fs: remove noop_set_page_dirty()
[linux-2.6-block.git] / fs / btrfs / space-info.c
CommitLineData
280c2908
JB
1// SPDX-License-Identifier: GPL-2.0
2
784352fe 3#include "misc.h"
280c2908
JB
4#include "ctree.h"
5#include "space-info.h"
6#include "sysfs.h"
7#include "volumes.h"
5da6afeb 8#include "free-space-cache.h"
0d9764f6
JB
9#include "ordered-data.h"
10#include "transaction.h"
aac0023c 11#include "block-group.h"
280c2908 12
4b8b0528
JB
13/*
14 * HOW DOES SPACE RESERVATION WORK
15 *
16 * If you want to know about delalloc specifically, there is a separate comment
17 * for that with the delalloc code. This comment is about how the whole system
18 * works generally.
19 *
20 * BASIC CONCEPTS
21 *
22 * 1) space_info. This is the ultimate arbiter of how much space we can use.
23 * There's a description of the bytes_ fields with the struct declaration,
24 * refer to that for specifics on each field. Suffice it to say that for
25 * reservations we care about total_bytes - SUM(space_info->bytes_) when
26 * determining if there is space to make an allocation. There is a space_info
27 * for METADATA, SYSTEM, and DATA areas.
28 *
29 * 2) block_rsv's. These are basically buckets for every different type of
30 * metadata reservation we have. You can see the comment in the block_rsv
31 * code on the rules for each type, but generally block_rsv->reserved is how
32 * much space is accounted for in space_info->bytes_may_use.
33 *
34 * 3) btrfs_calc*_size. These are the worst case calculations we used based
35 * on the number of items we will want to modify. We have one for changing
36 * items, and one for inserting new items. Generally we use these helpers to
37 * determine the size of the block reserves, and then use the actual bytes
38 * values to adjust the space_info counters.
39 *
40 * MAKING RESERVATIONS, THE NORMAL CASE
41 *
42 * We call into either btrfs_reserve_data_bytes() or
43 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44 * num_bytes we want to reserve.
45 *
46 * ->reserve
47 * space_info->bytes_may_reserve += num_bytes
48 *
49 * ->extent allocation
50 * Call btrfs_add_reserved_bytes() which does
51 * space_info->bytes_may_reserve -= num_bytes
52 * space_info->bytes_reserved += extent_bytes
53 *
54 * ->insert reference
55 * Call btrfs_update_block_group() which does
56 * space_info->bytes_reserved -= extent_bytes
57 * space_info->bytes_used += extent_bytes
58 *
59 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60 *
61 * Assume we are unable to simply make the reservation because we do not have
62 * enough space
63 *
64 * -> __reserve_bytes
65 * create a reserve_ticket with ->bytes set to our reservation, add it to
66 * the tail of space_info->tickets, kick async flush thread
67 *
68 * ->handle_reserve_ticket
69 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70 * on the ticket.
71 *
72 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73 * Flushes various things attempting to free up space.
74 *
75 * -> btrfs_try_granting_tickets()
76 * This is called by anything that either subtracts space from
77 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78 * space_info->total_bytes. This loops through the ->priority_tickets and
79 * then the ->tickets list checking to see if the reservation can be
80 * completed. If it can the space is added to space_info->bytes_may_use and
81 * the ticket is woken up.
82 *
83 * -> ticket wakeup
84 * Check if ->bytes == 0, if it does we got our reservation and we can carry
85 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86 * were interrupted.)
87 *
88 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89 *
90 * Same as the above, except we add ourselves to the
91 * space_info->priority_tickets, and we do not use ticket->wait, we simply
92 * call flush_space() ourselves for the states that are safe for us to call
93 * without deadlocking and hope for the best.
94 *
95 * THE FLUSHING STATES
96 *
97 * Generally speaking we will have two cases for each state, a "nice" state
98 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
99 * reduce the locking over head on the various trees, and even to keep from
100 * doing any work at all in the case of delayed refs. Each of these delayed
101 * things however hold reservations, and so letting them run allows us to
102 * reclaim space so we can make new reservations.
103 *
104 * FLUSH_DELAYED_ITEMS
105 * Every inode has a delayed item to update the inode. Take a simple write
106 * for example, we would update the inode item at write time to update the
107 * mtime, and then again at finish_ordered_io() time in order to update the
108 * isize or bytes. We keep these delayed items to coalesce these operations
109 * into a single operation done on demand. These are an easy way to reclaim
110 * metadata space.
111 *
112 * FLUSH_DELALLOC
113 * Look at the delalloc comment to get an idea of how much space is reserved
114 * for delayed allocation. We can reclaim some of this space simply by
115 * running delalloc, but usually we need to wait for ordered extents to
116 * reclaim the bulk of this space.
117 *
118 * FLUSH_DELAYED_REFS
119 * We have a block reserve for the outstanding delayed refs space, and every
120 * delayed ref operation holds a reservation. Running these is a quick way
121 * to reclaim space, but we want to hold this until the end because COW can
122 * churn a lot and we can avoid making some extent tree modifications if we
123 * are able to delay for as long as possible.
124 *
125 * ALLOC_CHUNK
126 * We will skip this the first time through space reservation, because of
127 * overcommit and we don't want to have a lot of useless metadata space when
128 * our worst case reservations will likely never come true.
129 *
130 * RUN_DELAYED_IPUTS
131 * If we're freeing inodes we're likely freeing checksums, file extent
132 * items, and extent tree items. Loads of space could be freed up by these
133 * operations, however they won't be usable until the transaction commits.
134 *
135 * COMMIT_TRANS
136 * may_commit_transaction() is the ultimate arbiter on whether we commit the
137 * transaction or not. In order to avoid constantly churning we do all the
138 * above flushing first and then commit the transaction as the last resort.
139 * However we need to take into account things like pinned space that would
140 * be freed, plus any delayed work we may not have gotten rid of in the case
141 * of metadata.
142 *
f00c42dd
JB
143 * FORCE_COMMIT_TRANS
144 * For use by the preemptive flusher. We use this to bypass the ticketing
145 * checks in may_commit_transaction, as we have more information about the
146 * overall state of the system and may want to commit the transaction ahead
147 * of actual ENOSPC conditions.
148 *
4b8b0528
JB
149 * OVERCOMMIT
150 *
151 * Because we hold so many reservations for metadata we will allow you to
152 * reserve more space than is currently free in the currently allocate
153 * metadata space. This only happens with metadata, data does not allow
154 * overcommitting.
155 *
156 * You can see the current logic for when we allow overcommit in
157 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
158 * is no unallocated space to be had, all reservations are kept within the
159 * free space in the allocated metadata chunks.
160 *
161 * Because of overcommitting, you generally want to use the
162 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
163 * thing with or without extra unallocated space.
164 */
165
e1f60a65 166u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
280c2908
JB
167 bool may_use_included)
168{
169 ASSERT(s_info);
170 return s_info->bytes_used + s_info->bytes_reserved +
171 s_info->bytes_pinned + s_info->bytes_readonly +
169e0da9 172 s_info->bytes_zone_unusable +
280c2908
JB
173 (may_use_included ? s_info->bytes_may_use : 0);
174}
175
176/*
177 * after adding space to the filesystem, we need to clear the full flags
178 * on all the space infos.
179 */
180void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
181{
182 struct list_head *head = &info->space_info;
183 struct btrfs_space_info *found;
184
72804905 185 list_for_each_entry(found, head, list)
280c2908 186 found->full = 0;
280c2908
JB
187}
188
280c2908
JB
189static int create_space_info(struct btrfs_fs_info *info, u64 flags)
190{
191
192 struct btrfs_space_info *space_info;
193 int i;
194 int ret;
195
196 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
197 if (!space_info)
198 return -ENOMEM;
199
200 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
201 GFP_KERNEL);
202 if (ret) {
203 kfree(space_info);
204 return ret;
205 }
206
207 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
208 INIT_LIST_HEAD(&space_info->block_groups[i]);
209 init_rwsem(&space_info->groups_sem);
210 spin_lock_init(&space_info->lock);
211 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
212 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
280c2908
JB
213 INIT_LIST_HEAD(&space_info->ro_bgs);
214 INIT_LIST_HEAD(&space_info->tickets);
215 INIT_LIST_HEAD(&space_info->priority_tickets);
88a777a6 216 space_info->clamp = 1;
280c2908 217
b882327a
DS
218 ret = btrfs_sysfs_add_space_info_type(info, space_info);
219 if (ret)
280c2908 220 return ret;
280c2908 221
72804905 222 list_add(&space_info->list, &info->space_info);
280c2908
JB
223 if (flags & BTRFS_BLOCK_GROUP_DATA)
224 info->data_sinfo = space_info;
225
226 return ret;
227}
228
229int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
230{
231 struct btrfs_super_block *disk_super;
232 u64 features;
233 u64 flags;
234 int mixed = 0;
235 int ret;
236
237 disk_super = fs_info->super_copy;
238 if (!btrfs_super_root(disk_super))
239 return -EINVAL;
240
241 features = btrfs_super_incompat_flags(disk_super);
242 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
243 mixed = 1;
244
245 flags = BTRFS_BLOCK_GROUP_SYSTEM;
246 ret = create_space_info(fs_info, flags);
247 if (ret)
248 goto out;
249
250 if (mixed) {
251 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
252 ret = create_space_info(fs_info, flags);
253 } else {
254 flags = BTRFS_BLOCK_GROUP_METADATA;
255 ret = create_space_info(fs_info, flags);
256 if (ret)
257 goto out;
258
259 flags = BTRFS_BLOCK_GROUP_DATA;
260 ret = create_space_info(fs_info, flags);
261 }
262out:
263 return ret;
264}
265
266void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
267 u64 total_bytes, u64 bytes_used,
169e0da9 268 u64 bytes_readonly, u64 bytes_zone_unusable,
280c2908
JB
269 struct btrfs_space_info **space_info)
270{
271 struct btrfs_space_info *found;
272 int factor;
273
274 factor = btrfs_bg_type_to_factor(flags);
275
276 found = btrfs_find_space_info(info, flags);
277 ASSERT(found);
278 spin_lock(&found->lock);
279 found->total_bytes += total_bytes;
280 found->disk_total += total_bytes * factor;
281 found->bytes_used += bytes_used;
282 found->disk_used += bytes_used * factor;
283 found->bytes_readonly += bytes_readonly;
169e0da9 284 found->bytes_zone_unusable += bytes_zone_unusable;
280c2908
JB
285 if (total_bytes > 0)
286 found->full = 0;
18fa2284 287 btrfs_try_granting_tickets(info, found);
280c2908
JB
288 spin_unlock(&found->lock);
289 *space_info = found;
290}
291
292struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
293 u64 flags)
294{
295 struct list_head *head = &info->space_info;
296 struct btrfs_space_info *found;
297
298 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
299
72804905
JB
300 list_for_each_entry(found, head, list) {
301 if (found->flags & flags)
280c2908 302 return found;
280c2908 303 }
280c2908
JB
304 return NULL;
305}
41783ef2 306
fa121a26
JB
307static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
308 struct btrfs_space_info *space_info,
309 enum btrfs_reserve_flush_enum flush)
41783ef2 310{
41783ef2 311 u64 profile;
41783ef2 312 u64 avail;
41783ef2
JB
313 int factor;
314
9f246926 315 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
41783ef2
JB
316 profile = btrfs_system_alloc_profile(fs_info);
317 else
318 profile = btrfs_metadata_alloc_profile(fs_info);
319
41783ef2
JB
320 avail = atomic64_read(&fs_info->free_chunk_space);
321
322 /*
323 * If we have dup, raid1 or raid10 then only half of the free
324 * space is actually usable. For raid56, the space info used
325 * doesn't include the parity drive, so we don't have to
326 * change the math
327 */
328 factor = btrfs_bg_type_to_factor(profile);
329 avail = div_u64(avail, factor);
330
331 /*
332 * If we aren't flushing all things, let us overcommit up to
333 * 1/2th of the space. If we can flush, don't let us overcommit
334 * too much, let it overcommit up to 1/8 of the space.
335 */
336 if (flush == BTRFS_RESERVE_FLUSH_ALL)
337 avail >>= 3;
338 else
339 avail >>= 1;
fa121a26
JB
340 return avail;
341}
342
343int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
344 struct btrfs_space_info *space_info, u64 bytes,
345 enum btrfs_reserve_flush_enum flush)
346{
347 u64 avail;
348 u64 used;
349
350 /* Don't overcommit when in mixed mode */
351 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
352 return 0;
353
354 used = btrfs_space_info_used(space_info, true);
355 avail = calc_available_free_space(fs_info, space_info, flush);
41783ef2
JB
356
357 if (used + bytes < space_info->total_bytes + avail)
358 return 1;
359 return 0;
360}
b338b013 361
d611add4
FM
362static void remove_ticket(struct btrfs_space_info *space_info,
363 struct reserve_ticket *ticket)
364{
365 if (!list_empty(&ticket->list)) {
366 list_del_init(&ticket->list);
367 ASSERT(space_info->reclaim_size >= ticket->bytes);
368 space_info->reclaim_size -= ticket->bytes;
369 }
370}
371
b338b013
JB
372/*
373 * This is for space we already have accounted in space_info->bytes_may_use, so
374 * basically when we're returning space from block_rsv's.
375 */
18fa2284
JB
376void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
377 struct btrfs_space_info *space_info)
b338b013 378{
b338b013 379 struct list_head *head;
b338b013 380 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
b338b013 381
18fa2284 382 lockdep_assert_held(&space_info->lock);
b338b013 383
18fa2284 384 head = &space_info->priority_tickets;
b338b013 385again:
91182645
JB
386 while (!list_empty(head)) {
387 struct reserve_ticket *ticket;
388 u64 used = btrfs_space_info_used(space_info, true);
389
390 ticket = list_first_entry(head, struct reserve_ticket, list);
391
392 /* Check and see if our ticket can be satisified now. */
393 if ((used + ticket->bytes <= space_info->total_bytes) ||
a30a3d20
JB
394 btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
395 flush)) {
91182645
JB
396 btrfs_space_info_update_bytes_may_use(fs_info,
397 space_info,
398 ticket->bytes);
d611add4 399 remove_ticket(space_info, ticket);
b338b013
JB
400 ticket->bytes = 0;
401 space_info->tickets_id++;
402 wake_up(&ticket->wait);
403 } else {
91182645 404 break;
b338b013
JB
405 }
406 }
407
91182645 408 if (head == &space_info->priority_tickets) {
b338b013
JB
409 head = &space_info->tickets;
410 flush = BTRFS_RESERVE_FLUSH_ALL;
411 goto again;
412 }
b338b013 413}
5da6afeb
JB
414
415#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
416do { \
417 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
418 spin_lock(&__rsv->lock); \
419 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
420 __rsv->size, __rsv->reserved); \
421 spin_unlock(&__rsv->lock); \
422} while (0)
423
84fe47a4
JB
424static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
425 struct btrfs_space_info *info)
5da6afeb 426{
84fe47a4 427 lockdep_assert_held(&info->lock);
5da6afeb 428
5da6afeb
JB
429 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
430 info->flags,
431 info->total_bytes - btrfs_space_info_used(info, true),
432 info->full ? "" : "not ");
433 btrfs_info(fs_info,
169e0da9 434 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
5da6afeb
JB
435 info->total_bytes, info->bytes_used, info->bytes_pinned,
436 info->bytes_reserved, info->bytes_may_use,
169e0da9 437 info->bytes_readonly, info->bytes_zone_unusable);
5da6afeb
JB
438
439 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
440 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
441 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
442 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
443 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
444
84fe47a4
JB
445}
446
447void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
448 struct btrfs_space_info *info, u64 bytes,
449 int dump_block_groups)
450{
32da5386 451 struct btrfs_block_group *cache;
84fe47a4
JB
452 int index = 0;
453
454 spin_lock(&info->lock);
455 __btrfs_dump_space_info(fs_info, info);
456 spin_unlock(&info->lock);
457
5da6afeb
JB
458 if (!dump_block_groups)
459 return;
460
461 down_read(&info->groups_sem);
462again:
463 list_for_each_entry(cache, &info->block_groups[index], list) {
464 spin_lock(&cache->lock);
465 btrfs_info(fs_info,
169e0da9 466 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
b3470b5d 467 cache->start, cache->length, cache->used, cache->pinned,
169e0da9
NA
468 cache->reserved, cache->zone_unusable,
469 cache->ro ? "[readonly]" : "");
5da6afeb 470 spin_unlock(&cache->lock);
ab0db043 471 btrfs_dump_free_space(cache, bytes);
5da6afeb
JB
472 }
473 if (++index < BTRFS_NR_RAID_TYPES)
474 goto again;
475 up_read(&info->groups_sem);
476}
0d9764f6 477
0d9764f6
JB
478static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
479 u64 to_reclaim)
480{
481 u64 bytes;
482 u64 nr;
483
2bd36e7b 484 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
0d9764f6
JB
485 nr = div64_u64(to_reclaim, bytes);
486 if (!nr)
487 nr = 1;
488 return nr;
489}
490
491#define EXTENT_SIZE_PER_ITEM SZ_256K
492
493/*
494 * shrink metadata reservation for delalloc
495 */
920a9958
JB
496static void shrink_delalloc(struct btrfs_fs_info *fs_info,
497 struct btrfs_space_info *space_info,
498 u64 to_reclaim, bool wait_ordered)
0d9764f6 499{
0d9764f6
JB
500 struct btrfs_trans_handle *trans;
501 u64 delalloc_bytes;
5deb17e1 502 u64 ordered_bytes;
0d9764f6
JB
503 u64 items;
504 long time_left;
0d9764f6
JB
505 int loops;
506
507 /* Calc the number of the pages we need flush for space reservation */
d7f81fac
JB
508 if (to_reclaim == U64_MAX) {
509 items = U64_MAX;
510 } else {
511 /*
512 * to_reclaim is set to however much metadata we need to
513 * reclaim, but reclaiming that much data doesn't really track
514 * exactly, so increase the amount to reclaim by 2x in order to
515 * make sure we're flushing enough delalloc to hopefully reclaim
516 * some metadata reservations.
517 */
518 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
519 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
520 }
0d9764f6
JB
521
522 trans = (struct btrfs_trans_handle *)current->journal_info;
0d9764f6
JB
523
524 delalloc_bytes = percpu_counter_sum_positive(
525 &fs_info->delalloc_bytes);
5deb17e1
JB
526 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
527 if (delalloc_bytes == 0 && ordered_bytes == 0)
0d9764f6 528 return;
0d9764f6
JB
529
530 /*
531 * If we are doing more ordered than delalloc we need to just wait on
532 * ordered extents, otherwise we'll waste time trying to flush delalloc
533 * that likely won't give us the space back we need.
534 */
5deb17e1 535 if (ordered_bytes > delalloc_bytes)
0d9764f6
JB
536 wait_ordered = true;
537
538 loops = 0;
5deb17e1 539 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
9db4dc24
NB
540 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
541 long nr_pages = min_t(u64, temp, LONG_MAX);
e076ab2a
JB
542
543 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
0d9764f6 544
0d9764f6
JB
545 loops++;
546 if (wait_ordered && !trans) {
547 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
548 } else {
549 time_left = schedule_timeout_killable(1);
550 if (time_left)
551 break;
552 }
448b966b
JB
553
554 spin_lock(&space_info->lock);
555 if (list_empty(&space_info->tickets) &&
556 list_empty(&space_info->priority_tickets)) {
557 spin_unlock(&space_info->lock);
558 break;
559 }
560 spin_unlock(&space_info->lock);
561
0d9764f6
JB
562 delalloc_bytes = percpu_counter_sum_positive(
563 &fs_info->delalloc_bytes);
5deb17e1
JB
564 ordered_bytes = percpu_counter_sum_positive(
565 &fs_info->ordered_bytes);
0d9764f6
JB
566 }
567}
568
569/**
d98b188e
NB
570 * Possibly commit the transaction if its ok to
571 *
572 * @fs_info: the filesystem
573 * @space_info: space_info we are checking for commit, either data or metadata
0d9764f6
JB
574 *
575 * This will check to make sure that committing the transaction will actually
576 * get us somewhere and then commit the transaction if it does. Otherwise it
577 * will return -ENOSPC.
578 */
579static int may_commit_transaction(struct btrfs_fs_info *fs_info,
bb86bd3d 580 struct btrfs_space_info *space_info)
0d9764f6
JB
581{
582 struct reserve_ticket *ticket = NULL;
583 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
584 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
bb4f58a7 585 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
0d9764f6 586 struct btrfs_trans_handle *trans;
0d9764f6 587 u64 reclaim_bytes = 0;
bb86bd3d 588 u64 bytes_needed = 0;
00c0135e 589 u64 cur_free_bytes = 0;
0d9764f6
JB
590
591 trans = (struct btrfs_trans_handle *)current->journal_info;
592 if (trans)
593 return -EAGAIN;
594
595 spin_lock(&space_info->lock);
00c0135e
JB
596 cur_free_bytes = btrfs_space_info_used(space_info, true);
597 if (cur_free_bytes < space_info->total_bytes)
598 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
599 else
600 cur_free_bytes = 0;
601
0d9764f6
JB
602 if (!list_empty(&space_info->priority_tickets))
603 ticket = list_first_entry(&space_info->priority_tickets,
604 struct reserve_ticket, list);
605 else if (!list_empty(&space_info->tickets))
606 ticket = list_first_entry(&space_info->tickets,
607 struct reserve_ticket, list);
a1ed0a82
JB
608 if (ticket)
609 bytes_needed = ticket->bytes;
00c0135e
JB
610
611 if (bytes_needed > cur_free_bytes)
612 bytes_needed -= cur_free_bytes;
613 else
614 bytes_needed = 0;
0d9764f6
JB
615 spin_unlock(&space_info->lock);
616
617 if (!bytes_needed)
618 return 0;
619
620 trans = btrfs_join_transaction(fs_info->extent_root);
621 if (IS_ERR(trans))
622 return PTR_ERR(trans);
623
624 /*
625 * See if there is enough pinned space to make this reservation, or if
626 * we have block groups that are going to be freed, allowing us to
627 * possibly do a chunk allocation the next loop through.
628 */
bb86bd3d 629 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
0d9764f6
JB
630 __percpu_counter_compare(&space_info->total_bytes_pinned,
631 bytes_needed,
632 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
633 goto commit;
634
635 /*
a1ed0a82
JB
636 * See if there is some space in the delayed insertion reserve for this
637 * reservation. If the space_info's don't match (like for DATA or
638 * SYSTEM) then just go enospc, reclaiming this space won't recover any
639 * space to satisfy those reservations.
0d9764f6
JB
640 */
641 if (space_info != delayed_rsv->space_info)
642 goto enospc;
643
644 spin_lock(&delayed_rsv->lock);
645 reclaim_bytes += delayed_rsv->reserved;
646 spin_unlock(&delayed_rsv->lock);
647
648 spin_lock(&delayed_refs_rsv->lock);
649 reclaim_bytes += delayed_refs_rsv->reserved;
650 spin_unlock(&delayed_refs_rsv->lock);
bb4f58a7
JB
651
652 spin_lock(&trans_rsv->lock);
653 reclaim_bytes += trans_rsv->reserved;
654 spin_unlock(&trans_rsv->lock);
655
0d9764f6
JB
656 if (reclaim_bytes >= bytes_needed)
657 goto commit;
658 bytes_needed -= reclaim_bytes;
659
660 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
661 bytes_needed,
662 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
663 goto enospc;
664
665commit:
666 return btrfs_commit_transaction(trans);
667enospc:
668 btrfs_end_transaction(trans);
669 return -ENOSPC;
670}
671
672/*
673 * Try to flush some data based on policy set by @state. This is only advisory
674 * and may fail for various reasons. The caller is supposed to examine the
675 * state of @space_info to detect the outcome.
676 */
677static void flush_space(struct btrfs_fs_info *fs_info,
678 struct btrfs_space_info *space_info, u64 num_bytes,
4b02b00f 679 enum btrfs_flush_state state, bool for_preempt)
0d9764f6
JB
680{
681 struct btrfs_root *root = fs_info->extent_root;
682 struct btrfs_trans_handle *trans;
683 int nr;
684 int ret = 0;
685
686 switch (state) {
687 case FLUSH_DELAYED_ITEMS_NR:
688 case FLUSH_DELAYED_ITEMS:
689 if (state == FLUSH_DELAYED_ITEMS_NR)
690 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
691 else
692 nr = -1;
693
694 trans = btrfs_join_transaction(root);
695 if (IS_ERR(trans)) {
696 ret = PTR_ERR(trans);
697 break;
698 }
699 ret = btrfs_run_delayed_items_nr(trans, nr);
700 btrfs_end_transaction(trans);
701 break;
702 case FLUSH_DELALLOC:
703 case FLUSH_DELALLOC_WAIT:
920a9958 704 shrink_delalloc(fs_info, space_info, num_bytes,
0d9764f6
JB
705 state == FLUSH_DELALLOC_WAIT);
706 break;
707 case FLUSH_DELAYED_REFS_NR:
708 case FLUSH_DELAYED_REFS:
709 trans = btrfs_join_transaction(root);
710 if (IS_ERR(trans)) {
711 ret = PTR_ERR(trans);
712 break;
713 }
714 if (state == FLUSH_DELAYED_REFS_NR)
715 nr = calc_reclaim_items_nr(fs_info, num_bytes);
716 else
717 nr = 0;
718 btrfs_run_delayed_refs(trans, nr);
719 btrfs_end_transaction(trans);
720 break;
721 case ALLOC_CHUNK:
722 case ALLOC_CHUNK_FORCE:
723 trans = btrfs_join_transaction(root);
724 if (IS_ERR(trans)) {
725 ret = PTR_ERR(trans);
726 break;
727 }
728 ret = btrfs_chunk_alloc(trans,
c6c45303 729 btrfs_get_alloc_profile(fs_info, space_info->flags),
0d9764f6
JB
730 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
731 CHUNK_ALLOC_FORCE);
732 btrfs_end_transaction(trans);
733 if (ret > 0 || ret == -ENOSPC)
734 ret = 0;
735 break;
844245b4 736 case RUN_DELAYED_IPUTS:
0d9764f6
JB
737 /*
738 * If we have pending delayed iputs then we could free up a
739 * bunch of pinned space, so make sure we run the iputs before
740 * we do our pinned bytes check below.
741 */
742 btrfs_run_delayed_iputs(fs_info);
743 btrfs_wait_on_delayed_iputs(fs_info);
844245b4
JB
744 break;
745 case COMMIT_TRANS:
bb86bd3d 746 ret = may_commit_transaction(fs_info, space_info);
0d9764f6 747 break;
f00c42dd
JB
748 case FORCE_COMMIT_TRANS:
749 trans = btrfs_join_transaction(root);
750 if (IS_ERR(trans)) {
751 ret = PTR_ERR(trans);
752 break;
753 }
754 ret = btrfs_commit_transaction(trans);
755 break;
0d9764f6
JB
756 default:
757 ret = -ENOSPC;
758 break;
759 }
760
761 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4b02b00f 762 ret, for_preempt);
0d9764f6
JB
763 return;
764}
765
766static inline u64
767btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
9f246926 768 struct btrfs_space_info *space_info)
0d9764f6 769{
0d9764f6 770 u64 used;
fa121a26 771 u64 avail;
db161806 772 u64 to_reclaim = space_info->reclaim_size;
0d9764f6 773
db161806 774 lockdep_assert_held(&space_info->lock);
fa121a26
JB
775
776 avail = calc_available_free_space(fs_info, space_info,
777 BTRFS_RESERVE_FLUSH_ALL);
778 used = btrfs_space_info_used(space_info, true);
779
780 /*
781 * We may be flushing because suddenly we have less space than we had
782 * before, and now we're well over-committed based on our current free
783 * space. If that's the case add in our overage so we make sure to put
784 * appropriate pressure on the flushing state machine.
785 */
786 if (space_info->total_bytes + avail < used)
787 to_reclaim += used - (space_info->total_bytes + avail);
788
0d9764f6
JB
789 return to_reclaim;
790}
791
ae7913ba 792static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
2e294c60 793 struct btrfs_space_info *space_info)
0d9764f6 794{
2e294c60 795 u64 ordered, delalloc;
0d9764f6 796 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
2e294c60 797 u64 used;
0d9764f6
JB
798
799 /* If we're just plain full then async reclaim just slows us down. */
800 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
ae7913ba 801 return false;
0d9764f6 802
f205edf7
JB
803 /*
804 * We have tickets queued, bail so we don't compete with the async
805 * flushers.
806 */
807 if (space_info->reclaim_size)
808 return false;
809
2e294c60
JB
810 /*
811 * If we have over half of the free space occupied by reservations or
812 * pinned then we want to start flushing.
813 *
814 * We do not do the traditional thing here, which is to say
815 *
816 * if (used >= ((total_bytes + avail) / 2))
817 * return 1;
818 *
819 * because this doesn't quite work how we want. If we had more than 50%
820 * of the space_info used by bytes_used and we had 0 available we'd just
821 * constantly run the background flusher. Instead we want it to kick in
88a777a6
JB
822 * if our reclaimable space exceeds our clamped free space.
823 *
824 * Our clamping range is 2^1 -> 2^8. Practically speaking that means
825 * the following:
826 *
827 * Amount of RAM Minimum threshold Maximum threshold
828 *
829 * 256GiB 1GiB 128GiB
830 * 128GiB 512MiB 64GiB
831 * 64GiB 256MiB 32GiB
832 * 32GiB 128MiB 16GiB
833 * 16GiB 64MiB 8GiB
834 *
835 * These are the range our thresholds will fall in, corresponding to how
836 * much delalloc we need for the background flusher to kick in.
2e294c60 837 */
88a777a6 838
2e294c60
JB
839 thresh = calc_available_free_space(fs_info, space_info,
840 BTRFS_RESERVE_FLUSH_ALL);
841 thresh += (space_info->total_bytes - space_info->bytes_used -
842 space_info->bytes_reserved - space_info->bytes_readonly);
88a777a6 843 thresh >>= space_info->clamp;
9f42d377 844
2e294c60 845 used = space_info->bytes_pinned;
9f42d377 846
2e294c60
JB
847 /*
848 * If we have more ordered bytes than delalloc bytes then we're either
849 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
850 * around. Preemptive flushing is only useful in that it can free up
851 * space before tickets need to wait for things to finish. In the case
852 * of ordered extents, preemptively waiting on ordered extents gets us
853 * nothing, if our reservations are tied up in ordered extents we'll
854 * simply have to slow down writers by forcing them to wait on ordered
855 * extents.
856 *
857 * In the case that ordered is larger than delalloc, only include the
858 * block reserves that we would actually be able to directly reclaim
859 * from. In this case if we're heavy on metadata operations this will
860 * clearly be heavy enough to warrant preemptive flushing. In the case
861 * of heavy DIO or ordered reservations, preemptive flushing will just
862 * waste time and cause us to slow down.
863 */
2cdb3909
JB
864 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes);
865 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
2e294c60
JB
866 if (ordered >= delalloc)
867 used += fs_info->delayed_refs_rsv.reserved +
868 fs_info->delayed_block_rsv.reserved;
9f42d377 869 else
2e294c60 870 used += space_info->bytes_may_use;
0d9764f6
JB
871
872 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
873 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
874}
875
7f9fe614
JB
876static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
877 struct btrfs_space_info *space_info,
878 struct reserve_ticket *ticket)
879{
880 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
881 u64 min_bytes;
882
883 if (global_rsv->space_info != space_info)
884 return false;
885
886 spin_lock(&global_rsv->lock);
e6549c2a 887 min_bytes = div_factor(global_rsv->size, 1);
7f9fe614
JB
888 if (global_rsv->reserved < min_bytes + ticket->bytes) {
889 spin_unlock(&global_rsv->lock);
890 return false;
891 }
892 global_rsv->reserved -= ticket->bytes;
6d548b9e 893 remove_ticket(space_info, ticket);
7f9fe614 894 ticket->bytes = 0;
7f9fe614
JB
895 wake_up(&ticket->wait);
896 space_info->tickets_id++;
897 if (global_rsv->reserved < global_rsv->size)
898 global_rsv->full = 0;
899 spin_unlock(&global_rsv->lock);
900
901 return true;
902}
903
2341ccd1
JB
904/*
905 * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
906 * @fs_info - fs_info for this fs
907 * @space_info - the space info we were flushing
908 *
909 * We call this when we've exhausted our flushing ability and haven't made
910 * progress in satisfying tickets. The reservation code handles tickets in
911 * order, so if there is a large ticket first and then smaller ones we could
912 * very well satisfy the smaller tickets. This will attempt to wake up any
913 * tickets in the list to catch this case.
914 *
915 * This function returns true if it was able to make progress by clearing out
916 * other tickets, or if it stumbles across a ticket that was smaller than the
917 * first ticket.
918 */
919static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
920 struct btrfs_space_info *space_info)
0d9764f6
JB
921{
922 struct reserve_ticket *ticket;
2341ccd1
JB
923 u64 tickets_id = space_info->tickets_id;
924 u64 first_ticket_bytes = 0;
925
84fe47a4
JB
926 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
927 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
928 __btrfs_dump_space_info(fs_info, space_info);
929 }
930
2341ccd1
JB
931 while (!list_empty(&space_info->tickets) &&
932 tickets_id == space_info->tickets_id) {
933 ticket = list_first_entry(&space_info->tickets,
934 struct reserve_ticket, list);
935
7f9fe614
JB
936 if (ticket->steal &&
937 steal_from_global_rsv(fs_info, space_info, ticket))
938 return true;
939
2341ccd1
JB
940 /*
941 * may_commit_transaction will avoid committing the transaction
942 * if it doesn't feel like the space reclaimed by the commit
943 * would result in the ticket succeeding. However if we have a
944 * smaller ticket in the queue it may be small enough to be
945 * satisified by committing the transaction, so if any
946 * subsequent ticket is smaller than the first ticket go ahead
947 * and send us back for another loop through the enospc flushing
948 * code.
949 */
950 if (first_ticket_bytes == 0)
951 first_ticket_bytes = ticket->bytes;
952 else if (first_ticket_bytes > ticket->bytes)
953 return true;
0d9764f6 954
84fe47a4
JB
955 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
956 btrfs_info(fs_info, "failing ticket with %llu bytes",
957 ticket->bytes);
958
d611add4 959 remove_ticket(space_info, ticket);
0d9764f6
JB
960 ticket->error = -ENOSPC;
961 wake_up(&ticket->wait);
2341ccd1
JB
962
963 /*
964 * We're just throwing tickets away, so more flushing may not
965 * trip over btrfs_try_granting_tickets, so we need to call it
966 * here to see if we can make progress with the next ticket in
967 * the list.
968 */
969 btrfs_try_granting_tickets(fs_info, space_info);
0d9764f6 970 }
2341ccd1 971 return (tickets_id != space_info->tickets_id);
0d9764f6
JB
972}
973
974/*
975 * This is for normal flushers, we can wait all goddamned day if we want to. We
976 * will loop and continuously try to flush as long as we are making progress.
977 * We count progress as clearing off tickets each time we have to loop.
978 */
979static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
980{
981 struct btrfs_fs_info *fs_info;
982 struct btrfs_space_info *space_info;
983 u64 to_reclaim;
91e79a83 984 enum btrfs_flush_state flush_state;
0d9764f6
JB
985 int commit_cycles = 0;
986 u64 last_tickets_id;
987
988 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
989 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
990
991 spin_lock(&space_info->lock);
9f246926 992 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
0d9764f6
JB
993 if (!to_reclaim) {
994 space_info->flush = 0;
995 spin_unlock(&space_info->lock);
996 return;
997 }
998 last_tickets_id = space_info->tickets_id;
999 spin_unlock(&space_info->lock);
1000
1001 flush_state = FLUSH_DELAYED_ITEMS_NR;
1002 do {
4b02b00f 1003 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
0d9764f6
JB
1004 spin_lock(&space_info->lock);
1005 if (list_empty(&space_info->tickets)) {
1006 space_info->flush = 0;
1007 spin_unlock(&space_info->lock);
1008 return;
1009 }
1010 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
9f246926 1011 space_info);
0d9764f6
JB
1012 if (last_tickets_id == space_info->tickets_id) {
1013 flush_state++;
1014 } else {
1015 last_tickets_id = space_info->tickets_id;
1016 flush_state = FLUSH_DELAYED_ITEMS_NR;
1017 if (commit_cycles)
1018 commit_cycles--;
1019 }
1020
1021 /*
1022 * We don't want to force a chunk allocation until we've tried
1023 * pretty hard to reclaim space. Think of the case where we
1024 * freed up a bunch of space and so have a lot of pinned space
1025 * to reclaim. We would rather use that than possibly create a
1026 * underutilized metadata chunk. So if this is our first run
1027 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1028 * commit the transaction. If nothing has changed the next go
1029 * around then we can force a chunk allocation.
1030 */
1031 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1032 flush_state++;
1033
1034 if (flush_state > COMMIT_TRANS) {
1035 commit_cycles++;
1036 if (commit_cycles > 2) {
2341ccd1 1037 if (maybe_fail_all_tickets(fs_info, space_info)) {
0d9764f6
JB
1038 flush_state = FLUSH_DELAYED_ITEMS_NR;
1039 commit_cycles--;
1040 } else {
1041 space_info->flush = 0;
1042 }
1043 } else {
1044 flush_state = FLUSH_DELAYED_ITEMS_NR;
1045 }
1046 }
1047 spin_unlock(&space_info->lock);
1048 } while (flush_state <= COMMIT_TRANS);
1049}
1050
576fa348
JB
1051/*
1052 * This handles pre-flushing of metadata space before we get to the point that
1053 * we need to start blocking threads on tickets. The logic here is different
1054 * from the other flush paths because it doesn't rely on tickets to tell us how
1055 * much we need to flush, instead it attempts to keep us below the 80% full
1056 * watermark of space by flushing whichever reservation pool is currently the
1057 * largest.
1058 */
1059static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1060{
1061 struct btrfs_fs_info *fs_info;
1062 struct btrfs_space_info *space_info;
1063 struct btrfs_block_rsv *delayed_block_rsv;
1064 struct btrfs_block_rsv *delayed_refs_rsv;
1065 struct btrfs_block_rsv *global_rsv;
1066 struct btrfs_block_rsv *trans_rsv;
88a777a6 1067 int loops = 0;
576fa348
JB
1068
1069 fs_info = container_of(work, struct btrfs_fs_info,
1070 preempt_reclaim_work);
1071 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1072 delayed_block_rsv = &fs_info->delayed_block_rsv;
1073 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1074 global_rsv = &fs_info->global_block_rsv;
1075 trans_rsv = &fs_info->trans_block_rsv;
1076
1077 spin_lock(&space_info->lock);
2e294c60 1078 while (need_preemptive_reclaim(fs_info, space_info)) {
576fa348
JB
1079 enum btrfs_flush_state flush;
1080 u64 delalloc_size = 0;
1081 u64 to_reclaim, block_rsv_size;
1082 u64 global_rsv_size = global_rsv->reserved;
1083
88a777a6
JB
1084 loops++;
1085
576fa348
JB
1086 /*
1087 * We don't have a precise counter for the metadata being
1088 * reserved for delalloc, so we'll approximate it by subtracting
1089 * out the block rsv's space from the bytes_may_use. If that
1090 * amount is higher than the individual reserves, then we can
1091 * assume it's tied up in delalloc reservations.
1092 */
1093 block_rsv_size = global_rsv_size +
1094 delayed_block_rsv->reserved +
1095 delayed_refs_rsv->reserved +
1096 trans_rsv->reserved;
1097 if (block_rsv_size < space_info->bytes_may_use)
1098 delalloc_size = space_info->bytes_may_use - block_rsv_size;
1099 spin_unlock(&space_info->lock);
1100
1101 /*
1102 * We don't want to include the global_rsv in our calculation,
1103 * because that's space we can't touch. Subtract it from the
1104 * block_rsv_size for the next checks.
1105 */
1106 block_rsv_size -= global_rsv_size;
1107
1108 /*
1109 * We really want to avoid flushing delalloc too much, as it
1110 * could result in poor allocation patterns, so only flush it if
1111 * it's larger than the rest of the pools combined.
1112 */
1113 if (delalloc_size > block_rsv_size) {
1114 to_reclaim = delalloc_size;
1115 flush = FLUSH_DELALLOC;
1116 } else if (space_info->bytes_pinned >
1117 (delayed_block_rsv->reserved +
1118 delayed_refs_rsv->reserved)) {
1119 to_reclaim = space_info->bytes_pinned;
1120 flush = FORCE_COMMIT_TRANS;
1121 } else if (delayed_block_rsv->reserved >
1122 delayed_refs_rsv->reserved) {
1123 to_reclaim = delayed_block_rsv->reserved;
1124 flush = FLUSH_DELAYED_ITEMS_NR;
1125 } else {
1126 to_reclaim = delayed_refs_rsv->reserved;
1127 flush = FLUSH_DELAYED_REFS_NR;
1128 }
1129
1130 /*
1131 * We don't want to reclaim everything, just a portion, so scale
1132 * down the to_reclaim by 1/4. If it takes us down to 0,
1133 * reclaim 1 items worth.
1134 */
1135 to_reclaim >>= 2;
1136 if (!to_reclaim)
1137 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
4b02b00f 1138 flush_space(fs_info, space_info, to_reclaim, flush, true);
576fa348
JB
1139 cond_resched();
1140 spin_lock(&space_info->lock);
576fa348 1141 }
88a777a6
JB
1142
1143 /* We only went through once, back off our clamping. */
1144 if (loops == 1 && !space_info->reclaim_size)
1145 space_info->clamp = max(1, space_info->clamp - 1);
e5ad49e2 1146 trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
576fa348
JB
1147 spin_unlock(&space_info->lock);
1148}
1149
1a7a92c8
JB
1150/*
1151 * FLUSH_DELALLOC_WAIT:
1152 * Space is freed from flushing delalloc in one of two ways.
1153 *
1154 * 1) compression is on and we allocate less space than we reserved
1155 * 2) we are overwriting existing space
1156 *
1157 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1158 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1159 * length to ->bytes_reserved, and subtracts the reserved space from
1160 * ->bytes_may_use.
1161 *
1162 * For #2 this is trickier. Once the ordered extent runs we will drop the
1163 * extent in the range we are overwriting, which creates a delayed ref for
1164 * that freed extent. This however is not reclaimed until the transaction
1165 * commits, thus the next stages.
1166 *
1167 * RUN_DELAYED_IPUTS
1168 * If we are freeing inodes, we want to make sure all delayed iputs have
1169 * completed, because they could have been on an inode with i_nlink == 0, and
1170 * thus have been truncated and freed up space. But again this space is not
1171 * immediately re-usable, it comes in the form of a delayed ref, which must be
1172 * run and then the transaction must be committed.
1173 *
1174 * FLUSH_DELAYED_REFS
1175 * The above two cases generate delayed refs that will affect
1176 * ->total_bytes_pinned. However this counter can be inconsistent with
1177 * reality if there are outstanding delayed refs. This is because we adjust
1178 * the counter based solely on the current set of delayed refs and disregard
1179 * any on-disk state which might include more refs. So for example, if we
1180 * have an extent with 2 references, but we only drop 1, we'll see that there
1181 * is a negative delayed ref count for the extent and assume that the space
1182 * will be freed, and thus increase ->total_bytes_pinned.
1183 *
1184 * Running the delayed refs gives us the actual real view of what will be
1185 * freed at the transaction commit time. This stage will not actually free
1186 * space for us, it just makes sure that may_commit_transaction() has all of
1187 * the information it needs to make the right decision.
1188 *
1189 * COMMIT_TRANS
1190 * This is where we reclaim all of the pinned space generated by the previous
1191 * two stages. We will not commit the transaction if we don't think we're
1192 * likely to satisfy our request, which means if our current free space +
1193 * total_bytes_pinned < reservation we will not commit. This is why the
1194 * previous states are actually important, to make sure we know for sure
1195 * whether committing the transaction will allow us to make progress.
c4923027
JB
1196 *
1197 * ALLOC_CHUNK_FORCE
1198 * For data we start with alloc chunk force, however we could have been full
1199 * before, and then the transaction commit could have freed new block groups,
1200 * so if we now have space to allocate do the force chunk allocation.
1a7a92c8 1201 */
57056740
JB
1202static const enum btrfs_flush_state data_flush_states[] = {
1203 FLUSH_DELALLOC_WAIT,
1204 RUN_DELAYED_IPUTS,
1205 FLUSH_DELAYED_REFS,
1206 COMMIT_TRANS,
c4923027 1207 ALLOC_CHUNK_FORCE,
57056740
JB
1208};
1209
1210static void btrfs_async_reclaim_data_space(struct work_struct *work)
0d9764f6 1211{
57056740
JB
1212 struct btrfs_fs_info *fs_info;
1213 struct btrfs_space_info *space_info;
1214 u64 last_tickets_id;
91e79a83 1215 enum btrfs_flush_state flush_state = 0;
57056740
JB
1216
1217 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1218 space_info = fs_info->data_sinfo;
1219
1220 spin_lock(&space_info->lock);
1221 if (list_empty(&space_info->tickets)) {
1222 space_info->flush = 0;
1223 spin_unlock(&space_info->lock);
1224 return;
1225 }
1226 last_tickets_id = space_info->tickets_id;
1227 spin_unlock(&space_info->lock);
1228
1229 while (!space_info->full) {
4b02b00f 1230 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
57056740
JB
1231 spin_lock(&space_info->lock);
1232 if (list_empty(&space_info->tickets)) {
1233 space_info->flush = 0;
1234 spin_unlock(&space_info->lock);
1235 return;
1236 }
1237 last_tickets_id = space_info->tickets_id;
1238 spin_unlock(&space_info->lock);
1239 }
1240
1241 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1242 flush_space(fs_info, space_info, U64_MAX,
4b02b00f 1243 data_flush_states[flush_state], false);
57056740
JB
1244 spin_lock(&space_info->lock);
1245 if (list_empty(&space_info->tickets)) {
1246 space_info->flush = 0;
1247 spin_unlock(&space_info->lock);
1248 return;
1249 }
1250
1251 if (last_tickets_id == space_info->tickets_id) {
1252 flush_state++;
1253 } else {
1254 last_tickets_id = space_info->tickets_id;
1255 flush_state = 0;
1256 }
1257
1258 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1259 if (space_info->full) {
1260 if (maybe_fail_all_tickets(fs_info, space_info))
1261 flush_state = 0;
1262 else
1263 space_info->flush = 0;
1264 } else {
1265 flush_state = 0;
1266 }
1267 }
1268 spin_unlock(&space_info->lock);
1269 }
1270}
1271
1272void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1273{
1274 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1275 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
576fa348
JB
1276 INIT_WORK(&fs_info->preempt_reclaim_work,
1277 btrfs_preempt_reclaim_metadata_space);
0d9764f6
JB
1278}
1279
1280static const enum btrfs_flush_state priority_flush_states[] = {
1281 FLUSH_DELAYED_ITEMS_NR,
1282 FLUSH_DELAYED_ITEMS,
1283 ALLOC_CHUNK,
1284};
1285
d3984c90
JB
1286static const enum btrfs_flush_state evict_flush_states[] = {
1287 FLUSH_DELAYED_ITEMS_NR,
1288 FLUSH_DELAYED_ITEMS,
1289 FLUSH_DELAYED_REFS_NR,
1290 FLUSH_DELAYED_REFS,
1291 FLUSH_DELALLOC,
1292 FLUSH_DELALLOC_WAIT,
1293 ALLOC_CHUNK,
1294 COMMIT_TRANS,
1295};
1296
0d9764f6 1297static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
9ce2f423
JB
1298 struct btrfs_space_info *space_info,
1299 struct reserve_ticket *ticket,
1300 const enum btrfs_flush_state *states,
1301 int states_nr)
0d9764f6
JB
1302{
1303 u64 to_reclaim;
1304 int flush_state;
1305
1306 spin_lock(&space_info->lock);
9f246926 1307 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
0d9764f6
JB
1308 if (!to_reclaim) {
1309 spin_unlock(&space_info->lock);
1310 return;
1311 }
1312 spin_unlock(&space_info->lock);
1313
1314 flush_state = 0;
1315 do {
4b02b00f
JB
1316 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1317 false);
0d9764f6
JB
1318 flush_state++;
1319 spin_lock(&space_info->lock);
1320 if (ticket->bytes == 0) {
1321 spin_unlock(&space_info->lock);
1322 return;
1323 }
1324 spin_unlock(&space_info->lock);
9ce2f423 1325 } while (flush_state < states_nr);
0d9764f6
JB
1326}
1327
1004f686
JB
1328static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1329 struct btrfs_space_info *space_info,
57056740 1330 struct reserve_ticket *ticket)
1004f686 1331{
1004f686 1332 while (!space_info->full) {
4b02b00f 1333 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1004f686
JB
1334 spin_lock(&space_info->lock);
1335 if (ticket->bytes == 0) {
1336 spin_unlock(&space_info->lock);
1337 return;
1338 }
1339 spin_unlock(&space_info->lock);
1340 }
1004f686
JB
1341}
1342
374bf9c5
JB
1343static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1344 struct btrfs_space_info *space_info,
1345 struct reserve_ticket *ticket)
0d9764f6
JB
1346
1347{
1348 DEFINE_WAIT(wait);
0d9764f6
JB
1349 int ret = 0;
1350
1351 spin_lock(&space_info->lock);
1352 while (ticket->bytes > 0 && ticket->error == 0) {
1353 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1354 if (ret) {
0cab7acc
FM
1355 /*
1356 * Delete us from the list. After we unlock the space
1357 * info, we don't want the async reclaim job to reserve
1358 * space for this ticket. If that would happen, then the
1359 * ticket's task would not known that space was reserved
1360 * despite getting an error, resulting in a space leak
1361 * (bytes_may_use counter of our space_info).
1362 */
d611add4 1363 remove_ticket(space_info, ticket);
374bf9c5 1364 ticket->error = -EINTR;
0d9764f6
JB
1365 break;
1366 }
1367 spin_unlock(&space_info->lock);
1368
1369 schedule();
1370
1371 finish_wait(&ticket->wait, &wait);
1372 spin_lock(&space_info->lock);
1373 }
0d9764f6 1374 spin_unlock(&space_info->lock);
0d9764f6
JB
1375}
1376
03235279 1377/**
d98b188e
NB
1378 * Do the appropriate flushing and waiting for a ticket
1379 *
1380 * @fs_info: the filesystem
1381 * @space_info: space info for the reservation
1382 * @ticket: ticket for the reservation
ac1ea10e
JB
1383 * @start_ns: timestamp when the reservation started
1384 * @orig_bytes: amount of bytes originally reserved
d98b188e 1385 * @flush: how much we can flush
03235279
JB
1386 *
1387 * This does the work of figuring out how to flush for the ticket, waiting for
1388 * the reservation, and returning the appropriate error if there is one.
1389 */
1390static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1391 struct btrfs_space_info *space_info,
1392 struct reserve_ticket *ticket,
ac1ea10e 1393 u64 start_ns, u64 orig_bytes,
03235279
JB
1394 enum btrfs_reserve_flush_enum flush)
1395{
03235279
JB
1396 int ret;
1397
d3984c90 1398 switch (flush) {
57056740 1399 case BTRFS_RESERVE_FLUSH_DATA:
d3984c90 1400 case BTRFS_RESERVE_FLUSH_ALL:
7f9fe614 1401 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
03235279 1402 wait_reserve_ticket(fs_info, space_info, ticket);
d3984c90
JB
1403 break;
1404 case BTRFS_RESERVE_FLUSH_LIMIT:
9ce2f423
JB
1405 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1406 priority_flush_states,
1407 ARRAY_SIZE(priority_flush_states));
d3984c90
JB
1408 break;
1409 case BTRFS_RESERVE_FLUSH_EVICT:
1410 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1411 evict_flush_states,
1412 ARRAY_SIZE(evict_flush_states));
1413 break;
1004f686 1414 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
57056740 1415 priority_reclaim_data_space(fs_info, space_info, ticket);
1004f686 1416 break;
d3984c90
JB
1417 default:
1418 ASSERT(0);
1419 break;
1420 }
03235279
JB
1421
1422 spin_lock(&space_info->lock);
1423 ret = ticket->error;
1424 if (ticket->bytes || ticket->error) {
0cab7acc 1425 /*
42a72cb7
JB
1426 * We were a priority ticket, so we need to delete ourselves
1427 * from the list. Because we could have other priority tickets
1428 * behind us that require less space, run
1429 * btrfs_try_granting_tickets() to see if their reservations can
1430 * now be made.
0cab7acc 1431 */
42a72cb7
JB
1432 if (!list_empty(&ticket->list)) {
1433 remove_ticket(space_info, ticket);
1434 btrfs_try_granting_tickets(fs_info, space_info);
1435 }
1436
03235279
JB
1437 if (!ret)
1438 ret = -ENOSPC;
1439 }
1440 spin_unlock(&space_info->lock);
03235279 1441 ASSERT(list_empty(&ticket->list));
0cab7acc
FM
1442 /*
1443 * Check that we can't have an error set if the reservation succeeded,
1444 * as that would confuse tasks and lead them to error out without
1445 * releasing reserved space (if an error happens the expectation is that
1446 * space wasn't reserved at all).
1447 */
1448 ASSERT(!(ticket->bytes == 0 && ticket->error));
ac1ea10e
JB
1449 trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1450 start_ns, flush, ticket->error);
03235279
JB
1451 return ret;
1452}
1453
666daa9f
JB
1454/*
1455 * This returns true if this flush state will go through the ordinary flushing
1456 * code.
1457 */
1458static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1459{
1460 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1461 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1462}
1463
88a777a6
JB
1464static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1465 struct btrfs_space_info *space_info)
1466{
1467 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1468 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1469
1470 /*
1471 * If we're heavy on ordered operations then clamping won't help us. We
1472 * need to clamp specifically to keep up with dirty'ing buffered
1473 * writers, because there's not a 1:1 correlation of writing delalloc
1474 * and freeing space, like there is with flushing delayed refs or
1475 * delayed nodes. If we're already more ordered than delalloc then
1476 * we're keeping up, otherwise we aren't and should probably clamp.
1477 */
1478 if (ordered < delalloc)
1479 space_info->clamp = min(space_info->clamp + 1, 8);
1480}
1481
0d9764f6 1482/**
d98b188e
NB
1483 * Try to reserve bytes from the block_rsv's space
1484 *
1485 * @fs_info: the filesystem
1486 * @space_info: space info we want to allocate from
1487 * @orig_bytes: number of bytes we want
1488 * @flush: whether or not we can flush to make our reservation
0d9764f6
JB
1489 *
1490 * This will reserve orig_bytes number of bytes from the space info associated
1491 * with the block_rsv. If there is not enough space it will make an attempt to
1492 * flush out space to make room. It will do this by flushing delalloc if
1493 * possible or committing the transaction. If flush is 0 then no attempts to
1494 * regain reservations will be made and this will fail if there is not enough
1495 * space already.
1496 */
f3bda421
JB
1497static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1498 struct btrfs_space_info *space_info, u64 orig_bytes,
1499 enum btrfs_reserve_flush_enum flush)
0d9764f6 1500{
57056740 1501 struct work_struct *async_work;
0d9764f6 1502 struct reserve_ticket ticket;
ac1ea10e 1503 u64 start_ns = 0;
0d9764f6 1504 u64 used;
0d9764f6 1505 int ret = 0;
ef1317a1 1506 bool pending_tickets;
0d9764f6
JB
1507
1508 ASSERT(orig_bytes);
1509 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1510
57056740
JB
1511 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1512 async_work = &fs_info->async_data_reclaim_work;
1513 else
1514 async_work = &fs_info->async_reclaim_work;
1515
0d9764f6
JB
1516 spin_lock(&space_info->lock);
1517 ret = -ENOSPC;
1518 used = btrfs_space_info_used(space_info, true);
666daa9f
JB
1519
1520 /*
1521 * We don't want NO_FLUSH allocations to jump everybody, they can
1522 * generally handle ENOSPC in a different way, so treat them the same as
1523 * normal flushers when it comes to skipping pending tickets.
1524 */
1525 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1526 pending_tickets = !list_empty(&space_info->tickets) ||
1527 !list_empty(&space_info->priority_tickets);
1528 else
1529 pending_tickets = !list_empty(&space_info->priority_tickets);
0d9764f6
JB
1530
1531 /*
9b4851bc
GR
1532 * Carry on if we have enough space (short-circuit) OR call
1533 * can_overcommit() to ensure we can overcommit to continue.
0d9764f6 1534 */
ef1317a1
JB
1535 if (!pending_tickets &&
1536 ((used + orig_bytes <= space_info->total_bytes) ||
a30a3d20 1537 btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
0d9764f6
JB
1538 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1539 orig_bytes);
0d9764f6
JB
1540 ret = 0;
1541 }
1542
1543 /*
1544 * If we couldn't make a reservation then setup our reservation ticket
1545 * and kick the async worker if it's not already running.
1546 *
1547 * If we are a priority flusher then we just need to add our ticket to
1548 * the list and we will do our own flushing further down.
1549 */
1550 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
0d9764f6
JB
1551 ticket.bytes = orig_bytes;
1552 ticket.error = 0;
db161806 1553 space_info->reclaim_size += ticket.bytes;
0d9764f6 1554 init_waitqueue_head(&ticket.wait);
7f9fe614 1555 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
ac1ea10e
JB
1556 if (trace_btrfs_reserve_ticket_enabled())
1557 start_ns = ktime_get_ns();
1558
7f9fe614 1559 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
57056740
JB
1560 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1561 flush == BTRFS_RESERVE_FLUSH_DATA) {
0d9764f6
JB
1562 list_add_tail(&ticket.list, &space_info->tickets);
1563 if (!space_info->flush) {
1564 space_info->flush = 1;
1565 trace_btrfs_trigger_flush(fs_info,
1566 space_info->flags,
1567 orig_bytes, flush,
1568 "enospc");
57056740 1569 queue_work(system_unbound_wq, async_work);
0d9764f6
JB
1570 }
1571 } else {
1572 list_add_tail(&ticket.list,
1573 &space_info->priority_tickets);
1574 }
88a777a6
JB
1575
1576 /*
1577 * We were forced to add a reserve ticket, so our preemptive
1578 * flushing is unable to keep up. Clamp down on the threshold
1579 * for the preemptive flushing in order to keep up with the
1580 * workload.
1581 */
1582 maybe_clamp_preempt(fs_info, space_info);
0d9764f6
JB
1583 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1584 used += orig_bytes;
1585 /*
1586 * We will do the space reservation dance during log replay,
1587 * which means we won't have fs_info->fs_root set, so don't do
1588 * the async reclaim as we will panic.
1589 */
1590 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
2e294c60 1591 need_preemptive_reclaim(fs_info, space_info) &&
576fa348 1592 !work_busy(&fs_info->preempt_reclaim_work)) {
0d9764f6
JB
1593 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1594 orig_bytes, flush, "preempt");
1595 queue_work(system_unbound_wq,
576fa348 1596 &fs_info->preempt_reclaim_work);
0d9764f6
JB
1597 }
1598 }
1599 spin_unlock(&space_info->lock);
1600 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1601 return ret;
1602
ac1ea10e
JB
1603 return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1604 orig_bytes, flush);
0d9764f6
JB
1605}
1606
1607/**
d98b188e
NB
1608 * Trye to reserve metadata bytes from the block_rsv's space
1609 *
1610 * @root: the root we're allocating for
1611 * @block_rsv: block_rsv we're allocating for
1612 * @orig_bytes: number of bytes we want
1613 * @flush: whether or not we can flush to make our reservation
0d9764f6
JB
1614 *
1615 * This will reserve orig_bytes number of bytes from the space info associated
1616 * with the block_rsv. If there is not enough space it will make an attempt to
1617 * flush out space to make room. It will do this by flushing delalloc if
1618 * possible or committing the transaction. If flush is 0 then no attempts to
1619 * regain reservations will be made and this will fail if there is not enough
1620 * space already.
1621 */
1622int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1623 struct btrfs_block_rsv *block_rsv,
1624 u64 orig_bytes,
1625 enum btrfs_reserve_flush_enum flush)
1626{
1627 struct btrfs_fs_info *fs_info = root->fs_info;
1628 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1629 int ret;
0d9764f6 1630
f3bda421 1631 ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
0d9764f6
JB
1632 if (ret == -ENOSPC &&
1633 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1634 if (block_rsv != global_rsv &&
1635 !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1636 ret = 0;
1637 }
1638 if (ret == -ENOSPC) {
1639 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1640 block_rsv->space_info->flags,
1641 orig_bytes, 1);
1642
1643 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1644 btrfs_dump_space_info(fs_info, block_rsv->space_info,
1645 orig_bytes, 0);
1646 }
1647 return ret;
1648}
8698fc4e
JB
1649
1650/**
d98b188e
NB
1651 * Try to reserve data bytes for an allocation
1652 *
1653 * @fs_info: the filesystem
1654 * @bytes: number of bytes we need
1655 * @flush: how we are allowed to flush
8698fc4e
JB
1656 *
1657 * This will reserve bytes from the data space info. If there is not enough
1658 * space then we will attempt to flush space as specified by flush.
1659 */
1660int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1661 enum btrfs_reserve_flush_enum flush)
1662{
1663 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
f3bda421 1664 int ret;
8698fc4e 1665
f3bda421
JB
1666 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1667 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
8698fc4e
JB
1668 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1669
f3bda421
JB
1670 ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1671 if (ret == -ENOSPC) {
1672 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
8698fc4e 1673 data_sinfo->flags, bytes, 1);
f3bda421
JB
1674 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1675 btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1676 }
8698fc4e
JB
1677 return ret;
1678}