9764f6 861
6a921de5
NA
862 thresh = div_factor_fine(total, 90);
863
bf7bd725
ND
864 lockdep_assert_held(&space_info->lock);
865
0d9764f6 866 /* If we're just plain full then async reclaim just slows us down. */
610a6ef4
JB
867 if ((space_info->bytes_used + space_info->bytes_reserved +
868 global_rsv_size) >= thresh)
ae7913ba 869 return false;
0d9764f6 870
11462397
JB
871 used = space_info->bytes_may_use + space_info->bytes_pinned;
872
873 /* The total flushable belongs to the global rsv, don't flush. */
874 if (global_rsv_size >= used)
875 return false;
876
877 /*
878 * 128MiB is 1/4 of the maximum global rsv size. If we have less than
879 * that devoted to other reservations then there's no sense in flushing,
880 * we don't have a lot of things that need flushing.
881 */
882 if (used - global_rsv_size <= SZ_128M)
883 return false;
884
f205edf7
JB
885 /*
886 * We have tickets queued, bail so we don't compete with the async
887 * flushers.
888 */
889 if (space_info->reclaim_size)
890 return false;
891
2e294c60
JB
892 /*
893 * If we have over half of the free space occupied by reservations or
894 * pinned then we want to start flushing.
895 *
896 * We do not do the traditional thing here, which is to say
897 *
898 * if (used >= ((total_bytes + avail) / 2))
899 * return 1;
900 *
901 * because this doesn't quite work how we want. If we had more than 50%
902 * of the space_info used by bytes_used and we had 0 available we'd just
903 * constantly run the background flusher. Instead we want it to kick in
88a777a6
JB
904 * if our reclaimable space exceeds our clamped free space.
905 *
906 * Our clamping range is 2^1 -> 2^8. Practically speaking that means
907 * the following:
908 *
909 * Amount of RAM Minimum threshold Maximum threshold
910 *
911 * 256GiB 1GiB 128GiB
912 * 128GiB 512MiB 64GiB
913 * 64GiB 256MiB 32GiB
914 * 32GiB 128MiB 16GiB
915 * 16GiB 64MiB 8GiB
916 *
917 * These are the range our thresholds will fall in, corresponding to how
918 * much delalloc we need for the background flusher to kick in.
2e294c60 919 */
88a777a6 920
2e294c60
JB
921 thresh = calc_available_free_space(fs_info, space_info,
922 BTRFS_RESERVE_FLUSH_ALL);
1239e2da
JB
923 used = space_info->bytes_used + space_info->bytes_reserved +
924 space_info->bytes_readonly + global_rsv_size;
6a921de5
NA
925 if (used < total)
926 thresh += total - used;
88a777a6 927 thresh >>= space_info->clamp;
9f42d377 928
2e294c60 929 used = space_info->bytes_pinned;
9f42d377 930
2e294c60
JB
931 /*
932 * If we have more ordered bytes than delalloc bytes then we're either
933 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
934 * around. Preemptive flushing is only useful in that it can free up
935 * space before tickets need to wait for things to finish. In the case
936 * of ordered extents, preemptively waiting on ordered extents gets us
937 * nothing, if our reservations are tied up in ordered extents we'll
938 * simply have to slow down writers by forcing them to wait on ordered
939 * extents.
940 *
941 * In the case that ordered is larger than delalloc, only include the
942 * block reserves that we would actually be able to directly reclaim
943 * from. In this case if we're heavy on metadata operations this will
944 * clearly be heavy enough to warrant preemptive flushing. In the case
945 * of heavy DIO or ordered reservations, preemptive flushing will just
946 * waste time and cause us to slow down.
3e101569
JB
947 *
948 * We want to make sure we truly are maxed out on ordered however, so
949 * cut ordered in half, and if it's still higher than delalloc then we
950 * can keep flushing. This is to avoid the case where we start
951 * flushing, and now delalloc == ordered and we stop preemptively
952 * flushing when we could still have several gigs of delalloc to flush.
2e294c60 953 */
3e101569 954 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
2cdb3909 955 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
2e294c60
JB
956 if (ordered >= delalloc)
957 used += fs_info->delayed_refs_rsv.reserved +
958 fs_info->delayed_block_rsv.reserved;
9f42d377 959 else
30acce4e 960 used += space_info->bytes_may_use - global_rsv_size;
0d9764f6
JB
961
962 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
963 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
964}
965
7f9fe614
JB
966static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
967 struct btrfs_space_info *space_info,
968 struct reserve_ticket *ticket)
969{
970 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
971 u64 min_bytes;
972
1b0309ea
JB
973 if (!ticket->steal)
974 return false;
975
7f9fe614
JB
976 if (global_rsv->space_info != space_info)
977 return false;
978
979 spin_lock(&global_rsv->lock);
e6549c2a 980 min_bytes = div_factor(global_rsv->size, 1);
7f9fe614
JB
981 if (global_rsv->reserved < min_bytes + ticket->bytes) {
982 spin_unlock(&global_rsv->lock);
983 return false;
984 }
985 global_rsv->reserved -= ticket->bytes;
6d548b9e 986 remove_ticket(space_info, ticket);
7f9fe614 987 ticket->bytes = 0;
7f9fe614
JB
988 wake_up(&ticket->wait);
989 space_info->tickets_id++;
990 if (global_rsv->reserved < global_rsv->size)
991 global_rsv->full = 0;
992 spin_unlock(&global_rsv->lock);
993
994 return true;
995}
996
2341ccd1
JB
997/*
998 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
999 * @fs_info - fs_info for this fs
1000 * @space_info - the space info we were flushing
1001 *
1002 * We call this when we've exhausted our flushing ability and haven't made
1003 * progress in satisfying tickets. The reservation code handles tickets in
1004 * order, so if there is a large ticket first and then smaller ones we could
1005 * very well satisfy the smaller tickets. This will attempt to wake up any
1006 * tickets in the list to catch this case.
1007 *
1008 * This function returns true if it was able to make progress by clearing out
1009 * other tickets, or if it stumbles across a ticket that was smaller than the
1010 * first ticket.
1011 */
1012static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1013 struct btrfs_space_info *space_info)
0d9764f6
JB
1014{
1015 struct reserve_ticket *ticket;
2341ccd1 1016 u64 tickets_id = space_info->tickets_id;
0e24f6d8 1017 const bool aborted = BTRFS_FS_ERROR(fs_info);
2341ccd1 1018
fcdef39c
JB
1019 trace_btrfs_fail_all_tickets(fs_info, space_info);
1020
84fe47a4
JB
1021 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1022 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1023 __btrfs_dump_space_info(fs_info, space_info);
1024 }
1025
2341ccd1
JB
1026 while (!list_empty(&space_info->tickets) &&
1027 tickets_id == space_info->tickets_id) {
1028 ticket = list_first_entry(&space_info->tickets,
1029 struct reserve_ticket, list);
1030
1b0309ea 1031 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
7f9fe614
JB
1032 return true;
1033
0e24f6d8 1034 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
84fe47a4
JB
1035 btrfs_info(fs_info, "failing ticket with %llu bytes",
1036 ticket->bytes);
1037
d611add4 1038 remove_ticket(space_info, ticket);
0e24f6d8
JB
1039 if (aborted)
1040 ticket->error = -EIO;
1041 else
1042 ticket->error = -ENOSPC;
0d9764f6 1043 wake_up(&ticket->wait);
2341ccd1
JB
1044
1045 /*
1046 * We're just throwing tickets away, so more flushing may not
1047 * trip over btrfs_try_granting_tickets, so we need to call it
1048 * here to see if we can make progress with the next ticket in
1049 * the list.
1050 */
0e24f6d8
JB
1051 if (!aborted)
1052 btrfs_try_granting_tickets(fs_info, space_info);
0d9764f6 1053 }
2341ccd1 1054 return (tickets_id != space_info->tickets_id);
0d9764f6
JB
1055}
1056
1057/*
1058 * This is for normal flushers, we can wait all goddamned day if we want to. We
1059 * will loop and continuously try to flush as long as we are making progress.
1060 * We count progress as clearing off tickets each time we have to loop.
1061 */
1062static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1063{
1064 struct btrfs_fs_info *fs_info;
1065 struct btrfs_space_info *space_info;
1066 u64 to_reclaim;
91e79a83 1067 enum btrfs_flush_state flush_state;
0d9764f6
JB
1068 int commit_cycles = 0;
1069 u64 last_tickets_id;
1070
1071 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1072 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1073
1074 spin_lock(&space_info->lock);
9f246926 1075 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
0d9764f6
JB
1076 if (!to_reclaim) {
1077 space_info->flush = 0;
1078 spin_unlock(&space_info->lock);
1079 return;
1080 }
1081 last_tickets_id = space_info->tickets_id;
1082 spin_unlock(&space_info->lock);
1083
1084 flush_state = FLUSH_DELAYED_ITEMS_NR;
1085 do {
4b02b00f 1086 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
0d9764f6
JB
1087 spin_lock(&space_info->lock);
1088 if (list_empty(&space_info->tickets)) {
1089 space_info->flush = 0;
1090 spin_unlock(&space_info->lock);
1091 return;
1092 }
1093 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
9f246926 1094 space_info);
0d9764f6
JB
1095 if (last_tickets_id == space_info->tickets_id) {
1096 flush_state++;
1097 } else {
1098 last_tickets_id = space_info->tickets_id;
1099 flush_state = FLUSH_DELAYED_ITEMS_NR;
1100 if (commit_cycles)
1101 commit_cycles--;
1102 }
1103
03fe78cc
JB
1104 /*
1105 * We do not want to empty the system of delalloc unless we're
1106 * under heavy pressure, so allow one trip through the flushing
1107 * logic before we start doing a FLUSH_DELALLOC_FULL.
1108 */
1109 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1110 flush_state++;
1111
0d9764f6
JB
1112 /*
1113 * We don't want to force a chunk allocation until we've tried
1114 * pretty hard to reclaim space. Think of the case where we
1115 * freed up a bunch of space and so have a lot of pinned space
1116 * to reclaim. We would rather use that than possibly create a
1117 * underutilized metadata chunk. So if this is our first run
1118 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1119 * commit the transaction. If nothing has changed the next go
1120 * around then we can force a chunk allocation.
1121 */
1122 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1123 flush_state++;
1124
1125 if (flush_state > COMMIT_TRANS) {
1126 commit_cycles++;
1127 if (commit_cycles > 2) {
2341ccd1 1128 if (maybe_fail_all_tickets(fs_info, space_info)) {
0d9764f6
JB
1129 flush_state = FLUSH_DELAYED_ITEMS_NR;
1130 commit_cycles--;
1131 } else {
1132 space_info->flush = 0;
1133 }
1134 } else {
1135 flush_state = FLUSH_DELAYED_ITEMS_NR;
1136 }
1137 }
1138 spin_unlock(&space_info->lock);
1139 } while (flush_state <= COMMIT_TRANS);
1140}
1141
576fa348
JB
1142/*
1143 * This handles pre-flushing of metadata space before we get to the point that
1144 * we need to start blocking threads on tickets. The logic here is different
1145 * from the other flush paths because it doesn't rely on tickets to tell us how
1146 * much we need to flush, instead it attempts to keep us below the 80% full
1147 * watermark of space by flushing whichever reservation pool is currently the
1148 * largest.
1149 */
1150static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1151{
1152 struct btrfs_fs_info *fs_info;
1153 struct btrfs_space_info *space_info;
1154 struct btrfs_block_rsv *delayed_block_rsv;
1155 struct btrfs_block_rsv *delayed_refs_rsv;
1156 struct btrfs_block_rsv *global_rsv;
1157 struct btrfs_block_rsv *trans_rsv;
88a777a6 1158 int loops = 0;
576fa348
JB
1159
1160 fs_info = container_of(work, struct btrfs_fs_info,
1161 preempt_reclaim_work);
1162 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1163 delayed_block_rsv = &fs_info->delayed_block_rsv;
1164 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1165 global_rsv = &fs_info->global_block_rsv;
1166 trans_rsv = &fs_info->trans_block_rsv;
1167
1168 spin_lock(&space_info->lock);
2e294c60 1169 while (need_preemptive_reclaim(fs_info, space_info)) {
576fa348
JB
1170 enum btrfs_flush_state flush;
1171 u64 delalloc_size = 0;
1172 u64 to_reclaim, block_rsv_size;
1173 u64 global_rsv_size = global_rsv->reserved;
1174
88a777a6
JB
1175 loops++;
1176
576fa348
JB
1177 /*
1178 * We don't have a precise counter for the metadata being
1179 * reserved for delalloc, so we'll approximate it by subtracting
1180 * out the block rsv's space from the bytes_may_use. If that
1181 * amount is higher than the individual reserves, then we can
1182 * assume it's tied up in delalloc reservations.
1183 */
1184 block_rsv_size = global_rsv_size +
1185 delayed_block_rsv->reserved +
1186 delayed_refs_rsv->reserved +
1187 trans_rsv->reserved;
1188 if (block_rsv_size < space_info->bytes_may_use)
1189 delalloc_size = space_info->bytes_may_use - block_rsv_size;
576fa348
JB
1190
1191 /*
1192 * We don't want to include the global_rsv in our calculation,
1193 * because that's space we can't touch. Subtract it from the
1194 * block_rsv_size for the next checks.
1195 */
1196 block_rsv_size -= global_rsv_size;
1197
1198 /*
1199 * We really want to avoid flushing delalloc too much, as it
1200 * could result in poor allocation patterns, so only flush it if
1201 * it's larger than the rest of the pools combined.
1202 */
1203 if (delalloc_size > block_rsv_size) {
1204 to_reclaim = delalloc_size;
1205 flush = FLUSH_DELALLOC;
1206 } else if (space_info->bytes_pinned >
1207 (delayed_block_rsv->reserved +
1208 delayed_refs_rsv->reserved)) {
1209 to_reclaim = space_info->bytes_pinned;
c416a30c 1210 flush = COMMIT_TRANS;
576fa348
JB
1211 } else if (delayed_block_rsv->reserved >
1212 delayed_refs_rsv->reserved) {
1213 to_reclaim = delayed_block_rsv->reserved;
1214 flush = FLUSH_DELAYED_ITEMS_NR;
1215 } else {
1216 to_reclaim = delayed_refs_rsv->reserved;
1217 flush = FLUSH_DELAYED_REFS_NR;
1218 }
1219
06bae876
ND
1220 spin_unlock(&space_info->lock);
1221
576fa348
JB
1222 /*
1223 * We don't want to reclaim everything, just a portion, so scale
1224 * down the to_reclaim by 1/4. If it takes us down to 0,
1225 * reclaim 1 items worth.
1226 */
1227 to_reclaim >>= 2;
1228 if (!to_reclaim)
1229 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
4b02b00f 1230 flush_space(fs_info, space_info, to_reclaim, flush, true);
576fa348
JB
1231 cond_resched();
1232 spin_lock(&space_info->lock);
576fa348 1233 }
88a777a6
JB
1234
1235 /* We only went through once, back off our clamping. */
1236 if (loops == 1 && !space_info->reclaim_size)
1237 space_info->clamp = max(1, space_info->clamp - 1);
e5ad49e2 1238 trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
576fa348
JB
1239 spin_unlock(&space_info->lock);
1240}
1241
1a7a92c8
JB
1242/*
1243 * FLUSH_DELALLOC_WAIT:
1244 * Space is freed from flushing delalloc in one of two ways.
1245 *
1246 * 1) compression is on and we allocate less space than we reserved
1247 * 2) we are overwriting existing space
1248 *
1249 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1250 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1251 * length to ->bytes_reserved, and subtracts the reserved space from
1252 * ->bytes_may_use.
1253 *
1254 * For #2 this is trickier. Once the ordered extent runs we will drop the
1255 * extent in the range we are overwriting, which creates a delayed ref for
1256 * that freed extent. This however is not reclaimed until the transaction
1257 * commits, thus the next stages.
1258 *
1259 * RUN_DELAYED_IPUTS
1260 * If we are freeing inodes, we want to make sure all delayed iputs have
1261 * completed, because they could have been on an inode with i_nlink == 0, and
1262 * thus have been truncated and freed up space. But again this space is not
1263 * immediately re-usable, it comes in the form of a delayed ref, which must be
1264 * run and then the transaction must be committed.
1265 *
1a7a92c8 1266 * COMMIT_TRANS
c416a30c
JB
1267 * This is where we reclaim all of the pinned space generated by running the
1268 * iputs
c4923027
JB
1269 *
1270 * ALLOC_CHUNK_FORCE
1271 * For data we start with alloc chunk force, however we could have been full
1272 * before, and then the transaction commit could have freed new block groups,
1273 * so if we now have space to allocate do the force chunk allocation.
1a7a92c8 1274 */
57056740 1275static const enum btrfs_flush_state data_flush_states[] = {
03fe78cc 1276 FLUSH_DELALLOC_FULL,
57056740 1277 RUN_DELAYED_IPUTS,
57056740 1278 COMMIT_TRANS,
c4923027 1279 ALLOC_CHUNK_FORCE,
57056740
JB
1280};
1281
1282static void btrfs_async_reclaim_data_space(struct work_struct *work)
0d9764f6 1283{
57056740
JB
1284 struct btrfs_fs_info *fs_info;
1285 struct btrfs_space_info *space_info;
1286 u64 last_tickets_id;
91e79a83 1287 enum btrfs_flush_state flush_state = 0;
57056740
JB
1288
1289 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1290 space_info = fs_info->data_sinfo;
1291
1292 spin_lock(&space_info->lock);
1293 if (list_empty(&space_info->tickets)) {
1294 space_info->flush = 0;
1295 spin_unlock(&space_info->lock);
1296 return;
1297 }
1298 last_tickets_id = space_info->tickets_id;
1299 spin_unlock(&space_info->lock);
1300
1301 while (!space_info->full) {
4b02b00f 1302 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
57056740
JB
1303 spin_lock(&space_info->lock);
1304 if (list_empty(&space_info->tickets)) {
1305 space_info->flush = 0;
1306 spin_unlock(&space_info->lock);
1307 return;
1308 }
0e24f6d8
JB
1309
1310 /* Something happened, fail everything and bail. */
1311 if (BTRFS_FS_ERROR(fs_info))
1312 goto aborted_fs;
57056740
JB
1313 last_tickets_id = space_info->tickets_id;
1314 spin_unlock(&space_info->lock);
1315 }
1316
1317 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1318 flush_space(fs_info, space_info, U64_MAX,
4b02b00f 1319 data_flush_states[flush_state], false);
57056740
JB
1320 spin_lock(&space_info->lock);
1321 if (list_empty(&space_info->tickets)) {
1322 space_info->flush = 0;
1323 spin_unlock(&space_info->lock);
1324 return;
1325 }
1326
1327 if (last_tickets_id == space_info->tickets_id) {
1328 flush_state++;
1329 } else {
1330 last_tickets_id = space_info->tickets_id;
1331 flush_state = 0;
1332 }
1333
1334 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1335 if (space_info->full) {
1336 if (maybe_fail_all_tickets(fs_info, space_info))
1337 flush_state = 0;
1338 else
1339 space_info->flush = 0;
1340 } else {
1341 flush_state = 0;
1342 }
0e24f6d8
JB
1343
1344 /* Something happened, fail everything and bail. */
1345 if (BTRFS_FS_ERROR(fs_info))
1346 goto aborted_fs;
1347
57056740
JB
1348 }
1349 spin_unlock(&space_info->lock);
1350 }
0e24f6d8
JB
1351 return;
1352
1353aborted_fs:
1354 maybe_fail_all_tickets(fs_info, space_info);
1355 space_info->flush = 0;
1356 spin_unlock(&space_info->lock);
57056740
JB
1357}
1358
1359void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1360{
1361 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1362 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
576fa348
JB
1363 INIT_WORK(&fs_info->preempt_reclaim_work,
1364 btrfs_preempt_reclaim_metadata_space);
0d9764f6
JB
1365}
1366
1367static const enum btrfs_flush_state priority_flush_states[] = {
1368 FLUSH_DELAYED_ITEMS_NR,
1369 FLUSH_DELAYED_ITEMS,
1370 ALLOC_CHUNK,
1371};
1372
d3984c90
JB
1373static const enum btrfs_flush_state evict_flush_states[] = {
1374 FLUSH_DELAYED_ITEMS_NR,
1375 FLUSH_DELAYED_ITEMS,
1376 FLUSH_DELAYED_REFS_NR,
1377 FLUSH_DELAYED_REFS,
1378 FLUSH_DELALLOC,
1379 FLUSH_DELALLOC_WAIT,
03fe78cc 1380 FLUSH_DELALLOC_FULL,
d3984c90
JB
1381 ALLOC_CHUNK,
1382 COMMIT_TRANS,
1383};
1384
0d9764f6 1385static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
9ce2f423
JB
1386 struct btrfs_space_info *space_info,
1387 struct reserve_ticket *ticket,
1388 const enum btrfs_flush_state *states,
1389 int states_nr)
0d9764f6
JB
1390{
1391 u64 to_reclaim;
9f35f76d 1392 int flush_state = 0;
0d9764f6
JB
1393
1394 spin_lock(&space_info->lock);
9f246926 1395 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
9cd8dcdc
JB
1396 /*
1397 * This is the priority reclaim path, so to_reclaim could be >0 still
143823cf 1398 * because we may have only satisfied the priority tickets and still
9cd8dcdc
JB
1399 * left non priority tickets on the list. We would then have
1400 * to_reclaim but ->bytes == 0.
1401 */
1402 if (ticket->bytes == 0) {
0d9764f6
JB
1403 spin_unlock(&space_info->lock);
1404 return;
1405 }
0d9764f6 1406
9f35f76d
JB
1407 while (flush_state < states_nr) {
1408 spin_unlock(&space_info->lock);
4b02b00f
JB
1409 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1410 false);
0d9764f6
JB
1411 flush_state++;
1412 spin_lock(&space_info->lock);
1413 if (ticket->bytes == 0) {
1414 spin_unlock(&space_info->lock);
1415 return;
1416 }
9f35f76d
JB
1417 }
1418
ee6adbfd
JB
1419 /* Attempt to steal from the global rsv if we can. */
1420 if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1421 ticket->error = -ENOSPC;
1422 remove_ticket(space_info, ticket);
1423 }
1424
9f35f76d
JB
1425 /*
1426 * We must run try_granting_tickets here because we could be a large
1427 * ticket in front of a smaller ticket that can now be satisfied with
1428 * the available space.
1429 */
9f35f76d
JB
1430 btrfs_try_granting_tickets(fs_info, space_info);
1431 spin_unlock(&space_info->lock);
0d9764f6
JB
1432}
1433
1004f686
JB
1434static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1435 struct btrfs_space_info *space_info,
57056740 1436 struct reserve_ticket *ticket)
1004f686 1437{
9f35f76d 1438 spin_lock(&space_info->lock);
9cd8dcdc
JB
1439
1440 /* We could have been granted before we got here. */
1441 if (ticket->bytes == 0) {
1442 spin_unlock(&space_info->lock);
1443 return;
1444 }
1445
1004f686 1446 while (!space_info->full) {
9f35f76d 1447 spin_unlock(&space_info->lock);
4b02b00f 1448 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1004f686
JB
1449 spin_lock(&space_info->lock);
1450 if (ticket->bytes == 0) {
1451 spin_unlock(&space_info->lock);
1452 return;
1453 }
1004f686 1454 }
9f35f76d
JB
1455
1456 ticket->error = -ENOSPC;
1457 remove_ticket(space_info, ticket);
1458 btrfs_try_granting_tickets(fs_info, space_info);
1459 spin_unlock(&space_info->lock);
1004f686
JB
1460}
1461
374bf9c5
JB
1462static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1463 struct btrfs_space_info *space_info,
1464 struct reserve_ticket *ticket)
0d9764f6
JB
1465
1466{
1467 DEFINE_WAIT(wait);
0d9764f6
JB
1468 int ret = 0;
1469
1470 spin_lock(&space_info->lock);
1471 while (ticket->bytes > 0 && ticket->error == 0) {
1472 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1473 if (ret) {
0cab7acc
FM
1474 /*
1475 * Delete us from the list. After we unlock the space
1476 * info, we don't want the async reclaim job to reserve
1477 * space for this ticket. If that would happen, then the
1478 * ticket's task would not known that space was reserved
1479 * despite getting an error, resulting in a space leak
1480 * (bytes_may_use counter of our space_info).
1481 */
d611add4 1482 remove_ticket(space_info, ticket);
374bf9c5 1483 ticket->error = -EINTR;
0d9764f6
JB
1484 break;
1485 }
1486 spin_unlock(&space_info->lock);
1487
1488 schedule();
1489
1490 finish_wait(&ticket->wait, &wait);
1491 spin_lock(&space_info->lock);
1492 }
0d9764f6 1493 spin_unlock(&space_info->lock);
0d9764f6
JB
1494}
1495
03235279 1496/**
d98b188e
NB
1497 * Do the appropriate flushing and waiting for a ticket
1498 *
1499 * @fs_info: the filesystem
1500 * @space_info: space info for the reservation
1501 * @ticket: ticket for the reservation
ac1ea10e
JB
1502 * @start_ns: timestamp when the reservation started
1503 * @orig_bytes: amount of bytes originally reserved
d98b188e 1504 * @flush: how much we can flush
03235279
JB
1505 *
1506 * This does the work of figuring out how to flush for the ticket, waiting for
1507 * the reservation, and returning the appropriate error if there is one.
1508 */
1509static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1510 struct btrfs_space_info *space_info,
1511 struct reserve_ticket *ticket,
ac1ea10e 1512 u64 start_ns, u64 orig_bytes,
03235279
JB
1513 enum btrfs_reserve_flush_enum flush)
1514{
03235279
JB
1515 int ret;
1516
d3984c90 1517 switch (flush) {
57056740 1518 case BTRFS_RESERVE_FLUSH_DATA:
d3984c90 1519 case BTRFS_RESERVE_FLUSH_ALL:
7f9fe614 1520 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
03235279 1521 wait_reserve_ticket(fs_info, space_info, ticket);
d3984c90
JB
1522 break;
1523 case BTRFS_RESERVE_FLUSH_LIMIT:
9ce2f423
JB
1524 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1525 priority_flush_states,
1526 ARRAY_SIZE(priority_flush_states));
d3984c90
JB
1527 break;
1528 case BTRFS_RESERVE_FLUSH_EVICT:
1529 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1530 evict_flush_states,
1531 ARRAY_SIZE(evict_flush_states));
1532 break;
1004f686 1533 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
57056740 1534 priority_reclaim_data_space(fs_info, space_info, ticket);
1004f686 1535 break;
d3984c90
JB
1536 default:
1537 ASSERT(0);
1538 break;
1539 }
03235279 1540
03235279 1541 ret = ticket->error;
03235279 1542 ASSERT(list_empty(&ticket->list));
0cab7acc
FM
1543 /*
1544 * Check that we can't have an error set if the reservation succeeded,
1545 * as that would confuse tasks and lead them to error out without
1546 * releasing reserved space (if an error happens the expectation is that
1547 * space wasn't reserved at all).
1548 */
1549 ASSERT(!(ticket->bytes == 0 && ticket->error));
ac1ea10e
JB
1550 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1551 start_ns, flush, ticket->error);
03235279
JB
1552 return ret;
1553}
1554
666daa9f
JB
1555/*
1556 * This returns true if this flush state will go through the ordinary flushing
1557 * code.
1558 */
1559static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1560{
1561 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1562 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1563}
1564
88a777a6
JB
1565static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1566 struct btrfs_space_info *space_info)
1567{
1568 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1569 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1570
1571 /*
1572 * If we're heavy on ordered operations then clamping won't help us. We
1573 * need to clamp specifically to keep up with dirty'ing buffered
1574 * writers, because there's not a 1:1 correlation of writing delalloc
1575 * and freeing space, like there is with flushing delayed refs or
1576 * delayed nodes. If we're already more ordered than delalloc then
1577 * we're keeping up, otherwise we aren't and should probably clamp.
1578 */
1579 if (ordered < delalloc)
1580 space_info->clamp = min(space_info->clamp + 1, 8);
1581}
1582
ee6adbfd
JB
1583static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1584{
1585 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1586 flush == BTRFS_RESERVE_FLUSH_EVICT);
1587}
1588
765c3fe9
JB
1589/*
1590 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1591 * fail as quickly as possible.
1592 */
1593static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1594{
1595 return (flush != BTRFS_RESERVE_NO_FLUSH &&
1596 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1597}
1598
0d9764f6 1599/**
d98b188e
NB
1600 * Try to reserve bytes from the block_rsv's space
1601 *
1602 * @fs_info: the filesystem
1603 * @space_info: space info we want to allocate from
1604 * @orig_bytes: number of bytes we want
1605 * @flush: whether or not we can flush to make our reservation
0d9764f6
JB
1606 *
1607 * This will reserve orig_bytes number of bytes from the space info associated
1608 * with the block_rsv. If there is not enough space it will make an attempt to
1609 * flush out space to make room. It will do this by flushing delalloc if
1610 * possible or committing the transaction. If flush is 0 then no attempts to
1611 * regain reservations will be made and this will fail if there is not enough
1612 * space already.
1613 */
f3bda421
JB
1614static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1615 struct btrfs_space_info *space_info, u64 orig_bytes,
1616 enum btrfs_reserve_flush_enum flush)
0d9764f6 1617{
57056740 1618 struct work_struct *async_work;
0d9764f6 1619 struct reserve_ticket ticket;
ac1ea10e 1620 u64 start_ns = 0;
0d9764f6 1621 u64 used;
0d9764f6 1622 int ret = 0;
ef1317a1 1623 bool pending_tickets;
0d9764f6
JB
1624
1625 ASSERT(orig_bytes);
1626 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1627
57056740
JB
1628 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1629 async_work = &fs_info->async_data_reclaim_work;
1630 else
1631 async_work = &fs_info->async_reclaim_work;
1632
0d9764f6
JB
1633 spin_lock(&space_info->lock);
1634 ret = -ENOSPC;
1635 used = btrfs_space_info_used(space_info, true);
666daa9f
JB
1636
1637 /*
1638 * We don't want NO_FLUSH allocations to jump everybody, they can
1639 * generally handle ENOSPC in a different way, so treat them the same as
1640 * normal flushers when it comes to skipping pending tickets.
1641 */
1642 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1643 pending_tickets = !list_empty(&space_info->tickets) ||
1644 !list_empty(&space_info->priority_tickets);
1645 else
1646 pending_tickets = !list_empty(&space_info->priority_tickets);
0d9764f6
JB
1647
1648 /*
9b4851bc
GR
1649 * Carry on if we have enough space (short-circuit) OR call
1650 * can_overcommit() to ensure we can overcommit to continue.
0d9764f6 1651 */
ef1317a1 1652 if (!pending_tickets &&
6a921de5 1653 ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) ||
a30a3d20 1654 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
0d9764f6
JB
1655 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1656 orig_bytes);
0d9764f6
JB
1657 ret = 0;
1658 }
1659
765c3fe9
JB
1660 /*
1661 * Things are dire, we need to make a reservation so we don't abort. We
1662 * will let this reservation go through as long as we have actual space
1663 * left to allocate for the block.
1664 */
1665 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1666 used = btrfs_space_info_used(space_info, false);
1667 if (used + orig_bytes <=
1668 writable_total_bytes(fs_info, space_info)) {
1669 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1670 orig_bytes);
1671 ret = 0;
1672 }
1673 }
1674
0d9764f6
JB
1675 /*
1676 * If we couldn't make a reservation then setup our reservation ticket
1677 * and kick the async worker if it's not already running.
1678 *
1679 * If we are a priority flusher then we just need to add our ticket to
1680 * the list and we will do our own flushing further down.
1681 */
765c3fe9 1682 if (ret && can_ticket(flush)) {
0d9764f6
JB
1683 ticket.bytes = orig_bytes;
1684 ticket.error = 0;
db161806 1685 space_info->reclaim_size += ticket.bytes;
0d9764f6 1686 init_waitqueue_head(&ticket.wait);
ee6adbfd 1687 ticket.steal = can_steal(flush);
ac1ea10e
JB
1688 if (trace_btrfs_reserve_ticket_enabled())
1689 start_ns = ktime_get_ns();
1690
7f9fe614 1691 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
57056740
JB
1692 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1693 flush == BTRFS_RESERVE_FLUSH_DATA) {
0d9764f6
JB
1694 list_add_tail(&ticket.list, &space_info->tickets);
1695 if (!space_info->flush) {
0aae4ca9
JB
1696 /*
1697 * We were forced to add a reserve ticket, so
1698 * our preemptive flushing is unable to keep
1699 * up. Clamp down on the threshold for the
1700 * preemptive flushing in order to keep up with
1701 * the workload.
1702 */
1703 maybe_clamp_preempt(fs_info, space_info);
1704
0d9764f6
JB
1705 space_info->flush = 1;
1706 trace_btrfs_trigger_flush(fs_info,
1707 space_info->flags,
1708 orig_bytes, flush,
1709 "enospc");
57056740 1710 queue_work(system_unbound_wq, async_work);
0d9764f6
JB
1711 }
1712 } else {
1713 list_add_tail(&ticket.list,
1714 &space_info->priority_tickets);
1715 }
1716 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0d9764f6
JB
1717 /*
1718 * We will do the space reservation dance during log replay,
1719 * which means we won't have fs_info->fs_root set, so don't do
1720 * the async reclaim as we will panic.
1721 */
1722 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
ed738ba7
JB
1723 !work_busy(&fs_info->preempt_reclaim_work) &&
1724 need_preemptive_reclaim(fs_info, space_info)) {
0d9764f6
JB
1725 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1726 orig_bytes, flush, "preempt");
1727 queue_work(system_unbound_wq,
576fa348 1728 &fs_info->preempt_reclaim_work);
0d9764f6
JB
1729 }
1730 }
1731 spin_unlock(&space_info->lock);
765c3fe9 1732 if (!ret || !can_ticket(flush))
0d9764f6
JB
1733 return ret;
1734
ac1ea10e
JB
1735 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1736 orig_bytes, flush);
0d9764f6
JB
1737}
1738
1739/**
d98b188e
NB
1740 * Trye to reserve metadata bytes from the block_rsv's space
1741 *
be8d1a2a 1742 * @fs_info: the filesystem
d98b188e
NB
1743 * @block_rsv: block_rsv we're allocating for
1744 * @orig_bytes: number of bytes we want
1745 * @flush: whether or not we can flush to make our reservation
0d9764f6
JB
1746 *
1747 * This will reserve orig_bytes number of bytes from the space info associated
1748 * with the block_rsv. If there is not enough space it will make an attempt to
1749 * flush out space to make room. It will do this by flushing delalloc if
1750 * possible or committing the transaction. If flush is 0 then no attempts to
1751 * regain reservations will be made and this will fail if there is not enough
1752 * space already.
1753 */
9270501c 1754int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
0d9764f6
JB
1755 struct btrfs_block_rsv *block_rsv,
1756 u64 orig_bytes,
1757 enum btrfs_reserve_flush_enum flush)
1758{
0d9764f6 1759 int ret;
0d9764f6 1760
f3bda421 1761 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
0d9764f6
JB
1762 if (ret == -ENOSPC) {
1763 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1764 block_rsv->space_info->flags,
1765 orig_bytes, 1);
1766
1767 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1768 btrfs_dump_space_info(fs_info, block_rsv->space_info,
1769 orig_bytes, 0);
1770 }
1771 return ret;
1772}
8698fc4e
JB
1773
1774/**
d98b188e
NB
1775 * Try to reserve data bytes for an allocation
1776 *
1777 * @fs_info: the filesystem
1778 * @bytes: number of bytes we need
1779 * @flush: how we are allowed to flush
8698fc4e
JB
1780 *
1781 * This will reserve bytes from the data space info. If there is not enough
1782 * space then we will attempt to flush space as specified by flush.
1783 */
1784int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1785 enum btrfs_reserve_flush_enum flush)
1786{
1787 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
f3bda421 1788 int ret;
8698fc4e 1789
f3bda421 1790 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1daedb1d
JB
1791 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1792 flush == BTRFS_RESERVE_NO_FLUSH);
8698fc4e
JB
1793 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1794
f3bda421
JB
1795 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1796 if (ret == -ENOSPC) {
1797 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
8698fc4e 1798 data_sinfo->flags, bytes, 1);
f3bda421
JB
1799 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1800 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1801 }
8698fc4e
JB
1802 return ret;
1803}
8e327b9c
QW
1804
1805/* Dump all the space infos when we abort a transaction due to ENOSPC. */
1806__cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1807{
1808 struct btrfs_space_info *space_info;
1809
1810 btrfs_info(fs_info, "dumping space info:");
1811 list_for_each_entry(space_info, &fs_info->space_info, list) {
1812 spin_lock(&space_info->lock);
1813 __btrfs_dump_space_info(fs_info, space_info);
1814 spin_unlock(&space_info->lock);
1815 }
1816 dump_global_block_rsv(fs_info);
1817}
e2f13b34
JB
1818
1819/*
1820 * Account the unused space of all the readonly block group in the space_info.
1821 * takes mirrors into account.
1822 */
1823u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1824{
1825 struct btrfs_block_group *block_group;
1826 u64 free_bytes = 0;
1827 int factor;
1828
1829 /* It's df, we don't care if it's racy */
1830 if (list_empty(&sinfo->ro_bgs))
1831 return 0;
1832
1833 spin_lock(&sinfo->lock);
1834 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1835 spin_lock(&block_group->lock);
1836
1837 if (!block_group->ro) {
1838 spin_unlock(&block_group->lock);
1839 continue;
1840 }
1841
1842 factor = btrfs_bg_type_to_factor(block_group->flags);
1843 free_bytes += (block_group->length -
1844 block_group->used) * factor;
1845
1846 spin_unlock(&block_group->lock);
1847 }
1848 spin_unlock(&sinfo->lock);
1849
1850 return free_bytes;
1851}