btrfs: use kvzalloc() to allocate clone_roots in btrfs_ioctl_send()
[linux-block.git] / fs / btrfs / send.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
31db9f7c
AB
2/*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
31db9f7c
AB
4 */
5
6#include <linux/bsearch.h>
7#include <linux/fs.h>
8#include <linux/file.h>
9#include <linux/sort.h>
10#include <linux/mount.h>
11#include <linux/xattr.h>
12#include <linux/posix_acl_xattr.h>
13#include <linux/radix-tree.h>
a1857ebe 14#include <linux/vmalloc.h>
ed84885d 15#include <linux/string.h>
2351f431 16#include <linux/compat.h>
9678c543 17#include <linux/crc32c.h>
31db9f7c
AB
18
19#include "send.h"
20#include "backref.h"
21#include "locking.h"
22#include "disk-io.h"
23#include "btrfs_inode.h"
24#include "transaction.h"
ebb8765b 25#include "compression.h"
89efda52 26#include "xattr.h"
31db9f7c 27
fd0ddbe2
FM
28/*
29 * Maximum number of references an extent can have in order for us to attempt to
30 * issue clone operations instead of write operations. This currently exists to
31 * avoid hitting limitations of the backreference walking code (taking a lot of
32 * time and using too much memory for extents with large number of references).
33 */
34#define SEND_MAX_EXTENT_REFS 64
35
31db9f7c
AB
36/*
37 * A fs_path is a helper to dynamically build path names with unknown size.
38 * It reallocates the internal buffer on demand.
39 * It allows fast adding of path elements on the right side (normal path) and
40 * fast adding to the left side (reversed path). A reversed path can also be
41 * unreversed if needed.
42 */
43struct fs_path {
44 union {
45 struct {
46 char *start;
47 char *end;
31db9f7c
AB
48
49 char *buf;
1f5a7ff9
DS
50 unsigned short buf_len:15;
51 unsigned short reversed:1;
31db9f7c
AB
52 char inline_buf[];
53 };
ace01050
DS
54 /*
55 * Average path length does not exceed 200 bytes, we'll have
56 * better packing in the slab and higher chance to satisfy
57 * a allocation later during send.
58 */
59 char pad[256];
31db9f7c
AB
60 };
61};
62#define FS_PATH_INLINE_SIZE \
63 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
64
65
66/* reused for each extent */
67struct clone_root {
68 struct btrfs_root *root;
69 u64 ino;
70 u64 offset;
71
72 u64 found_refs;
73};
74
75#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
76#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
77
78struct send_ctx {
79 struct file *send_filp;
80 loff_t send_off;
81 char *send_buf;
82 u32 send_size;
83 u32 send_max_size;
84 u64 total_send_size;
85 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
cb95e7bf 86 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
31db9f7c 87
31db9f7c
AB
88 struct btrfs_root *send_root;
89 struct btrfs_root *parent_root;
90 struct clone_root *clone_roots;
91 int clone_roots_cnt;
92
93 /* current state of the compare_tree call */
94 struct btrfs_path *left_path;
95 struct btrfs_path *right_path;
96 struct btrfs_key *cmp_key;
97
98 /*
99 * infos of the currently processed inode. In case of deleted inodes,
100 * these are the values from the deleted inode.
101 */
102 u64 cur_ino;
103 u64 cur_inode_gen;
104 int cur_inode_new;
105 int cur_inode_new_gen;
106 int cur_inode_deleted;
31db9f7c
AB
107 u64 cur_inode_size;
108 u64 cur_inode_mode;
644d1940 109 u64 cur_inode_rdev;
16e7549f 110 u64 cur_inode_last_extent;
ffa7c429 111 u64 cur_inode_next_write_offset;
46b2f459 112 bool ignore_cur_inode;
31db9f7c
AB
113
114 u64 send_progress;
115
116 struct list_head new_refs;
117 struct list_head deleted_refs;
118
119 struct radix_tree_root name_cache;
120 struct list_head name_cache_list;
121 int name_cache_size;
122
2131bcd3
LB
123 struct file_ra_state ra;
124
9f03740a
FDBM
125 /*
126 * We process inodes by their increasing order, so if before an
127 * incremental send we reverse the parent/child relationship of
128 * directories such that a directory with a lower inode number was
129 * the parent of a directory with a higher inode number, and the one
130 * becoming the new parent got renamed too, we can't rename/move the
131 * directory with lower inode number when we finish processing it - we
132 * must process the directory with higher inode number first, then
133 * rename/move it and then rename/move the directory with lower inode
134 * number. Example follows.
135 *
136 * Tree state when the first send was performed:
137 *
138 * .
139 * |-- a (ino 257)
140 * |-- b (ino 258)
141 * |
142 * |
143 * |-- c (ino 259)
144 * | |-- d (ino 260)
145 * |
146 * |-- c2 (ino 261)
147 *
148 * Tree state when the second (incremental) send is performed:
149 *
150 * .
151 * |-- a (ino 257)
152 * |-- b (ino 258)
153 * |-- c2 (ino 261)
154 * |-- d2 (ino 260)
155 * |-- cc (ino 259)
156 *
157 * The sequence of steps that lead to the second state was:
158 *
159 * mv /a/b/c/d /a/b/c2/d2
160 * mv /a/b/c /a/b/c2/d2/cc
161 *
162 * "c" has lower inode number, but we can't move it (2nd mv operation)
163 * before we move "d", which has higher inode number.
164 *
165 * So we just memorize which move/rename operations must be performed
166 * later when their respective parent is processed and moved/renamed.
167 */
168
169 /* Indexed by parent directory inode number. */
170 struct rb_root pending_dir_moves;
171
172 /*
173 * Reverse index, indexed by the inode number of a directory that
174 * is waiting for the move/rename of its immediate parent before its
175 * own move/rename can be performed.
176 */
177 struct rb_root waiting_dir_moves;
9dc44214
FM
178
179 /*
180 * A directory that is going to be rm'ed might have a child directory
181 * which is in the pending directory moves index above. In this case,
182 * the directory can only be removed after the move/rename of its child
183 * is performed. Example:
184 *
185 * Parent snapshot:
186 *
187 * . (ino 256)
188 * |-- a/ (ino 257)
189 * |-- b/ (ino 258)
190 * |-- c/ (ino 259)
191 * | |-- x/ (ino 260)
192 * |
193 * |-- y/ (ino 261)
194 *
195 * Send snapshot:
196 *
197 * . (ino 256)
198 * |-- a/ (ino 257)
199 * |-- b/ (ino 258)
200 * |-- YY/ (ino 261)
201 * |-- x/ (ino 260)
202 *
203 * Sequence of steps that lead to the send snapshot:
204 * rm -f /a/b/c/foo.txt
205 * mv /a/b/y /a/b/YY
206 * mv /a/b/c/x /a/b/YY
207 * rmdir /a/b/c
208 *
209 * When the child is processed, its move/rename is delayed until its
210 * parent is processed (as explained above), but all other operations
211 * like update utimes, chown, chgrp, etc, are performed and the paths
212 * that it uses for those operations must use the orphanized name of
213 * its parent (the directory we're going to rm later), so we need to
214 * memorize that name.
215 *
216 * Indexed by the inode number of the directory to be deleted.
217 */
218 struct rb_root orphan_dirs;
9f03740a
FDBM
219};
220
221struct pending_dir_move {
222 struct rb_node node;
223 struct list_head list;
224 u64 parent_ino;
225 u64 ino;
226 u64 gen;
227 struct list_head update_refs;
228};
229
230struct waiting_dir_move {
231 struct rb_node node;
232 u64 ino;
9dc44214
FM
233 /*
234 * There might be some directory that could not be removed because it
235 * was waiting for this directory inode to be moved first. Therefore
236 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
237 */
238 u64 rmdir_ino;
8b191a68 239 bool orphanized;
9dc44214
FM
240};
241
242struct orphan_dir_info {
243 struct rb_node node;
244 u64 ino;
245 u64 gen;
0f96f517 246 u64 last_dir_index_offset;
31db9f7c
AB
247};
248
249struct name_cache_entry {
250 struct list_head list;
7e0926fe
AB
251 /*
252 * radix_tree has only 32bit entries but we need to handle 64bit inums.
253 * We use the lower 32bit of the 64bit inum to store it in the tree. If
254 * more then one inum would fall into the same entry, we use radix_list
255 * to store the additional entries. radix_list is also used to store
256 * entries where two entries have the same inum but different
257 * generations.
258 */
259 struct list_head radix_list;
31db9f7c
AB
260 u64 ino;
261 u64 gen;
262 u64 parent_ino;
263 u64 parent_gen;
264 int ret;
265 int need_later_update;
266 int name_len;
267 char name[];
268};
269
18d0f5c6
DS
270#define ADVANCE 1
271#define ADVANCE_ONLY_NEXT -1
272
273enum btrfs_compare_tree_result {
274 BTRFS_COMPARE_TREE_NEW,
275 BTRFS_COMPARE_TREE_DELETED,
276 BTRFS_COMPARE_TREE_CHANGED,
277 BTRFS_COMPARE_TREE_SAME,
278};
18d0f5c6 279
e67c718b 280__cold
95155585
FM
281static void inconsistent_snapshot_error(struct send_ctx *sctx,
282 enum btrfs_compare_tree_result result,
283 const char *what)
284{
285 const char *result_string;
286
287 switch (result) {
288 case BTRFS_COMPARE_TREE_NEW:
289 result_string = "new";
290 break;
291 case BTRFS_COMPARE_TREE_DELETED:
292 result_string = "deleted";
293 break;
294 case BTRFS_COMPARE_TREE_CHANGED:
295 result_string = "updated";
296 break;
297 case BTRFS_COMPARE_TREE_SAME:
298 ASSERT(0);
299 result_string = "unchanged";
300 break;
301 default:
302 ASSERT(0);
303 result_string = "unexpected";
304 }
305
306 btrfs_err(sctx->send_root->fs_info,
307 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
308 result_string, what, sctx->cmp_key->objectid,
309 sctx->send_root->root_key.objectid,
310 (sctx->parent_root ?
311 sctx->parent_root->root_key.objectid : 0));
312}
313
9f03740a
FDBM
314static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
315
9dc44214
FM
316static struct waiting_dir_move *
317get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
318
319static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
320
16e7549f
JB
321static int need_send_hole(struct send_ctx *sctx)
322{
323 return (sctx->parent_root && !sctx->cur_inode_new &&
324 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
325 S_ISREG(sctx->cur_inode_mode));
326}
327
31db9f7c
AB
328static void fs_path_reset(struct fs_path *p)
329{
330 if (p->reversed) {
331 p->start = p->buf + p->buf_len - 1;
332 p->end = p->start;
333 *p->start = 0;
334 } else {
335 p->start = p->buf;
336 p->end = p->start;
337 *p->start = 0;
338 }
339}
340
924794c9 341static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
342{
343 struct fs_path *p;
344
e780b0d1 345 p = kmalloc(sizeof(*p), GFP_KERNEL);
31db9f7c
AB
346 if (!p)
347 return NULL;
348 p->reversed = 0;
31db9f7c
AB
349 p->buf = p->inline_buf;
350 p->buf_len = FS_PATH_INLINE_SIZE;
351 fs_path_reset(p);
352 return p;
353}
354
924794c9 355static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
356{
357 struct fs_path *p;
358
924794c9 359 p = fs_path_alloc();
31db9f7c
AB
360 if (!p)
361 return NULL;
362 p->reversed = 1;
363 fs_path_reset(p);
364 return p;
365}
366
924794c9 367static void fs_path_free(struct fs_path *p)
31db9f7c
AB
368{
369 if (!p)
370 return;
ace01050
DS
371 if (p->buf != p->inline_buf)
372 kfree(p->buf);
31db9f7c
AB
373 kfree(p);
374}
375
376static int fs_path_len(struct fs_path *p)
377{
378 return p->end - p->start;
379}
380
381static int fs_path_ensure_buf(struct fs_path *p, int len)
382{
383 char *tmp_buf;
384 int path_len;
385 int old_buf_len;
386
387 len++;
388
389 if (p->buf_len >= len)
390 return 0;
391
cfd4a535
CM
392 if (len > PATH_MAX) {
393 WARN_ON(1);
394 return -ENOMEM;
395 }
396
1b2782c8
DS
397 path_len = p->end - p->start;
398 old_buf_len = p->buf_len;
399
ace01050
DS
400 /*
401 * First time the inline_buf does not suffice
402 */
01a9a8a9 403 if (p->buf == p->inline_buf) {
e780b0d1 404 tmp_buf = kmalloc(len, GFP_KERNEL);
01a9a8a9
FM
405 if (tmp_buf)
406 memcpy(tmp_buf, p->buf, old_buf_len);
407 } else {
e780b0d1 408 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
01a9a8a9 409 }
9c9ca00b
DS
410 if (!tmp_buf)
411 return -ENOMEM;
412 p->buf = tmp_buf;
413 /*
414 * The real size of the buffer is bigger, this will let the fast path
415 * happen most of the time
416 */
417 p->buf_len = ksize(p->buf);
ace01050 418
31db9f7c
AB
419 if (p->reversed) {
420 tmp_buf = p->buf + old_buf_len - path_len - 1;
421 p->end = p->buf + p->buf_len - 1;
422 p->start = p->end - path_len;
423 memmove(p->start, tmp_buf, path_len + 1);
424 } else {
425 p->start = p->buf;
426 p->end = p->start + path_len;
427 }
428 return 0;
429}
430
b23ab57d
DS
431static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
432 char **prepared)
31db9f7c
AB
433{
434 int ret;
435 int new_len;
436
437 new_len = p->end - p->start + name_len;
438 if (p->start != p->end)
439 new_len++;
440 ret = fs_path_ensure_buf(p, new_len);
441 if (ret < 0)
442 goto out;
443
444 if (p->reversed) {
445 if (p->start != p->end)
446 *--p->start = '/';
447 p->start -= name_len;
b23ab57d 448 *prepared = p->start;
31db9f7c
AB
449 } else {
450 if (p->start != p->end)
451 *p->end++ = '/';
b23ab57d 452 *prepared = p->end;
31db9f7c
AB
453 p->end += name_len;
454 *p->end = 0;
455 }
456
457out:
458 return ret;
459}
460
461static int fs_path_add(struct fs_path *p, const char *name, int name_len)
462{
463 int ret;
b23ab57d 464 char *prepared;
31db9f7c 465
b23ab57d 466 ret = fs_path_prepare_for_add(p, name_len, &prepared);
31db9f7c
AB
467 if (ret < 0)
468 goto out;
b23ab57d 469 memcpy(prepared, name, name_len);
31db9f7c
AB
470
471out:
472 return ret;
473}
474
475static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
476{
477 int ret;
b23ab57d 478 char *prepared;
31db9f7c 479
b23ab57d 480 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
31db9f7c
AB
481 if (ret < 0)
482 goto out;
b23ab57d 483 memcpy(prepared, p2->start, p2->end - p2->start);
31db9f7c
AB
484
485out:
486 return ret;
487}
488
489static int fs_path_add_from_extent_buffer(struct fs_path *p,
490 struct extent_buffer *eb,
491 unsigned long off, int len)
492{
493 int ret;
b23ab57d 494 char *prepared;
31db9f7c 495
b23ab57d 496 ret = fs_path_prepare_for_add(p, len, &prepared);
31db9f7c
AB
497 if (ret < 0)
498 goto out;
499
b23ab57d 500 read_extent_buffer(eb, prepared, off, len);
31db9f7c
AB
501
502out:
503 return ret;
504}
505
31db9f7c
AB
506static int fs_path_copy(struct fs_path *p, struct fs_path *from)
507{
508 int ret;
509
510 p->reversed = from->reversed;
511 fs_path_reset(p);
512
513 ret = fs_path_add_path(p, from);
514
515 return ret;
516}
517
518
519static void fs_path_unreverse(struct fs_path *p)
520{
521 char *tmp;
522 int len;
523
524 if (!p->reversed)
525 return;
526
527 tmp = p->start;
528 len = p->end - p->start;
529 p->start = p->buf;
530 p->end = p->start + len;
531 memmove(p->start, tmp, len + 1);
532 p->reversed = 0;
533}
534
535static struct btrfs_path *alloc_path_for_send(void)
536{
537 struct btrfs_path *path;
538
539 path = btrfs_alloc_path();
540 if (!path)
541 return NULL;
542 path->search_commit_root = 1;
543 path->skip_locking = 1;
3f8a18cc 544 path->need_commit_sem = 1;
31db9f7c
AB
545 return path;
546}
547
48a3b636 548static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
549{
550 int ret;
31db9f7c
AB
551 u32 pos = 0;
552
31db9f7c 553 while (pos < len) {
8e93157b 554 ret = kernel_write(filp, buf + pos, len - pos, off);
31db9f7c
AB
555 /* TODO handle that correctly */
556 /*if (ret == -ERESTARTSYS) {
557 continue;
558 }*/
559 if (ret < 0)
8e93157b 560 return ret;
31db9f7c 561 if (ret == 0) {
8e93157b 562 return -EIO;
31db9f7c
AB
563 }
564 pos += ret;
565 }
566
8e93157b 567 return 0;
31db9f7c
AB
568}
569
570static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
571{
572 struct btrfs_tlv_header *hdr;
573 int total_len = sizeof(*hdr) + len;
574 int left = sctx->send_max_size - sctx->send_size;
575
576 if (unlikely(left < total_len))
577 return -EOVERFLOW;
578
579 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
580 hdr->tlv_type = cpu_to_le16(attr);
581 hdr->tlv_len = cpu_to_le16(len);
582 memcpy(hdr + 1, data, len);
583 sctx->send_size += total_len;
584
585 return 0;
586}
587
95bc79d5
DS
588#define TLV_PUT_DEFINE_INT(bits) \
589 static int tlv_put_u##bits(struct send_ctx *sctx, \
590 u##bits attr, u##bits value) \
591 { \
592 __le##bits __tmp = cpu_to_le##bits(value); \
593 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
594 }
31db9f7c 595
95bc79d5 596TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
597
598static int tlv_put_string(struct send_ctx *sctx, u16 attr,
599 const char *str, int len)
600{
601 if (len == -1)
602 len = strlen(str);
603 return tlv_put(sctx, attr, str, len);
604}
605
606static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
607 const u8 *uuid)
608{
609 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
610}
611
31db9f7c
AB
612static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
613 struct extent_buffer *eb,
614 struct btrfs_timespec *ts)
615{
616 struct btrfs_timespec bts;
617 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
618 return tlv_put(sctx, attr, &bts, sizeof(bts));
619}
620
621
895a72be 622#define TLV_PUT(sctx, attrtype, data, attrlen) \
31db9f7c 623 do { \
895a72be 624 ret = tlv_put(sctx, attrtype, data, attrlen); \
31db9f7c
AB
625 if (ret < 0) \
626 goto tlv_put_failure; \
627 } while (0)
628
629#define TLV_PUT_INT(sctx, attrtype, bits, value) \
630 do { \
631 ret = tlv_put_u##bits(sctx, attrtype, value); \
632 if (ret < 0) \
633 goto tlv_put_failure; \
634 } while (0)
635
636#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
637#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
638#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
639#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
640#define TLV_PUT_STRING(sctx, attrtype, str, len) \
641 do { \
642 ret = tlv_put_string(sctx, attrtype, str, len); \
643 if (ret < 0) \
644 goto tlv_put_failure; \
645 } while (0)
646#define TLV_PUT_PATH(sctx, attrtype, p) \
647 do { \
648 ret = tlv_put_string(sctx, attrtype, p->start, \
649 p->end - p->start); \
650 if (ret < 0) \
651 goto tlv_put_failure; \
652 } while(0)
653#define TLV_PUT_UUID(sctx, attrtype, uuid) \
654 do { \
655 ret = tlv_put_uuid(sctx, attrtype, uuid); \
656 if (ret < 0) \
657 goto tlv_put_failure; \
658 } while (0)
31db9f7c
AB
659#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
660 do { \
661 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
662 if (ret < 0) \
663 goto tlv_put_failure; \
664 } while (0)
665
666static int send_header(struct send_ctx *sctx)
667{
668 struct btrfs_stream_header hdr;
669
670 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
671 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
672
1bcea355
AJ
673 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
674 &sctx->send_off);
31db9f7c
AB
675}
676
677/*
678 * For each command/item we want to send to userspace, we call this function.
679 */
680static int begin_cmd(struct send_ctx *sctx, int cmd)
681{
682 struct btrfs_cmd_header *hdr;
683
fae7f21c 684 if (WARN_ON(!sctx->send_buf))
31db9f7c 685 return -EINVAL;
31db9f7c
AB
686
687 BUG_ON(sctx->send_size);
688
689 sctx->send_size += sizeof(*hdr);
690 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
691 hdr->cmd = cpu_to_le16(cmd);
692
693 return 0;
694}
695
696static int send_cmd(struct send_ctx *sctx)
697{
698 int ret;
699 struct btrfs_cmd_header *hdr;
700 u32 crc;
701
702 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
703 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
704 hdr->crc = 0;
705
65019df8 706 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
31db9f7c
AB
707 hdr->crc = cpu_to_le32(crc);
708
1bcea355
AJ
709 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
710 &sctx->send_off);
31db9f7c
AB
711
712 sctx->total_send_size += sctx->send_size;
713 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
714 sctx->send_size = 0;
715
716 return ret;
717}
718
719/*
720 * Sends a move instruction to user space
721 */
722static int send_rename(struct send_ctx *sctx,
723 struct fs_path *from, struct fs_path *to)
724{
04ab956e 725 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
726 int ret;
727
04ab956e 728 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
31db9f7c
AB
729
730 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
731 if (ret < 0)
732 goto out;
733
734 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
736
737 ret = send_cmd(sctx);
738
739tlv_put_failure:
740out:
741 return ret;
742}
743
744/*
745 * Sends a link instruction to user space
746 */
747static int send_link(struct send_ctx *sctx,
748 struct fs_path *path, struct fs_path *lnk)
749{
04ab956e 750 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
751 int ret;
752
04ab956e 753 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
31db9f7c
AB
754
755 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
756 if (ret < 0)
757 goto out;
758
759 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
761
762 ret = send_cmd(sctx);
763
764tlv_put_failure:
765out:
766 return ret;
767}
768
769/*
770 * Sends an unlink instruction to user space
771 */
772static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
773{
04ab956e 774 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
775 int ret;
776
04ab956e 777 btrfs_debug(fs_info, "send_unlink %s", path->start);
31db9f7c
AB
778
779 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
780 if (ret < 0)
781 goto out;
782
783 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
784
785 ret = send_cmd(sctx);
786
787tlv_put_failure:
788out:
789 return ret;
790}
791
792/*
793 * Sends a rmdir instruction to user space
794 */
795static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
796{
04ab956e 797 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
798 int ret;
799
04ab956e 800 btrfs_debug(fs_info, "send_rmdir %s", path->start);
31db9f7c
AB
801
802 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
803 if (ret < 0)
804 goto out;
805
806 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
807
808 ret = send_cmd(sctx);
809
810tlv_put_failure:
811out:
812 return ret;
813}
814
815/*
816 * Helper function to retrieve some fields from an inode item.
817 */
3f8a18cc
JB
818static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
819 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
820 u64 *gid, u64 *rdev)
31db9f7c
AB
821{
822 int ret;
823 struct btrfs_inode_item *ii;
824 struct btrfs_key key;
31db9f7c
AB
825
826 key.objectid = ino;
827 key.type = BTRFS_INODE_ITEM_KEY;
828 key.offset = 0;
829 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
31db9f7c 830 if (ret) {
3f8a18cc
JB
831 if (ret > 0)
832 ret = -ENOENT;
833 return ret;
31db9f7c
AB
834 }
835
836 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
837 struct btrfs_inode_item);
838 if (size)
839 *size = btrfs_inode_size(path->nodes[0], ii);
840 if (gen)
841 *gen = btrfs_inode_generation(path->nodes[0], ii);
842 if (mode)
843 *mode = btrfs_inode_mode(path->nodes[0], ii);
844 if (uid)
845 *uid = btrfs_inode_uid(path->nodes[0], ii);
846 if (gid)
847 *gid = btrfs_inode_gid(path->nodes[0], ii);
85a7b33b
AB
848 if (rdev)
849 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
31db9f7c 850
3f8a18cc
JB
851 return ret;
852}
853
854static int get_inode_info(struct btrfs_root *root,
855 u64 ino, u64 *size, u64 *gen,
856 u64 *mode, u64 *uid, u64 *gid,
857 u64 *rdev)
858{
859 struct btrfs_path *path;
860 int ret;
861
862 path = alloc_path_for_send();
863 if (!path)
864 return -ENOMEM;
865 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
866 rdev);
31db9f7c
AB
867 btrfs_free_path(path);
868 return ret;
869}
870
871typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
872 struct fs_path *p,
873 void *ctx);
874
875/*
96b5bd77
JS
876 * Helper function to iterate the entries in ONE btrfs_inode_ref or
877 * btrfs_inode_extref.
31db9f7c
AB
878 * The iterate callback may return a non zero value to stop iteration. This can
879 * be a negative value for error codes or 1 to simply stop it.
880 *
96b5bd77 881 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 882 */
924794c9 883static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
884 struct btrfs_key *found_key, int resolve,
885 iterate_inode_ref_t iterate, void *ctx)
886{
96b5bd77 887 struct extent_buffer *eb = path->nodes[0];
31db9f7c
AB
888 struct btrfs_item *item;
889 struct btrfs_inode_ref *iref;
96b5bd77 890 struct btrfs_inode_extref *extref;
31db9f7c
AB
891 struct btrfs_path *tmp_path;
892 struct fs_path *p;
96b5bd77 893 u32 cur = 0;
31db9f7c 894 u32 total;
96b5bd77 895 int slot = path->slots[0];
31db9f7c
AB
896 u32 name_len;
897 char *start;
898 int ret = 0;
96b5bd77 899 int num = 0;
31db9f7c 900 int index;
96b5bd77
JS
901 u64 dir;
902 unsigned long name_off;
903 unsigned long elem_size;
904 unsigned long ptr;
31db9f7c 905
924794c9 906 p = fs_path_alloc_reversed();
31db9f7c
AB
907 if (!p)
908 return -ENOMEM;
909
910 tmp_path = alloc_path_for_send();
911 if (!tmp_path) {
924794c9 912 fs_path_free(p);
31db9f7c
AB
913 return -ENOMEM;
914 }
915
31db9f7c 916
96b5bd77
JS
917 if (found_key->type == BTRFS_INODE_REF_KEY) {
918 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
919 struct btrfs_inode_ref);
dd3cc16b 920 item = btrfs_item_nr(slot);
96b5bd77
JS
921 total = btrfs_item_size(eb, item);
922 elem_size = sizeof(*iref);
923 } else {
924 ptr = btrfs_item_ptr_offset(eb, slot);
925 total = btrfs_item_size_nr(eb, slot);
926 elem_size = sizeof(*extref);
927 }
928
31db9f7c
AB
929 while (cur < total) {
930 fs_path_reset(p);
931
96b5bd77
JS
932 if (found_key->type == BTRFS_INODE_REF_KEY) {
933 iref = (struct btrfs_inode_ref *)(ptr + cur);
934 name_len = btrfs_inode_ref_name_len(eb, iref);
935 name_off = (unsigned long)(iref + 1);
936 index = btrfs_inode_ref_index(eb, iref);
937 dir = found_key->offset;
938 } else {
939 extref = (struct btrfs_inode_extref *)(ptr + cur);
940 name_len = btrfs_inode_extref_name_len(eb, extref);
941 name_off = (unsigned long)&extref->name;
942 index = btrfs_inode_extref_index(eb, extref);
943 dir = btrfs_inode_extref_parent(eb, extref);
944 }
945
31db9f7c 946 if (resolve) {
96b5bd77
JS
947 start = btrfs_ref_to_path(root, tmp_path, name_len,
948 name_off, eb, dir,
949 p->buf, p->buf_len);
31db9f7c
AB
950 if (IS_ERR(start)) {
951 ret = PTR_ERR(start);
952 goto out;
953 }
954 if (start < p->buf) {
955 /* overflow , try again with larger buffer */
956 ret = fs_path_ensure_buf(p,
957 p->buf_len + p->buf - start);
958 if (ret < 0)
959 goto out;
96b5bd77
JS
960 start = btrfs_ref_to_path(root, tmp_path,
961 name_len, name_off,
962 eb, dir,
963 p->buf, p->buf_len);
31db9f7c
AB
964 if (IS_ERR(start)) {
965 ret = PTR_ERR(start);
966 goto out;
967 }
968 BUG_ON(start < p->buf);
969 }
970 p->start = start;
971 } else {
96b5bd77
JS
972 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
973 name_len);
31db9f7c
AB
974 if (ret < 0)
975 goto out;
976 }
977
96b5bd77
JS
978 cur += elem_size + name_len;
979 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
980 if (ret)
981 goto out;
31db9f7c
AB
982 num++;
983 }
984
985out:
986 btrfs_free_path(tmp_path);
924794c9 987 fs_path_free(p);
31db9f7c
AB
988 return ret;
989}
990
991typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
992 const char *name, int name_len,
993 const char *data, int data_len,
994 u8 type, void *ctx);
995
996/*
997 * Helper function to iterate the entries in ONE btrfs_dir_item.
998 * The iterate callback may return a non zero value to stop iteration. This can
999 * be a negative value for error codes or 1 to simply stop it.
1000 *
1001 * path must point to the dir item when called.
1002 */
924794c9 1003static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
1004 iterate_dir_item_t iterate, void *ctx)
1005{
1006 int ret = 0;
1007 struct extent_buffer *eb;
1008 struct btrfs_item *item;
1009 struct btrfs_dir_item *di;
31db9f7c
AB
1010 struct btrfs_key di_key;
1011 char *buf = NULL;
7e3ae33e 1012 int buf_len;
31db9f7c
AB
1013 u32 name_len;
1014 u32 data_len;
1015 u32 cur;
1016 u32 len;
1017 u32 total;
1018 int slot;
1019 int num;
1020 u8 type;
1021
4395e0c4
FM
1022 /*
1023 * Start with a small buffer (1 page). If later we end up needing more
1024 * space, which can happen for xattrs on a fs with a leaf size greater
1025 * then the page size, attempt to increase the buffer. Typically xattr
1026 * values are small.
1027 */
1028 buf_len = PATH_MAX;
e780b0d1 1029 buf = kmalloc(buf_len, GFP_KERNEL);
31db9f7c
AB
1030 if (!buf) {
1031 ret = -ENOMEM;
1032 goto out;
1033 }
1034
31db9f7c
AB
1035 eb = path->nodes[0];
1036 slot = path->slots[0];
dd3cc16b 1037 item = btrfs_item_nr(slot);
31db9f7c
AB
1038 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1039 cur = 0;
1040 len = 0;
1041 total = btrfs_item_size(eb, item);
1042
1043 num = 0;
1044 while (cur < total) {
1045 name_len = btrfs_dir_name_len(eb, di);
1046 data_len = btrfs_dir_data_len(eb, di);
1047 type = btrfs_dir_type(eb, di);
1048 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1049
7e3ae33e
FM
1050 if (type == BTRFS_FT_XATTR) {
1051 if (name_len > XATTR_NAME_MAX) {
1052 ret = -ENAMETOOLONG;
1053 goto out;
1054 }
da17066c
JM
1055 if (name_len + data_len >
1056 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
7e3ae33e
FM
1057 ret = -E2BIG;
1058 goto out;
1059 }
1060 } else {
1061 /*
1062 * Path too long
1063 */
4395e0c4 1064 if (name_len + data_len > PATH_MAX) {
7e3ae33e
FM
1065 ret = -ENAMETOOLONG;
1066 goto out;
1067 }
31db9f7c
AB
1068 }
1069
4395e0c4
FM
1070 if (name_len + data_len > buf_len) {
1071 buf_len = name_len + data_len;
1072 if (is_vmalloc_addr(buf)) {
1073 vfree(buf);
1074 buf = NULL;
1075 } else {
1076 char *tmp = krealloc(buf, buf_len,
e780b0d1 1077 GFP_KERNEL | __GFP_NOWARN);
4395e0c4
FM
1078
1079 if (!tmp)
1080 kfree(buf);
1081 buf = tmp;
1082 }
1083 if (!buf) {
f11f7441 1084 buf = kvmalloc(buf_len, GFP_KERNEL);
4395e0c4
FM
1085 if (!buf) {
1086 ret = -ENOMEM;
1087 goto out;
1088 }
1089 }
1090 }
1091
31db9f7c
AB
1092 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1093 name_len + data_len);
1094
1095 len = sizeof(*di) + name_len + data_len;
1096 di = (struct btrfs_dir_item *)((char *)di + len);
1097 cur += len;
1098
1099 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1100 data_len, type, ctx);
1101 if (ret < 0)
1102 goto out;
1103 if (ret) {
1104 ret = 0;
1105 goto out;
1106 }
1107
1108 num++;
1109 }
1110
1111out:
4395e0c4 1112 kvfree(buf);
31db9f7c
AB
1113 return ret;
1114}
1115
1116static int __copy_first_ref(int num, u64 dir, int index,
1117 struct fs_path *p, void *ctx)
1118{
1119 int ret;
1120 struct fs_path *pt = ctx;
1121
1122 ret = fs_path_copy(pt, p);
1123 if (ret < 0)
1124 return ret;
1125
1126 /* we want the first only */
1127 return 1;
1128}
1129
1130/*
1131 * Retrieve the first path of an inode. If an inode has more then one
1132 * ref/hardlink, this is ignored.
1133 */
924794c9 1134static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1135 u64 ino, struct fs_path *path)
1136{
1137 int ret;
1138 struct btrfs_key key, found_key;
1139 struct btrfs_path *p;
1140
1141 p = alloc_path_for_send();
1142 if (!p)
1143 return -ENOMEM;
1144
1145 fs_path_reset(path);
1146
1147 key.objectid = ino;
1148 key.type = BTRFS_INODE_REF_KEY;
1149 key.offset = 0;
1150
1151 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1152 if (ret < 0)
1153 goto out;
1154 if (ret) {
1155 ret = 1;
1156 goto out;
1157 }
1158 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1159 if (found_key.objectid != ino ||
96b5bd77
JS
1160 (found_key.type != BTRFS_INODE_REF_KEY &&
1161 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1162 ret = -ENOENT;
1163 goto out;
1164 }
1165
924794c9
TI
1166 ret = iterate_inode_ref(root, p, &found_key, 1,
1167 __copy_first_ref, path);
31db9f7c
AB
1168 if (ret < 0)
1169 goto out;
1170 ret = 0;
1171
1172out:
1173 btrfs_free_path(p);
1174 return ret;
1175}
1176
1177struct backref_ctx {
1178 struct send_ctx *sctx;
1179
1180 /* number of total found references */
1181 u64 found;
1182
1183 /*
1184 * used for clones found in send_root. clones found behind cur_objectid
1185 * and cur_offset are not considered as allowed clones.
1186 */
1187 u64 cur_objectid;
1188 u64 cur_offset;
1189
1190 /* may be truncated in case it's the last extent in a file */
1191 u64 extent_len;
1192
619d8c4e
FM
1193 /* data offset in the file extent item */
1194 u64 data_offset;
1195
31db9f7c 1196 /* Just to check for bugs in backref resolving */
ee849c04 1197 int found_itself;
31db9f7c
AB
1198};
1199
1200static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1201{
995e01b7 1202 u64 root = (u64)(uintptr_t)key;
31db9f7c
AB
1203 struct clone_root *cr = (struct clone_root *)elt;
1204
4fd786e6 1205 if (root < cr->root->root_key.objectid)
31db9f7c 1206 return -1;
4fd786e6 1207 if (root > cr->root->root_key.objectid)
31db9f7c
AB
1208 return 1;
1209 return 0;
1210}
1211
1212static int __clone_root_cmp_sort(const void *e1, const void *e2)
1213{
1214 struct clone_root *cr1 = (struct clone_root *)e1;
1215 struct clone_root *cr2 = (struct clone_root *)e2;
1216
4fd786e6 1217 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
31db9f7c 1218 return -1;
4fd786e6 1219 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
31db9f7c
AB
1220 return 1;
1221 return 0;
1222}
1223
1224/*
1225 * Called for every backref that is found for the current extent.
766702ef 1226 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1227 */
1228static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1229{
1230 struct backref_ctx *bctx = ctx_;
1231 struct clone_root *found;
31db9f7c
AB
1232
1233 /* First check if the root is in the list of accepted clone sources */
995e01b7 1234 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1235 bctx->sctx->clone_roots_cnt,
1236 sizeof(struct clone_root),
1237 __clone_root_cmp_bsearch);
1238 if (!found)
1239 return 0;
1240
1241 if (found->root == bctx->sctx->send_root &&
1242 ino == bctx->cur_objectid &&
1243 offset == bctx->cur_offset) {
ee849c04 1244 bctx->found_itself = 1;
31db9f7c
AB
1245 }
1246
31db9f7c
AB
1247 /*
1248 * Make sure we don't consider clones from send_root that are
1249 * behind the current inode/offset.
1250 */
1251 if (found->root == bctx->sctx->send_root) {
1252 /*
11f2069c
FM
1253 * If the source inode was not yet processed we can't issue a
1254 * clone operation, as the source extent does not exist yet at
1255 * the destination of the stream.
31db9f7c 1256 */
11f2069c
FM
1257 if (ino > bctx->cur_objectid)
1258 return 0;
1259 /*
1260 * We clone from the inode currently being sent as long as the
1261 * source extent is already processed, otherwise we could try
1262 * to clone from an extent that does not exist yet at the
1263 * destination of the stream.
1264 */
1265 if (ino == bctx->cur_objectid &&
9722b101
FM
1266 offset + bctx->extent_len >
1267 bctx->sctx->cur_inode_next_write_offset)
31db9f7c 1268 return 0;
31db9f7c
AB
1269 }
1270
1271 bctx->found++;
1272 found->found_refs++;
1273 if (ino < found->ino) {
1274 found->ino = ino;
1275 found->offset = offset;
1276 } else if (found->ino == ino) {
1277 /*
1278 * same extent found more then once in the same file.
1279 */
1280 if (found->offset > offset + bctx->extent_len)
1281 found->offset = offset;
1282 }
1283
1284 return 0;
1285}
1286
1287/*
766702ef
AB
1288 * Given an inode, offset and extent item, it finds a good clone for a clone
1289 * instruction. Returns -ENOENT when none could be found. The function makes
1290 * sure that the returned clone is usable at the point where sending is at the
1291 * moment. This means, that no clones are accepted which lie behind the current
1292 * inode+offset.
1293 *
31db9f7c
AB
1294 * path must point to the extent item when called.
1295 */
1296static int find_extent_clone(struct send_ctx *sctx,
1297 struct btrfs_path *path,
1298 u64 ino, u64 data_offset,
1299 u64 ino_size,
1300 struct clone_root **found)
1301{
04ab956e 1302 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
1303 int ret;
1304 int extent_type;
1305 u64 logical;
74dd17fb 1306 u64 disk_byte;
31db9f7c
AB
1307 u64 num_bytes;
1308 u64 extent_item_pos;
69917e43 1309 u64 flags = 0;
31db9f7c
AB
1310 struct btrfs_file_extent_item *fi;
1311 struct extent_buffer *eb = path->nodes[0];
35075bb0 1312 struct backref_ctx *backref_ctx = NULL;
31db9f7c
AB
1313 struct clone_root *cur_clone_root;
1314 struct btrfs_key found_key;
1315 struct btrfs_path *tmp_path;
fd0ddbe2 1316 struct btrfs_extent_item *ei;
74dd17fb 1317 int compressed;
31db9f7c
AB
1318 u32 i;
1319
1320 tmp_path = alloc_path_for_send();
1321 if (!tmp_path)
1322 return -ENOMEM;
1323
3f8a18cc
JB
1324 /* We only use this path under the commit sem */
1325 tmp_path->need_commit_sem = 0;
1326
e780b0d1 1327 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
35075bb0
AB
1328 if (!backref_ctx) {
1329 ret = -ENOMEM;
1330 goto out;
1331 }
1332
31db9f7c
AB
1333 if (data_offset >= ino_size) {
1334 /*
1335 * There may be extents that lie behind the file's size.
1336 * I at least had this in combination with snapshotting while
1337 * writing large files.
1338 */
1339 ret = 0;
1340 goto out;
1341 }
1342
1343 fi = btrfs_item_ptr(eb, path->slots[0],
1344 struct btrfs_file_extent_item);
1345 extent_type = btrfs_file_extent_type(eb, fi);
1346 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1347 ret = -ENOENT;
1348 goto out;
1349 }
74dd17fb 1350 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1351
1352 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1353 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1354 if (disk_byte == 0) {
31db9f7c
AB
1355 ret = -ENOENT;
1356 goto out;
1357 }
74dd17fb 1358 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1359
04ab956e
JM
1360 down_read(&fs_info->commit_root_sem);
1361 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
69917e43 1362 &found_key, &flags);
04ab956e 1363 up_read(&fs_info->commit_root_sem);
31db9f7c
AB
1364
1365 if (ret < 0)
1366 goto out;
69917e43 1367 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1368 ret = -EIO;
1369 goto out;
1370 }
1371
fd0ddbe2
FM
1372 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1373 struct btrfs_extent_item);
1374 /*
1375 * Backreference walking (iterate_extent_inodes() below) is currently
1376 * too expensive when an extent has a large number of references, both
1377 * in time spent and used memory. So for now just fallback to write
1378 * operations instead of clone operations when an extent has more than
1379 * a certain amount of references.
1380 */
1381 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1382 ret = -ENOENT;
1383 goto out;
1384 }
1385 btrfs_release_path(tmp_path);
1386
31db9f7c
AB
1387 /*
1388 * Setup the clone roots.
1389 */
1390 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1391 cur_clone_root = sctx->clone_roots + i;
1392 cur_clone_root->ino = (u64)-1;
1393 cur_clone_root->offset = 0;
1394 cur_clone_root->found_refs = 0;
1395 }
1396
35075bb0
AB
1397 backref_ctx->sctx = sctx;
1398 backref_ctx->found = 0;
1399 backref_ctx->cur_objectid = ino;
1400 backref_ctx->cur_offset = data_offset;
1401 backref_ctx->found_itself = 0;
1402 backref_ctx->extent_len = num_bytes;
619d8c4e
FM
1403 /*
1404 * For non-compressed extents iterate_extent_inodes() gives us extent
1405 * offsets that already take into account the data offset, but not for
1406 * compressed extents, since the offset is logical and not relative to
1407 * the physical extent locations. We must take this into account to
1408 * avoid sending clone offsets that go beyond the source file's size,
1409 * which would result in the clone ioctl failing with -EINVAL on the
1410 * receiving end.
1411 */
1412 if (compressed == BTRFS_COMPRESS_NONE)
1413 backref_ctx->data_offset = 0;
1414 else
1415 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
31db9f7c
AB
1416
1417 /*
1418 * The last extent of a file may be too large due to page alignment.
1419 * We need to adjust extent_len in this case so that the checks in
1420 * __iterate_backrefs work.
1421 */
1422 if (data_offset + num_bytes >= ino_size)
35075bb0 1423 backref_ctx->extent_len = ino_size - data_offset;
31db9f7c
AB
1424
1425 /*
1426 * Now collect all backrefs.
1427 */
74dd17fb
CM
1428 if (compressed == BTRFS_COMPRESS_NONE)
1429 extent_item_pos = logical - found_key.objectid;
1430 else
1431 extent_item_pos = 0;
0b246afa
JM
1432 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1433 extent_item_pos, 1, __iterate_backrefs,
c995ab3c 1434 backref_ctx, false);
74dd17fb 1435
31db9f7c
AB
1436 if (ret < 0)
1437 goto out;
1438
35075bb0 1439 if (!backref_ctx->found_itself) {
31db9f7c
AB
1440 /* found a bug in backref code? */
1441 ret = -EIO;
04ab956e 1442 btrfs_err(fs_info,
5d163e0e 1443 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
04ab956e 1444 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1445 goto out;
1446 }
1447
04ab956e
JM
1448 btrfs_debug(fs_info,
1449 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1450 data_offset, ino, num_bytes, logical);
31db9f7c 1451
35075bb0 1452 if (!backref_ctx->found)
04ab956e 1453 btrfs_debug(fs_info, "no clones found");
31db9f7c
AB
1454
1455 cur_clone_root = NULL;
1456 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1457 if (sctx->clone_roots[i].found_refs) {
1458 if (!cur_clone_root)
1459 cur_clone_root = sctx->clone_roots + i;
1460 else if (sctx->clone_roots[i].root == sctx->send_root)
1461 /* prefer clones from send_root over others */
1462 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1463 }
1464
1465 }
1466
1467 if (cur_clone_root) {
1468 *found = cur_clone_root;
1469 ret = 0;
1470 } else {
1471 ret = -ENOENT;
1472 }
1473
1474out:
1475 btrfs_free_path(tmp_path);
35075bb0 1476 kfree(backref_ctx);
31db9f7c
AB
1477 return ret;
1478}
1479
924794c9 1480static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1481 u64 ino,
1482 struct fs_path *dest)
1483{
1484 int ret;
1485 struct btrfs_path *path;
1486 struct btrfs_key key;
1487 struct btrfs_file_extent_item *ei;
1488 u8 type;
1489 u8 compression;
1490 unsigned long off;
1491 int len;
1492
1493 path = alloc_path_for_send();
1494 if (!path)
1495 return -ENOMEM;
1496
1497 key.objectid = ino;
1498 key.type = BTRFS_EXTENT_DATA_KEY;
1499 key.offset = 0;
1500 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1501 if (ret < 0)
1502 goto out;
a879719b
FM
1503 if (ret) {
1504 /*
1505 * An empty symlink inode. Can happen in rare error paths when
1506 * creating a symlink (transaction committed before the inode
1507 * eviction handler removed the symlink inode items and a crash
1508 * happened in between or the subvol was snapshoted in between).
1509 * Print an informative message to dmesg/syslog so that the user
1510 * can delete the symlink.
1511 */
1512 btrfs_err(root->fs_info,
1513 "Found empty symlink inode %llu at root %llu",
1514 ino, root->root_key.objectid);
1515 ret = -EIO;
1516 goto out;
1517 }
31db9f7c
AB
1518
1519 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1520 struct btrfs_file_extent_item);
1521 type = btrfs_file_extent_type(path->nodes[0], ei);
1522 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1523 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1524 BUG_ON(compression);
1525
1526 off = btrfs_file_extent_inline_start(ei);
e41ca589 1527 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
31db9f7c
AB
1528
1529 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1530
1531out:
1532 btrfs_free_path(path);
1533 return ret;
1534}
1535
1536/*
1537 * Helper function to generate a file name that is unique in the root of
1538 * send_root and parent_root. This is used to generate names for orphan inodes.
1539 */
1540static int gen_unique_name(struct send_ctx *sctx,
1541 u64 ino, u64 gen,
1542 struct fs_path *dest)
1543{
1544 int ret = 0;
1545 struct btrfs_path *path;
1546 struct btrfs_dir_item *di;
1547 char tmp[64];
1548 int len;
1549 u64 idx = 0;
1550
1551 path = alloc_path_for_send();
1552 if (!path)
1553 return -ENOMEM;
1554
1555 while (1) {
f74b86d8 1556 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c 1557 ino, gen, idx);
64792f25 1558 ASSERT(len < sizeof(tmp));
31db9f7c
AB
1559
1560 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1561 path, BTRFS_FIRST_FREE_OBJECTID,
1562 tmp, strlen(tmp), 0);
1563 btrfs_release_path(path);
1564 if (IS_ERR(di)) {
1565 ret = PTR_ERR(di);
1566 goto out;
1567 }
1568 if (di) {
1569 /* not unique, try again */
1570 idx++;
1571 continue;
1572 }
1573
1574 if (!sctx->parent_root) {
1575 /* unique */
1576 ret = 0;
1577 break;
1578 }
1579
1580 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1581 path, BTRFS_FIRST_FREE_OBJECTID,
1582 tmp, strlen(tmp), 0);
1583 btrfs_release_path(path);
1584 if (IS_ERR(di)) {
1585 ret = PTR_ERR(di);
1586 goto out;
1587 }
1588 if (di) {
1589 /* not unique, try again */
1590 idx++;
1591 continue;
1592 }
1593 /* unique */
1594 break;
1595 }
1596
1597 ret = fs_path_add(dest, tmp, strlen(tmp));
1598
1599out:
1600 btrfs_free_path(path);
1601 return ret;
1602}
1603
1604enum inode_state {
1605 inode_state_no_change,
1606 inode_state_will_create,
1607 inode_state_did_create,
1608 inode_state_will_delete,
1609 inode_state_did_delete,
1610};
1611
1612static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1613{
1614 int ret;
1615 int left_ret;
1616 int right_ret;
1617 u64 left_gen;
1618 u64 right_gen;
1619
1620 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
85a7b33b 1621 NULL, NULL);
31db9f7c
AB
1622 if (ret < 0 && ret != -ENOENT)
1623 goto out;
1624 left_ret = ret;
1625
1626 if (!sctx->parent_root) {
1627 right_ret = -ENOENT;
1628 } else {
1629 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
85a7b33b 1630 NULL, NULL, NULL, NULL);
31db9f7c
AB
1631 if (ret < 0 && ret != -ENOENT)
1632 goto out;
1633 right_ret = ret;
1634 }
1635
1636 if (!left_ret && !right_ret) {
e938c8ad 1637 if (left_gen == gen && right_gen == gen) {
31db9f7c 1638 ret = inode_state_no_change;
e938c8ad 1639 } else if (left_gen == gen) {
31db9f7c
AB
1640 if (ino < sctx->send_progress)
1641 ret = inode_state_did_create;
1642 else
1643 ret = inode_state_will_create;
1644 } else if (right_gen == gen) {
1645 if (ino < sctx->send_progress)
1646 ret = inode_state_did_delete;
1647 else
1648 ret = inode_state_will_delete;
1649 } else {
1650 ret = -ENOENT;
1651 }
1652 } else if (!left_ret) {
1653 if (left_gen == gen) {
1654 if (ino < sctx->send_progress)
1655 ret = inode_state_did_create;
1656 else
1657 ret = inode_state_will_create;
1658 } else {
1659 ret = -ENOENT;
1660 }
1661 } else if (!right_ret) {
1662 if (right_gen == gen) {
1663 if (ino < sctx->send_progress)
1664 ret = inode_state_did_delete;
1665 else
1666 ret = inode_state_will_delete;
1667 } else {
1668 ret = -ENOENT;
1669 }
1670 } else {
1671 ret = -ENOENT;
1672 }
1673
1674out:
1675 return ret;
1676}
1677
1678static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1679{
1680 int ret;
1681
4dd9920d
RK
1682 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1683 return 1;
1684
31db9f7c
AB
1685 ret = get_cur_inode_state(sctx, ino, gen);
1686 if (ret < 0)
1687 goto out;
1688
1689 if (ret == inode_state_no_change ||
1690 ret == inode_state_did_create ||
1691 ret == inode_state_will_delete)
1692 ret = 1;
1693 else
1694 ret = 0;
1695
1696out:
1697 return ret;
1698}
1699
1700/*
1701 * Helper function to lookup a dir item in a dir.
1702 */
1703static int lookup_dir_item_inode(struct btrfs_root *root,
1704 u64 dir, const char *name, int name_len,
1705 u64 *found_inode,
1706 u8 *found_type)
1707{
1708 int ret = 0;
1709 struct btrfs_dir_item *di;
1710 struct btrfs_key key;
1711 struct btrfs_path *path;
1712
1713 path = alloc_path_for_send();
1714 if (!path)
1715 return -ENOMEM;
1716
1717 di = btrfs_lookup_dir_item(NULL, root, path,
1718 dir, name, name_len, 0);
3cf5068f
LB
1719 if (IS_ERR_OR_NULL(di)) {
1720 ret = di ? PTR_ERR(di) : -ENOENT;
31db9f7c
AB
1721 goto out;
1722 }
1723 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1af56070
FM
1724 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1725 ret = -ENOENT;
1726 goto out;
1727 }
31db9f7c
AB
1728 *found_inode = key.objectid;
1729 *found_type = btrfs_dir_type(path->nodes[0], di);
1730
1731out:
1732 btrfs_free_path(path);
1733 return ret;
1734}
1735
766702ef
AB
1736/*
1737 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1738 * generation of the parent dir and the name of the dir entry.
1739 */
924794c9 1740static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1741 u64 *dir, u64 *dir_gen, struct fs_path *name)
1742{
1743 int ret;
1744 struct btrfs_key key;
1745 struct btrfs_key found_key;
1746 struct btrfs_path *path;
31db9f7c 1747 int len;
96b5bd77 1748 u64 parent_dir;
31db9f7c
AB
1749
1750 path = alloc_path_for_send();
1751 if (!path)
1752 return -ENOMEM;
1753
1754 key.objectid = ino;
1755 key.type = BTRFS_INODE_REF_KEY;
1756 key.offset = 0;
1757
1758 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1759 if (ret < 0)
1760 goto out;
1761 if (!ret)
1762 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1763 path->slots[0]);
96b5bd77
JS
1764 if (ret || found_key.objectid != ino ||
1765 (found_key.type != BTRFS_INODE_REF_KEY &&
1766 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1767 ret = -ENOENT;
1768 goto out;
1769 }
1770
51a60253 1771 if (found_key.type == BTRFS_INODE_REF_KEY) {
96b5bd77
JS
1772 struct btrfs_inode_ref *iref;
1773 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1774 struct btrfs_inode_ref);
1775 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1776 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1777 (unsigned long)(iref + 1),
1778 len);
1779 parent_dir = found_key.offset;
1780 } else {
1781 struct btrfs_inode_extref *extref;
1782 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1783 struct btrfs_inode_extref);
1784 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1785 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1786 (unsigned long)&extref->name, len);
1787 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1788 }
31db9f7c
AB
1789 if (ret < 0)
1790 goto out;
1791 btrfs_release_path(path);
1792
b46ab97b
FM
1793 if (dir_gen) {
1794 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1795 NULL, NULL, NULL);
1796 if (ret < 0)
1797 goto out;
1798 }
31db9f7c 1799
96b5bd77 1800 *dir = parent_dir;
31db9f7c
AB
1801
1802out:
1803 btrfs_free_path(path);
1804 return ret;
1805}
1806
924794c9 1807static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1808 u64 ino, u64 dir,
1809 const char *name, int name_len)
1810{
1811 int ret;
1812 struct fs_path *tmp_name;
1813 u64 tmp_dir;
31db9f7c 1814
924794c9 1815 tmp_name = fs_path_alloc();
31db9f7c
AB
1816 if (!tmp_name)
1817 return -ENOMEM;
1818
b46ab97b 1819 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
31db9f7c
AB
1820 if (ret < 0)
1821 goto out;
1822
b9291aff 1823 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1824 ret = 0;
1825 goto out;
1826 }
1827
e938c8ad 1828 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1829
1830out:
924794c9 1831 fs_path_free(tmp_name);
31db9f7c
AB
1832 return ret;
1833}
1834
766702ef
AB
1835/*
1836 * Used by process_recorded_refs to determine if a new ref would overwrite an
1837 * already existing ref. In case it detects an overwrite, it returns the
1838 * inode/gen in who_ino/who_gen.
1839 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1840 * to make sure later references to the overwritten inode are possible.
1841 * Orphanizing is however only required for the first ref of an inode.
1842 * process_recorded_refs does an additional is_first_ref check to see if
1843 * orphanizing is really required.
1844 */
31db9f7c
AB
1845static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1846 const char *name, int name_len,
f5962781 1847 u64 *who_ino, u64 *who_gen, u64 *who_mode)
31db9f7c
AB
1848{
1849 int ret = 0;
ebdad913 1850 u64 gen;
31db9f7c
AB
1851 u64 other_inode = 0;
1852 u8 other_type = 0;
1853
1854 if (!sctx->parent_root)
1855 goto out;
1856
1857 ret = is_inode_existent(sctx, dir, dir_gen);
1858 if (ret <= 0)
1859 goto out;
1860
ebdad913
JB
1861 /*
1862 * If we have a parent root we need to verify that the parent dir was
01327610 1863 * not deleted and then re-created, if it was then we have no overwrite
ebdad913
JB
1864 * and we can just unlink this entry.
1865 */
4dd9920d 1866 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
ebdad913
JB
1867 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1868 NULL, NULL, NULL);
1869 if (ret < 0 && ret != -ENOENT)
1870 goto out;
1871 if (ret) {
1872 ret = 0;
1873 goto out;
1874 }
1875 if (gen != dir_gen)
1876 goto out;
1877 }
1878
31db9f7c
AB
1879 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1880 &other_inode, &other_type);
1881 if (ret < 0 && ret != -ENOENT)
1882 goto out;
1883 if (ret) {
1884 ret = 0;
1885 goto out;
1886 }
1887
766702ef
AB
1888 /*
1889 * Check if the overwritten ref was already processed. If yes, the ref
1890 * was already unlinked/moved, so we can safely assume that we will not
1891 * overwrite anything at this point in time.
1892 */
801bec36
RK
1893 if (other_inode > sctx->send_progress ||
1894 is_waiting_for_move(sctx, other_inode)) {
31db9f7c 1895 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
f5962781 1896 who_gen, who_mode, NULL, NULL, NULL);
31db9f7c
AB
1897 if (ret < 0)
1898 goto out;
1899
1900 ret = 1;
1901 *who_ino = other_inode;
1902 } else {
1903 ret = 0;
1904 }
1905
1906out:
1907 return ret;
1908}
1909
766702ef
AB
1910/*
1911 * Checks if the ref was overwritten by an already processed inode. This is
1912 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1913 * thus the orphan name needs be used.
1914 * process_recorded_refs also uses it to avoid unlinking of refs that were
1915 * overwritten.
1916 */
31db9f7c
AB
1917static int did_overwrite_ref(struct send_ctx *sctx,
1918 u64 dir, u64 dir_gen,
1919 u64 ino, u64 ino_gen,
1920 const char *name, int name_len)
1921{
1922 int ret = 0;
1923 u64 gen;
1924 u64 ow_inode;
1925 u8 other_type;
1926
1927 if (!sctx->parent_root)
1928 goto out;
1929
1930 ret = is_inode_existent(sctx, dir, dir_gen);
1931 if (ret <= 0)
1932 goto out;
1933
01914101
RK
1934 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1935 ret = get_inode_info(sctx->send_root, dir, NULL, &gen, NULL,
1936 NULL, NULL, NULL);
1937 if (ret < 0 && ret != -ENOENT)
1938 goto out;
1939 if (ret) {
1940 ret = 0;
1941 goto out;
1942 }
1943 if (gen != dir_gen)
1944 goto out;
1945 }
1946
31db9f7c
AB
1947 /* check if the ref was overwritten by another ref */
1948 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1949 &ow_inode, &other_type);
1950 if (ret < 0 && ret != -ENOENT)
1951 goto out;
1952 if (ret) {
1953 /* was never and will never be overwritten */
1954 ret = 0;
1955 goto out;
1956 }
1957
1958 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
85a7b33b 1959 NULL, NULL);
31db9f7c
AB
1960 if (ret < 0)
1961 goto out;
1962
1963 if (ow_inode == ino && gen == ino_gen) {
1964 ret = 0;
1965 goto out;
1966 }
1967
8b191a68
FM
1968 /*
1969 * We know that it is or will be overwritten. Check this now.
1970 * The current inode being processed might have been the one that caused
b786f16a
FM
1971 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1972 * the current inode being processed.
8b191a68 1973 */
b786f16a
FM
1974 if ((ow_inode < sctx->send_progress) ||
1975 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1976 gen == sctx->cur_inode_gen))
31db9f7c
AB
1977 ret = 1;
1978 else
1979 ret = 0;
1980
1981out:
1982 return ret;
1983}
1984
766702ef
AB
1985/*
1986 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1987 * that got overwritten. This is used by process_recorded_refs to determine
1988 * if it has to use the path as returned by get_cur_path or the orphan name.
1989 */
31db9f7c
AB
1990static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1991{
1992 int ret = 0;
1993 struct fs_path *name = NULL;
1994 u64 dir;
1995 u64 dir_gen;
1996
1997 if (!sctx->parent_root)
1998 goto out;
1999
924794c9 2000 name = fs_path_alloc();
31db9f7c
AB
2001 if (!name)
2002 return -ENOMEM;
2003
924794c9 2004 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
2005 if (ret < 0)
2006 goto out;
2007
2008 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2009 name->start, fs_path_len(name));
31db9f7c
AB
2010
2011out:
924794c9 2012 fs_path_free(name);
31db9f7c
AB
2013 return ret;
2014}
2015
766702ef
AB
2016/*
2017 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2018 * so we need to do some special handling in case we have clashes. This function
2019 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 2020 * In case of error, nce is kfreed.
766702ef 2021 */
31db9f7c
AB
2022static int name_cache_insert(struct send_ctx *sctx,
2023 struct name_cache_entry *nce)
2024{
2025 int ret = 0;
7e0926fe
AB
2026 struct list_head *nce_head;
2027
2028 nce_head = radix_tree_lookup(&sctx->name_cache,
2029 (unsigned long)nce->ino);
2030 if (!nce_head) {
e780b0d1 2031 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
cfa7a9cc
TI
2032 if (!nce_head) {
2033 kfree(nce);
31db9f7c 2034 return -ENOMEM;
cfa7a9cc 2035 }
7e0926fe 2036 INIT_LIST_HEAD(nce_head);
31db9f7c 2037
7e0926fe 2038 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
2039 if (ret < 0) {
2040 kfree(nce_head);
2041 kfree(nce);
31db9f7c 2042 return ret;
5dc67d0b 2043 }
31db9f7c 2044 }
7e0926fe 2045 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
2046 list_add_tail(&nce->list, &sctx->name_cache_list);
2047 sctx->name_cache_size++;
2048
2049 return ret;
2050}
2051
2052static void name_cache_delete(struct send_ctx *sctx,
2053 struct name_cache_entry *nce)
2054{
7e0926fe 2055 struct list_head *nce_head;
31db9f7c 2056
7e0926fe
AB
2057 nce_head = radix_tree_lookup(&sctx->name_cache,
2058 (unsigned long)nce->ino);
57fb8910
DS
2059 if (!nce_head) {
2060 btrfs_err(sctx->send_root->fs_info,
2061 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2062 nce->ino, sctx->name_cache_size);
2063 }
31db9f7c 2064
7e0926fe 2065 list_del(&nce->radix_list);
31db9f7c 2066 list_del(&nce->list);
31db9f7c 2067 sctx->name_cache_size--;
7e0926fe 2068
57fb8910
DS
2069 /*
2070 * We may not get to the final release of nce_head if the lookup fails
2071 */
2072 if (nce_head && list_empty(nce_head)) {
7e0926fe
AB
2073 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2074 kfree(nce_head);
2075 }
31db9f7c
AB
2076}
2077
2078static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2079 u64 ino, u64 gen)
2080{
7e0926fe
AB
2081 struct list_head *nce_head;
2082 struct name_cache_entry *cur;
31db9f7c 2083
7e0926fe
AB
2084 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2085 if (!nce_head)
31db9f7c
AB
2086 return NULL;
2087
7e0926fe
AB
2088 list_for_each_entry(cur, nce_head, radix_list) {
2089 if (cur->ino == ino && cur->gen == gen)
2090 return cur;
2091 }
31db9f7c
AB
2092 return NULL;
2093}
2094
766702ef
AB
2095/*
2096 * Removes the entry from the list and adds it back to the end. This marks the
2097 * entry as recently used so that name_cache_clean_unused does not remove it.
2098 */
31db9f7c
AB
2099static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2100{
2101 list_del(&nce->list);
2102 list_add_tail(&nce->list, &sctx->name_cache_list);
2103}
2104
766702ef
AB
2105/*
2106 * Remove some entries from the beginning of name_cache_list.
2107 */
31db9f7c
AB
2108static void name_cache_clean_unused(struct send_ctx *sctx)
2109{
2110 struct name_cache_entry *nce;
2111
2112 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2113 return;
2114
2115 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2116 nce = list_entry(sctx->name_cache_list.next,
2117 struct name_cache_entry, list);
2118 name_cache_delete(sctx, nce);
2119 kfree(nce);
2120 }
2121}
2122
2123static void name_cache_free(struct send_ctx *sctx)
2124{
2125 struct name_cache_entry *nce;
31db9f7c 2126
e938c8ad
AB
2127 while (!list_empty(&sctx->name_cache_list)) {
2128 nce = list_entry(sctx->name_cache_list.next,
2129 struct name_cache_entry, list);
31db9f7c 2130 name_cache_delete(sctx, nce);
17589bd9 2131 kfree(nce);
31db9f7c
AB
2132 }
2133}
2134
766702ef
AB
2135/*
2136 * Used by get_cur_path for each ref up to the root.
2137 * Returns 0 if it succeeded.
2138 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2139 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2140 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2141 * Returns <0 in case of error.
2142 */
31db9f7c
AB
2143static int __get_cur_name_and_parent(struct send_ctx *sctx,
2144 u64 ino, u64 gen,
2145 u64 *parent_ino,
2146 u64 *parent_gen,
2147 struct fs_path *dest)
2148{
2149 int ret;
2150 int nce_ret;
31db9f7c
AB
2151 struct name_cache_entry *nce = NULL;
2152
766702ef
AB
2153 /*
2154 * First check if we already did a call to this function with the same
2155 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2156 * return the cached result.
2157 */
31db9f7c
AB
2158 nce = name_cache_search(sctx, ino, gen);
2159 if (nce) {
2160 if (ino < sctx->send_progress && nce->need_later_update) {
2161 name_cache_delete(sctx, nce);
2162 kfree(nce);
2163 nce = NULL;
2164 } else {
2165 name_cache_used(sctx, nce);
2166 *parent_ino = nce->parent_ino;
2167 *parent_gen = nce->parent_gen;
2168 ret = fs_path_add(dest, nce->name, nce->name_len);
2169 if (ret < 0)
2170 goto out;
2171 ret = nce->ret;
2172 goto out;
2173 }
2174 }
2175
766702ef
AB
2176 /*
2177 * If the inode is not existent yet, add the orphan name and return 1.
2178 * This should only happen for the parent dir that we determine in
2179 * __record_new_ref
2180 */
31db9f7c
AB
2181 ret = is_inode_existent(sctx, ino, gen);
2182 if (ret < 0)
2183 goto out;
2184
2185 if (!ret) {
2186 ret = gen_unique_name(sctx, ino, gen, dest);
2187 if (ret < 0)
2188 goto out;
2189 ret = 1;
2190 goto out_cache;
2191 }
2192
766702ef
AB
2193 /*
2194 * Depending on whether the inode was already processed or not, use
2195 * send_root or parent_root for ref lookup.
2196 */
bf0d1f44 2197 if (ino < sctx->send_progress)
924794c9
TI
2198 ret = get_first_ref(sctx->send_root, ino,
2199 parent_ino, parent_gen, dest);
31db9f7c 2200 else
924794c9
TI
2201 ret = get_first_ref(sctx->parent_root, ino,
2202 parent_ino, parent_gen, dest);
31db9f7c
AB
2203 if (ret < 0)
2204 goto out;
2205
766702ef
AB
2206 /*
2207 * Check if the ref was overwritten by an inode's ref that was processed
2208 * earlier. If yes, treat as orphan and return 1.
2209 */
31db9f7c
AB
2210 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2211 dest->start, dest->end - dest->start);
2212 if (ret < 0)
2213 goto out;
2214 if (ret) {
2215 fs_path_reset(dest);
2216 ret = gen_unique_name(sctx, ino, gen, dest);
2217 if (ret < 0)
2218 goto out;
2219 ret = 1;
2220 }
2221
2222out_cache:
766702ef
AB
2223 /*
2224 * Store the result of the lookup in the name cache.
2225 */
e780b0d1 2226 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
31db9f7c
AB
2227 if (!nce) {
2228 ret = -ENOMEM;
2229 goto out;
2230 }
2231
2232 nce->ino = ino;
2233 nce->gen = gen;
2234 nce->parent_ino = *parent_ino;
2235 nce->parent_gen = *parent_gen;
2236 nce->name_len = fs_path_len(dest);
2237 nce->ret = ret;
2238 strcpy(nce->name, dest->start);
31db9f7c
AB
2239
2240 if (ino < sctx->send_progress)
2241 nce->need_later_update = 0;
2242 else
2243 nce->need_later_update = 1;
2244
2245 nce_ret = name_cache_insert(sctx, nce);
2246 if (nce_ret < 0)
2247 ret = nce_ret;
2248 name_cache_clean_unused(sctx);
2249
2250out:
31db9f7c
AB
2251 return ret;
2252}
2253
2254/*
2255 * Magic happens here. This function returns the first ref to an inode as it
2256 * would look like while receiving the stream at this point in time.
2257 * We walk the path up to the root. For every inode in between, we check if it
2258 * was already processed/sent. If yes, we continue with the parent as found
2259 * in send_root. If not, we continue with the parent as found in parent_root.
2260 * If we encounter an inode that was deleted at this point in time, we use the
2261 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2262 * that were not created yet and overwritten inodes/refs.
2263 *
52042d8e 2264 * When do we have orphan inodes:
31db9f7c
AB
2265 * 1. When an inode is freshly created and thus no valid refs are available yet
2266 * 2. When a directory lost all it's refs (deleted) but still has dir items
2267 * inside which were not processed yet (pending for move/delete). If anyone
2268 * tried to get the path to the dir items, it would get a path inside that
2269 * orphan directory.
2270 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2271 * of an unprocessed inode. If in that case the first ref would be
2272 * overwritten, the overwritten inode gets "orphanized". Later when we
2273 * process this overwritten inode, it is restored at a new place by moving
2274 * the orphan inode.
2275 *
2276 * sctx->send_progress tells this function at which point in time receiving
2277 * would be.
2278 */
2279static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2280 struct fs_path *dest)
2281{
2282 int ret = 0;
2283 struct fs_path *name = NULL;
2284 u64 parent_inode = 0;
2285 u64 parent_gen = 0;
2286 int stop = 0;
2287
924794c9 2288 name = fs_path_alloc();
31db9f7c
AB
2289 if (!name) {
2290 ret = -ENOMEM;
2291 goto out;
2292 }
2293
2294 dest->reversed = 1;
2295 fs_path_reset(dest);
2296
2297 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
8b191a68
FM
2298 struct waiting_dir_move *wdm;
2299
31db9f7c
AB
2300 fs_path_reset(name);
2301
9dc44214
FM
2302 if (is_waiting_for_rm(sctx, ino)) {
2303 ret = gen_unique_name(sctx, ino, gen, name);
2304 if (ret < 0)
2305 goto out;
2306 ret = fs_path_add_path(dest, name);
2307 break;
2308 }
2309
8b191a68
FM
2310 wdm = get_waiting_dir_move(sctx, ino);
2311 if (wdm && wdm->orphanized) {
2312 ret = gen_unique_name(sctx, ino, gen, name);
2313 stop = 1;
2314 } else if (wdm) {
bf0d1f44
FM
2315 ret = get_first_ref(sctx->parent_root, ino,
2316 &parent_inode, &parent_gen, name);
2317 } else {
2318 ret = __get_cur_name_and_parent(sctx, ino, gen,
2319 &parent_inode,
2320 &parent_gen, name);
2321 if (ret)
2322 stop = 1;
2323 }
2324
31db9f7c
AB
2325 if (ret < 0)
2326 goto out;
9f03740a 2327
31db9f7c
AB
2328 ret = fs_path_add_path(dest, name);
2329 if (ret < 0)
2330 goto out;
2331
2332 ino = parent_inode;
2333 gen = parent_gen;
2334 }
2335
2336out:
924794c9 2337 fs_path_free(name);
31db9f7c
AB
2338 if (!ret)
2339 fs_path_unreverse(dest);
2340 return ret;
2341}
2342
31db9f7c
AB
2343/*
2344 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2345 */
2346static int send_subvol_begin(struct send_ctx *sctx)
2347{
2348 int ret;
2349 struct btrfs_root *send_root = sctx->send_root;
2350 struct btrfs_root *parent_root = sctx->parent_root;
2351 struct btrfs_path *path;
2352 struct btrfs_key key;
2353 struct btrfs_root_ref *ref;
2354 struct extent_buffer *leaf;
2355 char *name = NULL;
2356 int namelen;
2357
ffcfaf81 2358 path = btrfs_alloc_path();
31db9f7c
AB
2359 if (!path)
2360 return -ENOMEM;
2361
e780b0d1 2362 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
31db9f7c
AB
2363 if (!name) {
2364 btrfs_free_path(path);
2365 return -ENOMEM;
2366 }
2367
4fd786e6 2368 key.objectid = send_root->root_key.objectid;
31db9f7c
AB
2369 key.type = BTRFS_ROOT_BACKREF_KEY;
2370 key.offset = 0;
2371
2372 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2373 &key, path, 1, 0);
2374 if (ret < 0)
2375 goto out;
2376 if (ret) {
2377 ret = -ENOENT;
2378 goto out;
2379 }
2380
2381 leaf = path->nodes[0];
2382 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2383 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
4fd786e6 2384 key.objectid != send_root->root_key.objectid) {
31db9f7c
AB
2385 ret = -ENOENT;
2386 goto out;
2387 }
2388 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2389 namelen = btrfs_root_ref_name_len(leaf, ref);
2390 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2391 btrfs_release_path(path);
2392
31db9f7c
AB
2393 if (parent_root) {
2394 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2395 if (ret < 0)
2396 goto out;
2397 } else {
2398 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2399 if (ret < 0)
2400 goto out;
2401 }
2402
2403 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
b96b1db0
RR
2404
2405 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2406 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2407 sctx->send_root->root_item.received_uuid);
2408 else
2409 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2410 sctx->send_root->root_item.uuid);
2411
31db9f7c 2412 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
5a0f4e2c 2413 le64_to_cpu(sctx->send_root->root_item.ctransid));
31db9f7c 2414 if (parent_root) {
37b8d27d
JB
2415 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2416 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2417 parent_root->root_item.received_uuid);
2418 else
2419 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2420 parent_root->root_item.uuid);
31db9f7c 2421 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 2422 le64_to_cpu(sctx->parent_root->root_item.ctransid));
31db9f7c
AB
2423 }
2424
2425 ret = send_cmd(sctx);
2426
2427tlv_put_failure:
2428out:
2429 btrfs_free_path(path);
2430 kfree(name);
2431 return ret;
2432}
2433
2434static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2435{
04ab956e 2436 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2437 int ret = 0;
2438 struct fs_path *p;
2439
04ab956e 2440 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
31db9f7c 2441
924794c9 2442 p = fs_path_alloc();
31db9f7c
AB
2443 if (!p)
2444 return -ENOMEM;
2445
2446 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2447 if (ret < 0)
2448 goto out;
2449
2450 ret = get_cur_path(sctx, ino, gen, p);
2451 if (ret < 0)
2452 goto out;
2453 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2454 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2455
2456 ret = send_cmd(sctx);
2457
2458tlv_put_failure:
2459out:
924794c9 2460 fs_path_free(p);
31db9f7c
AB
2461 return ret;
2462}
2463
2464static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2465{
04ab956e 2466 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2467 int ret = 0;
2468 struct fs_path *p;
2469
04ab956e 2470 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
31db9f7c 2471
924794c9 2472 p = fs_path_alloc();
31db9f7c
AB
2473 if (!p)
2474 return -ENOMEM;
2475
2476 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2477 if (ret < 0)
2478 goto out;
2479
2480 ret = get_cur_path(sctx, ino, gen, p);
2481 if (ret < 0)
2482 goto out;
2483 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2484 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2485
2486 ret = send_cmd(sctx);
2487
2488tlv_put_failure:
2489out:
924794c9 2490 fs_path_free(p);
31db9f7c
AB
2491 return ret;
2492}
2493
2494static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2495{
04ab956e 2496 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2497 int ret = 0;
2498 struct fs_path *p;
2499
04ab956e
JM
2500 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2501 ino, uid, gid);
31db9f7c 2502
924794c9 2503 p = fs_path_alloc();
31db9f7c
AB
2504 if (!p)
2505 return -ENOMEM;
2506
2507 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2508 if (ret < 0)
2509 goto out;
2510
2511 ret = get_cur_path(sctx, ino, gen, p);
2512 if (ret < 0)
2513 goto out;
2514 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2515 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2516 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2517
2518 ret = send_cmd(sctx);
2519
2520tlv_put_failure:
2521out:
924794c9 2522 fs_path_free(p);
31db9f7c
AB
2523 return ret;
2524}
2525
2526static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2527{
04ab956e 2528 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2529 int ret = 0;
2530 struct fs_path *p = NULL;
2531 struct btrfs_inode_item *ii;
2532 struct btrfs_path *path = NULL;
2533 struct extent_buffer *eb;
2534 struct btrfs_key key;
2535 int slot;
2536
04ab956e 2537 btrfs_debug(fs_info, "send_utimes %llu", ino);
31db9f7c 2538
924794c9 2539 p = fs_path_alloc();
31db9f7c
AB
2540 if (!p)
2541 return -ENOMEM;
2542
2543 path = alloc_path_for_send();
2544 if (!path) {
2545 ret = -ENOMEM;
2546 goto out;
2547 }
2548
2549 key.objectid = ino;
2550 key.type = BTRFS_INODE_ITEM_KEY;
2551 key.offset = 0;
2552 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
15b253ea
FM
2553 if (ret > 0)
2554 ret = -ENOENT;
31db9f7c
AB
2555 if (ret < 0)
2556 goto out;
2557
2558 eb = path->nodes[0];
2559 slot = path->slots[0];
2560 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2561
2562 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2563 if (ret < 0)
2564 goto out;
2565
2566 ret = get_cur_path(sctx, ino, gen, p);
2567 if (ret < 0)
2568 goto out;
2569 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
a937b979
DS
2570 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2571 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2572 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
766702ef 2573 /* TODO Add otime support when the otime patches get into upstream */
31db9f7c
AB
2574
2575 ret = send_cmd(sctx);
2576
2577tlv_put_failure:
2578out:
924794c9 2579 fs_path_free(p);
31db9f7c
AB
2580 btrfs_free_path(path);
2581 return ret;
2582}
2583
2584/*
2585 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2586 * a valid path yet because we did not process the refs yet. So, the inode
2587 * is created as orphan.
2588 */
1f4692da 2589static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c 2590{
04ab956e 2591 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c 2592 int ret = 0;
31db9f7c 2593 struct fs_path *p;
31db9f7c 2594 int cmd;
1f4692da 2595 u64 gen;
31db9f7c 2596 u64 mode;
1f4692da 2597 u64 rdev;
31db9f7c 2598
04ab956e 2599 btrfs_debug(fs_info, "send_create_inode %llu", ino);
31db9f7c 2600
924794c9 2601 p = fs_path_alloc();
31db9f7c
AB
2602 if (!p)
2603 return -ENOMEM;
2604
644d1940
LB
2605 if (ino != sctx->cur_ino) {
2606 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2607 NULL, NULL, &rdev);
2608 if (ret < 0)
2609 goto out;
2610 } else {
2611 gen = sctx->cur_inode_gen;
2612 mode = sctx->cur_inode_mode;
2613 rdev = sctx->cur_inode_rdev;
2614 }
31db9f7c 2615
e938c8ad 2616 if (S_ISREG(mode)) {
31db9f7c 2617 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2618 } else if (S_ISDIR(mode)) {
31db9f7c 2619 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2620 } else if (S_ISLNK(mode)) {
31db9f7c 2621 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2622 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2623 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2624 } else if (S_ISFIFO(mode)) {
31db9f7c 2625 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2626 } else if (S_ISSOCK(mode)) {
31db9f7c 2627 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2628 } else {
f14d104d 2629 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
31db9f7c 2630 (int)(mode & S_IFMT));
ca6842bf 2631 ret = -EOPNOTSUPP;
31db9f7c
AB
2632 goto out;
2633 }
2634
2635 ret = begin_cmd(sctx, cmd);
2636 if (ret < 0)
2637 goto out;
2638
1f4692da 2639 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2640 if (ret < 0)
2641 goto out;
2642
2643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2644 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2645
2646 if (S_ISLNK(mode)) {
2647 fs_path_reset(p);
924794c9 2648 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2649 if (ret < 0)
2650 goto out;
2651 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2652 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2653 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2654 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2655 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2656 }
2657
2658 ret = send_cmd(sctx);
2659 if (ret < 0)
2660 goto out;
2661
2662
2663tlv_put_failure:
2664out:
924794c9 2665 fs_path_free(p);
31db9f7c
AB
2666 return ret;
2667}
2668
1f4692da
AB
2669/*
2670 * We need some special handling for inodes that get processed before the parent
2671 * directory got created. See process_recorded_refs for details.
2672 * This function does the check if we already created the dir out of order.
2673 */
2674static int did_create_dir(struct send_ctx *sctx, u64 dir)
2675{
2676 int ret = 0;
2677 struct btrfs_path *path = NULL;
2678 struct btrfs_key key;
2679 struct btrfs_key found_key;
2680 struct btrfs_key di_key;
2681 struct extent_buffer *eb;
2682 struct btrfs_dir_item *di;
2683 int slot;
2684
2685 path = alloc_path_for_send();
2686 if (!path) {
2687 ret = -ENOMEM;
2688 goto out;
2689 }
2690
2691 key.objectid = dir;
2692 key.type = BTRFS_DIR_INDEX_KEY;
2693 key.offset = 0;
dff6d0ad
FDBM
2694 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2695 if (ret < 0)
2696 goto out;
2697
1f4692da 2698 while (1) {
dff6d0ad
FDBM
2699 eb = path->nodes[0];
2700 slot = path->slots[0];
2701 if (slot >= btrfs_header_nritems(eb)) {
2702 ret = btrfs_next_leaf(sctx->send_root, path);
2703 if (ret < 0) {
2704 goto out;
2705 } else if (ret > 0) {
2706 ret = 0;
2707 break;
2708 }
2709 continue;
1f4692da 2710 }
dff6d0ad
FDBM
2711
2712 btrfs_item_key_to_cpu(eb, &found_key, slot);
2713 if (found_key.objectid != key.objectid ||
1f4692da
AB
2714 found_key.type != key.type) {
2715 ret = 0;
2716 goto out;
2717 }
2718
2719 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2720 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2721
a0525414
JB
2722 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2723 di_key.objectid < sctx->send_progress) {
1f4692da
AB
2724 ret = 1;
2725 goto out;
2726 }
2727
dff6d0ad 2728 path->slots[0]++;
1f4692da
AB
2729 }
2730
2731out:
2732 btrfs_free_path(path);
2733 return ret;
2734}
2735
2736/*
2737 * Only creates the inode if it is:
2738 * 1. Not a directory
2739 * 2. Or a directory which was not created already due to out of order
2740 * directories. See did_create_dir and process_recorded_refs for details.
2741 */
2742static int send_create_inode_if_needed(struct send_ctx *sctx)
2743{
2744 int ret;
2745
2746 if (S_ISDIR(sctx->cur_inode_mode)) {
2747 ret = did_create_dir(sctx, sctx->cur_ino);
2748 if (ret < 0)
2749 goto out;
2750 if (ret) {
2751 ret = 0;
2752 goto out;
2753 }
2754 }
2755
2756 ret = send_create_inode(sctx, sctx->cur_ino);
2757 if (ret < 0)
2758 goto out;
2759
2760out:
2761 return ret;
2762}
2763
31db9f7c
AB
2764struct recorded_ref {
2765 struct list_head list;
31db9f7c
AB
2766 char *name;
2767 struct fs_path *full_path;
2768 u64 dir;
2769 u64 dir_gen;
31db9f7c
AB
2770 int name_len;
2771};
2772
fdb13889
FM
2773static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2774{
2775 ref->full_path = path;
2776 ref->name = (char *)kbasename(ref->full_path->start);
2777 ref->name_len = ref->full_path->end - ref->name;
2778}
2779
31db9f7c
AB
2780/*
2781 * We need to process new refs before deleted refs, but compare_tree gives us
2782 * everything mixed. So we first record all refs and later process them.
2783 * This function is a helper to record one ref.
2784 */
a4d96d62 2785static int __record_ref(struct list_head *head, u64 dir,
31db9f7c
AB
2786 u64 dir_gen, struct fs_path *path)
2787{
2788 struct recorded_ref *ref;
31db9f7c 2789
e780b0d1 2790 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
31db9f7c
AB
2791 if (!ref)
2792 return -ENOMEM;
2793
2794 ref->dir = dir;
2795 ref->dir_gen = dir_gen;
fdb13889 2796 set_ref_path(ref, path);
31db9f7c
AB
2797 list_add_tail(&ref->list, head);
2798 return 0;
2799}
2800
ba5e8f2e
JB
2801static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2802{
2803 struct recorded_ref *new;
2804
e780b0d1 2805 new = kmalloc(sizeof(*ref), GFP_KERNEL);
ba5e8f2e
JB
2806 if (!new)
2807 return -ENOMEM;
2808
2809 new->dir = ref->dir;
2810 new->dir_gen = ref->dir_gen;
2811 new->full_path = NULL;
2812 INIT_LIST_HEAD(&new->list);
2813 list_add_tail(&new->list, list);
2814 return 0;
2815}
2816
924794c9 2817static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2818{
2819 struct recorded_ref *cur;
31db9f7c 2820
e938c8ad
AB
2821 while (!list_empty(head)) {
2822 cur = list_entry(head->next, struct recorded_ref, list);
924794c9 2823 fs_path_free(cur->full_path);
e938c8ad 2824 list_del(&cur->list);
31db9f7c
AB
2825 kfree(cur);
2826 }
31db9f7c
AB
2827}
2828
2829static void free_recorded_refs(struct send_ctx *sctx)
2830{
924794c9
TI
2831 __free_recorded_refs(&sctx->new_refs);
2832 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2833}
2834
2835/*
766702ef 2836 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2837 * ref of an unprocessed inode gets overwritten and for all non empty
2838 * directories.
2839 */
2840static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2841 struct fs_path *path)
2842{
2843 int ret;
2844 struct fs_path *orphan;
2845
924794c9 2846 orphan = fs_path_alloc();
31db9f7c
AB
2847 if (!orphan)
2848 return -ENOMEM;
2849
2850 ret = gen_unique_name(sctx, ino, gen, orphan);
2851 if (ret < 0)
2852 goto out;
2853
2854 ret = send_rename(sctx, path, orphan);
2855
2856out:
924794c9 2857 fs_path_free(orphan);
31db9f7c
AB
2858 return ret;
2859}
2860
9dc44214
FM
2861static struct orphan_dir_info *
2862add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2863{
2864 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2865 struct rb_node *parent = NULL;
2866 struct orphan_dir_info *entry, *odi;
2867
9dc44214
FM
2868 while (*p) {
2869 parent = *p;
2870 entry = rb_entry(parent, struct orphan_dir_info, node);
2871 if (dir_ino < entry->ino) {
2872 p = &(*p)->rb_left;
2873 } else if (dir_ino > entry->ino) {
2874 p = &(*p)->rb_right;
2875 } else {
9dc44214
FM
2876 return entry;
2877 }
2878 }
2879
35c8eda1
RK
2880 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2881 if (!odi)
2882 return ERR_PTR(-ENOMEM);
2883 odi->ino = dir_ino;
2884 odi->gen = 0;
0f96f517 2885 odi->last_dir_index_offset = 0;
35c8eda1 2886
9dc44214
FM
2887 rb_link_node(&odi->node, parent, p);
2888 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2889 return odi;
2890}
2891
2892static struct orphan_dir_info *
2893get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2894{
2895 struct rb_node *n = sctx->orphan_dirs.rb_node;
2896 struct orphan_dir_info *entry;
2897
2898 while (n) {
2899 entry = rb_entry(n, struct orphan_dir_info, node);
2900 if (dir_ino < entry->ino)
2901 n = n->rb_left;
2902 else if (dir_ino > entry->ino)
2903 n = n->rb_right;
2904 else
2905 return entry;
2906 }
2907 return NULL;
2908}
2909
2910static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2911{
2912 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2913
2914 return odi != NULL;
2915}
2916
2917static void free_orphan_dir_info(struct send_ctx *sctx,
2918 struct orphan_dir_info *odi)
2919{
2920 if (!odi)
2921 return;
2922 rb_erase(&odi->node, &sctx->orphan_dirs);
2923 kfree(odi);
2924}
2925
31db9f7c
AB
2926/*
2927 * Returns 1 if a directory can be removed at this point in time.
2928 * We check this by iterating all dir items and checking if the inode behind
2929 * the dir item was already processed.
2930 */
9dc44214
FM
2931static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2932 u64 send_progress)
31db9f7c
AB
2933{
2934 int ret = 0;
2935 struct btrfs_root *root = sctx->parent_root;
2936 struct btrfs_path *path;
2937 struct btrfs_key key;
2938 struct btrfs_key found_key;
2939 struct btrfs_key loc;
2940 struct btrfs_dir_item *di;
0f96f517 2941 struct orphan_dir_info *odi = NULL;
31db9f7c 2942
6d85ed05
AB
2943 /*
2944 * Don't try to rmdir the top/root subvolume dir.
2945 */
2946 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2947 return 0;
2948
31db9f7c
AB
2949 path = alloc_path_for_send();
2950 if (!path)
2951 return -ENOMEM;
2952
2953 key.objectid = dir;
2954 key.type = BTRFS_DIR_INDEX_KEY;
2955 key.offset = 0;
0f96f517
RK
2956
2957 odi = get_orphan_dir_info(sctx, dir);
2958 if (odi)
2959 key.offset = odi->last_dir_index_offset;
2960
dff6d0ad
FDBM
2961 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2962 if (ret < 0)
2963 goto out;
31db9f7c
AB
2964
2965 while (1) {
9dc44214
FM
2966 struct waiting_dir_move *dm;
2967
dff6d0ad
FDBM
2968 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2969 ret = btrfs_next_leaf(root, path);
2970 if (ret < 0)
2971 goto out;
2972 else if (ret > 0)
2973 break;
2974 continue;
31db9f7c 2975 }
dff6d0ad
FDBM
2976 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2977 path->slots[0]);
2978 if (found_key.objectid != key.objectid ||
2979 found_key.type != key.type)
31db9f7c 2980 break;
31db9f7c
AB
2981
2982 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2983 struct btrfs_dir_item);
2984 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2985
9dc44214
FM
2986 dm = get_waiting_dir_move(sctx, loc.objectid);
2987 if (dm) {
9dc44214
FM
2988 odi = add_orphan_dir_info(sctx, dir);
2989 if (IS_ERR(odi)) {
2990 ret = PTR_ERR(odi);
2991 goto out;
2992 }
2993 odi->gen = dir_gen;
0f96f517 2994 odi->last_dir_index_offset = found_key.offset;
9dc44214
FM
2995 dm->rmdir_ino = dir;
2996 ret = 0;
2997 goto out;
2998 }
2999
31db9f7c 3000 if (loc.objectid > send_progress) {
0f96f517
RK
3001 odi = add_orphan_dir_info(sctx, dir);
3002 if (IS_ERR(odi)) {
3003 ret = PTR_ERR(odi);
3004 goto out;
3005 }
3006 odi->gen = dir_gen;
3007 odi->last_dir_index_offset = found_key.offset;
31db9f7c
AB
3008 ret = 0;
3009 goto out;
3010 }
3011
dff6d0ad 3012 path->slots[0]++;
31db9f7c 3013 }
0f96f517 3014 free_orphan_dir_info(sctx, odi);
31db9f7c
AB
3015
3016 ret = 1;
3017
3018out:
3019 btrfs_free_path(path);
3020 return ret;
3021}
3022
9f03740a
FDBM
3023static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3024{
9dc44214 3025 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
9f03740a 3026
9dc44214 3027 return entry != NULL;
9f03740a
FDBM
3028}
3029
8b191a68 3030static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
9f03740a
FDBM
3031{
3032 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3033 struct rb_node *parent = NULL;
3034 struct waiting_dir_move *entry, *dm;
3035
e780b0d1 3036 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
9f03740a
FDBM
3037 if (!dm)
3038 return -ENOMEM;
3039 dm->ino = ino;
9dc44214 3040 dm->rmdir_ino = 0;
8b191a68 3041 dm->orphanized = orphanized;
9f03740a
FDBM
3042
3043 while (*p) {
3044 parent = *p;
3045 entry = rb_entry(parent, struct waiting_dir_move, node);
3046 if (ino < entry->ino) {
3047 p = &(*p)->rb_left;
3048 } else if (ino > entry->ino) {
3049 p = &(*p)->rb_right;
3050 } else {
3051 kfree(dm);
3052 return -EEXIST;
3053 }
3054 }
3055
3056 rb_link_node(&dm->node, parent, p);
3057 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3058 return 0;
3059}
3060
9dc44214
FM
3061static struct waiting_dir_move *
3062get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
9f03740a
FDBM
3063{
3064 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3065 struct waiting_dir_move *entry;
3066
3067 while (n) {
3068 entry = rb_entry(n, struct waiting_dir_move, node);
9dc44214 3069 if (ino < entry->ino)
9f03740a 3070 n = n->rb_left;
9dc44214 3071 else if (ino > entry->ino)
9f03740a 3072 n = n->rb_right;
9dc44214
FM
3073 else
3074 return entry;
9f03740a 3075 }
9dc44214
FM
3076 return NULL;
3077}
3078
3079static void free_waiting_dir_move(struct send_ctx *sctx,
3080 struct waiting_dir_move *dm)
3081{
3082 if (!dm)
3083 return;
3084 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3085 kfree(dm);
9f03740a
FDBM
3086}
3087
bfa7e1f8
FM
3088static int add_pending_dir_move(struct send_ctx *sctx,
3089 u64 ino,
3090 u64 ino_gen,
f959492f
FM
3091 u64 parent_ino,
3092 struct list_head *new_refs,
84471e24
FM
3093 struct list_head *deleted_refs,
3094 const bool is_orphan)
9f03740a
FDBM
3095{
3096 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3097 struct rb_node *parent = NULL;
73b802f4 3098 struct pending_dir_move *entry = NULL, *pm;
9f03740a
FDBM
3099 struct recorded_ref *cur;
3100 int exists = 0;
3101 int ret;
3102
e780b0d1 3103 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
9f03740a
FDBM
3104 if (!pm)
3105 return -ENOMEM;
3106 pm->parent_ino = parent_ino;
bfa7e1f8
FM
3107 pm->ino = ino;
3108 pm->gen = ino_gen;
9f03740a
FDBM
3109 INIT_LIST_HEAD(&pm->list);
3110 INIT_LIST_HEAD(&pm->update_refs);
3111 RB_CLEAR_NODE(&pm->node);
3112
3113 while (*p) {
3114 parent = *p;
3115 entry = rb_entry(parent, struct pending_dir_move, node);
3116 if (parent_ino < entry->parent_ino) {
3117 p = &(*p)->rb_left;
3118 } else if (parent_ino > entry->parent_ino) {
3119 p = &(*p)->rb_right;
3120 } else {
3121 exists = 1;
3122 break;
3123 }
3124 }
3125
f959492f 3126 list_for_each_entry(cur, deleted_refs, list) {
9f03740a
FDBM
3127 ret = dup_ref(cur, &pm->update_refs);
3128 if (ret < 0)
3129 goto out;
3130 }
f959492f 3131 list_for_each_entry(cur, new_refs, list) {
9f03740a
FDBM
3132 ret = dup_ref(cur, &pm->update_refs);
3133 if (ret < 0)
3134 goto out;
3135 }
3136
8b191a68 3137 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
9f03740a
FDBM
3138 if (ret)
3139 goto out;
3140
3141 if (exists) {
3142 list_add_tail(&pm->list, &entry->list);
3143 } else {
3144 rb_link_node(&pm->node, parent, p);
3145 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3146 }
3147 ret = 0;
3148out:
3149 if (ret) {
3150 __free_recorded_refs(&pm->update_refs);
3151 kfree(pm);
3152 }
3153 return ret;
3154}
3155
3156static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3157 u64 parent_ino)
3158{
3159 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3160 struct pending_dir_move *entry;
3161
3162 while (n) {
3163 entry = rb_entry(n, struct pending_dir_move, node);
3164 if (parent_ino < entry->parent_ino)
3165 n = n->rb_left;
3166 else if (parent_ino > entry->parent_ino)
3167 n = n->rb_right;
3168 else
3169 return entry;
3170 }
3171 return NULL;
3172}
3173
801bec36
RK
3174static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3175 u64 ino, u64 gen, u64 *ancestor_ino)
3176{
3177 int ret = 0;
3178 u64 parent_inode = 0;
3179 u64 parent_gen = 0;
3180 u64 start_ino = ino;
3181
3182 *ancestor_ino = 0;
3183 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3184 fs_path_reset(name);
3185
3186 if (is_waiting_for_rm(sctx, ino))
3187 break;
3188 if (is_waiting_for_move(sctx, ino)) {
3189 if (*ancestor_ino == 0)
3190 *ancestor_ino = ino;
3191 ret = get_first_ref(sctx->parent_root, ino,
3192 &parent_inode, &parent_gen, name);
3193 } else {
3194 ret = __get_cur_name_and_parent(sctx, ino, gen,
3195 &parent_inode,
3196 &parent_gen, name);
3197 if (ret > 0) {
3198 ret = 0;
3199 break;
3200 }
3201 }
3202 if (ret < 0)
3203 break;
3204 if (parent_inode == start_ino) {
3205 ret = 1;
3206 if (*ancestor_ino == 0)
3207 *ancestor_ino = ino;
3208 break;
3209 }
3210 ino = parent_inode;
3211 gen = parent_gen;
3212 }
3213 return ret;
3214}
3215
9f03740a
FDBM
3216static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3217{
3218 struct fs_path *from_path = NULL;
3219 struct fs_path *to_path = NULL;
2b863a13 3220 struct fs_path *name = NULL;
9f03740a
FDBM
3221 u64 orig_progress = sctx->send_progress;
3222 struct recorded_ref *cur;
2b863a13 3223 u64 parent_ino, parent_gen;
9dc44214
FM
3224 struct waiting_dir_move *dm = NULL;
3225 u64 rmdir_ino = 0;
801bec36
RK
3226 u64 ancestor;
3227 bool is_orphan;
9f03740a
FDBM
3228 int ret;
3229
2b863a13 3230 name = fs_path_alloc();
9f03740a 3231 from_path = fs_path_alloc();
2b863a13
FM
3232 if (!name || !from_path) {
3233 ret = -ENOMEM;
3234 goto out;
3235 }
9f03740a 3236
9dc44214
FM
3237 dm = get_waiting_dir_move(sctx, pm->ino);
3238 ASSERT(dm);
3239 rmdir_ino = dm->rmdir_ino;
801bec36 3240 is_orphan = dm->orphanized;
9dc44214 3241 free_waiting_dir_move(sctx, dm);
2b863a13 3242
801bec36 3243 if (is_orphan) {
84471e24
FM
3244 ret = gen_unique_name(sctx, pm->ino,
3245 pm->gen, from_path);
3246 } else {
3247 ret = get_first_ref(sctx->parent_root, pm->ino,
3248 &parent_ino, &parent_gen, name);
3249 if (ret < 0)
3250 goto out;
3251 ret = get_cur_path(sctx, parent_ino, parent_gen,
3252 from_path);
3253 if (ret < 0)
3254 goto out;
3255 ret = fs_path_add_path(from_path, name);
3256 }
c992ec94
FM
3257 if (ret < 0)
3258 goto out;
2b863a13 3259
f959492f 3260 sctx->send_progress = sctx->cur_ino + 1;
801bec36 3261 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
7969e77a
FM
3262 if (ret < 0)
3263 goto out;
801bec36
RK
3264 if (ret) {
3265 LIST_HEAD(deleted_refs);
3266 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3267 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3268 &pm->update_refs, &deleted_refs,
3269 is_orphan);
3270 if (ret < 0)
3271 goto out;
3272 if (rmdir_ino) {
3273 dm = get_waiting_dir_move(sctx, pm->ino);
3274 ASSERT(dm);
3275 dm->rmdir_ino = rmdir_ino;
3276 }
3277 goto out;
3278 }
c992ec94
FM
3279 fs_path_reset(name);
3280 to_path = name;
2b863a13 3281 name = NULL;
9f03740a
FDBM
3282 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3283 if (ret < 0)
3284 goto out;
3285
3286 ret = send_rename(sctx, from_path, to_path);
3287 if (ret < 0)
3288 goto out;
3289
9dc44214
FM
3290 if (rmdir_ino) {
3291 struct orphan_dir_info *odi;
0f96f517 3292 u64 gen;
9dc44214
FM
3293
3294 odi = get_orphan_dir_info(sctx, rmdir_ino);
3295 if (!odi) {
3296 /* already deleted */
3297 goto finish;
3298 }
0f96f517
RK
3299 gen = odi->gen;
3300
3301 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
9dc44214
FM
3302 if (ret < 0)
3303 goto out;
3304 if (!ret)
3305 goto finish;
3306
3307 name = fs_path_alloc();
3308 if (!name) {
3309 ret = -ENOMEM;
3310 goto out;
3311 }
0f96f517 3312 ret = get_cur_path(sctx, rmdir_ino, gen, name);
9dc44214
FM
3313 if (ret < 0)
3314 goto out;
3315 ret = send_rmdir(sctx, name);
3316 if (ret < 0)
3317 goto out;
9dc44214
FM
3318 }
3319
3320finish:
9f03740a
FDBM
3321 ret = send_utimes(sctx, pm->ino, pm->gen);
3322 if (ret < 0)
3323 goto out;
3324
3325 /*
3326 * After rename/move, need to update the utimes of both new parent(s)
3327 * and old parent(s).
3328 */
3329 list_for_each_entry(cur, &pm->update_refs, list) {
764433a1
RK
3330 /*
3331 * The parent inode might have been deleted in the send snapshot
3332 */
3333 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3334 NULL, NULL, NULL, NULL, NULL);
3335 if (ret == -ENOENT) {
3336 ret = 0;
9dc44214 3337 continue;
764433a1
RK
3338 }
3339 if (ret < 0)
3340 goto out;
3341
9f03740a
FDBM
3342 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3343 if (ret < 0)
3344 goto out;
3345 }
3346
3347out:
2b863a13 3348 fs_path_free(name);
9f03740a
FDBM
3349 fs_path_free(from_path);
3350 fs_path_free(to_path);
3351 sctx->send_progress = orig_progress;
3352
3353 return ret;
3354}
3355
3356static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3357{
3358 if (!list_empty(&m->list))
3359 list_del(&m->list);
3360 if (!RB_EMPTY_NODE(&m->node))
3361 rb_erase(&m->node, &sctx->pending_dir_moves);
3362 __free_recorded_refs(&m->update_refs);
3363 kfree(m);
3364}
3365
a4390aee
RK
3366static void tail_append_pending_moves(struct send_ctx *sctx,
3367 struct pending_dir_move *moves,
9f03740a
FDBM
3368 struct list_head *stack)
3369{
3370 if (list_empty(&moves->list)) {
3371 list_add_tail(&moves->list, stack);
3372 } else {
3373 LIST_HEAD(list);
3374 list_splice_init(&moves->list, &list);
3375 list_add_tail(&moves->list, stack);
3376 list_splice_tail(&list, stack);
3377 }
a4390aee
RK
3378 if (!RB_EMPTY_NODE(&moves->node)) {
3379 rb_erase(&moves->node, &sctx->pending_dir_moves);
3380 RB_CLEAR_NODE(&moves->node);
3381 }
9f03740a
FDBM
3382}
3383
3384static int apply_children_dir_moves(struct send_ctx *sctx)
3385{
3386 struct pending_dir_move *pm;
3387 struct list_head stack;
3388 u64 parent_ino = sctx->cur_ino;
3389 int ret = 0;
3390
3391 pm = get_pending_dir_moves(sctx, parent_ino);
3392 if (!pm)
3393 return 0;
3394
3395 INIT_LIST_HEAD(&stack);
a4390aee 3396 tail_append_pending_moves(sctx, pm, &stack);
9f03740a
FDBM
3397
3398 while (!list_empty(&stack)) {
3399 pm = list_first_entry(&stack, struct pending_dir_move, list);
3400 parent_ino = pm->ino;
3401 ret = apply_dir_move(sctx, pm);
3402 free_pending_move(sctx, pm);
3403 if (ret)
3404 goto out;
3405 pm = get_pending_dir_moves(sctx, parent_ino);
3406 if (pm)
a4390aee 3407 tail_append_pending_moves(sctx, pm, &stack);
9f03740a
FDBM
3408 }
3409 return 0;
3410
3411out:
3412 while (!list_empty(&stack)) {
3413 pm = list_first_entry(&stack, struct pending_dir_move, list);
3414 free_pending_move(sctx, pm);
3415 }
3416 return ret;
3417}
3418
84471e24
FM
3419/*
3420 * We might need to delay a directory rename even when no ancestor directory
3421 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3422 * renamed. This happens when we rename a directory to the old name (the name
3423 * in the parent root) of some other unrelated directory that got its rename
3424 * delayed due to some ancestor with higher number that got renamed.
3425 *
3426 * Example:
3427 *
3428 * Parent snapshot:
3429 * . (ino 256)
3430 * |---- a/ (ino 257)
3431 * | |---- file (ino 260)
3432 * |
3433 * |---- b/ (ino 258)
3434 * |---- c/ (ino 259)
3435 *
3436 * Send snapshot:
3437 * . (ino 256)
3438 * |---- a/ (ino 258)
3439 * |---- x/ (ino 259)
3440 * |---- y/ (ino 257)
3441 * |----- file (ino 260)
3442 *
3443 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3444 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3445 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3446 * must issue is:
3447 *
3448 * 1 - rename 259 from 'c' to 'x'
3449 * 2 - rename 257 from 'a' to 'x/y'
3450 * 3 - rename 258 from 'b' to 'a'
3451 *
3452 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3453 * be done right away and < 0 on error.
3454 */
3455static int wait_for_dest_dir_move(struct send_ctx *sctx,
3456 struct recorded_ref *parent_ref,
3457 const bool is_orphan)
3458{
2ff7e61e 3459 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
84471e24
FM
3460 struct btrfs_path *path;
3461 struct btrfs_key key;
3462 struct btrfs_key di_key;
3463 struct btrfs_dir_item *di;
3464 u64 left_gen;
3465 u64 right_gen;
3466 int ret = 0;
801bec36 3467 struct waiting_dir_move *wdm;
84471e24
FM
3468
3469 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3470 return 0;
3471
3472 path = alloc_path_for_send();
3473 if (!path)
3474 return -ENOMEM;
3475
3476 key.objectid = parent_ref->dir;
3477 key.type = BTRFS_DIR_ITEM_KEY;
3478 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3479
3480 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3481 if (ret < 0) {
3482 goto out;
3483 } else if (ret > 0) {
3484 ret = 0;
3485 goto out;
3486 }
3487
2ff7e61e
JM
3488 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3489 parent_ref->name_len);
84471e24
FM
3490 if (!di) {
3491 ret = 0;
3492 goto out;
3493 }
3494 /*
3495 * di_key.objectid has the number of the inode that has a dentry in the
3496 * parent directory with the same name that sctx->cur_ino is being
3497 * renamed to. We need to check if that inode is in the send root as
3498 * well and if it is currently marked as an inode with a pending rename,
3499 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3500 * that it happens after that other inode is renamed.
3501 */
3502 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3503 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3504 ret = 0;
3505 goto out;
3506 }
3507
3508 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3509 &left_gen, NULL, NULL, NULL, NULL);
3510 if (ret < 0)
3511 goto out;
3512 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3513 &right_gen, NULL, NULL, NULL, NULL);
3514 if (ret < 0) {
3515 if (ret == -ENOENT)
3516 ret = 0;
3517 goto out;
3518 }
3519
3520 /* Different inode, no need to delay the rename of sctx->cur_ino */
3521 if (right_gen != left_gen) {
3522 ret = 0;
3523 goto out;
3524 }
3525
801bec36
RK
3526 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3527 if (wdm && !wdm->orphanized) {
84471e24
FM
3528 ret = add_pending_dir_move(sctx,
3529 sctx->cur_ino,
3530 sctx->cur_inode_gen,
3531 di_key.objectid,
3532 &sctx->new_refs,
3533 &sctx->deleted_refs,
3534 is_orphan);
3535 if (!ret)
3536 ret = 1;
3537 }
3538out:
3539 btrfs_free_path(path);
3540 return ret;
3541}
3542
80aa6027 3543/*
ea37d599
FM
3544 * Check if inode ino2, or any of its ancestors, is inode ino1.
3545 * Return 1 if true, 0 if false and < 0 on error.
3546 */
3547static int check_ino_in_path(struct btrfs_root *root,
3548 const u64 ino1,
3549 const u64 ino1_gen,
3550 const u64 ino2,
3551 const u64 ino2_gen,
3552 struct fs_path *fs_path)
3553{
3554 u64 ino = ino2;
3555
3556 if (ino1 == ino2)
3557 return ino1_gen == ino2_gen;
3558
3559 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3560 u64 parent;
3561 u64 parent_gen;
3562 int ret;
3563
3564 fs_path_reset(fs_path);
3565 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3566 if (ret < 0)
3567 return ret;
3568 if (parent == ino1)
3569 return parent_gen == ino1_gen;
3570 ino = parent;
3571 }
3572 return 0;
3573}
3574
3575/*
3576 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3577 * possible path (in case ino2 is not a directory and has multiple hard links).
80aa6027
FM
3578 * Return 1 if true, 0 if false and < 0 on error.
3579 */
3580static int is_ancestor(struct btrfs_root *root,
3581 const u64 ino1,
3582 const u64 ino1_gen,
3583 const u64 ino2,
3584 struct fs_path *fs_path)
3585{
ea37d599 3586 bool free_fs_path = false;
72c3668f 3587 int ret = 0;
ea37d599
FM
3588 struct btrfs_path *path = NULL;
3589 struct btrfs_key key;
72c3668f
FM
3590
3591 if (!fs_path) {
3592 fs_path = fs_path_alloc();
3593 if (!fs_path)
3594 return -ENOMEM;
ea37d599 3595 free_fs_path = true;
72c3668f 3596 }
80aa6027 3597
ea37d599
FM
3598 path = alloc_path_for_send();
3599 if (!path) {
3600 ret = -ENOMEM;
3601 goto out;
3602 }
80aa6027 3603
ea37d599
FM
3604 key.objectid = ino2;
3605 key.type = BTRFS_INODE_REF_KEY;
3606 key.offset = 0;
3607
3608 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3609 if (ret < 0)
3610 goto out;
3611
3612 while (true) {
3613 struct extent_buffer *leaf = path->nodes[0];
3614 int slot = path->slots[0];
3615 u32 cur_offset = 0;
3616 u32 item_size;
3617
3618 if (slot >= btrfs_header_nritems(leaf)) {
3619 ret = btrfs_next_leaf(root, path);
3620 if (ret < 0)
3621 goto out;
3622 if (ret > 0)
3623 break;
3624 continue;
72c3668f 3625 }
ea37d599
FM
3626
3627 btrfs_item_key_to_cpu(leaf, &key, slot);
3628 if (key.objectid != ino2)
3629 break;
3630 if (key.type != BTRFS_INODE_REF_KEY &&
3631 key.type != BTRFS_INODE_EXTREF_KEY)
3632 break;
3633
3634 item_size = btrfs_item_size_nr(leaf, slot);
3635 while (cur_offset < item_size) {
3636 u64 parent;
3637 u64 parent_gen;
3638
3639 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3640 unsigned long ptr;
3641 struct btrfs_inode_extref *extref;
3642
3643 ptr = btrfs_item_ptr_offset(leaf, slot);
3644 extref = (struct btrfs_inode_extref *)
3645 (ptr + cur_offset);
3646 parent = btrfs_inode_extref_parent(leaf,
3647 extref);
3648 cur_offset += sizeof(*extref);
3649 cur_offset += btrfs_inode_extref_name_len(leaf,
3650 extref);
3651 } else {
3652 parent = key.offset;
3653 cur_offset = item_size;
3654 }
3655
3656 ret = get_inode_info(root, parent, NULL, &parent_gen,
3657 NULL, NULL, NULL, NULL);
3658 if (ret < 0)
3659 goto out;
3660 ret = check_ino_in_path(root, ino1, ino1_gen,
3661 parent, parent_gen, fs_path);
3662 if (ret)
3663 goto out;
80aa6027 3664 }
ea37d599 3665 path->slots[0]++;
80aa6027 3666 }
ea37d599 3667 ret = 0;
72c3668f 3668 out:
ea37d599
FM
3669 btrfs_free_path(path);
3670 if (free_fs_path)
72c3668f
FM
3671 fs_path_free(fs_path);
3672 return ret;
80aa6027
FM
3673}
3674
9f03740a 3675static int wait_for_parent_move(struct send_ctx *sctx,
8b191a68
FM
3676 struct recorded_ref *parent_ref,
3677 const bool is_orphan)
9f03740a 3678{
f959492f 3679 int ret = 0;
9f03740a 3680 u64 ino = parent_ref->dir;
fe9c798d 3681 u64 ino_gen = parent_ref->dir_gen;
9f03740a 3682 u64 parent_ino_before, parent_ino_after;
9f03740a
FDBM
3683 struct fs_path *path_before = NULL;
3684 struct fs_path *path_after = NULL;
3685 int len1, len2;
9f03740a
FDBM
3686
3687 path_after = fs_path_alloc();
f959492f
FM
3688 path_before = fs_path_alloc();
3689 if (!path_after || !path_before) {
9f03740a
FDBM
3690 ret = -ENOMEM;
3691 goto out;
3692 }
3693
bfa7e1f8 3694 /*
f959492f
FM
3695 * Our current directory inode may not yet be renamed/moved because some
3696 * ancestor (immediate or not) has to be renamed/moved first. So find if
3697 * such ancestor exists and make sure our own rename/move happens after
80aa6027
FM
3698 * that ancestor is processed to avoid path build infinite loops (done
3699 * at get_cur_path()).
bfa7e1f8 3700 */
f959492f 3701 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
fe9c798d
FM
3702 u64 parent_ino_after_gen;
3703
f959492f 3704 if (is_waiting_for_move(sctx, ino)) {
80aa6027
FM
3705 /*
3706 * If the current inode is an ancestor of ino in the
3707 * parent root, we need to delay the rename of the
3708 * current inode, otherwise don't delayed the rename
3709 * because we can end up with a circular dependency
3710 * of renames, resulting in some directories never
3711 * getting the respective rename operations issued in
3712 * the send stream or getting into infinite path build
3713 * loops.
3714 */
3715 ret = is_ancestor(sctx->parent_root,
3716 sctx->cur_ino, sctx->cur_inode_gen,
3717 ino, path_before);
4122ea64
FM
3718 if (ret)
3719 break;
f959492f 3720 }
bfa7e1f8
FM
3721
3722 fs_path_reset(path_before);
3723 fs_path_reset(path_after);
3724
3725 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
fe9c798d 3726 &parent_ino_after_gen, path_after);
bfa7e1f8
FM
3727 if (ret < 0)
3728 goto out;
3729 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3730 NULL, path_before);
f959492f 3731 if (ret < 0 && ret != -ENOENT) {
bfa7e1f8 3732 goto out;
f959492f 3733 } else if (ret == -ENOENT) {
bf8e8ca6 3734 ret = 0;
f959492f 3735 break;
bfa7e1f8
FM
3736 }
3737
3738 len1 = fs_path_len(path_before);
3739 len2 = fs_path_len(path_after);
f959492f
FM
3740 if (ino > sctx->cur_ino &&
3741 (parent_ino_before != parent_ino_after || len1 != len2 ||
3742 memcmp(path_before->start, path_after->start, len1))) {
fe9c798d
FM
3743 u64 parent_ino_gen;
3744
3745 ret = get_inode_info(sctx->parent_root, ino, NULL,
3746 &parent_ino_gen, NULL, NULL, NULL,
3747 NULL);
3748 if (ret < 0)
3749 goto out;
3750 if (ino_gen == parent_ino_gen) {
3751 ret = 1;
3752 break;
3753 }
bfa7e1f8 3754 }
bfa7e1f8 3755 ino = parent_ino_after;
fe9c798d 3756 ino_gen = parent_ino_after_gen;
bfa7e1f8
FM
3757 }
3758
9f03740a
FDBM
3759out:
3760 fs_path_free(path_before);
3761 fs_path_free(path_after);
3762
f959492f
FM
3763 if (ret == 1) {
3764 ret = add_pending_dir_move(sctx,
3765 sctx->cur_ino,
3766 sctx->cur_inode_gen,
3767 ino,
3768 &sctx->new_refs,
84471e24 3769 &sctx->deleted_refs,
8b191a68 3770 is_orphan);
f959492f
FM
3771 if (!ret)
3772 ret = 1;
3773 }
3774
9f03740a
FDBM
3775 return ret;
3776}
3777
f5962781
FM
3778static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3779{
3780 int ret;
3781 struct fs_path *new_path;
3782
3783 /*
3784 * Our reference's name member points to its full_path member string, so
3785 * we use here a new path.
3786 */
3787 new_path = fs_path_alloc();
3788 if (!new_path)
3789 return -ENOMEM;
3790
3791 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3792 if (ret < 0) {
3793 fs_path_free(new_path);
3794 return ret;
3795 }
3796 ret = fs_path_add(new_path, ref->name, ref->name_len);
3797 if (ret < 0) {
3798 fs_path_free(new_path);
3799 return ret;
3800 }
3801
3802 fs_path_free(ref->full_path);
3803 set_ref_path(ref, new_path);
3804
3805 return 0;
3806}
3807
31db9f7c
AB
3808/*
3809 * This does all the move/link/unlink/rmdir magic.
3810 */
9f03740a 3811static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c 3812{
04ab956e 3813 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
3814 int ret = 0;
3815 struct recorded_ref *cur;
1f4692da 3816 struct recorded_ref *cur2;
ba5e8f2e 3817 struct list_head check_dirs;
31db9f7c 3818 struct fs_path *valid_path = NULL;
b24baf69 3819 u64 ow_inode = 0;
31db9f7c 3820 u64 ow_gen;
f5962781 3821 u64 ow_mode;
31db9f7c
AB
3822 int did_overwrite = 0;
3823 int is_orphan = 0;
29d6d30f 3824 u64 last_dir_ino_rm = 0;
84471e24 3825 bool can_rename = true;
f5962781 3826 bool orphanized_dir = false;
fdb13889 3827 bool orphanized_ancestor = false;
31db9f7c 3828
04ab956e 3829 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
31db9f7c 3830
6d85ed05
AB
3831 /*
3832 * This should never happen as the root dir always has the same ref
3833 * which is always '..'
3834 */
3835 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 3836 INIT_LIST_HEAD(&check_dirs);
6d85ed05 3837
924794c9 3838 valid_path = fs_path_alloc();
31db9f7c
AB
3839 if (!valid_path) {
3840 ret = -ENOMEM;
3841 goto out;
3842 }
3843
31db9f7c
AB
3844 /*
3845 * First, check if the first ref of the current inode was overwritten
3846 * before. If yes, we know that the current inode was already orphanized
3847 * and thus use the orphan name. If not, we can use get_cur_path to
3848 * get the path of the first ref as it would like while receiving at
3849 * this point in time.
3850 * New inodes are always orphan at the beginning, so force to use the
3851 * orphan name in this case.
3852 * The first ref is stored in valid_path and will be updated if it
3853 * gets moved around.
3854 */
3855 if (!sctx->cur_inode_new) {
3856 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3857 sctx->cur_inode_gen);
3858 if (ret < 0)
3859 goto out;
3860 if (ret)
3861 did_overwrite = 1;
3862 }
3863 if (sctx->cur_inode_new || did_overwrite) {
3864 ret = gen_unique_name(sctx, sctx->cur_ino,
3865 sctx->cur_inode_gen, valid_path);
3866 if (ret < 0)
3867 goto out;
3868 is_orphan = 1;
3869 } else {
3870 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3871 valid_path);
3872 if (ret < 0)
3873 goto out;
3874 }
3875
3876 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
3877 /*
3878 * We may have refs where the parent directory does not exist
3879 * yet. This happens if the parent directories inum is higher
52042d8e 3880 * than the current inum. To handle this case, we create the
1f4692da
AB
3881 * parent directory out of order. But we need to check if this
3882 * did already happen before due to other refs in the same dir.
3883 */
3884 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3885 if (ret < 0)
3886 goto out;
3887 if (ret == inode_state_will_create) {
3888 ret = 0;
3889 /*
3890 * First check if any of the current inodes refs did
3891 * already create the dir.
3892 */
3893 list_for_each_entry(cur2, &sctx->new_refs, list) {
3894 if (cur == cur2)
3895 break;
3896 if (cur2->dir == cur->dir) {
3897 ret = 1;
3898 break;
3899 }
3900 }
3901
3902 /*
3903 * If that did not happen, check if a previous inode
3904 * did already create the dir.
3905 */
3906 if (!ret)
3907 ret = did_create_dir(sctx, cur->dir);
3908 if (ret < 0)
3909 goto out;
3910 if (!ret) {
3911 ret = send_create_inode(sctx, cur->dir);
3912 if (ret < 0)
3913 goto out;
3914 }
3915 }
3916
31db9f7c
AB
3917 /*
3918 * Check if this new ref would overwrite the first ref of
3919 * another unprocessed inode. If yes, orphanize the
3920 * overwritten inode. If we find an overwritten ref that is
3921 * not the first ref, simply unlink it.
3922 */
3923 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3924 cur->name, cur->name_len,
f5962781 3925 &ow_inode, &ow_gen, &ow_mode);
31db9f7c
AB
3926 if (ret < 0)
3927 goto out;
3928 if (ret) {
924794c9
TI
3929 ret = is_first_ref(sctx->parent_root,
3930 ow_inode, cur->dir, cur->name,
3931 cur->name_len);
31db9f7c
AB
3932 if (ret < 0)
3933 goto out;
3934 if (ret) {
8996a48c 3935 struct name_cache_entry *nce;
801bec36 3936 struct waiting_dir_move *wdm;
8996a48c 3937
31db9f7c
AB
3938 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3939 cur->full_path);
3940 if (ret < 0)
3941 goto out;
f5962781
FM
3942 if (S_ISDIR(ow_mode))
3943 orphanized_dir = true;
801bec36
RK
3944
3945 /*
3946 * If ow_inode has its rename operation delayed
3947 * make sure that its orphanized name is used in
3948 * the source path when performing its rename
3949 * operation.
3950 */
3951 if (is_waiting_for_move(sctx, ow_inode)) {
3952 wdm = get_waiting_dir_move(sctx,
3953 ow_inode);
3954 ASSERT(wdm);
3955 wdm->orphanized = true;
3956 }
3957
8996a48c
FM
3958 /*
3959 * Make sure we clear our orphanized inode's
3960 * name from the name cache. This is because the
3961 * inode ow_inode might be an ancestor of some
3962 * other inode that will be orphanized as well
3963 * later and has an inode number greater than
3964 * sctx->send_progress. We need to prevent
3965 * future name lookups from using the old name
3966 * and get instead the orphan name.
3967 */
3968 nce = name_cache_search(sctx, ow_inode, ow_gen);
3969 if (nce) {
3970 name_cache_delete(sctx, nce);
3971 kfree(nce);
3972 }
801bec36
RK
3973
3974 /*
3975 * ow_inode might currently be an ancestor of
3976 * cur_ino, therefore compute valid_path (the
3977 * current path of cur_ino) again because it
3978 * might contain the pre-orphanization name of
3979 * ow_inode, which is no longer valid.
3980 */
72c3668f
FM
3981 ret = is_ancestor(sctx->parent_root,
3982 ow_inode, ow_gen,
3983 sctx->cur_ino, NULL);
3984 if (ret > 0) {
fdb13889 3985 orphanized_ancestor = true;
72c3668f
FM
3986 fs_path_reset(valid_path);
3987 ret = get_cur_path(sctx, sctx->cur_ino,
3988 sctx->cur_inode_gen,
3989 valid_path);
3990 }
801bec36
RK
3991 if (ret < 0)
3992 goto out;
31db9f7c
AB
3993 } else {
3994 ret = send_unlink(sctx, cur->full_path);
3995 if (ret < 0)
3996 goto out;
3997 }
3998 }
3999
84471e24
FM
4000 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4001 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4002 if (ret < 0)
4003 goto out;
4004 if (ret == 1) {
4005 can_rename = false;
4006 *pending_move = 1;
4007 }
4008 }
4009
8b191a68
FM
4010 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4011 can_rename) {
4012 ret = wait_for_parent_move(sctx, cur, is_orphan);
4013 if (ret < 0)
4014 goto out;
4015 if (ret == 1) {
4016 can_rename = false;
4017 *pending_move = 1;
4018 }
4019 }
4020
31db9f7c
AB
4021 /*
4022 * link/move the ref to the new place. If we have an orphan
4023 * inode, move it and update valid_path. If not, link or move
4024 * it depending on the inode mode.
4025 */
84471e24 4026 if (is_orphan && can_rename) {
31db9f7c
AB
4027 ret = send_rename(sctx, valid_path, cur->full_path);
4028 if (ret < 0)
4029 goto out;
4030 is_orphan = 0;
4031 ret = fs_path_copy(valid_path, cur->full_path);
4032 if (ret < 0)
4033 goto out;
84471e24 4034 } else if (can_rename) {
31db9f7c
AB
4035 if (S_ISDIR(sctx->cur_inode_mode)) {
4036 /*
4037 * Dirs can't be linked, so move it. For moved
4038 * dirs, we always have one new and one deleted
4039 * ref. The deleted ref is ignored later.
4040 */
8b191a68
FM
4041 ret = send_rename(sctx, valid_path,
4042 cur->full_path);
4043 if (!ret)
4044 ret = fs_path_copy(valid_path,
4045 cur->full_path);
31db9f7c
AB
4046 if (ret < 0)
4047 goto out;
4048 } else {
f5962781
FM
4049 /*
4050 * We might have previously orphanized an inode
4051 * which is an ancestor of our current inode,
4052 * so our reference's full path, which was
4053 * computed before any such orphanizations, must
4054 * be updated.
4055 */
4056 if (orphanized_dir) {
4057 ret = update_ref_path(sctx, cur);
4058 if (ret < 0)
4059 goto out;
4060 }
31db9f7c
AB
4061 ret = send_link(sctx, cur->full_path,
4062 valid_path);
4063 if (ret < 0)
4064 goto out;
4065 }
4066 }
ba5e8f2e 4067 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4068 if (ret < 0)
4069 goto out;
4070 }
4071
4072 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4073 /*
4074 * Check if we can already rmdir the directory. If not,
4075 * orphanize it. For every dir item inside that gets deleted
4076 * later, we do this check again and rmdir it then if possible.
4077 * See the use of check_dirs for more details.
4078 */
9dc44214
FM
4079 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4080 sctx->cur_ino);
31db9f7c
AB
4081 if (ret < 0)
4082 goto out;
4083 if (ret) {
4084 ret = send_rmdir(sctx, valid_path);
4085 if (ret < 0)
4086 goto out;
4087 } else if (!is_orphan) {
4088 ret = orphanize_inode(sctx, sctx->cur_ino,
4089 sctx->cur_inode_gen, valid_path);
4090 if (ret < 0)
4091 goto out;
4092 is_orphan = 1;
4093 }
4094
4095 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 4096 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4097 if (ret < 0)
4098 goto out;
4099 }
ccf1626b
AB
4100 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4101 !list_empty(&sctx->deleted_refs)) {
4102 /*
4103 * We have a moved dir. Add the old parent to check_dirs
4104 */
4105 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4106 list);
ba5e8f2e 4107 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
4108 if (ret < 0)
4109 goto out;
31db9f7c
AB
4110 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4111 /*
4112 * We have a non dir inode. Go through all deleted refs and
4113 * unlink them if they were not already overwritten by other
4114 * inodes.
4115 */
4116 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4117 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4118 sctx->cur_ino, sctx->cur_inode_gen,
4119 cur->name, cur->name_len);
4120 if (ret < 0)
4121 goto out;
4122 if (!ret) {
fdb13889
FM
4123 /*
4124 * If we orphanized any ancestor before, we need
4125 * to recompute the full path for deleted names,
4126 * since any such path was computed before we
4127 * processed any references and orphanized any
4128 * ancestor inode.
4129 */
4130 if (orphanized_ancestor) {
f5962781
FM
4131 ret = update_ref_path(sctx, cur);
4132 if (ret < 0)
fdb13889 4133 goto out;
fdb13889 4134 }
1f4692da
AB
4135 ret = send_unlink(sctx, cur->full_path);
4136 if (ret < 0)
4137 goto out;
31db9f7c 4138 }
ba5e8f2e 4139 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4140 if (ret < 0)
4141 goto out;
4142 }
31db9f7c
AB
4143 /*
4144 * If the inode is still orphan, unlink the orphan. This may
4145 * happen when a previous inode did overwrite the first ref
4146 * of this inode and no new refs were added for the current
766702ef
AB
4147 * inode. Unlinking does not mean that the inode is deleted in
4148 * all cases. There may still be links to this inode in other
4149 * places.
31db9f7c 4150 */
1f4692da 4151 if (is_orphan) {
31db9f7c
AB
4152 ret = send_unlink(sctx, valid_path);
4153 if (ret < 0)
4154 goto out;
4155 }
4156 }
4157
4158 /*
4159 * We did collect all parent dirs where cur_inode was once located. We
4160 * now go through all these dirs and check if they are pending for
4161 * deletion and if it's finally possible to perform the rmdir now.
4162 * We also update the inode stats of the parent dirs here.
4163 */
ba5e8f2e 4164 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
4165 /*
4166 * In case we had refs into dirs that were not processed yet,
4167 * we don't need to do the utime and rmdir logic for these dirs.
4168 * The dir will be processed later.
4169 */
ba5e8f2e 4170 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
4171 continue;
4172
ba5e8f2e 4173 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
4174 if (ret < 0)
4175 goto out;
4176
4177 if (ret == inode_state_did_create ||
4178 ret == inode_state_no_change) {
4179 /* TODO delayed utimes */
ba5e8f2e 4180 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
4181 if (ret < 0)
4182 goto out;
29d6d30f
FM
4183 } else if (ret == inode_state_did_delete &&
4184 cur->dir != last_dir_ino_rm) {
9dc44214
FM
4185 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4186 sctx->cur_ino);
31db9f7c
AB
4187 if (ret < 0)
4188 goto out;
4189 if (ret) {
ba5e8f2e
JB
4190 ret = get_cur_path(sctx, cur->dir,
4191 cur->dir_gen, valid_path);
31db9f7c
AB
4192 if (ret < 0)
4193 goto out;
4194 ret = send_rmdir(sctx, valid_path);
4195 if (ret < 0)
4196 goto out;
29d6d30f 4197 last_dir_ino_rm = cur->dir;
31db9f7c
AB
4198 }
4199 }
4200 }
4201
31db9f7c
AB
4202 ret = 0;
4203
4204out:
ba5e8f2e 4205 __free_recorded_refs(&check_dirs);
31db9f7c 4206 free_recorded_refs(sctx);
924794c9 4207 fs_path_free(valid_path);
31db9f7c
AB
4208 return ret;
4209}
4210
a0357511
NB
4211static int record_ref(struct btrfs_root *root, u64 dir, struct fs_path *name,
4212 void *ctx, struct list_head *refs)
31db9f7c
AB
4213{
4214 int ret = 0;
4215 struct send_ctx *sctx = ctx;
4216 struct fs_path *p;
4217 u64 gen;
4218
924794c9 4219 p = fs_path_alloc();
31db9f7c
AB
4220 if (!p)
4221 return -ENOMEM;
4222
a4d96d62 4223 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
85a7b33b 4224 NULL, NULL);
31db9f7c
AB
4225 if (ret < 0)
4226 goto out;
4227
31db9f7c
AB
4228 ret = get_cur_path(sctx, dir, gen, p);
4229 if (ret < 0)
4230 goto out;
4231 ret = fs_path_add_path(p, name);
4232 if (ret < 0)
4233 goto out;
4234
a4d96d62 4235 ret = __record_ref(refs, dir, gen, p);
31db9f7c
AB
4236
4237out:
4238 if (ret)
924794c9 4239 fs_path_free(p);
31db9f7c
AB
4240 return ret;
4241}
4242
a4d96d62
LB
4243static int __record_new_ref(int num, u64 dir, int index,
4244 struct fs_path *name,
4245 void *ctx)
4246{
4247 struct send_ctx *sctx = ctx;
a0357511 4248 return record_ref(sctx->send_root, dir, name, ctx, &sctx->new_refs);
a4d96d62
LB
4249}
4250
4251
31db9f7c
AB
4252static int __record_deleted_ref(int num, u64 dir, int index,
4253 struct fs_path *name,
4254 void *ctx)
4255{
31db9f7c 4256 struct send_ctx *sctx = ctx;
a0357511
NB
4257 return record_ref(sctx->parent_root, dir, name, ctx,
4258 &sctx->deleted_refs);
31db9f7c
AB
4259}
4260
4261static int record_new_ref(struct send_ctx *sctx)
4262{
4263 int ret;
4264
924794c9
TI
4265 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4266 sctx->cmp_key, 0, __record_new_ref, sctx);
31db9f7c
AB
4267 if (ret < 0)
4268 goto out;
4269 ret = 0;
4270
4271out:
4272 return ret;
4273}
4274
4275static int record_deleted_ref(struct send_ctx *sctx)
4276{
4277 int ret;
4278
924794c9
TI
4279 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4280 sctx->cmp_key, 0, __record_deleted_ref, sctx);
31db9f7c
AB
4281 if (ret < 0)
4282 goto out;
4283 ret = 0;
4284
4285out:
4286 return ret;
4287}
4288
4289struct find_ref_ctx {
4290 u64 dir;
ba5e8f2e
JB
4291 u64 dir_gen;
4292 struct btrfs_root *root;
31db9f7c
AB
4293 struct fs_path *name;
4294 int found_idx;
4295};
4296
4297static int __find_iref(int num, u64 dir, int index,
4298 struct fs_path *name,
4299 void *ctx_)
4300{
4301 struct find_ref_ctx *ctx = ctx_;
ba5e8f2e
JB
4302 u64 dir_gen;
4303 int ret;
31db9f7c
AB
4304
4305 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4306 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
ba5e8f2e
JB
4307 /*
4308 * To avoid doing extra lookups we'll only do this if everything
4309 * else matches.
4310 */
4311 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4312 NULL, NULL, NULL);
4313 if (ret)
4314 return ret;
4315 if (dir_gen != ctx->dir_gen)
4316 return 0;
31db9f7c
AB
4317 ctx->found_idx = num;
4318 return 1;
4319 }
4320 return 0;
4321}
4322
924794c9 4323static int find_iref(struct btrfs_root *root,
31db9f7c
AB
4324 struct btrfs_path *path,
4325 struct btrfs_key *key,
ba5e8f2e 4326 u64 dir, u64 dir_gen, struct fs_path *name)
31db9f7c
AB
4327{
4328 int ret;
4329 struct find_ref_ctx ctx;
4330
4331 ctx.dir = dir;
4332 ctx.name = name;
ba5e8f2e 4333 ctx.dir_gen = dir_gen;
31db9f7c 4334 ctx.found_idx = -1;
ba5e8f2e 4335 ctx.root = root;
31db9f7c 4336
924794c9 4337 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
31db9f7c
AB
4338 if (ret < 0)
4339 return ret;
4340
4341 if (ctx.found_idx == -1)
4342 return -ENOENT;
4343
4344 return ctx.found_idx;
4345}
4346
4347static int __record_changed_new_ref(int num, u64 dir, int index,
4348 struct fs_path *name,
4349 void *ctx)
4350{
ba5e8f2e 4351 u64 dir_gen;
31db9f7c
AB
4352 int ret;
4353 struct send_ctx *sctx = ctx;
4354
ba5e8f2e
JB
4355 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4356 NULL, NULL, NULL);
4357 if (ret)
4358 return ret;
4359
924794c9 4360 ret = find_iref(sctx->parent_root, sctx->right_path,
ba5e8f2e 4361 sctx->cmp_key, dir, dir_gen, name);
31db9f7c
AB
4362 if (ret == -ENOENT)
4363 ret = __record_new_ref(num, dir, index, name, sctx);
4364 else if (ret > 0)
4365 ret = 0;
4366
4367 return ret;
4368}
4369
4370static int __record_changed_deleted_ref(int num, u64 dir, int index,
4371 struct fs_path *name,
4372 void *ctx)
4373{
ba5e8f2e 4374 u64 dir_gen;
31db9f7c
AB
4375 int ret;
4376 struct send_ctx *sctx = ctx;
4377
ba5e8f2e
JB
4378 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4379 NULL, NULL, NULL);
4380 if (ret)
4381 return ret;
4382
924794c9 4383 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
ba5e8f2e 4384 dir, dir_gen, name);
31db9f7c
AB
4385 if (ret == -ENOENT)
4386 ret = __record_deleted_ref(num, dir, index, name, sctx);
4387 else if (ret > 0)
4388 ret = 0;
4389
4390 return ret;
4391}
4392
4393static int record_changed_ref(struct send_ctx *sctx)
4394{
4395 int ret = 0;
4396
924794c9 4397 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
31db9f7c
AB
4398 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4399 if (ret < 0)
4400 goto out;
924794c9 4401 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
31db9f7c
AB
4402 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4403 if (ret < 0)
4404 goto out;
4405 ret = 0;
4406
4407out:
4408 return ret;
4409}
4410
4411/*
4412 * Record and process all refs at once. Needed when an inode changes the
4413 * generation number, which means that it was deleted and recreated.
4414 */
4415static int process_all_refs(struct send_ctx *sctx,
4416 enum btrfs_compare_tree_result cmd)
4417{
4418 int ret;
4419 struct btrfs_root *root;
4420 struct btrfs_path *path;
4421 struct btrfs_key key;
4422 struct btrfs_key found_key;
4423 struct extent_buffer *eb;
4424 int slot;
4425 iterate_inode_ref_t cb;
9f03740a 4426 int pending_move = 0;
31db9f7c
AB
4427
4428 path = alloc_path_for_send();
4429 if (!path)
4430 return -ENOMEM;
4431
4432 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4433 root = sctx->send_root;
4434 cb = __record_new_ref;
4435 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4436 root = sctx->parent_root;
4437 cb = __record_deleted_ref;
4438 } else {
4d1a63b2
DS
4439 btrfs_err(sctx->send_root->fs_info,
4440 "Wrong command %d in process_all_refs", cmd);
4441 ret = -EINVAL;
4442 goto out;
31db9f7c
AB
4443 }
4444
4445 key.objectid = sctx->cmp_key->objectid;
4446 key.type = BTRFS_INODE_REF_KEY;
4447 key.offset = 0;
dff6d0ad
FDBM
4448 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4449 if (ret < 0)
4450 goto out;
31db9f7c 4451
dff6d0ad 4452 while (1) {
31db9f7c
AB
4453 eb = path->nodes[0];
4454 slot = path->slots[0];
dff6d0ad
FDBM
4455 if (slot >= btrfs_header_nritems(eb)) {
4456 ret = btrfs_next_leaf(root, path);
4457 if (ret < 0)
4458 goto out;
4459 else if (ret > 0)
4460 break;
4461 continue;
4462 }
4463
31db9f7c
AB
4464 btrfs_item_key_to_cpu(eb, &found_key, slot);
4465
4466 if (found_key.objectid != key.objectid ||
96b5bd77
JS
4467 (found_key.type != BTRFS_INODE_REF_KEY &&
4468 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 4469 break;
31db9f7c 4470
924794c9 4471 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
4472 if (ret < 0)
4473 goto out;
4474
dff6d0ad 4475 path->slots[0]++;
31db9f7c 4476 }
e938c8ad 4477 btrfs_release_path(path);
31db9f7c 4478
3dc09ec8
JB
4479 /*
4480 * We don't actually care about pending_move as we are simply
4481 * re-creating this inode and will be rename'ing it into place once we
4482 * rename the parent directory.
4483 */
9f03740a 4484 ret = process_recorded_refs(sctx, &pending_move);
31db9f7c
AB
4485out:
4486 btrfs_free_path(path);
4487 return ret;
4488}
4489
4490static int send_set_xattr(struct send_ctx *sctx,
4491 struct fs_path *path,
4492 const char *name, int name_len,
4493 const char *data, int data_len)
4494{
4495 int ret = 0;
4496
4497 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4498 if (ret < 0)
4499 goto out;
4500
4501 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4502 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4503 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4504
4505 ret = send_cmd(sctx);
4506
4507tlv_put_failure:
4508out:
4509 return ret;
4510}
4511
4512static int send_remove_xattr(struct send_ctx *sctx,
4513 struct fs_path *path,
4514 const char *name, int name_len)
4515{
4516 int ret = 0;
4517
4518 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4519 if (ret < 0)
4520 goto out;
4521
4522 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4523 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4524
4525 ret = send_cmd(sctx);
4526
4527tlv_put_failure:
4528out:
4529 return ret;
4530}
4531
4532static int __process_new_xattr(int num, struct btrfs_key *di_key,
4533 const char *name, int name_len,
4534 const char *data, int data_len,
4535 u8 type, void *ctx)
4536{
4537 int ret;
4538 struct send_ctx *sctx = ctx;
4539 struct fs_path *p;
2211d5ba 4540 struct posix_acl_xattr_header dummy_acl;
31db9f7c 4541
89efda52
MPS
4542 /* Capabilities are emitted by finish_inode_if_needed */
4543 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4544 return 0;
4545
924794c9 4546 p = fs_path_alloc();
31db9f7c
AB
4547 if (!p)
4548 return -ENOMEM;
4549
4550 /*
01327610 4551 * This hack is needed because empty acls are stored as zero byte
31db9f7c 4552 * data in xattrs. Problem with that is, that receiving these zero byte
01327610 4553 * acls will fail later. To fix this, we send a dummy acl list that
31db9f7c
AB
4554 * only contains the version number and no entries.
4555 */
4556 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4557 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4558 if (data_len == 0) {
4559 dummy_acl.a_version =
4560 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4561 data = (char *)&dummy_acl;
4562 data_len = sizeof(dummy_acl);
4563 }
4564 }
4565
4566 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4567 if (ret < 0)
4568 goto out;
4569
4570 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4571
4572out:
924794c9 4573 fs_path_free(p);
31db9f7c
AB
4574 return ret;
4575}
4576
4577static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4578 const char *name, int name_len,
4579 const char *data, int data_len,
4580 u8 type, void *ctx)
4581{
4582 int ret;
4583 struct send_ctx *sctx = ctx;
4584 struct fs_path *p;
4585
924794c9 4586 p = fs_path_alloc();
31db9f7c
AB
4587 if (!p)
4588 return -ENOMEM;
4589
4590 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4591 if (ret < 0)
4592 goto out;
4593
4594 ret = send_remove_xattr(sctx, p, name, name_len);
4595
4596out:
924794c9 4597 fs_path_free(p);
31db9f7c
AB
4598 return ret;
4599}
4600
4601static int process_new_xattr(struct send_ctx *sctx)
4602{
4603 int ret = 0;
4604
924794c9 4605 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
a0357511 4606 __process_new_xattr, sctx);
31db9f7c
AB
4607
4608 return ret;
4609}
4610
4611static int process_deleted_xattr(struct send_ctx *sctx)
4612{
e2c89907 4613 return iterate_dir_item(sctx->parent_root, sctx->right_path,
a0357511 4614 __process_deleted_xattr, sctx);
31db9f7c
AB
4615}
4616
4617struct find_xattr_ctx {
4618 const char *name;
4619 int name_len;
4620 int found_idx;
4621 char *found_data;
4622 int found_data_len;
4623};
4624
4625static int __find_xattr(int num, struct btrfs_key *di_key,
4626 const char *name, int name_len,
4627 const char *data, int data_len,
4628 u8 type, void *vctx)
4629{
4630 struct find_xattr_ctx *ctx = vctx;
4631
4632 if (name_len == ctx->name_len &&
4633 strncmp(name, ctx->name, name_len) == 0) {
4634 ctx->found_idx = num;
4635 ctx->found_data_len = data_len;
e780b0d1 4636 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
31db9f7c
AB
4637 if (!ctx->found_data)
4638 return -ENOMEM;
31db9f7c
AB
4639 return 1;
4640 }
4641 return 0;
4642}
4643
924794c9 4644static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
4645 struct btrfs_path *path,
4646 struct btrfs_key *key,
4647 const char *name, int name_len,
4648 char **data, int *data_len)
4649{
4650 int ret;
4651 struct find_xattr_ctx ctx;
4652
4653 ctx.name = name;
4654 ctx.name_len = name_len;
4655 ctx.found_idx = -1;
4656 ctx.found_data = NULL;
4657 ctx.found_data_len = 0;
4658
a0357511 4659 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
31db9f7c
AB
4660 if (ret < 0)
4661 return ret;
4662
4663 if (ctx.found_idx == -1)
4664 return -ENOENT;
4665 if (data) {
4666 *data = ctx.found_data;
4667 *data_len = ctx.found_data_len;
4668 } else {
4669 kfree(ctx.found_data);
4670 }
4671 return ctx.found_idx;
4672}
4673
4674
4675static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4676 const char *name, int name_len,
4677 const char *data, int data_len,
4678 u8 type, void *ctx)
4679{
4680 int ret;
4681 struct send_ctx *sctx = ctx;
4682 char *found_data = NULL;
4683 int found_data_len = 0;
31db9f7c 4684
924794c9
TI
4685 ret = find_xattr(sctx->parent_root, sctx->right_path,
4686 sctx->cmp_key, name, name_len, &found_data,
4687 &found_data_len);
31db9f7c
AB
4688 if (ret == -ENOENT) {
4689 ret = __process_new_xattr(num, di_key, name, name_len, data,
4690 data_len, type, ctx);
4691 } else if (ret >= 0) {
4692 if (data_len != found_data_len ||
4693 memcmp(data, found_data, data_len)) {
4694 ret = __process_new_xattr(num, di_key, name, name_len,
4695 data, data_len, type, ctx);
4696 } else {
4697 ret = 0;
4698 }
4699 }
4700
4701 kfree(found_data);
31db9f7c
AB
4702 return ret;
4703}
4704
4705static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4706 const char *name, int name_len,
4707 const char *data, int data_len,
4708 u8 type, void *ctx)
4709{
4710 int ret;
4711 struct send_ctx *sctx = ctx;
4712
924794c9
TI
4713 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4714 name, name_len, NULL, NULL);
31db9f7c
AB
4715 if (ret == -ENOENT)
4716 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4717 data_len, type, ctx);
4718 else if (ret >= 0)
4719 ret = 0;
4720
4721 return ret;
4722}
4723
4724static int process_changed_xattr(struct send_ctx *sctx)
4725{
4726 int ret = 0;
4727
924794c9 4728 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
a0357511 4729 __process_changed_new_xattr, sctx);
31db9f7c
AB
4730 if (ret < 0)
4731 goto out;
924794c9 4732 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
a0357511 4733 __process_changed_deleted_xattr, sctx);
31db9f7c
AB
4734
4735out:
4736 return ret;
4737}
4738
4739static int process_all_new_xattrs(struct send_ctx *sctx)
4740{
4741 int ret;
4742 struct btrfs_root *root;
4743 struct btrfs_path *path;
4744 struct btrfs_key key;
4745 struct btrfs_key found_key;
4746 struct extent_buffer *eb;
4747 int slot;
4748
4749 path = alloc_path_for_send();
4750 if (!path)
4751 return -ENOMEM;
4752
4753 root = sctx->send_root;
4754
4755 key.objectid = sctx->cmp_key->objectid;
4756 key.type = BTRFS_XATTR_ITEM_KEY;
4757 key.offset = 0;
dff6d0ad
FDBM
4758 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4759 if (ret < 0)
4760 goto out;
31db9f7c 4761
dff6d0ad 4762 while (1) {
31db9f7c
AB
4763 eb = path->nodes[0];
4764 slot = path->slots[0];
dff6d0ad
FDBM
4765 if (slot >= btrfs_header_nritems(eb)) {
4766 ret = btrfs_next_leaf(root, path);
4767 if (ret < 0) {
4768 goto out;
4769 } else if (ret > 0) {
4770 ret = 0;
4771 break;
4772 }
4773 continue;
4774 }
31db9f7c 4775
dff6d0ad 4776 btrfs_item_key_to_cpu(eb, &found_key, slot);
31db9f7c
AB
4777 if (found_key.objectid != key.objectid ||
4778 found_key.type != key.type) {
4779 ret = 0;
4780 goto out;
4781 }
4782
a0357511 4783 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
31db9f7c
AB
4784 if (ret < 0)
4785 goto out;
4786
dff6d0ad 4787 path->slots[0]++;
31db9f7c
AB
4788 }
4789
4790out:
4791 btrfs_free_path(path);
4792 return ret;
4793}
4794
8c7d9fe0
OS
4795static inline u64 max_send_read_size(const struct send_ctx *sctx)
4796{
4797 return sctx->send_max_size - SZ_16K;
4798}
4799
4800static int put_data_header(struct send_ctx *sctx, u32 len)
4801{
4802 struct btrfs_tlv_header *hdr;
4803
4804 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
4805 return -EOVERFLOW;
4806 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
4807 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
4808 put_unaligned_le16(len, &hdr->tlv_len);
4809 sctx->send_size += sizeof(*hdr);
4810 return 0;
4811}
4812
4813static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
ed259095
JB
4814{
4815 struct btrfs_root *root = sctx->send_root;
4816 struct btrfs_fs_info *fs_info = root->fs_info;
4817 struct inode *inode;
4818 struct page *page;
4819 char *addr;
09cbfeaf 4820 pgoff_t index = offset >> PAGE_SHIFT;
ed259095 4821 pgoff_t last_index;
7073017a 4822 unsigned pg_offset = offset_in_page(offset);
8c7d9fe0
OS
4823 int ret;
4824
4825 ret = put_data_header(sctx, len);
4826 if (ret)
4827 return ret;
ed259095 4828
0202e83f 4829 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
ed259095
JB
4830 if (IS_ERR(inode))
4831 return PTR_ERR(inode);
4832
09cbfeaf 4833 last_index = (offset + len - 1) >> PAGE_SHIFT;
2131bcd3
LB
4834
4835 /* initial readahead */
4836 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4837 file_ra_state_init(&sctx->ra, inode->i_mapping);
2131bcd3 4838
ed259095
JB
4839 while (index <= last_index) {
4840 unsigned cur_len = min_t(unsigned, len,
09cbfeaf 4841 PAGE_SIZE - pg_offset);
eef16ba2
KH
4842
4843 page = find_lock_page(inode->i_mapping, index);
ed259095 4844 if (!page) {
eef16ba2
KH
4845 page_cache_sync_readahead(inode->i_mapping, &sctx->ra,
4846 NULL, index, last_index + 1 - index);
4847
4848 page = find_or_create_page(inode->i_mapping, index,
4849 GFP_KERNEL);
4850 if (!page) {
4851 ret = -ENOMEM;
4852 break;
4853 }
4854 }
4855
4856 if (PageReadahead(page)) {
4857 page_cache_async_readahead(inode->i_mapping, &sctx->ra,
4858 NULL, page, index, last_index + 1 - index);
ed259095
JB
4859 }
4860
4861 if (!PageUptodate(page)) {
4862 btrfs_readpage(NULL, page);
4863 lock_page(page);
4864 if (!PageUptodate(page)) {
4865 unlock_page(page);
09cbfeaf 4866 put_page(page);
ed259095
JB
4867 ret = -EIO;
4868 break;
4869 }
4870 }
4871
4872 addr = kmap(page);
8c7d9fe0
OS
4873 memcpy(sctx->send_buf + sctx->send_size, addr + pg_offset,
4874 cur_len);
ed259095
JB
4875 kunmap(page);
4876 unlock_page(page);
09cbfeaf 4877 put_page(page);
ed259095
JB
4878 index++;
4879 pg_offset = 0;
4880 len -= cur_len;
8c7d9fe0 4881 sctx->send_size += cur_len;
ed259095 4882 }
ed259095
JB
4883 iput(inode);
4884 return ret;
4885}
4886
31db9f7c
AB
4887/*
4888 * Read some bytes from the current inode/file and send a write command to
4889 * user space.
4890 */
4891static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4892{
04ab956e 4893 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
4894 int ret = 0;
4895 struct fs_path *p;
31db9f7c 4896
924794c9 4897 p = fs_path_alloc();
31db9f7c
AB
4898 if (!p)
4899 return -ENOMEM;
4900
04ab956e 4901 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
31db9f7c 4902
31db9f7c
AB
4903 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4904 if (ret < 0)
4905 goto out;
4906
4907 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4908 if (ret < 0)
4909 goto out;
4910
4911 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4912 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
8c7d9fe0
OS
4913 ret = put_file_data(sctx, offset, len);
4914 if (ret < 0)
4915 goto out;
31db9f7c
AB
4916
4917 ret = send_cmd(sctx);
4918
4919tlv_put_failure:
4920out:
924794c9 4921 fs_path_free(p);
a9b2e0de 4922 return ret;
31db9f7c
AB
4923}
4924
4925/*
4926 * Send a clone command to user space.
4927 */
4928static int send_clone(struct send_ctx *sctx,
4929 u64 offset, u32 len,
4930 struct clone_root *clone_root)
4931{
4932 int ret = 0;
31db9f7c
AB
4933 struct fs_path *p;
4934 u64 gen;
4935
04ab956e
JM
4936 btrfs_debug(sctx->send_root->fs_info,
4937 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4fd786e6
MT
4938 offset, len, clone_root->root->root_key.objectid,
4939 clone_root->ino, clone_root->offset);
31db9f7c 4940
924794c9 4941 p = fs_path_alloc();
31db9f7c
AB
4942 if (!p)
4943 return -ENOMEM;
4944
4945 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4946 if (ret < 0)
4947 goto out;
4948
4949 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4950 if (ret < 0)
4951 goto out;
4952
4953 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4954 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4955 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4956
e938c8ad 4957 if (clone_root->root == sctx->send_root) {
31db9f7c 4958 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
85a7b33b 4959 &gen, NULL, NULL, NULL, NULL);
31db9f7c
AB
4960 if (ret < 0)
4961 goto out;
4962 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4963 } else {
924794c9 4964 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
4965 }
4966 if (ret < 0)
4967 goto out;
4968
37b8d27d
JB
4969 /*
4970 * If the parent we're using has a received_uuid set then use that as
4971 * our clone source as that is what we will look for when doing a
4972 * receive.
4973 *
4974 * This covers the case that we create a snapshot off of a received
4975 * subvolume and then use that as the parent and try to receive on a
4976 * different host.
4977 */
4978 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4979 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4980 clone_root->root->root_item.received_uuid);
4981 else
4982 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4983 clone_root->root->root_item.uuid);
31db9f7c 4984 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5a0f4e2c 4985 le64_to_cpu(clone_root->root->root_item.ctransid));
31db9f7c
AB
4986 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4987 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4988 clone_root->offset);
4989
4990 ret = send_cmd(sctx);
4991
4992tlv_put_failure:
4993out:
924794c9 4994 fs_path_free(p);
31db9f7c
AB
4995 return ret;
4996}
4997
cb95e7bf
MF
4998/*
4999 * Send an update extent command to user space.
5000 */
5001static int send_update_extent(struct send_ctx *sctx,
5002 u64 offset, u32 len)
5003{
5004 int ret = 0;
5005 struct fs_path *p;
5006
924794c9 5007 p = fs_path_alloc();
cb95e7bf
MF
5008 if (!p)
5009 return -ENOMEM;
5010
5011 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5012 if (ret < 0)
5013 goto out;
5014
5015 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5016 if (ret < 0)
5017 goto out;
5018
5019 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5020 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5021 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5022
5023 ret = send_cmd(sctx);
5024
5025tlv_put_failure:
5026out:
924794c9 5027 fs_path_free(p);
cb95e7bf
MF
5028 return ret;
5029}
5030
16e7549f
JB
5031static int send_hole(struct send_ctx *sctx, u64 end)
5032{
5033 struct fs_path *p = NULL;
8c7d9fe0 5034 u64 read_size = max_send_read_size(sctx);
16e7549f 5035 u64 offset = sctx->cur_inode_last_extent;
16e7549f
JB
5036 int ret = 0;
5037
22d3151c
FM
5038 /*
5039 * A hole that starts at EOF or beyond it. Since we do not yet support
5040 * fallocate (for extent preallocation and hole punching), sending a
5041 * write of zeroes starting at EOF or beyond would later require issuing
5042 * a truncate operation which would undo the write and achieve nothing.
5043 */
5044 if (offset >= sctx->cur_inode_size)
5045 return 0;
5046
6b1f72e5
FM
5047 /*
5048 * Don't go beyond the inode's i_size due to prealloc extents that start
5049 * after the i_size.
5050 */
5051 end = min_t(u64, end, sctx->cur_inode_size);
5052
d4dfc0f4
FM
5053 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5054 return send_update_extent(sctx, offset, end - offset);
5055
16e7549f
JB
5056 p = fs_path_alloc();
5057 if (!p)
5058 return -ENOMEM;
c715e155
FM
5059 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5060 if (ret < 0)
5061 goto tlv_put_failure;
16e7549f 5062 while (offset < end) {
8c7d9fe0 5063 u64 len = min(end - offset, read_size);
16e7549f
JB
5064
5065 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
16e7549f
JB
5066 if (ret < 0)
5067 break;
5068 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5069 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
8c7d9fe0
OS
5070 ret = put_data_header(sctx, len);
5071 if (ret < 0)
5072 break;
5073 memset(sctx->send_buf + sctx->send_size, 0, len);
5074 sctx->send_size += len;
16e7549f
JB
5075 ret = send_cmd(sctx);
5076 if (ret < 0)
5077 break;
5078 offset += len;
5079 }
ffa7c429 5080 sctx->cur_inode_next_write_offset = offset;
16e7549f
JB
5081tlv_put_failure:
5082 fs_path_free(p);
5083 return ret;
5084}
5085
d906d49f
FM
5086static int send_extent_data(struct send_ctx *sctx,
5087 const u64 offset,
5088 const u64 len)
5089{
8c7d9fe0 5090 u64 read_size = max_send_read_size(sctx);
d906d49f
FM
5091 u64 sent = 0;
5092
5093 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5094 return send_update_extent(sctx, offset, len);
5095
5096 while (sent < len) {
8c7d9fe0 5097 u64 size = min(len - sent, read_size);
d906d49f
FM
5098 int ret;
5099
d906d49f
FM
5100 ret = send_write(sctx, offset + sent, size);
5101 if (ret < 0)
5102 return ret;
a9b2e0de 5103 sent += size;
d906d49f
FM
5104 }
5105 return 0;
5106}
5107
89efda52
MPS
5108/*
5109 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5110 * found, call send_set_xattr function to emit it.
5111 *
5112 * Return 0 if there isn't a capability, or when the capability was emitted
5113 * successfully, or < 0 if an error occurred.
5114 */
5115static int send_capabilities(struct send_ctx *sctx)
5116{
5117 struct fs_path *fspath = NULL;
5118 struct btrfs_path *path;
5119 struct btrfs_dir_item *di;
5120 struct extent_buffer *leaf;
5121 unsigned long data_ptr;
5122 char *buf = NULL;
5123 int buf_len;
5124 int ret = 0;
5125
5126 path = alloc_path_for_send();
5127 if (!path)
5128 return -ENOMEM;
5129
5130 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5131 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5132 if (!di) {
5133 /* There is no xattr for this inode */
5134 goto out;
5135 } else if (IS_ERR(di)) {
5136 ret = PTR_ERR(di);
5137 goto out;
5138 }
5139
5140 leaf = path->nodes[0];
5141 buf_len = btrfs_dir_data_len(leaf, di);
5142
5143 fspath = fs_path_alloc();
5144 buf = kmalloc(buf_len, GFP_KERNEL);
5145 if (!fspath || !buf) {
5146 ret = -ENOMEM;
5147 goto out;
5148 }
5149
5150 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5151 if (ret < 0)
5152 goto out;
5153
5154 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5155 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5156
5157 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5158 strlen(XATTR_NAME_CAPS), buf, buf_len);
5159out:
5160 kfree(buf);
5161 fs_path_free(fspath);
5162 btrfs_free_path(path);
5163 return ret;
5164}
5165
d906d49f
FM
5166static int clone_range(struct send_ctx *sctx,
5167 struct clone_root *clone_root,
5168 const u64 disk_byte,
5169 u64 data_offset,
5170 u64 offset,
5171 u64 len)
5172{
5173 struct btrfs_path *path;
5174 struct btrfs_key key;
5175 int ret;
431d3988 5176 u64 clone_src_i_size = 0;
d906d49f 5177
72610b1b
FM
5178 /*
5179 * Prevent cloning from a zero offset with a length matching the sector
5180 * size because in some scenarios this will make the receiver fail.
5181 *
5182 * For example, if in the source filesystem the extent at offset 0
5183 * has a length of sectorsize and it was written using direct IO, then
5184 * it can never be an inline extent (even if compression is enabled).
5185 * Then this extent can be cloned in the original filesystem to a non
5186 * zero file offset, but it may not be possible to clone in the
5187 * destination filesystem because it can be inlined due to compression
5188 * on the destination filesystem (as the receiver's write operations are
5189 * always done using buffered IO). The same happens when the original
5190 * filesystem does not have compression enabled but the destination
5191 * filesystem has.
5192 */
5193 if (clone_root->offset == 0 &&
5194 len == sctx->send_root->fs_info->sectorsize)
5195 return send_extent_data(sctx, offset, len);
5196
d906d49f
FM
5197 path = alloc_path_for_send();
5198 if (!path)
5199 return -ENOMEM;
5200
040ee612
RK
5201 /*
5202 * There are inodes that have extents that lie behind its i_size. Don't
5203 * accept clones from these extents.
5204 */
5205 ret = __get_inode_info(clone_root->root, path, clone_root->ino,
5206 &clone_src_i_size, NULL, NULL, NULL, NULL, NULL);
5207 btrfs_release_path(path);
5208 if (ret < 0)
5209 goto out;
5210
d906d49f
FM
5211 /*
5212 * We can't send a clone operation for the entire range if we find
5213 * extent items in the respective range in the source file that
5214 * refer to different extents or if we find holes.
5215 * So check for that and do a mix of clone and regular write/copy
5216 * operations if needed.
5217 *
5218 * Example:
5219 *
5220 * mkfs.btrfs -f /dev/sda
5221 * mount /dev/sda /mnt
5222 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5223 * cp --reflink=always /mnt/foo /mnt/bar
5224 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5225 * btrfs subvolume snapshot -r /mnt /mnt/snap
5226 *
5227 * If when we send the snapshot and we are processing file bar (which
5228 * has a higher inode number than foo) we blindly send a clone operation
5229 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5230 * a file bar that matches the content of file foo - iow, doesn't match
5231 * the content from bar in the original filesystem.
5232 */
5233 key.objectid = clone_root->ino;
5234 key.type = BTRFS_EXTENT_DATA_KEY;
5235 key.offset = clone_root->offset;
5236 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5237 if (ret < 0)
5238 goto out;
5239 if (ret > 0 && path->slots[0] > 0) {
5240 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5241 if (key.objectid == clone_root->ino &&
5242 key.type == BTRFS_EXTENT_DATA_KEY)
5243 path->slots[0]--;
5244 }
5245
5246 while (true) {
5247 struct extent_buffer *leaf = path->nodes[0];
5248 int slot = path->slots[0];
5249 struct btrfs_file_extent_item *ei;
5250 u8 type;
5251 u64 ext_len;
5252 u64 clone_len;
040ee612 5253 u64 clone_data_offset;
d906d49f
FM
5254
5255 if (slot >= btrfs_header_nritems(leaf)) {
5256 ret = btrfs_next_leaf(clone_root->root, path);
5257 if (ret < 0)
5258 goto out;
5259 else if (ret > 0)
5260 break;
5261 continue;
5262 }
5263
5264 btrfs_item_key_to_cpu(leaf, &key, slot);
5265
5266 /*
5267 * We might have an implicit trailing hole (NO_HOLES feature
5268 * enabled). We deal with it after leaving this loop.
5269 */
5270 if (key.objectid != clone_root->ino ||
5271 key.type != BTRFS_EXTENT_DATA_KEY)
5272 break;
5273
5274 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5275 type = btrfs_file_extent_type(leaf, ei);
5276 if (type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5277 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
09cbfeaf 5278 ext_len = PAGE_ALIGN(ext_len);
d906d49f
FM
5279 } else {
5280 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5281 }
5282
5283 if (key.offset + ext_len <= clone_root->offset)
5284 goto next;
5285
5286 if (key.offset > clone_root->offset) {
5287 /* Implicit hole, NO_HOLES feature enabled. */
5288 u64 hole_len = key.offset - clone_root->offset;
5289
5290 if (hole_len > len)
5291 hole_len = len;
5292 ret = send_extent_data(sctx, offset, hole_len);
5293 if (ret < 0)
5294 goto out;
5295
5296 len -= hole_len;
5297 if (len == 0)
5298 break;
5299 offset += hole_len;
5300 clone_root->offset += hole_len;
5301 data_offset += hole_len;
5302 }
5303
5304 if (key.offset >= clone_root->offset + len)
5305 break;
5306
040ee612
RK
5307 if (key.offset >= clone_src_i_size)
5308 break;
5309
5310 if (key.offset + ext_len > clone_src_i_size)
5311 ext_len = clone_src_i_size - key.offset;
5312
5313 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5314 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5315 clone_root->offset = key.offset;
5316 if (clone_data_offset < data_offset &&
5317 clone_data_offset + ext_len > data_offset) {
5318 u64 extent_offset;
5319
5320 extent_offset = data_offset - clone_data_offset;
5321 ext_len -= extent_offset;
5322 clone_data_offset += extent_offset;
5323 clone_root->offset += extent_offset;
5324 }
5325 }
5326
d906d49f
FM
5327 clone_len = min_t(u64, ext_len, len);
5328
5329 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
3c850b45
FM
5330 clone_data_offset == data_offset) {
5331 const u64 src_end = clone_root->offset + clone_len;
5332 const u64 sectorsize = SZ_64K;
5333
5334 /*
5335 * We can't clone the last block, when its size is not
5336 * sector size aligned, into the middle of a file. If we
5337 * do so, the receiver will get a failure (-EINVAL) when
5338 * trying to clone or will silently corrupt the data in
5339 * the destination file if it's on a kernel without the
5340 * fix introduced by commit ac765f83f1397646
5341 * ("Btrfs: fix data corruption due to cloning of eof
5342 * block).
5343 *
5344 * So issue a clone of the aligned down range plus a
5345 * regular write for the eof block, if we hit that case.
5346 *
5347 * Also, we use the maximum possible sector size, 64K,
5348 * because we don't know what's the sector size of the
5349 * filesystem that receives the stream, so we have to
5350 * assume the largest possible sector size.
5351 */
5352 if (src_end == clone_src_i_size &&
5353 !IS_ALIGNED(src_end, sectorsize) &&
5354 offset + clone_len < sctx->cur_inode_size) {
5355 u64 slen;
5356
5357 slen = ALIGN_DOWN(src_end - clone_root->offset,
5358 sectorsize);
5359 if (slen > 0) {
5360 ret = send_clone(sctx, offset, slen,
5361 clone_root);
5362 if (ret < 0)
5363 goto out;
5364 }
5365 ret = send_extent_data(sctx, offset + slen,
5366 clone_len - slen);
5367 } else {
5368 ret = send_clone(sctx, offset, clone_len,
5369 clone_root);
5370 }
5371 } else {
d906d49f 5372 ret = send_extent_data(sctx, offset, clone_len);
3c850b45 5373 }
d906d49f
FM
5374
5375 if (ret < 0)
5376 goto out;
5377
5378 len -= clone_len;
5379 if (len == 0)
5380 break;
5381 offset += clone_len;
5382 clone_root->offset += clone_len;
5383 data_offset += clone_len;
5384next:
5385 path->slots[0]++;
5386 }
5387
5388 if (len > 0)
5389 ret = send_extent_data(sctx, offset, len);
5390 else
5391 ret = 0;
5392out:
5393 btrfs_free_path(path);
5394 return ret;
5395}
5396
31db9f7c
AB
5397static int send_write_or_clone(struct send_ctx *sctx,
5398 struct btrfs_path *path,
5399 struct btrfs_key *key,
5400 struct clone_root *clone_root)
5401{
5402 int ret = 0;
31db9f7c 5403 u64 offset = key->offset;
c9a949af 5404 u64 end;
28e5dd8f 5405 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c 5406
c9a949af
OS
5407 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5408 if (offset >= end)
5409 return 0;
31db9f7c 5410
c9a949af
OS
5411 if (clone_root && IS_ALIGNED(end, bs)) {
5412 struct btrfs_file_extent_item *ei;
d906d49f
FM
5413 u64 disk_byte;
5414 u64 data_offset;
5415
c9a949af
OS
5416 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5417 struct btrfs_file_extent_item);
d906d49f
FM
5418 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5419 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5420 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
c9a949af 5421 offset, end - offset);
cb95e7bf 5422 } else {
c9a949af 5423 ret = send_extent_data(sctx, offset, end - offset);
31db9f7c 5424 }
c9a949af 5425 sctx->cur_inode_next_write_offset = end;
31db9f7c
AB
5426 return ret;
5427}
5428
5429static int is_extent_unchanged(struct send_ctx *sctx,
5430 struct btrfs_path *left_path,
5431 struct btrfs_key *ekey)
5432{
5433 int ret = 0;
5434 struct btrfs_key key;
5435 struct btrfs_path *path = NULL;
5436 struct extent_buffer *eb;
5437 int slot;
5438 struct btrfs_key found_key;
5439 struct btrfs_file_extent_item *ei;
5440 u64 left_disknr;
5441 u64 right_disknr;
5442 u64 left_offset;
5443 u64 right_offset;
5444 u64 left_offset_fixed;
5445 u64 left_len;
5446 u64 right_len;
74dd17fb
CM
5447 u64 left_gen;
5448 u64 right_gen;
31db9f7c
AB
5449 u8 left_type;
5450 u8 right_type;
5451
5452 path = alloc_path_for_send();
5453 if (!path)
5454 return -ENOMEM;
5455
5456 eb = left_path->nodes[0];
5457 slot = left_path->slots[0];
31db9f7c
AB
5458 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5459 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
5460
5461 if (left_type != BTRFS_FILE_EXTENT_REG) {
5462 ret = 0;
5463 goto out;
5464 }
74dd17fb
CM
5465 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5466 left_len = btrfs_file_extent_num_bytes(eb, ei);
5467 left_offset = btrfs_file_extent_offset(eb, ei);
5468 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
5469
5470 /*
5471 * Following comments will refer to these graphics. L is the left
5472 * extents which we are checking at the moment. 1-8 are the right
5473 * extents that we iterate.
5474 *
5475 * |-----L-----|
5476 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5477 *
5478 * |-----L-----|
5479 * |--1--|-2b-|...(same as above)
5480 *
5481 * Alternative situation. Happens on files where extents got split.
5482 * |-----L-----|
5483 * |-----------7-----------|-6-|
5484 *
5485 * Alternative situation. Happens on files which got larger.
5486 * |-----L-----|
5487 * |-8-|
5488 * Nothing follows after 8.
5489 */
5490
5491 key.objectid = ekey->objectid;
5492 key.type = BTRFS_EXTENT_DATA_KEY;
5493 key.offset = ekey->offset;
5494 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5495 if (ret < 0)
5496 goto out;
5497 if (ret) {
5498 ret = 0;
5499 goto out;
5500 }
5501
5502 /*
5503 * Handle special case where the right side has no extents at all.
5504 */
5505 eb = path->nodes[0];
5506 slot = path->slots[0];
5507 btrfs_item_key_to_cpu(eb, &found_key, slot);
5508 if (found_key.objectid != key.objectid ||
5509 found_key.type != key.type) {
57cfd462
JB
5510 /* If we're a hole then just pretend nothing changed */
5511 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
5512 goto out;
5513 }
5514
5515 /*
5516 * We're now on 2a, 2b or 7.
5517 */
5518 key = found_key;
5519 while (key.offset < ekey->offset + left_len) {
5520 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5521 right_type = btrfs_file_extent_type(eb, ei);
e1cbfd7b
FM
5522 if (right_type != BTRFS_FILE_EXTENT_REG &&
5523 right_type != BTRFS_FILE_EXTENT_INLINE) {
31db9f7c
AB
5524 ret = 0;
5525 goto out;
5526 }
5527
e1cbfd7b 5528 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5529 right_len = btrfs_file_extent_ram_bytes(eb, ei);
e1cbfd7b
FM
5530 right_len = PAGE_ALIGN(right_len);
5531 } else {
5532 right_len = btrfs_file_extent_num_bytes(eb, ei);
5533 }
007d31f7 5534
31db9f7c
AB
5535 /*
5536 * Are we at extent 8? If yes, we know the extent is changed.
5537 * This may only happen on the first iteration.
5538 */
d8347fa4 5539 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
5540 /* If we're a hole just pretend nothing changed */
5541 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
5542 goto out;
5543 }
5544
e1cbfd7b
FM
5545 /*
5546 * We just wanted to see if when we have an inline extent, what
5547 * follows it is a regular extent (wanted to check the above
5548 * condition for inline extents too). This should normally not
5549 * happen but it's possible for example when we have an inline
5550 * compressed extent representing data with a size matching
5551 * the page size (currently the same as sector size).
5552 */
5553 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
5554 ret = 0;
5555 goto out;
5556 }
5557
24e52b11
FM
5558 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5559 right_offset = btrfs_file_extent_offset(eb, ei);
5560 right_gen = btrfs_file_extent_generation(eb, ei);
5561
31db9f7c
AB
5562 left_offset_fixed = left_offset;
5563 if (key.offset < ekey->offset) {
5564 /* Fix the right offset for 2a and 7. */
5565 right_offset += ekey->offset - key.offset;
5566 } else {
5567 /* Fix the left offset for all behind 2a and 2b */
5568 left_offset_fixed += key.offset - ekey->offset;
5569 }
5570
5571 /*
5572 * Check if we have the same extent.
5573 */
3954096d 5574 if (left_disknr != right_disknr ||
74dd17fb
CM
5575 left_offset_fixed != right_offset ||
5576 left_gen != right_gen) {
31db9f7c
AB
5577 ret = 0;
5578 goto out;
5579 }
5580
5581 /*
5582 * Go to the next extent.
5583 */
5584 ret = btrfs_next_item(sctx->parent_root, path);
5585 if (ret < 0)
5586 goto out;
5587 if (!ret) {
5588 eb = path->nodes[0];
5589 slot = path->slots[0];
5590 btrfs_item_key_to_cpu(eb, &found_key, slot);
5591 }
5592 if (ret || found_key.objectid != key.objectid ||
5593 found_key.type != key.type) {
5594 key.offset += right_len;
5595 break;
adaa4b8e
JS
5596 }
5597 if (found_key.offset != key.offset + right_len) {
5598 ret = 0;
5599 goto out;
31db9f7c
AB
5600 }
5601 key = found_key;
5602 }
5603
5604 /*
5605 * We're now behind the left extent (treat as unchanged) or at the end
5606 * of the right side (treat as changed).
5607 */
5608 if (key.offset >= ekey->offset + left_len)
5609 ret = 1;
5610 else
5611 ret = 0;
5612
5613
5614out:
5615 btrfs_free_path(path);
5616 return ret;
5617}
5618
16e7549f
JB
5619static int get_last_extent(struct send_ctx *sctx, u64 offset)
5620{
5621 struct btrfs_path *path;
5622 struct btrfs_root *root = sctx->send_root;
16e7549f 5623 struct btrfs_key key;
16e7549f
JB
5624 int ret;
5625
5626 path = alloc_path_for_send();
5627 if (!path)
5628 return -ENOMEM;
5629
5630 sctx->cur_inode_last_extent = 0;
5631
5632 key.objectid = sctx->cur_ino;
5633 key.type = BTRFS_EXTENT_DATA_KEY;
5634 key.offset = offset;
5635 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5636 if (ret < 0)
5637 goto out;
5638 ret = 0;
5639 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5640 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5641 goto out;
5642
a5eeb3d1 5643 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
16e7549f
JB
5644out:
5645 btrfs_free_path(path);
5646 return ret;
5647}
5648
82bfb2e7
FM
5649static int range_is_hole_in_parent(struct send_ctx *sctx,
5650 const u64 start,
5651 const u64 end)
5652{
5653 struct btrfs_path *path;
5654 struct btrfs_key key;
5655 struct btrfs_root *root = sctx->parent_root;
5656 u64 search_start = start;
5657 int ret;
5658
5659 path = alloc_path_for_send();
5660 if (!path)
5661 return -ENOMEM;
5662
5663 key.objectid = sctx->cur_ino;
5664 key.type = BTRFS_EXTENT_DATA_KEY;
5665 key.offset = search_start;
5666 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5667 if (ret < 0)
5668 goto out;
5669 if (ret > 0 && path->slots[0] > 0)
5670 path->slots[0]--;
5671
5672 while (search_start < end) {
5673 struct extent_buffer *leaf = path->nodes[0];
5674 int slot = path->slots[0];
5675 struct btrfs_file_extent_item *fi;
5676 u64 extent_end;
5677
5678 if (slot >= btrfs_header_nritems(leaf)) {
5679 ret = btrfs_next_leaf(root, path);
5680 if (ret < 0)
5681 goto out;
5682 else if (ret > 0)
5683 break;
5684 continue;
5685 }
5686
5687 btrfs_item_key_to_cpu(leaf, &key, slot);
5688 if (key.objectid < sctx->cur_ino ||
5689 key.type < BTRFS_EXTENT_DATA_KEY)
5690 goto next;
5691 if (key.objectid > sctx->cur_ino ||
5692 key.type > BTRFS_EXTENT_DATA_KEY ||
5693 key.offset >= end)
5694 break;
5695
5696 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
a5eeb3d1 5697 extent_end = btrfs_file_extent_end(path);
82bfb2e7
FM
5698 if (extent_end <= start)
5699 goto next;
5700 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
5701 search_start = extent_end;
5702 goto next;
5703 }
5704 ret = 0;
5705 goto out;
5706next:
5707 path->slots[0]++;
5708 }
5709 ret = 1;
5710out:
5711 btrfs_free_path(path);
5712 return ret;
5713}
5714
16e7549f
JB
5715static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5716 struct btrfs_key *key)
5717{
16e7549f
JB
5718 int ret = 0;
5719
5720 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5721 return 0;
5722
5723 if (sctx->cur_inode_last_extent == (u64)-1) {
5724 ret = get_last_extent(sctx, key->offset - 1);
5725 if (ret)
5726 return ret;
5727 }
5728
bf54f412
FDBM
5729 if (path->slots[0] == 0 &&
5730 sctx->cur_inode_last_extent < key->offset) {
5731 /*
5732 * We might have skipped entire leafs that contained only
5733 * file extent items for our current inode. These leafs have
5734 * a generation number smaller (older) than the one in the
5735 * current leaf and the leaf our last extent came from, and
5736 * are located between these 2 leafs.
5737 */
5738 ret = get_last_extent(sctx, key->offset - 1);
5739 if (ret)
5740 return ret;
5741 }
5742
82bfb2e7
FM
5743 if (sctx->cur_inode_last_extent < key->offset) {
5744 ret = range_is_hole_in_parent(sctx,
5745 sctx->cur_inode_last_extent,
5746 key->offset);
5747 if (ret < 0)
5748 return ret;
5749 else if (ret == 0)
5750 ret = send_hole(sctx, key->offset);
5751 else
5752 ret = 0;
5753 }
a5eeb3d1 5754 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
16e7549f
JB
5755 return ret;
5756}
5757
31db9f7c
AB
5758static int process_extent(struct send_ctx *sctx,
5759 struct btrfs_path *path,
5760 struct btrfs_key *key)
5761{
31db9f7c 5762 struct clone_root *found_clone = NULL;
57cfd462 5763 int ret = 0;
31db9f7c
AB
5764
5765 if (S_ISLNK(sctx->cur_inode_mode))
5766 return 0;
5767
5768 if (sctx->parent_root && !sctx->cur_inode_new) {
5769 ret = is_extent_unchanged(sctx, path, key);
5770 if (ret < 0)
5771 goto out;
5772 if (ret) {
5773 ret = 0;
16e7549f 5774 goto out_hole;
31db9f7c 5775 }
57cfd462
JB
5776 } else {
5777 struct btrfs_file_extent_item *ei;
5778 u8 type;
5779
5780 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5781 struct btrfs_file_extent_item);
5782 type = btrfs_file_extent_type(path->nodes[0], ei);
5783 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5784 type == BTRFS_FILE_EXTENT_REG) {
5785 /*
5786 * The send spec does not have a prealloc command yet,
5787 * so just leave a hole for prealloc'ed extents until
5788 * we have enough commands queued up to justify rev'ing
5789 * the send spec.
5790 */
5791 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5792 ret = 0;
5793 goto out;
5794 }
5795
5796 /* Have a hole, just skip it. */
5797 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5798 ret = 0;
5799 goto out;
5800 }
5801 }
31db9f7c
AB
5802 }
5803
5804 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5805 sctx->cur_inode_size, &found_clone);
5806 if (ret != -ENOENT && ret < 0)
5807 goto out;
5808
5809 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
5810 if (ret)
5811 goto out;
5812out_hole:
5813 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
5814out:
5815 return ret;
5816}
5817
5818static int process_all_extents(struct send_ctx *sctx)
5819{
5820 int ret;
5821 struct btrfs_root *root;
5822 struct btrfs_path *path;
5823 struct btrfs_key key;
5824 struct btrfs_key found_key;
5825 struct extent_buffer *eb;
5826 int slot;
5827
5828 root = sctx->send_root;
5829 path = alloc_path_for_send();
5830 if (!path)
5831 return -ENOMEM;
5832
5833 key.objectid = sctx->cmp_key->objectid;
5834 key.type = BTRFS_EXTENT_DATA_KEY;
5835 key.offset = 0;
7fdd29d0
FDBM
5836 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5837 if (ret < 0)
5838 goto out;
31db9f7c 5839
7fdd29d0 5840 while (1) {
31db9f7c
AB
5841 eb = path->nodes[0];
5842 slot = path->slots[0];
7fdd29d0
FDBM
5843
5844 if (slot >= btrfs_header_nritems(eb)) {
5845 ret = btrfs_next_leaf(root, path);
5846 if (ret < 0) {
5847 goto out;
5848 } else if (ret > 0) {
5849 ret = 0;
5850 break;
5851 }
5852 continue;
5853 }
5854
31db9f7c
AB
5855 btrfs_item_key_to_cpu(eb, &found_key, slot);
5856
5857 if (found_key.objectid != key.objectid ||
5858 found_key.type != key.type) {
5859 ret = 0;
5860 goto out;
5861 }
5862
5863 ret = process_extent(sctx, path, &found_key);
5864 if (ret < 0)
5865 goto out;
5866
7fdd29d0 5867 path->slots[0]++;
31db9f7c
AB
5868 }
5869
5870out:
5871 btrfs_free_path(path);
5872 return ret;
5873}
5874
9f03740a
FDBM
5875static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5876 int *pending_move,
5877 int *refs_processed)
31db9f7c
AB
5878{
5879 int ret = 0;
5880
5881 if (sctx->cur_ino == 0)
5882 goto out;
5883 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 5884 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
5885 goto out;
5886 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5887 goto out;
5888
9f03740a 5889 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
5890 if (ret < 0)
5891 goto out;
5892
9f03740a 5893 *refs_processed = 1;
31db9f7c
AB
5894out:
5895 return ret;
5896}
5897
5898static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5899{
5900 int ret = 0;
5901 u64 left_mode;
5902 u64 left_uid;
5903 u64 left_gid;
5904 u64 right_mode;
5905 u64 right_uid;
5906 u64 right_gid;
5907 int need_chmod = 0;
5908 int need_chown = 0;
ffa7c429 5909 int need_truncate = 1;
9f03740a
FDBM
5910 int pending_move = 0;
5911 int refs_processed = 0;
31db9f7c 5912
46b2f459
FM
5913 if (sctx->ignore_cur_inode)
5914 return 0;
5915
9f03740a
FDBM
5916 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5917 &refs_processed);
31db9f7c
AB
5918 if (ret < 0)
5919 goto out;
5920
9f03740a
FDBM
5921 /*
5922 * We have processed the refs and thus need to advance send_progress.
5923 * Now, calls to get_cur_xxx will take the updated refs of the current
5924 * inode into account.
5925 *
5926 * On the other hand, if our current inode is a directory and couldn't
5927 * be moved/renamed because its parent was renamed/moved too and it has
5928 * a higher inode number, we can only move/rename our current inode
5929 * after we moved/renamed its parent. Therefore in this case operate on
5930 * the old path (pre move/rename) of our current inode, and the
5931 * move/rename will be performed later.
5932 */
5933 if (refs_processed && !pending_move)
5934 sctx->send_progress = sctx->cur_ino + 1;
5935
31db9f7c
AB
5936 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5937 goto out;
5938 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5939 goto out;
5940
5941 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
85a7b33b 5942 &left_mode, &left_uid, &left_gid, NULL);
31db9f7c
AB
5943 if (ret < 0)
5944 goto out;
5945
e2d044fe
AL
5946 if (!sctx->parent_root || sctx->cur_inode_new) {
5947 need_chown = 1;
5948 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 5949 need_chmod = 1;
ffa7c429
FM
5950 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
5951 need_truncate = 0;
e2d044fe 5952 } else {
ffa7c429
FM
5953 u64 old_size;
5954
e2d044fe 5955 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
ffa7c429 5956 &old_size, NULL, &right_mode, &right_uid,
e2d044fe
AL
5957 &right_gid, NULL);
5958 if (ret < 0)
5959 goto out;
31db9f7c 5960
e2d044fe
AL
5961 if (left_uid != right_uid || left_gid != right_gid)
5962 need_chown = 1;
5963 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5964 need_chmod = 1;
ffa7c429
FM
5965 if ((old_size == sctx->cur_inode_size) ||
5966 (sctx->cur_inode_size > old_size &&
5967 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
5968 need_truncate = 0;
31db9f7c
AB
5969 }
5970
5971 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f 5972 if (need_send_hole(sctx)) {
766b5e5a
FM
5973 if (sctx->cur_inode_last_extent == (u64)-1 ||
5974 sctx->cur_inode_last_extent <
5975 sctx->cur_inode_size) {
16e7549f
JB
5976 ret = get_last_extent(sctx, (u64)-1);
5977 if (ret)
5978 goto out;
5979 }
5980 if (sctx->cur_inode_last_extent <
5981 sctx->cur_inode_size) {
5982 ret = send_hole(sctx, sctx->cur_inode_size);
5983 if (ret)
5984 goto out;
5985 }
5986 }
ffa7c429
FM
5987 if (need_truncate) {
5988 ret = send_truncate(sctx, sctx->cur_ino,
5989 sctx->cur_inode_gen,
5990 sctx->cur_inode_size);
5991 if (ret < 0)
5992 goto out;
5993 }
31db9f7c
AB
5994 }
5995
5996 if (need_chown) {
5997 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5998 left_uid, left_gid);
5999 if (ret < 0)
6000 goto out;
6001 }
6002 if (need_chmod) {
6003 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6004 left_mode);
6005 if (ret < 0)
6006 goto out;
6007 }
6008
89efda52
MPS
6009 ret = send_capabilities(sctx);
6010 if (ret < 0)
6011 goto out;
6012
31db9f7c 6013 /*
9f03740a
FDBM
6014 * If other directory inodes depended on our current directory
6015 * inode's move/rename, now do their move/rename operations.
31db9f7c 6016 */
9f03740a
FDBM
6017 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6018 ret = apply_children_dir_moves(sctx);
6019 if (ret)
6020 goto out;
fcbd2154
FM
6021 /*
6022 * Need to send that every time, no matter if it actually
6023 * changed between the two trees as we have done changes to
6024 * the inode before. If our inode is a directory and it's
6025 * waiting to be moved/renamed, we will send its utimes when
6026 * it's moved/renamed, therefore we don't need to do it here.
6027 */
6028 sctx->send_progress = sctx->cur_ino + 1;
6029 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6030 if (ret < 0)
6031 goto out;
9f03740a
FDBM
6032 }
6033
31db9f7c
AB
6034out:
6035 return ret;
6036}
6037
46b2f459
FM
6038struct parent_paths_ctx {
6039 struct list_head *refs;
6040 struct send_ctx *sctx;
6041};
6042
6043static int record_parent_ref(int num, u64 dir, int index, struct fs_path *name,
6044 void *ctx)
6045{
6046 struct parent_paths_ctx *ppctx = ctx;
6047
6048 return record_ref(ppctx->sctx->parent_root, dir, name, ppctx->sctx,
6049 ppctx->refs);
6050}
6051
6052/*
6053 * Issue unlink operations for all paths of the current inode found in the
6054 * parent snapshot.
6055 */
6056static int btrfs_unlink_all_paths(struct send_ctx *sctx)
6057{
6058 LIST_HEAD(deleted_refs);
6059 struct btrfs_path *path;
6060 struct btrfs_key key;
6061 struct parent_paths_ctx ctx;
6062 int ret;
6063
6064 path = alloc_path_for_send();
6065 if (!path)
6066 return -ENOMEM;
6067
6068 key.objectid = sctx->cur_ino;
6069 key.type = BTRFS_INODE_REF_KEY;
6070 key.offset = 0;
6071 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
6072 if (ret < 0)
6073 goto out;
6074
6075 ctx.refs = &deleted_refs;
6076 ctx.sctx = sctx;
6077
6078 while (true) {
6079 struct extent_buffer *eb = path->nodes[0];
6080 int slot = path->slots[0];
6081
6082 if (slot >= btrfs_header_nritems(eb)) {
6083 ret = btrfs_next_leaf(sctx->parent_root, path);
6084 if (ret < 0)
6085 goto out;
6086 else if (ret > 0)
6087 break;
6088 continue;
6089 }
6090
6091 btrfs_item_key_to_cpu(eb, &key, slot);
6092 if (key.objectid != sctx->cur_ino)
6093 break;
6094 if (key.type != BTRFS_INODE_REF_KEY &&
6095 key.type != BTRFS_INODE_EXTREF_KEY)
6096 break;
6097
6098 ret = iterate_inode_ref(sctx->parent_root, path, &key, 1,
6099 record_parent_ref, &ctx);
6100 if (ret < 0)
6101 goto out;
6102
6103 path->slots[0]++;
6104 }
6105
6106 while (!list_empty(&deleted_refs)) {
6107 struct recorded_ref *ref;
6108
6109 ref = list_first_entry(&deleted_refs, struct recorded_ref, list);
6110 ret = send_unlink(sctx, ref->full_path);
6111 if (ret < 0)
6112 goto out;
6113 fs_path_free(ref->full_path);
6114 list_del(&ref->list);
6115 kfree(ref);
6116 }
6117 ret = 0;
6118out:
6119 btrfs_free_path(path);
6120 if (ret)
6121 __free_recorded_refs(&deleted_refs);
6122 return ret;
6123}
6124
31db9f7c
AB
6125static int changed_inode(struct send_ctx *sctx,
6126 enum btrfs_compare_tree_result result)
6127{
6128 int ret = 0;
6129 struct btrfs_key *key = sctx->cmp_key;
6130 struct btrfs_inode_item *left_ii = NULL;
6131 struct btrfs_inode_item *right_ii = NULL;
6132 u64 left_gen = 0;
6133 u64 right_gen = 0;
6134
31db9f7c
AB
6135 sctx->cur_ino = key->objectid;
6136 sctx->cur_inode_new_gen = 0;
16e7549f 6137 sctx->cur_inode_last_extent = (u64)-1;
ffa7c429 6138 sctx->cur_inode_next_write_offset = 0;
46b2f459 6139 sctx->ignore_cur_inode = false;
e479d9bb
AB
6140
6141 /*
6142 * Set send_progress to current inode. This will tell all get_cur_xxx
6143 * functions that the current inode's refs are not updated yet. Later,
6144 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6145 */
31db9f7c
AB
6146 sctx->send_progress = sctx->cur_ino;
6147
6148 if (result == BTRFS_COMPARE_TREE_NEW ||
6149 result == BTRFS_COMPARE_TREE_CHANGED) {
6150 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6151 sctx->left_path->slots[0],
6152 struct btrfs_inode_item);
6153 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6154 left_ii);
6155 } else {
6156 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6157 sctx->right_path->slots[0],
6158 struct btrfs_inode_item);
6159 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6160 right_ii);
6161 }
6162 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6163 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6164 sctx->right_path->slots[0],
6165 struct btrfs_inode_item);
6166
6167 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6168 right_ii);
6d85ed05
AB
6169
6170 /*
6171 * The cur_ino = root dir case is special here. We can't treat
6172 * the inode as deleted+reused because it would generate a
6173 * stream that tries to delete/mkdir the root dir.
6174 */
6175 if (left_gen != right_gen &&
6176 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
31db9f7c
AB
6177 sctx->cur_inode_new_gen = 1;
6178 }
6179
46b2f459
FM
6180 /*
6181 * Normally we do not find inodes with a link count of zero (orphans)
6182 * because the most common case is to create a snapshot and use it
6183 * for a send operation. However other less common use cases involve
6184 * using a subvolume and send it after turning it to RO mode just
6185 * after deleting all hard links of a file while holding an open
6186 * file descriptor against it or turning a RO snapshot into RW mode,
6187 * keep an open file descriptor against a file, delete it and then
6188 * turn the snapshot back to RO mode before using it for a send
6189 * operation. So if we find such cases, ignore the inode and all its
6190 * items completely if it's a new inode, or if it's a changed inode
6191 * make sure all its previous paths (from the parent snapshot) are all
6192 * unlinked and all other the inode items are ignored.
6193 */
6194 if (result == BTRFS_COMPARE_TREE_NEW ||
6195 result == BTRFS_COMPARE_TREE_CHANGED) {
6196 u32 nlinks;
6197
6198 nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6199 if (nlinks == 0) {
6200 sctx->ignore_cur_inode = true;
6201 if (result == BTRFS_COMPARE_TREE_CHANGED)
6202 ret = btrfs_unlink_all_paths(sctx);
6203 goto out;
6204 }
6205 }
6206
31db9f7c
AB
6207 if (result == BTRFS_COMPARE_TREE_NEW) {
6208 sctx->cur_inode_gen = left_gen;
6209 sctx->cur_inode_new = 1;
6210 sctx->cur_inode_deleted = 0;
6211 sctx->cur_inode_size = btrfs_inode_size(
6212 sctx->left_path->nodes[0], left_ii);
6213 sctx->cur_inode_mode = btrfs_inode_mode(
6214 sctx->left_path->nodes[0], left_ii);
644d1940
LB
6215 sctx->cur_inode_rdev = btrfs_inode_rdev(
6216 sctx->left_path->nodes[0], left_ii);
31db9f7c 6217 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 6218 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
6219 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6220 sctx->cur_inode_gen = right_gen;
6221 sctx->cur_inode_new = 0;
6222 sctx->cur_inode_deleted = 1;
6223 sctx->cur_inode_size = btrfs_inode_size(
6224 sctx->right_path->nodes[0], right_ii);
6225 sctx->cur_inode_mode = btrfs_inode_mode(
6226 sctx->right_path->nodes[0], right_ii);
6227 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
766702ef
AB
6228 /*
6229 * We need to do some special handling in case the inode was
6230 * reported as changed with a changed generation number. This
6231 * means that the original inode was deleted and new inode
6232 * reused the same inum. So we have to treat the old inode as
6233 * deleted and the new one as new.
6234 */
31db9f7c 6235 if (sctx->cur_inode_new_gen) {
766702ef
AB
6236 /*
6237 * First, process the inode as if it was deleted.
6238 */
31db9f7c
AB
6239 sctx->cur_inode_gen = right_gen;
6240 sctx->cur_inode_new = 0;
6241 sctx->cur_inode_deleted = 1;
6242 sctx->cur_inode_size = btrfs_inode_size(
6243 sctx->right_path->nodes[0], right_ii);
6244 sctx->cur_inode_mode = btrfs_inode_mode(
6245 sctx->right_path->nodes[0], right_ii);
6246 ret = process_all_refs(sctx,
6247 BTRFS_COMPARE_TREE_DELETED);
6248 if (ret < 0)
6249 goto out;
6250
766702ef
AB
6251 /*
6252 * Now process the inode as if it was new.
6253 */
31db9f7c
AB
6254 sctx->cur_inode_gen = left_gen;
6255 sctx->cur_inode_new = 1;
6256 sctx->cur_inode_deleted = 0;
6257 sctx->cur_inode_size = btrfs_inode_size(
6258 sctx->left_path->nodes[0], left_ii);
6259 sctx->cur_inode_mode = btrfs_inode_mode(
6260 sctx->left_path->nodes[0], left_ii);
644d1940
LB
6261 sctx->cur_inode_rdev = btrfs_inode_rdev(
6262 sctx->left_path->nodes[0], left_ii);
1f4692da 6263 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
6264 if (ret < 0)
6265 goto out;
6266
6267 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6268 if (ret < 0)
6269 goto out;
e479d9bb
AB
6270 /*
6271 * Advance send_progress now as we did not get into
6272 * process_recorded_refs_if_needed in the new_gen case.
6273 */
6274 sctx->send_progress = sctx->cur_ino + 1;
766702ef
AB
6275
6276 /*
6277 * Now process all extents and xattrs of the inode as if
6278 * they were all new.
6279 */
31db9f7c
AB
6280 ret = process_all_extents(sctx);
6281 if (ret < 0)
6282 goto out;
6283 ret = process_all_new_xattrs(sctx);
6284 if (ret < 0)
6285 goto out;
6286 } else {
6287 sctx->cur_inode_gen = left_gen;
6288 sctx->cur_inode_new = 0;
6289 sctx->cur_inode_new_gen = 0;
6290 sctx->cur_inode_deleted = 0;
6291 sctx->cur_inode_size = btrfs_inode_size(
6292 sctx->left_path->nodes[0], left_ii);
6293 sctx->cur_inode_mode = btrfs_inode_mode(
6294 sctx->left_path->nodes[0], left_ii);
6295 }
6296 }
6297
6298out:
6299 return ret;
6300}
6301
766702ef
AB
6302/*
6303 * We have to process new refs before deleted refs, but compare_trees gives us
6304 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6305 * first and later process them in process_recorded_refs.
6306 * For the cur_inode_new_gen case, we skip recording completely because
6307 * changed_inode did already initiate processing of refs. The reason for this is
6308 * that in this case, compare_tree actually compares the refs of 2 different
6309 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6310 * refs of the right tree as deleted and all refs of the left tree as new.
6311 */
31db9f7c
AB
6312static int changed_ref(struct send_ctx *sctx,
6313 enum btrfs_compare_tree_result result)
6314{
6315 int ret = 0;
6316
95155585
FM
6317 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6318 inconsistent_snapshot_error(sctx, result, "reference");
6319 return -EIO;
6320 }
31db9f7c
AB
6321
6322 if (!sctx->cur_inode_new_gen &&
6323 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6324 if (result == BTRFS_COMPARE_TREE_NEW)
6325 ret = record_new_ref(sctx);
6326 else if (result == BTRFS_COMPARE_TREE_DELETED)
6327 ret = record_deleted_ref(sctx);
6328 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6329 ret = record_changed_ref(sctx);
6330 }
6331
6332 return ret;
6333}
6334
766702ef
AB
6335/*
6336 * Process new/deleted/changed xattrs. We skip processing in the
6337 * cur_inode_new_gen case because changed_inode did already initiate processing
6338 * of xattrs. The reason is the same as in changed_ref
6339 */
31db9f7c
AB
6340static int changed_xattr(struct send_ctx *sctx,
6341 enum btrfs_compare_tree_result result)
6342{
6343 int ret = 0;
6344
95155585
FM
6345 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6346 inconsistent_snapshot_error(sctx, result, "xattr");
6347 return -EIO;
6348 }
31db9f7c
AB
6349
6350 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6351 if (result == BTRFS_COMPARE_TREE_NEW)
6352 ret = process_new_xattr(sctx);
6353 else if (result == BTRFS_COMPARE_TREE_DELETED)
6354 ret = process_deleted_xattr(sctx);
6355 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6356 ret = process_changed_xattr(sctx);
6357 }
6358
6359 return ret;
6360}
6361
766702ef
AB
6362/*
6363 * Process new/deleted/changed extents. We skip processing in the
6364 * cur_inode_new_gen case because changed_inode did already initiate processing
6365 * of extents. The reason is the same as in changed_ref
6366 */
31db9f7c
AB
6367static int changed_extent(struct send_ctx *sctx,
6368 enum btrfs_compare_tree_result result)
6369{
6370 int ret = 0;
6371
b4f9a1a8
FM
6372 /*
6373 * We have found an extent item that changed without the inode item
6374 * having changed. This can happen either after relocation (where the
6375 * disk_bytenr of an extent item is replaced at
6376 * relocation.c:replace_file_extents()) or after deduplication into a
6377 * file in both the parent and send snapshots (where an extent item can
6378 * get modified or replaced with a new one). Note that deduplication
6379 * updates the inode item, but it only changes the iversion (sequence
6380 * field in the inode item) of the inode, so if a file is deduplicated
6381 * the same amount of times in both the parent and send snapshots, its
6382 * iversion becames the same in both snapshots, whence the inode item is
6383 * the same on both snapshots.
6384 */
6385 if (sctx->cur_ino != sctx->cmp_key->objectid)
6386 return 0;
31db9f7c
AB
6387
6388 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6389 if (result != BTRFS_COMPARE_TREE_DELETED)
6390 ret = process_extent(sctx, sctx->left_path,
6391 sctx->cmp_key);
6392 }
6393
6394 return ret;
6395}
6396
ba5e8f2e
JB
6397static int dir_changed(struct send_ctx *sctx, u64 dir)
6398{
6399 u64 orig_gen, new_gen;
6400 int ret;
6401
6402 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
6403 NULL, NULL);
6404 if (ret)
6405 return ret;
6406
6407 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
6408 NULL, NULL, NULL);
6409 if (ret)
6410 return ret;
6411
6412 return (orig_gen != new_gen) ? 1 : 0;
6413}
6414
6415static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6416 struct btrfs_key *key)
6417{
6418 struct btrfs_inode_extref *extref;
6419 struct extent_buffer *leaf;
6420 u64 dirid = 0, last_dirid = 0;
6421 unsigned long ptr;
6422 u32 item_size;
6423 u32 cur_offset = 0;
6424 int ref_name_len;
6425 int ret = 0;
6426
6427 /* Easy case, just check this one dirid */
6428 if (key->type == BTRFS_INODE_REF_KEY) {
6429 dirid = key->offset;
6430
6431 ret = dir_changed(sctx, dirid);
6432 goto out;
6433 }
6434
6435 leaf = path->nodes[0];
6436 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6437 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6438 while (cur_offset < item_size) {
6439 extref = (struct btrfs_inode_extref *)(ptr +
6440 cur_offset);
6441 dirid = btrfs_inode_extref_parent(leaf, extref);
6442 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6443 cur_offset += ref_name_len + sizeof(*extref);
6444 if (dirid == last_dirid)
6445 continue;
6446 ret = dir_changed(sctx, dirid);
6447 if (ret)
6448 break;
6449 last_dirid = dirid;
6450 }
6451out:
6452 return ret;
6453}
6454
766702ef
AB
6455/*
6456 * Updates compare related fields in sctx and simply forwards to the actual
6457 * changed_xxx functions.
6458 */
ee8c494f 6459static int changed_cb(struct btrfs_path *left_path,
31db9f7c
AB
6460 struct btrfs_path *right_path,
6461 struct btrfs_key *key,
6462 enum btrfs_compare_tree_result result,
6463 void *ctx)
6464{
6465 int ret = 0;
6466 struct send_ctx *sctx = ctx;
6467
ba5e8f2e 6468 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
6469 if (key->type == BTRFS_INODE_REF_KEY ||
6470 key->type == BTRFS_INODE_EXTREF_KEY) {
6471 ret = compare_refs(sctx, left_path, key);
6472 if (!ret)
6473 return 0;
6474 if (ret < 0)
6475 return ret;
6476 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6477 return maybe_send_hole(sctx, left_path, key);
6478 } else {
ba5e8f2e 6479 return 0;
16e7549f 6480 }
ba5e8f2e
JB
6481 result = BTRFS_COMPARE_TREE_CHANGED;
6482 ret = 0;
6483 }
6484
31db9f7c
AB
6485 sctx->left_path = left_path;
6486 sctx->right_path = right_path;
6487 sctx->cmp_key = key;
6488
6489 ret = finish_inode_if_needed(sctx, 0);
6490 if (ret < 0)
6491 goto out;
6492
2981e225
AB
6493 /* Ignore non-FS objects */
6494 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
6495 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
6496 goto out;
6497
46b2f459 6498 if (key->type == BTRFS_INODE_ITEM_KEY) {
31db9f7c 6499 ret = changed_inode(sctx, result);
46b2f459
FM
6500 } else if (!sctx->ignore_cur_inode) {
6501 if (key->type == BTRFS_INODE_REF_KEY ||
6502 key->type == BTRFS_INODE_EXTREF_KEY)
6503 ret = changed_ref(sctx, result);
6504 else if (key->type == BTRFS_XATTR_ITEM_KEY)
6505 ret = changed_xattr(sctx, result);
6506 else if (key->type == BTRFS_EXTENT_DATA_KEY)
6507 ret = changed_extent(sctx, result);
6508 }
31db9f7c
AB
6509
6510out:
6511 return ret;
6512}
6513
6514static int full_send_tree(struct send_ctx *sctx)
6515{
6516 int ret;
31db9f7c
AB
6517 struct btrfs_root *send_root = sctx->send_root;
6518 struct btrfs_key key;
31db9f7c
AB
6519 struct btrfs_path *path;
6520 struct extent_buffer *eb;
6521 int slot;
31db9f7c
AB
6522
6523 path = alloc_path_for_send();
6524 if (!path)
6525 return -ENOMEM;
6526
31db9f7c
AB
6527 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6528 key.type = BTRFS_INODE_ITEM_KEY;
6529 key.offset = 0;
6530
31db9f7c
AB
6531 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6532 if (ret < 0)
6533 goto out;
6534 if (ret)
6535 goto out_finish;
6536
6537 while (1) {
31db9f7c
AB
6538 eb = path->nodes[0];
6539 slot = path->slots[0];
ca5d2ba1 6540 btrfs_item_key_to_cpu(eb, &key, slot);
31db9f7c 6541
ca5d2ba1 6542 ret = changed_cb(path, NULL, &key,
ee8c494f 6543 BTRFS_COMPARE_TREE_NEW, sctx);
31db9f7c
AB
6544 if (ret < 0)
6545 goto out;
6546
31db9f7c
AB
6547 ret = btrfs_next_item(send_root, path);
6548 if (ret < 0)
6549 goto out;
6550 if (ret) {
6551 ret = 0;
6552 break;
6553 }
6554 }
6555
6556out_finish:
6557 ret = finish_inode_if_needed(sctx, 1);
6558
6559out:
6560 btrfs_free_path(path);
31db9f7c
AB
6561 return ret;
6562}
6563
18d0f5c6
DS
6564static int tree_move_down(struct btrfs_path *path, int *level)
6565{
6566 struct extent_buffer *eb;
6567
6568 BUG_ON(*level == 0);
6569 eb = btrfs_read_node_slot(path->nodes[*level], path->slots[*level]);
6570 if (IS_ERR(eb))
6571 return PTR_ERR(eb);
6572
6573 path->nodes[*level - 1] = eb;
6574 path->slots[*level - 1] = 0;
6575 (*level)--;
6576 return 0;
6577}
6578
6579static int tree_move_next_or_upnext(struct btrfs_path *path,
6580 int *level, int root_level)
6581{
6582 int ret = 0;
6583 int nritems;
6584 nritems = btrfs_header_nritems(path->nodes[*level]);
6585
6586 path->slots[*level]++;
6587
6588 while (path->slots[*level] >= nritems) {
6589 if (*level == root_level)
6590 return -1;
6591
6592 /* move upnext */
6593 path->slots[*level] = 0;
6594 free_extent_buffer(path->nodes[*level]);
6595 path->nodes[*level] = NULL;
6596 (*level)++;
6597 path->slots[*level]++;
6598
6599 nritems = btrfs_header_nritems(path->nodes[*level]);
6600 ret = 1;
6601 }
6602 return ret;
6603}
6604
6605/*
6606 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6607 * or down.
6608 */
6609static int tree_advance(struct btrfs_path *path,
6610 int *level, int root_level,
6611 int allow_down,
6612 struct btrfs_key *key)
6613{
6614 int ret;
6615
6616 if (*level == 0 || !allow_down) {
6617 ret = tree_move_next_or_upnext(path, level, root_level);
6618 } else {
6619 ret = tree_move_down(path, level);
6620 }
6621 if (ret >= 0) {
6622 if (*level == 0)
6623 btrfs_item_key_to_cpu(path->nodes[*level], key,
6624 path->slots[*level]);
6625 else
6626 btrfs_node_key_to_cpu(path->nodes[*level], key,
6627 path->slots[*level]);
6628 }
6629 return ret;
6630}
6631
6632static int tree_compare_item(struct btrfs_path *left_path,
6633 struct btrfs_path *right_path,
6634 char *tmp_buf)
6635{
6636 int cmp;
6637 int len1, len2;
6638 unsigned long off1, off2;
6639
6640 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
6641 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
6642 if (len1 != len2)
6643 return 1;
6644
6645 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
6646 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
6647 right_path->slots[0]);
6648
6649 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
6650
6651 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
6652 if (cmp)
6653 return 1;
6654 return 0;
6655}
6656
6657/*
6658 * This function compares two trees and calls the provided callback for
6659 * every changed/new/deleted item it finds.
6660 * If shared tree blocks are encountered, whole subtrees are skipped, making
6661 * the compare pretty fast on snapshotted subvolumes.
6662 *
6663 * This currently works on commit roots only. As commit roots are read only,
6664 * we don't do any locking. The commit roots are protected with transactions.
6665 * Transactions are ended and rejoined when a commit is tried in between.
6666 *
6667 * This function checks for modifications done to the trees while comparing.
6668 * If it detects a change, it aborts immediately.
6669 */
6670static int btrfs_compare_trees(struct btrfs_root *left_root,
1b51d6fc 6671 struct btrfs_root *right_root, void *ctx)
18d0f5c6
DS
6672{
6673 struct btrfs_fs_info *fs_info = left_root->fs_info;
6674 int ret;
6675 int cmp;
6676 struct btrfs_path *left_path = NULL;
6677 struct btrfs_path *right_path = NULL;
6678 struct btrfs_key left_key;
6679 struct btrfs_key right_key;
6680 char *tmp_buf = NULL;
6681 int left_root_level;
6682 int right_root_level;
6683 int left_level;
6684 int right_level;
6685 int left_end_reached;
6686 int right_end_reached;
6687 int advance_left;
6688 int advance_right;
6689 u64 left_blockptr;
6690 u64 right_blockptr;
6691 u64 left_gen;
6692 u64 right_gen;
6693
6694 left_path = btrfs_alloc_path();
6695 if (!left_path) {
6696 ret = -ENOMEM;
6697 goto out;
6698 }
6699 right_path = btrfs_alloc_path();
6700 if (!right_path) {
6701 ret = -ENOMEM;
6702 goto out;
6703 }
6704
6705 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
6706 if (!tmp_buf) {
6707 ret = -ENOMEM;
6708 goto out;
6709 }
6710
6711 left_path->search_commit_root = 1;
6712 left_path->skip_locking = 1;
6713 right_path->search_commit_root = 1;
6714 right_path->skip_locking = 1;
6715
6716 /*
6717 * Strategy: Go to the first items of both trees. Then do
6718 *
6719 * If both trees are at level 0
6720 * Compare keys of current items
6721 * If left < right treat left item as new, advance left tree
6722 * and repeat
6723 * If left > right treat right item as deleted, advance right tree
6724 * and repeat
6725 * If left == right do deep compare of items, treat as changed if
6726 * needed, advance both trees and repeat
6727 * If both trees are at the same level but not at level 0
6728 * Compare keys of current nodes/leafs
6729 * If left < right advance left tree and repeat
6730 * If left > right advance right tree and repeat
6731 * If left == right compare blockptrs of the next nodes/leafs
6732 * If they match advance both trees but stay at the same level
6733 * and repeat
6734 * If they don't match advance both trees while allowing to go
6735 * deeper and repeat
6736 * If tree levels are different
6737 * Advance the tree that needs it and repeat
6738 *
6739 * Advancing a tree means:
6740 * If we are at level 0, try to go to the next slot. If that's not
6741 * possible, go one level up and repeat. Stop when we found a level
6742 * where we could go to the next slot. We may at this point be on a
6743 * node or a leaf.
6744 *
6745 * If we are not at level 0 and not on shared tree blocks, go one
6746 * level deeper.
6747 *
6748 * If we are not at level 0 and on shared tree blocks, go one slot to
6749 * the right if possible or go up and right.
6750 */
6751
6752 down_read(&fs_info->commit_root_sem);
6753 left_level = btrfs_header_level(left_root->commit_root);
6754 left_root_level = left_level;
6755 left_path->nodes[left_level] =
6756 btrfs_clone_extent_buffer(left_root->commit_root);
6757 if (!left_path->nodes[left_level]) {
6758 up_read(&fs_info->commit_root_sem);
6759 ret = -ENOMEM;
6760 goto out;
6761 }
6762
6763 right_level = btrfs_header_level(right_root->commit_root);
6764 right_root_level = right_level;
6765 right_path->nodes[right_level] =
6766 btrfs_clone_extent_buffer(right_root->commit_root);
6767 if (!right_path->nodes[right_level]) {
6768 up_read(&fs_info->commit_root_sem);
6769 ret = -ENOMEM;
6770 goto out;
6771 }
6772 up_read(&fs_info->commit_root_sem);
6773
6774 if (left_level == 0)
6775 btrfs_item_key_to_cpu(left_path->nodes[left_level],
6776 &left_key, left_path->slots[left_level]);
6777 else
6778 btrfs_node_key_to_cpu(left_path->nodes[left_level],
6779 &left_key, left_path->slots[left_level]);
6780 if (right_level == 0)
6781 btrfs_item_key_to_cpu(right_path->nodes[right_level],
6782 &right_key, right_path->slots[right_level]);
6783 else
6784 btrfs_node_key_to_cpu(right_path->nodes[right_level],
6785 &right_key, right_path->slots[right_level]);
6786
6787 left_end_reached = right_end_reached = 0;
6788 advance_left = advance_right = 0;
6789
6790 while (1) {
6af112b1 6791 cond_resched();
18d0f5c6
DS
6792 if (advance_left && !left_end_reached) {
6793 ret = tree_advance(left_path, &left_level,
6794 left_root_level,
6795 advance_left != ADVANCE_ONLY_NEXT,
6796 &left_key);
6797 if (ret == -1)
6798 left_end_reached = ADVANCE;
6799 else if (ret < 0)
6800 goto out;
6801 advance_left = 0;
6802 }
6803 if (advance_right && !right_end_reached) {
6804 ret = tree_advance(right_path, &right_level,
6805 right_root_level,
6806 advance_right != ADVANCE_ONLY_NEXT,
6807 &right_key);
6808 if (ret == -1)
6809 right_end_reached = ADVANCE;
6810 else if (ret < 0)
6811 goto out;
6812 advance_right = 0;
6813 }
6814
6815 if (left_end_reached && right_end_reached) {
6816 ret = 0;
6817 goto out;
6818 } else if (left_end_reached) {
6819 if (right_level == 0) {
6820 ret = changed_cb(left_path, right_path,
6821 &right_key,
6822 BTRFS_COMPARE_TREE_DELETED,
6823 ctx);
6824 if (ret < 0)
6825 goto out;
6826 }
6827 advance_right = ADVANCE;
6828 continue;
6829 } else if (right_end_reached) {
6830 if (left_level == 0) {
6831 ret = changed_cb(left_path, right_path,
6832 &left_key,
6833 BTRFS_COMPARE_TREE_NEW,
6834 ctx);
6835 if (ret < 0)
6836 goto out;
6837 }
6838 advance_left = ADVANCE;
6839 continue;
6840 }
6841
6842 if (left_level == 0 && right_level == 0) {
6843 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6844 if (cmp < 0) {
6845 ret = changed_cb(left_path, right_path,
6846 &left_key,
6847 BTRFS_COMPARE_TREE_NEW,
6848 ctx);
6849 if (ret < 0)
6850 goto out;
6851 advance_left = ADVANCE;
6852 } else if (cmp > 0) {
6853 ret = changed_cb(left_path, right_path,
6854 &right_key,
6855 BTRFS_COMPARE_TREE_DELETED,
6856 ctx);
6857 if (ret < 0)
6858 goto out;
6859 advance_right = ADVANCE;
6860 } else {
6861 enum btrfs_compare_tree_result result;
6862
6863 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
6864 ret = tree_compare_item(left_path, right_path,
6865 tmp_buf);
6866 if (ret)
6867 result = BTRFS_COMPARE_TREE_CHANGED;
6868 else
6869 result = BTRFS_COMPARE_TREE_SAME;
6870 ret = changed_cb(left_path, right_path,
6871 &left_key, result, ctx);
6872 if (ret < 0)
6873 goto out;
6874 advance_left = ADVANCE;
6875 advance_right = ADVANCE;
6876 }
6877 } else if (left_level == right_level) {
6878 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
6879 if (cmp < 0) {
6880 advance_left = ADVANCE;
6881 } else if (cmp > 0) {
6882 advance_right = ADVANCE;
6883 } else {
6884 left_blockptr = btrfs_node_blockptr(
6885 left_path->nodes[left_level],
6886 left_path->slots[left_level]);
6887 right_blockptr = btrfs_node_blockptr(
6888 right_path->nodes[right_level],
6889 right_path->slots[right_level]);
6890 left_gen = btrfs_node_ptr_generation(
6891 left_path->nodes[left_level],
6892 left_path->slots[left_level]);
6893 right_gen = btrfs_node_ptr_generation(
6894 right_path->nodes[right_level],
6895 right_path->slots[right_level]);
6896 if (left_blockptr == right_blockptr &&
6897 left_gen == right_gen) {
6898 /*
6899 * As we're on a shared block, don't
6900 * allow to go deeper.
6901 */
6902 advance_left = ADVANCE_ONLY_NEXT;
6903 advance_right = ADVANCE_ONLY_NEXT;
6904 } else {
6905 advance_left = ADVANCE;
6906 advance_right = ADVANCE;
6907 }
6908 }
6909 } else if (left_level < right_level) {
6910 advance_right = ADVANCE;
6911 } else {
6912 advance_left = ADVANCE;
6913 }
6914 }
6915
6916out:
6917 btrfs_free_path(left_path);
6918 btrfs_free_path(right_path);
6919 kvfree(tmp_buf);
6920 return ret;
6921}
6922
31db9f7c
AB
6923static int send_subvol(struct send_ctx *sctx)
6924{
6925 int ret;
6926
c2c71324
SB
6927 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6928 ret = send_header(sctx);
6929 if (ret < 0)
6930 goto out;
6931 }
31db9f7c
AB
6932
6933 ret = send_subvol_begin(sctx);
6934 if (ret < 0)
6935 goto out;
6936
6937 if (sctx->parent_root) {
1b51d6fc 6938 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
31db9f7c
AB
6939 if (ret < 0)
6940 goto out;
6941 ret = finish_inode_if_needed(sctx, 1);
6942 if (ret < 0)
6943 goto out;
6944 } else {
6945 ret = full_send_tree(sctx);
6946 if (ret < 0)
6947 goto out;
6948 }
6949
6950out:
31db9f7c
AB
6951 free_recorded_refs(sctx);
6952 return ret;
6953}
6954
e5fa8f86
FM
6955/*
6956 * If orphan cleanup did remove any orphans from a root, it means the tree
6957 * was modified and therefore the commit root is not the same as the current
6958 * root anymore. This is a problem, because send uses the commit root and
6959 * therefore can see inode items that don't exist in the current root anymore,
6960 * and for example make calls to btrfs_iget, which will do tree lookups based
6961 * on the current root and not on the commit root. Those lookups will fail,
6962 * returning a -ESTALE error, and making send fail with that error. So make
6963 * sure a send does not see any orphans we have just removed, and that it will
6964 * see the same inodes regardless of whether a transaction commit happened
6965 * before it started (meaning that the commit root will be the same as the
6966 * current root) or not.
6967 */
6968static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6969{
6970 int i;
6971 struct btrfs_trans_handle *trans = NULL;
6972
6973again:
6974 if (sctx->parent_root &&
6975 sctx->parent_root->node != sctx->parent_root->commit_root)
6976 goto commit_trans;
6977
6978 for (i = 0; i < sctx->clone_roots_cnt; i++)
6979 if (sctx->clone_roots[i].root->node !=
6980 sctx->clone_roots[i].root->commit_root)
6981 goto commit_trans;
6982
6983 if (trans)
3a45bb20 6984 return btrfs_end_transaction(trans);
e5fa8f86
FM
6985
6986 return 0;
6987
6988commit_trans:
6989 /* Use any root, all fs roots will get their commit roots updated. */
6990 if (!trans) {
6991 trans = btrfs_join_transaction(sctx->send_root);
6992 if (IS_ERR(trans))
6993 return PTR_ERR(trans);
6994 goto again;
6995 }
6996
3a45bb20 6997 return btrfs_commit_transaction(trans);
e5fa8f86
FM
6998}
6999
9f89d5de
FM
7000/*
7001 * Make sure any existing dellaloc is flushed for any root used by a send
7002 * operation so that we do not miss any data and we do not race with writeback
7003 * finishing and changing a tree while send is using the tree. This could
7004 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7005 * a send operation then uses the subvolume.
7006 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7007 */
7008static int flush_delalloc_roots(struct send_ctx *sctx)
7009{
7010 struct btrfs_root *root = sctx->parent_root;
7011 int ret;
7012 int i;
7013
7014 if (root) {
7015 ret = btrfs_start_delalloc_snapshot(root);
7016 if (ret)
7017 return ret;
7018 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7019 }
7020
7021 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7022 root = sctx->clone_roots[i].root;
7023 ret = btrfs_start_delalloc_snapshot(root);
7024 if (ret)
7025 return ret;
7026 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7027 }
7028
7029 return 0;
7030}
7031
66ef7d65
DS
7032static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7033{
7034 spin_lock(&root->root_item_lock);
7035 root->send_in_progress--;
7036 /*
7037 * Not much left to do, we don't know why it's unbalanced and
7038 * can't blindly reset it to 0.
7039 */
7040 if (root->send_in_progress < 0)
7041 btrfs_err(root->fs_info,
f5686e3a 7042 "send_in_progress unbalanced %d root %llu",
0b246afa 7043 root->send_in_progress, root->root_key.objectid);
66ef7d65
DS
7044 spin_unlock(&root->root_item_lock);
7045}
7046
62d54f3a
FM
7047static void dedupe_in_progress_warn(const struct btrfs_root *root)
7048{
7049 btrfs_warn_rl(root->fs_info,
7050"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7051 root->root_key.objectid, root->dedupe_in_progress);
7052}
7053
2351f431 7054long btrfs_ioctl_send(struct file *mnt_file, struct btrfs_ioctl_send_args *arg)
31db9f7c
AB
7055{
7056 int ret = 0;
0b246afa
JM
7057 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
7058 struct btrfs_fs_info *fs_info = send_root->fs_info;
31db9f7c 7059 struct btrfs_root *clone_root;
31db9f7c
AB
7060 struct send_ctx *sctx = NULL;
7061 u32 i;
7062 u64 *clone_sources_tmp = NULL;
2c686537 7063 int clone_sources_to_rollback = 0;
e55d1153 7064 unsigned alloc_size;
896c14f9 7065 int sort_clone_roots = 0;
31db9f7c
AB
7066
7067 if (!capable(CAP_SYS_ADMIN))
7068 return -EPERM;
7069
2c686537
DS
7070 /*
7071 * The subvolume must remain read-only during send, protect against
521e0546 7072 * making it RW. This also protects against deletion.
2c686537
DS
7073 */
7074 spin_lock(&send_root->root_item_lock);
62d54f3a
FM
7075 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7076 dedupe_in_progress_warn(send_root);
7077 spin_unlock(&send_root->root_item_lock);
7078 return -EAGAIN;
7079 }
2c686537
DS
7080 send_root->send_in_progress++;
7081 spin_unlock(&send_root->root_item_lock);
7082
2c686537
DS
7083 /*
7084 * Userspace tools do the checks and warn the user if it's
7085 * not RO.
7086 */
7087 if (!btrfs_root_readonly(send_root)) {
7088 ret = -EPERM;
7089 goto out;
7090 }
7091
457ae726
DC
7092 /*
7093 * Check that we don't overflow at later allocations, we request
7094 * clone_sources_count + 1 items, and compare to unsigned long inside
7095 * access_ok.
7096 */
f5ecec3c 7097 if (arg->clone_sources_count >
457ae726 7098 ULONG_MAX / sizeof(struct clone_root) - 1) {
f5ecec3c
DC
7099 ret = -EINVAL;
7100 goto out;
7101 }
7102
c2c71324 7103 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
7104 ret = -EINVAL;
7105 goto out;
7106 }
7107
e780b0d1 7108 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
31db9f7c
AB
7109 if (!sctx) {
7110 ret = -ENOMEM;
7111 goto out;
7112 }
7113
7114 INIT_LIST_HEAD(&sctx->new_refs);
7115 INIT_LIST_HEAD(&sctx->deleted_refs);
e780b0d1 7116 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
31db9f7c
AB
7117 INIT_LIST_HEAD(&sctx->name_cache_list);
7118
cb95e7bf
MF
7119 sctx->flags = arg->flags;
7120
31db9f7c 7121 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
7122 if (!sctx->send_filp) {
7123 ret = -EBADF;
31db9f7c
AB
7124 goto out;
7125 }
7126
31db9f7c 7127 sctx->send_root = send_root;
521e0546
DS
7128 /*
7129 * Unlikely but possible, if the subvolume is marked for deletion but
7130 * is slow to remove the directory entry, send can still be started
7131 */
7132 if (btrfs_root_dead(sctx->send_root)) {
7133 ret = -EPERM;
7134 goto out;
7135 }
7136
31db9f7c
AB
7137 sctx->clone_roots_cnt = arg->clone_sources_count;
7138
7139 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
752ade68 7140 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
31db9f7c 7141 if (!sctx->send_buf) {
752ade68
MH
7142 ret = -ENOMEM;
7143 goto out;
31db9f7c
AB
7144 }
7145
9f03740a
FDBM
7146 sctx->pending_dir_moves = RB_ROOT;
7147 sctx->waiting_dir_moves = RB_ROOT;
9dc44214 7148 sctx->orphan_dirs = RB_ROOT;
9f03740a 7149
e55d1153
DS
7150 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
7151
8eb2fd00 7152 sctx->clone_roots = kvzalloc(alloc_size, GFP_KERNEL);
31db9f7c 7153 if (!sctx->clone_roots) {
818e010b
DS
7154 ret = -ENOMEM;
7155 goto out;
31db9f7c
AB
7156 }
7157
e55d1153
DS
7158 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
7159
31db9f7c 7160 if (arg->clone_sources_count) {
752ade68 7161 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
31db9f7c 7162 if (!clone_sources_tmp) {
752ade68
MH
7163 ret = -ENOMEM;
7164 goto out;
31db9f7c
AB
7165 }
7166
7167 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
e55d1153 7168 alloc_size);
31db9f7c
AB
7169 if (ret) {
7170 ret = -EFAULT;
7171 goto out;
7172 }
7173
7174 for (i = 0; i < arg->clone_sources_count; i++) {
56e9357a
DS
7175 clone_root = btrfs_get_fs_root(fs_info,
7176 clone_sources_tmp[i], true);
31db9f7c
AB
7177 if (IS_ERR(clone_root)) {
7178 ret = PTR_ERR(clone_root);
7179 goto out;
7180 }
2c686537 7181 spin_lock(&clone_root->root_item_lock);
5cc2b17e
FM
7182 if (!btrfs_root_readonly(clone_root) ||
7183 btrfs_root_dead(clone_root)) {
2c686537 7184 spin_unlock(&clone_root->root_item_lock);
00246528 7185 btrfs_put_root(clone_root);
2c686537
DS
7186 ret = -EPERM;
7187 goto out;
7188 }
62d54f3a
FM
7189 if (clone_root->dedupe_in_progress) {
7190 dedupe_in_progress_warn(clone_root);
7191 spin_unlock(&clone_root->root_item_lock);
00246528 7192 btrfs_put_root(clone_root);
62d54f3a
FM
7193 ret = -EAGAIN;
7194 goto out;
7195 }
2f1f465a 7196 clone_root->send_in_progress++;
2c686537 7197 spin_unlock(&clone_root->root_item_lock);
18f687d5 7198
31db9f7c 7199 sctx->clone_roots[i].root = clone_root;
2f1f465a 7200 clone_sources_to_rollback = i + 1;
31db9f7c 7201 }
2f91306a 7202 kvfree(clone_sources_tmp);
31db9f7c
AB
7203 clone_sources_tmp = NULL;
7204 }
7205
7206 if (arg->parent_root) {
56e9357a
DS
7207 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7208 true);
b1b19596
SB
7209 if (IS_ERR(sctx->parent_root)) {
7210 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
7211 goto out;
7212 }
18f687d5 7213
2c686537
DS
7214 spin_lock(&sctx->parent_root->root_item_lock);
7215 sctx->parent_root->send_in_progress++;
521e0546
DS
7216 if (!btrfs_root_readonly(sctx->parent_root) ||
7217 btrfs_root_dead(sctx->parent_root)) {
2c686537
DS
7218 spin_unlock(&sctx->parent_root->root_item_lock);
7219 ret = -EPERM;
7220 goto out;
7221 }
62d54f3a
FM
7222 if (sctx->parent_root->dedupe_in_progress) {
7223 dedupe_in_progress_warn(sctx->parent_root);
7224 spin_unlock(&sctx->parent_root->root_item_lock);
62d54f3a
FM
7225 ret = -EAGAIN;
7226 goto out;
7227 }
2c686537 7228 spin_unlock(&sctx->parent_root->root_item_lock);
31db9f7c
AB
7229 }
7230
7231 /*
7232 * Clones from send_root are allowed, but only if the clone source
7233 * is behind the current send position. This is checked while searching
7234 * for possible clone sources.
7235 */
6f9a3da5 7236 sctx->clone_roots[sctx->clone_roots_cnt++].root =
00246528 7237 btrfs_grab_root(sctx->send_root);
31db9f7c
AB
7238
7239 /* We do a bsearch later */
7240 sort(sctx->clone_roots, sctx->clone_roots_cnt,
7241 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
7242 NULL);
896c14f9 7243 sort_clone_roots = 1;
31db9f7c 7244
9f89d5de
FM
7245 ret = flush_delalloc_roots(sctx);
7246 if (ret)
7247 goto out;
7248
e5fa8f86
FM
7249 ret = ensure_commit_roots_uptodate(sctx);
7250 if (ret)
7251 goto out;
7252
9e967495
FM
7253 mutex_lock(&fs_info->balance_mutex);
7254 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
7255 mutex_unlock(&fs_info->balance_mutex);
7256 btrfs_warn_rl(fs_info,
7257 "cannot run send because a balance operation is in progress");
7258 ret = -EAGAIN;
7259 goto out;
7260 }
7261 fs_info->send_in_progress++;
7262 mutex_unlock(&fs_info->balance_mutex);
7263
2755a0de 7264 current->journal_info = BTRFS_SEND_TRANS_STUB;
31db9f7c 7265 ret = send_subvol(sctx);
a26e8c9f 7266 current->journal_info = NULL;
9e967495
FM
7267 mutex_lock(&fs_info->balance_mutex);
7268 fs_info->send_in_progress--;
7269 mutex_unlock(&fs_info->balance_mutex);
31db9f7c
AB
7270 if (ret < 0)
7271 goto out;
7272
c2c71324
SB
7273 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
7274 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
7275 if (ret < 0)
7276 goto out;
7277 ret = send_cmd(sctx);
7278 if (ret < 0)
7279 goto out;
7280 }
31db9f7c
AB
7281
7282out:
9f03740a
FDBM
7283 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
7284 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
7285 struct rb_node *n;
7286 struct pending_dir_move *pm;
7287
7288 n = rb_first(&sctx->pending_dir_moves);
7289 pm = rb_entry(n, struct pending_dir_move, node);
7290 while (!list_empty(&pm->list)) {
7291 struct pending_dir_move *pm2;
7292
7293 pm2 = list_first_entry(&pm->list,
7294 struct pending_dir_move, list);
7295 free_pending_move(sctx, pm2);
7296 }
7297 free_pending_move(sctx, pm);
7298 }
7299
7300 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
7301 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
7302 struct rb_node *n;
7303 struct waiting_dir_move *dm;
7304
7305 n = rb_first(&sctx->waiting_dir_moves);
7306 dm = rb_entry(n, struct waiting_dir_move, node);
7307 rb_erase(&dm->node, &sctx->waiting_dir_moves);
7308 kfree(dm);
7309 }
7310
9dc44214
FM
7311 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
7312 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
7313 struct rb_node *n;
7314 struct orphan_dir_info *odi;
7315
7316 n = rb_first(&sctx->orphan_dirs);
7317 odi = rb_entry(n, struct orphan_dir_info, node);
7318 free_orphan_dir_info(sctx, odi);
7319 }
7320
896c14f9 7321 if (sort_clone_roots) {
6f9a3da5 7322 for (i = 0; i < sctx->clone_roots_cnt; i++) {
896c14f9
WS
7323 btrfs_root_dec_send_in_progress(
7324 sctx->clone_roots[i].root);
00246528 7325 btrfs_put_root(sctx->clone_roots[i].root);
6f9a3da5 7326 }
896c14f9 7327 } else {
6f9a3da5 7328 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
896c14f9
WS
7329 btrfs_root_dec_send_in_progress(
7330 sctx->clone_roots[i].root);
00246528 7331 btrfs_put_root(sctx->clone_roots[i].root);
6f9a3da5 7332 }
896c14f9
WS
7333
7334 btrfs_root_dec_send_in_progress(send_root);
7335 }
6f9a3da5 7336 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
66ef7d65 7337 btrfs_root_dec_send_in_progress(sctx->parent_root);
00246528 7338 btrfs_put_root(sctx->parent_root);
6f9a3da5 7339 }
2c686537 7340
2f91306a 7341 kvfree(clone_sources_tmp);
31db9f7c
AB
7342
7343 if (sctx) {
7344 if (sctx->send_filp)
7345 fput(sctx->send_filp);
7346
c03d01f3 7347 kvfree(sctx->clone_roots);
6ff48ce0 7348 kvfree(sctx->send_buf);
31db9f7c
AB
7349
7350 name_cache_free(sctx);
7351
7352 kfree(sctx);
7353 }
7354
7355 return ret;
7356}