btrfs: send: avoid duplicated orphan dir allocation and initialization
[linux-block.git] / fs / btrfs / send.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
31db9f7c
AB
2/*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
31db9f7c
AB
4 */
5
6#include <linux/bsearch.h>
7#include <linux/fs.h>
8#include <linux/file.h>
9#include <linux/sort.h>
10#include <linux/mount.h>
11#include <linux/xattr.h>
12#include <linux/posix_acl_xattr.h>
5b8418b8 13#include <linux/radix-tree.h>
a1857ebe 14#include <linux/vmalloc.h>
ed84885d 15#include <linux/string.h>
2351f431 16#include <linux/compat.h>
9678c543 17#include <linux/crc32c.h>
38622010 18#include <linux/fsverity.h>
31db9f7c
AB
19
20#include "send.h"
8234d3f6 21#include "ctree.h"
31db9f7c
AB
22#include "backref.h"
23#include "locking.h"
24#include "disk-io.h"
25#include "btrfs_inode.h"
26#include "transaction.h"
ebb8765b 27#include "compression.h"
89efda52 28#include "xattr.h"
d96b3424 29#include "print-tree.h"
07e81dc9 30#include "accessors.h"
f2b39277 31#include "dir-item.h"
7c8ede16 32#include "file-item.h"
7572dec8 33#include "ioctl.h"
5c11adcc 34#include "verity.h"
31db9f7c 35
fd0ddbe2
FM
36/*
37 * Maximum number of references an extent can have in order for us to attempt to
38 * issue clone operations instead of write operations. This currently exists to
39 * avoid hitting limitations of the backreference walking code (taking a lot of
40 * time and using too much memory for extents with large number of references).
41 */
e2a04165 42#define SEND_MAX_EXTENT_REFS 1024
fd0ddbe2 43
31db9f7c
AB
44/*
45 * A fs_path is a helper to dynamically build path names with unknown size.
46 * It reallocates the internal buffer on demand.
47 * It allows fast adding of path elements on the right side (normal path) and
48 * fast adding to the left side (reversed path). A reversed path can also be
49 * unreversed if needed.
50 */
51struct fs_path {
52 union {
53 struct {
54 char *start;
55 char *end;
31db9f7c
AB
56
57 char *buf;
1f5a7ff9
DS
58 unsigned short buf_len:15;
59 unsigned short reversed:1;
31db9f7c
AB
60 char inline_buf[];
61 };
ace01050
DS
62 /*
63 * Average path length does not exceed 200 bytes, we'll have
64 * better packing in the slab and higher chance to satisfy
65 * a allocation later during send.
66 */
67 char pad[256];
31db9f7c
AB
68 };
69};
70#define FS_PATH_INLINE_SIZE \
71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72
73
74/* reused for each extent */
75struct clone_root {
76 struct btrfs_root *root;
77 u64 ino;
78 u64 offset;
c7499a64 79 u64 num_bytes;
88ffb665 80 bool found_ref;
31db9f7c
AB
81};
82
83#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
84#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
85
66d04209
FM
86/*
87 * Limit the root_ids array of struct backref_cache_entry to 12 elements.
88 * This makes the size of a cache entry to be exactly 128 bytes on x86_64.
89 * The most common case is to have a single root for cloning, which corresponds
90 * to the send root. Having the user specify more than 11 clone roots is not
91 * common, and in such rare cases we simply don't use caching if the number of
92 * cloning roots that lead down to a leaf is more than 12.
93 */
94#define SEND_MAX_BACKREF_CACHE_ROOTS 12
95
96/*
97 * Max number of entries in the cache.
98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, the size in bytes, excluding
99 * maple tree's internal nodes, is 16K.
100 */
101#define SEND_MAX_BACKREF_CACHE_SIZE 128
102
103/*
104 * A backref cache entry maps a leaf to a list of IDs of roots from which the
105 * leaf is accessible and we can use for clone operations.
106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107 * x86_64).
108 */
109struct backref_cache_entry {
110 /* List to link to the cache's lru list. */
111 struct list_head list;
112 /* The key for this entry in the cache. */
113 u64 key;
114 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
115 /* Number of valid elements in the root_ids array. */
116 int num_roots;
117};
118
31db9f7c
AB
119struct send_ctx {
120 struct file *send_filp;
121 loff_t send_off;
122 char *send_buf;
123 u32 send_size;
124 u32 send_max_size;
356bbbb6
OS
125 /*
126 * Whether BTRFS_SEND_A_DATA attribute was already added to current
127 * command (since protocol v2, data must be the last attribute).
128 */
129 bool put_data;
a4b333f2 130 struct page **send_buf_pages;
cb95e7bf 131 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
e77fbf99
DS
132 /* Protocol version compatibility requested */
133 u32 proto;
31db9f7c 134
31db9f7c
AB
135 struct btrfs_root *send_root;
136 struct btrfs_root *parent_root;
137 struct clone_root *clone_roots;
138 int clone_roots_cnt;
139
140 /* current state of the compare_tree call */
141 struct btrfs_path *left_path;
142 struct btrfs_path *right_path;
143 struct btrfs_key *cmp_key;
144
d96b3424
FM
145 /*
146 * Keep track of the generation of the last transaction that was used
147 * for relocating a block group. This is periodically checked in order
148 * to detect if a relocation happened since the last check, so that we
149 * don't operate on stale extent buffers for nodes (level >= 1) or on
150 * stale disk_bytenr values of file extent items.
151 */
152 u64 last_reloc_trans;
153
31db9f7c
AB
154 /*
155 * infos of the currently processed inode. In case of deleted inodes,
156 * these are the values from the deleted inode.
157 */
158 u64 cur_ino;
159 u64 cur_inode_gen;
31db9f7c
AB
160 u64 cur_inode_size;
161 u64 cur_inode_mode;
644d1940 162 u64 cur_inode_rdev;
16e7549f 163 u64 cur_inode_last_extent;
ffa7c429 164 u64 cur_inode_next_write_offset;
9555e1f1
DS
165 bool cur_inode_new;
166 bool cur_inode_new_gen;
167 bool cur_inode_deleted;
46b2f459 168 bool ignore_cur_inode;
38622010
BB
169 bool cur_inode_needs_verity;
170 void *verity_descriptor;
31db9f7c
AB
171
172 u64 send_progress;
173
174 struct list_head new_refs;
175 struct list_head deleted_refs;
176
5b8418b8 177 struct radix_tree_root name_cache;
31db9f7c
AB
178 struct list_head name_cache_list;
179 int name_cache_size;
180
521b6803
FM
181 /*
182 * The inode we are currently processing. It's not NULL only when we
183 * need to issue write commands for data extents from this inode.
184 */
185 struct inode *cur_inode;
2131bcd3 186 struct file_ra_state ra;
152555b3
FM
187 u64 page_cache_clear_start;
188 bool clean_page_cache;
2131bcd3 189
9f03740a
FDBM
190 /*
191 * We process inodes by their increasing order, so if before an
192 * incremental send we reverse the parent/child relationship of
193 * directories such that a directory with a lower inode number was
194 * the parent of a directory with a higher inode number, and the one
195 * becoming the new parent got renamed too, we can't rename/move the
196 * directory with lower inode number when we finish processing it - we
197 * must process the directory with higher inode number first, then
198 * rename/move it and then rename/move the directory with lower inode
199 * number. Example follows.
200 *
201 * Tree state when the first send was performed:
202 *
203 * .
204 * |-- a (ino 257)
205 * |-- b (ino 258)
206 * |
207 * |
208 * |-- c (ino 259)
209 * | |-- d (ino 260)
210 * |
211 * |-- c2 (ino 261)
212 *
213 * Tree state when the second (incremental) send is performed:
214 *
215 * .
216 * |-- a (ino 257)
217 * |-- b (ino 258)
218 * |-- c2 (ino 261)
219 * |-- d2 (ino 260)
220 * |-- cc (ino 259)
221 *
222 * The sequence of steps that lead to the second state was:
223 *
224 * mv /a/b/c/d /a/b/c2/d2
225 * mv /a/b/c /a/b/c2/d2/cc
226 *
227 * "c" has lower inode number, but we can't move it (2nd mv operation)
228 * before we move "d", which has higher inode number.
229 *
230 * So we just memorize which move/rename operations must be performed
231 * later when their respective parent is processed and moved/renamed.
232 */
233
234 /* Indexed by parent directory inode number. */
235 struct rb_root pending_dir_moves;
236
237 /*
238 * Reverse index, indexed by the inode number of a directory that
239 * is waiting for the move/rename of its immediate parent before its
240 * own move/rename can be performed.
241 */
242 struct rb_root waiting_dir_moves;
9dc44214
FM
243
244 /*
245 * A directory that is going to be rm'ed might have a child directory
246 * which is in the pending directory moves index above. In this case,
247 * the directory can only be removed after the move/rename of its child
248 * is performed. Example:
249 *
250 * Parent snapshot:
251 *
252 * . (ino 256)
253 * |-- a/ (ino 257)
254 * |-- b/ (ino 258)
255 * |-- c/ (ino 259)
256 * | |-- x/ (ino 260)
257 * |
258 * |-- y/ (ino 261)
259 *
260 * Send snapshot:
261 *
262 * . (ino 256)
263 * |-- a/ (ino 257)
264 * |-- b/ (ino 258)
265 * |-- YY/ (ino 261)
266 * |-- x/ (ino 260)
267 *
268 * Sequence of steps that lead to the send snapshot:
269 * rm -f /a/b/c/foo.txt
270 * mv /a/b/y /a/b/YY
271 * mv /a/b/c/x /a/b/YY
272 * rmdir /a/b/c
273 *
274 * When the child is processed, its move/rename is delayed until its
275 * parent is processed (as explained above), but all other operations
276 * like update utimes, chown, chgrp, etc, are performed and the paths
277 * that it uses for those operations must use the orphanized name of
278 * its parent (the directory we're going to rm later), so we need to
279 * memorize that name.
280 *
281 * Indexed by the inode number of the directory to be deleted.
282 */
283 struct rb_root orphan_dirs;
3aa5bd36
BC
284
285 struct rb_root rbtree_new_refs;
286 struct rb_root rbtree_deleted_refs;
66d04209
FM
287
288 struct {
289 u64 last_reloc_trans;
290 struct list_head lru_list;
291 struct maple_tree entries;
292 /* Number of entries stored in the cache. */
293 int size;
294 } backref_cache;
9f03740a
FDBM
295};
296
297struct pending_dir_move {
298 struct rb_node node;
299 struct list_head list;
300 u64 parent_ino;
301 u64 ino;
302 u64 gen;
303 struct list_head update_refs;
304};
305
306struct waiting_dir_move {
307 struct rb_node node;
308 u64 ino;
9dc44214
FM
309 /*
310 * There might be some directory that could not be removed because it
311 * was waiting for this directory inode to be moved first. Therefore
312 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
313 */
314 u64 rmdir_ino;
0b3f407e 315 u64 rmdir_gen;
8b191a68 316 bool orphanized;
9dc44214
FM
317};
318
319struct orphan_dir_info {
320 struct rb_node node;
321 u64 ino;
322 u64 gen;
0f96f517 323 u64 last_dir_index_offset;
31db9f7c
AB
324};
325
326struct name_cache_entry {
327 struct list_head list;
7e0926fe 328 /*
5b8418b8
DS
329 * radix_tree has only 32bit entries but we need to handle 64bit inums.
330 * We use the lower 32bit of the 64bit inum to store it in the tree. If
331 * more then one inum would fall into the same entry, we use radix_list
332 * to store the additional entries. radix_list is also used to store
333 * entries where two entries have the same inum but different
334 * generations.
7e0926fe 335 */
5b8418b8 336 struct list_head radix_list;
31db9f7c
AB
337 u64 ino;
338 u64 gen;
339 u64 parent_ino;
340 u64 parent_gen;
341 int ret;
342 int need_later_update;
343 int name_len;
344 char name[];
345};
346
18d0f5c6
DS
347#define ADVANCE 1
348#define ADVANCE_ONLY_NEXT -1
349
350enum btrfs_compare_tree_result {
351 BTRFS_COMPARE_TREE_NEW,
352 BTRFS_COMPARE_TREE_DELETED,
353 BTRFS_COMPARE_TREE_CHANGED,
354 BTRFS_COMPARE_TREE_SAME,
355};
18d0f5c6 356
e67c718b 357__cold
95155585
FM
358static void inconsistent_snapshot_error(struct send_ctx *sctx,
359 enum btrfs_compare_tree_result result,
360 const char *what)
361{
362 const char *result_string;
363
364 switch (result) {
365 case BTRFS_COMPARE_TREE_NEW:
366 result_string = "new";
367 break;
368 case BTRFS_COMPARE_TREE_DELETED:
369 result_string = "deleted";
370 break;
371 case BTRFS_COMPARE_TREE_CHANGED:
372 result_string = "updated";
373 break;
374 case BTRFS_COMPARE_TREE_SAME:
375 ASSERT(0);
376 result_string = "unchanged";
377 break;
378 default:
379 ASSERT(0);
380 result_string = "unexpected";
381 }
382
383 btrfs_err(sctx->send_root->fs_info,
384 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
385 result_string, what, sctx->cmp_key->objectid,
386 sctx->send_root->root_key.objectid,
387 (sctx->parent_root ?
388 sctx->parent_root->root_key.objectid : 0));
389}
390
e77fbf99
DS
391__maybe_unused
392static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
393{
394 switch (sctx->proto) {
54cab6af
OS
395 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
396 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
c86eab81 397 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
e77fbf99
DS
398 default: return false;
399 }
400}
401
9f03740a
FDBM
402static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
403
9dc44214
FM
404static struct waiting_dir_move *
405get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
406
0b3f407e 407static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
9dc44214 408
16e7549f
JB
409static int need_send_hole(struct send_ctx *sctx)
410{
411 return (sctx->parent_root && !sctx->cur_inode_new &&
412 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
413 S_ISREG(sctx->cur_inode_mode));
414}
415
31db9f7c
AB
416static void fs_path_reset(struct fs_path *p)
417{
418 if (p->reversed) {
419 p->start = p->buf + p->buf_len - 1;
420 p->end = p->start;
421 *p->start = 0;
422 } else {
423 p->start = p->buf;
424 p->end = p->start;
425 *p->start = 0;
426 }
427}
428
924794c9 429static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
430{
431 struct fs_path *p;
432
e780b0d1 433 p = kmalloc(sizeof(*p), GFP_KERNEL);
31db9f7c
AB
434 if (!p)
435 return NULL;
436 p->reversed = 0;
31db9f7c
AB
437 p->buf = p->inline_buf;
438 p->buf_len = FS_PATH_INLINE_SIZE;
439 fs_path_reset(p);
440 return p;
441}
442
924794c9 443static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
444{
445 struct fs_path *p;
446
924794c9 447 p = fs_path_alloc();
31db9f7c
AB
448 if (!p)
449 return NULL;
450 p->reversed = 1;
451 fs_path_reset(p);
452 return p;
453}
454
924794c9 455static void fs_path_free(struct fs_path *p)
31db9f7c
AB
456{
457 if (!p)
458 return;
ace01050
DS
459 if (p->buf != p->inline_buf)
460 kfree(p->buf);
31db9f7c
AB
461 kfree(p);
462}
463
464static int fs_path_len(struct fs_path *p)
465{
466 return p->end - p->start;
467}
468
469static int fs_path_ensure_buf(struct fs_path *p, int len)
470{
471 char *tmp_buf;
472 int path_len;
473 int old_buf_len;
474
475 len++;
476
477 if (p->buf_len >= len)
478 return 0;
479
cfd4a535
CM
480 if (len > PATH_MAX) {
481 WARN_ON(1);
482 return -ENOMEM;
483 }
484
1b2782c8
DS
485 path_len = p->end - p->start;
486 old_buf_len = p->buf_len;
487
905889bc
KC
488 /*
489 * Allocate to the next largest kmalloc bucket size, to let
490 * the fast path happen most of the time.
491 */
492 len = kmalloc_size_roundup(len);
ace01050
DS
493 /*
494 * First time the inline_buf does not suffice
495 */
01a9a8a9 496 if (p->buf == p->inline_buf) {
e780b0d1 497 tmp_buf = kmalloc(len, GFP_KERNEL);
01a9a8a9
FM
498 if (tmp_buf)
499 memcpy(tmp_buf, p->buf, old_buf_len);
500 } else {
e780b0d1 501 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
01a9a8a9 502 }
9c9ca00b
DS
503 if (!tmp_buf)
504 return -ENOMEM;
505 p->buf = tmp_buf;
905889bc 506 p->buf_len = len;
ace01050 507
31db9f7c
AB
508 if (p->reversed) {
509 tmp_buf = p->buf + old_buf_len - path_len - 1;
510 p->end = p->buf + p->buf_len - 1;
511 p->start = p->end - path_len;
512 memmove(p->start, tmp_buf, path_len + 1);
513 } else {
514 p->start = p->buf;
515 p->end = p->start + path_len;
516 }
517 return 0;
518}
519
b23ab57d
DS
520static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
521 char **prepared)
31db9f7c
AB
522{
523 int ret;
524 int new_len;
525
526 new_len = p->end - p->start + name_len;
527 if (p->start != p->end)
528 new_len++;
529 ret = fs_path_ensure_buf(p, new_len);
530 if (ret < 0)
531 goto out;
532
533 if (p->reversed) {
534 if (p->start != p->end)
535 *--p->start = '/';
536 p->start -= name_len;
b23ab57d 537 *prepared = p->start;
31db9f7c
AB
538 } else {
539 if (p->start != p->end)
540 *p->end++ = '/';
b23ab57d 541 *prepared = p->end;
31db9f7c
AB
542 p->end += name_len;
543 *p->end = 0;
544 }
545
546out:
547 return ret;
548}
549
550static int fs_path_add(struct fs_path *p, const char *name, int name_len)
551{
552 int ret;
b23ab57d 553 char *prepared;
31db9f7c 554
b23ab57d 555 ret = fs_path_prepare_for_add(p, name_len, &prepared);
31db9f7c
AB
556 if (ret < 0)
557 goto out;
b23ab57d 558 memcpy(prepared, name, name_len);
31db9f7c
AB
559
560out:
561 return ret;
562}
563
564static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
565{
566 int ret;
b23ab57d 567 char *prepared;
31db9f7c 568
b23ab57d 569 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
31db9f7c
AB
570 if (ret < 0)
571 goto out;
b23ab57d 572 memcpy(prepared, p2->start, p2->end - p2->start);
31db9f7c
AB
573
574out:
575 return ret;
576}
577
578static int fs_path_add_from_extent_buffer(struct fs_path *p,
579 struct extent_buffer *eb,
580 unsigned long off, int len)
581{
582 int ret;
b23ab57d 583 char *prepared;
31db9f7c 584
b23ab57d 585 ret = fs_path_prepare_for_add(p, len, &prepared);
31db9f7c
AB
586 if (ret < 0)
587 goto out;
588
b23ab57d 589 read_extent_buffer(eb, prepared, off, len);
31db9f7c
AB
590
591out:
592 return ret;
593}
594
31db9f7c
AB
595static int fs_path_copy(struct fs_path *p, struct fs_path *from)
596{
31db9f7c
AB
597 p->reversed = from->reversed;
598 fs_path_reset(p);
599
0292ecf1 600 return fs_path_add_path(p, from);
31db9f7c
AB
601}
602
31db9f7c
AB
603static void fs_path_unreverse(struct fs_path *p)
604{
605 char *tmp;
606 int len;
607
608 if (!p->reversed)
609 return;
610
611 tmp = p->start;
612 len = p->end - p->start;
613 p->start = p->buf;
614 p->end = p->start + len;
615 memmove(p->start, tmp, len + 1);
616 p->reversed = 0;
617}
618
619static struct btrfs_path *alloc_path_for_send(void)
620{
621 struct btrfs_path *path;
622
623 path = btrfs_alloc_path();
624 if (!path)
625 return NULL;
626 path->search_commit_root = 1;
627 path->skip_locking = 1;
3f8a18cc 628 path->need_commit_sem = 1;
31db9f7c
AB
629 return path;
630}
631
48a3b636 632static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
633{
634 int ret;
31db9f7c
AB
635 u32 pos = 0;
636
31db9f7c 637 while (pos < len) {
8e93157b 638 ret = kernel_write(filp, buf + pos, len - pos, off);
31db9f7c 639 if (ret < 0)
8e93157b 640 return ret;
cec3dad9 641 if (ret == 0)
8e93157b 642 return -EIO;
31db9f7c
AB
643 pos += ret;
644 }
645
8e93157b 646 return 0;
31db9f7c
AB
647}
648
649static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
650{
651 struct btrfs_tlv_header *hdr;
652 int total_len = sizeof(*hdr) + len;
653 int left = sctx->send_max_size - sctx->send_size;
654
356bbbb6
OS
655 if (WARN_ON_ONCE(sctx->put_data))
656 return -EINVAL;
657
31db9f7c
AB
658 if (unlikely(left < total_len))
659 return -EOVERFLOW;
660
661 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
e2f896b3
DS
662 put_unaligned_le16(attr, &hdr->tlv_type);
663 put_unaligned_le16(len, &hdr->tlv_len);
31db9f7c
AB
664 memcpy(hdr + 1, data, len);
665 sctx->send_size += total_len;
666
667 return 0;
668}
669
95bc79d5
DS
670#define TLV_PUT_DEFINE_INT(bits) \
671 static int tlv_put_u##bits(struct send_ctx *sctx, \
672 u##bits attr, u##bits value) \
673 { \
674 __le##bits __tmp = cpu_to_le##bits(value); \
675 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
676 }
31db9f7c 677
38622010 678TLV_PUT_DEFINE_INT(8)
3ea4dc5b 679TLV_PUT_DEFINE_INT(32)
95bc79d5 680TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
681
682static int tlv_put_string(struct send_ctx *sctx, u16 attr,
683 const char *str, int len)
684{
685 if (len == -1)
686 len = strlen(str);
687 return tlv_put(sctx, attr, str, len);
688}
689
690static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
691 const u8 *uuid)
692{
693 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
694}
695
31db9f7c
AB
696static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
697 struct extent_buffer *eb,
698 struct btrfs_timespec *ts)
699{
700 struct btrfs_timespec bts;
701 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
702 return tlv_put(sctx, attr, &bts, sizeof(bts));
703}
704
705
895a72be 706#define TLV_PUT(sctx, attrtype, data, attrlen) \
31db9f7c 707 do { \
895a72be 708 ret = tlv_put(sctx, attrtype, data, attrlen); \
31db9f7c
AB
709 if (ret < 0) \
710 goto tlv_put_failure; \
711 } while (0)
712
713#define TLV_PUT_INT(sctx, attrtype, bits, value) \
714 do { \
715 ret = tlv_put_u##bits(sctx, attrtype, value); \
716 if (ret < 0) \
717 goto tlv_put_failure; \
718 } while (0)
719
720#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
721#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
722#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
723#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
724#define TLV_PUT_STRING(sctx, attrtype, str, len) \
725 do { \
726 ret = tlv_put_string(sctx, attrtype, str, len); \
727 if (ret < 0) \
728 goto tlv_put_failure; \
729 } while (0)
730#define TLV_PUT_PATH(sctx, attrtype, p) \
731 do { \
732 ret = tlv_put_string(sctx, attrtype, p->start, \
733 p->end - p->start); \
734 if (ret < 0) \
735 goto tlv_put_failure; \
736 } while(0)
737#define TLV_PUT_UUID(sctx, attrtype, uuid) \
738 do { \
739 ret = tlv_put_uuid(sctx, attrtype, uuid); \
740 if (ret < 0) \
741 goto tlv_put_failure; \
742 } while (0)
31db9f7c
AB
743#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
744 do { \
745 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
746 if (ret < 0) \
747 goto tlv_put_failure; \
748 } while (0)
749
750static int send_header(struct send_ctx *sctx)
751{
752 struct btrfs_stream_header hdr;
753
754 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
d6815592 755 hdr.version = cpu_to_le32(sctx->proto);
1bcea355
AJ
756 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
757 &sctx->send_off);
31db9f7c
AB
758}
759
760/*
761 * For each command/item we want to send to userspace, we call this function.
762 */
763static int begin_cmd(struct send_ctx *sctx, int cmd)
764{
765 struct btrfs_cmd_header *hdr;
766
fae7f21c 767 if (WARN_ON(!sctx->send_buf))
31db9f7c 768 return -EINVAL;
31db9f7c
AB
769
770 BUG_ON(sctx->send_size);
771
772 sctx->send_size += sizeof(*hdr);
773 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
e2f896b3 774 put_unaligned_le16(cmd, &hdr->cmd);
31db9f7c
AB
775
776 return 0;
777}
778
779static int send_cmd(struct send_ctx *sctx)
780{
781 int ret;
782 struct btrfs_cmd_header *hdr;
783 u32 crc;
784
785 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
e2f896b3
DS
786 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
787 put_unaligned_le32(0, &hdr->crc);
31db9f7c 788
65019df8 789 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
e2f896b3 790 put_unaligned_le32(crc, &hdr->crc);
31db9f7c 791
1bcea355
AJ
792 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
793 &sctx->send_off);
31db9f7c 794
31db9f7c 795 sctx->send_size = 0;
356bbbb6 796 sctx->put_data = false;
31db9f7c
AB
797
798 return ret;
799}
800
801/*
802 * Sends a move instruction to user space
803 */
804static int send_rename(struct send_ctx *sctx,
805 struct fs_path *from, struct fs_path *to)
806{
04ab956e 807 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
808 int ret;
809
04ab956e 810 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
31db9f7c
AB
811
812 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
813 if (ret < 0)
814 goto out;
815
816 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
817 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
818
819 ret = send_cmd(sctx);
820
821tlv_put_failure:
822out:
823 return ret;
824}
825
826/*
827 * Sends a link instruction to user space
828 */
829static int send_link(struct send_ctx *sctx,
830 struct fs_path *path, struct fs_path *lnk)
831{
04ab956e 832 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
833 int ret;
834
04ab956e 835 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
31db9f7c
AB
836
837 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
838 if (ret < 0)
839 goto out;
840
841 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
842 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
843
844 ret = send_cmd(sctx);
845
846tlv_put_failure:
847out:
848 return ret;
849}
850
851/*
852 * Sends an unlink instruction to user space
853 */
854static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
855{
04ab956e 856 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
857 int ret;
858
04ab956e 859 btrfs_debug(fs_info, "send_unlink %s", path->start);
31db9f7c
AB
860
861 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
862 if (ret < 0)
863 goto out;
864
865 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
866
867 ret = send_cmd(sctx);
868
869tlv_put_failure:
870out:
871 return ret;
872}
873
874/*
875 * Sends a rmdir instruction to user space
876 */
877static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
878{
04ab956e 879 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
880 int ret;
881
04ab956e 882 btrfs_debug(fs_info, "send_rmdir %s", path->start);
31db9f7c
AB
883
884 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
885 if (ret < 0)
886 goto out;
887
888 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
889
890 ret = send_cmd(sctx);
891
892tlv_put_failure:
893out:
894 return ret;
895}
896
7e93f6dc
BC
897struct btrfs_inode_info {
898 u64 size;
899 u64 gen;
900 u64 mode;
901 u64 uid;
902 u64 gid;
903 u64 rdev;
904 u64 fileattr;
9ed0a72e 905 u64 nlink;
7e93f6dc
BC
906};
907
31db9f7c
AB
908/*
909 * Helper function to retrieve some fields from an inode item.
910 */
7e93f6dc
BC
911static int get_inode_info(struct btrfs_root *root, u64 ino,
912 struct btrfs_inode_info *info)
31db9f7c
AB
913{
914 int ret;
7e93f6dc 915 struct btrfs_path *path;
31db9f7c
AB
916 struct btrfs_inode_item *ii;
917 struct btrfs_key key;
31db9f7c 918
7e93f6dc
BC
919 path = alloc_path_for_send();
920 if (!path)
921 return -ENOMEM;
922
31db9f7c
AB
923 key.objectid = ino;
924 key.type = BTRFS_INODE_ITEM_KEY;
925 key.offset = 0;
926 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
31db9f7c 927 if (ret) {
3f8a18cc
JB
928 if (ret > 0)
929 ret = -ENOENT;
7e93f6dc 930 goto out;
31db9f7c
AB
931 }
932
7e93f6dc
BC
933 if (!info)
934 goto out;
935
31db9f7c
AB
936 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
937 struct btrfs_inode_item);
7e93f6dc
BC
938 info->size = btrfs_inode_size(path->nodes[0], ii);
939 info->gen = btrfs_inode_generation(path->nodes[0], ii);
940 info->mode = btrfs_inode_mode(path->nodes[0], ii);
941 info->uid = btrfs_inode_uid(path->nodes[0], ii);
942 info->gid = btrfs_inode_gid(path->nodes[0], ii);
943 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
9ed0a72e 944 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
48247359
DS
945 /*
946 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
947 * otherwise logically split to 32/32 parts.
948 */
7e93f6dc 949 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
31db9f7c 950
7e93f6dc
BC
951out:
952 btrfs_free_path(path);
3f8a18cc
JB
953 return ret;
954}
955
7e93f6dc 956static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
3f8a18cc 957{
3f8a18cc 958 int ret;
ab199013 959 struct btrfs_inode_info info = { 0 };
3f8a18cc 960
ab199013 961 ASSERT(gen);
7e93f6dc
BC
962
963 ret = get_inode_info(root, ino, &info);
ab199013 964 *gen = info.gen;
31db9f7c
AB
965 return ret;
966}
967
968typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
969 struct fs_path *p,
970 void *ctx);
971
972/*
96b5bd77
JS
973 * Helper function to iterate the entries in ONE btrfs_inode_ref or
974 * btrfs_inode_extref.
31db9f7c
AB
975 * The iterate callback may return a non zero value to stop iteration. This can
976 * be a negative value for error codes or 1 to simply stop it.
977 *
96b5bd77 978 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 979 */
924794c9 980static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
981 struct btrfs_key *found_key, int resolve,
982 iterate_inode_ref_t iterate, void *ctx)
983{
96b5bd77 984 struct extent_buffer *eb = path->nodes[0];
31db9f7c 985 struct btrfs_inode_ref *iref;
96b5bd77 986 struct btrfs_inode_extref *extref;
31db9f7c
AB
987 struct btrfs_path *tmp_path;
988 struct fs_path *p;
96b5bd77 989 u32 cur = 0;
31db9f7c 990 u32 total;
96b5bd77 991 int slot = path->slots[0];
31db9f7c
AB
992 u32 name_len;
993 char *start;
994 int ret = 0;
96b5bd77 995 int num = 0;
31db9f7c 996 int index;
96b5bd77
JS
997 u64 dir;
998 unsigned long name_off;
999 unsigned long elem_size;
1000 unsigned long ptr;
31db9f7c 1001
924794c9 1002 p = fs_path_alloc_reversed();
31db9f7c
AB
1003 if (!p)
1004 return -ENOMEM;
1005
1006 tmp_path = alloc_path_for_send();
1007 if (!tmp_path) {
924794c9 1008 fs_path_free(p);
31db9f7c
AB
1009 return -ENOMEM;
1010 }
1011
31db9f7c 1012
96b5bd77
JS
1013 if (found_key->type == BTRFS_INODE_REF_KEY) {
1014 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1015 struct btrfs_inode_ref);
3212fa14 1016 total = btrfs_item_size(eb, slot);
96b5bd77
JS
1017 elem_size = sizeof(*iref);
1018 } else {
1019 ptr = btrfs_item_ptr_offset(eb, slot);
3212fa14 1020 total = btrfs_item_size(eb, slot);
96b5bd77
JS
1021 elem_size = sizeof(*extref);
1022 }
1023
31db9f7c
AB
1024 while (cur < total) {
1025 fs_path_reset(p);
1026
96b5bd77
JS
1027 if (found_key->type == BTRFS_INODE_REF_KEY) {
1028 iref = (struct btrfs_inode_ref *)(ptr + cur);
1029 name_len = btrfs_inode_ref_name_len(eb, iref);
1030 name_off = (unsigned long)(iref + 1);
1031 index = btrfs_inode_ref_index(eb, iref);
1032 dir = found_key->offset;
1033 } else {
1034 extref = (struct btrfs_inode_extref *)(ptr + cur);
1035 name_len = btrfs_inode_extref_name_len(eb, extref);
1036 name_off = (unsigned long)&extref->name;
1037 index = btrfs_inode_extref_index(eb, extref);
1038 dir = btrfs_inode_extref_parent(eb, extref);
1039 }
1040
31db9f7c 1041 if (resolve) {
96b5bd77
JS
1042 start = btrfs_ref_to_path(root, tmp_path, name_len,
1043 name_off, eb, dir,
1044 p->buf, p->buf_len);
31db9f7c
AB
1045 if (IS_ERR(start)) {
1046 ret = PTR_ERR(start);
1047 goto out;
1048 }
1049 if (start < p->buf) {
1050 /* overflow , try again with larger buffer */
1051 ret = fs_path_ensure_buf(p,
1052 p->buf_len + p->buf - start);
1053 if (ret < 0)
1054 goto out;
96b5bd77
JS
1055 start = btrfs_ref_to_path(root, tmp_path,
1056 name_len, name_off,
1057 eb, dir,
1058 p->buf, p->buf_len);
31db9f7c
AB
1059 if (IS_ERR(start)) {
1060 ret = PTR_ERR(start);
1061 goto out;
1062 }
1063 BUG_ON(start < p->buf);
1064 }
1065 p->start = start;
1066 } else {
96b5bd77
JS
1067 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1068 name_len);
31db9f7c
AB
1069 if (ret < 0)
1070 goto out;
1071 }
1072
96b5bd77
JS
1073 cur += elem_size + name_len;
1074 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
1075 if (ret)
1076 goto out;
31db9f7c
AB
1077 num++;
1078 }
1079
1080out:
1081 btrfs_free_path(tmp_path);
924794c9 1082 fs_path_free(p);
31db9f7c
AB
1083 return ret;
1084}
1085
1086typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1087 const char *name, int name_len,
1088 const char *data, int data_len,
b1dea4e7 1089 void *ctx);
31db9f7c
AB
1090
1091/*
1092 * Helper function to iterate the entries in ONE btrfs_dir_item.
1093 * The iterate callback may return a non zero value to stop iteration. This can
1094 * be a negative value for error codes or 1 to simply stop it.
1095 *
1096 * path must point to the dir item when called.
1097 */
924794c9 1098static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
1099 iterate_dir_item_t iterate, void *ctx)
1100{
1101 int ret = 0;
1102 struct extent_buffer *eb;
31db9f7c 1103 struct btrfs_dir_item *di;
31db9f7c
AB
1104 struct btrfs_key di_key;
1105 char *buf = NULL;
7e3ae33e 1106 int buf_len;
31db9f7c
AB
1107 u32 name_len;
1108 u32 data_len;
1109 u32 cur;
1110 u32 len;
1111 u32 total;
1112 int slot;
1113 int num;
31db9f7c 1114
4395e0c4
FM
1115 /*
1116 * Start with a small buffer (1 page). If later we end up needing more
1117 * space, which can happen for xattrs on a fs with a leaf size greater
1118 * then the page size, attempt to increase the buffer. Typically xattr
1119 * values are small.
1120 */
1121 buf_len = PATH_MAX;
e780b0d1 1122 buf = kmalloc(buf_len, GFP_KERNEL);
31db9f7c
AB
1123 if (!buf) {
1124 ret = -ENOMEM;
1125 goto out;
1126 }
1127
31db9f7c
AB
1128 eb = path->nodes[0];
1129 slot = path->slots[0];
31db9f7c
AB
1130 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1131 cur = 0;
1132 len = 0;
3212fa14 1133 total = btrfs_item_size(eb, slot);
31db9f7c
AB
1134
1135 num = 0;
1136 while (cur < total) {
1137 name_len = btrfs_dir_name_len(eb, di);
1138 data_len = btrfs_dir_data_len(eb, di);
31db9f7c
AB
1139 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1140
94a48aef 1141 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
7e3ae33e
FM
1142 if (name_len > XATTR_NAME_MAX) {
1143 ret = -ENAMETOOLONG;
1144 goto out;
1145 }
da17066c
JM
1146 if (name_len + data_len >
1147 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
7e3ae33e
FM
1148 ret = -E2BIG;
1149 goto out;
1150 }
1151 } else {
1152 /*
1153 * Path too long
1154 */
4395e0c4 1155 if (name_len + data_len > PATH_MAX) {
7e3ae33e
FM
1156 ret = -ENAMETOOLONG;
1157 goto out;
1158 }
31db9f7c
AB
1159 }
1160
4395e0c4
FM
1161 if (name_len + data_len > buf_len) {
1162 buf_len = name_len + data_len;
1163 if (is_vmalloc_addr(buf)) {
1164 vfree(buf);
1165 buf = NULL;
1166 } else {
1167 char *tmp = krealloc(buf, buf_len,
e780b0d1 1168 GFP_KERNEL | __GFP_NOWARN);
4395e0c4
FM
1169
1170 if (!tmp)
1171 kfree(buf);
1172 buf = tmp;
1173 }
1174 if (!buf) {
f11f7441 1175 buf = kvmalloc(buf_len, GFP_KERNEL);
4395e0c4
FM
1176 if (!buf) {
1177 ret = -ENOMEM;
1178 goto out;
1179 }
1180 }
1181 }
1182
31db9f7c
AB
1183 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1184 name_len + data_len);
1185
1186 len = sizeof(*di) + name_len + data_len;
1187 di = (struct btrfs_dir_item *)((char *)di + len);
1188 cur += len;
1189
1190 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
b1dea4e7 1191 data_len, ctx);
31db9f7c
AB
1192 if (ret < 0)
1193 goto out;
1194 if (ret) {
1195 ret = 0;
1196 goto out;
1197 }
1198
1199 num++;
1200 }
1201
1202out:
4395e0c4 1203 kvfree(buf);
31db9f7c
AB
1204 return ret;
1205}
1206
1207static int __copy_first_ref(int num, u64 dir, int index,
1208 struct fs_path *p, void *ctx)
1209{
1210 int ret;
1211 struct fs_path *pt = ctx;
1212
1213 ret = fs_path_copy(pt, p);
1214 if (ret < 0)
1215 return ret;
1216
1217 /* we want the first only */
1218 return 1;
1219}
1220
1221/*
1222 * Retrieve the first path of an inode. If an inode has more then one
1223 * ref/hardlink, this is ignored.
1224 */
924794c9 1225static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1226 u64 ino, struct fs_path *path)
1227{
1228 int ret;
1229 struct btrfs_key key, found_key;
1230 struct btrfs_path *p;
1231
1232 p = alloc_path_for_send();
1233 if (!p)
1234 return -ENOMEM;
1235
1236 fs_path_reset(path);
1237
1238 key.objectid = ino;
1239 key.type = BTRFS_INODE_REF_KEY;
1240 key.offset = 0;
1241
1242 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1243 if (ret < 0)
1244 goto out;
1245 if (ret) {
1246 ret = 1;
1247 goto out;
1248 }
1249 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1250 if (found_key.objectid != ino ||
96b5bd77
JS
1251 (found_key.type != BTRFS_INODE_REF_KEY &&
1252 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1253 ret = -ENOENT;
1254 goto out;
1255 }
1256
924794c9
TI
1257 ret = iterate_inode_ref(root, p, &found_key, 1,
1258 __copy_first_ref, path);
31db9f7c
AB
1259 if (ret < 0)
1260 goto out;
1261 ret = 0;
1262
1263out:
1264 btrfs_free_path(p);
1265 return ret;
1266}
1267
1268struct backref_ctx {
1269 struct send_ctx *sctx;
1270
1271 /* number of total found references */
1272 u64 found;
1273
1274 /*
1275 * used for clones found in send_root. clones found behind cur_objectid
1276 * and cur_offset are not considered as allowed clones.
1277 */
1278 u64 cur_objectid;
1279 u64 cur_offset;
1280
1281 /* may be truncated in case it's the last extent in a file */
1282 u64 extent_len;
f73853c7
FM
1283
1284 /* The bytenr the file extent item we are processing refers to. */
1285 u64 bytenr;
adf02418
FM
1286 /* The owner (root id) of the data backref for the current extent. */
1287 u64 backref_owner;
1288 /* The offset of the data backref for the current extent. */
1289 u64 backref_offset;
31db9f7c
AB
1290};
1291
1292static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1293{
995e01b7 1294 u64 root = (u64)(uintptr_t)key;
214cc184 1295 const struct clone_root *cr = elt;
31db9f7c 1296
4fd786e6 1297 if (root < cr->root->root_key.objectid)
31db9f7c 1298 return -1;
4fd786e6 1299 if (root > cr->root->root_key.objectid)
31db9f7c
AB
1300 return 1;
1301 return 0;
1302}
1303
1304static int __clone_root_cmp_sort(const void *e1, const void *e2)
1305{
214cc184
DS
1306 const struct clone_root *cr1 = e1;
1307 const struct clone_root *cr2 = e2;
31db9f7c 1308
4fd786e6 1309 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
31db9f7c 1310 return -1;
4fd786e6 1311 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
31db9f7c
AB
1312 return 1;
1313 return 0;
1314}
1315
1316/*
1317 * Called for every backref that is found for the current extent.
88ffb665 1318 * Results are collected in sctx->clone_roots->ino/offset.
31db9f7c 1319 */
88ffb665
FM
1320static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1321 void *ctx_)
31db9f7c
AB
1322{
1323 struct backref_ctx *bctx = ctx_;
88ffb665 1324 struct clone_root *clone_root;
31db9f7c
AB
1325
1326 /* First check if the root is in the list of accepted clone sources */
88ffb665
FM
1327 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1328 bctx->sctx->clone_roots_cnt,
1329 sizeof(struct clone_root),
1330 __clone_root_cmp_bsearch);
1331 if (!clone_root)
31db9f7c
AB
1332 return 0;
1333
88ffb665
FM
1334 /* This is our own reference, bail out as we can't clone from it. */
1335 if (clone_root->root == bctx->sctx->send_root &&
31db9f7c 1336 ino == bctx->cur_objectid &&
88ffb665
FM
1337 offset == bctx->cur_offset)
1338 return 0;
31db9f7c 1339
31db9f7c
AB
1340 /*
1341 * Make sure we don't consider clones from send_root that are
1342 * behind the current inode/offset.
1343 */
88ffb665 1344 if (clone_root->root == bctx->sctx->send_root) {
31db9f7c 1345 /*
11f2069c
FM
1346 * If the source inode was not yet processed we can't issue a
1347 * clone operation, as the source extent does not exist yet at
1348 * the destination of the stream.
31db9f7c 1349 */
11f2069c
FM
1350 if (ino > bctx->cur_objectid)
1351 return 0;
1352 /*
1353 * We clone from the inode currently being sent as long as the
1354 * source extent is already processed, otherwise we could try
1355 * to clone from an extent that does not exist yet at the
1356 * destination of the stream.
1357 */
1358 if (ino == bctx->cur_objectid &&
9722b101
FM
1359 offset + bctx->extent_len >
1360 bctx->sctx->cur_inode_next_write_offset)
31db9f7c 1361 return 0;
31db9f7c
AB
1362 }
1363
1364 bctx->found++;
88ffb665 1365 clone_root->found_ref = true;
c7499a64
FM
1366
1367 /*
1368 * If the given backref refers to a file extent item with a larger
1369 * number of bytes than what we found before, use the new one so that
1370 * we clone more optimally and end up doing less writes and getting
1371 * less exclusive, non-shared extents at the destination.
1372 */
88ffb665
FM
1373 if (num_bytes > clone_root->num_bytes) {
1374 clone_root->ino = ino;
1375 clone_root->offset = offset;
1376 clone_root->num_bytes = num_bytes;
1377
1378 /*
1379 * Found a perfect candidate, so there's no need to continue
1380 * backref walking.
1381 */
1382 if (num_bytes >= bctx->extent_len)
1383 return BTRFS_ITERATE_EXTENT_INODES_STOP;
31db9f7c
AB
1384 }
1385
1386 return 0;
1387}
1388
66d04209
FM
1389static void empty_backref_cache(struct send_ctx *sctx)
1390{
1391 struct backref_cache_entry *entry;
1392 struct backref_cache_entry *tmp;
1393
1394 list_for_each_entry_safe(entry, tmp, &sctx->backref_cache.lru_list, list)
1395 kfree(entry);
1396
1397 INIT_LIST_HEAD(&sctx->backref_cache.lru_list);
1398 mtree_destroy(&sctx->backref_cache.entries);
1399 sctx->backref_cache.size = 0;
1400}
1401
1402static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1403 const u64 **root_ids_ret, int *root_count_ret)
1404{
88ffb665
FM
1405 struct backref_ctx *bctx = ctx;
1406 struct send_ctx *sctx = bctx->sctx;
66d04209
FM
1407 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1408 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1409 struct backref_cache_entry *entry;
1410
1411 if (sctx->backref_cache.size == 0)
1412 return false;
1413
1414 /*
1415 * If relocation happened since we first filled the cache, then we must
1416 * empty the cache and can not use it, because even though we operate on
1417 * read-only roots, their leaves and nodes may have been reallocated and
1418 * now be used for different nodes/leaves of the same tree or some other
1419 * tree.
1420 *
1421 * We are called from iterate_extent_inodes() while either holding a
1422 * transaction handle or holding fs_info->commit_root_sem, so no need
1423 * to take any lock here.
1424 */
1425 if (fs_info->last_reloc_trans > sctx->backref_cache.last_reloc_trans) {
1426 empty_backref_cache(sctx);
1427 return false;
1428 }
1429
1430 entry = mtree_load(&sctx->backref_cache.entries, key);
1431 if (!entry)
1432 return false;
1433
1434 *root_ids_ret = entry->root_ids;
1435 *root_count_ret = entry->num_roots;
1436 list_move_tail(&entry->list, &sctx->backref_cache.lru_list);
1437
1438 return true;
1439}
1440
1441static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1442 void *ctx)
1443{
88ffb665
FM
1444 struct backref_ctx *bctx = ctx;
1445 struct send_ctx *sctx = bctx->sctx;
66d04209
FM
1446 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1447 struct backref_cache_entry *new_entry;
1448 struct ulist_iterator uiter;
1449 struct ulist_node *node;
1450 int ret;
1451
1452 /*
1453 * We're called while holding a transaction handle or while holding
1454 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1455 * NOFS allocation.
1456 */
1457 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1458 /* No worries, cache is optional. */
1459 if (!new_entry)
1460 return;
1461
1462 new_entry->key = leaf_bytenr >> fs_info->sectorsize_bits;
1463 new_entry->num_roots = 0;
1464 ULIST_ITER_INIT(&uiter);
1465 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1466 const u64 root_id = node->val;
1467 struct clone_root *root;
1468
1469 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1470 sctx->clone_roots_cnt, sizeof(struct clone_root),
1471 __clone_root_cmp_bsearch);
1472 if (!root)
1473 continue;
1474
1475 /* Too many roots, just exit, no worries as caching is optional. */
1476 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1477 kfree(new_entry);
1478 return;
1479 }
1480
1481 new_entry->root_ids[new_entry->num_roots] = root_id;
1482 new_entry->num_roots++;
1483 }
1484
1485 /*
1486 * We may have not added any roots to the new cache entry, which means
1487 * none of the roots is part of the list of roots from which we are
1488 * allowed to clone. Cache the new entry as it's still useful to avoid
1489 * backref walking to determine which roots have a path to the leaf.
1490 */
1491
1492 if (sctx->backref_cache.size >= SEND_MAX_BACKREF_CACHE_SIZE) {
1493 struct backref_cache_entry *lru_entry;
1494 struct backref_cache_entry *mt_entry;
1495
1496 lru_entry = list_first_entry(&sctx->backref_cache.lru_list,
1497 struct backref_cache_entry, list);
1498 mt_entry = mtree_erase(&sctx->backref_cache.entries, lru_entry->key);
1499 ASSERT(mt_entry == lru_entry);
1500 list_del(&mt_entry->list);
1501 kfree(mt_entry);
1502 sctx->backref_cache.size--;
1503 }
1504
1505 ret = mtree_insert(&sctx->backref_cache.entries, new_entry->key,
1506 new_entry, GFP_NOFS);
1507 ASSERT(ret == 0 || ret == -ENOMEM);
1508 if (ret) {
1509 /* Caching is optional, no worries. */
1510 kfree(new_entry);
1511 return;
1512 }
1513
1514 list_add_tail(&new_entry->list, &sctx->backref_cache.lru_list);
1515
1516 /*
1517 * We are called from iterate_extent_inodes() while either holding a
1518 * transaction handle or holding fs_info->commit_root_sem, so no need
1519 * to take any lock here.
1520 */
1521 if (sctx->backref_cache.size == 0)
1522 sctx->backref_cache.last_reloc_trans = fs_info->last_reloc_trans;
1523
1524 sctx->backref_cache.size++;
1525}
1526
f73853c7
FM
1527static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1528 const struct extent_buffer *leaf, void *ctx)
1529{
1530 const u64 refs = btrfs_extent_refs(leaf, ei);
1531 const struct backref_ctx *bctx = ctx;
1532 const struct send_ctx *sctx = bctx->sctx;
1533
1534 if (bytenr == bctx->bytenr) {
1535 const u64 flags = btrfs_extent_flags(leaf, ei);
1536
1537 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1538 return -EUCLEAN;
1539
1540 /*
1541 * If we have only one reference and only the send root as a
1542 * clone source - meaning no clone roots were given in the
1543 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1544 * it's our reference and there's no point in doing backref
1545 * walking which is expensive, so exit early.
1546 */
1547 if (refs == 1 && sctx->clone_roots_cnt == 1)
1548 return -ENOENT;
1549 }
1550
1551 /*
1552 * Backreference walking (iterate_extent_inodes() below) is currently
1553 * too expensive when an extent has a large number of references, both
1554 * in time spent and used memory. So for now just fallback to write
1555 * operations instead of clone operations when an extent has more than
1556 * a certain amount of references.
1557 */
1558 if (refs > SEND_MAX_EXTENT_REFS)
1559 return -ENOENT;
1560
1561 return 0;
1562}
1563
adf02418
FM
1564static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1565{
1566 const struct backref_ctx *bctx = ctx;
1567
1568 if (ino == bctx->cur_objectid &&
1569 root == bctx->backref_owner &&
1570 offset == bctx->backref_offset)
1571 return true;
1572
1573 return false;
1574}
1575
31db9f7c 1576/*
766702ef
AB
1577 * Given an inode, offset and extent item, it finds a good clone for a clone
1578 * instruction. Returns -ENOENT when none could be found. The function makes
1579 * sure that the returned clone is usable at the point where sending is at the
1580 * moment. This means, that no clones are accepted which lie behind the current
1581 * inode+offset.
1582 *
31db9f7c
AB
1583 * path must point to the extent item when called.
1584 */
1585static int find_extent_clone(struct send_ctx *sctx,
1586 struct btrfs_path *path,
1587 u64 ino, u64 data_offset,
1588 u64 ino_size,
1589 struct clone_root **found)
1590{
04ab956e 1591 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
1592 int ret;
1593 int extent_type;
1594 u64 logical;
74dd17fb 1595 u64 disk_byte;
31db9f7c 1596 u64 num_bytes;
31db9f7c
AB
1597 struct btrfs_file_extent_item *fi;
1598 struct extent_buffer *eb = path->nodes[0];
a2c8d27e
FM
1599 struct backref_ctx backref_ctx = { 0 };
1600 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
31db9f7c 1601 struct clone_root *cur_clone_root;
74dd17fb 1602 int compressed;
31db9f7c
AB
1603 u32 i;
1604
d3f41317
FM
1605 /*
1606 * With fallocate we can get prealloc extents beyond the inode's i_size,
1607 * so we don't do anything here because clone operations can not clone
1608 * to a range beyond i_size without increasing the i_size of the
1609 * destination inode.
1610 */
1611 if (data_offset >= ino_size)
61ce908a 1612 return 0;
31db9f7c 1613
61ce908a 1614 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
31db9f7c 1615 extent_type = btrfs_file_extent_type(eb, fi);
61ce908a
FM
1616 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1617 return -ENOENT;
31db9f7c 1618
74dd17fb 1619 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
61ce908a
FM
1620 if (disk_byte == 0)
1621 return -ENOENT;
1622
1623 compressed = btrfs_file_extent_compression(eb, fi);
1624 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb 1625 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1626
31db9f7c
AB
1627 /*
1628 * Setup the clone roots.
1629 */
1630 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1631 cur_clone_root = sctx->clone_roots + i;
1632 cur_clone_root->ino = (u64)-1;
1633 cur_clone_root->offset = 0;
c7499a64 1634 cur_clone_root->num_bytes = 0;
88ffb665 1635 cur_clone_root->found_ref = false;
31db9f7c
AB
1636 }
1637
dce28150 1638 backref_ctx.sctx = sctx;
dce28150
GR
1639 backref_ctx.cur_objectid = ino;
1640 backref_ctx.cur_offset = data_offset;
f73853c7 1641 backref_ctx.bytenr = disk_byte;
adf02418
FM
1642 /*
1643 * Use the header owner and not the send root's id, because in case of a
1644 * snapshot we can have shared subtrees.
1645 */
1646 backref_ctx.backref_owner = btrfs_header_owner(eb);
1647 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
31db9f7c
AB
1648
1649 /*
1650 * The last extent of a file may be too large due to page alignment.
1651 * We need to adjust extent_len in this case so that the checks in
88ffb665 1652 * iterate_backrefs() work.
31db9f7c
AB
1653 */
1654 if (data_offset + num_bytes >= ino_size)
dce28150 1655 backref_ctx.extent_len = ino_size - data_offset;
344174a1
FM
1656 else
1657 backref_ctx.extent_len = num_bytes;
31db9f7c
AB
1658
1659 /*
1660 * Now collect all backrefs.
1661 */
f73853c7 1662 backref_walk_ctx.bytenr = disk_byte;
74dd17fb 1663 if (compressed == BTRFS_COMPRESS_NONE)
f73853c7 1664 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
a2c8d27e 1665 backref_walk_ctx.fs_info = fs_info;
66d04209
FM
1666 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1667 backref_walk_ctx.cache_store = store_backref_cache;
88ffb665 1668 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
f73853c7 1669 backref_walk_ctx.check_extent_item = check_extent_item;
88ffb665 1670 backref_walk_ctx.user_ctx = &backref_ctx;
74dd17fb 1671
adf02418
FM
1672 /*
1673 * If have a single clone root, then it's the send root and we can tell
1674 * the backref walking code to skip our own backref and not resolve it,
1675 * since we can not use it for cloning - the source and destination
1676 * ranges can't overlap and in case the leaf is shared through a subtree
1677 * due to snapshots, we can't use those other roots since they are not
1678 * in the list of clone roots.
1679 */
1680 if (sctx->clone_roots_cnt == 1)
1681 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1682
88ffb665 1683 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
a2c8d27e 1684 &backref_ctx);
31db9f7c 1685 if (ret < 0)
f73853c7 1686 return ret;
31db9f7c 1687
d96b3424
FM
1688 down_read(&fs_info->commit_root_sem);
1689 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1690 /*
1691 * A transaction commit for a transaction in which block group
1692 * relocation was done just happened.
1693 * The disk_bytenr of the file extent item we processed is
1694 * possibly stale, referring to the extent's location before
1695 * relocation. So act as if we haven't found any clone sources
1696 * and fallback to write commands, which will read the correct
1697 * data from the new extent location. Otherwise we will fail
1698 * below because we haven't found our own back reference or we
1699 * could be getting incorrect sources in case the old extent
1700 * was already reallocated after the relocation.
1701 */
1702 up_read(&fs_info->commit_root_sem);
f73853c7 1703 return -ENOENT;
d96b3424
FM
1704 }
1705 up_read(&fs_info->commit_root_sem);
1706
04ab956e
JM
1707 btrfs_debug(fs_info,
1708 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1709 data_offset, ino, num_bytes, logical);
31db9f7c 1710
88ffb665 1711 if (!backref_ctx.found) {
04ab956e 1712 btrfs_debug(fs_info, "no clones found");
f73853c7 1713 return -ENOENT;
88ffb665 1714 }
31db9f7c
AB
1715
1716 cur_clone_root = NULL;
1717 for (i = 0; i < sctx->clone_roots_cnt; i++) {
c7499a64 1718 struct clone_root *clone_root = &sctx->clone_roots[i];
31db9f7c 1719
88ffb665 1720 if (!clone_root->found_ref)
c7499a64
FM
1721 continue;
1722
1723 /*
1724 * Choose the root from which we can clone more bytes, to
1725 * minimize write operations and therefore have more extent
1726 * sharing at the destination (the same as in the source).
1727 */
1728 if (!cur_clone_root ||
1729 clone_root->num_bytes > cur_clone_root->num_bytes) {
1730 cur_clone_root = clone_root;
1731
1732 /*
1733 * We found an optimal clone candidate (any inode from
1734 * any root is fine), so we're done.
1735 */
1736 if (clone_root->num_bytes >= backref_ctx.extent_len)
1737 break;
1738 }
31db9f7c
AB
1739 }
1740
1741 if (cur_clone_root) {
1742 *found = cur_clone_root;
1743 ret = 0;
1744 } else {
1745 ret = -ENOENT;
1746 }
1747
31db9f7c
AB
1748 return ret;
1749}
1750
924794c9 1751static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1752 u64 ino,
1753 struct fs_path *dest)
1754{
1755 int ret;
1756 struct btrfs_path *path;
1757 struct btrfs_key key;
1758 struct btrfs_file_extent_item *ei;
1759 u8 type;
1760 u8 compression;
1761 unsigned long off;
1762 int len;
1763
1764 path = alloc_path_for_send();
1765 if (!path)
1766 return -ENOMEM;
1767
1768 key.objectid = ino;
1769 key.type = BTRFS_EXTENT_DATA_KEY;
1770 key.offset = 0;
1771 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1772 if (ret < 0)
1773 goto out;
a879719b
FM
1774 if (ret) {
1775 /*
1776 * An empty symlink inode. Can happen in rare error paths when
1777 * creating a symlink (transaction committed before the inode
1778 * eviction handler removed the symlink inode items and a crash
1779 * happened in between or the subvol was snapshoted in between).
1780 * Print an informative message to dmesg/syslog so that the user
1781 * can delete the symlink.
1782 */
1783 btrfs_err(root->fs_info,
1784 "Found empty symlink inode %llu at root %llu",
1785 ino, root->root_key.objectid);
1786 ret = -EIO;
1787 goto out;
1788 }
31db9f7c
AB
1789
1790 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1791 struct btrfs_file_extent_item);
1792 type = btrfs_file_extent_type(path->nodes[0], ei);
1793 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1794 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1795 BUG_ON(compression);
1796
1797 off = btrfs_file_extent_inline_start(ei);
e41ca589 1798 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
31db9f7c
AB
1799
1800 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1801
1802out:
1803 btrfs_free_path(path);
1804 return ret;
1805}
1806
1807/*
1808 * Helper function to generate a file name that is unique in the root of
1809 * send_root and parent_root. This is used to generate names for orphan inodes.
1810 */
1811static int gen_unique_name(struct send_ctx *sctx,
1812 u64 ino, u64 gen,
1813 struct fs_path *dest)
1814{
1815 int ret = 0;
1816 struct btrfs_path *path;
1817 struct btrfs_dir_item *di;
1818 char tmp[64];
1819 int len;
1820 u64 idx = 0;
1821
1822 path = alloc_path_for_send();
1823 if (!path)
1824 return -ENOMEM;
1825
1826 while (1) {
6db75318 1827 struct fscrypt_str tmp_name;
e43eec81 1828
f74b86d8 1829 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c 1830 ino, gen, idx);
64792f25 1831 ASSERT(len < sizeof(tmp));
e43eec81
STD
1832 tmp_name.name = tmp;
1833 tmp_name.len = strlen(tmp);
31db9f7c
AB
1834
1835 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1836 path, BTRFS_FIRST_FREE_OBJECTID,
e43eec81 1837 &tmp_name, 0);
31db9f7c
AB
1838 btrfs_release_path(path);
1839 if (IS_ERR(di)) {
1840 ret = PTR_ERR(di);
1841 goto out;
1842 }
1843 if (di) {
1844 /* not unique, try again */
1845 idx++;
1846 continue;
1847 }
1848
1849 if (!sctx->parent_root) {
1850 /* unique */
1851 ret = 0;
1852 break;
1853 }
1854
1855 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1856 path, BTRFS_FIRST_FREE_OBJECTID,
e43eec81 1857 &tmp_name, 0);
31db9f7c
AB
1858 btrfs_release_path(path);
1859 if (IS_ERR(di)) {
1860 ret = PTR_ERR(di);
1861 goto out;
1862 }
1863 if (di) {
1864 /* not unique, try again */
1865 idx++;
1866 continue;
1867 }
1868 /* unique */
1869 break;
1870 }
1871
1872 ret = fs_path_add(dest, tmp, strlen(tmp));
1873
1874out:
1875 btrfs_free_path(path);
1876 return ret;
1877}
1878
1879enum inode_state {
1880 inode_state_no_change,
1881 inode_state_will_create,
1882 inode_state_did_create,
1883 inode_state_will_delete,
1884 inode_state_did_delete,
1885};
1886
498581f3
FM
1887static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1888 u64 *send_gen, u64 *parent_gen)
31db9f7c
AB
1889{
1890 int ret;
1891 int left_ret;
1892 int right_ret;
1893 u64 left_gen;
1894 u64 right_gen;
9ed0a72e 1895 struct btrfs_inode_info info;
31db9f7c 1896
9ed0a72e 1897 ret = get_inode_info(sctx->send_root, ino, &info);
31db9f7c
AB
1898 if (ret < 0 && ret != -ENOENT)
1899 goto out;
9ed0a72e
BC
1900 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1901 left_gen = info.gen;
498581f3
FM
1902 if (send_gen)
1903 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
31db9f7c
AB
1904
1905 if (!sctx->parent_root) {
1906 right_ret = -ENOENT;
1907 } else {
9ed0a72e 1908 ret = get_inode_info(sctx->parent_root, ino, &info);
31db9f7c
AB
1909 if (ret < 0 && ret != -ENOENT)
1910 goto out;
9ed0a72e
BC
1911 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1912 right_gen = info.gen;
498581f3
FM
1913 if (parent_gen)
1914 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
31db9f7c
AB
1915 }
1916
1917 if (!left_ret && !right_ret) {
e938c8ad 1918 if (left_gen == gen && right_gen == gen) {
31db9f7c 1919 ret = inode_state_no_change;
e938c8ad 1920 } else if (left_gen == gen) {
31db9f7c
AB
1921 if (ino < sctx->send_progress)
1922 ret = inode_state_did_create;
1923 else
1924 ret = inode_state_will_create;
1925 } else if (right_gen == gen) {
1926 if (ino < sctx->send_progress)
1927 ret = inode_state_did_delete;
1928 else
1929 ret = inode_state_will_delete;
1930 } else {
1931 ret = -ENOENT;
1932 }
1933 } else if (!left_ret) {
1934 if (left_gen == gen) {
1935 if (ino < sctx->send_progress)
1936 ret = inode_state_did_create;
1937 else
1938 ret = inode_state_will_create;
1939 } else {
1940 ret = -ENOENT;
1941 }
1942 } else if (!right_ret) {
1943 if (right_gen == gen) {
1944 if (ino < sctx->send_progress)
1945 ret = inode_state_did_delete;
1946 else
1947 ret = inode_state_will_delete;
1948 } else {
1949 ret = -ENOENT;
1950 }
1951 } else {
1952 ret = -ENOENT;
1953 }
1954
1955out:
1956 return ret;
1957}
1958
498581f3
FM
1959static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1960 u64 *send_gen, u64 *parent_gen)
31db9f7c
AB
1961{
1962 int ret;
1963
4dd9920d
RK
1964 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1965 return 1;
1966
498581f3 1967 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
31db9f7c
AB
1968 if (ret < 0)
1969 goto out;
1970
1971 if (ret == inode_state_no_change ||
1972 ret == inode_state_did_create ||
1973 ret == inode_state_will_delete)
1974 ret = 1;
1975 else
1976 ret = 0;
1977
1978out:
1979 return ret;
1980}
1981
1982/*
1983 * Helper function to lookup a dir item in a dir.
1984 */
1985static int lookup_dir_item_inode(struct btrfs_root *root,
1986 u64 dir, const char *name, int name_len,
eab67c06 1987 u64 *found_inode)
31db9f7c
AB
1988{
1989 int ret = 0;
1990 struct btrfs_dir_item *di;
1991 struct btrfs_key key;
1992 struct btrfs_path *path;
6db75318 1993 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
31db9f7c
AB
1994
1995 path = alloc_path_for_send();
1996 if (!path)
1997 return -ENOMEM;
1998
e43eec81 1999 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
3cf5068f
LB
2000 if (IS_ERR_OR_NULL(di)) {
2001 ret = di ? PTR_ERR(di) : -ENOENT;
31db9f7c
AB
2002 goto out;
2003 }
2004 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1af56070
FM
2005 if (key.type == BTRFS_ROOT_ITEM_KEY) {
2006 ret = -ENOENT;
2007 goto out;
2008 }
31db9f7c 2009 *found_inode = key.objectid;
31db9f7c
AB
2010
2011out:
2012 btrfs_free_path(path);
2013 return ret;
2014}
2015
766702ef
AB
2016/*
2017 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2018 * generation of the parent dir and the name of the dir entry.
2019 */
924794c9 2020static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
2021 u64 *dir, u64 *dir_gen, struct fs_path *name)
2022{
2023 int ret;
2024 struct btrfs_key key;
2025 struct btrfs_key found_key;
2026 struct btrfs_path *path;
31db9f7c 2027 int len;
96b5bd77 2028 u64 parent_dir;
31db9f7c
AB
2029
2030 path = alloc_path_for_send();
2031 if (!path)
2032 return -ENOMEM;
2033
2034 key.objectid = ino;
2035 key.type = BTRFS_INODE_REF_KEY;
2036 key.offset = 0;
2037
2038 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2039 if (ret < 0)
2040 goto out;
2041 if (!ret)
2042 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2043 path->slots[0]);
96b5bd77
JS
2044 if (ret || found_key.objectid != ino ||
2045 (found_key.type != BTRFS_INODE_REF_KEY &&
2046 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
2047 ret = -ENOENT;
2048 goto out;
2049 }
2050
51a60253 2051 if (found_key.type == BTRFS_INODE_REF_KEY) {
96b5bd77
JS
2052 struct btrfs_inode_ref *iref;
2053 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2054 struct btrfs_inode_ref);
2055 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2056 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2057 (unsigned long)(iref + 1),
2058 len);
2059 parent_dir = found_key.offset;
2060 } else {
2061 struct btrfs_inode_extref *extref;
2062 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2063 struct btrfs_inode_extref);
2064 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2065 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2066 (unsigned long)&extref->name, len);
2067 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2068 }
31db9f7c
AB
2069 if (ret < 0)
2070 goto out;
2071 btrfs_release_path(path);
2072
b46ab97b 2073 if (dir_gen) {
7e93f6dc 2074 ret = get_inode_gen(root, parent_dir, dir_gen);
b46ab97b
FM
2075 if (ret < 0)
2076 goto out;
2077 }
31db9f7c 2078
96b5bd77 2079 *dir = parent_dir;
31db9f7c
AB
2080
2081out:
2082 btrfs_free_path(path);
2083 return ret;
2084}
2085
924794c9 2086static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
2087 u64 ino, u64 dir,
2088 const char *name, int name_len)
2089{
2090 int ret;
2091 struct fs_path *tmp_name;
2092 u64 tmp_dir;
31db9f7c 2093
924794c9 2094 tmp_name = fs_path_alloc();
31db9f7c
AB
2095 if (!tmp_name)
2096 return -ENOMEM;
2097
b46ab97b 2098 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
31db9f7c
AB
2099 if (ret < 0)
2100 goto out;
2101
b9291aff 2102 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
2103 ret = 0;
2104 goto out;
2105 }
2106
e938c8ad 2107 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
2108
2109out:
924794c9 2110 fs_path_free(tmp_name);
31db9f7c
AB
2111 return ret;
2112}
2113
766702ef
AB
2114/*
2115 * Used by process_recorded_refs to determine if a new ref would overwrite an
2116 * already existing ref. In case it detects an overwrite, it returns the
2117 * inode/gen in who_ino/who_gen.
2118 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2119 * to make sure later references to the overwritten inode are possible.
2120 * Orphanizing is however only required for the first ref of an inode.
2121 * process_recorded_refs does an additional is_first_ref check to see if
2122 * orphanizing is really required.
2123 */
31db9f7c
AB
2124static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2125 const char *name, int name_len,
f5962781 2126 u64 *who_ino, u64 *who_gen, u64 *who_mode)
31db9f7c 2127{
b3047a42 2128 int ret;
498581f3 2129 u64 parent_root_dir_gen;
31db9f7c 2130 u64 other_inode = 0;
7e93f6dc 2131 struct btrfs_inode_info info;
31db9f7c
AB
2132
2133 if (!sctx->parent_root)
b3047a42 2134 return 0;
31db9f7c 2135
498581f3 2136 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
31db9f7c 2137 if (ret <= 0)
b3047a42 2138 return 0;
31db9f7c 2139
ebdad913
JB
2140 /*
2141 * If we have a parent root we need to verify that the parent dir was
01327610 2142 * not deleted and then re-created, if it was then we have no overwrite
ebdad913 2143 * and we can just unlink this entry.
498581f3
FM
2144 *
2145 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2146 * parent root.
ebdad913 2147 */
498581f3
FM
2148 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2149 parent_root_dir_gen != dir_gen)
2150 return 0;
ebdad913 2151
31db9f7c 2152 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
eab67c06 2153 &other_inode);
b3047a42
FM
2154 if (ret == -ENOENT)
2155 return 0;
2156 else if (ret < 0)
2157 return ret;
31db9f7c 2158
766702ef
AB
2159 /*
2160 * Check if the overwritten ref was already processed. If yes, the ref
2161 * was already unlinked/moved, so we can safely assume that we will not
2162 * overwrite anything at this point in time.
2163 */
801bec36
RK
2164 if (other_inode > sctx->send_progress ||
2165 is_waiting_for_move(sctx, other_inode)) {
7e93f6dc 2166 ret = get_inode_info(sctx->parent_root, other_inode, &info);
31db9f7c 2167 if (ret < 0)
b3047a42 2168 return ret;
31db9f7c 2169
31db9f7c 2170 *who_ino = other_inode;
7e93f6dc
BC
2171 *who_gen = info.gen;
2172 *who_mode = info.mode;
b3047a42 2173 return 1;
31db9f7c
AB
2174 }
2175
b3047a42 2176 return 0;
31db9f7c
AB
2177}
2178
766702ef
AB
2179/*
2180 * Checks if the ref was overwritten by an already processed inode. This is
2181 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2182 * thus the orphan name needs be used.
2183 * process_recorded_refs also uses it to avoid unlinking of refs that were
2184 * overwritten.
2185 */
31db9f7c
AB
2186static int did_overwrite_ref(struct send_ctx *sctx,
2187 u64 dir, u64 dir_gen,
2188 u64 ino, u64 ino_gen,
2189 const char *name, int name_len)
2190{
e739ba30 2191 int ret;
31db9f7c 2192 u64 ow_inode;
cb689481 2193 u64 ow_gen = 0;
498581f3 2194 u64 send_root_dir_gen;
31db9f7c
AB
2195
2196 if (!sctx->parent_root)
e739ba30 2197 return 0;
31db9f7c 2198
498581f3 2199 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
31db9f7c 2200 if (ret <= 0)
e739ba30 2201 return ret;
31db9f7c 2202
498581f3
FM
2203 /*
2204 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2205 * send root.
2206 */
2207 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2208 return 0;
01914101 2209
31db9f7c
AB
2210 /* check if the ref was overwritten by another ref */
2211 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
eab67c06 2212 &ow_inode);
e739ba30 2213 if (ret == -ENOENT) {
31db9f7c 2214 /* was never and will never be overwritten */
e739ba30
FM
2215 return 0;
2216 } else if (ret < 0) {
2217 return ret;
31db9f7c
AB
2218 }
2219
cb689481
FM
2220 if (ow_inode == ino) {
2221 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2222 if (ret < 0)
2223 return ret;
31db9f7c 2224
cb689481
FM
2225 /* It's the same inode, so no overwrite happened. */
2226 if (ow_gen == ino_gen)
2227 return 0;
2228 }
31db9f7c 2229
8b191a68
FM
2230 /*
2231 * We know that it is or will be overwritten. Check this now.
2232 * The current inode being processed might have been the one that caused
b786f16a
FM
2233 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2234 * the current inode being processed.
8b191a68 2235 */
cb689481 2236 if (ow_inode < sctx->send_progress)
e739ba30 2237 return 1;
31db9f7c 2238
cb689481
FM
2239 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2240 if (ow_gen == 0) {
2241 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2242 if (ret < 0)
2243 return ret;
2244 }
2245 if (ow_gen == sctx->cur_inode_gen)
2246 return 1;
2247 }
2248
e739ba30 2249 return 0;
31db9f7c
AB
2250}
2251
766702ef
AB
2252/*
2253 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2254 * that got overwritten. This is used by process_recorded_refs to determine
2255 * if it has to use the path as returned by get_cur_path or the orphan name.
2256 */
31db9f7c
AB
2257static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2258{
2259 int ret = 0;
2260 struct fs_path *name = NULL;
2261 u64 dir;
2262 u64 dir_gen;
2263
2264 if (!sctx->parent_root)
2265 goto out;
2266
924794c9 2267 name = fs_path_alloc();
31db9f7c
AB
2268 if (!name)
2269 return -ENOMEM;
2270
924794c9 2271 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
2272 if (ret < 0)
2273 goto out;
2274
2275 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2276 name->start, fs_path_len(name));
31db9f7c
AB
2277
2278out:
924794c9 2279 fs_path_free(name);
31db9f7c
AB
2280 return ret;
2281}
2282
766702ef 2283/*
5b8418b8 2284 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
766702ef 2285 * so we need to do some special handling in case we have clashes. This function
5b8418b8 2286 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 2287 * In case of error, nce is kfreed.
766702ef 2288 */
31db9f7c
AB
2289static int name_cache_insert(struct send_ctx *sctx,
2290 struct name_cache_entry *nce)
2291{
2292 int ret = 0;
7e0926fe
AB
2293 struct list_head *nce_head;
2294
5b8418b8
DS
2295 nce_head = radix_tree_lookup(&sctx->name_cache,
2296 (unsigned long)nce->ino);
7e0926fe 2297 if (!nce_head) {
e780b0d1 2298 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
cfa7a9cc
TI
2299 if (!nce_head) {
2300 kfree(nce);
31db9f7c 2301 return -ENOMEM;
cfa7a9cc 2302 }
7e0926fe 2303 INIT_LIST_HEAD(nce_head);
31db9f7c 2304
5b8418b8 2305 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
2306 if (ret < 0) {
2307 kfree(nce_head);
2308 kfree(nce);
31db9f7c 2309 return ret;
5dc67d0b 2310 }
31db9f7c 2311 }
5b8418b8 2312 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
2313 list_add_tail(&nce->list, &sctx->name_cache_list);
2314 sctx->name_cache_size++;
2315
2316 return ret;
2317}
2318
2319static void name_cache_delete(struct send_ctx *sctx,
2320 struct name_cache_entry *nce)
2321{
7e0926fe 2322 struct list_head *nce_head;
31db9f7c 2323
5b8418b8
DS
2324 nce_head = radix_tree_lookup(&sctx->name_cache,
2325 (unsigned long)nce->ino);
57fb8910
DS
2326 if (!nce_head) {
2327 btrfs_err(sctx->send_root->fs_info,
2328 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2329 nce->ino, sctx->name_cache_size);
2330 }
31db9f7c 2331
5b8418b8 2332 list_del(&nce->radix_list);
31db9f7c 2333 list_del(&nce->list);
31db9f7c 2334 sctx->name_cache_size--;
7e0926fe 2335
57fb8910
DS
2336 /*
2337 * We may not get to the final release of nce_head if the lookup fails
2338 */
2339 if (nce_head && list_empty(nce_head)) {
5b8418b8 2340 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
7e0926fe
AB
2341 kfree(nce_head);
2342 }
31db9f7c
AB
2343}
2344
2345static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2346 u64 ino, u64 gen)
2347{
7e0926fe
AB
2348 struct list_head *nce_head;
2349 struct name_cache_entry *cur;
31db9f7c 2350
5b8418b8 2351 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
7e0926fe 2352 if (!nce_head)
31db9f7c
AB
2353 return NULL;
2354
5b8418b8 2355 list_for_each_entry(cur, nce_head, radix_list) {
7e0926fe
AB
2356 if (cur->ino == ino && cur->gen == gen)
2357 return cur;
2358 }
31db9f7c
AB
2359 return NULL;
2360}
2361
766702ef
AB
2362/*
2363 * Remove some entries from the beginning of name_cache_list.
2364 */
31db9f7c
AB
2365static void name_cache_clean_unused(struct send_ctx *sctx)
2366{
2367 struct name_cache_entry *nce;
2368
2369 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2370 return;
2371
2372 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2373 nce = list_entry(sctx->name_cache_list.next,
2374 struct name_cache_entry, list);
2375 name_cache_delete(sctx, nce);
2376 kfree(nce);
2377 }
2378}
2379
2380static void name_cache_free(struct send_ctx *sctx)
2381{
2382 struct name_cache_entry *nce;
31db9f7c 2383
e938c8ad
AB
2384 while (!list_empty(&sctx->name_cache_list)) {
2385 nce = list_entry(sctx->name_cache_list.next,
2386 struct name_cache_entry, list);
31db9f7c 2387 name_cache_delete(sctx, nce);
17589bd9 2388 kfree(nce);
31db9f7c
AB
2389 }
2390}
2391
766702ef
AB
2392/*
2393 * Used by get_cur_path for each ref up to the root.
2394 * Returns 0 if it succeeded.
2395 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2396 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2397 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2398 * Returns <0 in case of error.
2399 */
31db9f7c
AB
2400static int __get_cur_name_and_parent(struct send_ctx *sctx,
2401 u64 ino, u64 gen,
2402 u64 *parent_ino,
2403 u64 *parent_gen,
2404 struct fs_path *dest)
2405{
2406 int ret;
2407 int nce_ret;
31db9f7c
AB
2408 struct name_cache_entry *nce = NULL;
2409
766702ef
AB
2410 /*
2411 * First check if we already did a call to this function with the same
2412 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2413 * return the cached result.
2414 */
31db9f7c
AB
2415 nce = name_cache_search(sctx, ino, gen);
2416 if (nce) {
2417 if (ino < sctx->send_progress && nce->need_later_update) {
2418 name_cache_delete(sctx, nce);
2419 kfree(nce);
2420 nce = NULL;
2421 } else {
bb930007
BL
2422 /*
2423 * Removes the entry from the list and adds it back to
2424 * the end. This marks the entry as recently used so
2425 * that name_cache_clean_unused does not remove it.
2426 */
2427 list_move_tail(&nce->list, &sctx->name_cache_list);
2428
31db9f7c
AB
2429 *parent_ino = nce->parent_ino;
2430 *parent_gen = nce->parent_gen;
2431 ret = fs_path_add(dest, nce->name, nce->name_len);
2432 if (ret < 0)
2433 goto out;
2434 ret = nce->ret;
2435 goto out;
2436 }
2437 }
2438
766702ef
AB
2439 /*
2440 * If the inode is not existent yet, add the orphan name and return 1.
2441 * This should only happen for the parent dir that we determine in
0d8869fb 2442 * record_new_ref_if_needed().
766702ef 2443 */
498581f3 2444 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
31db9f7c
AB
2445 if (ret < 0)
2446 goto out;
2447
2448 if (!ret) {
2449 ret = gen_unique_name(sctx, ino, gen, dest);
2450 if (ret < 0)
2451 goto out;
2452 ret = 1;
2453 goto out_cache;
2454 }
2455
766702ef
AB
2456 /*
2457 * Depending on whether the inode was already processed or not, use
2458 * send_root or parent_root for ref lookup.
2459 */
bf0d1f44 2460 if (ino < sctx->send_progress)
924794c9
TI
2461 ret = get_first_ref(sctx->send_root, ino,
2462 parent_ino, parent_gen, dest);
31db9f7c 2463 else
924794c9
TI
2464 ret = get_first_ref(sctx->parent_root, ino,
2465 parent_ino, parent_gen, dest);
31db9f7c
AB
2466 if (ret < 0)
2467 goto out;
2468
766702ef
AB
2469 /*
2470 * Check if the ref was overwritten by an inode's ref that was processed
2471 * earlier. If yes, treat as orphan and return 1.
2472 */
31db9f7c
AB
2473 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2474 dest->start, dest->end - dest->start);
2475 if (ret < 0)
2476 goto out;
2477 if (ret) {
2478 fs_path_reset(dest);
2479 ret = gen_unique_name(sctx, ino, gen, dest);
2480 if (ret < 0)
2481 goto out;
2482 ret = 1;
2483 }
2484
2485out_cache:
766702ef
AB
2486 /*
2487 * Store the result of the lookup in the name cache.
2488 */
e780b0d1 2489 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
31db9f7c
AB
2490 if (!nce) {
2491 ret = -ENOMEM;
2492 goto out;
2493 }
2494
2495 nce->ino = ino;
2496 nce->gen = gen;
2497 nce->parent_ino = *parent_ino;
2498 nce->parent_gen = *parent_gen;
2499 nce->name_len = fs_path_len(dest);
2500 nce->ret = ret;
2501 strcpy(nce->name, dest->start);
31db9f7c
AB
2502
2503 if (ino < sctx->send_progress)
2504 nce->need_later_update = 0;
2505 else
2506 nce->need_later_update = 1;
2507
2508 nce_ret = name_cache_insert(sctx, nce);
2509 if (nce_ret < 0)
2510 ret = nce_ret;
2511 name_cache_clean_unused(sctx);
2512
2513out:
31db9f7c
AB
2514 return ret;
2515}
2516
2517/*
2518 * Magic happens here. This function returns the first ref to an inode as it
2519 * would look like while receiving the stream at this point in time.
2520 * We walk the path up to the root. For every inode in between, we check if it
2521 * was already processed/sent. If yes, we continue with the parent as found
2522 * in send_root. If not, we continue with the parent as found in parent_root.
2523 * If we encounter an inode that was deleted at this point in time, we use the
2524 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2525 * that were not created yet and overwritten inodes/refs.
2526 *
52042d8e 2527 * When do we have orphan inodes:
31db9f7c
AB
2528 * 1. When an inode is freshly created and thus no valid refs are available yet
2529 * 2. When a directory lost all it's refs (deleted) but still has dir items
2530 * inside which were not processed yet (pending for move/delete). If anyone
2531 * tried to get the path to the dir items, it would get a path inside that
2532 * orphan directory.
2533 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2534 * of an unprocessed inode. If in that case the first ref would be
2535 * overwritten, the overwritten inode gets "orphanized". Later when we
2536 * process this overwritten inode, it is restored at a new place by moving
2537 * the orphan inode.
2538 *
2539 * sctx->send_progress tells this function at which point in time receiving
2540 * would be.
2541 */
2542static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2543 struct fs_path *dest)
2544{
2545 int ret = 0;
2546 struct fs_path *name = NULL;
2547 u64 parent_inode = 0;
2548 u64 parent_gen = 0;
2549 int stop = 0;
2550
924794c9 2551 name = fs_path_alloc();
31db9f7c
AB
2552 if (!name) {
2553 ret = -ENOMEM;
2554 goto out;
2555 }
2556
2557 dest->reversed = 1;
2558 fs_path_reset(dest);
2559
2560 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
8b191a68
FM
2561 struct waiting_dir_move *wdm;
2562
31db9f7c
AB
2563 fs_path_reset(name);
2564
0b3f407e 2565 if (is_waiting_for_rm(sctx, ino, gen)) {
9dc44214
FM
2566 ret = gen_unique_name(sctx, ino, gen, name);
2567 if (ret < 0)
2568 goto out;
2569 ret = fs_path_add_path(dest, name);
2570 break;
2571 }
2572
8b191a68
FM
2573 wdm = get_waiting_dir_move(sctx, ino);
2574 if (wdm && wdm->orphanized) {
2575 ret = gen_unique_name(sctx, ino, gen, name);
2576 stop = 1;
2577 } else if (wdm) {
bf0d1f44
FM
2578 ret = get_first_ref(sctx->parent_root, ino,
2579 &parent_inode, &parent_gen, name);
2580 } else {
2581 ret = __get_cur_name_and_parent(sctx, ino, gen,
2582 &parent_inode,
2583 &parent_gen, name);
2584 if (ret)
2585 stop = 1;
2586 }
2587
31db9f7c
AB
2588 if (ret < 0)
2589 goto out;
9f03740a 2590
31db9f7c
AB
2591 ret = fs_path_add_path(dest, name);
2592 if (ret < 0)
2593 goto out;
2594
2595 ino = parent_inode;
2596 gen = parent_gen;
2597 }
2598
2599out:
924794c9 2600 fs_path_free(name);
31db9f7c
AB
2601 if (!ret)
2602 fs_path_unreverse(dest);
2603 return ret;
2604}
2605
31db9f7c
AB
2606/*
2607 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2608 */
2609static int send_subvol_begin(struct send_ctx *sctx)
2610{
2611 int ret;
2612 struct btrfs_root *send_root = sctx->send_root;
2613 struct btrfs_root *parent_root = sctx->parent_root;
2614 struct btrfs_path *path;
2615 struct btrfs_key key;
2616 struct btrfs_root_ref *ref;
2617 struct extent_buffer *leaf;
2618 char *name = NULL;
2619 int namelen;
2620
ffcfaf81 2621 path = btrfs_alloc_path();
31db9f7c
AB
2622 if (!path)
2623 return -ENOMEM;
2624
e780b0d1 2625 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
31db9f7c
AB
2626 if (!name) {
2627 btrfs_free_path(path);
2628 return -ENOMEM;
2629 }
2630
4fd786e6 2631 key.objectid = send_root->root_key.objectid;
31db9f7c
AB
2632 key.type = BTRFS_ROOT_BACKREF_KEY;
2633 key.offset = 0;
2634
2635 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2636 &key, path, 1, 0);
2637 if (ret < 0)
2638 goto out;
2639 if (ret) {
2640 ret = -ENOENT;
2641 goto out;
2642 }
2643
2644 leaf = path->nodes[0];
2645 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2646 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
4fd786e6 2647 key.objectid != send_root->root_key.objectid) {
31db9f7c
AB
2648 ret = -ENOENT;
2649 goto out;
2650 }
2651 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2652 namelen = btrfs_root_ref_name_len(leaf, ref);
2653 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2654 btrfs_release_path(path);
2655
31db9f7c
AB
2656 if (parent_root) {
2657 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2658 if (ret < 0)
2659 goto out;
2660 } else {
2661 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2662 if (ret < 0)
2663 goto out;
2664 }
2665
2666 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
b96b1db0
RR
2667
2668 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2669 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2670 sctx->send_root->root_item.received_uuid);
2671 else
2672 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2673 sctx->send_root->root_item.uuid);
2674
31db9f7c 2675 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
09e3a288 2676 btrfs_root_ctransid(&sctx->send_root->root_item));
31db9f7c 2677 if (parent_root) {
37b8d27d
JB
2678 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2679 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2680 parent_root->root_item.received_uuid);
2681 else
2682 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2683 parent_root->root_item.uuid);
31db9f7c 2684 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
09e3a288 2685 btrfs_root_ctransid(&sctx->parent_root->root_item));
31db9f7c
AB
2686 }
2687
2688 ret = send_cmd(sctx);
2689
2690tlv_put_failure:
2691out:
2692 btrfs_free_path(path);
2693 kfree(name);
2694 return ret;
2695}
2696
2697static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2698{
04ab956e 2699 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2700 int ret = 0;
2701 struct fs_path *p;
2702
04ab956e 2703 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
31db9f7c 2704
924794c9 2705 p = fs_path_alloc();
31db9f7c
AB
2706 if (!p)
2707 return -ENOMEM;
2708
2709 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2710 if (ret < 0)
2711 goto out;
2712
2713 ret = get_cur_path(sctx, ino, gen, p);
2714 if (ret < 0)
2715 goto out;
2716 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2717 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2718
2719 ret = send_cmd(sctx);
2720
2721tlv_put_failure:
2722out:
924794c9 2723 fs_path_free(p);
31db9f7c
AB
2724 return ret;
2725}
2726
2727static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2728{
04ab956e 2729 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2730 int ret = 0;
2731 struct fs_path *p;
2732
04ab956e 2733 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
31db9f7c 2734
924794c9 2735 p = fs_path_alloc();
31db9f7c
AB
2736 if (!p)
2737 return -ENOMEM;
2738
2739 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2740 if (ret < 0)
2741 goto out;
2742
2743 ret = get_cur_path(sctx, ino, gen, p);
2744 if (ret < 0)
2745 goto out;
2746 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2747 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2748
2749 ret = send_cmd(sctx);
2750
2751tlv_put_failure:
2752out:
924794c9 2753 fs_path_free(p);
31db9f7c
AB
2754 return ret;
2755}
2756
48247359
DS
2757static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2758{
2759 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2760 int ret = 0;
2761 struct fs_path *p;
2762
2763 if (sctx->proto < 2)
2764 return 0;
2765
2766 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2767
2768 p = fs_path_alloc();
2769 if (!p)
2770 return -ENOMEM;
2771
2772 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2773 if (ret < 0)
2774 goto out;
2775
2776 ret = get_cur_path(sctx, ino, gen, p);
2777 if (ret < 0)
2778 goto out;
2779 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2780 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2781
2782 ret = send_cmd(sctx);
2783
2784tlv_put_failure:
2785out:
2786 fs_path_free(p);
2787 return ret;
2788}
2789
31db9f7c
AB
2790static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2791{
04ab956e 2792 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2793 int ret = 0;
2794 struct fs_path *p;
2795
04ab956e
JM
2796 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2797 ino, uid, gid);
31db9f7c 2798
924794c9 2799 p = fs_path_alloc();
31db9f7c
AB
2800 if (!p)
2801 return -ENOMEM;
2802
2803 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2804 if (ret < 0)
2805 goto out;
2806
2807 ret = get_cur_path(sctx, ino, gen, p);
2808 if (ret < 0)
2809 goto out;
2810 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2811 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2812 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2813
2814 ret = send_cmd(sctx);
2815
2816tlv_put_failure:
2817out:
924794c9 2818 fs_path_free(p);
31db9f7c
AB
2819 return ret;
2820}
2821
2822static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2823{
04ab956e 2824 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2825 int ret = 0;
2826 struct fs_path *p = NULL;
2827 struct btrfs_inode_item *ii;
2828 struct btrfs_path *path = NULL;
2829 struct extent_buffer *eb;
2830 struct btrfs_key key;
2831 int slot;
2832
04ab956e 2833 btrfs_debug(fs_info, "send_utimes %llu", ino);
31db9f7c 2834
924794c9 2835 p = fs_path_alloc();
31db9f7c
AB
2836 if (!p)
2837 return -ENOMEM;
2838
2839 path = alloc_path_for_send();
2840 if (!path) {
2841 ret = -ENOMEM;
2842 goto out;
2843 }
2844
2845 key.objectid = ino;
2846 key.type = BTRFS_INODE_ITEM_KEY;
2847 key.offset = 0;
2848 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
15b253ea
FM
2849 if (ret > 0)
2850 ret = -ENOENT;
31db9f7c
AB
2851 if (ret < 0)
2852 goto out;
2853
2854 eb = path->nodes[0];
2855 slot = path->slots[0];
2856 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2857
2858 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2859 if (ret < 0)
2860 goto out;
2861
2862 ret = get_cur_path(sctx, ino, gen, p);
2863 if (ret < 0)
2864 goto out;
2865 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
a937b979
DS
2866 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2867 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2868 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
22a5b2ab
DS
2869 if (sctx->proto >= 2)
2870 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
31db9f7c
AB
2871
2872 ret = send_cmd(sctx);
2873
2874tlv_put_failure:
2875out:
924794c9 2876 fs_path_free(p);
31db9f7c
AB
2877 btrfs_free_path(path);
2878 return ret;
2879}
2880
2881/*
2882 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2883 * a valid path yet because we did not process the refs yet. So, the inode
2884 * is created as orphan.
2885 */
1f4692da 2886static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c 2887{
04ab956e 2888 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c 2889 int ret = 0;
31db9f7c 2890 struct fs_path *p;
31db9f7c 2891 int cmd;
7e93f6dc 2892 struct btrfs_inode_info info;
1f4692da 2893 u64 gen;
31db9f7c 2894 u64 mode;
1f4692da 2895 u64 rdev;
31db9f7c 2896
04ab956e 2897 btrfs_debug(fs_info, "send_create_inode %llu", ino);
31db9f7c 2898
924794c9 2899 p = fs_path_alloc();
31db9f7c
AB
2900 if (!p)
2901 return -ENOMEM;
2902
644d1940 2903 if (ino != sctx->cur_ino) {
7e93f6dc 2904 ret = get_inode_info(sctx->send_root, ino, &info);
644d1940
LB
2905 if (ret < 0)
2906 goto out;
7e93f6dc
BC
2907 gen = info.gen;
2908 mode = info.mode;
2909 rdev = info.rdev;
644d1940
LB
2910 } else {
2911 gen = sctx->cur_inode_gen;
2912 mode = sctx->cur_inode_mode;
2913 rdev = sctx->cur_inode_rdev;
2914 }
31db9f7c 2915
e938c8ad 2916 if (S_ISREG(mode)) {
31db9f7c 2917 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2918 } else if (S_ISDIR(mode)) {
31db9f7c 2919 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2920 } else if (S_ISLNK(mode)) {
31db9f7c 2921 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2922 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2923 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2924 } else if (S_ISFIFO(mode)) {
31db9f7c 2925 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2926 } else if (S_ISSOCK(mode)) {
31db9f7c 2927 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2928 } else {
f14d104d 2929 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
31db9f7c 2930 (int)(mode & S_IFMT));
ca6842bf 2931 ret = -EOPNOTSUPP;
31db9f7c
AB
2932 goto out;
2933 }
2934
2935 ret = begin_cmd(sctx, cmd);
2936 if (ret < 0)
2937 goto out;
2938
1f4692da 2939 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2940 if (ret < 0)
2941 goto out;
2942
2943 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2944 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2945
2946 if (S_ISLNK(mode)) {
2947 fs_path_reset(p);
924794c9 2948 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2949 if (ret < 0)
2950 goto out;
2951 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2952 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2953 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2954 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2955 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2956 }
2957
2958 ret = send_cmd(sctx);
2959 if (ret < 0)
2960 goto out;
2961
2962
2963tlv_put_failure:
2964out:
924794c9 2965 fs_path_free(p);
31db9f7c
AB
2966 return ret;
2967}
2968
1f4692da
AB
2969/*
2970 * We need some special handling for inodes that get processed before the parent
2971 * directory got created. See process_recorded_refs for details.
2972 * This function does the check if we already created the dir out of order.
2973 */
2974static int did_create_dir(struct send_ctx *sctx, u64 dir)
2975{
2976 int ret = 0;
6dcee260 2977 int iter_ret = 0;
1f4692da
AB
2978 struct btrfs_path *path = NULL;
2979 struct btrfs_key key;
2980 struct btrfs_key found_key;
2981 struct btrfs_key di_key;
1f4692da 2982 struct btrfs_dir_item *di;
1f4692da
AB
2983
2984 path = alloc_path_for_send();
6dcee260
GN
2985 if (!path)
2986 return -ENOMEM;
1f4692da
AB
2987
2988 key.objectid = dir;
2989 key.type = BTRFS_DIR_INDEX_KEY;
2990 key.offset = 0;
dff6d0ad 2991
6dcee260
GN
2992 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2993 struct extent_buffer *eb = path->nodes[0];
dff6d0ad 2994
dff6d0ad 2995 if (found_key.objectid != key.objectid ||
1f4692da
AB
2996 found_key.type != key.type) {
2997 ret = 0;
6dcee260 2998 break;
1f4692da
AB
2999 }
3000
6dcee260 3001 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
1f4692da
AB
3002 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
3003
a0525414
JB
3004 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
3005 di_key.objectid < sctx->send_progress) {
1f4692da 3006 ret = 1;
6dcee260 3007 break;
1f4692da 3008 }
1f4692da 3009 }
6dcee260
GN
3010 /* Catch error found during iteration */
3011 if (iter_ret < 0)
3012 ret = iter_ret;
1f4692da 3013
1f4692da
AB
3014 btrfs_free_path(path);
3015 return ret;
3016}
3017
3018/*
3019 * Only creates the inode if it is:
3020 * 1. Not a directory
3021 * 2. Or a directory which was not created already due to out of order
3022 * directories. See did_create_dir and process_recorded_refs for details.
3023 */
3024static int send_create_inode_if_needed(struct send_ctx *sctx)
3025{
3026 int ret;
3027
3028 if (S_ISDIR(sctx->cur_inode_mode)) {
3029 ret = did_create_dir(sctx, sctx->cur_ino);
3030 if (ret < 0)
0e3dd5bc
MPS
3031 return ret;
3032 else if (ret > 0)
3033 return 0;
1f4692da
AB
3034 }
3035
0e3dd5bc 3036 return send_create_inode(sctx, sctx->cur_ino);
1f4692da
AB
3037}
3038
31db9f7c
AB
3039struct recorded_ref {
3040 struct list_head list;
31db9f7c
AB
3041 char *name;
3042 struct fs_path *full_path;
3043 u64 dir;
3044 u64 dir_gen;
31db9f7c 3045 int name_len;
3aa5bd36
BC
3046 struct rb_node node;
3047 struct rb_root *root;
31db9f7c
AB
3048};
3049
71ecfc13
BC
3050static struct recorded_ref *recorded_ref_alloc(void)
3051{
3052 struct recorded_ref *ref;
3053
3054 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3055 if (!ref)
3056 return NULL;
3aa5bd36 3057 RB_CLEAR_NODE(&ref->node);
71ecfc13
BC
3058 INIT_LIST_HEAD(&ref->list);
3059 return ref;
3060}
3061
3062static void recorded_ref_free(struct recorded_ref *ref)
3063{
3064 if (!ref)
3065 return;
3aa5bd36
BC
3066 if (!RB_EMPTY_NODE(&ref->node))
3067 rb_erase(&ref->node, ref->root);
71ecfc13
BC
3068 list_del(&ref->list);
3069 fs_path_free(ref->full_path);
3070 kfree(ref);
3071}
3072
fdb13889
FM
3073static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3074{
3075 ref->full_path = path;
3076 ref->name = (char *)kbasename(ref->full_path->start);
3077 ref->name_len = ref->full_path->end - ref->name;
3078}
3079
ba5e8f2e
JB
3080static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3081{
3082 struct recorded_ref *new;
3083
71ecfc13 3084 new = recorded_ref_alloc();
ba5e8f2e
JB
3085 if (!new)
3086 return -ENOMEM;
3087
3088 new->dir = ref->dir;
3089 new->dir_gen = ref->dir_gen;
ba5e8f2e
JB
3090 list_add_tail(&new->list, list);
3091 return 0;
3092}
3093
924794c9 3094static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
3095{
3096 struct recorded_ref *cur;
31db9f7c 3097
e938c8ad
AB
3098 while (!list_empty(head)) {
3099 cur = list_entry(head->next, struct recorded_ref, list);
71ecfc13 3100 recorded_ref_free(cur);
31db9f7c 3101 }
31db9f7c
AB
3102}
3103
3104static void free_recorded_refs(struct send_ctx *sctx)
3105{
924794c9
TI
3106 __free_recorded_refs(&sctx->new_refs);
3107 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
3108}
3109
3110/*
766702ef 3111 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
3112 * ref of an unprocessed inode gets overwritten and for all non empty
3113 * directories.
3114 */
3115static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3116 struct fs_path *path)
3117{
3118 int ret;
3119 struct fs_path *orphan;
3120
924794c9 3121 orphan = fs_path_alloc();
31db9f7c
AB
3122 if (!orphan)
3123 return -ENOMEM;
3124
3125 ret = gen_unique_name(sctx, ino, gen, orphan);
3126 if (ret < 0)
3127 goto out;
3128
3129 ret = send_rename(sctx, path, orphan);
3130
3131out:
924794c9 3132 fs_path_free(orphan);
31db9f7c
AB
3133 return ret;
3134}
3135
0b3f407e
FM
3136static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3137 u64 dir_ino, u64 dir_gen)
9dc44214
FM
3138{
3139 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3140 struct rb_node *parent = NULL;
3141 struct orphan_dir_info *entry, *odi;
3142
9dc44214
FM
3143 while (*p) {
3144 parent = *p;
3145 entry = rb_entry(parent, struct orphan_dir_info, node);
0b3f407e 3146 if (dir_ino < entry->ino)
9dc44214 3147 p = &(*p)->rb_left;
0b3f407e 3148 else if (dir_ino > entry->ino)
9dc44214 3149 p = &(*p)->rb_right;
0b3f407e
FM
3150 else if (dir_gen < entry->gen)
3151 p = &(*p)->rb_left;
3152 else if (dir_gen > entry->gen)
3153 p = &(*p)->rb_right;
3154 else
9dc44214 3155 return entry;
9dc44214
FM
3156 }
3157
35c8eda1
RK
3158 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3159 if (!odi)
3160 return ERR_PTR(-ENOMEM);
3161 odi->ino = dir_ino;
0b3f407e 3162 odi->gen = dir_gen;
0f96f517 3163 odi->last_dir_index_offset = 0;
35c8eda1 3164
9dc44214
FM
3165 rb_link_node(&odi->node, parent, p);
3166 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3167 return odi;
3168}
3169
0b3f407e
FM
3170static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3171 u64 dir_ino, u64 gen)
9dc44214
FM
3172{
3173 struct rb_node *n = sctx->orphan_dirs.rb_node;
3174 struct orphan_dir_info *entry;
3175
3176 while (n) {
3177 entry = rb_entry(n, struct orphan_dir_info, node);
3178 if (dir_ino < entry->ino)
3179 n = n->rb_left;
3180 else if (dir_ino > entry->ino)
3181 n = n->rb_right;
0b3f407e
FM
3182 else if (gen < entry->gen)
3183 n = n->rb_left;
3184 else if (gen > entry->gen)
3185 n = n->rb_right;
9dc44214
FM
3186 else
3187 return entry;
3188 }
3189 return NULL;
3190}
3191
0b3f407e 3192static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
9dc44214 3193{
0b3f407e 3194 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
9dc44214
FM
3195
3196 return odi != NULL;
3197}
3198
3199static void free_orphan_dir_info(struct send_ctx *sctx,
3200 struct orphan_dir_info *odi)
3201{
3202 if (!odi)
3203 return;
3204 rb_erase(&odi->node, &sctx->orphan_dirs);
3205 kfree(odi);
3206}
3207
31db9f7c
AB
3208/*
3209 * Returns 1 if a directory can be removed at this point in time.
3210 * We check this by iterating all dir items and checking if the inode behind
3211 * the dir item was already processed.
3212 */
24970ccb 3213static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
31db9f7c
AB
3214{
3215 int ret = 0;
18f80f1f 3216 int iter_ret = 0;
31db9f7c
AB
3217 struct btrfs_root *root = sctx->parent_root;
3218 struct btrfs_path *path;
3219 struct btrfs_key key;
3220 struct btrfs_key found_key;
3221 struct btrfs_key loc;
3222 struct btrfs_dir_item *di;
0f96f517 3223 struct orphan_dir_info *odi = NULL;
31db9f7c 3224
6d85ed05
AB
3225 /*
3226 * Don't try to rmdir the top/root subvolume dir.
3227 */
3228 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3229 return 0;
3230
31db9f7c
AB
3231 path = alloc_path_for_send();
3232 if (!path)
3233 return -ENOMEM;
3234
3235 key.objectid = dir;
3236 key.type = BTRFS_DIR_INDEX_KEY;
3237 key.offset = 0;
0f96f517 3238
0b3f407e 3239 odi = get_orphan_dir_info(sctx, dir, dir_gen);
0f96f517
RK
3240 if (odi)
3241 key.offset = odi->last_dir_index_offset;
3242
18f80f1f 3243 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
9dc44214
FM
3244 struct waiting_dir_move *dm;
3245
dff6d0ad
FDBM
3246 if (found_key.objectid != key.objectid ||
3247 found_key.type != key.type)
31db9f7c 3248 break;
31db9f7c
AB
3249
3250 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3251 struct btrfs_dir_item);
3252 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3253
9dc44214
FM
3254 dm = get_waiting_dir_move(sctx, loc.objectid);
3255 if (dm) {
9dc44214 3256 dm->rmdir_ino = dir;
0b3f407e 3257 dm->rmdir_gen = dir_gen;
9dc44214
FM
3258 ret = 0;
3259 goto out;
3260 }
3261
24970ccb 3262 if (loc.objectid > sctx->cur_ino) {
31db9f7c
AB
3263 ret = 0;
3264 goto out;
3265 }
18f80f1f
GN
3266 }
3267 if (iter_ret < 0) {
3268 ret = iter_ret;
3269 goto out;
31db9f7c 3270 }
0f96f517 3271 free_orphan_dir_info(sctx, odi);
31db9f7c
AB
3272
3273 ret = 1;
3274
3275out:
3276 btrfs_free_path(path);
d921b9cf
FM
3277
3278 if (ret)
3279 return ret;
3280
3281 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3282 if (IS_ERR(odi))
3283 return PTR_ERR(odi);
3284
3285 odi->gen = dir_gen;
3286 odi->last_dir_index_offset = found_key.offset;
3287
3288 return 0;
31db9f7c
AB
3289}
3290
9f03740a
FDBM
3291static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3292{
9dc44214 3293 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
9f03740a 3294
9dc44214 3295 return entry != NULL;
9f03740a
FDBM
3296}
3297
8b191a68 3298static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
9f03740a
FDBM
3299{
3300 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3301 struct rb_node *parent = NULL;
3302 struct waiting_dir_move *entry, *dm;
3303
e780b0d1 3304 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
9f03740a
FDBM
3305 if (!dm)
3306 return -ENOMEM;
3307 dm->ino = ino;
9dc44214 3308 dm->rmdir_ino = 0;
0b3f407e 3309 dm->rmdir_gen = 0;
8b191a68 3310 dm->orphanized = orphanized;
9f03740a
FDBM
3311
3312 while (*p) {
3313 parent = *p;
3314 entry = rb_entry(parent, struct waiting_dir_move, node);
3315 if (ino < entry->ino) {
3316 p = &(*p)->rb_left;
3317 } else if (ino > entry->ino) {
3318 p = &(*p)->rb_right;
3319 } else {
3320 kfree(dm);
3321 return -EEXIST;
3322 }
3323 }
3324
3325 rb_link_node(&dm->node, parent, p);
3326 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3327 return 0;
3328}
3329
9dc44214
FM
3330static struct waiting_dir_move *
3331get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
9f03740a
FDBM
3332{
3333 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3334 struct waiting_dir_move *entry;
3335
3336 while (n) {
3337 entry = rb_entry(n, struct waiting_dir_move, node);
9dc44214 3338 if (ino < entry->ino)
9f03740a 3339 n = n->rb_left;
9dc44214 3340 else if (ino > entry->ino)
9f03740a 3341 n = n->rb_right;
9dc44214
FM
3342 else
3343 return entry;
9f03740a 3344 }
9dc44214
FM
3345 return NULL;
3346}
3347
3348static void free_waiting_dir_move(struct send_ctx *sctx,
3349 struct waiting_dir_move *dm)
3350{
3351 if (!dm)
3352 return;
3353 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3354 kfree(dm);
9f03740a
FDBM
3355}
3356
bfa7e1f8
FM
3357static int add_pending_dir_move(struct send_ctx *sctx,
3358 u64 ino,
3359 u64 ino_gen,
f959492f
FM
3360 u64 parent_ino,
3361 struct list_head *new_refs,
84471e24
FM
3362 struct list_head *deleted_refs,
3363 const bool is_orphan)
9f03740a
FDBM
3364{
3365 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3366 struct rb_node *parent = NULL;
73b802f4 3367 struct pending_dir_move *entry = NULL, *pm;
9f03740a
FDBM
3368 struct recorded_ref *cur;
3369 int exists = 0;
3370 int ret;
3371
e780b0d1 3372 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
9f03740a
FDBM
3373 if (!pm)
3374 return -ENOMEM;
3375 pm->parent_ino = parent_ino;
bfa7e1f8
FM
3376 pm->ino = ino;
3377 pm->gen = ino_gen;
9f03740a
FDBM
3378 INIT_LIST_HEAD(&pm->list);
3379 INIT_LIST_HEAD(&pm->update_refs);
3380 RB_CLEAR_NODE(&pm->node);
3381
3382 while (*p) {
3383 parent = *p;
3384 entry = rb_entry(parent, struct pending_dir_move, node);
3385 if (parent_ino < entry->parent_ino) {
3386 p = &(*p)->rb_left;
3387 } else if (parent_ino > entry->parent_ino) {
3388 p = &(*p)->rb_right;
3389 } else {
3390 exists = 1;
3391 break;
3392 }
3393 }
3394
f959492f 3395 list_for_each_entry(cur, deleted_refs, list) {
9f03740a
FDBM
3396 ret = dup_ref(cur, &pm->update_refs);
3397 if (ret < 0)
3398 goto out;
3399 }
f959492f 3400 list_for_each_entry(cur, new_refs, list) {
9f03740a
FDBM
3401 ret = dup_ref(cur, &pm->update_refs);
3402 if (ret < 0)
3403 goto out;
3404 }
3405
8b191a68 3406 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
9f03740a
FDBM
3407 if (ret)
3408 goto out;
3409
3410 if (exists) {
3411 list_add_tail(&pm->list, &entry->list);
3412 } else {
3413 rb_link_node(&pm->node, parent, p);
3414 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3415 }
3416 ret = 0;
3417out:
3418 if (ret) {
3419 __free_recorded_refs(&pm->update_refs);
3420 kfree(pm);
3421 }
3422 return ret;
3423}
3424
3425static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3426 u64 parent_ino)
3427{
3428 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3429 struct pending_dir_move *entry;
3430
3431 while (n) {
3432 entry = rb_entry(n, struct pending_dir_move, node);
3433 if (parent_ino < entry->parent_ino)
3434 n = n->rb_left;
3435 else if (parent_ino > entry->parent_ino)
3436 n = n->rb_right;
3437 else
3438 return entry;
3439 }
3440 return NULL;
3441}
3442
801bec36
RK
3443static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3444 u64 ino, u64 gen, u64 *ancestor_ino)
3445{
3446 int ret = 0;
3447 u64 parent_inode = 0;
3448 u64 parent_gen = 0;
3449 u64 start_ino = ino;
3450
3451 *ancestor_ino = 0;
3452 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3453 fs_path_reset(name);
3454
0b3f407e 3455 if (is_waiting_for_rm(sctx, ino, gen))
801bec36
RK
3456 break;
3457 if (is_waiting_for_move(sctx, ino)) {
3458 if (*ancestor_ino == 0)
3459 *ancestor_ino = ino;
3460 ret = get_first_ref(sctx->parent_root, ino,
3461 &parent_inode, &parent_gen, name);
3462 } else {
3463 ret = __get_cur_name_and_parent(sctx, ino, gen,
3464 &parent_inode,
3465 &parent_gen, name);
3466 if (ret > 0) {
3467 ret = 0;
3468 break;
3469 }
3470 }
3471 if (ret < 0)
3472 break;
3473 if (parent_inode == start_ino) {
3474 ret = 1;
3475 if (*ancestor_ino == 0)
3476 *ancestor_ino = ino;
3477 break;
3478 }
3479 ino = parent_inode;
3480 gen = parent_gen;
3481 }
3482 return ret;
3483}
3484
9f03740a
FDBM
3485static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3486{
3487 struct fs_path *from_path = NULL;
3488 struct fs_path *to_path = NULL;
2b863a13 3489 struct fs_path *name = NULL;
9f03740a
FDBM
3490 u64 orig_progress = sctx->send_progress;
3491 struct recorded_ref *cur;
2b863a13 3492 u64 parent_ino, parent_gen;
9dc44214
FM
3493 struct waiting_dir_move *dm = NULL;
3494 u64 rmdir_ino = 0;
0b3f407e 3495 u64 rmdir_gen;
801bec36
RK
3496 u64 ancestor;
3497 bool is_orphan;
9f03740a
FDBM
3498 int ret;
3499
2b863a13 3500 name = fs_path_alloc();
9f03740a 3501 from_path = fs_path_alloc();
2b863a13
FM
3502 if (!name || !from_path) {
3503 ret = -ENOMEM;
3504 goto out;
3505 }
9f03740a 3506
9dc44214
FM
3507 dm = get_waiting_dir_move(sctx, pm->ino);
3508 ASSERT(dm);
3509 rmdir_ino = dm->rmdir_ino;
0b3f407e 3510 rmdir_gen = dm->rmdir_gen;
801bec36 3511 is_orphan = dm->orphanized;
9dc44214 3512 free_waiting_dir_move(sctx, dm);
2b863a13 3513
801bec36 3514 if (is_orphan) {
84471e24
FM
3515 ret = gen_unique_name(sctx, pm->ino,
3516 pm->gen, from_path);
3517 } else {
3518 ret = get_first_ref(sctx->parent_root, pm->ino,
3519 &parent_ino, &parent_gen, name);
3520 if (ret < 0)
3521 goto out;
3522 ret = get_cur_path(sctx, parent_ino, parent_gen,
3523 from_path);
3524 if (ret < 0)
3525 goto out;
3526 ret = fs_path_add_path(from_path, name);
3527 }
c992ec94
FM
3528 if (ret < 0)
3529 goto out;
2b863a13 3530
f959492f 3531 sctx->send_progress = sctx->cur_ino + 1;
801bec36 3532 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
7969e77a
FM
3533 if (ret < 0)
3534 goto out;
801bec36
RK
3535 if (ret) {
3536 LIST_HEAD(deleted_refs);
3537 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3538 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3539 &pm->update_refs, &deleted_refs,
3540 is_orphan);
3541 if (ret < 0)
3542 goto out;
3543 if (rmdir_ino) {
3544 dm = get_waiting_dir_move(sctx, pm->ino);
3545 ASSERT(dm);
3546 dm->rmdir_ino = rmdir_ino;
0b3f407e 3547 dm->rmdir_gen = rmdir_gen;
801bec36
RK
3548 }
3549 goto out;
3550 }
c992ec94
FM
3551 fs_path_reset(name);
3552 to_path = name;
2b863a13 3553 name = NULL;
9f03740a
FDBM
3554 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3555 if (ret < 0)
3556 goto out;
3557
3558 ret = send_rename(sctx, from_path, to_path);
3559 if (ret < 0)
3560 goto out;
3561
9dc44214
FM
3562 if (rmdir_ino) {
3563 struct orphan_dir_info *odi;
0f96f517 3564 u64 gen;
9dc44214 3565
0b3f407e 3566 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
9dc44214
FM
3567 if (!odi) {
3568 /* already deleted */
3569 goto finish;
3570 }
0f96f517
RK
3571 gen = odi->gen;
3572
24970ccb 3573 ret = can_rmdir(sctx, rmdir_ino, gen);
9dc44214
FM
3574 if (ret < 0)
3575 goto out;
3576 if (!ret)
3577 goto finish;
3578
3579 name = fs_path_alloc();
3580 if (!name) {
3581 ret = -ENOMEM;
3582 goto out;
3583 }
0f96f517 3584 ret = get_cur_path(sctx, rmdir_ino, gen, name);
9dc44214
FM
3585 if (ret < 0)
3586 goto out;
3587 ret = send_rmdir(sctx, name);
3588 if (ret < 0)
3589 goto out;
9dc44214
FM
3590 }
3591
3592finish:
9f03740a
FDBM
3593 ret = send_utimes(sctx, pm->ino, pm->gen);
3594 if (ret < 0)
3595 goto out;
3596
3597 /*
3598 * After rename/move, need to update the utimes of both new parent(s)
3599 * and old parent(s).
3600 */
3601 list_for_each_entry(cur, &pm->update_refs, list) {
764433a1
RK
3602 /*
3603 * The parent inode might have been deleted in the send snapshot
3604 */
7e93f6dc 3605 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
764433a1
RK
3606 if (ret == -ENOENT) {
3607 ret = 0;
9dc44214 3608 continue;
764433a1
RK
3609 }
3610 if (ret < 0)
3611 goto out;
3612
9f03740a
FDBM
3613 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3614 if (ret < 0)
3615 goto out;
3616 }
3617
3618out:
2b863a13 3619 fs_path_free(name);
9f03740a
FDBM
3620 fs_path_free(from_path);
3621 fs_path_free(to_path);
3622 sctx->send_progress = orig_progress;
3623
3624 return ret;
3625}
3626
3627static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3628{
3629 if (!list_empty(&m->list))
3630 list_del(&m->list);
3631 if (!RB_EMPTY_NODE(&m->node))
3632 rb_erase(&m->node, &sctx->pending_dir_moves);
3633 __free_recorded_refs(&m->update_refs);
3634 kfree(m);
3635}
3636
a4390aee
RK
3637static void tail_append_pending_moves(struct send_ctx *sctx,
3638 struct pending_dir_move *moves,
9f03740a
FDBM
3639 struct list_head *stack)
3640{
3641 if (list_empty(&moves->list)) {
3642 list_add_tail(&moves->list, stack);
3643 } else {
3644 LIST_HEAD(list);
3645 list_splice_init(&moves->list, &list);
3646 list_add_tail(&moves->list, stack);
3647 list_splice_tail(&list, stack);
3648 }
a4390aee
RK
3649 if (!RB_EMPTY_NODE(&moves->node)) {
3650 rb_erase(&moves->node, &sctx->pending_dir_moves);
3651 RB_CLEAR_NODE(&moves->node);
3652 }
9f03740a
FDBM
3653}
3654
3655static int apply_children_dir_moves(struct send_ctx *sctx)
3656{
3657 struct pending_dir_move *pm;
3658 struct list_head stack;
3659 u64 parent_ino = sctx->cur_ino;
3660 int ret = 0;
3661
3662 pm = get_pending_dir_moves(sctx, parent_ino);
3663 if (!pm)
3664 return 0;
3665
3666 INIT_LIST_HEAD(&stack);
a4390aee 3667 tail_append_pending_moves(sctx, pm, &stack);
9f03740a
FDBM
3668
3669 while (!list_empty(&stack)) {
3670 pm = list_first_entry(&stack, struct pending_dir_move, list);
3671 parent_ino = pm->ino;
3672 ret = apply_dir_move(sctx, pm);
3673 free_pending_move(sctx, pm);
3674 if (ret)
3675 goto out;
3676 pm = get_pending_dir_moves(sctx, parent_ino);
3677 if (pm)
a4390aee 3678 tail_append_pending_moves(sctx, pm, &stack);
9f03740a
FDBM
3679 }
3680 return 0;
3681
3682out:
3683 while (!list_empty(&stack)) {
3684 pm = list_first_entry(&stack, struct pending_dir_move, list);
3685 free_pending_move(sctx, pm);
3686 }
3687 return ret;
3688}
3689
84471e24
FM
3690/*
3691 * We might need to delay a directory rename even when no ancestor directory
3692 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3693 * renamed. This happens when we rename a directory to the old name (the name
3694 * in the parent root) of some other unrelated directory that got its rename
3695 * delayed due to some ancestor with higher number that got renamed.
3696 *
3697 * Example:
3698 *
3699 * Parent snapshot:
3700 * . (ino 256)
3701 * |---- a/ (ino 257)
3702 * | |---- file (ino 260)
3703 * |
3704 * |---- b/ (ino 258)
3705 * |---- c/ (ino 259)
3706 *
3707 * Send snapshot:
3708 * . (ino 256)
3709 * |---- a/ (ino 258)
3710 * |---- x/ (ino 259)
3711 * |---- y/ (ino 257)
3712 * |----- file (ino 260)
3713 *
3714 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3715 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3716 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3717 * must issue is:
3718 *
3719 * 1 - rename 259 from 'c' to 'x'
3720 * 2 - rename 257 from 'a' to 'x/y'
3721 * 3 - rename 258 from 'b' to 'a'
3722 *
3723 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3724 * be done right away and < 0 on error.
3725 */
3726static int wait_for_dest_dir_move(struct send_ctx *sctx,
3727 struct recorded_ref *parent_ref,
3728 const bool is_orphan)
3729{
2ff7e61e 3730 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
84471e24
FM
3731 struct btrfs_path *path;
3732 struct btrfs_key key;
3733 struct btrfs_key di_key;
3734 struct btrfs_dir_item *di;
3735 u64 left_gen;
3736 u64 right_gen;
3737 int ret = 0;
801bec36 3738 struct waiting_dir_move *wdm;
84471e24
FM
3739
3740 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3741 return 0;
3742
3743 path = alloc_path_for_send();
3744 if (!path)
3745 return -ENOMEM;
3746
3747 key.objectid = parent_ref->dir;
3748 key.type = BTRFS_DIR_ITEM_KEY;
3749 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3750
3751 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3752 if (ret < 0) {
3753 goto out;
3754 } else if (ret > 0) {
3755 ret = 0;
3756 goto out;
3757 }
3758
2ff7e61e
JM
3759 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3760 parent_ref->name_len);
84471e24
FM
3761 if (!di) {
3762 ret = 0;
3763 goto out;
3764 }
3765 /*
3766 * di_key.objectid has the number of the inode that has a dentry in the
3767 * parent directory with the same name that sctx->cur_ino is being
3768 * renamed to. We need to check if that inode is in the send root as
3769 * well and if it is currently marked as an inode with a pending rename,
3770 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3771 * that it happens after that other inode is renamed.
3772 */
3773 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3774 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3775 ret = 0;
3776 goto out;
3777 }
3778
7e93f6dc 3779 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
84471e24
FM
3780 if (ret < 0)
3781 goto out;
7e93f6dc 3782 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
84471e24
FM
3783 if (ret < 0) {
3784 if (ret == -ENOENT)
3785 ret = 0;
3786 goto out;
3787 }
3788
3789 /* Different inode, no need to delay the rename of sctx->cur_ino */
3790 if (right_gen != left_gen) {
3791 ret = 0;
3792 goto out;
3793 }
3794
801bec36
RK
3795 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3796 if (wdm && !wdm->orphanized) {
84471e24
FM
3797 ret = add_pending_dir_move(sctx,
3798 sctx->cur_ino,
3799 sctx->cur_inode_gen,
3800 di_key.objectid,
3801 &sctx->new_refs,
3802 &sctx->deleted_refs,
3803 is_orphan);
3804 if (!ret)
3805 ret = 1;
3806 }
3807out:
3808 btrfs_free_path(path);
3809 return ret;
3810}
3811
80aa6027 3812/*
ea37d599
FM
3813 * Check if inode ino2, or any of its ancestors, is inode ino1.
3814 * Return 1 if true, 0 if false and < 0 on error.
3815 */
3816static int check_ino_in_path(struct btrfs_root *root,
3817 const u64 ino1,
3818 const u64 ino1_gen,
3819 const u64 ino2,
3820 const u64 ino2_gen,
3821 struct fs_path *fs_path)
3822{
3823 u64 ino = ino2;
3824
3825 if (ino1 == ino2)
3826 return ino1_gen == ino2_gen;
3827
3828 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3829 u64 parent;
3830 u64 parent_gen;
3831 int ret;
3832
3833 fs_path_reset(fs_path);
3834 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3835 if (ret < 0)
3836 return ret;
3837 if (parent == ino1)
3838 return parent_gen == ino1_gen;
3839 ino = parent;
3840 }
3841 return 0;
3842}
3843
3844/*
35a68080 3845 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
ea37d599 3846 * possible path (in case ino2 is not a directory and has multiple hard links).
80aa6027
FM
3847 * Return 1 if true, 0 if false and < 0 on error.
3848 */
3849static int is_ancestor(struct btrfs_root *root,
3850 const u64 ino1,
3851 const u64 ino1_gen,
3852 const u64 ino2,
3853 struct fs_path *fs_path)
3854{
ea37d599 3855 bool free_fs_path = false;
72c3668f 3856 int ret = 0;
35a68080 3857 int iter_ret = 0;
ea37d599
FM
3858 struct btrfs_path *path = NULL;
3859 struct btrfs_key key;
72c3668f
FM
3860
3861 if (!fs_path) {
3862 fs_path = fs_path_alloc();
3863 if (!fs_path)
3864 return -ENOMEM;
ea37d599 3865 free_fs_path = true;
72c3668f 3866 }
80aa6027 3867
ea37d599
FM
3868 path = alloc_path_for_send();
3869 if (!path) {
3870 ret = -ENOMEM;
3871 goto out;
3872 }
80aa6027 3873
ea37d599
FM
3874 key.objectid = ino2;
3875 key.type = BTRFS_INODE_REF_KEY;
3876 key.offset = 0;
3877
35a68080 3878 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
ea37d599
FM
3879 struct extent_buffer *leaf = path->nodes[0];
3880 int slot = path->slots[0];
3881 u32 cur_offset = 0;
3882 u32 item_size;
3883
ea37d599
FM
3884 if (key.objectid != ino2)
3885 break;
3886 if (key.type != BTRFS_INODE_REF_KEY &&
3887 key.type != BTRFS_INODE_EXTREF_KEY)
3888 break;
3889
3212fa14 3890 item_size = btrfs_item_size(leaf, slot);
ea37d599
FM
3891 while (cur_offset < item_size) {
3892 u64 parent;
3893 u64 parent_gen;
3894
3895 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3896 unsigned long ptr;
3897 struct btrfs_inode_extref *extref;
3898
3899 ptr = btrfs_item_ptr_offset(leaf, slot);
3900 extref = (struct btrfs_inode_extref *)
3901 (ptr + cur_offset);
3902 parent = btrfs_inode_extref_parent(leaf,
3903 extref);
3904 cur_offset += sizeof(*extref);
3905 cur_offset += btrfs_inode_extref_name_len(leaf,
3906 extref);
3907 } else {
3908 parent = key.offset;
3909 cur_offset = item_size;
3910 }
3911
7e93f6dc 3912 ret = get_inode_gen(root, parent, &parent_gen);
ea37d599
FM
3913 if (ret < 0)
3914 goto out;
3915 ret = check_ino_in_path(root, ino1, ino1_gen,
3916 parent, parent_gen, fs_path);
3917 if (ret)
3918 goto out;
80aa6027 3919 }
80aa6027 3920 }
ea37d599 3921 ret = 0;
35a68080
GN
3922 if (iter_ret < 0)
3923 ret = iter_ret;
3924
3925out:
ea37d599
FM
3926 btrfs_free_path(path);
3927 if (free_fs_path)
72c3668f
FM
3928 fs_path_free(fs_path);
3929 return ret;
80aa6027
FM
3930}
3931
9f03740a 3932static int wait_for_parent_move(struct send_ctx *sctx,
8b191a68
FM
3933 struct recorded_ref *parent_ref,
3934 const bool is_orphan)
9f03740a 3935{
f959492f 3936 int ret = 0;
9f03740a 3937 u64 ino = parent_ref->dir;
fe9c798d 3938 u64 ino_gen = parent_ref->dir_gen;
9f03740a 3939 u64 parent_ino_before, parent_ino_after;
9f03740a
FDBM
3940 struct fs_path *path_before = NULL;
3941 struct fs_path *path_after = NULL;
3942 int len1, len2;
9f03740a
FDBM
3943
3944 path_after = fs_path_alloc();
f959492f
FM
3945 path_before = fs_path_alloc();
3946 if (!path_after || !path_before) {
9f03740a
FDBM
3947 ret = -ENOMEM;
3948 goto out;
3949 }
3950
bfa7e1f8 3951 /*
f959492f
FM
3952 * Our current directory inode may not yet be renamed/moved because some
3953 * ancestor (immediate or not) has to be renamed/moved first. So find if
3954 * such ancestor exists and make sure our own rename/move happens after
80aa6027
FM
3955 * that ancestor is processed to avoid path build infinite loops (done
3956 * at get_cur_path()).
bfa7e1f8 3957 */
f959492f 3958 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
fe9c798d
FM
3959 u64 parent_ino_after_gen;
3960
f959492f 3961 if (is_waiting_for_move(sctx, ino)) {
80aa6027
FM
3962 /*
3963 * If the current inode is an ancestor of ino in the
3964 * parent root, we need to delay the rename of the
3965 * current inode, otherwise don't delayed the rename
3966 * because we can end up with a circular dependency
3967 * of renames, resulting in some directories never
3968 * getting the respective rename operations issued in
3969 * the send stream or getting into infinite path build
3970 * loops.
3971 */
3972 ret = is_ancestor(sctx->parent_root,
3973 sctx->cur_ino, sctx->cur_inode_gen,
3974 ino, path_before);
4122ea64
FM
3975 if (ret)
3976 break;
f959492f 3977 }
bfa7e1f8
FM
3978
3979 fs_path_reset(path_before);
3980 fs_path_reset(path_after);
3981
3982 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
fe9c798d 3983 &parent_ino_after_gen, path_after);
bfa7e1f8
FM
3984 if (ret < 0)
3985 goto out;
3986 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3987 NULL, path_before);
f959492f 3988 if (ret < 0 && ret != -ENOENT) {
bfa7e1f8 3989 goto out;
f959492f 3990 } else if (ret == -ENOENT) {
bf8e8ca6 3991 ret = 0;
f959492f 3992 break;
bfa7e1f8
FM
3993 }
3994
3995 len1 = fs_path_len(path_before);
3996 len2 = fs_path_len(path_after);
f959492f
FM
3997 if (ino > sctx->cur_ino &&
3998 (parent_ino_before != parent_ino_after || len1 != len2 ||
3999 memcmp(path_before->start, path_after->start, len1))) {
fe9c798d
FM
4000 u64 parent_ino_gen;
4001
7e93f6dc 4002 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
fe9c798d
FM
4003 if (ret < 0)
4004 goto out;
4005 if (ino_gen == parent_ino_gen) {
4006 ret = 1;
4007 break;
4008 }
bfa7e1f8 4009 }
bfa7e1f8 4010 ino = parent_ino_after;
fe9c798d 4011 ino_gen = parent_ino_after_gen;
bfa7e1f8
FM
4012 }
4013
9f03740a
FDBM
4014out:
4015 fs_path_free(path_before);
4016 fs_path_free(path_after);
4017
f959492f
FM
4018 if (ret == 1) {
4019 ret = add_pending_dir_move(sctx,
4020 sctx->cur_ino,
4021 sctx->cur_inode_gen,
4022 ino,
4023 &sctx->new_refs,
84471e24 4024 &sctx->deleted_refs,
8b191a68 4025 is_orphan);
f959492f
FM
4026 if (!ret)
4027 ret = 1;
4028 }
4029
9f03740a
FDBM
4030 return ret;
4031}
4032
f5962781
FM
4033static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4034{
4035 int ret;
4036 struct fs_path *new_path;
4037
4038 /*
4039 * Our reference's name member points to its full_path member string, so
4040 * we use here a new path.
4041 */
4042 new_path = fs_path_alloc();
4043 if (!new_path)
4044 return -ENOMEM;
4045
4046 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4047 if (ret < 0) {
4048 fs_path_free(new_path);
4049 return ret;
4050 }
4051 ret = fs_path_add(new_path, ref->name, ref->name_len);
4052 if (ret < 0) {
4053 fs_path_free(new_path);
4054 return ret;
4055 }
4056
4057 fs_path_free(ref->full_path);
4058 set_ref_path(ref, new_path);
4059
4060 return 0;
4061}
4062
9c2b4e03
FM
4063/*
4064 * When processing the new references for an inode we may orphanize an existing
4065 * directory inode because its old name conflicts with one of the new references
4066 * of the current inode. Later, when processing another new reference of our
4067 * inode, we might need to orphanize another inode, but the path we have in the
4068 * reference reflects the pre-orphanization name of the directory we previously
4069 * orphanized. For example:
4070 *
4071 * parent snapshot looks like:
4072 *
4073 * . (ino 256)
4074 * |----- f1 (ino 257)
4075 * |----- f2 (ino 258)
4076 * |----- d1/ (ino 259)
4077 * |----- d2/ (ino 260)
4078 *
4079 * send snapshot looks like:
4080 *
4081 * . (ino 256)
4082 * |----- d1 (ino 258)
4083 * |----- f2/ (ino 259)
4084 * |----- f2_link/ (ino 260)
4085 * | |----- f1 (ino 257)
4086 * |
4087 * |----- d2 (ino 258)
4088 *
4089 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4090 * cache it in the name cache. Later when we start processing inode 258, when
4091 * collecting all its new references we set a full path of "d1/d2" for its new
4092 * reference with name "d2". When we start processing the new references we
4093 * start by processing the new reference with name "d1", and this results in
4094 * orphanizing inode 259, since its old reference causes a conflict. Then we
4095 * move on the next new reference, with name "d2", and we find out we must
4096 * orphanize inode 260, as its old reference conflicts with ours - but for the
4097 * orphanization we use a source path corresponding to the path we stored in the
4098 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4099 * receiver fail since the path component "d1/" no longer exists, it was renamed
4100 * to "o259-6-0/" when processing the previous new reference. So in this case we
4101 * must recompute the path in the new reference and use it for the new
4102 * orphanization operation.
4103 */
4104static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4105{
4106 char *name;
4107 int ret;
4108
4109 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4110 if (!name)
4111 return -ENOMEM;
4112
4113 fs_path_reset(ref->full_path);
4114 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4115 if (ret < 0)
4116 goto out;
4117
4118 ret = fs_path_add(ref->full_path, name, ref->name_len);
4119 if (ret < 0)
4120 goto out;
4121
4122 /* Update the reference's base name pointer. */
4123 set_ref_path(ref, ref->full_path);
4124out:
4125 kfree(name);
4126 return ret;
4127}
4128
31db9f7c
AB
4129/*
4130 * This does all the move/link/unlink/rmdir magic.
4131 */
9f03740a 4132static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c 4133{
04ab956e 4134 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
4135 int ret = 0;
4136 struct recorded_ref *cur;
1f4692da 4137 struct recorded_ref *cur2;
ba5e8f2e 4138 struct list_head check_dirs;
31db9f7c 4139 struct fs_path *valid_path = NULL;
b24baf69 4140 u64 ow_inode = 0;
31db9f7c 4141 u64 ow_gen;
f5962781 4142 u64 ow_mode;
31db9f7c
AB
4143 int did_overwrite = 0;
4144 int is_orphan = 0;
29d6d30f 4145 u64 last_dir_ino_rm = 0;
84471e24 4146 bool can_rename = true;
f5962781 4147 bool orphanized_dir = false;
fdb13889 4148 bool orphanized_ancestor = false;
31db9f7c 4149
04ab956e 4150 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
31db9f7c 4151
6d85ed05
AB
4152 /*
4153 * This should never happen as the root dir always has the same ref
4154 * which is always '..'
4155 */
4156 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 4157 INIT_LIST_HEAD(&check_dirs);
6d85ed05 4158
924794c9 4159 valid_path = fs_path_alloc();
31db9f7c
AB
4160 if (!valid_path) {
4161 ret = -ENOMEM;
4162 goto out;
4163 }
4164
31db9f7c
AB
4165 /*
4166 * First, check if the first ref of the current inode was overwritten
4167 * before. If yes, we know that the current inode was already orphanized
4168 * and thus use the orphan name. If not, we can use get_cur_path to
4169 * get the path of the first ref as it would like while receiving at
4170 * this point in time.
4171 * New inodes are always orphan at the beginning, so force to use the
4172 * orphan name in this case.
4173 * The first ref is stored in valid_path and will be updated if it
4174 * gets moved around.
4175 */
4176 if (!sctx->cur_inode_new) {
4177 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4178 sctx->cur_inode_gen);
4179 if (ret < 0)
4180 goto out;
4181 if (ret)
4182 did_overwrite = 1;
4183 }
4184 if (sctx->cur_inode_new || did_overwrite) {
4185 ret = gen_unique_name(sctx, sctx->cur_ino,
4186 sctx->cur_inode_gen, valid_path);
4187 if (ret < 0)
4188 goto out;
4189 is_orphan = 1;
4190 } else {
4191 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4192 valid_path);
4193 if (ret < 0)
4194 goto out;
4195 }
4196
98272bb7
FM
4197 /*
4198 * Before doing any rename and link operations, do a first pass on the
4199 * new references to orphanize any unprocessed inodes that may have a
4200 * reference that conflicts with one of the new references of the current
4201 * inode. This needs to happen first because a new reference may conflict
4202 * with the old reference of a parent directory, so we must make sure
4203 * that the path used for link and rename commands don't use an
4204 * orphanized name when an ancestor was not yet orphanized.
4205 *
4206 * Example:
4207 *
4208 * Parent snapshot:
4209 *
4210 * . (ino 256)
4211 * |----- testdir/ (ino 259)
4212 * | |----- a (ino 257)
4213 * |
4214 * |----- b (ino 258)
4215 *
4216 * Send snapshot:
4217 *
4218 * . (ino 256)
4219 * |----- testdir_2/ (ino 259)
4220 * | |----- a (ino 260)
4221 * |
4222 * |----- testdir (ino 257)
4223 * |----- b (ino 257)
4224 * |----- b2 (ino 258)
4225 *
4226 * Processing the new reference for inode 257 with name "b" may happen
4227 * before processing the new reference with name "testdir". If so, we
4228 * must make sure that by the time we send a link command to create the
4229 * hard link "b", inode 259 was already orphanized, since the generated
4230 * path in "valid_path" already contains the orphanized name for 259.
4231 * We are processing inode 257, so only later when processing 259 we do
4232 * the rename operation to change its temporary (orphanized) name to
4233 * "testdir_2".
4234 */
31db9f7c 4235 list_for_each_entry(cur, &sctx->new_refs, list) {
498581f3 4236 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
1f4692da
AB
4237 if (ret < 0)
4238 goto out;
98272bb7
FM
4239 if (ret == inode_state_will_create)
4240 continue;
1f4692da 4241
31db9f7c 4242 /*
98272bb7
FM
4243 * Check if this new ref would overwrite the first ref of another
4244 * unprocessed inode. If yes, orphanize the overwritten inode.
4245 * If we find an overwritten ref that is not the first ref,
4246 * simply unlink it.
31db9f7c
AB
4247 */
4248 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4249 cur->name, cur->name_len,
f5962781 4250 &ow_inode, &ow_gen, &ow_mode);
31db9f7c
AB
4251 if (ret < 0)
4252 goto out;
4253 if (ret) {
924794c9
TI
4254 ret = is_first_ref(sctx->parent_root,
4255 ow_inode, cur->dir, cur->name,
4256 cur->name_len);
31db9f7c
AB
4257 if (ret < 0)
4258 goto out;
4259 if (ret) {
8996a48c 4260 struct name_cache_entry *nce;
801bec36 4261 struct waiting_dir_move *wdm;
8996a48c 4262
9c2b4e03
FM
4263 if (orphanized_dir) {
4264 ret = refresh_ref_path(sctx, cur);
4265 if (ret < 0)
4266 goto out;
4267 }
4268
31db9f7c
AB
4269 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4270 cur->full_path);
4271 if (ret < 0)
4272 goto out;
f5962781
FM
4273 if (S_ISDIR(ow_mode))
4274 orphanized_dir = true;
801bec36
RK
4275
4276 /*
4277 * If ow_inode has its rename operation delayed
4278 * make sure that its orphanized name is used in
4279 * the source path when performing its rename
4280 * operation.
4281 */
4282 if (is_waiting_for_move(sctx, ow_inode)) {
4283 wdm = get_waiting_dir_move(sctx,
4284 ow_inode);
4285 ASSERT(wdm);
4286 wdm->orphanized = true;
4287 }
4288
8996a48c
FM
4289 /*
4290 * Make sure we clear our orphanized inode's
4291 * name from the name cache. This is because the
4292 * inode ow_inode might be an ancestor of some
4293 * other inode that will be orphanized as well
4294 * later and has an inode number greater than
4295 * sctx->send_progress. We need to prevent
4296 * future name lookups from using the old name
4297 * and get instead the orphan name.
4298 */
4299 nce = name_cache_search(sctx, ow_inode, ow_gen);
4300 if (nce) {
4301 name_cache_delete(sctx, nce);
4302 kfree(nce);
4303 }
801bec36
RK
4304
4305 /*
4306 * ow_inode might currently be an ancestor of
4307 * cur_ino, therefore compute valid_path (the
4308 * current path of cur_ino) again because it
4309 * might contain the pre-orphanization name of
4310 * ow_inode, which is no longer valid.
4311 */
72c3668f
FM
4312 ret = is_ancestor(sctx->parent_root,
4313 ow_inode, ow_gen,
4314 sctx->cur_ino, NULL);
4315 if (ret > 0) {
fdb13889 4316 orphanized_ancestor = true;
72c3668f
FM
4317 fs_path_reset(valid_path);
4318 ret = get_cur_path(sctx, sctx->cur_ino,
4319 sctx->cur_inode_gen,
4320 valid_path);
4321 }
801bec36
RK
4322 if (ret < 0)
4323 goto out;
31db9f7c 4324 } else {
d8ac76cd
FM
4325 /*
4326 * If we previously orphanized a directory that
4327 * collided with a new reference that we already
4328 * processed, recompute the current path because
4329 * that directory may be part of the path.
4330 */
4331 if (orphanized_dir) {
4332 ret = refresh_ref_path(sctx, cur);
4333 if (ret < 0)
4334 goto out;
4335 }
31db9f7c
AB
4336 ret = send_unlink(sctx, cur->full_path);
4337 if (ret < 0)
4338 goto out;
4339 }
4340 }
4341
98272bb7
FM
4342 }
4343
4344 list_for_each_entry(cur, &sctx->new_refs, list) {
4345 /*
4346 * We may have refs where the parent directory does not exist
4347 * yet. This happens if the parent directories inum is higher
4348 * than the current inum. To handle this case, we create the
4349 * parent directory out of order. But we need to check if this
4350 * did already happen before due to other refs in the same dir.
4351 */
498581f3 4352 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
98272bb7
FM
4353 if (ret < 0)
4354 goto out;
4355 if (ret == inode_state_will_create) {
4356 ret = 0;
4357 /*
4358 * First check if any of the current inodes refs did
4359 * already create the dir.
4360 */
4361 list_for_each_entry(cur2, &sctx->new_refs, list) {
4362 if (cur == cur2)
4363 break;
4364 if (cur2->dir == cur->dir) {
4365 ret = 1;
4366 break;
4367 }
4368 }
4369
4370 /*
4371 * If that did not happen, check if a previous inode
4372 * did already create the dir.
4373 */
4374 if (!ret)
4375 ret = did_create_dir(sctx, cur->dir);
4376 if (ret < 0)
4377 goto out;
4378 if (!ret) {
4379 ret = send_create_inode(sctx, cur->dir);
4380 if (ret < 0)
4381 goto out;
4382 }
4383 }
4384
84471e24
FM
4385 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4386 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4387 if (ret < 0)
4388 goto out;
4389 if (ret == 1) {
4390 can_rename = false;
4391 *pending_move = 1;
4392 }
4393 }
4394
8b191a68
FM
4395 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4396 can_rename) {
4397 ret = wait_for_parent_move(sctx, cur, is_orphan);
4398 if (ret < 0)
4399 goto out;
4400 if (ret == 1) {
4401 can_rename = false;
4402 *pending_move = 1;
4403 }
4404 }
4405
31db9f7c
AB
4406 /*
4407 * link/move the ref to the new place. If we have an orphan
4408 * inode, move it and update valid_path. If not, link or move
4409 * it depending on the inode mode.
4410 */
84471e24 4411 if (is_orphan && can_rename) {
31db9f7c
AB
4412 ret = send_rename(sctx, valid_path, cur->full_path);
4413 if (ret < 0)
4414 goto out;
4415 is_orphan = 0;
4416 ret = fs_path_copy(valid_path, cur->full_path);
4417 if (ret < 0)
4418 goto out;
84471e24 4419 } else if (can_rename) {
31db9f7c
AB
4420 if (S_ISDIR(sctx->cur_inode_mode)) {
4421 /*
4422 * Dirs can't be linked, so move it. For moved
4423 * dirs, we always have one new and one deleted
4424 * ref. The deleted ref is ignored later.
4425 */
8b191a68
FM
4426 ret = send_rename(sctx, valid_path,
4427 cur->full_path);
4428 if (!ret)
4429 ret = fs_path_copy(valid_path,
4430 cur->full_path);
31db9f7c
AB
4431 if (ret < 0)
4432 goto out;
4433 } else {
f5962781
FM
4434 /*
4435 * We might have previously orphanized an inode
4436 * which is an ancestor of our current inode,
4437 * so our reference's full path, which was
4438 * computed before any such orphanizations, must
4439 * be updated.
4440 */
4441 if (orphanized_dir) {
4442 ret = update_ref_path(sctx, cur);
4443 if (ret < 0)
4444 goto out;
4445 }
31db9f7c
AB
4446 ret = send_link(sctx, cur->full_path,
4447 valid_path);
4448 if (ret < 0)
4449 goto out;
4450 }
4451 }
ba5e8f2e 4452 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4453 if (ret < 0)
4454 goto out;
4455 }
4456
4457 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4458 /*
4459 * Check if we can already rmdir the directory. If not,
4460 * orphanize it. For every dir item inside that gets deleted
4461 * later, we do this check again and rmdir it then if possible.
4462 * See the use of check_dirs for more details.
4463 */
24970ccb 4464 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
31db9f7c
AB
4465 if (ret < 0)
4466 goto out;
4467 if (ret) {
4468 ret = send_rmdir(sctx, valid_path);
4469 if (ret < 0)
4470 goto out;
4471 } else if (!is_orphan) {
4472 ret = orphanize_inode(sctx, sctx->cur_ino,
4473 sctx->cur_inode_gen, valid_path);
4474 if (ret < 0)
4475 goto out;
4476 is_orphan = 1;
4477 }
4478
4479 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 4480 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4481 if (ret < 0)
4482 goto out;
4483 }
ccf1626b
AB
4484 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4485 !list_empty(&sctx->deleted_refs)) {
4486 /*
4487 * We have a moved dir. Add the old parent to check_dirs
4488 */
4489 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4490 list);
ba5e8f2e 4491 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
4492 if (ret < 0)
4493 goto out;
31db9f7c
AB
4494 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4495 /*
4496 * We have a non dir inode. Go through all deleted refs and
4497 * unlink them if they were not already overwritten by other
4498 * inodes.
4499 */
4500 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4501 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4502 sctx->cur_ino, sctx->cur_inode_gen,
4503 cur->name, cur->name_len);
4504 if (ret < 0)
4505 goto out;
4506 if (!ret) {
fdb13889
FM
4507 /*
4508 * If we orphanized any ancestor before, we need
4509 * to recompute the full path for deleted names,
4510 * since any such path was computed before we
4511 * processed any references and orphanized any
4512 * ancestor inode.
4513 */
4514 if (orphanized_ancestor) {
f5962781
FM
4515 ret = update_ref_path(sctx, cur);
4516 if (ret < 0)
fdb13889 4517 goto out;
fdb13889 4518 }
1f4692da
AB
4519 ret = send_unlink(sctx, cur->full_path);
4520 if (ret < 0)
4521 goto out;
31db9f7c 4522 }
ba5e8f2e 4523 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4524 if (ret < 0)
4525 goto out;
4526 }
31db9f7c
AB
4527 /*
4528 * If the inode is still orphan, unlink the orphan. This may
4529 * happen when a previous inode did overwrite the first ref
4530 * of this inode and no new refs were added for the current
766702ef
AB
4531 * inode. Unlinking does not mean that the inode is deleted in
4532 * all cases. There may still be links to this inode in other
4533 * places.
31db9f7c 4534 */
1f4692da 4535 if (is_orphan) {
31db9f7c
AB
4536 ret = send_unlink(sctx, valid_path);
4537 if (ret < 0)
4538 goto out;
4539 }
4540 }
4541
4542 /*
4543 * We did collect all parent dirs where cur_inode was once located. We
4544 * now go through all these dirs and check if they are pending for
4545 * deletion and if it's finally possible to perform the rmdir now.
4546 * We also update the inode stats of the parent dirs here.
4547 */
ba5e8f2e 4548 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
4549 /*
4550 * In case we had refs into dirs that were not processed yet,
4551 * we don't need to do the utime and rmdir logic for these dirs.
4552 * The dir will be processed later.
4553 */
ba5e8f2e 4554 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
4555 continue;
4556
498581f3 4557 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
31db9f7c
AB
4558 if (ret < 0)
4559 goto out;
4560
4561 if (ret == inode_state_did_create ||
4562 ret == inode_state_no_change) {
4563 /* TODO delayed utimes */
ba5e8f2e 4564 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
4565 if (ret < 0)
4566 goto out;
29d6d30f
FM
4567 } else if (ret == inode_state_did_delete &&
4568 cur->dir != last_dir_ino_rm) {
24970ccb 4569 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
4570 if (ret < 0)
4571 goto out;
4572 if (ret) {
ba5e8f2e
JB
4573 ret = get_cur_path(sctx, cur->dir,
4574 cur->dir_gen, valid_path);
31db9f7c
AB
4575 if (ret < 0)
4576 goto out;
4577 ret = send_rmdir(sctx, valid_path);
4578 if (ret < 0)
4579 goto out;
29d6d30f 4580 last_dir_ino_rm = cur->dir;
31db9f7c
AB
4581 }
4582 }
4583 }
4584
31db9f7c
AB
4585 ret = 0;
4586
4587out:
ba5e8f2e 4588 __free_recorded_refs(&check_dirs);
31db9f7c 4589 free_recorded_refs(sctx);
924794c9 4590 fs_path_free(valid_path);
31db9f7c
AB
4591 return ret;
4592}
4593
3aa5bd36
BC
4594static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4595{
4596 const struct recorded_ref *data = k;
4597 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4598 int result;
4599
4600 if (data->dir > ref->dir)
4601 return 1;
4602 if (data->dir < ref->dir)
4603 return -1;
4604 if (data->dir_gen > ref->dir_gen)
4605 return 1;
4606 if (data->dir_gen < ref->dir_gen)
4607 return -1;
4608 if (data->name_len > ref->name_len)
4609 return 1;
4610 if (data->name_len < ref->name_len)
4611 return -1;
4612 result = strcmp(data->name, ref->name);
4613 if (result > 0)
4614 return 1;
4615 if (result < 0)
4616 return -1;
4617 return 0;
4618}
4619
4620static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4621{
4622 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4623
4624 return rbtree_ref_comp(entry, parent) < 0;
4625}
4626
4627static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4628 struct fs_path *name, u64 dir, u64 dir_gen,
4629 struct send_ctx *sctx)
4630{
4631 int ret = 0;
4632 struct fs_path *path = NULL;
4633 struct recorded_ref *ref = NULL;
4634
4635 path = fs_path_alloc();
4636 if (!path) {
4637 ret = -ENOMEM;
4638 goto out;
4639 }
4640
4641 ref = recorded_ref_alloc();
4642 if (!ref) {
4643 ret = -ENOMEM;
4644 goto out;
4645 }
4646
4647 ret = get_cur_path(sctx, dir, dir_gen, path);
4648 if (ret < 0)
4649 goto out;
4650 ret = fs_path_add_path(path, name);
4651 if (ret < 0)
4652 goto out;
4653
4654 ref->dir = dir;
4655 ref->dir_gen = dir_gen;
4656 set_ref_path(ref, path);
4657 list_add_tail(&ref->list, refs);
4658 rb_add(&ref->node, root, rbtree_ref_less);
4659 ref->root = root;
4660out:
4661 if (ret) {
4662 if (path && (!ref || !ref->full_path))
4663 fs_path_free(path);
4664 recorded_ref_free(ref);
4665 }
4666 return ret;
4667}
4668
4669static int record_new_ref_if_needed(int num, u64 dir, int index,
4670 struct fs_path *name, void *ctx)
4671{
4672 int ret = 0;
4673 struct send_ctx *sctx = ctx;
4674 struct rb_node *node = NULL;
4675 struct recorded_ref data;
4676 struct recorded_ref *ref;
4677 u64 dir_gen;
4678
7e93f6dc 4679 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
3aa5bd36
BC
4680 if (ret < 0)
4681 goto out;
4682
4683 data.dir = dir;
4684 data.dir_gen = dir_gen;
4685 set_ref_path(&data, name);
4686 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4687 if (node) {
4688 ref = rb_entry(node, struct recorded_ref, node);
4689 recorded_ref_free(ref);
4690 } else {
4691 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4692 &sctx->new_refs, name, dir, dir_gen,
4693 sctx);
4694 }
4695out:
4696 return ret;
4697}
4698
4699static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4700 struct fs_path *name, void *ctx)
4701{
4702 int ret = 0;
4703 struct send_ctx *sctx = ctx;
4704 struct rb_node *node = NULL;
4705 struct recorded_ref data;
4706 struct recorded_ref *ref;
4707 u64 dir_gen;
4708
7e93f6dc 4709 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
3aa5bd36
BC
4710 if (ret < 0)
4711 goto out;
4712
4713 data.dir = dir;
4714 data.dir_gen = dir_gen;
4715 set_ref_path(&data, name);
4716 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4717 if (node) {
4718 ref = rb_entry(node, struct recorded_ref, node);
4719 recorded_ref_free(ref);
4720 } else {
4721 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4722 &sctx->deleted_refs, name, dir,
4723 dir_gen, sctx);
4724 }
4725out:
4726 return ret;
4727}
4728
31db9f7c
AB
4729static int record_new_ref(struct send_ctx *sctx)
4730{
4731 int ret;
4732
924794c9 4733 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3aa5bd36 4734 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
31db9f7c
AB
4735 if (ret < 0)
4736 goto out;
4737 ret = 0;
4738
4739out:
4740 return ret;
4741}
4742
4743static int record_deleted_ref(struct send_ctx *sctx)
4744{
4745 int ret;
4746
924794c9 4747 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3aa5bd36
BC
4748 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4749 sctx);
31db9f7c
AB
4750 if (ret < 0)
4751 goto out;
4752 ret = 0;
4753
4754out:
4755 return ret;
4756}
4757
31db9f7c
AB
4758static int record_changed_ref(struct send_ctx *sctx)
4759{
4760 int ret = 0;
4761
924794c9 4762 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
0d8869fb 4763 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
31db9f7c
AB
4764 if (ret < 0)
4765 goto out;
924794c9 4766 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
0d8869fb 4767 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
31db9f7c
AB
4768 if (ret < 0)
4769 goto out;
4770 ret = 0;
4771
4772out:
4773 return ret;
4774}
4775
4776/*
4777 * Record and process all refs at once. Needed when an inode changes the
4778 * generation number, which means that it was deleted and recreated.
4779 */
4780static int process_all_refs(struct send_ctx *sctx,
4781 enum btrfs_compare_tree_result cmd)
4782{
649b9635
GN
4783 int ret = 0;
4784 int iter_ret = 0;
31db9f7c
AB
4785 struct btrfs_root *root;
4786 struct btrfs_path *path;
4787 struct btrfs_key key;
4788 struct btrfs_key found_key;
31db9f7c 4789 iterate_inode_ref_t cb;
9f03740a 4790 int pending_move = 0;
31db9f7c
AB
4791
4792 path = alloc_path_for_send();
4793 if (!path)
4794 return -ENOMEM;
4795
4796 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4797 root = sctx->send_root;
0d8869fb 4798 cb = record_new_ref_if_needed;
31db9f7c
AB
4799 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4800 root = sctx->parent_root;
0d8869fb 4801 cb = record_deleted_ref_if_needed;
31db9f7c 4802 } else {
4d1a63b2
DS
4803 btrfs_err(sctx->send_root->fs_info,
4804 "Wrong command %d in process_all_refs", cmd);
4805 ret = -EINVAL;
4806 goto out;
31db9f7c
AB
4807 }
4808
4809 key.objectid = sctx->cmp_key->objectid;
4810 key.type = BTRFS_INODE_REF_KEY;
4811 key.offset = 0;
649b9635 4812 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
31db9f7c 4813 if (found_key.objectid != key.objectid ||
96b5bd77
JS
4814 (found_key.type != BTRFS_INODE_REF_KEY &&
4815 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 4816 break;
31db9f7c 4817
924794c9 4818 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
4819 if (ret < 0)
4820 goto out;
649b9635
GN
4821 }
4822 /* Catch error found during iteration */
4823 if (iter_ret < 0) {
4824 ret = iter_ret;
4825 goto out;
31db9f7c 4826 }
e938c8ad 4827 btrfs_release_path(path);
31db9f7c 4828
3dc09ec8
JB
4829 /*
4830 * We don't actually care about pending_move as we are simply
4831 * re-creating this inode and will be rename'ing it into place once we
4832 * rename the parent directory.
4833 */
9f03740a 4834 ret = process_recorded_refs(sctx, &pending_move);
31db9f7c
AB
4835out:
4836 btrfs_free_path(path);
4837 return ret;
4838}
4839
4840static int send_set_xattr(struct send_ctx *sctx,
4841 struct fs_path *path,
4842 const char *name, int name_len,
4843 const char *data, int data_len)
4844{
4845 int ret = 0;
4846
4847 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4848 if (ret < 0)
4849 goto out;
4850
4851 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4852 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4853 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4854
4855 ret = send_cmd(sctx);
4856
4857tlv_put_failure:
4858out:
4859 return ret;
4860}
4861
4862static int send_remove_xattr(struct send_ctx *sctx,
4863 struct fs_path *path,
4864 const char *name, int name_len)
4865{
4866 int ret = 0;
4867
4868 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4869 if (ret < 0)
4870 goto out;
4871
4872 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4873 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4874
4875 ret = send_cmd(sctx);
4876
4877tlv_put_failure:
4878out:
4879 return ret;
4880}
4881
4882static int __process_new_xattr(int num, struct btrfs_key *di_key,
b1dea4e7
OS
4883 const char *name, int name_len, const char *data,
4884 int data_len, void *ctx)
31db9f7c
AB
4885{
4886 int ret;
4887 struct send_ctx *sctx = ctx;
4888 struct fs_path *p;
2211d5ba 4889 struct posix_acl_xattr_header dummy_acl;
31db9f7c 4890
89efda52
MPS
4891 /* Capabilities are emitted by finish_inode_if_needed */
4892 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4893 return 0;
4894
924794c9 4895 p = fs_path_alloc();
31db9f7c
AB
4896 if (!p)
4897 return -ENOMEM;
4898
4899 /*
01327610 4900 * This hack is needed because empty acls are stored as zero byte
31db9f7c 4901 * data in xattrs. Problem with that is, that receiving these zero byte
01327610 4902 * acls will fail later. To fix this, we send a dummy acl list that
31db9f7c
AB
4903 * only contains the version number and no entries.
4904 */
4905 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4906 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4907 if (data_len == 0) {
4908 dummy_acl.a_version =
4909 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4910 data = (char *)&dummy_acl;
4911 data_len = sizeof(dummy_acl);
4912 }
4913 }
4914
4915 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4916 if (ret < 0)
4917 goto out;
4918
4919 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4920
4921out:
924794c9 4922 fs_path_free(p);
31db9f7c
AB
4923 return ret;
4924}
4925
4926static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4927 const char *name, int name_len,
b1dea4e7 4928 const char *data, int data_len, void *ctx)
31db9f7c
AB
4929{
4930 int ret;
4931 struct send_ctx *sctx = ctx;
4932 struct fs_path *p;
4933
924794c9 4934 p = fs_path_alloc();
31db9f7c
AB
4935 if (!p)
4936 return -ENOMEM;
4937
4938 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4939 if (ret < 0)
4940 goto out;
4941
4942 ret = send_remove_xattr(sctx, p, name, name_len);
4943
4944out:
924794c9 4945 fs_path_free(p);
31db9f7c
AB
4946 return ret;
4947}
4948
4949static int process_new_xattr(struct send_ctx *sctx)
4950{
4951 int ret = 0;
4952
924794c9 4953 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
a0357511 4954 __process_new_xattr, sctx);
31db9f7c
AB
4955
4956 return ret;
4957}
4958
4959static int process_deleted_xattr(struct send_ctx *sctx)
4960{
e2c89907 4961 return iterate_dir_item(sctx->parent_root, sctx->right_path,
a0357511 4962 __process_deleted_xattr, sctx);
31db9f7c
AB
4963}
4964
4965struct find_xattr_ctx {
4966 const char *name;
4967 int name_len;
4968 int found_idx;
4969 char *found_data;
4970 int found_data_len;
4971};
4972
b1dea4e7
OS
4973static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4974 int name_len, const char *data, int data_len, void *vctx)
31db9f7c
AB
4975{
4976 struct find_xattr_ctx *ctx = vctx;
4977
4978 if (name_len == ctx->name_len &&
4979 strncmp(name, ctx->name, name_len) == 0) {
4980 ctx->found_idx = num;
4981 ctx->found_data_len = data_len;
e780b0d1 4982 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
31db9f7c
AB
4983 if (!ctx->found_data)
4984 return -ENOMEM;
31db9f7c
AB
4985 return 1;
4986 }
4987 return 0;
4988}
4989
924794c9 4990static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
4991 struct btrfs_path *path,
4992 struct btrfs_key *key,
4993 const char *name, int name_len,
4994 char **data, int *data_len)
4995{
4996 int ret;
4997 struct find_xattr_ctx ctx;
4998
4999 ctx.name = name;
5000 ctx.name_len = name_len;
5001 ctx.found_idx = -1;
5002 ctx.found_data = NULL;
5003 ctx.found_data_len = 0;
5004
a0357511 5005 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
31db9f7c
AB
5006 if (ret < 0)
5007 return ret;
5008
5009 if (ctx.found_idx == -1)
5010 return -ENOENT;
5011 if (data) {
5012 *data = ctx.found_data;
5013 *data_len = ctx.found_data_len;
5014 } else {
5015 kfree(ctx.found_data);
5016 }
5017 return ctx.found_idx;
5018}
5019
5020
5021static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5022 const char *name, int name_len,
5023 const char *data, int data_len,
b1dea4e7 5024 void *ctx)
31db9f7c
AB
5025{
5026 int ret;
5027 struct send_ctx *sctx = ctx;
5028 char *found_data = NULL;
5029 int found_data_len = 0;
31db9f7c 5030
924794c9
TI
5031 ret = find_xattr(sctx->parent_root, sctx->right_path,
5032 sctx->cmp_key, name, name_len, &found_data,
5033 &found_data_len);
31db9f7c
AB
5034 if (ret == -ENOENT) {
5035 ret = __process_new_xattr(num, di_key, name, name_len, data,
b1dea4e7 5036 data_len, ctx);
31db9f7c
AB
5037 } else if (ret >= 0) {
5038 if (data_len != found_data_len ||
5039 memcmp(data, found_data, data_len)) {
5040 ret = __process_new_xattr(num, di_key, name, name_len,
b1dea4e7 5041 data, data_len, ctx);
31db9f7c
AB
5042 } else {
5043 ret = 0;
5044 }
5045 }
5046
5047 kfree(found_data);
31db9f7c
AB
5048 return ret;
5049}
5050
5051static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5052 const char *name, int name_len,
5053 const char *data, int data_len,
b1dea4e7 5054 void *ctx)
31db9f7c
AB
5055{
5056 int ret;
5057 struct send_ctx *sctx = ctx;
5058
924794c9
TI
5059 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5060 name, name_len, NULL, NULL);
31db9f7c
AB
5061 if (ret == -ENOENT)
5062 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
b1dea4e7 5063 data_len, ctx);
31db9f7c
AB
5064 else if (ret >= 0)
5065 ret = 0;
5066
5067 return ret;
5068}
5069
5070static int process_changed_xattr(struct send_ctx *sctx)
5071{
5072 int ret = 0;
5073
924794c9 5074 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
a0357511 5075 __process_changed_new_xattr, sctx);
31db9f7c
AB
5076 if (ret < 0)
5077 goto out;
924794c9 5078 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
a0357511 5079 __process_changed_deleted_xattr, sctx);
31db9f7c
AB
5080
5081out:
5082 return ret;
5083}
5084
5085static int process_all_new_xattrs(struct send_ctx *sctx)
5086{
69e43177
GN
5087 int ret = 0;
5088 int iter_ret = 0;
31db9f7c
AB
5089 struct btrfs_root *root;
5090 struct btrfs_path *path;
5091 struct btrfs_key key;
5092 struct btrfs_key found_key;
31db9f7c
AB
5093
5094 path = alloc_path_for_send();
5095 if (!path)
5096 return -ENOMEM;
5097
5098 root = sctx->send_root;
5099
5100 key.objectid = sctx->cmp_key->objectid;
5101 key.type = BTRFS_XATTR_ITEM_KEY;
5102 key.offset = 0;
69e43177 5103 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
31db9f7c
AB
5104 if (found_key.objectid != key.objectid ||
5105 found_key.type != key.type) {
5106 ret = 0;
69e43177 5107 break;
31db9f7c
AB
5108 }
5109
a0357511 5110 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
31db9f7c 5111 if (ret < 0)
69e43177 5112 break;
31db9f7c 5113 }
69e43177
GN
5114 /* Catch error found during iteration */
5115 if (iter_ret < 0)
5116 ret = iter_ret;
31db9f7c 5117
31db9f7c
AB
5118 btrfs_free_path(path);
5119 return ret;
5120}
5121
38622010
BB
5122static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5123 struct fsverity_descriptor *desc)
5124{
5125 int ret;
5126
5127 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5128 if (ret < 0)
5129 goto out;
5130
5131 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5132 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5133 le8_to_cpu(desc->hash_algorithm));
5134 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5135 1U << le8_to_cpu(desc->log_blocksize));
5136 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5137 le8_to_cpu(desc->salt_size));
5138 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5139 le32_to_cpu(desc->sig_size));
5140
5141 ret = send_cmd(sctx);
5142
5143tlv_put_failure:
5144out:
5145 return ret;
5146}
5147
5148static int process_verity(struct send_ctx *sctx)
5149{
5150 int ret = 0;
5151 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5152 struct inode *inode;
5153 struct fs_path *p;
5154
5155 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5156 if (IS_ERR(inode))
5157 return PTR_ERR(inode);
5158
5159 ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5160 if (ret < 0)
5161 goto iput;
5162
5163 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5164 ret = -EMSGSIZE;
5165 goto iput;
5166 }
5167 if (!sctx->verity_descriptor) {
5168 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5169 GFP_KERNEL);
5170 if (!sctx->verity_descriptor) {
5171 ret = -ENOMEM;
5172 goto iput;
5173 }
5174 }
5175
5176 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5177 if (ret < 0)
5178 goto iput;
5179
5180 p = fs_path_alloc();
5181 if (!p) {
5182 ret = -ENOMEM;
5183 goto iput;
5184 }
5185 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5186 if (ret < 0)
5187 goto free_path;
5188
5189 ret = send_verity(sctx, p, sctx->verity_descriptor);
5190 if (ret < 0)
5191 goto free_path;
5192
5193free_path:
5194 fs_path_free(p);
5195iput:
5196 iput(inode);
5197 return ret;
5198}
5199
8c7d9fe0
OS
5200static inline u64 max_send_read_size(const struct send_ctx *sctx)
5201{
5202 return sctx->send_max_size - SZ_16K;
5203}
5204
5205static int put_data_header(struct send_ctx *sctx, u32 len)
5206{
356bbbb6
OS
5207 if (WARN_ON_ONCE(sctx->put_data))
5208 return -EINVAL;
5209 sctx->put_data = true;
5210 if (sctx->proto >= 2) {
5211 /*
5212 * Since v2, the data attribute header doesn't include a length,
5213 * it is implicitly to the end of the command.
5214 */
5215 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5216 return -EOVERFLOW;
5217 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5218 sctx->send_size += sizeof(__le16);
5219 } else {
5220 struct btrfs_tlv_header *hdr;
8c7d9fe0 5221
356bbbb6
OS
5222 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5223 return -EOVERFLOW;
5224 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5225 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5226 put_unaligned_le16(len, &hdr->tlv_len);
5227 sctx->send_size += sizeof(*hdr);
5228 }
8c7d9fe0
OS
5229 return 0;
5230}
5231
5232static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
ed259095
JB
5233{
5234 struct btrfs_root *root = sctx->send_root;
5235 struct btrfs_fs_info *fs_info = root->fs_info;
ed259095 5236 struct page *page;
09cbfeaf 5237 pgoff_t index = offset >> PAGE_SHIFT;
ed259095 5238 pgoff_t last_index;
7073017a 5239 unsigned pg_offset = offset_in_page(offset);
8c7d9fe0
OS
5240 int ret;
5241
5242 ret = put_data_header(sctx, len);
5243 if (ret)
5244 return ret;
ed259095 5245
09cbfeaf 5246 last_index = (offset + len - 1) >> PAGE_SHIFT;
2131bcd3 5247
ed259095
JB
5248 while (index <= last_index) {
5249 unsigned cur_len = min_t(unsigned, len,
09cbfeaf 5250 PAGE_SIZE - pg_offset);
eef16ba2 5251
521b6803 5252 page = find_lock_page(sctx->cur_inode->i_mapping, index);
ed259095 5253 if (!page) {
521b6803
FM
5254 page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5255 &sctx->ra, NULL, index,
5256 last_index + 1 - index);
eef16ba2 5257
521b6803
FM
5258 page = find_or_create_page(sctx->cur_inode->i_mapping,
5259 index, GFP_KERNEL);
eef16ba2
KH
5260 if (!page) {
5261 ret = -ENOMEM;
5262 break;
5263 }
5264 }
5265
521b6803
FM
5266 if (PageReadahead(page))
5267 page_cache_async_readahead(sctx->cur_inode->i_mapping,
fdaf9a58
LT
5268 &sctx->ra, NULL, page_folio(page),
5269 index, last_index + 1 - index);
ed259095
JB
5270
5271 if (!PageUptodate(page)) {
fb12489b 5272 btrfs_read_folio(NULL, page_folio(page));
ed259095
JB
5273 lock_page(page);
5274 if (!PageUptodate(page)) {
5275 unlock_page(page);
2e7be9db
DM
5276 btrfs_err(fs_info,
5277 "send: IO error at offset %llu for inode %llu root %llu",
5278 page_offset(page), sctx->cur_ino,
5279 sctx->send_root->root_key.objectid);
09cbfeaf 5280 put_page(page);
ed259095
JB
5281 ret = -EIO;
5282 break;
5283 }
5284 }
5285
3590ec58
IW
5286 memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5287 pg_offset, cur_len);
ed259095 5288 unlock_page(page);
09cbfeaf 5289 put_page(page);
ed259095
JB
5290 index++;
5291 pg_offset = 0;
5292 len -= cur_len;
8c7d9fe0 5293 sctx->send_size += cur_len;
ed259095 5294 }
521b6803 5295
ed259095
JB
5296 return ret;
5297}
5298
31db9f7c
AB
5299/*
5300 * Read some bytes from the current inode/file and send a write command to
5301 * user space.
5302 */
5303static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5304{
04ab956e 5305 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
5306 int ret = 0;
5307 struct fs_path *p;
31db9f7c 5308
924794c9 5309 p = fs_path_alloc();
31db9f7c
AB
5310 if (!p)
5311 return -ENOMEM;
5312
04ab956e 5313 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
31db9f7c 5314
31db9f7c
AB
5315 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5316 if (ret < 0)
5317 goto out;
5318
5319 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5320 if (ret < 0)
5321 goto out;
5322
5323 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5324 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
8c7d9fe0
OS
5325 ret = put_file_data(sctx, offset, len);
5326 if (ret < 0)
5327 goto out;
31db9f7c
AB
5328
5329 ret = send_cmd(sctx);
5330
5331tlv_put_failure:
5332out:
924794c9 5333 fs_path_free(p);
a9b2e0de 5334 return ret;
31db9f7c
AB
5335}
5336
5337/*
5338 * Send a clone command to user space.
5339 */
5340static int send_clone(struct send_ctx *sctx,
5341 u64 offset, u32 len,
5342 struct clone_root *clone_root)
5343{
5344 int ret = 0;
31db9f7c
AB
5345 struct fs_path *p;
5346 u64 gen;
5347
04ab956e
JM
5348 btrfs_debug(sctx->send_root->fs_info,
5349 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4fd786e6
MT
5350 offset, len, clone_root->root->root_key.objectid,
5351 clone_root->ino, clone_root->offset);
31db9f7c 5352
924794c9 5353 p = fs_path_alloc();
31db9f7c
AB
5354 if (!p)
5355 return -ENOMEM;
5356
5357 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5358 if (ret < 0)
5359 goto out;
5360
5361 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5362 if (ret < 0)
5363 goto out;
5364
5365 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5366 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5367 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5368
e938c8ad 5369 if (clone_root->root == sctx->send_root) {
7e93f6dc 5370 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
31db9f7c
AB
5371 if (ret < 0)
5372 goto out;
5373 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5374 } else {
924794c9 5375 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
5376 }
5377 if (ret < 0)
5378 goto out;
5379
37b8d27d
JB
5380 /*
5381 * If the parent we're using has a received_uuid set then use that as
5382 * our clone source as that is what we will look for when doing a
5383 * receive.
5384 *
5385 * This covers the case that we create a snapshot off of a received
5386 * subvolume and then use that as the parent and try to receive on a
5387 * different host.
5388 */
5389 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5390 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5391 clone_root->root->root_item.received_uuid);
5392 else
5393 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5394 clone_root->root->root_item.uuid);
31db9f7c 5395 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
09e3a288 5396 btrfs_root_ctransid(&clone_root->root->root_item));
31db9f7c
AB
5397 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5398 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5399 clone_root->offset);
5400
5401 ret = send_cmd(sctx);
5402
5403tlv_put_failure:
5404out:
924794c9 5405 fs_path_free(p);
31db9f7c
AB
5406 return ret;
5407}
5408
cb95e7bf
MF
5409/*
5410 * Send an update extent command to user space.
5411 */
5412static int send_update_extent(struct send_ctx *sctx,
5413 u64 offset, u32 len)
5414{
5415 int ret = 0;
5416 struct fs_path *p;
5417
924794c9 5418 p = fs_path_alloc();
cb95e7bf
MF
5419 if (!p)
5420 return -ENOMEM;
5421
5422 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5423 if (ret < 0)
5424 goto out;
5425
5426 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5427 if (ret < 0)
5428 goto out;
5429
5430 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5431 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5432 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5433
5434 ret = send_cmd(sctx);
5435
5436tlv_put_failure:
5437out:
924794c9 5438 fs_path_free(p);
cb95e7bf
MF
5439 return ret;
5440}
5441
16e7549f
JB
5442static int send_hole(struct send_ctx *sctx, u64 end)
5443{
5444 struct fs_path *p = NULL;
8c7d9fe0 5445 u64 read_size = max_send_read_size(sctx);
16e7549f 5446 u64 offset = sctx->cur_inode_last_extent;
16e7549f
JB
5447 int ret = 0;
5448
22d3151c
FM
5449 /*
5450 * A hole that starts at EOF or beyond it. Since we do not yet support
5451 * fallocate (for extent preallocation and hole punching), sending a
5452 * write of zeroes starting at EOF or beyond would later require issuing
5453 * a truncate operation which would undo the write and achieve nothing.
5454 */
5455 if (offset >= sctx->cur_inode_size)
5456 return 0;
5457
6b1f72e5
FM
5458 /*
5459 * Don't go beyond the inode's i_size due to prealloc extents that start
5460 * after the i_size.
5461 */
5462 end = min_t(u64, end, sctx->cur_inode_size);
5463
d4dfc0f4
FM
5464 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5465 return send_update_extent(sctx, offset, end - offset);
5466
16e7549f
JB
5467 p = fs_path_alloc();
5468 if (!p)
5469 return -ENOMEM;
c715e155
FM
5470 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5471 if (ret < 0)
5472 goto tlv_put_failure;
16e7549f 5473 while (offset < end) {
8c7d9fe0 5474 u64 len = min(end - offset, read_size);
16e7549f
JB
5475
5476 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
16e7549f
JB
5477 if (ret < 0)
5478 break;
5479 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5480 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
8c7d9fe0
OS
5481 ret = put_data_header(sctx, len);
5482 if (ret < 0)
5483 break;
5484 memset(sctx->send_buf + sctx->send_size, 0, len);
5485 sctx->send_size += len;
16e7549f
JB
5486 ret = send_cmd(sctx);
5487 if (ret < 0)
5488 break;
5489 offset += len;
5490 }
ffa7c429 5491 sctx->cur_inode_next_write_offset = offset;
16e7549f
JB
5492tlv_put_failure:
5493 fs_path_free(p);
5494 return ret;
5495}
5496
3ea4dc5b
OS
5497static int send_encoded_inline_extent(struct send_ctx *sctx,
5498 struct btrfs_path *path, u64 offset,
5499 u64 len)
5500{
5501 struct btrfs_root *root = sctx->send_root;
5502 struct btrfs_fs_info *fs_info = root->fs_info;
5503 struct inode *inode;
5504 struct fs_path *fspath;
5505 struct extent_buffer *leaf = path->nodes[0];
5506 struct btrfs_key key;
5507 struct btrfs_file_extent_item *ei;
5508 u64 ram_bytes;
5509 size_t inline_size;
5510 int ret;
5511
5512 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5513 if (IS_ERR(inode))
5514 return PTR_ERR(inode);
5515
5516 fspath = fs_path_alloc();
5517 if (!fspath) {
5518 ret = -ENOMEM;
5519 goto out;
5520 }
5521
5522 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5523 if (ret < 0)
5524 goto out;
5525
5526 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5527 if (ret < 0)
5528 goto out;
5529
5530 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5531 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5532 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5533 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5534
5535 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5536 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5537 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5538 min(key.offset + ram_bytes - offset, len));
5539 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5540 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5541 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5542 btrfs_file_extent_compression(leaf, ei));
5543 if (ret < 0)
5544 goto out;
5545 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5546
5547 ret = put_data_header(sctx, inline_size);
5548 if (ret < 0)
5549 goto out;
5550 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5551 btrfs_file_extent_inline_start(ei), inline_size);
5552 sctx->send_size += inline_size;
5553
5554 ret = send_cmd(sctx);
5555
5556tlv_put_failure:
5557out:
5558 fs_path_free(fspath);
5559 iput(inode);
5560 return ret;
5561}
5562
5563static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5564 u64 offset, u64 len)
5565{
5566 struct btrfs_root *root = sctx->send_root;
5567 struct btrfs_fs_info *fs_info = root->fs_info;
5568 struct inode *inode;
5569 struct fs_path *fspath;
5570 struct extent_buffer *leaf = path->nodes[0];
5571 struct btrfs_key key;
5572 struct btrfs_file_extent_item *ei;
5573 u64 disk_bytenr, disk_num_bytes;
5574 u32 data_offset;
5575 struct btrfs_cmd_header *hdr;
5576 u32 crc;
5577 int ret;
5578
5579 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5580 if (IS_ERR(inode))
5581 return PTR_ERR(inode);
5582
5583 fspath = fs_path_alloc();
5584 if (!fspath) {
5585 ret = -ENOMEM;
5586 goto out;
5587 }
5588
5589 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5590 if (ret < 0)
5591 goto out;
5592
5593 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5594 if (ret < 0)
5595 goto out;
5596
5597 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5598 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5599 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5600 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5601
5602 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5603 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5604 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5605 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5606 len));
5607 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5608 btrfs_file_extent_ram_bytes(leaf, ei));
5609 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5610 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5611 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5612 btrfs_file_extent_compression(leaf, ei));
5613 if (ret < 0)
5614 goto out;
5615 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5616 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5617
5618 ret = put_data_header(sctx, disk_num_bytes);
5619 if (ret < 0)
5620 goto out;
5621
5622 /*
5623 * We want to do I/O directly into the send buffer, so get the next page
5624 * boundary in the send buffer. This means that there may be a gap
5625 * between the beginning of the command and the file data.
5626 */
ce394a7f 5627 data_offset = PAGE_ALIGN(sctx->send_size);
3ea4dc5b
OS
5628 if (data_offset > sctx->send_max_size ||
5629 sctx->send_max_size - data_offset < disk_num_bytes) {
5630 ret = -EOVERFLOW;
5631 goto out;
5632 }
5633
5634 /*
5635 * Note that send_buf is a mapping of send_buf_pages, so this is really
5636 * reading into send_buf.
5637 */
5638 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5639 disk_bytenr, disk_num_bytes,
5640 sctx->send_buf_pages +
5641 (data_offset >> PAGE_SHIFT));
5642 if (ret)
5643 goto out;
5644
5645 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5646 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5647 hdr->crc = 0;
5648 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5649 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5650 hdr->crc = cpu_to_le32(crc);
5651
5652 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5653 &sctx->send_off);
5654 if (!ret) {
5655 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5656 disk_num_bytes, &sctx->send_off);
5657 }
5658 sctx->send_size = 0;
5659 sctx->put_data = false;
5660
5661tlv_put_failure:
5662out:
5663 fs_path_free(fspath);
5664 iput(inode);
5665 return ret;
5666}
5667
5668static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5669 const u64 offset, const u64 len)
d906d49f 5670{
152555b3 5671 const u64 end = offset + len;
3ea4dc5b
OS
5672 struct extent_buffer *leaf = path->nodes[0];
5673 struct btrfs_file_extent_item *ei;
8c7d9fe0 5674 u64 read_size = max_send_read_size(sctx);
d906d49f
FM
5675 u64 sent = 0;
5676
5677 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5678 return send_update_extent(sctx, offset, len);
5679
3ea4dc5b
OS
5680 ei = btrfs_item_ptr(leaf, path->slots[0],
5681 struct btrfs_file_extent_item);
5682 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5683 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5684 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5685 BTRFS_FILE_EXTENT_INLINE);
5686
5687 /*
5688 * Send the compressed extent unless the compressed data is
5689 * larger than the decompressed data. This can happen if we're
5690 * not sending the entire extent, either because it has been
5691 * partially overwritten/truncated or because this is a part of
5692 * the extent that we couldn't clone in clone_range().
5693 */
5694 if (is_inline &&
5695 btrfs_file_extent_inline_item_len(leaf,
5696 path->slots[0]) <= len) {
5697 return send_encoded_inline_extent(sctx, path, offset,
5698 len);
5699 } else if (!is_inline &&
5700 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5701 return send_encoded_extent(sctx, path, offset, len);
5702 }
5703 }
5704
521b6803
FM
5705 if (sctx->cur_inode == NULL) {
5706 struct btrfs_root *root = sctx->send_root;
5707
5708 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5709 if (IS_ERR(sctx->cur_inode)) {
5710 int err = PTR_ERR(sctx->cur_inode);
5711
5712 sctx->cur_inode = NULL;
5713 return err;
5714 }
5715 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5716 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
152555b3
FM
5717
5718 /*
5719 * It's very likely there are no pages from this inode in the page
5720 * cache, so after reading extents and sending their data, we clean
5721 * the page cache to avoid trashing the page cache (adding pressure
5722 * to the page cache and forcing eviction of other data more useful
5723 * for applications).
5724 *
5725 * We decide if we should clean the page cache simply by checking
5726 * if the inode's mapping nrpages is 0 when we first open it, and
5727 * not by using something like filemap_range_has_page() before
5728 * reading an extent because when we ask the readahead code to
5729 * read a given file range, it may (and almost always does) read
5730 * pages from beyond that range (see the documentation for
5731 * page_cache_sync_readahead()), so it would not be reliable,
5732 * because after reading the first extent future calls to
5733 * filemap_range_has_page() would return true because the readahead
5734 * on the previous extent resulted in reading pages of the current
5735 * extent as well.
5736 */
5737 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5738 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
521b6803
FM
5739 }
5740
d906d49f 5741 while (sent < len) {
8c7d9fe0 5742 u64 size = min(len - sent, read_size);
d906d49f
FM
5743 int ret;
5744
d906d49f
FM
5745 ret = send_write(sctx, offset + sent, size);
5746 if (ret < 0)
5747 return ret;
a9b2e0de 5748 sent += size;
d906d49f 5749 }
152555b3 5750
ce394a7f 5751 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
152555b3
FM
5752 /*
5753 * Always operate only on ranges that are a multiple of the page
5754 * size. This is not only to prevent zeroing parts of a page in
5755 * the case of subpage sector size, but also to guarantee we evict
5756 * pages, as passing a range that is smaller than page size does
5757 * not evict the respective page (only zeroes part of its content).
5758 *
5759 * Always start from the end offset of the last range cleared.
5760 * This is because the readahead code may (and very often does)
5761 * reads pages beyond the range we request for readahead. So if
5762 * we have an extent layout like this:
5763 *
5764 * [ extent A ] [ extent B ] [ extent C ]
5765 *
5766 * When we ask page_cache_sync_readahead() to read extent A, it
5767 * may also trigger reads for pages of extent B. If we are doing
5768 * an incremental send and extent B has not changed between the
5769 * parent and send snapshots, some or all of its pages may end
5770 * up being read and placed in the page cache. So when truncating
5771 * the page cache we always start from the end offset of the
5772 * previously processed extent up to the end of the current
5773 * extent.
5774 */
5775 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5776 sctx->page_cache_clear_start,
5777 end - 1);
5778 sctx->page_cache_clear_start = end;
5779 }
5780
d906d49f
FM
5781 return 0;
5782}
5783
89efda52
MPS
5784/*
5785 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5786 * found, call send_set_xattr function to emit it.
5787 *
5788 * Return 0 if there isn't a capability, or when the capability was emitted
5789 * successfully, or < 0 if an error occurred.
5790 */
5791static int send_capabilities(struct send_ctx *sctx)
5792{
5793 struct fs_path *fspath = NULL;
5794 struct btrfs_path *path;
5795 struct btrfs_dir_item *di;
5796 struct extent_buffer *leaf;
5797 unsigned long data_ptr;
5798 char *buf = NULL;
5799 int buf_len;
5800 int ret = 0;
5801
5802 path = alloc_path_for_send();
5803 if (!path)
5804 return -ENOMEM;
5805
5806 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5807 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5808 if (!di) {
5809 /* There is no xattr for this inode */
5810 goto out;
5811 } else if (IS_ERR(di)) {
5812 ret = PTR_ERR(di);
5813 goto out;
5814 }
5815
5816 leaf = path->nodes[0];
5817 buf_len = btrfs_dir_data_len(leaf, di);
5818
5819 fspath = fs_path_alloc();
5820 buf = kmalloc(buf_len, GFP_KERNEL);
5821 if (!fspath || !buf) {
5822 ret = -ENOMEM;
5823 goto out;
5824 }
5825
5826 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5827 if (ret < 0)
5828 goto out;
5829
5830 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5831 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5832
5833 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5834 strlen(XATTR_NAME_CAPS), buf, buf_len);
5835out:
5836 kfree(buf);
5837 fs_path_free(fspath);
5838 btrfs_free_path(path);
5839 return ret;
5840}
5841
3ea4dc5b
OS
5842static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5843 struct clone_root *clone_root, const u64 disk_byte,
5844 u64 data_offset, u64 offset, u64 len)
d906d49f
FM
5845{
5846 struct btrfs_path *path;
5847 struct btrfs_key key;
5848 int ret;
7e93f6dc 5849 struct btrfs_inode_info info;
431d3988 5850 u64 clone_src_i_size = 0;
d906d49f 5851
72610b1b
FM
5852 /*
5853 * Prevent cloning from a zero offset with a length matching the sector
5854 * size because in some scenarios this will make the receiver fail.
5855 *
5856 * For example, if in the source filesystem the extent at offset 0
5857 * has a length of sectorsize and it was written using direct IO, then
5858 * it can never be an inline extent (even if compression is enabled).
5859 * Then this extent can be cloned in the original filesystem to a non
5860 * zero file offset, but it may not be possible to clone in the
5861 * destination filesystem because it can be inlined due to compression
5862 * on the destination filesystem (as the receiver's write operations are
5863 * always done using buffered IO). The same happens when the original
5864 * filesystem does not have compression enabled but the destination
5865 * filesystem has.
5866 */
5867 if (clone_root->offset == 0 &&
5868 len == sctx->send_root->fs_info->sectorsize)
3ea4dc5b 5869 return send_extent_data(sctx, dst_path, offset, len);
72610b1b 5870
d906d49f
FM
5871 path = alloc_path_for_send();
5872 if (!path)
5873 return -ENOMEM;
5874
040ee612
RK
5875 /*
5876 * There are inodes that have extents that lie behind its i_size. Don't
5877 * accept clones from these extents.
5878 */
7e93f6dc 5879 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
040ee612
RK
5880 btrfs_release_path(path);
5881 if (ret < 0)
5882 goto out;
7e93f6dc 5883 clone_src_i_size = info.size;
040ee612 5884
d906d49f
FM
5885 /*
5886 * We can't send a clone operation for the entire range if we find
5887 * extent items in the respective range in the source file that
5888 * refer to different extents or if we find holes.
5889 * So check for that and do a mix of clone and regular write/copy
5890 * operations if needed.
5891 *
5892 * Example:
5893 *
5894 * mkfs.btrfs -f /dev/sda
5895 * mount /dev/sda /mnt
5896 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5897 * cp --reflink=always /mnt/foo /mnt/bar
5898 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5899 * btrfs subvolume snapshot -r /mnt /mnt/snap
5900 *
5901 * If when we send the snapshot and we are processing file bar (which
5902 * has a higher inode number than foo) we blindly send a clone operation
5903 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5904 * a file bar that matches the content of file foo - iow, doesn't match
5905 * the content from bar in the original filesystem.
5906 */
5907 key.objectid = clone_root->ino;
5908 key.type = BTRFS_EXTENT_DATA_KEY;
5909 key.offset = clone_root->offset;
5910 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5911 if (ret < 0)
5912 goto out;
5913 if (ret > 0 && path->slots[0] > 0) {
5914 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5915 if (key.objectid == clone_root->ino &&
5916 key.type == BTRFS_EXTENT_DATA_KEY)
5917 path->slots[0]--;
5918 }
5919
5920 while (true) {
5921 struct extent_buffer *leaf = path->nodes[0];
5922 int slot = path->slots[0];
5923 struct btrfs_file_extent_item *ei;
5924 u8 type;
5925 u64 ext_len;
5926 u64 clone_len;
040ee612 5927 u64 clone_data_offset;
a11452a3 5928 bool crossed_src_i_size = false;
d906d49f
FM
5929
5930 if (slot >= btrfs_header_nritems(leaf)) {
5931 ret = btrfs_next_leaf(clone_root->root, path);
5932 if (ret < 0)
5933 goto out;
5934 else if (ret > 0)
5935 break;
5936 continue;
5937 }
5938
5939 btrfs_item_key_to_cpu(leaf, &key, slot);
5940
5941 /*
5942 * We might have an implicit trailing hole (NO_HOLES feature
5943 * enabled). We deal with it after leaving this loop.
5944 */
5945 if (key.objectid != clone_root->ino ||
5946 key.type != BTRFS_EXTENT_DATA_KEY)
5947 break;
5948
5949 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5950 type = btrfs_file_extent_type(leaf, ei);
5951 if (type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5952 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
09cbfeaf 5953 ext_len = PAGE_ALIGN(ext_len);
d906d49f
FM
5954 } else {
5955 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5956 }
5957
5958 if (key.offset + ext_len <= clone_root->offset)
5959 goto next;
5960
5961 if (key.offset > clone_root->offset) {
5962 /* Implicit hole, NO_HOLES feature enabled. */
5963 u64 hole_len = key.offset - clone_root->offset;
5964
5965 if (hole_len > len)
5966 hole_len = len;
3ea4dc5b
OS
5967 ret = send_extent_data(sctx, dst_path, offset,
5968 hole_len);
d906d49f
FM
5969 if (ret < 0)
5970 goto out;
5971
5972 len -= hole_len;
5973 if (len == 0)
5974 break;
5975 offset += hole_len;
5976 clone_root->offset += hole_len;
5977 data_offset += hole_len;
5978 }
5979
5980 if (key.offset >= clone_root->offset + len)
5981 break;
5982
040ee612
RK
5983 if (key.offset >= clone_src_i_size)
5984 break;
5985
a11452a3 5986 if (key.offset + ext_len > clone_src_i_size) {
040ee612 5987 ext_len = clone_src_i_size - key.offset;
a11452a3
FM
5988 crossed_src_i_size = true;
5989 }
040ee612
RK
5990
5991 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5992 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5993 clone_root->offset = key.offset;
5994 if (clone_data_offset < data_offset &&
5995 clone_data_offset + ext_len > data_offset) {
5996 u64 extent_offset;
5997
5998 extent_offset = data_offset - clone_data_offset;
5999 ext_len -= extent_offset;
6000 clone_data_offset += extent_offset;
6001 clone_root->offset += extent_offset;
6002 }
6003 }
6004
d906d49f
FM
6005 clone_len = min_t(u64, ext_len, len);
6006
6007 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
3c850b45
FM
6008 clone_data_offset == data_offset) {
6009 const u64 src_end = clone_root->offset + clone_len;
6010 const u64 sectorsize = SZ_64K;
6011
6012 /*
6013 * We can't clone the last block, when its size is not
6014 * sector size aligned, into the middle of a file. If we
6015 * do so, the receiver will get a failure (-EINVAL) when
6016 * trying to clone or will silently corrupt the data in
6017 * the destination file if it's on a kernel without the
6018 * fix introduced by commit ac765f83f1397646
6019 * ("Btrfs: fix data corruption due to cloning of eof
6020 * block).
6021 *
6022 * So issue a clone of the aligned down range plus a
6023 * regular write for the eof block, if we hit that case.
6024 *
6025 * Also, we use the maximum possible sector size, 64K,
6026 * because we don't know what's the sector size of the
6027 * filesystem that receives the stream, so we have to
6028 * assume the largest possible sector size.
6029 */
6030 if (src_end == clone_src_i_size &&
6031 !IS_ALIGNED(src_end, sectorsize) &&
6032 offset + clone_len < sctx->cur_inode_size) {
6033 u64 slen;
6034
6035 slen = ALIGN_DOWN(src_end - clone_root->offset,
6036 sectorsize);
6037 if (slen > 0) {
6038 ret = send_clone(sctx, offset, slen,
6039 clone_root);
6040 if (ret < 0)
6041 goto out;
6042 }
3ea4dc5b
OS
6043 ret = send_extent_data(sctx, dst_path,
6044 offset + slen,
3c850b45
FM
6045 clone_len - slen);
6046 } else {
6047 ret = send_clone(sctx, offset, clone_len,
6048 clone_root);
6049 }
a11452a3
FM
6050 } else if (crossed_src_i_size && clone_len < len) {
6051 /*
6052 * If we are at i_size of the clone source inode and we
6053 * can not clone from it, terminate the loop. This is
6054 * to avoid sending two write operations, one with a
6055 * length matching clone_len and the final one after
6056 * this loop with a length of len - clone_len.
6057 *
6058 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6059 * was passed to the send ioctl), this helps avoid
6060 * sending an encoded write for an offset that is not
6061 * sector size aligned, in case the i_size of the source
6062 * inode is not sector size aligned. That will make the
6063 * receiver fallback to decompression of the data and
6064 * writing it using regular buffered IO, therefore while
6065 * not incorrect, it's not optimal due decompression and
6066 * possible re-compression at the receiver.
6067 */
6068 break;
3c850b45 6069 } else {
3ea4dc5b
OS
6070 ret = send_extent_data(sctx, dst_path, offset,
6071 clone_len);
3c850b45 6072 }
d906d49f
FM
6073
6074 if (ret < 0)
6075 goto out;
6076
6077 len -= clone_len;
6078 if (len == 0)
6079 break;
6080 offset += clone_len;
6081 clone_root->offset += clone_len;
518837e6
FM
6082
6083 /*
6084 * If we are cloning from the file we are currently processing,
6085 * and using the send root as the clone root, we must stop once
6086 * the current clone offset reaches the current eof of the file
6087 * at the receiver, otherwise we would issue an invalid clone
6088 * operation (source range going beyond eof) and cause the
6089 * receiver to fail. So if we reach the current eof, bail out
6090 * and fallback to a regular write.
6091 */
6092 if (clone_root->root == sctx->send_root &&
6093 clone_root->ino == sctx->cur_ino &&
6094 clone_root->offset >= sctx->cur_inode_next_write_offset)
6095 break;
6096
d906d49f
FM
6097 data_offset += clone_len;
6098next:
6099 path->slots[0]++;
6100 }
6101
6102 if (len > 0)
3ea4dc5b 6103 ret = send_extent_data(sctx, dst_path, offset, len);
d906d49f
FM
6104 else
6105 ret = 0;
6106out:
6107 btrfs_free_path(path);
6108 return ret;
6109}
6110
31db9f7c
AB
6111static int send_write_or_clone(struct send_ctx *sctx,
6112 struct btrfs_path *path,
6113 struct btrfs_key *key,
6114 struct clone_root *clone_root)
6115{
6116 int ret = 0;
31db9f7c 6117 u64 offset = key->offset;
c9a949af 6118 u64 end;
28e5dd8f 6119 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c 6120
c9a949af
OS
6121 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6122 if (offset >= end)
6123 return 0;
31db9f7c 6124
c9a949af
OS
6125 if (clone_root && IS_ALIGNED(end, bs)) {
6126 struct btrfs_file_extent_item *ei;
d906d49f
FM
6127 u64 disk_byte;
6128 u64 data_offset;
6129
c9a949af
OS
6130 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6131 struct btrfs_file_extent_item);
d906d49f
FM
6132 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6133 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
3ea4dc5b
OS
6134 ret = clone_range(sctx, path, clone_root, disk_byte,
6135 data_offset, offset, end - offset);
cb95e7bf 6136 } else {
3ea4dc5b 6137 ret = send_extent_data(sctx, path, offset, end - offset);
31db9f7c 6138 }
c9a949af 6139 sctx->cur_inode_next_write_offset = end;
31db9f7c
AB
6140 return ret;
6141}
6142
6143static int is_extent_unchanged(struct send_ctx *sctx,
6144 struct btrfs_path *left_path,
6145 struct btrfs_key *ekey)
6146{
6147 int ret = 0;
6148 struct btrfs_key key;
6149 struct btrfs_path *path = NULL;
6150 struct extent_buffer *eb;
6151 int slot;
6152 struct btrfs_key found_key;
6153 struct btrfs_file_extent_item *ei;
6154 u64 left_disknr;
6155 u64 right_disknr;
6156 u64 left_offset;
6157 u64 right_offset;
6158 u64 left_offset_fixed;
6159 u64 left_len;
6160 u64 right_len;
74dd17fb
CM
6161 u64 left_gen;
6162 u64 right_gen;
31db9f7c
AB
6163 u8 left_type;
6164 u8 right_type;
6165
6166 path = alloc_path_for_send();
6167 if (!path)
6168 return -ENOMEM;
6169
6170 eb = left_path->nodes[0];
6171 slot = left_path->slots[0];
31db9f7c
AB
6172 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6173 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
6174
6175 if (left_type != BTRFS_FILE_EXTENT_REG) {
6176 ret = 0;
6177 goto out;
6178 }
74dd17fb
CM
6179 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6180 left_len = btrfs_file_extent_num_bytes(eb, ei);
6181 left_offset = btrfs_file_extent_offset(eb, ei);
6182 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
6183
6184 /*
6185 * Following comments will refer to these graphics. L is the left
6186 * extents which we are checking at the moment. 1-8 are the right
6187 * extents that we iterate.
6188 *
6189 * |-----L-----|
6190 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6191 *
6192 * |-----L-----|
6193 * |--1--|-2b-|...(same as above)
6194 *
6195 * Alternative situation. Happens on files where extents got split.
6196 * |-----L-----|
6197 * |-----------7-----------|-6-|
6198 *
6199 * Alternative situation. Happens on files which got larger.
6200 * |-----L-----|
6201 * |-8-|
6202 * Nothing follows after 8.
6203 */
6204
6205 key.objectid = ekey->objectid;
6206 key.type = BTRFS_EXTENT_DATA_KEY;
6207 key.offset = ekey->offset;
6208 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6209 if (ret < 0)
6210 goto out;
6211 if (ret) {
6212 ret = 0;
6213 goto out;
6214 }
6215
6216 /*
6217 * Handle special case where the right side has no extents at all.
6218 */
6219 eb = path->nodes[0];
6220 slot = path->slots[0];
6221 btrfs_item_key_to_cpu(eb, &found_key, slot);
6222 if (found_key.objectid != key.objectid ||
6223 found_key.type != key.type) {
57cfd462
JB
6224 /* If we're a hole then just pretend nothing changed */
6225 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
6226 goto out;
6227 }
6228
6229 /*
6230 * We're now on 2a, 2b or 7.
6231 */
6232 key = found_key;
6233 while (key.offset < ekey->offset + left_len) {
6234 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6235 right_type = btrfs_file_extent_type(eb, ei);
e1cbfd7b
FM
6236 if (right_type != BTRFS_FILE_EXTENT_REG &&
6237 right_type != BTRFS_FILE_EXTENT_INLINE) {
31db9f7c
AB
6238 ret = 0;
6239 goto out;
6240 }
6241
e1cbfd7b 6242 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 6243 right_len = btrfs_file_extent_ram_bytes(eb, ei);
e1cbfd7b
FM
6244 right_len = PAGE_ALIGN(right_len);
6245 } else {
6246 right_len = btrfs_file_extent_num_bytes(eb, ei);
6247 }
007d31f7 6248
31db9f7c
AB
6249 /*
6250 * Are we at extent 8? If yes, we know the extent is changed.
6251 * This may only happen on the first iteration.
6252 */
d8347fa4 6253 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
6254 /* If we're a hole just pretend nothing changed */
6255 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
6256 goto out;
6257 }
6258
e1cbfd7b
FM
6259 /*
6260 * We just wanted to see if when we have an inline extent, what
6261 * follows it is a regular extent (wanted to check the above
6262 * condition for inline extents too). This should normally not
6263 * happen but it's possible for example when we have an inline
6264 * compressed extent representing data with a size matching
6265 * the page size (currently the same as sector size).
6266 */
6267 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6268 ret = 0;
6269 goto out;
6270 }
6271
24e52b11
FM
6272 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6273 right_offset = btrfs_file_extent_offset(eb, ei);
6274 right_gen = btrfs_file_extent_generation(eb, ei);
6275
31db9f7c
AB
6276 left_offset_fixed = left_offset;
6277 if (key.offset < ekey->offset) {
6278 /* Fix the right offset for 2a and 7. */
6279 right_offset += ekey->offset - key.offset;
6280 } else {
6281 /* Fix the left offset for all behind 2a and 2b */
6282 left_offset_fixed += key.offset - ekey->offset;
6283 }
6284
6285 /*
6286 * Check if we have the same extent.
6287 */
3954096d 6288 if (left_disknr != right_disknr ||
74dd17fb
CM
6289 left_offset_fixed != right_offset ||
6290 left_gen != right_gen) {
31db9f7c
AB
6291 ret = 0;
6292 goto out;
6293 }
6294
6295 /*
6296 * Go to the next extent.
6297 */
6298 ret = btrfs_next_item(sctx->parent_root, path);
6299 if (ret < 0)
6300 goto out;
6301 if (!ret) {
6302 eb = path->nodes[0];
6303 slot = path->slots[0];
6304 btrfs_item_key_to_cpu(eb, &found_key, slot);
6305 }
6306 if (ret || found_key.objectid != key.objectid ||
6307 found_key.type != key.type) {
6308 key.offset += right_len;
6309 break;
adaa4b8e
JS
6310 }
6311 if (found_key.offset != key.offset + right_len) {
6312 ret = 0;
6313 goto out;
31db9f7c
AB
6314 }
6315 key = found_key;
6316 }
6317
6318 /*
6319 * We're now behind the left extent (treat as unchanged) or at the end
6320 * of the right side (treat as changed).
6321 */
6322 if (key.offset >= ekey->offset + left_len)
6323 ret = 1;
6324 else
6325 ret = 0;
6326
6327
6328out:
6329 btrfs_free_path(path);
6330 return ret;
6331}
6332
16e7549f
JB
6333static int get_last_extent(struct send_ctx *sctx, u64 offset)
6334{
6335 struct btrfs_path *path;
6336 struct btrfs_root *root = sctx->send_root;
16e7549f 6337 struct btrfs_key key;
16e7549f
JB
6338 int ret;
6339
6340 path = alloc_path_for_send();
6341 if (!path)
6342 return -ENOMEM;
6343
6344 sctx->cur_inode_last_extent = 0;
6345
6346 key.objectid = sctx->cur_ino;
6347 key.type = BTRFS_EXTENT_DATA_KEY;
6348 key.offset = offset;
6349 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6350 if (ret < 0)
6351 goto out;
6352 ret = 0;
6353 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6354 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6355 goto out;
6356
a5eeb3d1 6357 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
16e7549f
JB
6358out:
6359 btrfs_free_path(path);
6360 return ret;
6361}
6362
82bfb2e7
FM
6363static int range_is_hole_in_parent(struct send_ctx *sctx,
6364 const u64 start,
6365 const u64 end)
6366{
6367 struct btrfs_path *path;
6368 struct btrfs_key key;
6369 struct btrfs_root *root = sctx->parent_root;
6370 u64 search_start = start;
6371 int ret;
6372
6373 path = alloc_path_for_send();
6374 if (!path)
6375 return -ENOMEM;
6376
6377 key.objectid = sctx->cur_ino;
6378 key.type = BTRFS_EXTENT_DATA_KEY;
6379 key.offset = search_start;
6380 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6381 if (ret < 0)
6382 goto out;
6383 if (ret > 0 && path->slots[0] > 0)
6384 path->slots[0]--;
6385
6386 while (search_start < end) {
6387 struct extent_buffer *leaf = path->nodes[0];
6388 int slot = path->slots[0];
6389 struct btrfs_file_extent_item *fi;
6390 u64 extent_end;
6391
6392 if (slot >= btrfs_header_nritems(leaf)) {
6393 ret = btrfs_next_leaf(root, path);
6394 if (ret < 0)
6395 goto out;
6396 else if (ret > 0)
6397 break;
6398 continue;
6399 }
6400
6401 btrfs_item_key_to_cpu(leaf, &key, slot);
6402 if (key.objectid < sctx->cur_ino ||
6403 key.type < BTRFS_EXTENT_DATA_KEY)
6404 goto next;
6405 if (key.objectid > sctx->cur_ino ||
6406 key.type > BTRFS_EXTENT_DATA_KEY ||
6407 key.offset >= end)
6408 break;
6409
6410 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
a5eeb3d1 6411 extent_end = btrfs_file_extent_end(path);
82bfb2e7
FM
6412 if (extent_end <= start)
6413 goto next;
6414 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6415 search_start = extent_end;
6416 goto next;
6417 }
6418 ret = 0;
6419 goto out;
6420next:
6421 path->slots[0]++;
6422 }
6423 ret = 1;
6424out:
6425 btrfs_free_path(path);
6426 return ret;
6427}
6428
16e7549f
JB
6429static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6430 struct btrfs_key *key)
6431{
16e7549f
JB
6432 int ret = 0;
6433
6434 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6435 return 0;
6436
6437 if (sctx->cur_inode_last_extent == (u64)-1) {
6438 ret = get_last_extent(sctx, key->offset - 1);
6439 if (ret)
6440 return ret;
6441 }
6442
bf54f412
FDBM
6443 if (path->slots[0] == 0 &&
6444 sctx->cur_inode_last_extent < key->offset) {
6445 /*
6446 * We might have skipped entire leafs that contained only
6447 * file extent items for our current inode. These leafs have
6448 * a generation number smaller (older) than the one in the
6449 * current leaf and the leaf our last extent came from, and
6450 * are located between these 2 leafs.
6451 */
6452 ret = get_last_extent(sctx, key->offset - 1);
6453 if (ret)
6454 return ret;
6455 }
6456
82bfb2e7
FM
6457 if (sctx->cur_inode_last_extent < key->offset) {
6458 ret = range_is_hole_in_parent(sctx,
6459 sctx->cur_inode_last_extent,
6460 key->offset);
6461 if (ret < 0)
6462 return ret;
6463 else if (ret == 0)
6464 ret = send_hole(sctx, key->offset);
6465 else
6466 ret = 0;
6467 }
a5eeb3d1 6468 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
16e7549f
JB
6469 return ret;
6470}
6471
31db9f7c
AB
6472static int process_extent(struct send_ctx *sctx,
6473 struct btrfs_path *path,
6474 struct btrfs_key *key)
6475{
31db9f7c 6476 struct clone_root *found_clone = NULL;
57cfd462 6477 int ret = 0;
31db9f7c
AB
6478
6479 if (S_ISLNK(sctx->cur_inode_mode))
6480 return 0;
6481
6482 if (sctx->parent_root && !sctx->cur_inode_new) {
6483 ret = is_extent_unchanged(sctx, path, key);
6484 if (ret < 0)
6485 goto out;
6486 if (ret) {
6487 ret = 0;
16e7549f 6488 goto out_hole;
31db9f7c 6489 }
57cfd462
JB
6490 } else {
6491 struct btrfs_file_extent_item *ei;
6492 u8 type;
6493
6494 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6495 struct btrfs_file_extent_item);
6496 type = btrfs_file_extent_type(path->nodes[0], ei);
6497 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6498 type == BTRFS_FILE_EXTENT_REG) {
6499 /*
6500 * The send spec does not have a prealloc command yet,
6501 * so just leave a hole for prealloc'ed extents until
6502 * we have enough commands queued up to justify rev'ing
6503 * the send spec.
6504 */
6505 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6506 ret = 0;
6507 goto out;
6508 }
6509
6510 /* Have a hole, just skip it. */
6511 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6512 ret = 0;
6513 goto out;
6514 }
6515 }
31db9f7c
AB
6516 }
6517
6518 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6519 sctx->cur_inode_size, &found_clone);
6520 if (ret != -ENOENT && ret < 0)
6521 goto out;
6522
6523 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
6524 if (ret)
6525 goto out;
6526out_hole:
6527 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
6528out:
6529 return ret;
6530}
6531
6532static int process_all_extents(struct send_ctx *sctx)
6533{
9930e9d4
GN
6534 int ret = 0;
6535 int iter_ret = 0;
31db9f7c
AB
6536 struct btrfs_root *root;
6537 struct btrfs_path *path;
6538 struct btrfs_key key;
6539 struct btrfs_key found_key;
31db9f7c
AB
6540
6541 root = sctx->send_root;
6542 path = alloc_path_for_send();
6543 if (!path)
6544 return -ENOMEM;
6545
6546 key.objectid = sctx->cmp_key->objectid;
6547 key.type = BTRFS_EXTENT_DATA_KEY;
6548 key.offset = 0;
9930e9d4 6549 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
31db9f7c
AB
6550 if (found_key.objectid != key.objectid ||
6551 found_key.type != key.type) {
6552 ret = 0;
9930e9d4 6553 break;
31db9f7c
AB
6554 }
6555
6556 ret = process_extent(sctx, path, &found_key);
6557 if (ret < 0)
9930e9d4 6558 break;
31db9f7c 6559 }
9930e9d4
GN
6560 /* Catch error found during iteration */
6561 if (iter_ret < 0)
6562 ret = iter_ret;
31db9f7c 6563
31db9f7c
AB
6564 btrfs_free_path(path);
6565 return ret;
6566}
6567
9f03740a
FDBM
6568static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6569 int *pending_move,
6570 int *refs_processed)
31db9f7c
AB
6571{
6572 int ret = 0;
6573
6574 if (sctx->cur_ino == 0)
6575 goto out;
6576 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 6577 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
6578 goto out;
6579 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6580 goto out;
6581
9f03740a 6582 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
6583 if (ret < 0)
6584 goto out;
6585
9f03740a 6586 *refs_processed = 1;
31db9f7c
AB
6587out:
6588 return ret;
6589}
6590
6591static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6592{
6593 int ret = 0;
7e93f6dc 6594 struct btrfs_inode_info info;
31db9f7c
AB
6595 u64 left_mode;
6596 u64 left_uid;
6597 u64 left_gid;
48247359 6598 u64 left_fileattr;
31db9f7c
AB
6599 u64 right_mode;
6600 u64 right_uid;
6601 u64 right_gid;
48247359 6602 u64 right_fileattr;
31db9f7c
AB
6603 int need_chmod = 0;
6604 int need_chown = 0;
48247359 6605 bool need_fileattr = false;
ffa7c429 6606 int need_truncate = 1;
9f03740a
FDBM
6607 int pending_move = 0;
6608 int refs_processed = 0;
31db9f7c 6609
46b2f459
FM
6610 if (sctx->ignore_cur_inode)
6611 return 0;
6612
9f03740a
FDBM
6613 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6614 &refs_processed);
31db9f7c
AB
6615 if (ret < 0)
6616 goto out;
6617
9f03740a
FDBM
6618 /*
6619 * We have processed the refs and thus need to advance send_progress.
6620 * Now, calls to get_cur_xxx will take the updated refs of the current
6621 * inode into account.
6622 *
6623 * On the other hand, if our current inode is a directory and couldn't
6624 * be moved/renamed because its parent was renamed/moved too and it has
6625 * a higher inode number, we can only move/rename our current inode
6626 * after we moved/renamed its parent. Therefore in this case operate on
6627 * the old path (pre move/rename) of our current inode, and the
6628 * move/rename will be performed later.
6629 */
6630 if (refs_processed && !pending_move)
6631 sctx->send_progress = sctx->cur_ino + 1;
6632
31db9f7c
AB
6633 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6634 goto out;
6635 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6636 goto out;
7e93f6dc 6637 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
31db9f7c
AB
6638 if (ret < 0)
6639 goto out;
7e93f6dc
BC
6640 left_mode = info.mode;
6641 left_uid = info.uid;
6642 left_gid = info.gid;
6643 left_fileattr = info.fileattr;
31db9f7c 6644
e2d044fe
AL
6645 if (!sctx->parent_root || sctx->cur_inode_new) {
6646 need_chown = 1;
6647 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 6648 need_chmod = 1;
ffa7c429
FM
6649 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6650 need_truncate = 0;
e2d044fe 6651 } else {
ffa7c429
FM
6652 u64 old_size;
6653
7e93f6dc 6654 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
e2d044fe
AL
6655 if (ret < 0)
6656 goto out;
7e93f6dc
BC
6657 old_size = info.size;
6658 right_mode = info.mode;
6659 right_uid = info.uid;
6660 right_gid = info.gid;
6661 right_fileattr = info.fileattr;
31db9f7c 6662
e2d044fe
AL
6663 if (left_uid != right_uid || left_gid != right_gid)
6664 need_chown = 1;
6665 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6666 need_chmod = 1;
48247359
DS
6667 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6668 need_fileattr = true;
ffa7c429
FM
6669 if ((old_size == sctx->cur_inode_size) ||
6670 (sctx->cur_inode_size > old_size &&
6671 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6672 need_truncate = 0;
31db9f7c
AB
6673 }
6674
6675 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f 6676 if (need_send_hole(sctx)) {
766b5e5a
FM
6677 if (sctx->cur_inode_last_extent == (u64)-1 ||
6678 sctx->cur_inode_last_extent <
6679 sctx->cur_inode_size) {
16e7549f
JB
6680 ret = get_last_extent(sctx, (u64)-1);
6681 if (ret)
6682 goto out;
6683 }
6684 if (sctx->cur_inode_last_extent <
6685 sctx->cur_inode_size) {
6686 ret = send_hole(sctx, sctx->cur_inode_size);
6687 if (ret)
6688 goto out;
6689 }
6690 }
ffa7c429
FM
6691 if (need_truncate) {
6692 ret = send_truncate(sctx, sctx->cur_ino,
6693 sctx->cur_inode_gen,
6694 sctx->cur_inode_size);
6695 if (ret < 0)
6696 goto out;
6697 }
31db9f7c
AB
6698 }
6699
6700 if (need_chown) {
6701 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6702 left_uid, left_gid);
6703 if (ret < 0)
6704 goto out;
6705 }
6706 if (need_chmod) {
6707 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6708 left_mode);
6709 if (ret < 0)
6710 goto out;
6711 }
48247359
DS
6712 if (need_fileattr) {
6713 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6714 left_fileattr);
6715 if (ret < 0)
6716 goto out;
6717 }
c86eab81
DS
6718
6719 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6720 && sctx->cur_inode_needs_verity) {
38622010
BB
6721 ret = process_verity(sctx);
6722 if (ret < 0)
6723 goto out;
6724 }
31db9f7c 6725
89efda52
MPS
6726 ret = send_capabilities(sctx);
6727 if (ret < 0)
6728 goto out;
6729
31db9f7c 6730 /*
9f03740a
FDBM
6731 * If other directory inodes depended on our current directory
6732 * inode's move/rename, now do their move/rename operations.
31db9f7c 6733 */
9f03740a
FDBM
6734 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6735 ret = apply_children_dir_moves(sctx);
6736 if (ret)
6737 goto out;
fcbd2154
FM
6738 /*
6739 * Need to send that every time, no matter if it actually
6740 * changed between the two trees as we have done changes to
6741 * the inode before. If our inode is a directory and it's
6742 * waiting to be moved/renamed, we will send its utimes when
6743 * it's moved/renamed, therefore we don't need to do it here.
6744 */
6745 sctx->send_progress = sctx->cur_ino + 1;
6746 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6747 if (ret < 0)
6748 goto out;
9f03740a
FDBM
6749 }
6750
31db9f7c
AB
6751out:
6752 return ret;
6753}
6754
152555b3
FM
6755static void close_current_inode(struct send_ctx *sctx)
6756{
6757 u64 i_size;
6758
6759 if (sctx->cur_inode == NULL)
6760 return;
6761
6762 i_size = i_size_read(sctx->cur_inode);
6763
6764 /*
6765 * If we are doing an incremental send, we may have extents between the
6766 * last processed extent and the i_size that have not been processed
6767 * because they haven't changed but we may have read some of their pages
6768 * through readahead, see the comments at send_extent_data().
6769 */
6770 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6771 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6772 sctx->page_cache_clear_start,
6773 round_up(i_size, PAGE_SIZE) - 1);
6774
6775 iput(sctx->cur_inode);
6776 sctx->cur_inode = NULL;
6777}
6778
31db9f7c
AB
6779static int changed_inode(struct send_ctx *sctx,
6780 enum btrfs_compare_tree_result result)
6781{
6782 int ret = 0;
6783 struct btrfs_key *key = sctx->cmp_key;
6784 struct btrfs_inode_item *left_ii = NULL;
6785 struct btrfs_inode_item *right_ii = NULL;
6786 u64 left_gen = 0;
6787 u64 right_gen = 0;
6788
152555b3 6789 close_current_inode(sctx);
521b6803 6790
31db9f7c 6791 sctx->cur_ino = key->objectid;
9555e1f1 6792 sctx->cur_inode_new_gen = false;
16e7549f 6793 sctx->cur_inode_last_extent = (u64)-1;
ffa7c429 6794 sctx->cur_inode_next_write_offset = 0;
46b2f459 6795 sctx->ignore_cur_inode = false;
e479d9bb
AB
6796
6797 /*
6798 * Set send_progress to current inode. This will tell all get_cur_xxx
6799 * functions that the current inode's refs are not updated yet. Later,
6800 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6801 */
31db9f7c
AB
6802 sctx->send_progress = sctx->cur_ino;
6803
6804 if (result == BTRFS_COMPARE_TREE_NEW ||
6805 result == BTRFS_COMPARE_TREE_CHANGED) {
6806 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6807 sctx->left_path->slots[0],
6808 struct btrfs_inode_item);
6809 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6810 left_ii);
6811 } else {
6812 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6813 sctx->right_path->slots[0],
6814 struct btrfs_inode_item);
6815 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6816 right_ii);
6817 }
6818 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6819 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6820 sctx->right_path->slots[0],
6821 struct btrfs_inode_item);
6822
6823 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6824 right_ii);
6d85ed05
AB
6825
6826 /*
6827 * The cur_ino = root dir case is special here. We can't treat
6828 * the inode as deleted+reused because it would generate a
6829 * stream that tries to delete/mkdir the root dir.
6830 */
6831 if (left_gen != right_gen &&
6832 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
9555e1f1 6833 sctx->cur_inode_new_gen = true;
31db9f7c
AB
6834 }
6835
46b2f459
FM
6836 /*
6837 * Normally we do not find inodes with a link count of zero (orphans)
6838 * because the most common case is to create a snapshot and use it
6839 * for a send operation. However other less common use cases involve
6840 * using a subvolume and send it after turning it to RO mode just
6841 * after deleting all hard links of a file while holding an open
6842 * file descriptor against it or turning a RO snapshot into RW mode,
6843 * keep an open file descriptor against a file, delete it and then
6844 * turn the snapshot back to RO mode before using it for a send
9ed0a72e
BC
6845 * operation. The former is what the receiver operation does.
6846 * Therefore, if we want to send these snapshots soon after they're
6847 * received, we need to handle orphan inodes as well. Moreover, orphans
6848 * can appear not only in the send snapshot but also in the parent
6849 * snapshot. Here are several cases:
6850 *
6851 * Case 1: BTRFS_COMPARE_TREE_NEW
6852 * | send snapshot | action
6853 * --------------------------------
6854 * nlink | 0 | ignore
6855 *
6856 * Case 2: BTRFS_COMPARE_TREE_DELETED
6857 * | parent snapshot | action
6858 * ----------------------------------
6859 * nlink | 0 | as usual
6860 * Note: No unlinks will be sent because there're no paths for it.
6861 *
6862 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6863 * | | parent snapshot | send snapshot | action
6864 * -----------------------------------------------------------------------
6865 * subcase 1 | nlink | 0 | 0 | ignore
6866 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6867 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6868 *
46b2f459 6869 */
9ed0a72e
BC
6870 if (result == BTRFS_COMPARE_TREE_NEW) {
6871 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
46b2f459 6872 sctx->ignore_cur_inode = true;
46b2f459
FM
6873 goto out;
6874 }
31db9f7c 6875 sctx->cur_inode_gen = left_gen;
9555e1f1
DS
6876 sctx->cur_inode_new = true;
6877 sctx->cur_inode_deleted = false;
31db9f7c
AB
6878 sctx->cur_inode_size = btrfs_inode_size(
6879 sctx->left_path->nodes[0], left_ii);
6880 sctx->cur_inode_mode = btrfs_inode_mode(
6881 sctx->left_path->nodes[0], left_ii);
644d1940
LB
6882 sctx->cur_inode_rdev = btrfs_inode_rdev(
6883 sctx->left_path->nodes[0], left_ii);
31db9f7c 6884 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 6885 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
6886 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6887 sctx->cur_inode_gen = right_gen;
9555e1f1
DS
6888 sctx->cur_inode_new = false;
6889 sctx->cur_inode_deleted = true;
31db9f7c
AB
6890 sctx->cur_inode_size = btrfs_inode_size(
6891 sctx->right_path->nodes[0], right_ii);
6892 sctx->cur_inode_mode = btrfs_inode_mode(
6893 sctx->right_path->nodes[0], right_ii);
6894 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
9ed0a72e
BC
6895 u32 new_nlinks, old_nlinks;
6896
6897 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6898 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6899 if (new_nlinks == 0 && old_nlinks == 0) {
6900 sctx->ignore_cur_inode = true;
6901 goto out;
6902 } else if (new_nlinks == 0 || old_nlinks == 0) {
6903 sctx->cur_inode_new_gen = 1;
6904 }
766702ef
AB
6905 /*
6906 * We need to do some special handling in case the inode was
6907 * reported as changed with a changed generation number. This
6908 * means that the original inode was deleted and new inode
6909 * reused the same inum. So we have to treat the old inode as
6910 * deleted and the new one as new.
6911 */
31db9f7c 6912 if (sctx->cur_inode_new_gen) {
766702ef
AB
6913 /*
6914 * First, process the inode as if it was deleted.
6915 */
9b8be45f
BC
6916 if (old_nlinks > 0) {
6917 sctx->cur_inode_gen = right_gen;
6918 sctx->cur_inode_new = false;
6919 sctx->cur_inode_deleted = true;
6920 sctx->cur_inode_size = btrfs_inode_size(
6921 sctx->right_path->nodes[0], right_ii);
6922 sctx->cur_inode_mode = btrfs_inode_mode(
6923 sctx->right_path->nodes[0], right_ii);
6924 ret = process_all_refs(sctx,
6925 BTRFS_COMPARE_TREE_DELETED);
6926 if (ret < 0)
6927 goto out;
6928 }
31db9f7c 6929
766702ef
AB
6930 /*
6931 * Now process the inode as if it was new.
6932 */
9ed0a72e
BC
6933 if (new_nlinks > 0) {
6934 sctx->cur_inode_gen = left_gen;
6935 sctx->cur_inode_new = true;
6936 sctx->cur_inode_deleted = false;
6937 sctx->cur_inode_size = btrfs_inode_size(
6938 sctx->left_path->nodes[0],
6939 left_ii);
6940 sctx->cur_inode_mode = btrfs_inode_mode(
6941 sctx->left_path->nodes[0],
6942 left_ii);
6943 sctx->cur_inode_rdev = btrfs_inode_rdev(
6944 sctx->left_path->nodes[0],
6945 left_ii);
6946 ret = send_create_inode_if_needed(sctx);
6947 if (ret < 0)
6948 goto out;
31db9f7c 6949
9ed0a72e
BC
6950 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6951 if (ret < 0)
6952 goto out;
6953 /*
6954 * Advance send_progress now as we did not get
6955 * into process_recorded_refs_if_needed in the
6956 * new_gen case.
6957 */
6958 sctx->send_progress = sctx->cur_ino + 1;
766702ef 6959
9ed0a72e
BC
6960 /*
6961 * Now process all extents and xattrs of the
6962 * inode as if they were all new.
6963 */
6964 ret = process_all_extents(sctx);
6965 if (ret < 0)
6966 goto out;
6967 ret = process_all_new_xattrs(sctx);
6968 if (ret < 0)
6969 goto out;
6970 }
31db9f7c
AB
6971 } else {
6972 sctx->cur_inode_gen = left_gen;
9555e1f1
DS
6973 sctx->cur_inode_new = false;
6974 sctx->cur_inode_new_gen = false;
6975 sctx->cur_inode_deleted = false;
31db9f7c
AB
6976 sctx->cur_inode_size = btrfs_inode_size(
6977 sctx->left_path->nodes[0], left_ii);
6978 sctx->cur_inode_mode = btrfs_inode_mode(
6979 sctx->left_path->nodes[0], left_ii);
6980 }
6981 }
6982
6983out:
6984 return ret;
6985}
6986
766702ef
AB
6987/*
6988 * We have to process new refs before deleted refs, but compare_trees gives us
6989 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6990 * first and later process them in process_recorded_refs.
6991 * For the cur_inode_new_gen case, we skip recording completely because
6992 * changed_inode did already initiate processing of refs. The reason for this is
6993 * that in this case, compare_tree actually compares the refs of 2 different
6994 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6995 * refs of the right tree as deleted and all refs of the left tree as new.
6996 */
31db9f7c
AB
6997static int changed_ref(struct send_ctx *sctx,
6998 enum btrfs_compare_tree_result result)
6999{
7000 int ret = 0;
7001
95155585
FM
7002 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7003 inconsistent_snapshot_error(sctx, result, "reference");
7004 return -EIO;
7005 }
31db9f7c
AB
7006
7007 if (!sctx->cur_inode_new_gen &&
7008 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7009 if (result == BTRFS_COMPARE_TREE_NEW)
7010 ret = record_new_ref(sctx);
7011 else if (result == BTRFS_COMPARE_TREE_DELETED)
7012 ret = record_deleted_ref(sctx);
7013 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7014 ret = record_changed_ref(sctx);
7015 }
7016
7017 return ret;
7018}
7019
766702ef
AB
7020/*
7021 * Process new/deleted/changed xattrs. We skip processing in the
7022 * cur_inode_new_gen case because changed_inode did already initiate processing
7023 * of xattrs. The reason is the same as in changed_ref
7024 */
31db9f7c
AB
7025static int changed_xattr(struct send_ctx *sctx,
7026 enum btrfs_compare_tree_result result)
7027{
7028 int ret = 0;
7029
95155585
FM
7030 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7031 inconsistent_snapshot_error(sctx, result, "xattr");
7032 return -EIO;
7033 }
31db9f7c
AB
7034
7035 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7036 if (result == BTRFS_COMPARE_TREE_NEW)
7037 ret = process_new_xattr(sctx);
7038 else if (result == BTRFS_COMPARE_TREE_DELETED)
7039 ret = process_deleted_xattr(sctx);
7040 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7041 ret = process_changed_xattr(sctx);
7042 }
7043
7044 return ret;
7045}
7046
766702ef
AB
7047/*
7048 * Process new/deleted/changed extents. We skip processing in the
7049 * cur_inode_new_gen case because changed_inode did already initiate processing
7050 * of extents. The reason is the same as in changed_ref
7051 */
31db9f7c
AB
7052static int changed_extent(struct send_ctx *sctx,
7053 enum btrfs_compare_tree_result result)
7054{
7055 int ret = 0;
7056
b4f9a1a8
FM
7057 /*
7058 * We have found an extent item that changed without the inode item
7059 * having changed. This can happen either after relocation (where the
7060 * disk_bytenr of an extent item is replaced at
7061 * relocation.c:replace_file_extents()) or after deduplication into a
7062 * file in both the parent and send snapshots (where an extent item can
7063 * get modified or replaced with a new one). Note that deduplication
7064 * updates the inode item, but it only changes the iversion (sequence
7065 * field in the inode item) of the inode, so if a file is deduplicated
7066 * the same amount of times in both the parent and send snapshots, its
1a9fd417 7067 * iversion becomes the same in both snapshots, whence the inode item is
b4f9a1a8
FM
7068 * the same on both snapshots.
7069 */
7070 if (sctx->cur_ino != sctx->cmp_key->objectid)
7071 return 0;
31db9f7c
AB
7072
7073 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7074 if (result != BTRFS_COMPARE_TREE_DELETED)
7075 ret = process_extent(sctx, sctx->left_path,
7076 sctx->cmp_key);
7077 }
7078
7079 return ret;
7080}
7081
38622010
BB
7082static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7083{
7084 int ret = 0;
7085
7086 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7087 if (result == BTRFS_COMPARE_TREE_NEW)
7088 sctx->cur_inode_needs_verity = true;
7089 }
7090 return ret;
7091}
7092
ba5e8f2e
JB
7093static int dir_changed(struct send_ctx *sctx, u64 dir)
7094{
7095 u64 orig_gen, new_gen;
7096 int ret;
7097
7e93f6dc 7098 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
ba5e8f2e
JB
7099 if (ret)
7100 return ret;
7101
7e93f6dc 7102 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
ba5e8f2e
JB
7103 if (ret)
7104 return ret;
7105
7106 return (orig_gen != new_gen) ? 1 : 0;
7107}
7108
7109static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7110 struct btrfs_key *key)
7111{
7112 struct btrfs_inode_extref *extref;
7113 struct extent_buffer *leaf;
7114 u64 dirid = 0, last_dirid = 0;
7115 unsigned long ptr;
7116 u32 item_size;
7117 u32 cur_offset = 0;
7118 int ref_name_len;
7119 int ret = 0;
7120
7121 /* Easy case, just check this one dirid */
7122 if (key->type == BTRFS_INODE_REF_KEY) {
7123 dirid = key->offset;
7124
7125 ret = dir_changed(sctx, dirid);
7126 goto out;
7127 }
7128
7129 leaf = path->nodes[0];
3212fa14 7130 item_size = btrfs_item_size(leaf, path->slots[0]);
ba5e8f2e
JB
7131 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7132 while (cur_offset < item_size) {
7133 extref = (struct btrfs_inode_extref *)(ptr +
7134 cur_offset);
7135 dirid = btrfs_inode_extref_parent(leaf, extref);
7136 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7137 cur_offset += ref_name_len + sizeof(*extref);
7138 if (dirid == last_dirid)
7139 continue;
7140 ret = dir_changed(sctx, dirid);
7141 if (ret)
7142 break;
7143 last_dirid = dirid;
7144 }
7145out:
7146 return ret;
7147}
7148
766702ef
AB
7149/*
7150 * Updates compare related fields in sctx and simply forwards to the actual
7151 * changed_xxx functions.
7152 */
ee8c494f 7153static int changed_cb(struct btrfs_path *left_path,
31db9f7c
AB
7154 struct btrfs_path *right_path,
7155 struct btrfs_key *key,
7156 enum btrfs_compare_tree_result result,
88980383 7157 struct send_ctx *sctx)
31db9f7c
AB
7158{
7159 int ret = 0;
31db9f7c 7160
d96b3424
FM
7161 /*
7162 * We can not hold the commit root semaphore here. This is because in
7163 * the case of sending and receiving to the same filesystem, using a
7164 * pipe, could result in a deadlock:
7165 *
7166 * 1) The task running send blocks on the pipe because it's full;
7167 *
7168 * 2) The task running receive, which is the only consumer of the pipe,
7169 * is waiting for a transaction commit (for example due to a space
7170 * reservation when doing a write or triggering a transaction commit
7171 * when creating a subvolume);
7172 *
7173 * 3) The transaction is waiting to write lock the commit root semaphore,
7174 * but can not acquire it since it's being held at 1).
7175 *
7176 * Down this call chain we write to the pipe through kernel_write().
7177 * The same type of problem can also happen when sending to a file that
7178 * is stored in the same filesystem - when reserving space for a write
7179 * into the file, we can trigger a transaction commit.
7180 *
7181 * Our caller has supplied us with clones of leaves from the send and
7182 * parent roots, so we're safe here from a concurrent relocation and
7183 * further reallocation of metadata extents while we are here. Below we
7184 * also assert that the leaves are clones.
7185 */
7186 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7187
7188 /*
7189 * We always have a send root, so left_path is never NULL. We will not
7190 * have a leaf when we have reached the end of the send root but have
7191 * not yet reached the end of the parent root.
7192 */
7193 if (left_path->nodes[0])
7194 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7195 &left_path->nodes[0]->bflags));
7196 /*
7197 * When doing a full send we don't have a parent root, so right_path is
7198 * NULL. When doing an incremental send, we may have reached the end of
7199 * the parent root already, so we don't have a leaf at right_path.
7200 */
7201 if (right_path && right_path->nodes[0])
7202 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7203 &right_path->nodes[0]->bflags));
7204
ba5e8f2e 7205 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
7206 if (key->type == BTRFS_INODE_REF_KEY ||
7207 key->type == BTRFS_INODE_EXTREF_KEY) {
7208 ret = compare_refs(sctx, left_path, key);
7209 if (!ret)
7210 return 0;
7211 if (ret < 0)
7212 return ret;
7213 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7214 return maybe_send_hole(sctx, left_path, key);
7215 } else {
ba5e8f2e 7216 return 0;
16e7549f 7217 }
ba5e8f2e
JB
7218 result = BTRFS_COMPARE_TREE_CHANGED;
7219 ret = 0;
7220 }
7221
31db9f7c
AB
7222 sctx->left_path = left_path;
7223 sctx->right_path = right_path;
7224 sctx->cmp_key = key;
7225
7226 ret = finish_inode_if_needed(sctx, 0);
7227 if (ret < 0)
7228 goto out;
7229
2981e225
AB
7230 /* Ignore non-FS objects */
7231 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7232 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7233 goto out;
7234
46b2f459 7235 if (key->type == BTRFS_INODE_ITEM_KEY) {
31db9f7c 7236 ret = changed_inode(sctx, result);
46b2f459
FM
7237 } else if (!sctx->ignore_cur_inode) {
7238 if (key->type == BTRFS_INODE_REF_KEY ||
7239 key->type == BTRFS_INODE_EXTREF_KEY)
7240 ret = changed_ref(sctx, result);
7241 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7242 ret = changed_xattr(sctx, result);
7243 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7244 ret = changed_extent(sctx, result);
38622010
BB
7245 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7246 key->offset == 0)
7247 ret = changed_verity(sctx, result);
46b2f459 7248 }
31db9f7c
AB
7249
7250out:
7251 return ret;
7252}
7253
d96b3424
FM
7254static int search_key_again(const struct send_ctx *sctx,
7255 struct btrfs_root *root,
7256 struct btrfs_path *path,
7257 const struct btrfs_key *key)
7258{
7259 int ret;
7260
7261 if (!path->need_commit_sem)
7262 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7263
7264 /*
7265 * Roots used for send operations are readonly and no one can add,
7266 * update or remove keys from them, so we should be able to find our
7267 * key again. The only exception is deduplication, which can operate on
7268 * readonly roots and add, update or remove keys to/from them - but at
7269 * the moment we don't allow it to run in parallel with send.
7270 */
7271 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7272 ASSERT(ret <= 0);
7273 if (ret > 0) {
7274 btrfs_print_tree(path->nodes[path->lowest_level], false);
7275 btrfs_err(root->fs_info,
7276"send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7277 key->objectid, key->type, key->offset,
7278 (root == sctx->parent_root ? "parent" : "send"),
7279 root->root_key.objectid, path->lowest_level,
7280 path->slots[path->lowest_level]);
7281 return -EUCLEAN;
7282 }
7283
7284 return ret;
7285}
7286
31db9f7c
AB
7287static int full_send_tree(struct send_ctx *sctx)
7288{
7289 int ret;
31db9f7c
AB
7290 struct btrfs_root *send_root = sctx->send_root;
7291 struct btrfs_key key;
d96b3424 7292 struct btrfs_fs_info *fs_info = send_root->fs_info;
31db9f7c 7293 struct btrfs_path *path;
31db9f7c
AB
7294
7295 path = alloc_path_for_send();
7296 if (!path)
7297 return -ENOMEM;
ace75066 7298 path->reada = READA_FORWARD_ALWAYS;
31db9f7c 7299
31db9f7c
AB
7300 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7301 key.type = BTRFS_INODE_ITEM_KEY;
7302 key.offset = 0;
7303
d96b3424
FM
7304 down_read(&fs_info->commit_root_sem);
7305 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7306 up_read(&fs_info->commit_root_sem);
7307
31db9f7c
AB
7308 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7309 if (ret < 0)
7310 goto out;
7311 if (ret)
7312 goto out_finish;
7313
7314 while (1) {
d96b3424 7315 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
31db9f7c 7316
ca5d2ba1 7317 ret = changed_cb(path, NULL, &key,
ee8c494f 7318 BTRFS_COMPARE_TREE_NEW, sctx);
31db9f7c
AB
7319 if (ret < 0)
7320 goto out;
7321
d96b3424
FM
7322 down_read(&fs_info->commit_root_sem);
7323 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7324 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7325 up_read(&fs_info->commit_root_sem);
7326 /*
7327 * A transaction used for relocating a block group was
7328 * committed or is about to finish its commit. Release
7329 * our path (leaf) and restart the search, so that we
7330 * avoid operating on any file extent items that are
7331 * stale, with a disk_bytenr that reflects a pre
7332 * relocation value. This way we avoid as much as
7333 * possible to fallback to regular writes when checking
7334 * if we can clone file ranges.
7335 */
7336 btrfs_release_path(path);
7337 ret = search_key_again(sctx, send_root, path, &key);
7338 if (ret < 0)
7339 goto out;
7340 } else {
7341 up_read(&fs_info->commit_root_sem);
7342 }
7343
31db9f7c
AB
7344 ret = btrfs_next_item(send_root, path);
7345 if (ret < 0)
7346 goto out;
7347 if (ret) {
7348 ret = 0;
7349 break;
7350 }
7351 }
7352
7353out_finish:
7354 ret = finish_inode_if_needed(sctx, 1);
7355
7356out:
7357 btrfs_free_path(path);
31db9f7c
AB
7358 return ret;
7359}
7360
d96b3424
FM
7361static int replace_node_with_clone(struct btrfs_path *path, int level)
7362{
7363 struct extent_buffer *clone;
7364
7365 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7366 if (!clone)
7367 return -ENOMEM;
7368
7369 free_extent_buffer(path->nodes[level]);
7370 path->nodes[level] = clone;
7371
7372 return 0;
7373}
7374
2ce73c63 7375static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
18d0f5c6
DS
7376{
7377 struct extent_buffer *eb;
2ce73c63
FM
7378 struct extent_buffer *parent = path->nodes[*level];
7379 int slot = path->slots[*level];
7380 const int nritems = btrfs_header_nritems(parent);
7381 u64 reada_max;
7382 u64 reada_done = 0;
18d0f5c6 7383
d96b3424
FM
7384 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7385
18d0f5c6 7386 BUG_ON(*level == 0);
2ce73c63 7387 eb = btrfs_read_node_slot(parent, slot);
18d0f5c6
DS
7388 if (IS_ERR(eb))
7389 return PTR_ERR(eb);
7390
2ce73c63
FM
7391 /*
7392 * Trigger readahead for the next leaves we will process, so that it is
7393 * very likely that when we need them they are already in memory and we
7394 * will not block on disk IO. For nodes we only do readahead for one,
7395 * since the time window between processing nodes is typically larger.
7396 */
7397 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7398
7399 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7400 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7401 btrfs_readahead_node_child(parent, slot);
7402 reada_done += eb->fs_info->nodesize;
7403 }
7404 }
7405
18d0f5c6
DS
7406 path->nodes[*level - 1] = eb;
7407 path->slots[*level - 1] = 0;
7408 (*level)--;
d96b3424
FM
7409
7410 if (*level == 0)
7411 return replace_node_with_clone(path, 0);
7412
18d0f5c6
DS
7413 return 0;
7414}
7415
7416static int tree_move_next_or_upnext(struct btrfs_path *path,
7417 int *level, int root_level)
7418{
7419 int ret = 0;
7420 int nritems;
7421 nritems = btrfs_header_nritems(path->nodes[*level]);
7422
7423 path->slots[*level]++;
7424
7425 while (path->slots[*level] >= nritems) {
d96b3424
FM
7426 if (*level == root_level) {
7427 path->slots[*level] = nritems - 1;
18d0f5c6 7428 return -1;
d96b3424 7429 }
18d0f5c6
DS
7430
7431 /* move upnext */
7432 path->slots[*level] = 0;
7433 free_extent_buffer(path->nodes[*level]);
7434 path->nodes[*level] = NULL;
7435 (*level)++;
7436 path->slots[*level]++;
7437
7438 nritems = btrfs_header_nritems(path->nodes[*level]);
7439 ret = 1;
7440 }
7441 return ret;
7442}
7443
7444/*
7445 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7446 * or down.
7447 */
7448static int tree_advance(struct btrfs_path *path,
7449 int *level, int root_level,
7450 int allow_down,
2ce73c63
FM
7451 struct btrfs_key *key,
7452 u64 reada_min_gen)
18d0f5c6
DS
7453{
7454 int ret;
7455
7456 if (*level == 0 || !allow_down) {
7457 ret = tree_move_next_or_upnext(path, level, root_level);
7458 } else {
2ce73c63 7459 ret = tree_move_down(path, level, reada_min_gen);
18d0f5c6 7460 }
d96b3424
FM
7461
7462 /*
7463 * Even if we have reached the end of a tree, ret is -1, update the key
7464 * anyway, so that in case we need to restart due to a block group
7465 * relocation, we can assert that the last key of the root node still
7466 * exists in the tree.
7467 */
7468 if (*level == 0)
7469 btrfs_item_key_to_cpu(path->nodes[*level], key,
7470 path->slots[*level]);
7471 else
7472 btrfs_node_key_to_cpu(path->nodes[*level], key,
7473 path->slots[*level]);
7474
18d0f5c6
DS
7475 return ret;
7476}
7477
7478static int tree_compare_item(struct btrfs_path *left_path,
7479 struct btrfs_path *right_path,
7480 char *tmp_buf)
7481{
7482 int cmp;
7483 int len1, len2;
7484 unsigned long off1, off2;
7485
3212fa14
JB
7486 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7487 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
18d0f5c6
DS
7488 if (len1 != len2)
7489 return 1;
7490
7491 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7492 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7493 right_path->slots[0]);
7494
7495 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7496
7497 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7498 if (cmp)
7499 return 1;
7500 return 0;
7501}
7502
d96b3424
FM
7503/*
7504 * A transaction used for relocating a block group was committed or is about to
7505 * finish its commit. Release our paths and restart the search, so that we are
7506 * not using stale extent buffers:
7507 *
7508 * 1) For levels > 0, we are only holding references of extent buffers, without
7509 * any locks on them, which does not prevent them from having been relocated
7510 * and reallocated after the last time we released the commit root semaphore.
7511 * The exception are the root nodes, for which we always have a clone, see
7512 * the comment at btrfs_compare_trees();
7513 *
7514 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7515 * we are safe from the concurrent relocation and reallocation. However they
7516 * can have file extent items with a pre relocation disk_bytenr value, so we
7517 * restart the start from the current commit roots and clone the new leaves so
7518 * that we get the post relocation disk_bytenr values. Not doing so, could
7519 * make us clone the wrong data in case there are new extents using the old
7520 * disk_bytenr that happen to be shared.
7521 */
7522static int restart_after_relocation(struct btrfs_path *left_path,
7523 struct btrfs_path *right_path,
7524 const struct btrfs_key *left_key,
7525 const struct btrfs_key *right_key,
7526 int left_level,
7527 int right_level,
7528 const struct send_ctx *sctx)
7529{
7530 int root_level;
7531 int ret;
7532
7533 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7534
7535 btrfs_release_path(left_path);
7536 btrfs_release_path(right_path);
7537
7538 /*
7539 * Since keys can not be added or removed to/from our roots because they
7540 * are readonly and we do not allow deduplication to run in parallel
7541 * (which can add, remove or change keys), the layout of the trees should
7542 * not change.
7543 */
7544 left_path->lowest_level = left_level;
7545 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7546 if (ret < 0)
7547 return ret;
7548
7549 right_path->lowest_level = right_level;
7550 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7551 if (ret < 0)
7552 return ret;
7553
7554 /*
7555 * If the lowest level nodes are leaves, clone them so that they can be
7556 * safely used by changed_cb() while not under the protection of the
7557 * commit root semaphore, even if relocation and reallocation happens in
7558 * parallel.
7559 */
7560 if (left_level == 0) {
7561 ret = replace_node_with_clone(left_path, 0);
7562 if (ret < 0)
7563 return ret;
7564 }
7565
7566 if (right_level == 0) {
7567 ret = replace_node_with_clone(right_path, 0);
7568 if (ret < 0)
7569 return ret;
7570 }
7571
7572 /*
7573 * Now clone the root nodes (unless they happen to be the leaves we have
7574 * already cloned). This is to protect against concurrent snapshotting of
7575 * the send and parent roots (see the comment at btrfs_compare_trees()).
7576 */
7577 root_level = btrfs_header_level(sctx->send_root->commit_root);
7578 if (root_level > 0) {
7579 ret = replace_node_with_clone(left_path, root_level);
7580 if (ret < 0)
7581 return ret;
7582 }
7583
7584 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7585 if (root_level > 0) {
7586 ret = replace_node_with_clone(right_path, root_level);
7587 if (ret < 0)
7588 return ret;
7589 }
7590
7591 return 0;
7592}
7593
18d0f5c6
DS
7594/*
7595 * This function compares two trees and calls the provided callback for
7596 * every changed/new/deleted item it finds.
7597 * If shared tree blocks are encountered, whole subtrees are skipped, making
7598 * the compare pretty fast on snapshotted subvolumes.
7599 *
7600 * This currently works on commit roots only. As commit roots are read only,
7601 * we don't do any locking. The commit roots are protected with transactions.
7602 * Transactions are ended and rejoined when a commit is tried in between.
7603 *
7604 * This function checks for modifications done to the trees while comparing.
7605 * If it detects a change, it aborts immediately.
7606 */
7607static int btrfs_compare_trees(struct btrfs_root *left_root,
88980383 7608 struct btrfs_root *right_root, struct send_ctx *sctx)
18d0f5c6
DS
7609{
7610 struct btrfs_fs_info *fs_info = left_root->fs_info;
7611 int ret;
7612 int cmp;
7613 struct btrfs_path *left_path = NULL;
7614 struct btrfs_path *right_path = NULL;
7615 struct btrfs_key left_key;
7616 struct btrfs_key right_key;
7617 char *tmp_buf = NULL;
7618 int left_root_level;
7619 int right_root_level;
7620 int left_level;
7621 int right_level;
d96b3424
FM
7622 int left_end_reached = 0;
7623 int right_end_reached = 0;
7624 int advance_left = 0;
7625 int advance_right = 0;
18d0f5c6
DS
7626 u64 left_blockptr;
7627 u64 right_blockptr;
7628 u64 left_gen;
7629 u64 right_gen;
2ce73c63 7630 u64 reada_min_gen;
18d0f5c6
DS
7631
7632 left_path = btrfs_alloc_path();
7633 if (!left_path) {
7634 ret = -ENOMEM;
7635 goto out;
7636 }
7637 right_path = btrfs_alloc_path();
7638 if (!right_path) {
7639 ret = -ENOMEM;
7640 goto out;
7641 }
7642
7643 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7644 if (!tmp_buf) {
7645 ret = -ENOMEM;
7646 goto out;
7647 }
7648
7649 left_path->search_commit_root = 1;
7650 left_path->skip_locking = 1;
7651 right_path->search_commit_root = 1;
7652 right_path->skip_locking = 1;
7653
7654 /*
7655 * Strategy: Go to the first items of both trees. Then do
7656 *
7657 * If both trees are at level 0
7658 * Compare keys of current items
7659 * If left < right treat left item as new, advance left tree
7660 * and repeat
7661 * If left > right treat right item as deleted, advance right tree
7662 * and repeat
7663 * If left == right do deep compare of items, treat as changed if
7664 * needed, advance both trees and repeat
7665 * If both trees are at the same level but not at level 0
7666 * Compare keys of current nodes/leafs
7667 * If left < right advance left tree and repeat
7668 * If left > right advance right tree and repeat
7669 * If left == right compare blockptrs of the next nodes/leafs
7670 * If they match advance both trees but stay at the same level
7671 * and repeat
7672 * If they don't match advance both trees while allowing to go
7673 * deeper and repeat
7674 * If tree levels are different
7675 * Advance the tree that needs it and repeat
7676 *
7677 * Advancing a tree means:
7678 * If we are at level 0, try to go to the next slot. If that's not
7679 * possible, go one level up and repeat. Stop when we found a level
7680 * where we could go to the next slot. We may at this point be on a
7681 * node or a leaf.
7682 *
7683 * If we are not at level 0 and not on shared tree blocks, go one
7684 * level deeper.
7685 *
7686 * If we are not at level 0 and on shared tree blocks, go one slot to
7687 * the right if possible or go up and right.
7688 */
7689
7690 down_read(&fs_info->commit_root_sem);
7691 left_level = btrfs_header_level(left_root->commit_root);
7692 left_root_level = left_level;
d96b3424
FM
7693 /*
7694 * We clone the root node of the send and parent roots to prevent races
7695 * with snapshot creation of these roots. Snapshot creation COWs the
7696 * root node of a tree, so after the transaction is committed the old
7697 * extent can be reallocated while this send operation is still ongoing.
7698 * So we clone them, under the commit root semaphore, to be race free.
7699 */
18d0f5c6
DS
7700 left_path->nodes[left_level] =
7701 btrfs_clone_extent_buffer(left_root->commit_root);
7702 if (!left_path->nodes[left_level]) {
18d0f5c6 7703 ret = -ENOMEM;
d96b3424 7704 goto out_unlock;
18d0f5c6
DS
7705 }
7706
7707 right_level = btrfs_header_level(right_root->commit_root);
7708 right_root_level = right_level;
7709 right_path->nodes[right_level] =
7710 btrfs_clone_extent_buffer(right_root->commit_root);
7711 if (!right_path->nodes[right_level]) {
18d0f5c6 7712 ret = -ENOMEM;
d96b3424 7713 goto out_unlock;
18d0f5c6 7714 }
2ce73c63
FM
7715 /*
7716 * Our right root is the parent root, while the left root is the "send"
7717 * root. We know that all new nodes/leaves in the left root must have
7718 * a generation greater than the right root's generation, so we trigger
7719 * readahead for those nodes and leaves of the left root, as we know we
7720 * will need to read them at some point.
7721 */
7722 reada_min_gen = btrfs_header_generation(right_root->commit_root);
18d0f5c6
DS
7723
7724 if (left_level == 0)
7725 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7726 &left_key, left_path->slots[left_level]);
7727 else
7728 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7729 &left_key, left_path->slots[left_level]);
7730 if (right_level == 0)
7731 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7732 &right_key, right_path->slots[right_level]);
7733 else
7734 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7735 &right_key, right_path->slots[right_level]);
7736
d96b3424 7737 sctx->last_reloc_trans = fs_info->last_reloc_trans;
18d0f5c6
DS
7738
7739 while (1) {
d96b3424
FM
7740 if (need_resched() ||
7741 rwsem_is_contended(&fs_info->commit_root_sem)) {
7742 up_read(&fs_info->commit_root_sem);
7743 cond_resched();
7744 down_read(&fs_info->commit_root_sem);
7745 }
7746
7747 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7748 ret = restart_after_relocation(left_path, right_path,
7749 &left_key, &right_key,
7750 left_level, right_level,
7751 sctx);
7752 if (ret < 0)
7753 goto out_unlock;
7754 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7755 }
7756
18d0f5c6
DS
7757 if (advance_left && !left_end_reached) {
7758 ret = tree_advance(left_path, &left_level,
7759 left_root_level,
7760 advance_left != ADVANCE_ONLY_NEXT,
2ce73c63 7761 &left_key, reada_min_gen);
18d0f5c6
DS
7762 if (ret == -1)
7763 left_end_reached = ADVANCE;
7764 else if (ret < 0)
d96b3424 7765 goto out_unlock;
18d0f5c6
DS
7766 advance_left = 0;
7767 }
7768 if (advance_right && !right_end_reached) {
7769 ret = tree_advance(right_path, &right_level,
7770 right_root_level,
7771 advance_right != ADVANCE_ONLY_NEXT,
2ce73c63 7772 &right_key, reada_min_gen);
18d0f5c6
DS
7773 if (ret == -1)
7774 right_end_reached = ADVANCE;
7775 else if (ret < 0)
d96b3424 7776 goto out_unlock;
18d0f5c6
DS
7777 advance_right = 0;
7778 }
7779
7780 if (left_end_reached && right_end_reached) {
7781 ret = 0;
d96b3424 7782 goto out_unlock;
18d0f5c6
DS
7783 } else if (left_end_reached) {
7784 if (right_level == 0) {
d96b3424 7785 up_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7786 ret = changed_cb(left_path, right_path,
7787 &right_key,
7788 BTRFS_COMPARE_TREE_DELETED,
88980383 7789 sctx);
18d0f5c6
DS
7790 if (ret < 0)
7791 goto out;
d96b3424 7792 down_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7793 }
7794 advance_right = ADVANCE;
7795 continue;
7796 } else if (right_end_reached) {
7797 if (left_level == 0) {
d96b3424 7798 up_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7799 ret = changed_cb(left_path, right_path,
7800 &left_key,
7801 BTRFS_COMPARE_TREE_NEW,
88980383 7802 sctx);
18d0f5c6
DS
7803 if (ret < 0)
7804 goto out;
d96b3424 7805 down_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7806 }
7807 advance_left = ADVANCE;
7808 continue;
7809 }
7810
7811 if (left_level == 0 && right_level == 0) {
d96b3424 7812 up_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7813 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7814 if (cmp < 0) {
7815 ret = changed_cb(left_path, right_path,
7816 &left_key,
7817 BTRFS_COMPARE_TREE_NEW,
88980383 7818 sctx);
18d0f5c6
DS
7819 advance_left = ADVANCE;
7820 } else if (cmp > 0) {
7821 ret = changed_cb(left_path, right_path,
7822 &right_key,
7823 BTRFS_COMPARE_TREE_DELETED,
88980383 7824 sctx);
18d0f5c6
DS
7825 advance_right = ADVANCE;
7826 } else {
7827 enum btrfs_compare_tree_result result;
7828
7829 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7830 ret = tree_compare_item(left_path, right_path,
7831 tmp_buf);
7832 if (ret)
7833 result = BTRFS_COMPARE_TREE_CHANGED;
7834 else
7835 result = BTRFS_COMPARE_TREE_SAME;
7836 ret = changed_cb(left_path, right_path,
88980383 7837 &left_key, result, sctx);
18d0f5c6
DS
7838 advance_left = ADVANCE;
7839 advance_right = ADVANCE;
7840 }
d96b3424
FM
7841
7842 if (ret < 0)
7843 goto out;
7844 down_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7845 } else if (left_level == right_level) {
7846 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7847 if (cmp < 0) {
7848 advance_left = ADVANCE;
7849 } else if (cmp > 0) {
7850 advance_right = ADVANCE;
7851 } else {
7852 left_blockptr = btrfs_node_blockptr(
7853 left_path->nodes[left_level],
7854 left_path->slots[left_level]);
7855 right_blockptr = btrfs_node_blockptr(
7856 right_path->nodes[right_level],
7857 right_path->slots[right_level]);
7858 left_gen = btrfs_node_ptr_generation(
7859 left_path->nodes[left_level],
7860 left_path->slots[left_level]);
7861 right_gen = btrfs_node_ptr_generation(
7862 right_path->nodes[right_level],
7863 right_path->slots[right_level]);
7864 if (left_blockptr == right_blockptr &&
7865 left_gen == right_gen) {
7866 /*
7867 * As we're on a shared block, don't
7868 * allow to go deeper.
7869 */
7870 advance_left = ADVANCE_ONLY_NEXT;
7871 advance_right = ADVANCE_ONLY_NEXT;
7872 } else {
7873 advance_left = ADVANCE;
7874 advance_right = ADVANCE;
7875 }
7876 }
7877 } else if (left_level < right_level) {
7878 advance_right = ADVANCE;
7879 } else {
7880 advance_left = ADVANCE;
7881 }
7882 }
7883
d96b3424
FM
7884out_unlock:
7885 up_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7886out:
7887 btrfs_free_path(left_path);
7888 btrfs_free_path(right_path);
7889 kvfree(tmp_buf);
7890 return ret;
7891}
7892
31db9f7c
AB
7893static int send_subvol(struct send_ctx *sctx)
7894{
7895 int ret;
7896
c2c71324
SB
7897 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7898 ret = send_header(sctx);
7899 if (ret < 0)
7900 goto out;
7901 }
31db9f7c
AB
7902
7903 ret = send_subvol_begin(sctx);
7904 if (ret < 0)
7905 goto out;
7906
7907 if (sctx->parent_root) {
1b51d6fc 7908 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
31db9f7c
AB
7909 if (ret < 0)
7910 goto out;
7911 ret = finish_inode_if_needed(sctx, 1);
7912 if (ret < 0)
7913 goto out;
7914 } else {
7915 ret = full_send_tree(sctx);
7916 if (ret < 0)
7917 goto out;
7918 }
7919
7920out:
31db9f7c
AB
7921 free_recorded_refs(sctx);
7922 return ret;
7923}
7924
e5fa8f86
FM
7925/*
7926 * If orphan cleanup did remove any orphans from a root, it means the tree
7927 * was modified and therefore the commit root is not the same as the current
7928 * root anymore. This is a problem, because send uses the commit root and
7929 * therefore can see inode items that don't exist in the current root anymore,
7930 * and for example make calls to btrfs_iget, which will do tree lookups based
7931 * on the current root and not on the commit root. Those lookups will fail,
7932 * returning a -ESTALE error, and making send fail with that error. So make
7933 * sure a send does not see any orphans we have just removed, and that it will
7934 * see the same inodes regardless of whether a transaction commit happened
7935 * before it started (meaning that the commit root will be the same as the
7936 * current root) or not.
7937 */
7938static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7939{
7940 int i;
7941 struct btrfs_trans_handle *trans = NULL;
7942
7943again:
7944 if (sctx->parent_root &&
7945 sctx->parent_root->node != sctx->parent_root->commit_root)
7946 goto commit_trans;
7947
7948 for (i = 0; i < sctx->clone_roots_cnt; i++)
7949 if (sctx->clone_roots[i].root->node !=
7950 sctx->clone_roots[i].root->commit_root)
7951 goto commit_trans;
7952
7953 if (trans)
3a45bb20 7954 return btrfs_end_transaction(trans);
e5fa8f86
FM
7955
7956 return 0;
7957
7958commit_trans:
7959 /* Use any root, all fs roots will get their commit roots updated. */
7960 if (!trans) {
7961 trans = btrfs_join_transaction(sctx->send_root);
7962 if (IS_ERR(trans))
7963 return PTR_ERR(trans);
7964 goto again;
7965 }
7966
3a45bb20 7967 return btrfs_commit_transaction(trans);
e5fa8f86
FM
7968}
7969
9f89d5de
FM
7970/*
7971 * Make sure any existing dellaloc is flushed for any root used by a send
7972 * operation so that we do not miss any data and we do not race with writeback
7973 * finishing and changing a tree while send is using the tree. This could
7974 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7975 * a send operation then uses the subvolume.
7976 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7977 */
7978static int flush_delalloc_roots(struct send_ctx *sctx)
7979{
7980 struct btrfs_root *root = sctx->parent_root;
7981 int ret;
7982 int i;
7983
7984 if (root) {
f9baa501 7985 ret = btrfs_start_delalloc_snapshot(root, false);
9f89d5de
FM
7986 if (ret)
7987 return ret;
7988 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7989 }
7990
7991 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7992 root = sctx->clone_roots[i].root;
f9baa501 7993 ret = btrfs_start_delalloc_snapshot(root, false);
9f89d5de
FM
7994 if (ret)
7995 return ret;
7996 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7997 }
7998
7999 return 0;
8000}
8001
66ef7d65
DS
8002static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8003{
8004 spin_lock(&root->root_item_lock);
8005 root->send_in_progress--;
8006 /*
8007 * Not much left to do, we don't know why it's unbalanced and
8008 * can't blindly reset it to 0.
8009 */
8010 if (root->send_in_progress < 0)
8011 btrfs_err(root->fs_info,
f5686e3a 8012 "send_in_progress unbalanced %d root %llu",
0b246afa 8013 root->send_in_progress, root->root_key.objectid);
66ef7d65
DS
8014 spin_unlock(&root->root_item_lock);
8015}
8016
62d54f3a
FM
8017static void dedupe_in_progress_warn(const struct btrfs_root *root)
8018{
8019 btrfs_warn_rl(root->fs_info,
8020"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8021 root->root_key.objectid, root->dedupe_in_progress);
8022}
8023
9ad12305 8024long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
31db9f7c
AB
8025{
8026 int ret = 0;
9ad12305 8027 struct btrfs_root *send_root = BTRFS_I(inode)->root;
0b246afa 8028 struct btrfs_fs_info *fs_info = send_root->fs_info;
31db9f7c 8029 struct btrfs_root *clone_root;
31db9f7c
AB
8030 struct send_ctx *sctx = NULL;
8031 u32 i;
8032 u64 *clone_sources_tmp = NULL;
2c686537 8033 int clone_sources_to_rollback = 0;
bae12df9 8034 size_t alloc_size;
896c14f9 8035 int sort_clone_roots = 0;
31db9f7c
AB
8036
8037 if (!capable(CAP_SYS_ADMIN))
8038 return -EPERM;
8039
2c686537
DS
8040 /*
8041 * The subvolume must remain read-only during send, protect against
521e0546 8042 * making it RW. This also protects against deletion.
2c686537
DS
8043 */
8044 spin_lock(&send_root->root_item_lock);
62d54f3a
FM
8045 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8046 dedupe_in_progress_warn(send_root);
8047 spin_unlock(&send_root->root_item_lock);
8048 return -EAGAIN;
8049 }
2c686537
DS
8050 send_root->send_in_progress++;
8051 spin_unlock(&send_root->root_item_lock);
8052
2c686537
DS
8053 /*
8054 * Userspace tools do the checks and warn the user if it's
8055 * not RO.
8056 */
8057 if (!btrfs_root_readonly(send_root)) {
8058 ret = -EPERM;
8059 goto out;
8060 }
8061
457ae726
DC
8062 /*
8063 * Check that we don't overflow at later allocations, we request
8064 * clone_sources_count + 1 items, and compare to unsigned long inside
33e17b3f
DS
8065 * access_ok. Also set an upper limit for allocation size so this can't
8066 * easily exhaust memory. Max number of clone sources is about 200K.
457ae726 8067 */
33e17b3f 8068 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
f5ecec3c
DC
8069 ret = -EINVAL;
8070 goto out;
8071 }
8072
c2c71324 8073 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
8074 ret = -EINVAL;
8075 goto out;
8076 }
8077
e780b0d1 8078 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
31db9f7c
AB
8079 if (!sctx) {
8080 ret = -ENOMEM;
8081 goto out;
8082 }
8083
8084 INIT_LIST_HEAD(&sctx->new_refs);
8085 INIT_LIST_HEAD(&sctx->deleted_refs);
5b8418b8 8086 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
31db9f7c
AB
8087 INIT_LIST_HEAD(&sctx->name_cache_list);
8088
66d04209
FM
8089 INIT_LIST_HEAD(&sctx->backref_cache.lru_list);
8090 mt_init(&sctx->backref_cache.entries);
8091
cb95e7bf
MF
8092 sctx->flags = arg->flags;
8093
e77fbf99
DS
8094 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8095 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8096 ret = -EPROTO;
8097 goto out;
8098 }
8099 /* Zero means "use the highest version" */
8100 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8101 } else {
8102 sctx->proto = 1;
8103 }
d6815592
OS
8104 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8105 ret = -EINVAL;
8106 goto out;
8107 }
e77fbf99 8108
31db9f7c 8109 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
8110 if (!sctx->send_filp) {
8111 ret = -EBADF;
31db9f7c
AB
8112 goto out;
8113 }
8114
31db9f7c 8115 sctx->send_root = send_root;
521e0546
DS
8116 /*
8117 * Unlikely but possible, if the subvolume is marked for deletion but
8118 * is slow to remove the directory entry, send can still be started
8119 */
8120 if (btrfs_root_dead(sctx->send_root)) {
8121 ret = -EPERM;
8122 goto out;
8123 }
8124
31db9f7c
AB
8125 sctx->clone_roots_cnt = arg->clone_sources_count;
8126
a4b333f2
OS
8127 if (sctx->proto >= 2) {
8128 u32 send_buf_num_pages;
8129
875c627c 8130 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
a4b333f2
OS
8131 sctx->send_buf = vmalloc(sctx->send_max_size);
8132 if (!sctx->send_buf) {
8133 ret = -ENOMEM;
8134 goto out;
8135 }
8136 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8137 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8138 sizeof(*sctx->send_buf_pages),
8139 GFP_KERNEL);
8140 if (!sctx->send_buf_pages) {
8141 ret = -ENOMEM;
8142 goto out;
8143 }
8144 for (i = 0; i < send_buf_num_pages; i++) {
8145 sctx->send_buf_pages[i] =
8146 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8147 }
8148 } else {
356bbbb6 8149 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
a4b333f2
OS
8150 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8151 }
31db9f7c 8152 if (!sctx->send_buf) {
752ade68
MH
8153 ret = -ENOMEM;
8154 goto out;
31db9f7c
AB
8155 }
8156
9f03740a
FDBM
8157 sctx->pending_dir_moves = RB_ROOT;
8158 sctx->waiting_dir_moves = RB_ROOT;
9dc44214 8159 sctx->orphan_dirs = RB_ROOT;
3aa5bd36
BC
8160 sctx->rbtree_new_refs = RB_ROOT;
8161 sctx->rbtree_deleted_refs = RB_ROOT;
9f03740a 8162
bae12df9
DE
8163 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
8164 arg->clone_sources_count + 1,
8165 GFP_KERNEL);
31db9f7c 8166 if (!sctx->clone_roots) {
818e010b
DS
8167 ret = -ENOMEM;
8168 goto out;
31db9f7c
AB
8169 }
8170
bae12df9
DE
8171 alloc_size = array_size(sizeof(*arg->clone_sources),
8172 arg->clone_sources_count);
e55d1153 8173
31db9f7c 8174 if (arg->clone_sources_count) {
752ade68 8175 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
31db9f7c 8176 if (!clone_sources_tmp) {
752ade68
MH
8177 ret = -ENOMEM;
8178 goto out;
31db9f7c
AB
8179 }
8180
8181 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
e55d1153 8182 alloc_size);
31db9f7c
AB
8183 if (ret) {
8184 ret = -EFAULT;
8185 goto out;
8186 }
8187
8188 for (i = 0; i < arg->clone_sources_count; i++) {
56e9357a
DS
8189 clone_root = btrfs_get_fs_root(fs_info,
8190 clone_sources_tmp[i], true);
31db9f7c
AB
8191 if (IS_ERR(clone_root)) {
8192 ret = PTR_ERR(clone_root);
8193 goto out;
8194 }
2c686537 8195 spin_lock(&clone_root->root_item_lock);
5cc2b17e
FM
8196 if (!btrfs_root_readonly(clone_root) ||
8197 btrfs_root_dead(clone_root)) {
2c686537 8198 spin_unlock(&clone_root->root_item_lock);
00246528 8199 btrfs_put_root(clone_root);
2c686537
DS
8200 ret = -EPERM;
8201 goto out;
8202 }
62d54f3a
FM
8203 if (clone_root->dedupe_in_progress) {
8204 dedupe_in_progress_warn(clone_root);
8205 spin_unlock(&clone_root->root_item_lock);
00246528 8206 btrfs_put_root(clone_root);
62d54f3a
FM
8207 ret = -EAGAIN;
8208 goto out;
8209 }
2f1f465a 8210 clone_root->send_in_progress++;
2c686537 8211 spin_unlock(&clone_root->root_item_lock);
18f687d5 8212
31db9f7c 8213 sctx->clone_roots[i].root = clone_root;
2f1f465a 8214 clone_sources_to_rollback = i + 1;
31db9f7c 8215 }
2f91306a 8216 kvfree(clone_sources_tmp);
31db9f7c
AB
8217 clone_sources_tmp = NULL;
8218 }
8219
8220 if (arg->parent_root) {
56e9357a
DS
8221 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8222 true);
b1b19596
SB
8223 if (IS_ERR(sctx->parent_root)) {
8224 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
8225 goto out;
8226 }
18f687d5 8227
2c686537
DS
8228 spin_lock(&sctx->parent_root->root_item_lock);
8229 sctx->parent_root->send_in_progress++;
521e0546
DS
8230 if (!btrfs_root_readonly(sctx->parent_root) ||
8231 btrfs_root_dead(sctx->parent_root)) {
2c686537
DS
8232 spin_unlock(&sctx->parent_root->root_item_lock);
8233 ret = -EPERM;
8234 goto out;
8235 }
62d54f3a
FM
8236 if (sctx->parent_root->dedupe_in_progress) {
8237 dedupe_in_progress_warn(sctx->parent_root);
8238 spin_unlock(&sctx->parent_root->root_item_lock);
62d54f3a
FM
8239 ret = -EAGAIN;
8240 goto out;
8241 }
2c686537 8242 spin_unlock(&sctx->parent_root->root_item_lock);
31db9f7c
AB
8243 }
8244
8245 /*
8246 * Clones from send_root are allowed, but only if the clone source
8247 * is behind the current send position. This is checked while searching
8248 * for possible clone sources.
8249 */
6f9a3da5 8250 sctx->clone_roots[sctx->clone_roots_cnt++].root =
00246528 8251 btrfs_grab_root(sctx->send_root);
31db9f7c
AB
8252
8253 /* We do a bsearch later */
8254 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8255 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8256 NULL);
896c14f9 8257 sort_clone_roots = 1;
31db9f7c 8258
9f89d5de
FM
8259 ret = flush_delalloc_roots(sctx);
8260 if (ret)
8261 goto out;
8262
e5fa8f86
FM
8263 ret = ensure_commit_roots_uptodate(sctx);
8264 if (ret)
8265 goto out;
8266
31db9f7c
AB
8267 ret = send_subvol(sctx);
8268 if (ret < 0)
8269 goto out;
8270
c2c71324
SB
8271 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8272 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8273 if (ret < 0)
8274 goto out;
8275 ret = send_cmd(sctx);
8276 if (ret < 0)
8277 goto out;
8278 }
31db9f7c
AB
8279
8280out:
9f03740a
FDBM
8281 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8282 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8283 struct rb_node *n;
8284 struct pending_dir_move *pm;
8285
8286 n = rb_first(&sctx->pending_dir_moves);
8287 pm = rb_entry(n, struct pending_dir_move, node);
8288 while (!list_empty(&pm->list)) {
8289 struct pending_dir_move *pm2;
8290
8291 pm2 = list_first_entry(&pm->list,
8292 struct pending_dir_move, list);
8293 free_pending_move(sctx, pm2);
8294 }
8295 free_pending_move(sctx, pm);
8296 }
8297
8298 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8299 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8300 struct rb_node *n;
8301 struct waiting_dir_move *dm;
8302
8303 n = rb_first(&sctx->waiting_dir_moves);
8304 dm = rb_entry(n, struct waiting_dir_move, node);
8305 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8306 kfree(dm);
8307 }
8308
9dc44214
FM
8309 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8310 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8311 struct rb_node *n;
8312 struct orphan_dir_info *odi;
8313
8314 n = rb_first(&sctx->orphan_dirs);
8315 odi = rb_entry(n, struct orphan_dir_info, node);
8316 free_orphan_dir_info(sctx, odi);
8317 }
8318
896c14f9 8319 if (sort_clone_roots) {
6f9a3da5 8320 for (i = 0; i < sctx->clone_roots_cnt; i++) {
896c14f9
WS
8321 btrfs_root_dec_send_in_progress(
8322 sctx->clone_roots[i].root);
00246528 8323 btrfs_put_root(sctx->clone_roots[i].root);
6f9a3da5 8324 }
896c14f9 8325 } else {
6f9a3da5 8326 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
896c14f9
WS
8327 btrfs_root_dec_send_in_progress(
8328 sctx->clone_roots[i].root);
00246528 8329 btrfs_put_root(sctx->clone_roots[i].root);
6f9a3da5 8330 }
896c14f9
WS
8331
8332 btrfs_root_dec_send_in_progress(send_root);
8333 }
6f9a3da5 8334 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
66ef7d65 8335 btrfs_root_dec_send_in_progress(sctx->parent_root);
00246528 8336 btrfs_put_root(sctx->parent_root);
6f9a3da5 8337 }
2c686537 8338
2f91306a 8339 kvfree(clone_sources_tmp);
31db9f7c
AB
8340
8341 if (sctx) {
8342 if (sctx->send_filp)
8343 fput(sctx->send_filp);
8344
c03d01f3 8345 kvfree(sctx->clone_roots);
a4b333f2 8346 kfree(sctx->send_buf_pages);
6ff48ce0 8347 kvfree(sctx->send_buf);
38622010 8348 kvfree(sctx->verity_descriptor);
31db9f7c
AB
8349
8350 name_cache_free(sctx);
8351
152555b3 8352 close_current_inode(sctx);
521b6803 8353
66d04209
FM
8354 empty_backref_cache(sctx);
8355
31db9f7c
AB
8356 kfree(sctx);
8357 }
8358
8359 return ret;
8360}