btrfs: use struct fscrypt_str instead of struct qstr
[linux-block.git] / fs / btrfs / send.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
31db9f7c
AB
2/*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
31db9f7c
AB
4 */
5
6#include <linux/bsearch.h>
7#include <linux/fs.h>
8#include <linux/file.h>
9#include <linux/sort.h>
10#include <linux/mount.h>
11#include <linux/xattr.h>
12#include <linux/posix_acl_xattr.h>
5b8418b8 13#include <linux/radix-tree.h>
a1857ebe 14#include <linux/vmalloc.h>
ed84885d 15#include <linux/string.h>
2351f431 16#include <linux/compat.h>
9678c543 17#include <linux/crc32c.h>
38622010 18#include <linux/fsverity.h>
31db9f7c
AB
19
20#include "send.h"
8234d3f6 21#include "ctree.h"
31db9f7c
AB
22#include "backref.h"
23#include "locking.h"
24#include "disk-io.h"
25#include "btrfs_inode.h"
26#include "transaction.h"
ebb8765b 27#include "compression.h"
89efda52 28#include "xattr.h"
d96b3424 29#include "print-tree.h"
07e81dc9 30#include "accessors.h"
31db9f7c 31
fd0ddbe2
FM
32/*
33 * Maximum number of references an extent can have in order for us to attempt to
34 * issue clone operations instead of write operations. This currently exists to
35 * avoid hitting limitations of the backreference walking code (taking a lot of
36 * time and using too much memory for extents with large number of references).
37 */
38#define SEND_MAX_EXTENT_REFS 64
39
31db9f7c
AB
40/*
41 * A fs_path is a helper to dynamically build path names with unknown size.
42 * It reallocates the internal buffer on demand.
43 * It allows fast adding of path elements on the right side (normal path) and
44 * fast adding to the left side (reversed path). A reversed path can also be
45 * unreversed if needed.
46 */
47struct fs_path {
48 union {
49 struct {
50 char *start;
51 char *end;
31db9f7c
AB
52
53 char *buf;
1f5a7ff9
DS
54 unsigned short buf_len:15;
55 unsigned short reversed:1;
31db9f7c
AB
56 char inline_buf[];
57 };
ace01050
DS
58 /*
59 * Average path length does not exceed 200 bytes, we'll have
60 * better packing in the slab and higher chance to satisfy
61 * a allocation later during send.
62 */
63 char pad[256];
31db9f7c
AB
64 };
65};
66#define FS_PATH_INLINE_SIZE \
67 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
68
69
70/* reused for each extent */
71struct clone_root {
72 struct btrfs_root *root;
73 u64 ino;
74 u64 offset;
75
76 u64 found_refs;
77};
78
79#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
80#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
81
82struct send_ctx {
83 struct file *send_filp;
84 loff_t send_off;
85 char *send_buf;
86 u32 send_size;
87 u32 send_max_size;
356bbbb6
OS
88 /*
89 * Whether BTRFS_SEND_A_DATA attribute was already added to current
90 * command (since protocol v2, data must be the last attribute).
91 */
92 bool put_data;
a4b333f2 93 struct page **send_buf_pages;
cb95e7bf 94 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
e77fbf99
DS
95 /* Protocol version compatibility requested */
96 u32 proto;
31db9f7c 97
31db9f7c
AB
98 struct btrfs_root *send_root;
99 struct btrfs_root *parent_root;
100 struct clone_root *clone_roots;
101 int clone_roots_cnt;
102
103 /* current state of the compare_tree call */
104 struct btrfs_path *left_path;
105 struct btrfs_path *right_path;
106 struct btrfs_key *cmp_key;
107
d96b3424
FM
108 /*
109 * Keep track of the generation of the last transaction that was used
110 * for relocating a block group. This is periodically checked in order
111 * to detect if a relocation happened since the last check, so that we
112 * don't operate on stale extent buffers for nodes (level >= 1) or on
113 * stale disk_bytenr values of file extent items.
114 */
115 u64 last_reloc_trans;
116
31db9f7c
AB
117 /*
118 * infos of the currently processed inode. In case of deleted inodes,
119 * these are the values from the deleted inode.
120 */
121 u64 cur_ino;
122 u64 cur_inode_gen;
31db9f7c
AB
123 u64 cur_inode_size;
124 u64 cur_inode_mode;
644d1940 125 u64 cur_inode_rdev;
16e7549f 126 u64 cur_inode_last_extent;
ffa7c429 127 u64 cur_inode_next_write_offset;
9555e1f1
DS
128 bool cur_inode_new;
129 bool cur_inode_new_gen;
130 bool cur_inode_deleted;
46b2f459 131 bool ignore_cur_inode;
38622010
BB
132 bool cur_inode_needs_verity;
133 void *verity_descriptor;
31db9f7c
AB
134
135 u64 send_progress;
136
137 struct list_head new_refs;
138 struct list_head deleted_refs;
139
5b8418b8 140 struct radix_tree_root name_cache;
31db9f7c
AB
141 struct list_head name_cache_list;
142 int name_cache_size;
143
521b6803
FM
144 /*
145 * The inode we are currently processing. It's not NULL only when we
146 * need to issue write commands for data extents from this inode.
147 */
148 struct inode *cur_inode;
2131bcd3 149 struct file_ra_state ra;
152555b3
FM
150 u64 page_cache_clear_start;
151 bool clean_page_cache;
2131bcd3 152
9f03740a
FDBM
153 /*
154 * We process inodes by their increasing order, so if before an
155 * incremental send we reverse the parent/child relationship of
156 * directories such that a directory with a lower inode number was
157 * the parent of a directory with a higher inode number, and the one
158 * becoming the new parent got renamed too, we can't rename/move the
159 * directory with lower inode number when we finish processing it - we
160 * must process the directory with higher inode number first, then
161 * rename/move it and then rename/move the directory with lower inode
162 * number. Example follows.
163 *
164 * Tree state when the first send was performed:
165 *
166 * .
167 * |-- a (ino 257)
168 * |-- b (ino 258)
169 * |
170 * |
171 * |-- c (ino 259)
172 * | |-- d (ino 260)
173 * |
174 * |-- c2 (ino 261)
175 *
176 * Tree state when the second (incremental) send is performed:
177 *
178 * .
179 * |-- a (ino 257)
180 * |-- b (ino 258)
181 * |-- c2 (ino 261)
182 * |-- d2 (ino 260)
183 * |-- cc (ino 259)
184 *
185 * The sequence of steps that lead to the second state was:
186 *
187 * mv /a/b/c/d /a/b/c2/d2
188 * mv /a/b/c /a/b/c2/d2/cc
189 *
190 * "c" has lower inode number, but we can't move it (2nd mv operation)
191 * before we move "d", which has higher inode number.
192 *
193 * So we just memorize which move/rename operations must be performed
194 * later when their respective parent is processed and moved/renamed.
195 */
196
197 /* Indexed by parent directory inode number. */
198 struct rb_root pending_dir_moves;
199
200 /*
201 * Reverse index, indexed by the inode number of a directory that
202 * is waiting for the move/rename of its immediate parent before its
203 * own move/rename can be performed.
204 */
205 struct rb_root waiting_dir_moves;
9dc44214
FM
206
207 /*
208 * A directory that is going to be rm'ed might have a child directory
209 * which is in the pending directory moves index above. In this case,
210 * the directory can only be removed after the move/rename of its child
211 * is performed. Example:
212 *
213 * Parent snapshot:
214 *
215 * . (ino 256)
216 * |-- a/ (ino 257)
217 * |-- b/ (ino 258)
218 * |-- c/ (ino 259)
219 * | |-- x/ (ino 260)
220 * |
221 * |-- y/ (ino 261)
222 *
223 * Send snapshot:
224 *
225 * . (ino 256)
226 * |-- a/ (ino 257)
227 * |-- b/ (ino 258)
228 * |-- YY/ (ino 261)
229 * |-- x/ (ino 260)
230 *
231 * Sequence of steps that lead to the send snapshot:
232 * rm -f /a/b/c/foo.txt
233 * mv /a/b/y /a/b/YY
234 * mv /a/b/c/x /a/b/YY
235 * rmdir /a/b/c
236 *
237 * When the child is processed, its move/rename is delayed until its
238 * parent is processed (as explained above), but all other operations
239 * like update utimes, chown, chgrp, etc, are performed and the paths
240 * that it uses for those operations must use the orphanized name of
241 * its parent (the directory we're going to rm later), so we need to
242 * memorize that name.
243 *
244 * Indexed by the inode number of the directory to be deleted.
245 */
246 struct rb_root orphan_dirs;
3aa5bd36
BC
247
248 struct rb_root rbtree_new_refs;
249 struct rb_root rbtree_deleted_refs;
9f03740a
FDBM
250};
251
252struct pending_dir_move {
253 struct rb_node node;
254 struct list_head list;
255 u64 parent_ino;
256 u64 ino;
257 u64 gen;
258 struct list_head update_refs;
259};
260
261struct waiting_dir_move {
262 struct rb_node node;
263 u64 ino;
9dc44214
FM
264 /*
265 * There might be some directory that could not be removed because it
266 * was waiting for this directory inode to be moved first. Therefore
267 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
268 */
269 u64 rmdir_ino;
0b3f407e 270 u64 rmdir_gen;
8b191a68 271 bool orphanized;
9dc44214
FM
272};
273
274struct orphan_dir_info {
275 struct rb_node node;
276 u64 ino;
277 u64 gen;
0f96f517 278 u64 last_dir_index_offset;
31db9f7c
AB
279};
280
281struct name_cache_entry {
282 struct list_head list;
7e0926fe 283 /*
5b8418b8
DS
284 * radix_tree has only 32bit entries but we need to handle 64bit inums.
285 * We use the lower 32bit of the 64bit inum to store it in the tree. If
286 * more then one inum would fall into the same entry, we use radix_list
287 * to store the additional entries. radix_list is also used to store
288 * entries where two entries have the same inum but different
289 * generations.
7e0926fe 290 */
5b8418b8 291 struct list_head radix_list;
31db9f7c
AB
292 u64 ino;
293 u64 gen;
294 u64 parent_ino;
295 u64 parent_gen;
296 int ret;
297 int need_later_update;
298 int name_len;
299 char name[];
300};
301
18d0f5c6
DS
302#define ADVANCE 1
303#define ADVANCE_ONLY_NEXT -1
304
305enum btrfs_compare_tree_result {
306 BTRFS_COMPARE_TREE_NEW,
307 BTRFS_COMPARE_TREE_DELETED,
308 BTRFS_COMPARE_TREE_CHANGED,
309 BTRFS_COMPARE_TREE_SAME,
310};
18d0f5c6 311
e67c718b 312__cold
95155585
FM
313static void inconsistent_snapshot_error(struct send_ctx *sctx,
314 enum btrfs_compare_tree_result result,
315 const char *what)
316{
317 const char *result_string;
318
319 switch (result) {
320 case BTRFS_COMPARE_TREE_NEW:
321 result_string = "new";
322 break;
323 case BTRFS_COMPARE_TREE_DELETED:
324 result_string = "deleted";
325 break;
326 case BTRFS_COMPARE_TREE_CHANGED:
327 result_string = "updated";
328 break;
329 case BTRFS_COMPARE_TREE_SAME:
330 ASSERT(0);
331 result_string = "unchanged";
332 break;
333 default:
334 ASSERT(0);
335 result_string = "unexpected";
336 }
337
338 btrfs_err(sctx->send_root->fs_info,
339 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
340 result_string, what, sctx->cmp_key->objectid,
341 sctx->send_root->root_key.objectid,
342 (sctx->parent_root ?
343 sctx->parent_root->root_key.objectid : 0));
344}
345
e77fbf99
DS
346__maybe_unused
347static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
348{
349 switch (sctx->proto) {
54cab6af
OS
350 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
351 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
c86eab81 352 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
e77fbf99
DS
353 default: return false;
354 }
355}
356
9f03740a
FDBM
357static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
358
9dc44214
FM
359static struct waiting_dir_move *
360get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
361
0b3f407e 362static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
9dc44214 363
16e7549f
JB
364static int need_send_hole(struct send_ctx *sctx)
365{
366 return (sctx->parent_root && !sctx->cur_inode_new &&
367 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
368 S_ISREG(sctx->cur_inode_mode));
369}
370
31db9f7c
AB
371static void fs_path_reset(struct fs_path *p)
372{
373 if (p->reversed) {
374 p->start = p->buf + p->buf_len - 1;
375 p->end = p->start;
376 *p->start = 0;
377 } else {
378 p->start = p->buf;
379 p->end = p->start;
380 *p->start = 0;
381 }
382}
383
924794c9 384static struct fs_path *fs_path_alloc(void)
31db9f7c
AB
385{
386 struct fs_path *p;
387
e780b0d1 388 p = kmalloc(sizeof(*p), GFP_KERNEL);
31db9f7c
AB
389 if (!p)
390 return NULL;
391 p->reversed = 0;
31db9f7c
AB
392 p->buf = p->inline_buf;
393 p->buf_len = FS_PATH_INLINE_SIZE;
394 fs_path_reset(p);
395 return p;
396}
397
924794c9 398static struct fs_path *fs_path_alloc_reversed(void)
31db9f7c
AB
399{
400 struct fs_path *p;
401
924794c9 402 p = fs_path_alloc();
31db9f7c
AB
403 if (!p)
404 return NULL;
405 p->reversed = 1;
406 fs_path_reset(p);
407 return p;
408}
409
924794c9 410static void fs_path_free(struct fs_path *p)
31db9f7c
AB
411{
412 if (!p)
413 return;
ace01050
DS
414 if (p->buf != p->inline_buf)
415 kfree(p->buf);
31db9f7c
AB
416 kfree(p);
417}
418
419static int fs_path_len(struct fs_path *p)
420{
421 return p->end - p->start;
422}
423
424static int fs_path_ensure_buf(struct fs_path *p, int len)
425{
426 char *tmp_buf;
427 int path_len;
428 int old_buf_len;
429
430 len++;
431
432 if (p->buf_len >= len)
433 return 0;
434
cfd4a535
CM
435 if (len > PATH_MAX) {
436 WARN_ON(1);
437 return -ENOMEM;
438 }
439
1b2782c8
DS
440 path_len = p->end - p->start;
441 old_buf_len = p->buf_len;
442
ace01050
DS
443 /*
444 * First time the inline_buf does not suffice
445 */
01a9a8a9 446 if (p->buf == p->inline_buf) {
e780b0d1 447 tmp_buf = kmalloc(len, GFP_KERNEL);
01a9a8a9
FM
448 if (tmp_buf)
449 memcpy(tmp_buf, p->buf, old_buf_len);
450 } else {
e780b0d1 451 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
01a9a8a9 452 }
9c9ca00b
DS
453 if (!tmp_buf)
454 return -ENOMEM;
455 p->buf = tmp_buf;
456 /*
457 * The real size of the buffer is bigger, this will let the fast path
458 * happen most of the time
459 */
460 p->buf_len = ksize(p->buf);
ace01050 461
31db9f7c
AB
462 if (p->reversed) {
463 tmp_buf = p->buf + old_buf_len - path_len - 1;
464 p->end = p->buf + p->buf_len - 1;
465 p->start = p->end - path_len;
466 memmove(p->start, tmp_buf, path_len + 1);
467 } else {
468 p->start = p->buf;
469 p->end = p->start + path_len;
470 }
471 return 0;
472}
473
b23ab57d
DS
474static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
475 char **prepared)
31db9f7c
AB
476{
477 int ret;
478 int new_len;
479
480 new_len = p->end - p->start + name_len;
481 if (p->start != p->end)
482 new_len++;
483 ret = fs_path_ensure_buf(p, new_len);
484 if (ret < 0)
485 goto out;
486
487 if (p->reversed) {
488 if (p->start != p->end)
489 *--p->start = '/';
490 p->start -= name_len;
b23ab57d 491 *prepared = p->start;
31db9f7c
AB
492 } else {
493 if (p->start != p->end)
494 *p->end++ = '/';
b23ab57d 495 *prepared = p->end;
31db9f7c
AB
496 p->end += name_len;
497 *p->end = 0;
498 }
499
500out:
501 return ret;
502}
503
504static int fs_path_add(struct fs_path *p, const char *name, int name_len)
505{
506 int ret;
b23ab57d 507 char *prepared;
31db9f7c 508
b23ab57d 509 ret = fs_path_prepare_for_add(p, name_len, &prepared);
31db9f7c
AB
510 if (ret < 0)
511 goto out;
b23ab57d 512 memcpy(prepared, name, name_len);
31db9f7c
AB
513
514out:
515 return ret;
516}
517
518static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
519{
520 int ret;
b23ab57d 521 char *prepared;
31db9f7c 522
b23ab57d 523 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
31db9f7c
AB
524 if (ret < 0)
525 goto out;
b23ab57d 526 memcpy(prepared, p2->start, p2->end - p2->start);
31db9f7c
AB
527
528out:
529 return ret;
530}
531
532static int fs_path_add_from_extent_buffer(struct fs_path *p,
533 struct extent_buffer *eb,
534 unsigned long off, int len)
535{
536 int ret;
b23ab57d 537 char *prepared;
31db9f7c 538
b23ab57d 539 ret = fs_path_prepare_for_add(p, len, &prepared);
31db9f7c
AB
540 if (ret < 0)
541 goto out;
542
b23ab57d 543 read_extent_buffer(eb, prepared, off, len);
31db9f7c
AB
544
545out:
546 return ret;
547}
548
31db9f7c
AB
549static int fs_path_copy(struct fs_path *p, struct fs_path *from)
550{
31db9f7c
AB
551 p->reversed = from->reversed;
552 fs_path_reset(p);
553
0292ecf1 554 return fs_path_add_path(p, from);
31db9f7c
AB
555}
556
31db9f7c
AB
557static void fs_path_unreverse(struct fs_path *p)
558{
559 char *tmp;
560 int len;
561
562 if (!p->reversed)
563 return;
564
565 tmp = p->start;
566 len = p->end - p->start;
567 p->start = p->buf;
568 p->end = p->start + len;
569 memmove(p->start, tmp, len + 1);
570 p->reversed = 0;
571}
572
573static struct btrfs_path *alloc_path_for_send(void)
574{
575 struct btrfs_path *path;
576
577 path = btrfs_alloc_path();
578 if (!path)
579 return NULL;
580 path->search_commit_root = 1;
581 path->skip_locking = 1;
3f8a18cc 582 path->need_commit_sem = 1;
31db9f7c
AB
583 return path;
584}
585
48a3b636 586static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
31db9f7c
AB
587{
588 int ret;
31db9f7c
AB
589 u32 pos = 0;
590
31db9f7c 591 while (pos < len) {
8e93157b 592 ret = kernel_write(filp, buf + pos, len - pos, off);
31db9f7c 593 if (ret < 0)
8e93157b 594 return ret;
cec3dad9 595 if (ret == 0)
8e93157b 596 return -EIO;
31db9f7c
AB
597 pos += ret;
598 }
599
8e93157b 600 return 0;
31db9f7c
AB
601}
602
603static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
604{
605 struct btrfs_tlv_header *hdr;
606 int total_len = sizeof(*hdr) + len;
607 int left = sctx->send_max_size - sctx->send_size;
608
356bbbb6
OS
609 if (WARN_ON_ONCE(sctx->put_data))
610 return -EINVAL;
611
31db9f7c
AB
612 if (unlikely(left < total_len))
613 return -EOVERFLOW;
614
615 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
e2f896b3
DS
616 put_unaligned_le16(attr, &hdr->tlv_type);
617 put_unaligned_le16(len, &hdr->tlv_len);
31db9f7c
AB
618 memcpy(hdr + 1, data, len);
619 sctx->send_size += total_len;
620
621 return 0;
622}
623
95bc79d5
DS
624#define TLV_PUT_DEFINE_INT(bits) \
625 static int tlv_put_u##bits(struct send_ctx *sctx, \
626 u##bits attr, u##bits value) \
627 { \
628 __le##bits __tmp = cpu_to_le##bits(value); \
629 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
630 }
31db9f7c 631
38622010 632TLV_PUT_DEFINE_INT(8)
3ea4dc5b 633TLV_PUT_DEFINE_INT(32)
95bc79d5 634TLV_PUT_DEFINE_INT(64)
31db9f7c
AB
635
636static int tlv_put_string(struct send_ctx *sctx, u16 attr,
637 const char *str, int len)
638{
639 if (len == -1)
640 len = strlen(str);
641 return tlv_put(sctx, attr, str, len);
642}
643
644static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
645 const u8 *uuid)
646{
647 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
648}
649
31db9f7c
AB
650static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
651 struct extent_buffer *eb,
652 struct btrfs_timespec *ts)
653{
654 struct btrfs_timespec bts;
655 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
656 return tlv_put(sctx, attr, &bts, sizeof(bts));
657}
658
659
895a72be 660#define TLV_PUT(sctx, attrtype, data, attrlen) \
31db9f7c 661 do { \
895a72be 662 ret = tlv_put(sctx, attrtype, data, attrlen); \
31db9f7c
AB
663 if (ret < 0) \
664 goto tlv_put_failure; \
665 } while (0)
666
667#define TLV_PUT_INT(sctx, attrtype, bits, value) \
668 do { \
669 ret = tlv_put_u##bits(sctx, attrtype, value); \
670 if (ret < 0) \
671 goto tlv_put_failure; \
672 } while (0)
673
674#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
675#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
676#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
677#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
678#define TLV_PUT_STRING(sctx, attrtype, str, len) \
679 do { \
680 ret = tlv_put_string(sctx, attrtype, str, len); \
681 if (ret < 0) \
682 goto tlv_put_failure; \
683 } while (0)
684#define TLV_PUT_PATH(sctx, attrtype, p) \
685 do { \
686 ret = tlv_put_string(sctx, attrtype, p->start, \
687 p->end - p->start); \
688 if (ret < 0) \
689 goto tlv_put_failure; \
690 } while(0)
691#define TLV_PUT_UUID(sctx, attrtype, uuid) \
692 do { \
693 ret = tlv_put_uuid(sctx, attrtype, uuid); \
694 if (ret < 0) \
695 goto tlv_put_failure; \
696 } while (0)
31db9f7c
AB
697#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
698 do { \
699 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
700 if (ret < 0) \
701 goto tlv_put_failure; \
702 } while (0)
703
704static int send_header(struct send_ctx *sctx)
705{
706 struct btrfs_stream_header hdr;
707
708 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
d6815592 709 hdr.version = cpu_to_le32(sctx->proto);
1bcea355
AJ
710 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
711 &sctx->send_off);
31db9f7c
AB
712}
713
714/*
715 * For each command/item we want to send to userspace, we call this function.
716 */
717static int begin_cmd(struct send_ctx *sctx, int cmd)
718{
719 struct btrfs_cmd_header *hdr;
720
fae7f21c 721 if (WARN_ON(!sctx->send_buf))
31db9f7c 722 return -EINVAL;
31db9f7c
AB
723
724 BUG_ON(sctx->send_size);
725
726 sctx->send_size += sizeof(*hdr);
727 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
e2f896b3 728 put_unaligned_le16(cmd, &hdr->cmd);
31db9f7c
AB
729
730 return 0;
731}
732
733static int send_cmd(struct send_ctx *sctx)
734{
735 int ret;
736 struct btrfs_cmd_header *hdr;
737 u32 crc;
738
739 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
e2f896b3
DS
740 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
741 put_unaligned_le32(0, &hdr->crc);
31db9f7c 742
65019df8 743 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
e2f896b3 744 put_unaligned_le32(crc, &hdr->crc);
31db9f7c 745
1bcea355
AJ
746 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
747 &sctx->send_off);
31db9f7c 748
31db9f7c 749 sctx->send_size = 0;
356bbbb6 750 sctx->put_data = false;
31db9f7c
AB
751
752 return ret;
753}
754
755/*
756 * Sends a move instruction to user space
757 */
758static int send_rename(struct send_ctx *sctx,
759 struct fs_path *from, struct fs_path *to)
760{
04ab956e 761 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
762 int ret;
763
04ab956e 764 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
31db9f7c
AB
765
766 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
767 if (ret < 0)
768 goto out;
769
770 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
771 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
772
773 ret = send_cmd(sctx);
774
775tlv_put_failure:
776out:
777 return ret;
778}
779
780/*
781 * Sends a link instruction to user space
782 */
783static int send_link(struct send_ctx *sctx,
784 struct fs_path *path, struct fs_path *lnk)
785{
04ab956e 786 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
787 int ret;
788
04ab956e 789 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
31db9f7c
AB
790
791 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
792 if (ret < 0)
793 goto out;
794
795 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
796 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
797
798 ret = send_cmd(sctx);
799
800tlv_put_failure:
801out:
802 return ret;
803}
804
805/*
806 * Sends an unlink instruction to user space
807 */
808static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
809{
04ab956e 810 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
811 int ret;
812
04ab956e 813 btrfs_debug(fs_info, "send_unlink %s", path->start);
31db9f7c
AB
814
815 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
816 if (ret < 0)
817 goto out;
818
819 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
820
821 ret = send_cmd(sctx);
822
823tlv_put_failure:
824out:
825 return ret;
826}
827
828/*
829 * Sends a rmdir instruction to user space
830 */
831static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
832{
04ab956e 833 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
834 int ret;
835
04ab956e 836 btrfs_debug(fs_info, "send_rmdir %s", path->start);
31db9f7c
AB
837
838 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
839 if (ret < 0)
840 goto out;
841
842 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
843
844 ret = send_cmd(sctx);
845
846tlv_put_failure:
847out:
848 return ret;
849}
850
7e93f6dc
BC
851struct btrfs_inode_info {
852 u64 size;
853 u64 gen;
854 u64 mode;
855 u64 uid;
856 u64 gid;
857 u64 rdev;
858 u64 fileattr;
9ed0a72e 859 u64 nlink;
7e93f6dc
BC
860};
861
31db9f7c
AB
862/*
863 * Helper function to retrieve some fields from an inode item.
864 */
7e93f6dc
BC
865static int get_inode_info(struct btrfs_root *root, u64 ino,
866 struct btrfs_inode_info *info)
31db9f7c
AB
867{
868 int ret;
7e93f6dc 869 struct btrfs_path *path;
31db9f7c
AB
870 struct btrfs_inode_item *ii;
871 struct btrfs_key key;
31db9f7c 872
7e93f6dc
BC
873 path = alloc_path_for_send();
874 if (!path)
875 return -ENOMEM;
876
31db9f7c
AB
877 key.objectid = ino;
878 key.type = BTRFS_INODE_ITEM_KEY;
879 key.offset = 0;
880 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
31db9f7c 881 if (ret) {
3f8a18cc
JB
882 if (ret > 0)
883 ret = -ENOENT;
7e93f6dc 884 goto out;
31db9f7c
AB
885 }
886
7e93f6dc
BC
887 if (!info)
888 goto out;
889
31db9f7c
AB
890 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
891 struct btrfs_inode_item);
7e93f6dc
BC
892 info->size = btrfs_inode_size(path->nodes[0], ii);
893 info->gen = btrfs_inode_generation(path->nodes[0], ii);
894 info->mode = btrfs_inode_mode(path->nodes[0], ii);
895 info->uid = btrfs_inode_uid(path->nodes[0], ii);
896 info->gid = btrfs_inode_gid(path->nodes[0], ii);
897 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
9ed0a72e 898 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
48247359
DS
899 /*
900 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
901 * otherwise logically split to 32/32 parts.
902 */
7e93f6dc 903 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
31db9f7c 904
7e93f6dc
BC
905out:
906 btrfs_free_path(path);
3f8a18cc
JB
907 return ret;
908}
909
7e93f6dc 910static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
3f8a18cc 911{
3f8a18cc 912 int ret;
7e93f6dc 913 struct btrfs_inode_info info;
3f8a18cc 914
7e93f6dc
BC
915 if (!gen)
916 return -EPERM;
917
918 ret = get_inode_info(root, ino, &info);
919 if (!ret)
920 *gen = info.gen;
31db9f7c
AB
921 return ret;
922}
923
924typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
925 struct fs_path *p,
926 void *ctx);
927
928/*
96b5bd77
JS
929 * Helper function to iterate the entries in ONE btrfs_inode_ref or
930 * btrfs_inode_extref.
31db9f7c
AB
931 * The iterate callback may return a non zero value to stop iteration. This can
932 * be a negative value for error codes or 1 to simply stop it.
933 *
96b5bd77 934 * path must point to the INODE_REF or INODE_EXTREF when called.
31db9f7c 935 */
924794c9 936static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
937 struct btrfs_key *found_key, int resolve,
938 iterate_inode_ref_t iterate, void *ctx)
939{
96b5bd77 940 struct extent_buffer *eb = path->nodes[0];
31db9f7c 941 struct btrfs_inode_ref *iref;
96b5bd77 942 struct btrfs_inode_extref *extref;
31db9f7c
AB
943 struct btrfs_path *tmp_path;
944 struct fs_path *p;
96b5bd77 945 u32 cur = 0;
31db9f7c 946 u32 total;
96b5bd77 947 int slot = path->slots[0];
31db9f7c
AB
948 u32 name_len;
949 char *start;
950 int ret = 0;
96b5bd77 951 int num = 0;
31db9f7c 952 int index;
96b5bd77
JS
953 u64 dir;
954 unsigned long name_off;
955 unsigned long elem_size;
956 unsigned long ptr;
31db9f7c 957
924794c9 958 p = fs_path_alloc_reversed();
31db9f7c
AB
959 if (!p)
960 return -ENOMEM;
961
962 tmp_path = alloc_path_for_send();
963 if (!tmp_path) {
924794c9 964 fs_path_free(p);
31db9f7c
AB
965 return -ENOMEM;
966 }
967
31db9f7c 968
96b5bd77
JS
969 if (found_key->type == BTRFS_INODE_REF_KEY) {
970 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
971 struct btrfs_inode_ref);
3212fa14 972 total = btrfs_item_size(eb, slot);
96b5bd77
JS
973 elem_size = sizeof(*iref);
974 } else {
975 ptr = btrfs_item_ptr_offset(eb, slot);
3212fa14 976 total = btrfs_item_size(eb, slot);
96b5bd77
JS
977 elem_size = sizeof(*extref);
978 }
979
31db9f7c
AB
980 while (cur < total) {
981 fs_path_reset(p);
982
96b5bd77
JS
983 if (found_key->type == BTRFS_INODE_REF_KEY) {
984 iref = (struct btrfs_inode_ref *)(ptr + cur);
985 name_len = btrfs_inode_ref_name_len(eb, iref);
986 name_off = (unsigned long)(iref + 1);
987 index = btrfs_inode_ref_index(eb, iref);
988 dir = found_key->offset;
989 } else {
990 extref = (struct btrfs_inode_extref *)(ptr + cur);
991 name_len = btrfs_inode_extref_name_len(eb, extref);
992 name_off = (unsigned long)&extref->name;
993 index = btrfs_inode_extref_index(eb, extref);
994 dir = btrfs_inode_extref_parent(eb, extref);
995 }
996
31db9f7c 997 if (resolve) {
96b5bd77
JS
998 start = btrfs_ref_to_path(root, tmp_path, name_len,
999 name_off, eb, dir,
1000 p->buf, p->buf_len);
31db9f7c
AB
1001 if (IS_ERR(start)) {
1002 ret = PTR_ERR(start);
1003 goto out;
1004 }
1005 if (start < p->buf) {
1006 /* overflow , try again with larger buffer */
1007 ret = fs_path_ensure_buf(p,
1008 p->buf_len + p->buf - start);
1009 if (ret < 0)
1010 goto out;
96b5bd77
JS
1011 start = btrfs_ref_to_path(root, tmp_path,
1012 name_len, name_off,
1013 eb, dir,
1014 p->buf, p->buf_len);
31db9f7c
AB
1015 if (IS_ERR(start)) {
1016 ret = PTR_ERR(start);
1017 goto out;
1018 }
1019 BUG_ON(start < p->buf);
1020 }
1021 p->start = start;
1022 } else {
96b5bd77
JS
1023 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1024 name_len);
31db9f7c
AB
1025 if (ret < 0)
1026 goto out;
1027 }
1028
96b5bd77
JS
1029 cur += elem_size + name_len;
1030 ret = iterate(num, dir, index, p, ctx);
31db9f7c
AB
1031 if (ret)
1032 goto out;
31db9f7c
AB
1033 num++;
1034 }
1035
1036out:
1037 btrfs_free_path(tmp_path);
924794c9 1038 fs_path_free(p);
31db9f7c
AB
1039 return ret;
1040}
1041
1042typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1043 const char *name, int name_len,
1044 const char *data, int data_len,
b1dea4e7 1045 void *ctx);
31db9f7c
AB
1046
1047/*
1048 * Helper function to iterate the entries in ONE btrfs_dir_item.
1049 * The iterate callback may return a non zero value to stop iteration. This can
1050 * be a negative value for error codes or 1 to simply stop it.
1051 *
1052 * path must point to the dir item when called.
1053 */
924794c9 1054static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
31db9f7c
AB
1055 iterate_dir_item_t iterate, void *ctx)
1056{
1057 int ret = 0;
1058 struct extent_buffer *eb;
31db9f7c 1059 struct btrfs_dir_item *di;
31db9f7c
AB
1060 struct btrfs_key di_key;
1061 char *buf = NULL;
7e3ae33e 1062 int buf_len;
31db9f7c
AB
1063 u32 name_len;
1064 u32 data_len;
1065 u32 cur;
1066 u32 len;
1067 u32 total;
1068 int slot;
1069 int num;
31db9f7c 1070
4395e0c4
FM
1071 /*
1072 * Start with a small buffer (1 page). If later we end up needing more
1073 * space, which can happen for xattrs on a fs with a leaf size greater
1074 * then the page size, attempt to increase the buffer. Typically xattr
1075 * values are small.
1076 */
1077 buf_len = PATH_MAX;
e780b0d1 1078 buf = kmalloc(buf_len, GFP_KERNEL);
31db9f7c
AB
1079 if (!buf) {
1080 ret = -ENOMEM;
1081 goto out;
1082 }
1083
31db9f7c
AB
1084 eb = path->nodes[0];
1085 slot = path->slots[0];
31db9f7c
AB
1086 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1087 cur = 0;
1088 len = 0;
3212fa14 1089 total = btrfs_item_size(eb, slot);
31db9f7c
AB
1090
1091 num = 0;
1092 while (cur < total) {
1093 name_len = btrfs_dir_name_len(eb, di);
1094 data_len = btrfs_dir_data_len(eb, di);
31db9f7c
AB
1095 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1096
b1dea4e7 1097 if (btrfs_dir_type(eb, di) == BTRFS_FT_XATTR) {
7e3ae33e
FM
1098 if (name_len > XATTR_NAME_MAX) {
1099 ret = -ENAMETOOLONG;
1100 goto out;
1101 }
da17066c
JM
1102 if (name_len + data_len >
1103 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
7e3ae33e
FM
1104 ret = -E2BIG;
1105 goto out;
1106 }
1107 } else {
1108 /*
1109 * Path too long
1110 */
4395e0c4 1111 if (name_len + data_len > PATH_MAX) {
7e3ae33e
FM
1112 ret = -ENAMETOOLONG;
1113 goto out;
1114 }
31db9f7c
AB
1115 }
1116
4395e0c4
FM
1117 if (name_len + data_len > buf_len) {
1118 buf_len = name_len + data_len;
1119 if (is_vmalloc_addr(buf)) {
1120 vfree(buf);
1121 buf = NULL;
1122 } else {
1123 char *tmp = krealloc(buf, buf_len,
e780b0d1 1124 GFP_KERNEL | __GFP_NOWARN);
4395e0c4
FM
1125
1126 if (!tmp)
1127 kfree(buf);
1128 buf = tmp;
1129 }
1130 if (!buf) {
f11f7441 1131 buf = kvmalloc(buf_len, GFP_KERNEL);
4395e0c4
FM
1132 if (!buf) {
1133 ret = -ENOMEM;
1134 goto out;
1135 }
1136 }
1137 }
1138
31db9f7c
AB
1139 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1140 name_len + data_len);
1141
1142 len = sizeof(*di) + name_len + data_len;
1143 di = (struct btrfs_dir_item *)((char *)di + len);
1144 cur += len;
1145
1146 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
b1dea4e7 1147 data_len, ctx);
31db9f7c
AB
1148 if (ret < 0)
1149 goto out;
1150 if (ret) {
1151 ret = 0;
1152 goto out;
1153 }
1154
1155 num++;
1156 }
1157
1158out:
4395e0c4 1159 kvfree(buf);
31db9f7c
AB
1160 return ret;
1161}
1162
1163static int __copy_first_ref(int num, u64 dir, int index,
1164 struct fs_path *p, void *ctx)
1165{
1166 int ret;
1167 struct fs_path *pt = ctx;
1168
1169 ret = fs_path_copy(pt, p);
1170 if (ret < 0)
1171 return ret;
1172
1173 /* we want the first only */
1174 return 1;
1175}
1176
1177/*
1178 * Retrieve the first path of an inode. If an inode has more then one
1179 * ref/hardlink, this is ignored.
1180 */
924794c9 1181static int get_inode_path(struct btrfs_root *root,
31db9f7c
AB
1182 u64 ino, struct fs_path *path)
1183{
1184 int ret;
1185 struct btrfs_key key, found_key;
1186 struct btrfs_path *p;
1187
1188 p = alloc_path_for_send();
1189 if (!p)
1190 return -ENOMEM;
1191
1192 fs_path_reset(path);
1193
1194 key.objectid = ino;
1195 key.type = BTRFS_INODE_REF_KEY;
1196 key.offset = 0;
1197
1198 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1199 if (ret < 0)
1200 goto out;
1201 if (ret) {
1202 ret = 1;
1203 goto out;
1204 }
1205 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1206 if (found_key.objectid != ino ||
96b5bd77
JS
1207 (found_key.type != BTRFS_INODE_REF_KEY &&
1208 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1209 ret = -ENOENT;
1210 goto out;
1211 }
1212
924794c9
TI
1213 ret = iterate_inode_ref(root, p, &found_key, 1,
1214 __copy_first_ref, path);
31db9f7c
AB
1215 if (ret < 0)
1216 goto out;
1217 ret = 0;
1218
1219out:
1220 btrfs_free_path(p);
1221 return ret;
1222}
1223
1224struct backref_ctx {
1225 struct send_ctx *sctx;
1226
1227 /* number of total found references */
1228 u64 found;
1229
1230 /*
1231 * used for clones found in send_root. clones found behind cur_objectid
1232 * and cur_offset are not considered as allowed clones.
1233 */
1234 u64 cur_objectid;
1235 u64 cur_offset;
1236
1237 /* may be truncated in case it's the last extent in a file */
1238 u64 extent_len;
1239
1240 /* Just to check for bugs in backref resolving */
ee849c04 1241 int found_itself;
31db9f7c
AB
1242};
1243
1244static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1245{
995e01b7 1246 u64 root = (u64)(uintptr_t)key;
214cc184 1247 const struct clone_root *cr = elt;
31db9f7c 1248
4fd786e6 1249 if (root < cr->root->root_key.objectid)
31db9f7c 1250 return -1;
4fd786e6 1251 if (root > cr->root->root_key.objectid)
31db9f7c
AB
1252 return 1;
1253 return 0;
1254}
1255
1256static int __clone_root_cmp_sort(const void *e1, const void *e2)
1257{
214cc184
DS
1258 const struct clone_root *cr1 = e1;
1259 const struct clone_root *cr2 = e2;
31db9f7c 1260
4fd786e6 1261 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
31db9f7c 1262 return -1;
4fd786e6 1263 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
31db9f7c
AB
1264 return 1;
1265 return 0;
1266}
1267
1268/*
1269 * Called for every backref that is found for the current extent.
766702ef 1270 * Results are collected in sctx->clone_roots->ino/offset/found_refs
31db9f7c
AB
1271 */
1272static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1273{
1274 struct backref_ctx *bctx = ctx_;
1275 struct clone_root *found;
31db9f7c
AB
1276
1277 /* First check if the root is in the list of accepted clone sources */
995e01b7 1278 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
31db9f7c
AB
1279 bctx->sctx->clone_roots_cnt,
1280 sizeof(struct clone_root),
1281 __clone_root_cmp_bsearch);
1282 if (!found)
1283 return 0;
1284
1285 if (found->root == bctx->sctx->send_root &&
1286 ino == bctx->cur_objectid &&
1287 offset == bctx->cur_offset) {
ee849c04 1288 bctx->found_itself = 1;
31db9f7c
AB
1289 }
1290
31db9f7c
AB
1291 /*
1292 * Make sure we don't consider clones from send_root that are
1293 * behind the current inode/offset.
1294 */
1295 if (found->root == bctx->sctx->send_root) {
1296 /*
11f2069c
FM
1297 * If the source inode was not yet processed we can't issue a
1298 * clone operation, as the source extent does not exist yet at
1299 * the destination of the stream.
31db9f7c 1300 */
11f2069c
FM
1301 if (ino > bctx->cur_objectid)
1302 return 0;
1303 /*
1304 * We clone from the inode currently being sent as long as the
1305 * source extent is already processed, otherwise we could try
1306 * to clone from an extent that does not exist yet at the
1307 * destination of the stream.
1308 */
1309 if (ino == bctx->cur_objectid &&
9722b101
FM
1310 offset + bctx->extent_len >
1311 bctx->sctx->cur_inode_next_write_offset)
31db9f7c 1312 return 0;
31db9f7c
AB
1313 }
1314
1315 bctx->found++;
1316 found->found_refs++;
1317 if (ino < found->ino) {
1318 found->ino = ino;
1319 found->offset = offset;
1320 } else if (found->ino == ino) {
1321 /*
1322 * same extent found more then once in the same file.
1323 */
1324 if (found->offset > offset + bctx->extent_len)
1325 found->offset = offset;
1326 }
1327
1328 return 0;
1329}
1330
1331/*
766702ef
AB
1332 * Given an inode, offset and extent item, it finds a good clone for a clone
1333 * instruction. Returns -ENOENT when none could be found. The function makes
1334 * sure that the returned clone is usable at the point where sending is at the
1335 * moment. This means, that no clones are accepted which lie behind the current
1336 * inode+offset.
1337 *
31db9f7c
AB
1338 * path must point to the extent item when called.
1339 */
1340static int find_extent_clone(struct send_ctx *sctx,
1341 struct btrfs_path *path,
1342 u64 ino, u64 data_offset,
1343 u64 ino_size,
1344 struct clone_root **found)
1345{
04ab956e 1346 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
1347 int ret;
1348 int extent_type;
1349 u64 logical;
74dd17fb 1350 u64 disk_byte;
31db9f7c
AB
1351 u64 num_bytes;
1352 u64 extent_item_pos;
69917e43 1353 u64 flags = 0;
31db9f7c
AB
1354 struct btrfs_file_extent_item *fi;
1355 struct extent_buffer *eb = path->nodes[0];
dce28150 1356 struct backref_ctx backref_ctx = {0};
31db9f7c
AB
1357 struct clone_root *cur_clone_root;
1358 struct btrfs_key found_key;
1359 struct btrfs_path *tmp_path;
fd0ddbe2 1360 struct btrfs_extent_item *ei;
74dd17fb 1361 int compressed;
31db9f7c
AB
1362 u32 i;
1363
1364 tmp_path = alloc_path_for_send();
1365 if (!tmp_path)
1366 return -ENOMEM;
1367
3f8a18cc
JB
1368 /* We only use this path under the commit sem */
1369 tmp_path->need_commit_sem = 0;
1370
31db9f7c
AB
1371 if (data_offset >= ino_size) {
1372 /*
1373 * There may be extents that lie behind the file's size.
1374 * I at least had this in combination with snapshotting while
1375 * writing large files.
1376 */
1377 ret = 0;
1378 goto out;
1379 }
1380
1381 fi = btrfs_item_ptr(eb, path->slots[0],
1382 struct btrfs_file_extent_item);
1383 extent_type = btrfs_file_extent_type(eb, fi);
1384 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1385 ret = -ENOENT;
1386 goto out;
1387 }
74dd17fb 1388 compressed = btrfs_file_extent_compression(eb, fi);
31db9f7c
AB
1389
1390 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
74dd17fb
CM
1391 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1392 if (disk_byte == 0) {
31db9f7c
AB
1393 ret = -ENOENT;
1394 goto out;
1395 }
74dd17fb 1396 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
31db9f7c 1397
04ab956e
JM
1398 down_read(&fs_info->commit_root_sem);
1399 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
69917e43 1400 &found_key, &flags);
04ab956e 1401 up_read(&fs_info->commit_root_sem);
31db9f7c
AB
1402
1403 if (ret < 0)
1404 goto out;
69917e43 1405 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
31db9f7c
AB
1406 ret = -EIO;
1407 goto out;
1408 }
1409
fd0ddbe2
FM
1410 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1411 struct btrfs_extent_item);
1412 /*
1413 * Backreference walking (iterate_extent_inodes() below) is currently
1414 * too expensive when an extent has a large number of references, both
1415 * in time spent and used memory. So for now just fallback to write
1416 * operations instead of clone operations when an extent has more than
1417 * a certain amount of references.
1418 */
1419 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1420 ret = -ENOENT;
1421 goto out;
1422 }
1423 btrfs_release_path(tmp_path);
1424
31db9f7c
AB
1425 /*
1426 * Setup the clone roots.
1427 */
1428 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1429 cur_clone_root = sctx->clone_roots + i;
1430 cur_clone_root->ino = (u64)-1;
1431 cur_clone_root->offset = 0;
1432 cur_clone_root->found_refs = 0;
1433 }
1434
dce28150
GR
1435 backref_ctx.sctx = sctx;
1436 backref_ctx.found = 0;
1437 backref_ctx.cur_objectid = ino;
1438 backref_ctx.cur_offset = data_offset;
1439 backref_ctx.found_itself = 0;
1440 backref_ctx.extent_len = num_bytes;
31db9f7c
AB
1441
1442 /*
1443 * The last extent of a file may be too large due to page alignment.
1444 * We need to adjust extent_len in this case so that the checks in
1445 * __iterate_backrefs work.
1446 */
1447 if (data_offset + num_bytes >= ino_size)
dce28150 1448 backref_ctx.extent_len = ino_size - data_offset;
31db9f7c
AB
1449
1450 /*
1451 * Now collect all backrefs.
1452 */
74dd17fb
CM
1453 if (compressed == BTRFS_COMPRESS_NONE)
1454 extent_item_pos = logical - found_key.objectid;
1455 else
1456 extent_item_pos = 0;
0b246afa
JM
1457 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1458 extent_item_pos, 1, __iterate_backrefs,
dce28150 1459 &backref_ctx, false);
74dd17fb 1460
31db9f7c
AB
1461 if (ret < 0)
1462 goto out;
1463
d96b3424
FM
1464 down_read(&fs_info->commit_root_sem);
1465 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1466 /*
1467 * A transaction commit for a transaction in which block group
1468 * relocation was done just happened.
1469 * The disk_bytenr of the file extent item we processed is
1470 * possibly stale, referring to the extent's location before
1471 * relocation. So act as if we haven't found any clone sources
1472 * and fallback to write commands, which will read the correct
1473 * data from the new extent location. Otherwise we will fail
1474 * below because we haven't found our own back reference or we
1475 * could be getting incorrect sources in case the old extent
1476 * was already reallocated after the relocation.
1477 */
1478 up_read(&fs_info->commit_root_sem);
1479 ret = -ENOENT;
1480 goto out;
1481 }
1482 up_read(&fs_info->commit_root_sem);
1483
dce28150 1484 if (!backref_ctx.found_itself) {
31db9f7c
AB
1485 /* found a bug in backref code? */
1486 ret = -EIO;
04ab956e 1487 btrfs_err(fs_info,
5d163e0e 1488 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
04ab956e 1489 ino, data_offset, disk_byte, found_key.objectid);
31db9f7c
AB
1490 goto out;
1491 }
1492
04ab956e
JM
1493 btrfs_debug(fs_info,
1494 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1495 data_offset, ino, num_bytes, logical);
31db9f7c 1496
dce28150 1497 if (!backref_ctx.found)
04ab956e 1498 btrfs_debug(fs_info, "no clones found");
31db9f7c
AB
1499
1500 cur_clone_root = NULL;
1501 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1502 if (sctx->clone_roots[i].found_refs) {
1503 if (!cur_clone_root)
1504 cur_clone_root = sctx->clone_roots + i;
1505 else if (sctx->clone_roots[i].root == sctx->send_root)
1506 /* prefer clones from send_root over others */
1507 cur_clone_root = sctx->clone_roots + i;
31db9f7c
AB
1508 }
1509
1510 }
1511
1512 if (cur_clone_root) {
1513 *found = cur_clone_root;
1514 ret = 0;
1515 } else {
1516 ret = -ENOENT;
1517 }
1518
1519out:
1520 btrfs_free_path(tmp_path);
1521 return ret;
1522}
1523
924794c9 1524static int read_symlink(struct btrfs_root *root,
31db9f7c
AB
1525 u64 ino,
1526 struct fs_path *dest)
1527{
1528 int ret;
1529 struct btrfs_path *path;
1530 struct btrfs_key key;
1531 struct btrfs_file_extent_item *ei;
1532 u8 type;
1533 u8 compression;
1534 unsigned long off;
1535 int len;
1536
1537 path = alloc_path_for_send();
1538 if (!path)
1539 return -ENOMEM;
1540
1541 key.objectid = ino;
1542 key.type = BTRFS_EXTENT_DATA_KEY;
1543 key.offset = 0;
1544 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1545 if (ret < 0)
1546 goto out;
a879719b
FM
1547 if (ret) {
1548 /*
1549 * An empty symlink inode. Can happen in rare error paths when
1550 * creating a symlink (transaction committed before the inode
1551 * eviction handler removed the symlink inode items and a crash
1552 * happened in between or the subvol was snapshoted in between).
1553 * Print an informative message to dmesg/syslog so that the user
1554 * can delete the symlink.
1555 */
1556 btrfs_err(root->fs_info,
1557 "Found empty symlink inode %llu at root %llu",
1558 ino, root->root_key.objectid);
1559 ret = -EIO;
1560 goto out;
1561 }
31db9f7c
AB
1562
1563 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1564 struct btrfs_file_extent_item);
1565 type = btrfs_file_extent_type(path->nodes[0], ei);
1566 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1567 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1568 BUG_ON(compression);
1569
1570 off = btrfs_file_extent_inline_start(ei);
e41ca589 1571 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
31db9f7c
AB
1572
1573 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
31db9f7c
AB
1574
1575out:
1576 btrfs_free_path(path);
1577 return ret;
1578}
1579
1580/*
1581 * Helper function to generate a file name that is unique in the root of
1582 * send_root and parent_root. This is used to generate names for orphan inodes.
1583 */
1584static int gen_unique_name(struct send_ctx *sctx,
1585 u64 ino, u64 gen,
1586 struct fs_path *dest)
1587{
1588 int ret = 0;
1589 struct btrfs_path *path;
1590 struct btrfs_dir_item *di;
1591 char tmp[64];
1592 int len;
1593 u64 idx = 0;
1594
1595 path = alloc_path_for_send();
1596 if (!path)
1597 return -ENOMEM;
1598
1599 while (1) {
6db75318 1600 struct fscrypt_str tmp_name;
e43eec81 1601
f74b86d8 1602 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
31db9f7c 1603 ino, gen, idx);
64792f25 1604 ASSERT(len < sizeof(tmp));
e43eec81
STD
1605 tmp_name.name = tmp;
1606 tmp_name.len = strlen(tmp);
31db9f7c
AB
1607
1608 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1609 path, BTRFS_FIRST_FREE_OBJECTID,
e43eec81 1610 &tmp_name, 0);
31db9f7c
AB
1611 btrfs_release_path(path);
1612 if (IS_ERR(di)) {
1613 ret = PTR_ERR(di);
1614 goto out;
1615 }
1616 if (di) {
1617 /* not unique, try again */
1618 idx++;
1619 continue;
1620 }
1621
1622 if (!sctx->parent_root) {
1623 /* unique */
1624 ret = 0;
1625 break;
1626 }
1627
1628 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1629 path, BTRFS_FIRST_FREE_OBJECTID,
e43eec81 1630 &tmp_name, 0);
31db9f7c
AB
1631 btrfs_release_path(path);
1632 if (IS_ERR(di)) {
1633 ret = PTR_ERR(di);
1634 goto out;
1635 }
1636 if (di) {
1637 /* not unique, try again */
1638 idx++;
1639 continue;
1640 }
1641 /* unique */
1642 break;
1643 }
1644
1645 ret = fs_path_add(dest, tmp, strlen(tmp));
1646
1647out:
1648 btrfs_free_path(path);
1649 return ret;
1650}
1651
1652enum inode_state {
1653 inode_state_no_change,
1654 inode_state_will_create,
1655 inode_state_did_create,
1656 inode_state_will_delete,
1657 inode_state_did_delete,
1658};
1659
1660static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1661{
1662 int ret;
1663 int left_ret;
1664 int right_ret;
1665 u64 left_gen;
1666 u64 right_gen;
9ed0a72e 1667 struct btrfs_inode_info info;
31db9f7c 1668
9ed0a72e 1669 ret = get_inode_info(sctx->send_root, ino, &info);
31db9f7c
AB
1670 if (ret < 0 && ret != -ENOENT)
1671 goto out;
9ed0a72e
BC
1672 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1673 left_gen = info.gen;
31db9f7c
AB
1674
1675 if (!sctx->parent_root) {
1676 right_ret = -ENOENT;
1677 } else {
9ed0a72e 1678 ret = get_inode_info(sctx->parent_root, ino, &info);
31db9f7c
AB
1679 if (ret < 0 && ret != -ENOENT)
1680 goto out;
9ed0a72e
BC
1681 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1682 right_gen = info.gen;
31db9f7c
AB
1683 }
1684
1685 if (!left_ret && !right_ret) {
e938c8ad 1686 if (left_gen == gen && right_gen == gen) {
31db9f7c 1687 ret = inode_state_no_change;
e938c8ad 1688 } else if (left_gen == gen) {
31db9f7c
AB
1689 if (ino < sctx->send_progress)
1690 ret = inode_state_did_create;
1691 else
1692 ret = inode_state_will_create;
1693 } else if (right_gen == gen) {
1694 if (ino < sctx->send_progress)
1695 ret = inode_state_did_delete;
1696 else
1697 ret = inode_state_will_delete;
1698 } else {
1699 ret = -ENOENT;
1700 }
1701 } else if (!left_ret) {
1702 if (left_gen == gen) {
1703 if (ino < sctx->send_progress)
1704 ret = inode_state_did_create;
1705 else
1706 ret = inode_state_will_create;
1707 } else {
1708 ret = -ENOENT;
1709 }
1710 } else if (!right_ret) {
1711 if (right_gen == gen) {
1712 if (ino < sctx->send_progress)
1713 ret = inode_state_did_delete;
1714 else
1715 ret = inode_state_will_delete;
1716 } else {
1717 ret = -ENOENT;
1718 }
1719 } else {
1720 ret = -ENOENT;
1721 }
1722
1723out:
1724 return ret;
1725}
1726
1727static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1728{
1729 int ret;
1730
4dd9920d
RK
1731 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1732 return 1;
1733
31db9f7c
AB
1734 ret = get_cur_inode_state(sctx, ino, gen);
1735 if (ret < 0)
1736 goto out;
1737
1738 if (ret == inode_state_no_change ||
1739 ret == inode_state_did_create ||
1740 ret == inode_state_will_delete)
1741 ret = 1;
1742 else
1743 ret = 0;
1744
1745out:
1746 return ret;
1747}
1748
1749/*
1750 * Helper function to lookup a dir item in a dir.
1751 */
1752static int lookup_dir_item_inode(struct btrfs_root *root,
1753 u64 dir, const char *name, int name_len,
eab67c06 1754 u64 *found_inode)
31db9f7c
AB
1755{
1756 int ret = 0;
1757 struct btrfs_dir_item *di;
1758 struct btrfs_key key;
1759 struct btrfs_path *path;
6db75318 1760 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
31db9f7c
AB
1761
1762 path = alloc_path_for_send();
1763 if (!path)
1764 return -ENOMEM;
1765
e43eec81 1766 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
3cf5068f
LB
1767 if (IS_ERR_OR_NULL(di)) {
1768 ret = di ? PTR_ERR(di) : -ENOENT;
31db9f7c
AB
1769 goto out;
1770 }
1771 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1af56070
FM
1772 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1773 ret = -ENOENT;
1774 goto out;
1775 }
31db9f7c 1776 *found_inode = key.objectid;
31db9f7c
AB
1777
1778out:
1779 btrfs_free_path(path);
1780 return ret;
1781}
1782
766702ef
AB
1783/*
1784 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1785 * generation of the parent dir and the name of the dir entry.
1786 */
924794c9 1787static int get_first_ref(struct btrfs_root *root, u64 ino,
31db9f7c
AB
1788 u64 *dir, u64 *dir_gen, struct fs_path *name)
1789{
1790 int ret;
1791 struct btrfs_key key;
1792 struct btrfs_key found_key;
1793 struct btrfs_path *path;
31db9f7c 1794 int len;
96b5bd77 1795 u64 parent_dir;
31db9f7c
AB
1796
1797 path = alloc_path_for_send();
1798 if (!path)
1799 return -ENOMEM;
1800
1801 key.objectid = ino;
1802 key.type = BTRFS_INODE_REF_KEY;
1803 key.offset = 0;
1804
1805 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1806 if (ret < 0)
1807 goto out;
1808 if (!ret)
1809 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1810 path->slots[0]);
96b5bd77
JS
1811 if (ret || found_key.objectid != ino ||
1812 (found_key.type != BTRFS_INODE_REF_KEY &&
1813 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
31db9f7c
AB
1814 ret = -ENOENT;
1815 goto out;
1816 }
1817
51a60253 1818 if (found_key.type == BTRFS_INODE_REF_KEY) {
96b5bd77
JS
1819 struct btrfs_inode_ref *iref;
1820 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1821 struct btrfs_inode_ref);
1822 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1823 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1824 (unsigned long)(iref + 1),
1825 len);
1826 parent_dir = found_key.offset;
1827 } else {
1828 struct btrfs_inode_extref *extref;
1829 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1830 struct btrfs_inode_extref);
1831 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1832 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1833 (unsigned long)&extref->name, len);
1834 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1835 }
31db9f7c
AB
1836 if (ret < 0)
1837 goto out;
1838 btrfs_release_path(path);
1839
b46ab97b 1840 if (dir_gen) {
7e93f6dc 1841 ret = get_inode_gen(root, parent_dir, dir_gen);
b46ab97b
FM
1842 if (ret < 0)
1843 goto out;
1844 }
31db9f7c 1845
96b5bd77 1846 *dir = parent_dir;
31db9f7c
AB
1847
1848out:
1849 btrfs_free_path(path);
1850 return ret;
1851}
1852
924794c9 1853static int is_first_ref(struct btrfs_root *root,
31db9f7c
AB
1854 u64 ino, u64 dir,
1855 const char *name, int name_len)
1856{
1857 int ret;
1858 struct fs_path *tmp_name;
1859 u64 tmp_dir;
31db9f7c 1860
924794c9 1861 tmp_name = fs_path_alloc();
31db9f7c
AB
1862 if (!tmp_name)
1863 return -ENOMEM;
1864
b46ab97b 1865 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
31db9f7c
AB
1866 if (ret < 0)
1867 goto out;
1868
b9291aff 1869 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
31db9f7c
AB
1870 ret = 0;
1871 goto out;
1872 }
1873
e938c8ad 1874 ret = !memcmp(tmp_name->start, name, name_len);
31db9f7c
AB
1875
1876out:
924794c9 1877 fs_path_free(tmp_name);
31db9f7c
AB
1878 return ret;
1879}
1880
766702ef
AB
1881/*
1882 * Used by process_recorded_refs to determine if a new ref would overwrite an
1883 * already existing ref. In case it detects an overwrite, it returns the
1884 * inode/gen in who_ino/who_gen.
1885 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1886 * to make sure later references to the overwritten inode are possible.
1887 * Orphanizing is however only required for the first ref of an inode.
1888 * process_recorded_refs does an additional is_first_ref check to see if
1889 * orphanizing is really required.
1890 */
31db9f7c
AB
1891static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1892 const char *name, int name_len,
f5962781 1893 u64 *who_ino, u64 *who_gen, u64 *who_mode)
31db9f7c
AB
1894{
1895 int ret = 0;
ebdad913 1896 u64 gen;
31db9f7c 1897 u64 other_inode = 0;
7e93f6dc 1898 struct btrfs_inode_info info;
31db9f7c
AB
1899
1900 if (!sctx->parent_root)
1901 goto out;
1902
1903 ret = is_inode_existent(sctx, dir, dir_gen);
1904 if (ret <= 0)
1905 goto out;
1906
ebdad913
JB
1907 /*
1908 * If we have a parent root we need to verify that the parent dir was
01327610 1909 * not deleted and then re-created, if it was then we have no overwrite
ebdad913
JB
1910 * and we can just unlink this entry.
1911 */
4dd9920d 1912 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
7e93f6dc 1913 ret = get_inode_gen(sctx->parent_root, dir, &gen);
ebdad913
JB
1914 if (ret < 0 && ret != -ENOENT)
1915 goto out;
1916 if (ret) {
1917 ret = 0;
1918 goto out;
1919 }
1920 if (gen != dir_gen)
1921 goto out;
1922 }
1923
31db9f7c 1924 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
eab67c06 1925 &other_inode);
31db9f7c
AB
1926 if (ret < 0 && ret != -ENOENT)
1927 goto out;
1928 if (ret) {
1929 ret = 0;
1930 goto out;
1931 }
1932
766702ef
AB
1933 /*
1934 * Check if the overwritten ref was already processed. If yes, the ref
1935 * was already unlinked/moved, so we can safely assume that we will not
1936 * overwrite anything at this point in time.
1937 */
801bec36
RK
1938 if (other_inode > sctx->send_progress ||
1939 is_waiting_for_move(sctx, other_inode)) {
7e93f6dc 1940 ret = get_inode_info(sctx->parent_root, other_inode, &info);
31db9f7c
AB
1941 if (ret < 0)
1942 goto out;
1943
1944 ret = 1;
1945 *who_ino = other_inode;
7e93f6dc
BC
1946 *who_gen = info.gen;
1947 *who_mode = info.mode;
31db9f7c
AB
1948 } else {
1949 ret = 0;
1950 }
1951
1952out:
1953 return ret;
1954}
1955
766702ef
AB
1956/*
1957 * Checks if the ref was overwritten by an already processed inode. This is
1958 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1959 * thus the orphan name needs be used.
1960 * process_recorded_refs also uses it to avoid unlinking of refs that were
1961 * overwritten.
1962 */
31db9f7c
AB
1963static int did_overwrite_ref(struct send_ctx *sctx,
1964 u64 dir, u64 dir_gen,
1965 u64 ino, u64 ino_gen,
1966 const char *name, int name_len)
1967{
1968 int ret = 0;
1969 u64 gen;
1970 u64 ow_inode;
31db9f7c
AB
1971
1972 if (!sctx->parent_root)
1973 goto out;
1974
1975 ret = is_inode_existent(sctx, dir, dir_gen);
1976 if (ret <= 0)
1977 goto out;
1978
01914101 1979 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
7e93f6dc 1980 ret = get_inode_gen(sctx->send_root, dir, &gen);
01914101
RK
1981 if (ret < 0 && ret != -ENOENT)
1982 goto out;
1983 if (ret) {
1984 ret = 0;
1985 goto out;
1986 }
1987 if (gen != dir_gen)
1988 goto out;
1989 }
1990
31db9f7c
AB
1991 /* check if the ref was overwritten by another ref */
1992 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
eab67c06 1993 &ow_inode);
31db9f7c
AB
1994 if (ret < 0 && ret != -ENOENT)
1995 goto out;
1996 if (ret) {
1997 /* was never and will never be overwritten */
1998 ret = 0;
1999 goto out;
2000 }
2001
7e93f6dc 2002 ret = get_inode_gen(sctx->send_root, ow_inode, &gen);
31db9f7c
AB
2003 if (ret < 0)
2004 goto out;
2005
2006 if (ow_inode == ino && gen == ino_gen) {
2007 ret = 0;
2008 goto out;
2009 }
2010
8b191a68
FM
2011 /*
2012 * We know that it is or will be overwritten. Check this now.
2013 * The current inode being processed might have been the one that caused
b786f16a
FM
2014 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2015 * the current inode being processed.
8b191a68 2016 */
b786f16a
FM
2017 if ((ow_inode < sctx->send_progress) ||
2018 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
2019 gen == sctx->cur_inode_gen))
31db9f7c
AB
2020 ret = 1;
2021 else
2022 ret = 0;
2023
2024out:
2025 return ret;
2026}
2027
766702ef
AB
2028/*
2029 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2030 * that got overwritten. This is used by process_recorded_refs to determine
2031 * if it has to use the path as returned by get_cur_path or the orphan name.
2032 */
31db9f7c
AB
2033static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2034{
2035 int ret = 0;
2036 struct fs_path *name = NULL;
2037 u64 dir;
2038 u64 dir_gen;
2039
2040 if (!sctx->parent_root)
2041 goto out;
2042
924794c9 2043 name = fs_path_alloc();
31db9f7c
AB
2044 if (!name)
2045 return -ENOMEM;
2046
924794c9 2047 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
31db9f7c
AB
2048 if (ret < 0)
2049 goto out;
2050
2051 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2052 name->start, fs_path_len(name));
31db9f7c
AB
2053
2054out:
924794c9 2055 fs_path_free(name);
31db9f7c
AB
2056 return ret;
2057}
2058
766702ef 2059/*
5b8418b8 2060 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
766702ef 2061 * so we need to do some special handling in case we have clashes. This function
5b8418b8 2062 * takes care of this with the help of name_cache_entry::radix_list.
5dc67d0b 2063 * In case of error, nce is kfreed.
766702ef 2064 */
31db9f7c
AB
2065static int name_cache_insert(struct send_ctx *sctx,
2066 struct name_cache_entry *nce)
2067{
2068 int ret = 0;
7e0926fe
AB
2069 struct list_head *nce_head;
2070
5b8418b8
DS
2071 nce_head = radix_tree_lookup(&sctx->name_cache,
2072 (unsigned long)nce->ino);
7e0926fe 2073 if (!nce_head) {
e780b0d1 2074 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
cfa7a9cc
TI
2075 if (!nce_head) {
2076 kfree(nce);
31db9f7c 2077 return -ENOMEM;
cfa7a9cc 2078 }
7e0926fe 2079 INIT_LIST_HEAD(nce_head);
31db9f7c 2080
5b8418b8 2081 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
5dc67d0b
AB
2082 if (ret < 0) {
2083 kfree(nce_head);
2084 kfree(nce);
31db9f7c 2085 return ret;
5dc67d0b 2086 }
31db9f7c 2087 }
5b8418b8 2088 list_add_tail(&nce->radix_list, nce_head);
31db9f7c
AB
2089 list_add_tail(&nce->list, &sctx->name_cache_list);
2090 sctx->name_cache_size++;
2091
2092 return ret;
2093}
2094
2095static void name_cache_delete(struct send_ctx *sctx,
2096 struct name_cache_entry *nce)
2097{
7e0926fe 2098 struct list_head *nce_head;
31db9f7c 2099
5b8418b8
DS
2100 nce_head = radix_tree_lookup(&sctx->name_cache,
2101 (unsigned long)nce->ino);
57fb8910
DS
2102 if (!nce_head) {
2103 btrfs_err(sctx->send_root->fs_info,
2104 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2105 nce->ino, sctx->name_cache_size);
2106 }
31db9f7c 2107
5b8418b8 2108 list_del(&nce->radix_list);
31db9f7c 2109 list_del(&nce->list);
31db9f7c 2110 sctx->name_cache_size--;
7e0926fe 2111
57fb8910
DS
2112 /*
2113 * We may not get to the final release of nce_head if the lookup fails
2114 */
2115 if (nce_head && list_empty(nce_head)) {
5b8418b8 2116 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
7e0926fe
AB
2117 kfree(nce_head);
2118 }
31db9f7c
AB
2119}
2120
2121static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2122 u64 ino, u64 gen)
2123{
7e0926fe
AB
2124 struct list_head *nce_head;
2125 struct name_cache_entry *cur;
31db9f7c 2126
5b8418b8 2127 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
7e0926fe 2128 if (!nce_head)
31db9f7c
AB
2129 return NULL;
2130
5b8418b8 2131 list_for_each_entry(cur, nce_head, radix_list) {
7e0926fe
AB
2132 if (cur->ino == ino && cur->gen == gen)
2133 return cur;
2134 }
31db9f7c
AB
2135 return NULL;
2136}
2137
766702ef
AB
2138/*
2139 * Remove some entries from the beginning of name_cache_list.
2140 */
31db9f7c
AB
2141static void name_cache_clean_unused(struct send_ctx *sctx)
2142{
2143 struct name_cache_entry *nce;
2144
2145 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2146 return;
2147
2148 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2149 nce = list_entry(sctx->name_cache_list.next,
2150 struct name_cache_entry, list);
2151 name_cache_delete(sctx, nce);
2152 kfree(nce);
2153 }
2154}
2155
2156static void name_cache_free(struct send_ctx *sctx)
2157{
2158 struct name_cache_entry *nce;
31db9f7c 2159
e938c8ad
AB
2160 while (!list_empty(&sctx->name_cache_list)) {
2161 nce = list_entry(sctx->name_cache_list.next,
2162 struct name_cache_entry, list);
31db9f7c 2163 name_cache_delete(sctx, nce);
17589bd9 2164 kfree(nce);
31db9f7c
AB
2165 }
2166}
2167
766702ef
AB
2168/*
2169 * Used by get_cur_path for each ref up to the root.
2170 * Returns 0 if it succeeded.
2171 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2172 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2173 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2174 * Returns <0 in case of error.
2175 */
31db9f7c
AB
2176static int __get_cur_name_and_parent(struct send_ctx *sctx,
2177 u64 ino, u64 gen,
2178 u64 *parent_ino,
2179 u64 *parent_gen,
2180 struct fs_path *dest)
2181{
2182 int ret;
2183 int nce_ret;
31db9f7c
AB
2184 struct name_cache_entry *nce = NULL;
2185
766702ef
AB
2186 /*
2187 * First check if we already did a call to this function with the same
2188 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2189 * return the cached result.
2190 */
31db9f7c
AB
2191 nce = name_cache_search(sctx, ino, gen);
2192 if (nce) {
2193 if (ino < sctx->send_progress && nce->need_later_update) {
2194 name_cache_delete(sctx, nce);
2195 kfree(nce);
2196 nce = NULL;
2197 } else {
bb930007
BL
2198 /*
2199 * Removes the entry from the list and adds it back to
2200 * the end. This marks the entry as recently used so
2201 * that name_cache_clean_unused does not remove it.
2202 */
2203 list_move_tail(&nce->list, &sctx->name_cache_list);
2204
31db9f7c
AB
2205 *parent_ino = nce->parent_ino;
2206 *parent_gen = nce->parent_gen;
2207 ret = fs_path_add(dest, nce->name, nce->name_len);
2208 if (ret < 0)
2209 goto out;
2210 ret = nce->ret;
2211 goto out;
2212 }
2213 }
2214
766702ef
AB
2215 /*
2216 * If the inode is not existent yet, add the orphan name and return 1.
2217 * This should only happen for the parent dir that we determine in
0d8869fb 2218 * record_new_ref_if_needed().
766702ef 2219 */
31db9f7c
AB
2220 ret = is_inode_existent(sctx, ino, gen);
2221 if (ret < 0)
2222 goto out;
2223
2224 if (!ret) {
2225 ret = gen_unique_name(sctx, ino, gen, dest);
2226 if (ret < 0)
2227 goto out;
2228 ret = 1;
2229 goto out_cache;
2230 }
2231
766702ef
AB
2232 /*
2233 * Depending on whether the inode was already processed or not, use
2234 * send_root or parent_root for ref lookup.
2235 */
bf0d1f44 2236 if (ino < sctx->send_progress)
924794c9
TI
2237 ret = get_first_ref(sctx->send_root, ino,
2238 parent_ino, parent_gen, dest);
31db9f7c 2239 else
924794c9
TI
2240 ret = get_first_ref(sctx->parent_root, ino,
2241 parent_ino, parent_gen, dest);
31db9f7c
AB
2242 if (ret < 0)
2243 goto out;
2244
766702ef
AB
2245 /*
2246 * Check if the ref was overwritten by an inode's ref that was processed
2247 * earlier. If yes, treat as orphan and return 1.
2248 */
31db9f7c
AB
2249 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2250 dest->start, dest->end - dest->start);
2251 if (ret < 0)
2252 goto out;
2253 if (ret) {
2254 fs_path_reset(dest);
2255 ret = gen_unique_name(sctx, ino, gen, dest);
2256 if (ret < 0)
2257 goto out;
2258 ret = 1;
2259 }
2260
2261out_cache:
766702ef
AB
2262 /*
2263 * Store the result of the lookup in the name cache.
2264 */
e780b0d1 2265 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
31db9f7c
AB
2266 if (!nce) {
2267 ret = -ENOMEM;
2268 goto out;
2269 }
2270
2271 nce->ino = ino;
2272 nce->gen = gen;
2273 nce->parent_ino = *parent_ino;
2274 nce->parent_gen = *parent_gen;
2275 nce->name_len = fs_path_len(dest);
2276 nce->ret = ret;
2277 strcpy(nce->name, dest->start);
31db9f7c
AB
2278
2279 if (ino < sctx->send_progress)
2280 nce->need_later_update = 0;
2281 else
2282 nce->need_later_update = 1;
2283
2284 nce_ret = name_cache_insert(sctx, nce);
2285 if (nce_ret < 0)
2286 ret = nce_ret;
2287 name_cache_clean_unused(sctx);
2288
2289out:
31db9f7c
AB
2290 return ret;
2291}
2292
2293/*
2294 * Magic happens here. This function returns the first ref to an inode as it
2295 * would look like while receiving the stream at this point in time.
2296 * We walk the path up to the root. For every inode in between, we check if it
2297 * was already processed/sent. If yes, we continue with the parent as found
2298 * in send_root. If not, we continue with the parent as found in parent_root.
2299 * If we encounter an inode that was deleted at this point in time, we use the
2300 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2301 * that were not created yet and overwritten inodes/refs.
2302 *
52042d8e 2303 * When do we have orphan inodes:
31db9f7c
AB
2304 * 1. When an inode is freshly created and thus no valid refs are available yet
2305 * 2. When a directory lost all it's refs (deleted) but still has dir items
2306 * inside which were not processed yet (pending for move/delete). If anyone
2307 * tried to get the path to the dir items, it would get a path inside that
2308 * orphan directory.
2309 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2310 * of an unprocessed inode. If in that case the first ref would be
2311 * overwritten, the overwritten inode gets "orphanized". Later when we
2312 * process this overwritten inode, it is restored at a new place by moving
2313 * the orphan inode.
2314 *
2315 * sctx->send_progress tells this function at which point in time receiving
2316 * would be.
2317 */
2318static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2319 struct fs_path *dest)
2320{
2321 int ret = 0;
2322 struct fs_path *name = NULL;
2323 u64 parent_inode = 0;
2324 u64 parent_gen = 0;
2325 int stop = 0;
2326
924794c9 2327 name = fs_path_alloc();
31db9f7c
AB
2328 if (!name) {
2329 ret = -ENOMEM;
2330 goto out;
2331 }
2332
2333 dest->reversed = 1;
2334 fs_path_reset(dest);
2335
2336 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
8b191a68
FM
2337 struct waiting_dir_move *wdm;
2338
31db9f7c
AB
2339 fs_path_reset(name);
2340
0b3f407e 2341 if (is_waiting_for_rm(sctx, ino, gen)) {
9dc44214
FM
2342 ret = gen_unique_name(sctx, ino, gen, name);
2343 if (ret < 0)
2344 goto out;
2345 ret = fs_path_add_path(dest, name);
2346 break;
2347 }
2348
8b191a68
FM
2349 wdm = get_waiting_dir_move(sctx, ino);
2350 if (wdm && wdm->orphanized) {
2351 ret = gen_unique_name(sctx, ino, gen, name);
2352 stop = 1;
2353 } else if (wdm) {
bf0d1f44
FM
2354 ret = get_first_ref(sctx->parent_root, ino,
2355 &parent_inode, &parent_gen, name);
2356 } else {
2357 ret = __get_cur_name_and_parent(sctx, ino, gen,
2358 &parent_inode,
2359 &parent_gen, name);
2360 if (ret)
2361 stop = 1;
2362 }
2363
31db9f7c
AB
2364 if (ret < 0)
2365 goto out;
9f03740a 2366
31db9f7c
AB
2367 ret = fs_path_add_path(dest, name);
2368 if (ret < 0)
2369 goto out;
2370
2371 ino = parent_inode;
2372 gen = parent_gen;
2373 }
2374
2375out:
924794c9 2376 fs_path_free(name);
31db9f7c
AB
2377 if (!ret)
2378 fs_path_unreverse(dest);
2379 return ret;
2380}
2381
31db9f7c
AB
2382/*
2383 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2384 */
2385static int send_subvol_begin(struct send_ctx *sctx)
2386{
2387 int ret;
2388 struct btrfs_root *send_root = sctx->send_root;
2389 struct btrfs_root *parent_root = sctx->parent_root;
2390 struct btrfs_path *path;
2391 struct btrfs_key key;
2392 struct btrfs_root_ref *ref;
2393 struct extent_buffer *leaf;
2394 char *name = NULL;
2395 int namelen;
2396
ffcfaf81 2397 path = btrfs_alloc_path();
31db9f7c
AB
2398 if (!path)
2399 return -ENOMEM;
2400
e780b0d1 2401 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
31db9f7c
AB
2402 if (!name) {
2403 btrfs_free_path(path);
2404 return -ENOMEM;
2405 }
2406
4fd786e6 2407 key.objectid = send_root->root_key.objectid;
31db9f7c
AB
2408 key.type = BTRFS_ROOT_BACKREF_KEY;
2409 key.offset = 0;
2410
2411 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2412 &key, path, 1, 0);
2413 if (ret < 0)
2414 goto out;
2415 if (ret) {
2416 ret = -ENOENT;
2417 goto out;
2418 }
2419
2420 leaf = path->nodes[0];
2421 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2422 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
4fd786e6 2423 key.objectid != send_root->root_key.objectid) {
31db9f7c
AB
2424 ret = -ENOENT;
2425 goto out;
2426 }
2427 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2428 namelen = btrfs_root_ref_name_len(leaf, ref);
2429 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2430 btrfs_release_path(path);
2431
31db9f7c
AB
2432 if (parent_root) {
2433 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2434 if (ret < 0)
2435 goto out;
2436 } else {
2437 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2438 if (ret < 0)
2439 goto out;
2440 }
2441
2442 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
b96b1db0
RR
2443
2444 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2445 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2446 sctx->send_root->root_item.received_uuid);
2447 else
2448 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2449 sctx->send_root->root_item.uuid);
2450
31db9f7c 2451 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
09e3a288 2452 btrfs_root_ctransid(&sctx->send_root->root_item));
31db9f7c 2453 if (parent_root) {
37b8d27d
JB
2454 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2455 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2456 parent_root->root_item.received_uuid);
2457 else
2458 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2459 parent_root->root_item.uuid);
31db9f7c 2460 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
09e3a288 2461 btrfs_root_ctransid(&sctx->parent_root->root_item));
31db9f7c
AB
2462 }
2463
2464 ret = send_cmd(sctx);
2465
2466tlv_put_failure:
2467out:
2468 btrfs_free_path(path);
2469 kfree(name);
2470 return ret;
2471}
2472
2473static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2474{
04ab956e 2475 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2476 int ret = 0;
2477 struct fs_path *p;
2478
04ab956e 2479 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
31db9f7c 2480
924794c9 2481 p = fs_path_alloc();
31db9f7c
AB
2482 if (!p)
2483 return -ENOMEM;
2484
2485 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2486 if (ret < 0)
2487 goto out;
2488
2489 ret = get_cur_path(sctx, ino, gen, p);
2490 if (ret < 0)
2491 goto out;
2492 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2493 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2494
2495 ret = send_cmd(sctx);
2496
2497tlv_put_failure:
2498out:
924794c9 2499 fs_path_free(p);
31db9f7c
AB
2500 return ret;
2501}
2502
2503static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2504{
04ab956e 2505 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2506 int ret = 0;
2507 struct fs_path *p;
2508
04ab956e 2509 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
31db9f7c 2510
924794c9 2511 p = fs_path_alloc();
31db9f7c
AB
2512 if (!p)
2513 return -ENOMEM;
2514
2515 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2516 if (ret < 0)
2517 goto out;
2518
2519 ret = get_cur_path(sctx, ino, gen, p);
2520 if (ret < 0)
2521 goto out;
2522 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2523 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2524
2525 ret = send_cmd(sctx);
2526
2527tlv_put_failure:
2528out:
924794c9 2529 fs_path_free(p);
31db9f7c
AB
2530 return ret;
2531}
2532
48247359
DS
2533static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2534{
2535 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2536 int ret = 0;
2537 struct fs_path *p;
2538
2539 if (sctx->proto < 2)
2540 return 0;
2541
2542 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2543
2544 p = fs_path_alloc();
2545 if (!p)
2546 return -ENOMEM;
2547
2548 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2549 if (ret < 0)
2550 goto out;
2551
2552 ret = get_cur_path(sctx, ino, gen, p);
2553 if (ret < 0)
2554 goto out;
2555 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2556 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2557
2558 ret = send_cmd(sctx);
2559
2560tlv_put_failure:
2561out:
2562 fs_path_free(p);
2563 return ret;
2564}
2565
31db9f7c
AB
2566static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2567{
04ab956e 2568 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2569 int ret = 0;
2570 struct fs_path *p;
2571
04ab956e
JM
2572 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2573 ino, uid, gid);
31db9f7c 2574
924794c9 2575 p = fs_path_alloc();
31db9f7c
AB
2576 if (!p)
2577 return -ENOMEM;
2578
2579 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2580 if (ret < 0)
2581 goto out;
2582
2583 ret = get_cur_path(sctx, ino, gen, p);
2584 if (ret < 0)
2585 goto out;
2586 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2587 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2588 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2589
2590 ret = send_cmd(sctx);
2591
2592tlv_put_failure:
2593out:
924794c9 2594 fs_path_free(p);
31db9f7c
AB
2595 return ret;
2596}
2597
2598static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2599{
04ab956e 2600 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
2601 int ret = 0;
2602 struct fs_path *p = NULL;
2603 struct btrfs_inode_item *ii;
2604 struct btrfs_path *path = NULL;
2605 struct extent_buffer *eb;
2606 struct btrfs_key key;
2607 int slot;
2608
04ab956e 2609 btrfs_debug(fs_info, "send_utimes %llu", ino);
31db9f7c 2610
924794c9 2611 p = fs_path_alloc();
31db9f7c
AB
2612 if (!p)
2613 return -ENOMEM;
2614
2615 path = alloc_path_for_send();
2616 if (!path) {
2617 ret = -ENOMEM;
2618 goto out;
2619 }
2620
2621 key.objectid = ino;
2622 key.type = BTRFS_INODE_ITEM_KEY;
2623 key.offset = 0;
2624 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
15b253ea
FM
2625 if (ret > 0)
2626 ret = -ENOENT;
31db9f7c
AB
2627 if (ret < 0)
2628 goto out;
2629
2630 eb = path->nodes[0];
2631 slot = path->slots[0];
2632 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2633
2634 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2635 if (ret < 0)
2636 goto out;
2637
2638 ret = get_cur_path(sctx, ino, gen, p);
2639 if (ret < 0)
2640 goto out;
2641 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
a937b979
DS
2642 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2643 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2644 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
22a5b2ab
DS
2645 if (sctx->proto >= 2)
2646 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
31db9f7c
AB
2647
2648 ret = send_cmd(sctx);
2649
2650tlv_put_failure:
2651out:
924794c9 2652 fs_path_free(p);
31db9f7c
AB
2653 btrfs_free_path(path);
2654 return ret;
2655}
2656
2657/*
2658 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2659 * a valid path yet because we did not process the refs yet. So, the inode
2660 * is created as orphan.
2661 */
1f4692da 2662static int send_create_inode(struct send_ctx *sctx, u64 ino)
31db9f7c 2663{
04ab956e 2664 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c 2665 int ret = 0;
31db9f7c 2666 struct fs_path *p;
31db9f7c 2667 int cmd;
7e93f6dc 2668 struct btrfs_inode_info info;
1f4692da 2669 u64 gen;
31db9f7c 2670 u64 mode;
1f4692da 2671 u64 rdev;
31db9f7c 2672
04ab956e 2673 btrfs_debug(fs_info, "send_create_inode %llu", ino);
31db9f7c 2674
924794c9 2675 p = fs_path_alloc();
31db9f7c
AB
2676 if (!p)
2677 return -ENOMEM;
2678
644d1940 2679 if (ino != sctx->cur_ino) {
7e93f6dc 2680 ret = get_inode_info(sctx->send_root, ino, &info);
644d1940
LB
2681 if (ret < 0)
2682 goto out;
7e93f6dc
BC
2683 gen = info.gen;
2684 mode = info.mode;
2685 rdev = info.rdev;
644d1940
LB
2686 } else {
2687 gen = sctx->cur_inode_gen;
2688 mode = sctx->cur_inode_mode;
2689 rdev = sctx->cur_inode_rdev;
2690 }
31db9f7c 2691
e938c8ad 2692 if (S_ISREG(mode)) {
31db9f7c 2693 cmd = BTRFS_SEND_C_MKFILE;
e938c8ad 2694 } else if (S_ISDIR(mode)) {
31db9f7c 2695 cmd = BTRFS_SEND_C_MKDIR;
e938c8ad 2696 } else if (S_ISLNK(mode)) {
31db9f7c 2697 cmd = BTRFS_SEND_C_SYMLINK;
e938c8ad 2698 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
31db9f7c 2699 cmd = BTRFS_SEND_C_MKNOD;
e938c8ad 2700 } else if (S_ISFIFO(mode)) {
31db9f7c 2701 cmd = BTRFS_SEND_C_MKFIFO;
e938c8ad 2702 } else if (S_ISSOCK(mode)) {
31db9f7c 2703 cmd = BTRFS_SEND_C_MKSOCK;
e938c8ad 2704 } else {
f14d104d 2705 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
31db9f7c 2706 (int)(mode & S_IFMT));
ca6842bf 2707 ret = -EOPNOTSUPP;
31db9f7c
AB
2708 goto out;
2709 }
2710
2711 ret = begin_cmd(sctx, cmd);
2712 if (ret < 0)
2713 goto out;
2714
1f4692da 2715 ret = gen_unique_name(sctx, ino, gen, p);
31db9f7c
AB
2716 if (ret < 0)
2717 goto out;
2718
2719 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
1f4692da 2720 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
31db9f7c
AB
2721
2722 if (S_ISLNK(mode)) {
2723 fs_path_reset(p);
924794c9 2724 ret = read_symlink(sctx->send_root, ino, p);
31db9f7c
AB
2725 if (ret < 0)
2726 goto out;
2727 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2728 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2729 S_ISFIFO(mode) || S_ISSOCK(mode)) {
d79e5043
AJ
2730 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2731 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
31db9f7c
AB
2732 }
2733
2734 ret = send_cmd(sctx);
2735 if (ret < 0)
2736 goto out;
2737
2738
2739tlv_put_failure:
2740out:
924794c9 2741 fs_path_free(p);
31db9f7c
AB
2742 return ret;
2743}
2744
1f4692da
AB
2745/*
2746 * We need some special handling for inodes that get processed before the parent
2747 * directory got created. See process_recorded_refs for details.
2748 * This function does the check if we already created the dir out of order.
2749 */
2750static int did_create_dir(struct send_ctx *sctx, u64 dir)
2751{
2752 int ret = 0;
6dcee260 2753 int iter_ret = 0;
1f4692da
AB
2754 struct btrfs_path *path = NULL;
2755 struct btrfs_key key;
2756 struct btrfs_key found_key;
2757 struct btrfs_key di_key;
1f4692da 2758 struct btrfs_dir_item *di;
1f4692da
AB
2759
2760 path = alloc_path_for_send();
6dcee260
GN
2761 if (!path)
2762 return -ENOMEM;
1f4692da
AB
2763
2764 key.objectid = dir;
2765 key.type = BTRFS_DIR_INDEX_KEY;
2766 key.offset = 0;
dff6d0ad 2767
6dcee260
GN
2768 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2769 struct extent_buffer *eb = path->nodes[0];
dff6d0ad 2770
dff6d0ad 2771 if (found_key.objectid != key.objectid ||
1f4692da
AB
2772 found_key.type != key.type) {
2773 ret = 0;
6dcee260 2774 break;
1f4692da
AB
2775 }
2776
6dcee260 2777 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
1f4692da
AB
2778 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2779
a0525414
JB
2780 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2781 di_key.objectid < sctx->send_progress) {
1f4692da 2782 ret = 1;
6dcee260 2783 break;
1f4692da 2784 }
1f4692da 2785 }
6dcee260
GN
2786 /* Catch error found during iteration */
2787 if (iter_ret < 0)
2788 ret = iter_ret;
1f4692da 2789
1f4692da
AB
2790 btrfs_free_path(path);
2791 return ret;
2792}
2793
2794/*
2795 * Only creates the inode if it is:
2796 * 1. Not a directory
2797 * 2. Or a directory which was not created already due to out of order
2798 * directories. See did_create_dir and process_recorded_refs for details.
2799 */
2800static int send_create_inode_if_needed(struct send_ctx *sctx)
2801{
2802 int ret;
2803
2804 if (S_ISDIR(sctx->cur_inode_mode)) {
2805 ret = did_create_dir(sctx, sctx->cur_ino);
2806 if (ret < 0)
0e3dd5bc
MPS
2807 return ret;
2808 else if (ret > 0)
2809 return 0;
1f4692da
AB
2810 }
2811
0e3dd5bc 2812 return send_create_inode(sctx, sctx->cur_ino);
1f4692da
AB
2813}
2814
31db9f7c
AB
2815struct recorded_ref {
2816 struct list_head list;
31db9f7c
AB
2817 char *name;
2818 struct fs_path *full_path;
2819 u64 dir;
2820 u64 dir_gen;
31db9f7c 2821 int name_len;
3aa5bd36
BC
2822 struct rb_node node;
2823 struct rb_root *root;
31db9f7c
AB
2824};
2825
71ecfc13
BC
2826static struct recorded_ref *recorded_ref_alloc(void)
2827{
2828 struct recorded_ref *ref;
2829
2830 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
2831 if (!ref)
2832 return NULL;
3aa5bd36 2833 RB_CLEAR_NODE(&ref->node);
71ecfc13
BC
2834 INIT_LIST_HEAD(&ref->list);
2835 return ref;
2836}
2837
2838static void recorded_ref_free(struct recorded_ref *ref)
2839{
2840 if (!ref)
2841 return;
3aa5bd36
BC
2842 if (!RB_EMPTY_NODE(&ref->node))
2843 rb_erase(&ref->node, ref->root);
71ecfc13
BC
2844 list_del(&ref->list);
2845 fs_path_free(ref->full_path);
2846 kfree(ref);
2847}
2848
fdb13889
FM
2849static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2850{
2851 ref->full_path = path;
2852 ref->name = (char *)kbasename(ref->full_path->start);
2853 ref->name_len = ref->full_path->end - ref->name;
2854}
2855
ba5e8f2e
JB
2856static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2857{
2858 struct recorded_ref *new;
2859
71ecfc13 2860 new = recorded_ref_alloc();
ba5e8f2e
JB
2861 if (!new)
2862 return -ENOMEM;
2863
2864 new->dir = ref->dir;
2865 new->dir_gen = ref->dir_gen;
ba5e8f2e
JB
2866 list_add_tail(&new->list, list);
2867 return 0;
2868}
2869
924794c9 2870static void __free_recorded_refs(struct list_head *head)
31db9f7c
AB
2871{
2872 struct recorded_ref *cur;
31db9f7c 2873
e938c8ad
AB
2874 while (!list_empty(head)) {
2875 cur = list_entry(head->next, struct recorded_ref, list);
71ecfc13 2876 recorded_ref_free(cur);
31db9f7c 2877 }
31db9f7c
AB
2878}
2879
2880static void free_recorded_refs(struct send_ctx *sctx)
2881{
924794c9
TI
2882 __free_recorded_refs(&sctx->new_refs);
2883 __free_recorded_refs(&sctx->deleted_refs);
31db9f7c
AB
2884}
2885
2886/*
766702ef 2887 * Renames/moves a file/dir to its orphan name. Used when the first
31db9f7c
AB
2888 * ref of an unprocessed inode gets overwritten and for all non empty
2889 * directories.
2890 */
2891static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2892 struct fs_path *path)
2893{
2894 int ret;
2895 struct fs_path *orphan;
2896
924794c9 2897 orphan = fs_path_alloc();
31db9f7c
AB
2898 if (!orphan)
2899 return -ENOMEM;
2900
2901 ret = gen_unique_name(sctx, ino, gen, orphan);
2902 if (ret < 0)
2903 goto out;
2904
2905 ret = send_rename(sctx, path, orphan);
2906
2907out:
924794c9 2908 fs_path_free(orphan);
31db9f7c
AB
2909 return ret;
2910}
2911
0b3f407e
FM
2912static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2913 u64 dir_ino, u64 dir_gen)
9dc44214
FM
2914{
2915 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2916 struct rb_node *parent = NULL;
2917 struct orphan_dir_info *entry, *odi;
2918
9dc44214
FM
2919 while (*p) {
2920 parent = *p;
2921 entry = rb_entry(parent, struct orphan_dir_info, node);
0b3f407e 2922 if (dir_ino < entry->ino)
9dc44214 2923 p = &(*p)->rb_left;
0b3f407e 2924 else if (dir_ino > entry->ino)
9dc44214 2925 p = &(*p)->rb_right;
0b3f407e
FM
2926 else if (dir_gen < entry->gen)
2927 p = &(*p)->rb_left;
2928 else if (dir_gen > entry->gen)
2929 p = &(*p)->rb_right;
2930 else
9dc44214 2931 return entry;
9dc44214
FM
2932 }
2933
35c8eda1
RK
2934 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2935 if (!odi)
2936 return ERR_PTR(-ENOMEM);
2937 odi->ino = dir_ino;
0b3f407e 2938 odi->gen = dir_gen;
0f96f517 2939 odi->last_dir_index_offset = 0;
35c8eda1 2940
9dc44214
FM
2941 rb_link_node(&odi->node, parent, p);
2942 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2943 return odi;
2944}
2945
0b3f407e
FM
2946static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2947 u64 dir_ino, u64 gen)
9dc44214
FM
2948{
2949 struct rb_node *n = sctx->orphan_dirs.rb_node;
2950 struct orphan_dir_info *entry;
2951
2952 while (n) {
2953 entry = rb_entry(n, struct orphan_dir_info, node);
2954 if (dir_ino < entry->ino)
2955 n = n->rb_left;
2956 else if (dir_ino > entry->ino)
2957 n = n->rb_right;
0b3f407e
FM
2958 else if (gen < entry->gen)
2959 n = n->rb_left;
2960 else if (gen > entry->gen)
2961 n = n->rb_right;
9dc44214
FM
2962 else
2963 return entry;
2964 }
2965 return NULL;
2966}
2967
0b3f407e 2968static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
9dc44214 2969{
0b3f407e 2970 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
9dc44214
FM
2971
2972 return odi != NULL;
2973}
2974
2975static void free_orphan_dir_info(struct send_ctx *sctx,
2976 struct orphan_dir_info *odi)
2977{
2978 if (!odi)
2979 return;
2980 rb_erase(&odi->node, &sctx->orphan_dirs);
2981 kfree(odi);
2982}
2983
31db9f7c
AB
2984/*
2985 * Returns 1 if a directory can be removed at this point in time.
2986 * We check this by iterating all dir items and checking if the inode behind
2987 * the dir item was already processed.
2988 */
9dc44214
FM
2989static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2990 u64 send_progress)
31db9f7c
AB
2991{
2992 int ret = 0;
18f80f1f 2993 int iter_ret = 0;
31db9f7c
AB
2994 struct btrfs_root *root = sctx->parent_root;
2995 struct btrfs_path *path;
2996 struct btrfs_key key;
2997 struct btrfs_key found_key;
2998 struct btrfs_key loc;
2999 struct btrfs_dir_item *di;
0f96f517 3000 struct orphan_dir_info *odi = NULL;
31db9f7c 3001
6d85ed05
AB
3002 /*
3003 * Don't try to rmdir the top/root subvolume dir.
3004 */
3005 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3006 return 0;
3007
31db9f7c
AB
3008 path = alloc_path_for_send();
3009 if (!path)
3010 return -ENOMEM;
3011
3012 key.objectid = dir;
3013 key.type = BTRFS_DIR_INDEX_KEY;
3014 key.offset = 0;
0f96f517 3015
0b3f407e 3016 odi = get_orphan_dir_info(sctx, dir, dir_gen);
0f96f517
RK
3017 if (odi)
3018 key.offset = odi->last_dir_index_offset;
3019
18f80f1f 3020 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
9dc44214
FM
3021 struct waiting_dir_move *dm;
3022
dff6d0ad
FDBM
3023 if (found_key.objectid != key.objectid ||
3024 found_key.type != key.type)
31db9f7c 3025 break;
31db9f7c
AB
3026
3027 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3028 struct btrfs_dir_item);
3029 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3030
9dc44214
FM
3031 dm = get_waiting_dir_move(sctx, loc.objectid);
3032 if (dm) {
0b3f407e 3033 odi = add_orphan_dir_info(sctx, dir, dir_gen);
9dc44214
FM
3034 if (IS_ERR(odi)) {
3035 ret = PTR_ERR(odi);
3036 goto out;
3037 }
3038 odi->gen = dir_gen;
0f96f517 3039 odi->last_dir_index_offset = found_key.offset;
9dc44214 3040 dm->rmdir_ino = dir;
0b3f407e 3041 dm->rmdir_gen = dir_gen;
9dc44214
FM
3042 ret = 0;
3043 goto out;
3044 }
3045
31db9f7c 3046 if (loc.objectid > send_progress) {
0b3f407e 3047 odi = add_orphan_dir_info(sctx, dir, dir_gen);
0f96f517
RK
3048 if (IS_ERR(odi)) {
3049 ret = PTR_ERR(odi);
3050 goto out;
3051 }
3052 odi->gen = dir_gen;
3053 odi->last_dir_index_offset = found_key.offset;
31db9f7c
AB
3054 ret = 0;
3055 goto out;
3056 }
18f80f1f
GN
3057 }
3058 if (iter_ret < 0) {
3059 ret = iter_ret;
3060 goto out;
31db9f7c 3061 }
0f96f517 3062 free_orphan_dir_info(sctx, odi);
31db9f7c
AB
3063
3064 ret = 1;
3065
3066out:
3067 btrfs_free_path(path);
3068 return ret;
3069}
3070
9f03740a
FDBM
3071static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3072{
9dc44214 3073 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
9f03740a 3074
9dc44214 3075 return entry != NULL;
9f03740a
FDBM
3076}
3077
8b191a68 3078static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
9f03740a
FDBM
3079{
3080 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3081 struct rb_node *parent = NULL;
3082 struct waiting_dir_move *entry, *dm;
3083
e780b0d1 3084 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
9f03740a
FDBM
3085 if (!dm)
3086 return -ENOMEM;
3087 dm->ino = ino;
9dc44214 3088 dm->rmdir_ino = 0;
0b3f407e 3089 dm->rmdir_gen = 0;
8b191a68 3090 dm->orphanized = orphanized;
9f03740a
FDBM
3091
3092 while (*p) {
3093 parent = *p;
3094 entry = rb_entry(parent, struct waiting_dir_move, node);
3095 if (ino < entry->ino) {
3096 p = &(*p)->rb_left;
3097 } else if (ino > entry->ino) {
3098 p = &(*p)->rb_right;
3099 } else {
3100 kfree(dm);
3101 return -EEXIST;
3102 }
3103 }
3104
3105 rb_link_node(&dm->node, parent, p);
3106 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3107 return 0;
3108}
3109
9dc44214
FM
3110static struct waiting_dir_move *
3111get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
9f03740a
FDBM
3112{
3113 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3114 struct waiting_dir_move *entry;
3115
3116 while (n) {
3117 entry = rb_entry(n, struct waiting_dir_move, node);
9dc44214 3118 if (ino < entry->ino)
9f03740a 3119 n = n->rb_left;
9dc44214 3120 else if (ino > entry->ino)
9f03740a 3121 n = n->rb_right;
9dc44214
FM
3122 else
3123 return entry;
9f03740a 3124 }
9dc44214
FM
3125 return NULL;
3126}
3127
3128static void free_waiting_dir_move(struct send_ctx *sctx,
3129 struct waiting_dir_move *dm)
3130{
3131 if (!dm)
3132 return;
3133 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3134 kfree(dm);
9f03740a
FDBM
3135}
3136
bfa7e1f8
FM
3137static int add_pending_dir_move(struct send_ctx *sctx,
3138 u64 ino,
3139 u64 ino_gen,
f959492f
FM
3140 u64 parent_ino,
3141 struct list_head *new_refs,
84471e24
FM
3142 struct list_head *deleted_refs,
3143 const bool is_orphan)
9f03740a
FDBM
3144{
3145 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3146 struct rb_node *parent = NULL;
73b802f4 3147 struct pending_dir_move *entry = NULL, *pm;
9f03740a
FDBM
3148 struct recorded_ref *cur;
3149 int exists = 0;
3150 int ret;
3151
e780b0d1 3152 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
9f03740a
FDBM
3153 if (!pm)
3154 return -ENOMEM;
3155 pm->parent_ino = parent_ino;
bfa7e1f8
FM
3156 pm->ino = ino;
3157 pm->gen = ino_gen;
9f03740a
FDBM
3158 INIT_LIST_HEAD(&pm->list);
3159 INIT_LIST_HEAD(&pm->update_refs);
3160 RB_CLEAR_NODE(&pm->node);
3161
3162 while (*p) {
3163 parent = *p;
3164 entry = rb_entry(parent, struct pending_dir_move, node);
3165 if (parent_ino < entry->parent_ino) {
3166 p = &(*p)->rb_left;
3167 } else if (parent_ino > entry->parent_ino) {
3168 p = &(*p)->rb_right;
3169 } else {
3170 exists = 1;
3171 break;
3172 }
3173 }
3174
f959492f 3175 list_for_each_entry(cur, deleted_refs, list) {
9f03740a
FDBM
3176 ret = dup_ref(cur, &pm->update_refs);
3177 if (ret < 0)
3178 goto out;
3179 }
f959492f 3180 list_for_each_entry(cur, new_refs, list) {
9f03740a
FDBM
3181 ret = dup_ref(cur, &pm->update_refs);
3182 if (ret < 0)
3183 goto out;
3184 }
3185
8b191a68 3186 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
9f03740a
FDBM
3187 if (ret)
3188 goto out;
3189
3190 if (exists) {
3191 list_add_tail(&pm->list, &entry->list);
3192 } else {
3193 rb_link_node(&pm->node, parent, p);
3194 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3195 }
3196 ret = 0;
3197out:
3198 if (ret) {
3199 __free_recorded_refs(&pm->update_refs);
3200 kfree(pm);
3201 }
3202 return ret;
3203}
3204
3205static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3206 u64 parent_ino)
3207{
3208 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3209 struct pending_dir_move *entry;
3210
3211 while (n) {
3212 entry = rb_entry(n, struct pending_dir_move, node);
3213 if (parent_ino < entry->parent_ino)
3214 n = n->rb_left;
3215 else if (parent_ino > entry->parent_ino)
3216 n = n->rb_right;
3217 else
3218 return entry;
3219 }
3220 return NULL;
3221}
3222
801bec36
RK
3223static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3224 u64 ino, u64 gen, u64 *ancestor_ino)
3225{
3226 int ret = 0;
3227 u64 parent_inode = 0;
3228 u64 parent_gen = 0;
3229 u64 start_ino = ino;
3230
3231 *ancestor_ino = 0;
3232 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3233 fs_path_reset(name);
3234
0b3f407e 3235 if (is_waiting_for_rm(sctx, ino, gen))
801bec36
RK
3236 break;
3237 if (is_waiting_for_move(sctx, ino)) {
3238 if (*ancestor_ino == 0)
3239 *ancestor_ino = ino;
3240 ret = get_first_ref(sctx->parent_root, ino,
3241 &parent_inode, &parent_gen, name);
3242 } else {
3243 ret = __get_cur_name_and_parent(sctx, ino, gen,
3244 &parent_inode,
3245 &parent_gen, name);
3246 if (ret > 0) {
3247 ret = 0;
3248 break;
3249 }
3250 }
3251 if (ret < 0)
3252 break;
3253 if (parent_inode == start_ino) {
3254 ret = 1;
3255 if (*ancestor_ino == 0)
3256 *ancestor_ino = ino;
3257 break;
3258 }
3259 ino = parent_inode;
3260 gen = parent_gen;
3261 }
3262 return ret;
3263}
3264
9f03740a
FDBM
3265static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3266{
3267 struct fs_path *from_path = NULL;
3268 struct fs_path *to_path = NULL;
2b863a13 3269 struct fs_path *name = NULL;
9f03740a
FDBM
3270 u64 orig_progress = sctx->send_progress;
3271 struct recorded_ref *cur;
2b863a13 3272 u64 parent_ino, parent_gen;
9dc44214
FM
3273 struct waiting_dir_move *dm = NULL;
3274 u64 rmdir_ino = 0;
0b3f407e 3275 u64 rmdir_gen;
801bec36
RK
3276 u64 ancestor;
3277 bool is_orphan;
9f03740a
FDBM
3278 int ret;
3279
2b863a13 3280 name = fs_path_alloc();
9f03740a 3281 from_path = fs_path_alloc();
2b863a13
FM
3282 if (!name || !from_path) {
3283 ret = -ENOMEM;
3284 goto out;
3285 }
9f03740a 3286
9dc44214
FM
3287 dm = get_waiting_dir_move(sctx, pm->ino);
3288 ASSERT(dm);
3289 rmdir_ino = dm->rmdir_ino;
0b3f407e 3290 rmdir_gen = dm->rmdir_gen;
801bec36 3291 is_orphan = dm->orphanized;
9dc44214 3292 free_waiting_dir_move(sctx, dm);
2b863a13 3293
801bec36 3294 if (is_orphan) {
84471e24
FM
3295 ret = gen_unique_name(sctx, pm->ino,
3296 pm->gen, from_path);
3297 } else {
3298 ret = get_first_ref(sctx->parent_root, pm->ino,
3299 &parent_ino, &parent_gen, name);
3300 if (ret < 0)
3301 goto out;
3302 ret = get_cur_path(sctx, parent_ino, parent_gen,
3303 from_path);
3304 if (ret < 0)
3305 goto out;
3306 ret = fs_path_add_path(from_path, name);
3307 }
c992ec94
FM
3308 if (ret < 0)
3309 goto out;
2b863a13 3310
f959492f 3311 sctx->send_progress = sctx->cur_ino + 1;
801bec36 3312 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
7969e77a
FM
3313 if (ret < 0)
3314 goto out;
801bec36
RK
3315 if (ret) {
3316 LIST_HEAD(deleted_refs);
3317 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3318 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3319 &pm->update_refs, &deleted_refs,
3320 is_orphan);
3321 if (ret < 0)
3322 goto out;
3323 if (rmdir_ino) {
3324 dm = get_waiting_dir_move(sctx, pm->ino);
3325 ASSERT(dm);
3326 dm->rmdir_ino = rmdir_ino;
0b3f407e 3327 dm->rmdir_gen = rmdir_gen;
801bec36
RK
3328 }
3329 goto out;
3330 }
c992ec94
FM
3331 fs_path_reset(name);
3332 to_path = name;
2b863a13 3333 name = NULL;
9f03740a
FDBM
3334 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3335 if (ret < 0)
3336 goto out;
3337
3338 ret = send_rename(sctx, from_path, to_path);
3339 if (ret < 0)
3340 goto out;
3341
9dc44214
FM
3342 if (rmdir_ino) {
3343 struct orphan_dir_info *odi;
0f96f517 3344 u64 gen;
9dc44214 3345
0b3f407e 3346 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
9dc44214
FM
3347 if (!odi) {
3348 /* already deleted */
3349 goto finish;
3350 }
0f96f517
RK
3351 gen = odi->gen;
3352
3353 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
9dc44214
FM
3354 if (ret < 0)
3355 goto out;
3356 if (!ret)
3357 goto finish;
3358
3359 name = fs_path_alloc();
3360 if (!name) {
3361 ret = -ENOMEM;
3362 goto out;
3363 }
0f96f517 3364 ret = get_cur_path(sctx, rmdir_ino, gen, name);
9dc44214
FM
3365 if (ret < 0)
3366 goto out;
3367 ret = send_rmdir(sctx, name);
3368 if (ret < 0)
3369 goto out;
9dc44214
FM
3370 }
3371
3372finish:
9f03740a
FDBM
3373 ret = send_utimes(sctx, pm->ino, pm->gen);
3374 if (ret < 0)
3375 goto out;
3376
3377 /*
3378 * After rename/move, need to update the utimes of both new parent(s)
3379 * and old parent(s).
3380 */
3381 list_for_each_entry(cur, &pm->update_refs, list) {
764433a1
RK
3382 /*
3383 * The parent inode might have been deleted in the send snapshot
3384 */
7e93f6dc 3385 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
764433a1
RK
3386 if (ret == -ENOENT) {
3387 ret = 0;
9dc44214 3388 continue;
764433a1
RK
3389 }
3390 if (ret < 0)
3391 goto out;
3392
9f03740a
FDBM
3393 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3394 if (ret < 0)
3395 goto out;
3396 }
3397
3398out:
2b863a13 3399 fs_path_free(name);
9f03740a
FDBM
3400 fs_path_free(from_path);
3401 fs_path_free(to_path);
3402 sctx->send_progress = orig_progress;
3403
3404 return ret;
3405}
3406
3407static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3408{
3409 if (!list_empty(&m->list))
3410 list_del(&m->list);
3411 if (!RB_EMPTY_NODE(&m->node))
3412 rb_erase(&m->node, &sctx->pending_dir_moves);
3413 __free_recorded_refs(&m->update_refs);
3414 kfree(m);
3415}
3416
a4390aee
RK
3417static void tail_append_pending_moves(struct send_ctx *sctx,
3418 struct pending_dir_move *moves,
9f03740a
FDBM
3419 struct list_head *stack)
3420{
3421 if (list_empty(&moves->list)) {
3422 list_add_tail(&moves->list, stack);
3423 } else {
3424 LIST_HEAD(list);
3425 list_splice_init(&moves->list, &list);
3426 list_add_tail(&moves->list, stack);
3427 list_splice_tail(&list, stack);
3428 }
a4390aee
RK
3429 if (!RB_EMPTY_NODE(&moves->node)) {
3430 rb_erase(&moves->node, &sctx->pending_dir_moves);
3431 RB_CLEAR_NODE(&moves->node);
3432 }
9f03740a
FDBM
3433}
3434
3435static int apply_children_dir_moves(struct send_ctx *sctx)
3436{
3437 struct pending_dir_move *pm;
3438 struct list_head stack;
3439 u64 parent_ino = sctx->cur_ino;
3440 int ret = 0;
3441
3442 pm = get_pending_dir_moves(sctx, parent_ino);
3443 if (!pm)
3444 return 0;
3445
3446 INIT_LIST_HEAD(&stack);
a4390aee 3447 tail_append_pending_moves(sctx, pm, &stack);
9f03740a
FDBM
3448
3449 while (!list_empty(&stack)) {
3450 pm = list_first_entry(&stack, struct pending_dir_move, list);
3451 parent_ino = pm->ino;
3452 ret = apply_dir_move(sctx, pm);
3453 free_pending_move(sctx, pm);
3454 if (ret)
3455 goto out;
3456 pm = get_pending_dir_moves(sctx, parent_ino);
3457 if (pm)
a4390aee 3458 tail_append_pending_moves(sctx, pm, &stack);
9f03740a
FDBM
3459 }
3460 return 0;
3461
3462out:
3463 while (!list_empty(&stack)) {
3464 pm = list_first_entry(&stack, struct pending_dir_move, list);
3465 free_pending_move(sctx, pm);
3466 }
3467 return ret;
3468}
3469
84471e24
FM
3470/*
3471 * We might need to delay a directory rename even when no ancestor directory
3472 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3473 * renamed. This happens when we rename a directory to the old name (the name
3474 * in the parent root) of some other unrelated directory that got its rename
3475 * delayed due to some ancestor with higher number that got renamed.
3476 *
3477 * Example:
3478 *
3479 * Parent snapshot:
3480 * . (ino 256)
3481 * |---- a/ (ino 257)
3482 * | |---- file (ino 260)
3483 * |
3484 * |---- b/ (ino 258)
3485 * |---- c/ (ino 259)
3486 *
3487 * Send snapshot:
3488 * . (ino 256)
3489 * |---- a/ (ino 258)
3490 * |---- x/ (ino 259)
3491 * |---- y/ (ino 257)
3492 * |----- file (ino 260)
3493 *
3494 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3495 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3496 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3497 * must issue is:
3498 *
3499 * 1 - rename 259 from 'c' to 'x'
3500 * 2 - rename 257 from 'a' to 'x/y'
3501 * 3 - rename 258 from 'b' to 'a'
3502 *
3503 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3504 * be done right away and < 0 on error.
3505 */
3506static int wait_for_dest_dir_move(struct send_ctx *sctx,
3507 struct recorded_ref *parent_ref,
3508 const bool is_orphan)
3509{
2ff7e61e 3510 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
84471e24
FM
3511 struct btrfs_path *path;
3512 struct btrfs_key key;
3513 struct btrfs_key di_key;
3514 struct btrfs_dir_item *di;
3515 u64 left_gen;
3516 u64 right_gen;
3517 int ret = 0;
801bec36 3518 struct waiting_dir_move *wdm;
84471e24
FM
3519
3520 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3521 return 0;
3522
3523 path = alloc_path_for_send();
3524 if (!path)
3525 return -ENOMEM;
3526
3527 key.objectid = parent_ref->dir;
3528 key.type = BTRFS_DIR_ITEM_KEY;
3529 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3530
3531 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3532 if (ret < 0) {
3533 goto out;
3534 } else if (ret > 0) {
3535 ret = 0;
3536 goto out;
3537 }
3538
2ff7e61e
JM
3539 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3540 parent_ref->name_len);
84471e24
FM
3541 if (!di) {
3542 ret = 0;
3543 goto out;
3544 }
3545 /*
3546 * di_key.objectid has the number of the inode that has a dentry in the
3547 * parent directory with the same name that sctx->cur_ino is being
3548 * renamed to. We need to check if that inode is in the send root as
3549 * well and if it is currently marked as an inode with a pending rename,
3550 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3551 * that it happens after that other inode is renamed.
3552 */
3553 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3554 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3555 ret = 0;
3556 goto out;
3557 }
3558
7e93f6dc 3559 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
84471e24
FM
3560 if (ret < 0)
3561 goto out;
7e93f6dc 3562 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
84471e24
FM
3563 if (ret < 0) {
3564 if (ret == -ENOENT)
3565 ret = 0;
3566 goto out;
3567 }
3568
3569 /* Different inode, no need to delay the rename of sctx->cur_ino */
3570 if (right_gen != left_gen) {
3571 ret = 0;
3572 goto out;
3573 }
3574
801bec36
RK
3575 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3576 if (wdm && !wdm->orphanized) {
84471e24
FM
3577 ret = add_pending_dir_move(sctx,
3578 sctx->cur_ino,
3579 sctx->cur_inode_gen,
3580 di_key.objectid,
3581 &sctx->new_refs,
3582 &sctx->deleted_refs,
3583 is_orphan);
3584 if (!ret)
3585 ret = 1;
3586 }
3587out:
3588 btrfs_free_path(path);
3589 return ret;
3590}
3591
80aa6027 3592/*
ea37d599
FM
3593 * Check if inode ino2, or any of its ancestors, is inode ino1.
3594 * Return 1 if true, 0 if false and < 0 on error.
3595 */
3596static int check_ino_in_path(struct btrfs_root *root,
3597 const u64 ino1,
3598 const u64 ino1_gen,
3599 const u64 ino2,
3600 const u64 ino2_gen,
3601 struct fs_path *fs_path)
3602{
3603 u64 ino = ino2;
3604
3605 if (ino1 == ino2)
3606 return ino1_gen == ino2_gen;
3607
3608 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3609 u64 parent;
3610 u64 parent_gen;
3611 int ret;
3612
3613 fs_path_reset(fs_path);
3614 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3615 if (ret < 0)
3616 return ret;
3617 if (parent == ino1)
3618 return parent_gen == ino1_gen;
3619 ino = parent;
3620 }
3621 return 0;
3622}
3623
3624/*
35a68080 3625 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
ea37d599 3626 * possible path (in case ino2 is not a directory and has multiple hard links).
80aa6027
FM
3627 * Return 1 if true, 0 if false and < 0 on error.
3628 */
3629static int is_ancestor(struct btrfs_root *root,
3630 const u64 ino1,
3631 const u64 ino1_gen,
3632 const u64 ino2,
3633 struct fs_path *fs_path)
3634{
ea37d599 3635 bool free_fs_path = false;
72c3668f 3636 int ret = 0;
35a68080 3637 int iter_ret = 0;
ea37d599
FM
3638 struct btrfs_path *path = NULL;
3639 struct btrfs_key key;
72c3668f
FM
3640
3641 if (!fs_path) {
3642 fs_path = fs_path_alloc();
3643 if (!fs_path)
3644 return -ENOMEM;
ea37d599 3645 free_fs_path = true;
72c3668f 3646 }
80aa6027 3647
ea37d599
FM
3648 path = alloc_path_for_send();
3649 if (!path) {
3650 ret = -ENOMEM;
3651 goto out;
3652 }
80aa6027 3653
ea37d599
FM
3654 key.objectid = ino2;
3655 key.type = BTRFS_INODE_REF_KEY;
3656 key.offset = 0;
3657
35a68080 3658 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
ea37d599
FM
3659 struct extent_buffer *leaf = path->nodes[0];
3660 int slot = path->slots[0];
3661 u32 cur_offset = 0;
3662 u32 item_size;
3663
ea37d599
FM
3664 if (key.objectid != ino2)
3665 break;
3666 if (key.type != BTRFS_INODE_REF_KEY &&
3667 key.type != BTRFS_INODE_EXTREF_KEY)
3668 break;
3669
3212fa14 3670 item_size = btrfs_item_size(leaf, slot);
ea37d599
FM
3671 while (cur_offset < item_size) {
3672 u64 parent;
3673 u64 parent_gen;
3674
3675 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3676 unsigned long ptr;
3677 struct btrfs_inode_extref *extref;
3678
3679 ptr = btrfs_item_ptr_offset(leaf, slot);
3680 extref = (struct btrfs_inode_extref *)
3681 (ptr + cur_offset);
3682 parent = btrfs_inode_extref_parent(leaf,
3683 extref);
3684 cur_offset += sizeof(*extref);
3685 cur_offset += btrfs_inode_extref_name_len(leaf,
3686 extref);
3687 } else {
3688 parent = key.offset;
3689 cur_offset = item_size;
3690 }
3691
7e93f6dc 3692 ret = get_inode_gen(root, parent, &parent_gen);
ea37d599
FM
3693 if (ret < 0)
3694 goto out;
3695 ret = check_ino_in_path(root, ino1, ino1_gen,
3696 parent, parent_gen, fs_path);
3697 if (ret)
3698 goto out;
80aa6027 3699 }
80aa6027 3700 }
ea37d599 3701 ret = 0;
35a68080
GN
3702 if (iter_ret < 0)
3703 ret = iter_ret;
3704
3705out:
ea37d599
FM
3706 btrfs_free_path(path);
3707 if (free_fs_path)
72c3668f
FM
3708 fs_path_free(fs_path);
3709 return ret;
80aa6027
FM
3710}
3711
9f03740a 3712static int wait_for_parent_move(struct send_ctx *sctx,
8b191a68
FM
3713 struct recorded_ref *parent_ref,
3714 const bool is_orphan)
9f03740a 3715{
f959492f 3716 int ret = 0;
9f03740a 3717 u64 ino = parent_ref->dir;
fe9c798d 3718 u64 ino_gen = parent_ref->dir_gen;
9f03740a 3719 u64 parent_ino_before, parent_ino_after;
9f03740a
FDBM
3720 struct fs_path *path_before = NULL;
3721 struct fs_path *path_after = NULL;
3722 int len1, len2;
9f03740a
FDBM
3723
3724 path_after = fs_path_alloc();
f959492f
FM
3725 path_before = fs_path_alloc();
3726 if (!path_after || !path_before) {
9f03740a
FDBM
3727 ret = -ENOMEM;
3728 goto out;
3729 }
3730
bfa7e1f8 3731 /*
f959492f
FM
3732 * Our current directory inode may not yet be renamed/moved because some
3733 * ancestor (immediate or not) has to be renamed/moved first. So find if
3734 * such ancestor exists and make sure our own rename/move happens after
80aa6027
FM
3735 * that ancestor is processed to avoid path build infinite loops (done
3736 * at get_cur_path()).
bfa7e1f8 3737 */
f959492f 3738 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
fe9c798d
FM
3739 u64 parent_ino_after_gen;
3740
f959492f 3741 if (is_waiting_for_move(sctx, ino)) {
80aa6027
FM
3742 /*
3743 * If the current inode is an ancestor of ino in the
3744 * parent root, we need to delay the rename of the
3745 * current inode, otherwise don't delayed the rename
3746 * because we can end up with a circular dependency
3747 * of renames, resulting in some directories never
3748 * getting the respective rename operations issued in
3749 * the send stream or getting into infinite path build
3750 * loops.
3751 */
3752 ret = is_ancestor(sctx->parent_root,
3753 sctx->cur_ino, sctx->cur_inode_gen,
3754 ino, path_before);
4122ea64
FM
3755 if (ret)
3756 break;
f959492f 3757 }
bfa7e1f8
FM
3758
3759 fs_path_reset(path_before);
3760 fs_path_reset(path_after);
3761
3762 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
fe9c798d 3763 &parent_ino_after_gen, path_after);
bfa7e1f8
FM
3764 if (ret < 0)
3765 goto out;
3766 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3767 NULL, path_before);
f959492f 3768 if (ret < 0 && ret != -ENOENT) {
bfa7e1f8 3769 goto out;
f959492f 3770 } else if (ret == -ENOENT) {
bf8e8ca6 3771 ret = 0;
f959492f 3772 break;
bfa7e1f8
FM
3773 }
3774
3775 len1 = fs_path_len(path_before);
3776 len2 = fs_path_len(path_after);
f959492f
FM
3777 if (ino > sctx->cur_ino &&
3778 (parent_ino_before != parent_ino_after || len1 != len2 ||
3779 memcmp(path_before->start, path_after->start, len1))) {
fe9c798d
FM
3780 u64 parent_ino_gen;
3781
7e93f6dc 3782 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
fe9c798d
FM
3783 if (ret < 0)
3784 goto out;
3785 if (ino_gen == parent_ino_gen) {
3786 ret = 1;
3787 break;
3788 }
bfa7e1f8 3789 }
bfa7e1f8 3790 ino = parent_ino_after;
fe9c798d 3791 ino_gen = parent_ino_after_gen;
bfa7e1f8
FM
3792 }
3793
9f03740a
FDBM
3794out:
3795 fs_path_free(path_before);
3796 fs_path_free(path_after);
3797
f959492f
FM
3798 if (ret == 1) {
3799 ret = add_pending_dir_move(sctx,
3800 sctx->cur_ino,
3801 sctx->cur_inode_gen,
3802 ino,
3803 &sctx->new_refs,
84471e24 3804 &sctx->deleted_refs,
8b191a68 3805 is_orphan);
f959492f
FM
3806 if (!ret)
3807 ret = 1;
3808 }
3809
9f03740a
FDBM
3810 return ret;
3811}
3812
f5962781
FM
3813static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3814{
3815 int ret;
3816 struct fs_path *new_path;
3817
3818 /*
3819 * Our reference's name member points to its full_path member string, so
3820 * we use here a new path.
3821 */
3822 new_path = fs_path_alloc();
3823 if (!new_path)
3824 return -ENOMEM;
3825
3826 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3827 if (ret < 0) {
3828 fs_path_free(new_path);
3829 return ret;
3830 }
3831 ret = fs_path_add(new_path, ref->name, ref->name_len);
3832 if (ret < 0) {
3833 fs_path_free(new_path);
3834 return ret;
3835 }
3836
3837 fs_path_free(ref->full_path);
3838 set_ref_path(ref, new_path);
3839
3840 return 0;
3841}
3842
9c2b4e03
FM
3843/*
3844 * When processing the new references for an inode we may orphanize an existing
3845 * directory inode because its old name conflicts with one of the new references
3846 * of the current inode. Later, when processing another new reference of our
3847 * inode, we might need to orphanize another inode, but the path we have in the
3848 * reference reflects the pre-orphanization name of the directory we previously
3849 * orphanized. For example:
3850 *
3851 * parent snapshot looks like:
3852 *
3853 * . (ino 256)
3854 * |----- f1 (ino 257)
3855 * |----- f2 (ino 258)
3856 * |----- d1/ (ino 259)
3857 * |----- d2/ (ino 260)
3858 *
3859 * send snapshot looks like:
3860 *
3861 * . (ino 256)
3862 * |----- d1 (ino 258)
3863 * |----- f2/ (ino 259)
3864 * |----- f2_link/ (ino 260)
3865 * | |----- f1 (ino 257)
3866 * |
3867 * |----- d2 (ino 258)
3868 *
3869 * When processing inode 257 we compute the name for inode 259 as "d1", and we
3870 * cache it in the name cache. Later when we start processing inode 258, when
3871 * collecting all its new references we set a full path of "d1/d2" for its new
3872 * reference with name "d2". When we start processing the new references we
3873 * start by processing the new reference with name "d1", and this results in
3874 * orphanizing inode 259, since its old reference causes a conflict. Then we
3875 * move on the next new reference, with name "d2", and we find out we must
3876 * orphanize inode 260, as its old reference conflicts with ours - but for the
3877 * orphanization we use a source path corresponding to the path we stored in the
3878 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3879 * receiver fail since the path component "d1/" no longer exists, it was renamed
3880 * to "o259-6-0/" when processing the previous new reference. So in this case we
3881 * must recompute the path in the new reference and use it for the new
3882 * orphanization operation.
3883 */
3884static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3885{
3886 char *name;
3887 int ret;
3888
3889 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3890 if (!name)
3891 return -ENOMEM;
3892
3893 fs_path_reset(ref->full_path);
3894 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3895 if (ret < 0)
3896 goto out;
3897
3898 ret = fs_path_add(ref->full_path, name, ref->name_len);
3899 if (ret < 0)
3900 goto out;
3901
3902 /* Update the reference's base name pointer. */
3903 set_ref_path(ref, ref->full_path);
3904out:
3905 kfree(name);
3906 return ret;
3907}
3908
31db9f7c
AB
3909/*
3910 * This does all the move/link/unlink/rmdir magic.
3911 */
9f03740a 3912static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
31db9f7c 3913{
04ab956e 3914 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
3915 int ret = 0;
3916 struct recorded_ref *cur;
1f4692da 3917 struct recorded_ref *cur2;
ba5e8f2e 3918 struct list_head check_dirs;
31db9f7c 3919 struct fs_path *valid_path = NULL;
b24baf69 3920 u64 ow_inode = 0;
31db9f7c 3921 u64 ow_gen;
f5962781 3922 u64 ow_mode;
31db9f7c
AB
3923 int did_overwrite = 0;
3924 int is_orphan = 0;
29d6d30f 3925 u64 last_dir_ino_rm = 0;
84471e24 3926 bool can_rename = true;
f5962781 3927 bool orphanized_dir = false;
fdb13889 3928 bool orphanized_ancestor = false;
31db9f7c 3929
04ab956e 3930 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
31db9f7c 3931
6d85ed05
AB
3932 /*
3933 * This should never happen as the root dir always has the same ref
3934 * which is always '..'
3935 */
3936 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
ba5e8f2e 3937 INIT_LIST_HEAD(&check_dirs);
6d85ed05 3938
924794c9 3939 valid_path = fs_path_alloc();
31db9f7c
AB
3940 if (!valid_path) {
3941 ret = -ENOMEM;
3942 goto out;
3943 }
3944
31db9f7c
AB
3945 /*
3946 * First, check if the first ref of the current inode was overwritten
3947 * before. If yes, we know that the current inode was already orphanized
3948 * and thus use the orphan name. If not, we can use get_cur_path to
3949 * get the path of the first ref as it would like while receiving at
3950 * this point in time.
3951 * New inodes are always orphan at the beginning, so force to use the
3952 * orphan name in this case.
3953 * The first ref is stored in valid_path and will be updated if it
3954 * gets moved around.
3955 */
3956 if (!sctx->cur_inode_new) {
3957 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3958 sctx->cur_inode_gen);
3959 if (ret < 0)
3960 goto out;
3961 if (ret)
3962 did_overwrite = 1;
3963 }
3964 if (sctx->cur_inode_new || did_overwrite) {
3965 ret = gen_unique_name(sctx, sctx->cur_ino,
3966 sctx->cur_inode_gen, valid_path);
3967 if (ret < 0)
3968 goto out;
3969 is_orphan = 1;
3970 } else {
3971 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3972 valid_path);
3973 if (ret < 0)
3974 goto out;
3975 }
3976
98272bb7
FM
3977 /*
3978 * Before doing any rename and link operations, do a first pass on the
3979 * new references to orphanize any unprocessed inodes that may have a
3980 * reference that conflicts with one of the new references of the current
3981 * inode. This needs to happen first because a new reference may conflict
3982 * with the old reference of a parent directory, so we must make sure
3983 * that the path used for link and rename commands don't use an
3984 * orphanized name when an ancestor was not yet orphanized.
3985 *
3986 * Example:
3987 *
3988 * Parent snapshot:
3989 *
3990 * . (ino 256)
3991 * |----- testdir/ (ino 259)
3992 * | |----- a (ino 257)
3993 * |
3994 * |----- b (ino 258)
3995 *
3996 * Send snapshot:
3997 *
3998 * . (ino 256)
3999 * |----- testdir_2/ (ino 259)
4000 * | |----- a (ino 260)
4001 * |
4002 * |----- testdir (ino 257)
4003 * |----- b (ino 257)
4004 * |----- b2 (ino 258)
4005 *
4006 * Processing the new reference for inode 257 with name "b" may happen
4007 * before processing the new reference with name "testdir". If so, we
4008 * must make sure that by the time we send a link command to create the
4009 * hard link "b", inode 259 was already orphanized, since the generated
4010 * path in "valid_path" already contains the orphanized name for 259.
4011 * We are processing inode 257, so only later when processing 259 we do
4012 * the rename operation to change its temporary (orphanized) name to
4013 * "testdir_2".
4014 */
31db9f7c 4015 list_for_each_entry(cur, &sctx->new_refs, list) {
1f4692da
AB
4016 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4017 if (ret < 0)
4018 goto out;
98272bb7
FM
4019 if (ret == inode_state_will_create)
4020 continue;
1f4692da 4021
31db9f7c 4022 /*
98272bb7
FM
4023 * Check if this new ref would overwrite the first ref of another
4024 * unprocessed inode. If yes, orphanize the overwritten inode.
4025 * If we find an overwritten ref that is not the first ref,
4026 * simply unlink it.
31db9f7c
AB
4027 */
4028 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4029 cur->name, cur->name_len,
f5962781 4030 &ow_inode, &ow_gen, &ow_mode);
31db9f7c
AB
4031 if (ret < 0)
4032 goto out;
4033 if (ret) {
924794c9
TI
4034 ret = is_first_ref(sctx->parent_root,
4035 ow_inode, cur->dir, cur->name,
4036 cur->name_len);
31db9f7c
AB
4037 if (ret < 0)
4038 goto out;
4039 if (ret) {
8996a48c 4040 struct name_cache_entry *nce;
801bec36 4041 struct waiting_dir_move *wdm;
8996a48c 4042
9c2b4e03
FM
4043 if (orphanized_dir) {
4044 ret = refresh_ref_path(sctx, cur);
4045 if (ret < 0)
4046 goto out;
4047 }
4048
31db9f7c
AB
4049 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4050 cur->full_path);
4051 if (ret < 0)
4052 goto out;
f5962781
FM
4053 if (S_ISDIR(ow_mode))
4054 orphanized_dir = true;
801bec36
RK
4055
4056 /*
4057 * If ow_inode has its rename operation delayed
4058 * make sure that its orphanized name is used in
4059 * the source path when performing its rename
4060 * operation.
4061 */
4062 if (is_waiting_for_move(sctx, ow_inode)) {
4063 wdm = get_waiting_dir_move(sctx,
4064 ow_inode);
4065 ASSERT(wdm);
4066 wdm->orphanized = true;
4067 }
4068
8996a48c
FM
4069 /*
4070 * Make sure we clear our orphanized inode's
4071 * name from the name cache. This is because the
4072 * inode ow_inode might be an ancestor of some
4073 * other inode that will be orphanized as well
4074 * later and has an inode number greater than
4075 * sctx->send_progress. We need to prevent
4076 * future name lookups from using the old name
4077 * and get instead the orphan name.
4078 */
4079 nce = name_cache_search(sctx, ow_inode, ow_gen);
4080 if (nce) {
4081 name_cache_delete(sctx, nce);
4082 kfree(nce);
4083 }
801bec36
RK
4084
4085 /*
4086 * ow_inode might currently be an ancestor of
4087 * cur_ino, therefore compute valid_path (the
4088 * current path of cur_ino) again because it
4089 * might contain the pre-orphanization name of
4090 * ow_inode, which is no longer valid.
4091 */
72c3668f
FM
4092 ret = is_ancestor(sctx->parent_root,
4093 ow_inode, ow_gen,
4094 sctx->cur_ino, NULL);
4095 if (ret > 0) {
fdb13889 4096 orphanized_ancestor = true;
72c3668f
FM
4097 fs_path_reset(valid_path);
4098 ret = get_cur_path(sctx, sctx->cur_ino,
4099 sctx->cur_inode_gen,
4100 valid_path);
4101 }
801bec36
RK
4102 if (ret < 0)
4103 goto out;
31db9f7c 4104 } else {
d8ac76cd
FM
4105 /*
4106 * If we previously orphanized a directory that
4107 * collided with a new reference that we already
4108 * processed, recompute the current path because
4109 * that directory may be part of the path.
4110 */
4111 if (orphanized_dir) {
4112 ret = refresh_ref_path(sctx, cur);
4113 if (ret < 0)
4114 goto out;
4115 }
31db9f7c
AB
4116 ret = send_unlink(sctx, cur->full_path);
4117 if (ret < 0)
4118 goto out;
4119 }
4120 }
4121
98272bb7
FM
4122 }
4123
4124 list_for_each_entry(cur, &sctx->new_refs, list) {
4125 /*
4126 * We may have refs where the parent directory does not exist
4127 * yet. This happens if the parent directories inum is higher
4128 * than the current inum. To handle this case, we create the
4129 * parent directory out of order. But we need to check if this
4130 * did already happen before due to other refs in the same dir.
4131 */
4132 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4133 if (ret < 0)
4134 goto out;
4135 if (ret == inode_state_will_create) {
4136 ret = 0;
4137 /*
4138 * First check if any of the current inodes refs did
4139 * already create the dir.
4140 */
4141 list_for_each_entry(cur2, &sctx->new_refs, list) {
4142 if (cur == cur2)
4143 break;
4144 if (cur2->dir == cur->dir) {
4145 ret = 1;
4146 break;
4147 }
4148 }
4149
4150 /*
4151 * If that did not happen, check if a previous inode
4152 * did already create the dir.
4153 */
4154 if (!ret)
4155 ret = did_create_dir(sctx, cur->dir);
4156 if (ret < 0)
4157 goto out;
4158 if (!ret) {
4159 ret = send_create_inode(sctx, cur->dir);
4160 if (ret < 0)
4161 goto out;
4162 }
4163 }
4164
84471e24
FM
4165 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4166 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4167 if (ret < 0)
4168 goto out;
4169 if (ret == 1) {
4170 can_rename = false;
4171 *pending_move = 1;
4172 }
4173 }
4174
8b191a68
FM
4175 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4176 can_rename) {
4177 ret = wait_for_parent_move(sctx, cur, is_orphan);
4178 if (ret < 0)
4179 goto out;
4180 if (ret == 1) {
4181 can_rename = false;
4182 *pending_move = 1;
4183 }
4184 }
4185
31db9f7c
AB
4186 /*
4187 * link/move the ref to the new place. If we have an orphan
4188 * inode, move it and update valid_path. If not, link or move
4189 * it depending on the inode mode.
4190 */
84471e24 4191 if (is_orphan && can_rename) {
31db9f7c
AB
4192 ret = send_rename(sctx, valid_path, cur->full_path);
4193 if (ret < 0)
4194 goto out;
4195 is_orphan = 0;
4196 ret = fs_path_copy(valid_path, cur->full_path);
4197 if (ret < 0)
4198 goto out;
84471e24 4199 } else if (can_rename) {
31db9f7c
AB
4200 if (S_ISDIR(sctx->cur_inode_mode)) {
4201 /*
4202 * Dirs can't be linked, so move it. For moved
4203 * dirs, we always have one new and one deleted
4204 * ref. The deleted ref is ignored later.
4205 */
8b191a68
FM
4206 ret = send_rename(sctx, valid_path,
4207 cur->full_path);
4208 if (!ret)
4209 ret = fs_path_copy(valid_path,
4210 cur->full_path);
31db9f7c
AB
4211 if (ret < 0)
4212 goto out;
4213 } else {
f5962781
FM
4214 /*
4215 * We might have previously orphanized an inode
4216 * which is an ancestor of our current inode,
4217 * so our reference's full path, which was
4218 * computed before any such orphanizations, must
4219 * be updated.
4220 */
4221 if (orphanized_dir) {
4222 ret = update_ref_path(sctx, cur);
4223 if (ret < 0)
4224 goto out;
4225 }
31db9f7c
AB
4226 ret = send_link(sctx, cur->full_path,
4227 valid_path);
4228 if (ret < 0)
4229 goto out;
4230 }
4231 }
ba5e8f2e 4232 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4233 if (ret < 0)
4234 goto out;
4235 }
4236
4237 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4238 /*
4239 * Check if we can already rmdir the directory. If not,
4240 * orphanize it. For every dir item inside that gets deleted
4241 * later, we do this check again and rmdir it then if possible.
4242 * See the use of check_dirs for more details.
4243 */
9dc44214
FM
4244 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4245 sctx->cur_ino);
31db9f7c
AB
4246 if (ret < 0)
4247 goto out;
4248 if (ret) {
4249 ret = send_rmdir(sctx, valid_path);
4250 if (ret < 0)
4251 goto out;
4252 } else if (!is_orphan) {
4253 ret = orphanize_inode(sctx, sctx->cur_ino,
4254 sctx->cur_inode_gen, valid_path);
4255 if (ret < 0)
4256 goto out;
4257 is_orphan = 1;
4258 }
4259
4260 list_for_each_entry(cur, &sctx->deleted_refs, list) {
ba5e8f2e 4261 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4262 if (ret < 0)
4263 goto out;
4264 }
ccf1626b
AB
4265 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4266 !list_empty(&sctx->deleted_refs)) {
4267 /*
4268 * We have a moved dir. Add the old parent to check_dirs
4269 */
4270 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4271 list);
ba5e8f2e 4272 ret = dup_ref(cur, &check_dirs);
ccf1626b
AB
4273 if (ret < 0)
4274 goto out;
31db9f7c
AB
4275 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4276 /*
4277 * We have a non dir inode. Go through all deleted refs and
4278 * unlink them if they were not already overwritten by other
4279 * inodes.
4280 */
4281 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4282 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4283 sctx->cur_ino, sctx->cur_inode_gen,
4284 cur->name, cur->name_len);
4285 if (ret < 0)
4286 goto out;
4287 if (!ret) {
fdb13889
FM
4288 /*
4289 * If we orphanized any ancestor before, we need
4290 * to recompute the full path for deleted names,
4291 * since any such path was computed before we
4292 * processed any references and orphanized any
4293 * ancestor inode.
4294 */
4295 if (orphanized_ancestor) {
f5962781
FM
4296 ret = update_ref_path(sctx, cur);
4297 if (ret < 0)
fdb13889 4298 goto out;
fdb13889 4299 }
1f4692da
AB
4300 ret = send_unlink(sctx, cur->full_path);
4301 if (ret < 0)
4302 goto out;
31db9f7c 4303 }
ba5e8f2e 4304 ret = dup_ref(cur, &check_dirs);
31db9f7c
AB
4305 if (ret < 0)
4306 goto out;
4307 }
31db9f7c
AB
4308 /*
4309 * If the inode is still orphan, unlink the orphan. This may
4310 * happen when a previous inode did overwrite the first ref
4311 * of this inode and no new refs were added for the current
766702ef
AB
4312 * inode. Unlinking does not mean that the inode is deleted in
4313 * all cases. There may still be links to this inode in other
4314 * places.
31db9f7c 4315 */
1f4692da 4316 if (is_orphan) {
31db9f7c
AB
4317 ret = send_unlink(sctx, valid_path);
4318 if (ret < 0)
4319 goto out;
4320 }
4321 }
4322
4323 /*
4324 * We did collect all parent dirs where cur_inode was once located. We
4325 * now go through all these dirs and check if they are pending for
4326 * deletion and if it's finally possible to perform the rmdir now.
4327 * We also update the inode stats of the parent dirs here.
4328 */
ba5e8f2e 4329 list_for_each_entry(cur, &check_dirs, list) {
766702ef
AB
4330 /*
4331 * In case we had refs into dirs that were not processed yet,
4332 * we don't need to do the utime and rmdir logic for these dirs.
4333 * The dir will be processed later.
4334 */
ba5e8f2e 4335 if (cur->dir > sctx->cur_ino)
31db9f7c
AB
4336 continue;
4337
ba5e8f2e 4338 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
4339 if (ret < 0)
4340 goto out;
4341
4342 if (ret == inode_state_did_create ||
4343 ret == inode_state_no_change) {
4344 /* TODO delayed utimes */
ba5e8f2e 4345 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
31db9f7c
AB
4346 if (ret < 0)
4347 goto out;
29d6d30f
FM
4348 } else if (ret == inode_state_did_delete &&
4349 cur->dir != last_dir_ino_rm) {
9dc44214
FM
4350 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4351 sctx->cur_ino);
31db9f7c
AB
4352 if (ret < 0)
4353 goto out;
4354 if (ret) {
ba5e8f2e
JB
4355 ret = get_cur_path(sctx, cur->dir,
4356 cur->dir_gen, valid_path);
31db9f7c
AB
4357 if (ret < 0)
4358 goto out;
4359 ret = send_rmdir(sctx, valid_path);
4360 if (ret < 0)
4361 goto out;
29d6d30f 4362 last_dir_ino_rm = cur->dir;
31db9f7c
AB
4363 }
4364 }
4365 }
4366
31db9f7c
AB
4367 ret = 0;
4368
4369out:
ba5e8f2e 4370 __free_recorded_refs(&check_dirs);
31db9f7c 4371 free_recorded_refs(sctx);
924794c9 4372 fs_path_free(valid_path);
31db9f7c
AB
4373 return ret;
4374}
4375
3aa5bd36
BC
4376static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4377{
4378 const struct recorded_ref *data = k;
4379 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4380 int result;
4381
4382 if (data->dir > ref->dir)
4383 return 1;
4384 if (data->dir < ref->dir)
4385 return -1;
4386 if (data->dir_gen > ref->dir_gen)
4387 return 1;
4388 if (data->dir_gen < ref->dir_gen)
4389 return -1;
4390 if (data->name_len > ref->name_len)
4391 return 1;
4392 if (data->name_len < ref->name_len)
4393 return -1;
4394 result = strcmp(data->name, ref->name);
4395 if (result > 0)
4396 return 1;
4397 if (result < 0)
4398 return -1;
4399 return 0;
4400}
4401
4402static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4403{
4404 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4405
4406 return rbtree_ref_comp(entry, parent) < 0;
4407}
4408
4409static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4410 struct fs_path *name, u64 dir, u64 dir_gen,
4411 struct send_ctx *sctx)
4412{
4413 int ret = 0;
4414 struct fs_path *path = NULL;
4415 struct recorded_ref *ref = NULL;
4416
4417 path = fs_path_alloc();
4418 if (!path) {
4419 ret = -ENOMEM;
4420 goto out;
4421 }
4422
4423 ref = recorded_ref_alloc();
4424 if (!ref) {
4425 ret = -ENOMEM;
4426 goto out;
4427 }
4428
4429 ret = get_cur_path(sctx, dir, dir_gen, path);
4430 if (ret < 0)
4431 goto out;
4432 ret = fs_path_add_path(path, name);
4433 if (ret < 0)
4434 goto out;
4435
4436 ref->dir = dir;
4437 ref->dir_gen = dir_gen;
4438 set_ref_path(ref, path);
4439 list_add_tail(&ref->list, refs);
4440 rb_add(&ref->node, root, rbtree_ref_less);
4441 ref->root = root;
4442out:
4443 if (ret) {
4444 if (path && (!ref || !ref->full_path))
4445 fs_path_free(path);
4446 recorded_ref_free(ref);
4447 }
4448 return ret;
4449}
4450
4451static int record_new_ref_if_needed(int num, u64 dir, int index,
4452 struct fs_path *name, void *ctx)
4453{
4454 int ret = 0;
4455 struct send_ctx *sctx = ctx;
4456 struct rb_node *node = NULL;
4457 struct recorded_ref data;
4458 struct recorded_ref *ref;
4459 u64 dir_gen;
4460
7e93f6dc 4461 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
3aa5bd36
BC
4462 if (ret < 0)
4463 goto out;
4464
4465 data.dir = dir;
4466 data.dir_gen = dir_gen;
4467 set_ref_path(&data, name);
4468 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4469 if (node) {
4470 ref = rb_entry(node, struct recorded_ref, node);
4471 recorded_ref_free(ref);
4472 } else {
4473 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4474 &sctx->new_refs, name, dir, dir_gen,
4475 sctx);
4476 }
4477out:
4478 return ret;
4479}
4480
4481static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4482 struct fs_path *name, void *ctx)
4483{
4484 int ret = 0;
4485 struct send_ctx *sctx = ctx;
4486 struct rb_node *node = NULL;
4487 struct recorded_ref data;
4488 struct recorded_ref *ref;
4489 u64 dir_gen;
4490
7e93f6dc 4491 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
3aa5bd36
BC
4492 if (ret < 0)
4493 goto out;
4494
4495 data.dir = dir;
4496 data.dir_gen = dir_gen;
4497 set_ref_path(&data, name);
4498 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4499 if (node) {
4500 ref = rb_entry(node, struct recorded_ref, node);
4501 recorded_ref_free(ref);
4502 } else {
4503 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4504 &sctx->deleted_refs, name, dir,
4505 dir_gen, sctx);
4506 }
4507out:
4508 return ret;
4509}
4510
31db9f7c
AB
4511static int record_new_ref(struct send_ctx *sctx)
4512{
4513 int ret;
4514
924794c9 4515 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3aa5bd36 4516 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
31db9f7c
AB
4517 if (ret < 0)
4518 goto out;
4519 ret = 0;
4520
4521out:
4522 return ret;
4523}
4524
4525static int record_deleted_ref(struct send_ctx *sctx)
4526{
4527 int ret;
4528
924794c9 4529 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3aa5bd36
BC
4530 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4531 sctx);
31db9f7c
AB
4532 if (ret < 0)
4533 goto out;
4534 ret = 0;
4535
4536out:
4537 return ret;
4538}
4539
31db9f7c
AB
4540static int record_changed_ref(struct send_ctx *sctx)
4541{
4542 int ret = 0;
4543
924794c9 4544 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
0d8869fb 4545 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
31db9f7c
AB
4546 if (ret < 0)
4547 goto out;
924794c9 4548 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
0d8869fb 4549 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
31db9f7c
AB
4550 if (ret < 0)
4551 goto out;
4552 ret = 0;
4553
4554out:
4555 return ret;
4556}
4557
4558/*
4559 * Record and process all refs at once. Needed when an inode changes the
4560 * generation number, which means that it was deleted and recreated.
4561 */
4562static int process_all_refs(struct send_ctx *sctx,
4563 enum btrfs_compare_tree_result cmd)
4564{
649b9635
GN
4565 int ret = 0;
4566 int iter_ret = 0;
31db9f7c
AB
4567 struct btrfs_root *root;
4568 struct btrfs_path *path;
4569 struct btrfs_key key;
4570 struct btrfs_key found_key;
31db9f7c 4571 iterate_inode_ref_t cb;
9f03740a 4572 int pending_move = 0;
31db9f7c
AB
4573
4574 path = alloc_path_for_send();
4575 if (!path)
4576 return -ENOMEM;
4577
4578 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4579 root = sctx->send_root;
0d8869fb 4580 cb = record_new_ref_if_needed;
31db9f7c
AB
4581 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4582 root = sctx->parent_root;
0d8869fb 4583 cb = record_deleted_ref_if_needed;
31db9f7c 4584 } else {
4d1a63b2
DS
4585 btrfs_err(sctx->send_root->fs_info,
4586 "Wrong command %d in process_all_refs", cmd);
4587 ret = -EINVAL;
4588 goto out;
31db9f7c
AB
4589 }
4590
4591 key.objectid = sctx->cmp_key->objectid;
4592 key.type = BTRFS_INODE_REF_KEY;
4593 key.offset = 0;
649b9635 4594 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
31db9f7c 4595 if (found_key.objectid != key.objectid ||
96b5bd77
JS
4596 (found_key.type != BTRFS_INODE_REF_KEY &&
4597 found_key.type != BTRFS_INODE_EXTREF_KEY))
31db9f7c 4598 break;
31db9f7c 4599
924794c9 4600 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
31db9f7c
AB
4601 if (ret < 0)
4602 goto out;
649b9635
GN
4603 }
4604 /* Catch error found during iteration */
4605 if (iter_ret < 0) {
4606 ret = iter_ret;
4607 goto out;
31db9f7c 4608 }
e938c8ad 4609 btrfs_release_path(path);
31db9f7c 4610
3dc09ec8
JB
4611 /*
4612 * We don't actually care about pending_move as we are simply
4613 * re-creating this inode and will be rename'ing it into place once we
4614 * rename the parent directory.
4615 */
9f03740a 4616 ret = process_recorded_refs(sctx, &pending_move);
31db9f7c
AB
4617out:
4618 btrfs_free_path(path);
4619 return ret;
4620}
4621
4622static int send_set_xattr(struct send_ctx *sctx,
4623 struct fs_path *path,
4624 const char *name, int name_len,
4625 const char *data, int data_len)
4626{
4627 int ret = 0;
4628
4629 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4630 if (ret < 0)
4631 goto out;
4632
4633 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4634 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4635 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4636
4637 ret = send_cmd(sctx);
4638
4639tlv_put_failure:
4640out:
4641 return ret;
4642}
4643
4644static int send_remove_xattr(struct send_ctx *sctx,
4645 struct fs_path *path,
4646 const char *name, int name_len)
4647{
4648 int ret = 0;
4649
4650 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4651 if (ret < 0)
4652 goto out;
4653
4654 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4655 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4656
4657 ret = send_cmd(sctx);
4658
4659tlv_put_failure:
4660out:
4661 return ret;
4662}
4663
4664static int __process_new_xattr(int num, struct btrfs_key *di_key,
b1dea4e7
OS
4665 const char *name, int name_len, const char *data,
4666 int data_len, void *ctx)
31db9f7c
AB
4667{
4668 int ret;
4669 struct send_ctx *sctx = ctx;
4670 struct fs_path *p;
2211d5ba 4671 struct posix_acl_xattr_header dummy_acl;
31db9f7c 4672
89efda52
MPS
4673 /* Capabilities are emitted by finish_inode_if_needed */
4674 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4675 return 0;
4676
924794c9 4677 p = fs_path_alloc();
31db9f7c
AB
4678 if (!p)
4679 return -ENOMEM;
4680
4681 /*
01327610 4682 * This hack is needed because empty acls are stored as zero byte
31db9f7c 4683 * data in xattrs. Problem with that is, that receiving these zero byte
01327610 4684 * acls will fail later. To fix this, we send a dummy acl list that
31db9f7c
AB
4685 * only contains the version number and no entries.
4686 */
4687 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4688 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4689 if (data_len == 0) {
4690 dummy_acl.a_version =
4691 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4692 data = (char *)&dummy_acl;
4693 data_len = sizeof(dummy_acl);
4694 }
4695 }
4696
4697 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4698 if (ret < 0)
4699 goto out;
4700
4701 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4702
4703out:
924794c9 4704 fs_path_free(p);
31db9f7c
AB
4705 return ret;
4706}
4707
4708static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4709 const char *name, int name_len,
b1dea4e7 4710 const char *data, int data_len, void *ctx)
31db9f7c
AB
4711{
4712 int ret;
4713 struct send_ctx *sctx = ctx;
4714 struct fs_path *p;
4715
924794c9 4716 p = fs_path_alloc();
31db9f7c
AB
4717 if (!p)
4718 return -ENOMEM;
4719
4720 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4721 if (ret < 0)
4722 goto out;
4723
4724 ret = send_remove_xattr(sctx, p, name, name_len);
4725
4726out:
924794c9 4727 fs_path_free(p);
31db9f7c
AB
4728 return ret;
4729}
4730
4731static int process_new_xattr(struct send_ctx *sctx)
4732{
4733 int ret = 0;
4734
924794c9 4735 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
a0357511 4736 __process_new_xattr, sctx);
31db9f7c
AB
4737
4738 return ret;
4739}
4740
4741static int process_deleted_xattr(struct send_ctx *sctx)
4742{
e2c89907 4743 return iterate_dir_item(sctx->parent_root, sctx->right_path,
a0357511 4744 __process_deleted_xattr, sctx);
31db9f7c
AB
4745}
4746
4747struct find_xattr_ctx {
4748 const char *name;
4749 int name_len;
4750 int found_idx;
4751 char *found_data;
4752 int found_data_len;
4753};
4754
b1dea4e7
OS
4755static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4756 int name_len, const char *data, int data_len, void *vctx)
31db9f7c
AB
4757{
4758 struct find_xattr_ctx *ctx = vctx;
4759
4760 if (name_len == ctx->name_len &&
4761 strncmp(name, ctx->name, name_len) == 0) {
4762 ctx->found_idx = num;
4763 ctx->found_data_len = data_len;
e780b0d1 4764 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
31db9f7c
AB
4765 if (!ctx->found_data)
4766 return -ENOMEM;
31db9f7c
AB
4767 return 1;
4768 }
4769 return 0;
4770}
4771
924794c9 4772static int find_xattr(struct btrfs_root *root,
31db9f7c
AB
4773 struct btrfs_path *path,
4774 struct btrfs_key *key,
4775 const char *name, int name_len,
4776 char **data, int *data_len)
4777{
4778 int ret;
4779 struct find_xattr_ctx ctx;
4780
4781 ctx.name = name;
4782 ctx.name_len = name_len;
4783 ctx.found_idx = -1;
4784 ctx.found_data = NULL;
4785 ctx.found_data_len = 0;
4786
a0357511 4787 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
31db9f7c
AB
4788 if (ret < 0)
4789 return ret;
4790
4791 if (ctx.found_idx == -1)
4792 return -ENOENT;
4793 if (data) {
4794 *data = ctx.found_data;
4795 *data_len = ctx.found_data_len;
4796 } else {
4797 kfree(ctx.found_data);
4798 }
4799 return ctx.found_idx;
4800}
4801
4802
4803static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4804 const char *name, int name_len,
4805 const char *data, int data_len,
b1dea4e7 4806 void *ctx)
31db9f7c
AB
4807{
4808 int ret;
4809 struct send_ctx *sctx = ctx;
4810 char *found_data = NULL;
4811 int found_data_len = 0;
31db9f7c 4812
924794c9
TI
4813 ret = find_xattr(sctx->parent_root, sctx->right_path,
4814 sctx->cmp_key, name, name_len, &found_data,
4815 &found_data_len);
31db9f7c
AB
4816 if (ret == -ENOENT) {
4817 ret = __process_new_xattr(num, di_key, name, name_len, data,
b1dea4e7 4818 data_len, ctx);
31db9f7c
AB
4819 } else if (ret >= 0) {
4820 if (data_len != found_data_len ||
4821 memcmp(data, found_data, data_len)) {
4822 ret = __process_new_xattr(num, di_key, name, name_len,
b1dea4e7 4823 data, data_len, ctx);
31db9f7c
AB
4824 } else {
4825 ret = 0;
4826 }
4827 }
4828
4829 kfree(found_data);
31db9f7c
AB
4830 return ret;
4831}
4832
4833static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4834 const char *name, int name_len,
4835 const char *data, int data_len,
b1dea4e7 4836 void *ctx)
31db9f7c
AB
4837{
4838 int ret;
4839 struct send_ctx *sctx = ctx;
4840
924794c9
TI
4841 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4842 name, name_len, NULL, NULL);
31db9f7c
AB
4843 if (ret == -ENOENT)
4844 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
b1dea4e7 4845 data_len, ctx);
31db9f7c
AB
4846 else if (ret >= 0)
4847 ret = 0;
4848
4849 return ret;
4850}
4851
4852static int process_changed_xattr(struct send_ctx *sctx)
4853{
4854 int ret = 0;
4855
924794c9 4856 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
a0357511 4857 __process_changed_new_xattr, sctx);
31db9f7c
AB
4858 if (ret < 0)
4859 goto out;
924794c9 4860 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
a0357511 4861 __process_changed_deleted_xattr, sctx);
31db9f7c
AB
4862
4863out:
4864 return ret;
4865}
4866
4867static int process_all_new_xattrs(struct send_ctx *sctx)
4868{
69e43177
GN
4869 int ret = 0;
4870 int iter_ret = 0;
31db9f7c
AB
4871 struct btrfs_root *root;
4872 struct btrfs_path *path;
4873 struct btrfs_key key;
4874 struct btrfs_key found_key;
31db9f7c
AB
4875
4876 path = alloc_path_for_send();
4877 if (!path)
4878 return -ENOMEM;
4879
4880 root = sctx->send_root;
4881
4882 key.objectid = sctx->cmp_key->objectid;
4883 key.type = BTRFS_XATTR_ITEM_KEY;
4884 key.offset = 0;
69e43177 4885 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
31db9f7c
AB
4886 if (found_key.objectid != key.objectid ||
4887 found_key.type != key.type) {
4888 ret = 0;
69e43177 4889 break;
31db9f7c
AB
4890 }
4891
a0357511 4892 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
31db9f7c 4893 if (ret < 0)
69e43177 4894 break;
31db9f7c 4895 }
69e43177
GN
4896 /* Catch error found during iteration */
4897 if (iter_ret < 0)
4898 ret = iter_ret;
31db9f7c 4899
31db9f7c
AB
4900 btrfs_free_path(path);
4901 return ret;
4902}
4903
38622010
BB
4904static int send_verity(struct send_ctx *sctx, struct fs_path *path,
4905 struct fsverity_descriptor *desc)
4906{
4907 int ret;
4908
4909 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
4910 if (ret < 0)
4911 goto out;
4912
4913 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4914 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
4915 le8_to_cpu(desc->hash_algorithm));
4916 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
4917 1U << le8_to_cpu(desc->log_blocksize));
4918 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
4919 le8_to_cpu(desc->salt_size));
4920 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
4921 le32_to_cpu(desc->sig_size));
4922
4923 ret = send_cmd(sctx);
4924
4925tlv_put_failure:
4926out:
4927 return ret;
4928}
4929
4930static int process_verity(struct send_ctx *sctx)
4931{
4932 int ret = 0;
4933 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4934 struct inode *inode;
4935 struct fs_path *p;
4936
4937 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
4938 if (IS_ERR(inode))
4939 return PTR_ERR(inode);
4940
4941 ret = btrfs_get_verity_descriptor(inode, NULL, 0);
4942 if (ret < 0)
4943 goto iput;
4944
4945 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
4946 ret = -EMSGSIZE;
4947 goto iput;
4948 }
4949 if (!sctx->verity_descriptor) {
4950 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
4951 GFP_KERNEL);
4952 if (!sctx->verity_descriptor) {
4953 ret = -ENOMEM;
4954 goto iput;
4955 }
4956 }
4957
4958 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
4959 if (ret < 0)
4960 goto iput;
4961
4962 p = fs_path_alloc();
4963 if (!p) {
4964 ret = -ENOMEM;
4965 goto iput;
4966 }
4967 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4968 if (ret < 0)
4969 goto free_path;
4970
4971 ret = send_verity(sctx, p, sctx->verity_descriptor);
4972 if (ret < 0)
4973 goto free_path;
4974
4975free_path:
4976 fs_path_free(p);
4977iput:
4978 iput(inode);
4979 return ret;
4980}
4981
8c7d9fe0
OS
4982static inline u64 max_send_read_size(const struct send_ctx *sctx)
4983{
4984 return sctx->send_max_size - SZ_16K;
4985}
4986
4987static int put_data_header(struct send_ctx *sctx, u32 len)
4988{
356bbbb6
OS
4989 if (WARN_ON_ONCE(sctx->put_data))
4990 return -EINVAL;
4991 sctx->put_data = true;
4992 if (sctx->proto >= 2) {
4993 /*
4994 * Since v2, the data attribute header doesn't include a length,
4995 * it is implicitly to the end of the command.
4996 */
4997 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
4998 return -EOVERFLOW;
4999 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5000 sctx->send_size += sizeof(__le16);
5001 } else {
5002 struct btrfs_tlv_header *hdr;
8c7d9fe0 5003
356bbbb6
OS
5004 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5005 return -EOVERFLOW;
5006 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5007 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5008 put_unaligned_le16(len, &hdr->tlv_len);
5009 sctx->send_size += sizeof(*hdr);
5010 }
8c7d9fe0
OS
5011 return 0;
5012}
5013
5014static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
ed259095
JB
5015{
5016 struct btrfs_root *root = sctx->send_root;
5017 struct btrfs_fs_info *fs_info = root->fs_info;
ed259095 5018 struct page *page;
09cbfeaf 5019 pgoff_t index = offset >> PAGE_SHIFT;
ed259095 5020 pgoff_t last_index;
7073017a 5021 unsigned pg_offset = offset_in_page(offset);
8c7d9fe0
OS
5022 int ret;
5023
5024 ret = put_data_header(sctx, len);
5025 if (ret)
5026 return ret;
ed259095 5027
09cbfeaf 5028 last_index = (offset + len - 1) >> PAGE_SHIFT;
2131bcd3 5029
ed259095
JB
5030 while (index <= last_index) {
5031 unsigned cur_len = min_t(unsigned, len,
09cbfeaf 5032 PAGE_SIZE - pg_offset);
eef16ba2 5033
521b6803 5034 page = find_lock_page(sctx->cur_inode->i_mapping, index);
ed259095 5035 if (!page) {
521b6803
FM
5036 page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5037 &sctx->ra, NULL, index,
5038 last_index + 1 - index);
eef16ba2 5039
521b6803
FM
5040 page = find_or_create_page(sctx->cur_inode->i_mapping,
5041 index, GFP_KERNEL);
eef16ba2
KH
5042 if (!page) {
5043 ret = -ENOMEM;
5044 break;
5045 }
5046 }
5047
521b6803
FM
5048 if (PageReadahead(page))
5049 page_cache_async_readahead(sctx->cur_inode->i_mapping,
fdaf9a58
LT
5050 &sctx->ra, NULL, page_folio(page),
5051 index, last_index + 1 - index);
ed259095
JB
5052
5053 if (!PageUptodate(page)) {
fb12489b 5054 btrfs_read_folio(NULL, page_folio(page));
ed259095
JB
5055 lock_page(page);
5056 if (!PageUptodate(page)) {
5057 unlock_page(page);
2e7be9db
DM
5058 btrfs_err(fs_info,
5059 "send: IO error at offset %llu for inode %llu root %llu",
5060 page_offset(page), sctx->cur_ino,
5061 sctx->send_root->root_key.objectid);
09cbfeaf 5062 put_page(page);
ed259095
JB
5063 ret = -EIO;
5064 break;
5065 }
5066 }
5067
3590ec58
IW
5068 memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5069 pg_offset, cur_len);
ed259095 5070 unlock_page(page);
09cbfeaf 5071 put_page(page);
ed259095
JB
5072 index++;
5073 pg_offset = 0;
5074 len -= cur_len;
8c7d9fe0 5075 sctx->send_size += cur_len;
ed259095 5076 }
521b6803 5077
ed259095
JB
5078 return ret;
5079}
5080
31db9f7c
AB
5081/*
5082 * Read some bytes from the current inode/file and send a write command to
5083 * user space.
5084 */
5085static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5086{
04ab956e 5087 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
31db9f7c
AB
5088 int ret = 0;
5089 struct fs_path *p;
31db9f7c 5090
924794c9 5091 p = fs_path_alloc();
31db9f7c
AB
5092 if (!p)
5093 return -ENOMEM;
5094
04ab956e 5095 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
31db9f7c 5096
31db9f7c
AB
5097 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5098 if (ret < 0)
5099 goto out;
5100
5101 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5102 if (ret < 0)
5103 goto out;
5104
5105 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5106 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
8c7d9fe0
OS
5107 ret = put_file_data(sctx, offset, len);
5108 if (ret < 0)
5109 goto out;
31db9f7c
AB
5110
5111 ret = send_cmd(sctx);
5112
5113tlv_put_failure:
5114out:
924794c9 5115 fs_path_free(p);
a9b2e0de 5116 return ret;
31db9f7c
AB
5117}
5118
5119/*
5120 * Send a clone command to user space.
5121 */
5122static int send_clone(struct send_ctx *sctx,
5123 u64 offset, u32 len,
5124 struct clone_root *clone_root)
5125{
5126 int ret = 0;
31db9f7c
AB
5127 struct fs_path *p;
5128 u64 gen;
5129
04ab956e
JM
5130 btrfs_debug(sctx->send_root->fs_info,
5131 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4fd786e6
MT
5132 offset, len, clone_root->root->root_key.objectid,
5133 clone_root->ino, clone_root->offset);
31db9f7c 5134
924794c9 5135 p = fs_path_alloc();
31db9f7c
AB
5136 if (!p)
5137 return -ENOMEM;
5138
5139 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5140 if (ret < 0)
5141 goto out;
5142
5143 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5144 if (ret < 0)
5145 goto out;
5146
5147 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5148 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5149 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5150
e938c8ad 5151 if (clone_root->root == sctx->send_root) {
7e93f6dc 5152 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
31db9f7c
AB
5153 if (ret < 0)
5154 goto out;
5155 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5156 } else {
924794c9 5157 ret = get_inode_path(clone_root->root, clone_root->ino, p);
31db9f7c
AB
5158 }
5159 if (ret < 0)
5160 goto out;
5161
37b8d27d
JB
5162 /*
5163 * If the parent we're using has a received_uuid set then use that as
5164 * our clone source as that is what we will look for when doing a
5165 * receive.
5166 *
5167 * This covers the case that we create a snapshot off of a received
5168 * subvolume and then use that as the parent and try to receive on a
5169 * different host.
5170 */
5171 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5172 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5173 clone_root->root->root_item.received_uuid);
5174 else
5175 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5176 clone_root->root->root_item.uuid);
31db9f7c 5177 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
09e3a288 5178 btrfs_root_ctransid(&clone_root->root->root_item));
31db9f7c
AB
5179 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5180 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5181 clone_root->offset);
5182
5183 ret = send_cmd(sctx);
5184
5185tlv_put_failure:
5186out:
924794c9 5187 fs_path_free(p);
31db9f7c
AB
5188 return ret;
5189}
5190
cb95e7bf
MF
5191/*
5192 * Send an update extent command to user space.
5193 */
5194static int send_update_extent(struct send_ctx *sctx,
5195 u64 offset, u32 len)
5196{
5197 int ret = 0;
5198 struct fs_path *p;
5199
924794c9 5200 p = fs_path_alloc();
cb95e7bf
MF
5201 if (!p)
5202 return -ENOMEM;
5203
5204 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5205 if (ret < 0)
5206 goto out;
5207
5208 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5209 if (ret < 0)
5210 goto out;
5211
5212 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5213 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5214 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5215
5216 ret = send_cmd(sctx);
5217
5218tlv_put_failure:
5219out:
924794c9 5220 fs_path_free(p);
cb95e7bf
MF
5221 return ret;
5222}
5223
16e7549f
JB
5224static int send_hole(struct send_ctx *sctx, u64 end)
5225{
5226 struct fs_path *p = NULL;
8c7d9fe0 5227 u64 read_size = max_send_read_size(sctx);
16e7549f 5228 u64 offset = sctx->cur_inode_last_extent;
16e7549f
JB
5229 int ret = 0;
5230
22d3151c
FM
5231 /*
5232 * A hole that starts at EOF or beyond it. Since we do not yet support
5233 * fallocate (for extent preallocation and hole punching), sending a
5234 * write of zeroes starting at EOF or beyond would later require issuing
5235 * a truncate operation which would undo the write and achieve nothing.
5236 */
5237 if (offset >= sctx->cur_inode_size)
5238 return 0;
5239
6b1f72e5
FM
5240 /*
5241 * Don't go beyond the inode's i_size due to prealloc extents that start
5242 * after the i_size.
5243 */
5244 end = min_t(u64, end, sctx->cur_inode_size);
5245
d4dfc0f4
FM
5246 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5247 return send_update_extent(sctx, offset, end - offset);
5248
16e7549f
JB
5249 p = fs_path_alloc();
5250 if (!p)
5251 return -ENOMEM;
c715e155
FM
5252 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5253 if (ret < 0)
5254 goto tlv_put_failure;
16e7549f 5255 while (offset < end) {
8c7d9fe0 5256 u64 len = min(end - offset, read_size);
16e7549f
JB
5257
5258 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
16e7549f
JB
5259 if (ret < 0)
5260 break;
5261 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5262 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
8c7d9fe0
OS
5263 ret = put_data_header(sctx, len);
5264 if (ret < 0)
5265 break;
5266 memset(sctx->send_buf + sctx->send_size, 0, len);
5267 sctx->send_size += len;
16e7549f
JB
5268 ret = send_cmd(sctx);
5269 if (ret < 0)
5270 break;
5271 offset += len;
5272 }
ffa7c429 5273 sctx->cur_inode_next_write_offset = offset;
16e7549f
JB
5274tlv_put_failure:
5275 fs_path_free(p);
5276 return ret;
5277}
5278
3ea4dc5b
OS
5279static int send_encoded_inline_extent(struct send_ctx *sctx,
5280 struct btrfs_path *path, u64 offset,
5281 u64 len)
5282{
5283 struct btrfs_root *root = sctx->send_root;
5284 struct btrfs_fs_info *fs_info = root->fs_info;
5285 struct inode *inode;
5286 struct fs_path *fspath;
5287 struct extent_buffer *leaf = path->nodes[0];
5288 struct btrfs_key key;
5289 struct btrfs_file_extent_item *ei;
5290 u64 ram_bytes;
5291 size_t inline_size;
5292 int ret;
5293
5294 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5295 if (IS_ERR(inode))
5296 return PTR_ERR(inode);
5297
5298 fspath = fs_path_alloc();
5299 if (!fspath) {
5300 ret = -ENOMEM;
5301 goto out;
5302 }
5303
5304 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5305 if (ret < 0)
5306 goto out;
5307
5308 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5309 if (ret < 0)
5310 goto out;
5311
5312 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5313 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5314 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5315 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5316
5317 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5318 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5319 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5320 min(key.offset + ram_bytes - offset, len));
5321 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5322 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5323 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5324 btrfs_file_extent_compression(leaf, ei));
5325 if (ret < 0)
5326 goto out;
5327 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5328
5329 ret = put_data_header(sctx, inline_size);
5330 if (ret < 0)
5331 goto out;
5332 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5333 btrfs_file_extent_inline_start(ei), inline_size);
5334 sctx->send_size += inline_size;
5335
5336 ret = send_cmd(sctx);
5337
5338tlv_put_failure:
5339out:
5340 fs_path_free(fspath);
5341 iput(inode);
5342 return ret;
5343}
5344
5345static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5346 u64 offset, u64 len)
5347{
5348 struct btrfs_root *root = sctx->send_root;
5349 struct btrfs_fs_info *fs_info = root->fs_info;
5350 struct inode *inode;
5351 struct fs_path *fspath;
5352 struct extent_buffer *leaf = path->nodes[0];
5353 struct btrfs_key key;
5354 struct btrfs_file_extent_item *ei;
5355 u64 disk_bytenr, disk_num_bytes;
5356 u32 data_offset;
5357 struct btrfs_cmd_header *hdr;
5358 u32 crc;
5359 int ret;
5360
5361 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5362 if (IS_ERR(inode))
5363 return PTR_ERR(inode);
5364
5365 fspath = fs_path_alloc();
5366 if (!fspath) {
5367 ret = -ENOMEM;
5368 goto out;
5369 }
5370
5371 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5372 if (ret < 0)
5373 goto out;
5374
5375 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5376 if (ret < 0)
5377 goto out;
5378
5379 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5380 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5381 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5382 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5383
5384 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5385 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5386 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5387 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5388 len));
5389 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5390 btrfs_file_extent_ram_bytes(leaf, ei));
5391 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5392 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5393 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5394 btrfs_file_extent_compression(leaf, ei));
5395 if (ret < 0)
5396 goto out;
5397 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5398 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5399
5400 ret = put_data_header(sctx, disk_num_bytes);
5401 if (ret < 0)
5402 goto out;
5403
5404 /*
5405 * We want to do I/O directly into the send buffer, so get the next page
5406 * boundary in the send buffer. This means that there may be a gap
5407 * between the beginning of the command and the file data.
5408 */
5409 data_offset = ALIGN(sctx->send_size, PAGE_SIZE);
5410 if (data_offset > sctx->send_max_size ||
5411 sctx->send_max_size - data_offset < disk_num_bytes) {
5412 ret = -EOVERFLOW;
5413 goto out;
5414 }
5415
5416 /*
5417 * Note that send_buf is a mapping of send_buf_pages, so this is really
5418 * reading into send_buf.
5419 */
5420 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5421 disk_bytenr, disk_num_bytes,
5422 sctx->send_buf_pages +
5423 (data_offset >> PAGE_SHIFT));
5424 if (ret)
5425 goto out;
5426
5427 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5428 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5429 hdr->crc = 0;
5430 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5431 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5432 hdr->crc = cpu_to_le32(crc);
5433
5434 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5435 &sctx->send_off);
5436 if (!ret) {
5437 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5438 disk_num_bytes, &sctx->send_off);
5439 }
5440 sctx->send_size = 0;
5441 sctx->put_data = false;
5442
5443tlv_put_failure:
5444out:
5445 fs_path_free(fspath);
5446 iput(inode);
5447 return ret;
5448}
5449
5450static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5451 const u64 offset, const u64 len)
d906d49f 5452{
152555b3 5453 const u64 end = offset + len;
3ea4dc5b
OS
5454 struct extent_buffer *leaf = path->nodes[0];
5455 struct btrfs_file_extent_item *ei;
8c7d9fe0 5456 u64 read_size = max_send_read_size(sctx);
d906d49f
FM
5457 u64 sent = 0;
5458
5459 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5460 return send_update_extent(sctx, offset, len);
5461
3ea4dc5b
OS
5462 ei = btrfs_item_ptr(leaf, path->slots[0],
5463 struct btrfs_file_extent_item);
5464 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5465 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5466 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5467 BTRFS_FILE_EXTENT_INLINE);
5468
5469 /*
5470 * Send the compressed extent unless the compressed data is
5471 * larger than the decompressed data. This can happen if we're
5472 * not sending the entire extent, either because it has been
5473 * partially overwritten/truncated or because this is a part of
5474 * the extent that we couldn't clone in clone_range().
5475 */
5476 if (is_inline &&
5477 btrfs_file_extent_inline_item_len(leaf,
5478 path->slots[0]) <= len) {
5479 return send_encoded_inline_extent(sctx, path, offset,
5480 len);
5481 } else if (!is_inline &&
5482 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5483 return send_encoded_extent(sctx, path, offset, len);
5484 }
5485 }
5486
521b6803
FM
5487 if (sctx->cur_inode == NULL) {
5488 struct btrfs_root *root = sctx->send_root;
5489
5490 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5491 if (IS_ERR(sctx->cur_inode)) {
5492 int err = PTR_ERR(sctx->cur_inode);
5493
5494 sctx->cur_inode = NULL;
5495 return err;
5496 }
5497 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5498 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
152555b3
FM
5499
5500 /*
5501 * It's very likely there are no pages from this inode in the page
5502 * cache, so after reading extents and sending their data, we clean
5503 * the page cache to avoid trashing the page cache (adding pressure
5504 * to the page cache and forcing eviction of other data more useful
5505 * for applications).
5506 *
5507 * We decide if we should clean the page cache simply by checking
5508 * if the inode's mapping nrpages is 0 when we first open it, and
5509 * not by using something like filemap_range_has_page() before
5510 * reading an extent because when we ask the readahead code to
5511 * read a given file range, it may (and almost always does) read
5512 * pages from beyond that range (see the documentation for
5513 * page_cache_sync_readahead()), so it would not be reliable,
5514 * because after reading the first extent future calls to
5515 * filemap_range_has_page() would return true because the readahead
5516 * on the previous extent resulted in reading pages of the current
5517 * extent as well.
5518 */
5519 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5520 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
521b6803
FM
5521 }
5522
d906d49f 5523 while (sent < len) {
8c7d9fe0 5524 u64 size = min(len - sent, read_size);
d906d49f
FM
5525 int ret;
5526
d906d49f
FM
5527 ret = send_write(sctx, offset + sent, size);
5528 if (ret < 0)
5529 return ret;
a9b2e0de 5530 sent += size;
d906d49f 5531 }
152555b3
FM
5532
5533 if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) {
5534 /*
5535 * Always operate only on ranges that are a multiple of the page
5536 * size. This is not only to prevent zeroing parts of a page in
5537 * the case of subpage sector size, but also to guarantee we evict
5538 * pages, as passing a range that is smaller than page size does
5539 * not evict the respective page (only zeroes part of its content).
5540 *
5541 * Always start from the end offset of the last range cleared.
5542 * This is because the readahead code may (and very often does)
5543 * reads pages beyond the range we request for readahead. So if
5544 * we have an extent layout like this:
5545 *
5546 * [ extent A ] [ extent B ] [ extent C ]
5547 *
5548 * When we ask page_cache_sync_readahead() to read extent A, it
5549 * may also trigger reads for pages of extent B. If we are doing
5550 * an incremental send and extent B has not changed between the
5551 * parent and send snapshots, some or all of its pages may end
5552 * up being read and placed in the page cache. So when truncating
5553 * the page cache we always start from the end offset of the
5554 * previously processed extent up to the end of the current
5555 * extent.
5556 */
5557 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5558 sctx->page_cache_clear_start,
5559 end - 1);
5560 sctx->page_cache_clear_start = end;
5561 }
5562
d906d49f
FM
5563 return 0;
5564}
5565
89efda52
MPS
5566/*
5567 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5568 * found, call send_set_xattr function to emit it.
5569 *
5570 * Return 0 if there isn't a capability, or when the capability was emitted
5571 * successfully, or < 0 if an error occurred.
5572 */
5573static int send_capabilities(struct send_ctx *sctx)
5574{
5575 struct fs_path *fspath = NULL;
5576 struct btrfs_path *path;
5577 struct btrfs_dir_item *di;
5578 struct extent_buffer *leaf;
5579 unsigned long data_ptr;
5580 char *buf = NULL;
5581 int buf_len;
5582 int ret = 0;
5583
5584 path = alloc_path_for_send();
5585 if (!path)
5586 return -ENOMEM;
5587
5588 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5589 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5590 if (!di) {
5591 /* There is no xattr for this inode */
5592 goto out;
5593 } else if (IS_ERR(di)) {
5594 ret = PTR_ERR(di);
5595 goto out;
5596 }
5597
5598 leaf = path->nodes[0];
5599 buf_len = btrfs_dir_data_len(leaf, di);
5600
5601 fspath = fs_path_alloc();
5602 buf = kmalloc(buf_len, GFP_KERNEL);
5603 if (!fspath || !buf) {
5604 ret = -ENOMEM;
5605 goto out;
5606 }
5607
5608 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5609 if (ret < 0)
5610 goto out;
5611
5612 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5613 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5614
5615 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5616 strlen(XATTR_NAME_CAPS), buf, buf_len);
5617out:
5618 kfree(buf);
5619 fs_path_free(fspath);
5620 btrfs_free_path(path);
5621 return ret;
5622}
5623
3ea4dc5b
OS
5624static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5625 struct clone_root *clone_root, const u64 disk_byte,
5626 u64 data_offset, u64 offset, u64 len)
d906d49f
FM
5627{
5628 struct btrfs_path *path;
5629 struct btrfs_key key;
5630 int ret;
7e93f6dc 5631 struct btrfs_inode_info info;
431d3988 5632 u64 clone_src_i_size = 0;
d906d49f 5633
72610b1b
FM
5634 /*
5635 * Prevent cloning from a zero offset with a length matching the sector
5636 * size because in some scenarios this will make the receiver fail.
5637 *
5638 * For example, if in the source filesystem the extent at offset 0
5639 * has a length of sectorsize and it was written using direct IO, then
5640 * it can never be an inline extent (even if compression is enabled).
5641 * Then this extent can be cloned in the original filesystem to a non
5642 * zero file offset, but it may not be possible to clone in the
5643 * destination filesystem because it can be inlined due to compression
5644 * on the destination filesystem (as the receiver's write operations are
5645 * always done using buffered IO). The same happens when the original
5646 * filesystem does not have compression enabled but the destination
5647 * filesystem has.
5648 */
5649 if (clone_root->offset == 0 &&
5650 len == sctx->send_root->fs_info->sectorsize)
3ea4dc5b 5651 return send_extent_data(sctx, dst_path, offset, len);
72610b1b 5652
d906d49f
FM
5653 path = alloc_path_for_send();
5654 if (!path)
5655 return -ENOMEM;
5656
040ee612
RK
5657 /*
5658 * There are inodes that have extents that lie behind its i_size. Don't
5659 * accept clones from these extents.
5660 */
7e93f6dc 5661 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
040ee612
RK
5662 btrfs_release_path(path);
5663 if (ret < 0)
5664 goto out;
7e93f6dc 5665 clone_src_i_size = info.size;
040ee612 5666
d906d49f
FM
5667 /*
5668 * We can't send a clone operation for the entire range if we find
5669 * extent items in the respective range in the source file that
5670 * refer to different extents or if we find holes.
5671 * So check for that and do a mix of clone and regular write/copy
5672 * operations if needed.
5673 *
5674 * Example:
5675 *
5676 * mkfs.btrfs -f /dev/sda
5677 * mount /dev/sda /mnt
5678 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5679 * cp --reflink=always /mnt/foo /mnt/bar
5680 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5681 * btrfs subvolume snapshot -r /mnt /mnt/snap
5682 *
5683 * If when we send the snapshot and we are processing file bar (which
5684 * has a higher inode number than foo) we blindly send a clone operation
5685 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5686 * a file bar that matches the content of file foo - iow, doesn't match
5687 * the content from bar in the original filesystem.
5688 */
5689 key.objectid = clone_root->ino;
5690 key.type = BTRFS_EXTENT_DATA_KEY;
5691 key.offset = clone_root->offset;
5692 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5693 if (ret < 0)
5694 goto out;
5695 if (ret > 0 && path->slots[0] > 0) {
5696 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5697 if (key.objectid == clone_root->ino &&
5698 key.type == BTRFS_EXTENT_DATA_KEY)
5699 path->slots[0]--;
5700 }
5701
5702 while (true) {
5703 struct extent_buffer *leaf = path->nodes[0];
5704 int slot = path->slots[0];
5705 struct btrfs_file_extent_item *ei;
5706 u8 type;
5707 u64 ext_len;
5708 u64 clone_len;
040ee612 5709 u64 clone_data_offset;
a11452a3 5710 bool crossed_src_i_size = false;
d906d49f
FM
5711
5712 if (slot >= btrfs_header_nritems(leaf)) {
5713 ret = btrfs_next_leaf(clone_root->root, path);
5714 if (ret < 0)
5715 goto out;
5716 else if (ret > 0)
5717 break;
5718 continue;
5719 }
5720
5721 btrfs_item_key_to_cpu(leaf, &key, slot);
5722
5723 /*
5724 * We might have an implicit trailing hole (NO_HOLES feature
5725 * enabled). We deal with it after leaving this loop.
5726 */
5727 if (key.objectid != clone_root->ino ||
5728 key.type != BTRFS_EXTENT_DATA_KEY)
5729 break;
5730
5731 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5732 type = btrfs_file_extent_type(leaf, ei);
5733 if (type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 5734 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
09cbfeaf 5735 ext_len = PAGE_ALIGN(ext_len);
d906d49f
FM
5736 } else {
5737 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5738 }
5739
5740 if (key.offset + ext_len <= clone_root->offset)
5741 goto next;
5742
5743 if (key.offset > clone_root->offset) {
5744 /* Implicit hole, NO_HOLES feature enabled. */
5745 u64 hole_len = key.offset - clone_root->offset;
5746
5747 if (hole_len > len)
5748 hole_len = len;
3ea4dc5b
OS
5749 ret = send_extent_data(sctx, dst_path, offset,
5750 hole_len);
d906d49f
FM
5751 if (ret < 0)
5752 goto out;
5753
5754 len -= hole_len;
5755 if (len == 0)
5756 break;
5757 offset += hole_len;
5758 clone_root->offset += hole_len;
5759 data_offset += hole_len;
5760 }
5761
5762 if (key.offset >= clone_root->offset + len)
5763 break;
5764
040ee612
RK
5765 if (key.offset >= clone_src_i_size)
5766 break;
5767
a11452a3 5768 if (key.offset + ext_len > clone_src_i_size) {
040ee612 5769 ext_len = clone_src_i_size - key.offset;
a11452a3
FM
5770 crossed_src_i_size = true;
5771 }
040ee612
RK
5772
5773 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5774 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5775 clone_root->offset = key.offset;
5776 if (clone_data_offset < data_offset &&
5777 clone_data_offset + ext_len > data_offset) {
5778 u64 extent_offset;
5779
5780 extent_offset = data_offset - clone_data_offset;
5781 ext_len -= extent_offset;
5782 clone_data_offset += extent_offset;
5783 clone_root->offset += extent_offset;
5784 }
5785 }
5786
d906d49f
FM
5787 clone_len = min_t(u64, ext_len, len);
5788
5789 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
3c850b45
FM
5790 clone_data_offset == data_offset) {
5791 const u64 src_end = clone_root->offset + clone_len;
5792 const u64 sectorsize = SZ_64K;
5793
5794 /*
5795 * We can't clone the last block, when its size is not
5796 * sector size aligned, into the middle of a file. If we
5797 * do so, the receiver will get a failure (-EINVAL) when
5798 * trying to clone or will silently corrupt the data in
5799 * the destination file if it's on a kernel without the
5800 * fix introduced by commit ac765f83f1397646
5801 * ("Btrfs: fix data corruption due to cloning of eof
5802 * block).
5803 *
5804 * So issue a clone of the aligned down range plus a
5805 * regular write for the eof block, if we hit that case.
5806 *
5807 * Also, we use the maximum possible sector size, 64K,
5808 * because we don't know what's the sector size of the
5809 * filesystem that receives the stream, so we have to
5810 * assume the largest possible sector size.
5811 */
5812 if (src_end == clone_src_i_size &&
5813 !IS_ALIGNED(src_end, sectorsize) &&
5814 offset + clone_len < sctx->cur_inode_size) {
5815 u64 slen;
5816
5817 slen = ALIGN_DOWN(src_end - clone_root->offset,
5818 sectorsize);
5819 if (slen > 0) {
5820 ret = send_clone(sctx, offset, slen,
5821 clone_root);
5822 if (ret < 0)
5823 goto out;
5824 }
3ea4dc5b
OS
5825 ret = send_extent_data(sctx, dst_path,
5826 offset + slen,
3c850b45
FM
5827 clone_len - slen);
5828 } else {
5829 ret = send_clone(sctx, offset, clone_len,
5830 clone_root);
5831 }
a11452a3
FM
5832 } else if (crossed_src_i_size && clone_len < len) {
5833 /*
5834 * If we are at i_size of the clone source inode and we
5835 * can not clone from it, terminate the loop. This is
5836 * to avoid sending two write operations, one with a
5837 * length matching clone_len and the final one after
5838 * this loop with a length of len - clone_len.
5839 *
5840 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
5841 * was passed to the send ioctl), this helps avoid
5842 * sending an encoded write for an offset that is not
5843 * sector size aligned, in case the i_size of the source
5844 * inode is not sector size aligned. That will make the
5845 * receiver fallback to decompression of the data and
5846 * writing it using regular buffered IO, therefore while
5847 * not incorrect, it's not optimal due decompression and
5848 * possible re-compression at the receiver.
5849 */
5850 break;
3c850b45 5851 } else {
3ea4dc5b
OS
5852 ret = send_extent_data(sctx, dst_path, offset,
5853 clone_len);
3c850b45 5854 }
d906d49f
FM
5855
5856 if (ret < 0)
5857 goto out;
5858
5859 len -= clone_len;
5860 if (len == 0)
5861 break;
5862 offset += clone_len;
5863 clone_root->offset += clone_len;
518837e6
FM
5864
5865 /*
5866 * If we are cloning from the file we are currently processing,
5867 * and using the send root as the clone root, we must stop once
5868 * the current clone offset reaches the current eof of the file
5869 * at the receiver, otherwise we would issue an invalid clone
5870 * operation (source range going beyond eof) and cause the
5871 * receiver to fail. So if we reach the current eof, bail out
5872 * and fallback to a regular write.
5873 */
5874 if (clone_root->root == sctx->send_root &&
5875 clone_root->ino == sctx->cur_ino &&
5876 clone_root->offset >= sctx->cur_inode_next_write_offset)
5877 break;
5878
d906d49f
FM
5879 data_offset += clone_len;
5880next:
5881 path->slots[0]++;
5882 }
5883
5884 if (len > 0)
3ea4dc5b 5885 ret = send_extent_data(sctx, dst_path, offset, len);
d906d49f
FM
5886 else
5887 ret = 0;
5888out:
5889 btrfs_free_path(path);
5890 return ret;
5891}
5892
31db9f7c
AB
5893static int send_write_or_clone(struct send_ctx *sctx,
5894 struct btrfs_path *path,
5895 struct btrfs_key *key,
5896 struct clone_root *clone_root)
5897{
5898 int ret = 0;
31db9f7c 5899 u64 offset = key->offset;
c9a949af 5900 u64 end;
28e5dd8f 5901 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
31db9f7c 5902
c9a949af
OS
5903 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5904 if (offset >= end)
5905 return 0;
31db9f7c 5906
c9a949af
OS
5907 if (clone_root && IS_ALIGNED(end, bs)) {
5908 struct btrfs_file_extent_item *ei;
d906d49f
FM
5909 u64 disk_byte;
5910 u64 data_offset;
5911
c9a949af
OS
5912 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5913 struct btrfs_file_extent_item);
d906d49f
FM
5914 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5915 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
3ea4dc5b
OS
5916 ret = clone_range(sctx, path, clone_root, disk_byte,
5917 data_offset, offset, end - offset);
cb95e7bf 5918 } else {
3ea4dc5b 5919 ret = send_extent_data(sctx, path, offset, end - offset);
31db9f7c 5920 }
c9a949af 5921 sctx->cur_inode_next_write_offset = end;
31db9f7c
AB
5922 return ret;
5923}
5924
5925static int is_extent_unchanged(struct send_ctx *sctx,
5926 struct btrfs_path *left_path,
5927 struct btrfs_key *ekey)
5928{
5929 int ret = 0;
5930 struct btrfs_key key;
5931 struct btrfs_path *path = NULL;
5932 struct extent_buffer *eb;
5933 int slot;
5934 struct btrfs_key found_key;
5935 struct btrfs_file_extent_item *ei;
5936 u64 left_disknr;
5937 u64 right_disknr;
5938 u64 left_offset;
5939 u64 right_offset;
5940 u64 left_offset_fixed;
5941 u64 left_len;
5942 u64 right_len;
74dd17fb
CM
5943 u64 left_gen;
5944 u64 right_gen;
31db9f7c
AB
5945 u8 left_type;
5946 u8 right_type;
5947
5948 path = alloc_path_for_send();
5949 if (!path)
5950 return -ENOMEM;
5951
5952 eb = left_path->nodes[0];
5953 slot = left_path->slots[0];
31db9f7c
AB
5954 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5955 left_type = btrfs_file_extent_type(eb, ei);
31db9f7c
AB
5956
5957 if (left_type != BTRFS_FILE_EXTENT_REG) {
5958 ret = 0;
5959 goto out;
5960 }
74dd17fb
CM
5961 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5962 left_len = btrfs_file_extent_num_bytes(eb, ei);
5963 left_offset = btrfs_file_extent_offset(eb, ei);
5964 left_gen = btrfs_file_extent_generation(eb, ei);
31db9f7c
AB
5965
5966 /*
5967 * Following comments will refer to these graphics. L is the left
5968 * extents which we are checking at the moment. 1-8 are the right
5969 * extents that we iterate.
5970 *
5971 * |-----L-----|
5972 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5973 *
5974 * |-----L-----|
5975 * |--1--|-2b-|...(same as above)
5976 *
5977 * Alternative situation. Happens on files where extents got split.
5978 * |-----L-----|
5979 * |-----------7-----------|-6-|
5980 *
5981 * Alternative situation. Happens on files which got larger.
5982 * |-----L-----|
5983 * |-8-|
5984 * Nothing follows after 8.
5985 */
5986
5987 key.objectid = ekey->objectid;
5988 key.type = BTRFS_EXTENT_DATA_KEY;
5989 key.offset = ekey->offset;
5990 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5991 if (ret < 0)
5992 goto out;
5993 if (ret) {
5994 ret = 0;
5995 goto out;
5996 }
5997
5998 /*
5999 * Handle special case where the right side has no extents at all.
6000 */
6001 eb = path->nodes[0];
6002 slot = path->slots[0];
6003 btrfs_item_key_to_cpu(eb, &found_key, slot);
6004 if (found_key.objectid != key.objectid ||
6005 found_key.type != key.type) {
57cfd462
JB
6006 /* If we're a hole then just pretend nothing changed */
6007 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
6008 goto out;
6009 }
6010
6011 /*
6012 * We're now on 2a, 2b or 7.
6013 */
6014 key = found_key;
6015 while (key.offset < ekey->offset + left_len) {
6016 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6017 right_type = btrfs_file_extent_type(eb, ei);
e1cbfd7b
FM
6018 if (right_type != BTRFS_FILE_EXTENT_REG &&
6019 right_type != BTRFS_FILE_EXTENT_INLINE) {
31db9f7c
AB
6020 ret = 0;
6021 goto out;
6022 }
6023
e1cbfd7b 6024 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589 6025 right_len = btrfs_file_extent_ram_bytes(eb, ei);
e1cbfd7b
FM
6026 right_len = PAGE_ALIGN(right_len);
6027 } else {
6028 right_len = btrfs_file_extent_num_bytes(eb, ei);
6029 }
007d31f7 6030
31db9f7c
AB
6031 /*
6032 * Are we at extent 8? If yes, we know the extent is changed.
6033 * This may only happen on the first iteration.
6034 */
d8347fa4 6035 if (found_key.offset + right_len <= ekey->offset) {
57cfd462
JB
6036 /* If we're a hole just pretend nothing changed */
6037 ret = (left_disknr) ? 0 : 1;
31db9f7c
AB
6038 goto out;
6039 }
6040
e1cbfd7b
FM
6041 /*
6042 * We just wanted to see if when we have an inline extent, what
6043 * follows it is a regular extent (wanted to check the above
6044 * condition for inline extents too). This should normally not
6045 * happen but it's possible for example when we have an inline
6046 * compressed extent representing data with a size matching
6047 * the page size (currently the same as sector size).
6048 */
6049 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6050 ret = 0;
6051 goto out;
6052 }
6053
24e52b11
FM
6054 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6055 right_offset = btrfs_file_extent_offset(eb, ei);
6056 right_gen = btrfs_file_extent_generation(eb, ei);
6057
31db9f7c
AB
6058 left_offset_fixed = left_offset;
6059 if (key.offset < ekey->offset) {
6060 /* Fix the right offset for 2a and 7. */
6061 right_offset += ekey->offset - key.offset;
6062 } else {
6063 /* Fix the left offset for all behind 2a and 2b */
6064 left_offset_fixed += key.offset - ekey->offset;
6065 }
6066
6067 /*
6068 * Check if we have the same extent.
6069 */
3954096d 6070 if (left_disknr != right_disknr ||
74dd17fb
CM
6071 left_offset_fixed != right_offset ||
6072 left_gen != right_gen) {
31db9f7c
AB
6073 ret = 0;
6074 goto out;
6075 }
6076
6077 /*
6078 * Go to the next extent.
6079 */
6080 ret = btrfs_next_item(sctx->parent_root, path);
6081 if (ret < 0)
6082 goto out;
6083 if (!ret) {
6084 eb = path->nodes[0];
6085 slot = path->slots[0];
6086 btrfs_item_key_to_cpu(eb, &found_key, slot);
6087 }
6088 if (ret || found_key.objectid != key.objectid ||
6089 found_key.type != key.type) {
6090 key.offset += right_len;
6091 break;
adaa4b8e
JS
6092 }
6093 if (found_key.offset != key.offset + right_len) {
6094 ret = 0;
6095 goto out;
31db9f7c
AB
6096 }
6097 key = found_key;
6098 }
6099
6100 /*
6101 * We're now behind the left extent (treat as unchanged) or at the end
6102 * of the right side (treat as changed).
6103 */
6104 if (key.offset >= ekey->offset + left_len)
6105 ret = 1;
6106 else
6107 ret = 0;
6108
6109
6110out:
6111 btrfs_free_path(path);
6112 return ret;
6113}
6114
16e7549f
JB
6115static int get_last_extent(struct send_ctx *sctx, u64 offset)
6116{
6117 struct btrfs_path *path;
6118 struct btrfs_root *root = sctx->send_root;
16e7549f 6119 struct btrfs_key key;
16e7549f
JB
6120 int ret;
6121
6122 path = alloc_path_for_send();
6123 if (!path)
6124 return -ENOMEM;
6125
6126 sctx->cur_inode_last_extent = 0;
6127
6128 key.objectid = sctx->cur_ino;
6129 key.type = BTRFS_EXTENT_DATA_KEY;
6130 key.offset = offset;
6131 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6132 if (ret < 0)
6133 goto out;
6134 ret = 0;
6135 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6136 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6137 goto out;
6138
a5eeb3d1 6139 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
16e7549f
JB
6140out:
6141 btrfs_free_path(path);
6142 return ret;
6143}
6144
82bfb2e7
FM
6145static int range_is_hole_in_parent(struct send_ctx *sctx,
6146 const u64 start,
6147 const u64 end)
6148{
6149 struct btrfs_path *path;
6150 struct btrfs_key key;
6151 struct btrfs_root *root = sctx->parent_root;
6152 u64 search_start = start;
6153 int ret;
6154
6155 path = alloc_path_for_send();
6156 if (!path)
6157 return -ENOMEM;
6158
6159 key.objectid = sctx->cur_ino;
6160 key.type = BTRFS_EXTENT_DATA_KEY;
6161 key.offset = search_start;
6162 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6163 if (ret < 0)
6164 goto out;
6165 if (ret > 0 && path->slots[0] > 0)
6166 path->slots[0]--;
6167
6168 while (search_start < end) {
6169 struct extent_buffer *leaf = path->nodes[0];
6170 int slot = path->slots[0];
6171 struct btrfs_file_extent_item *fi;
6172 u64 extent_end;
6173
6174 if (slot >= btrfs_header_nritems(leaf)) {
6175 ret = btrfs_next_leaf(root, path);
6176 if (ret < 0)
6177 goto out;
6178 else if (ret > 0)
6179 break;
6180 continue;
6181 }
6182
6183 btrfs_item_key_to_cpu(leaf, &key, slot);
6184 if (key.objectid < sctx->cur_ino ||
6185 key.type < BTRFS_EXTENT_DATA_KEY)
6186 goto next;
6187 if (key.objectid > sctx->cur_ino ||
6188 key.type > BTRFS_EXTENT_DATA_KEY ||
6189 key.offset >= end)
6190 break;
6191
6192 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
a5eeb3d1 6193 extent_end = btrfs_file_extent_end(path);
82bfb2e7
FM
6194 if (extent_end <= start)
6195 goto next;
6196 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6197 search_start = extent_end;
6198 goto next;
6199 }
6200 ret = 0;
6201 goto out;
6202next:
6203 path->slots[0]++;
6204 }
6205 ret = 1;
6206out:
6207 btrfs_free_path(path);
6208 return ret;
6209}
6210
16e7549f
JB
6211static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6212 struct btrfs_key *key)
6213{
16e7549f
JB
6214 int ret = 0;
6215
6216 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6217 return 0;
6218
6219 if (sctx->cur_inode_last_extent == (u64)-1) {
6220 ret = get_last_extent(sctx, key->offset - 1);
6221 if (ret)
6222 return ret;
6223 }
6224
bf54f412
FDBM
6225 if (path->slots[0] == 0 &&
6226 sctx->cur_inode_last_extent < key->offset) {
6227 /*
6228 * We might have skipped entire leafs that contained only
6229 * file extent items for our current inode. These leafs have
6230 * a generation number smaller (older) than the one in the
6231 * current leaf and the leaf our last extent came from, and
6232 * are located between these 2 leafs.
6233 */
6234 ret = get_last_extent(sctx, key->offset - 1);
6235 if (ret)
6236 return ret;
6237 }
6238
82bfb2e7
FM
6239 if (sctx->cur_inode_last_extent < key->offset) {
6240 ret = range_is_hole_in_parent(sctx,
6241 sctx->cur_inode_last_extent,
6242 key->offset);
6243 if (ret < 0)
6244 return ret;
6245 else if (ret == 0)
6246 ret = send_hole(sctx, key->offset);
6247 else
6248 ret = 0;
6249 }
a5eeb3d1 6250 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
16e7549f
JB
6251 return ret;
6252}
6253
31db9f7c
AB
6254static int process_extent(struct send_ctx *sctx,
6255 struct btrfs_path *path,
6256 struct btrfs_key *key)
6257{
31db9f7c 6258 struct clone_root *found_clone = NULL;
57cfd462 6259 int ret = 0;
31db9f7c
AB
6260
6261 if (S_ISLNK(sctx->cur_inode_mode))
6262 return 0;
6263
6264 if (sctx->parent_root && !sctx->cur_inode_new) {
6265 ret = is_extent_unchanged(sctx, path, key);
6266 if (ret < 0)
6267 goto out;
6268 if (ret) {
6269 ret = 0;
16e7549f 6270 goto out_hole;
31db9f7c 6271 }
57cfd462
JB
6272 } else {
6273 struct btrfs_file_extent_item *ei;
6274 u8 type;
6275
6276 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6277 struct btrfs_file_extent_item);
6278 type = btrfs_file_extent_type(path->nodes[0], ei);
6279 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6280 type == BTRFS_FILE_EXTENT_REG) {
6281 /*
6282 * The send spec does not have a prealloc command yet,
6283 * so just leave a hole for prealloc'ed extents until
6284 * we have enough commands queued up to justify rev'ing
6285 * the send spec.
6286 */
6287 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6288 ret = 0;
6289 goto out;
6290 }
6291
6292 /* Have a hole, just skip it. */
6293 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6294 ret = 0;
6295 goto out;
6296 }
6297 }
31db9f7c
AB
6298 }
6299
6300 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6301 sctx->cur_inode_size, &found_clone);
6302 if (ret != -ENOENT && ret < 0)
6303 goto out;
6304
6305 ret = send_write_or_clone(sctx, path, key, found_clone);
16e7549f
JB
6306 if (ret)
6307 goto out;
6308out_hole:
6309 ret = maybe_send_hole(sctx, path, key);
31db9f7c
AB
6310out:
6311 return ret;
6312}
6313
6314static int process_all_extents(struct send_ctx *sctx)
6315{
9930e9d4
GN
6316 int ret = 0;
6317 int iter_ret = 0;
31db9f7c
AB
6318 struct btrfs_root *root;
6319 struct btrfs_path *path;
6320 struct btrfs_key key;
6321 struct btrfs_key found_key;
31db9f7c
AB
6322
6323 root = sctx->send_root;
6324 path = alloc_path_for_send();
6325 if (!path)
6326 return -ENOMEM;
6327
6328 key.objectid = sctx->cmp_key->objectid;
6329 key.type = BTRFS_EXTENT_DATA_KEY;
6330 key.offset = 0;
9930e9d4 6331 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
31db9f7c
AB
6332 if (found_key.objectid != key.objectid ||
6333 found_key.type != key.type) {
6334 ret = 0;
9930e9d4 6335 break;
31db9f7c
AB
6336 }
6337
6338 ret = process_extent(sctx, path, &found_key);
6339 if (ret < 0)
9930e9d4 6340 break;
31db9f7c 6341 }
9930e9d4
GN
6342 /* Catch error found during iteration */
6343 if (iter_ret < 0)
6344 ret = iter_ret;
31db9f7c 6345
31db9f7c
AB
6346 btrfs_free_path(path);
6347 return ret;
6348}
6349
9f03740a
FDBM
6350static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6351 int *pending_move,
6352 int *refs_processed)
31db9f7c
AB
6353{
6354 int ret = 0;
6355
6356 if (sctx->cur_ino == 0)
6357 goto out;
6358 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
96b5bd77 6359 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
31db9f7c
AB
6360 goto out;
6361 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6362 goto out;
6363
9f03740a 6364 ret = process_recorded_refs(sctx, pending_move);
e479d9bb
AB
6365 if (ret < 0)
6366 goto out;
6367
9f03740a 6368 *refs_processed = 1;
31db9f7c
AB
6369out:
6370 return ret;
6371}
6372
6373static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6374{
6375 int ret = 0;
7e93f6dc 6376 struct btrfs_inode_info info;
31db9f7c
AB
6377 u64 left_mode;
6378 u64 left_uid;
6379 u64 left_gid;
48247359 6380 u64 left_fileattr;
31db9f7c
AB
6381 u64 right_mode;
6382 u64 right_uid;
6383 u64 right_gid;
48247359 6384 u64 right_fileattr;
31db9f7c
AB
6385 int need_chmod = 0;
6386 int need_chown = 0;
48247359 6387 bool need_fileattr = false;
ffa7c429 6388 int need_truncate = 1;
9f03740a
FDBM
6389 int pending_move = 0;
6390 int refs_processed = 0;
31db9f7c 6391
46b2f459
FM
6392 if (sctx->ignore_cur_inode)
6393 return 0;
6394
9f03740a
FDBM
6395 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6396 &refs_processed);
31db9f7c
AB
6397 if (ret < 0)
6398 goto out;
6399
9f03740a
FDBM
6400 /*
6401 * We have processed the refs and thus need to advance send_progress.
6402 * Now, calls to get_cur_xxx will take the updated refs of the current
6403 * inode into account.
6404 *
6405 * On the other hand, if our current inode is a directory and couldn't
6406 * be moved/renamed because its parent was renamed/moved too and it has
6407 * a higher inode number, we can only move/rename our current inode
6408 * after we moved/renamed its parent. Therefore in this case operate on
6409 * the old path (pre move/rename) of our current inode, and the
6410 * move/rename will be performed later.
6411 */
6412 if (refs_processed && !pending_move)
6413 sctx->send_progress = sctx->cur_ino + 1;
6414
31db9f7c
AB
6415 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6416 goto out;
6417 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6418 goto out;
7e93f6dc 6419 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
31db9f7c
AB
6420 if (ret < 0)
6421 goto out;
7e93f6dc
BC
6422 left_mode = info.mode;
6423 left_uid = info.uid;
6424 left_gid = info.gid;
6425 left_fileattr = info.fileattr;
31db9f7c 6426
e2d044fe
AL
6427 if (!sctx->parent_root || sctx->cur_inode_new) {
6428 need_chown = 1;
6429 if (!S_ISLNK(sctx->cur_inode_mode))
31db9f7c 6430 need_chmod = 1;
ffa7c429
FM
6431 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6432 need_truncate = 0;
e2d044fe 6433 } else {
ffa7c429
FM
6434 u64 old_size;
6435
7e93f6dc 6436 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
e2d044fe
AL
6437 if (ret < 0)
6438 goto out;
7e93f6dc
BC
6439 old_size = info.size;
6440 right_mode = info.mode;
6441 right_uid = info.uid;
6442 right_gid = info.gid;
6443 right_fileattr = info.fileattr;
31db9f7c 6444
e2d044fe
AL
6445 if (left_uid != right_uid || left_gid != right_gid)
6446 need_chown = 1;
6447 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6448 need_chmod = 1;
48247359
DS
6449 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6450 need_fileattr = true;
ffa7c429
FM
6451 if ((old_size == sctx->cur_inode_size) ||
6452 (sctx->cur_inode_size > old_size &&
6453 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6454 need_truncate = 0;
31db9f7c
AB
6455 }
6456
6457 if (S_ISREG(sctx->cur_inode_mode)) {
16e7549f 6458 if (need_send_hole(sctx)) {
766b5e5a
FM
6459 if (sctx->cur_inode_last_extent == (u64)-1 ||
6460 sctx->cur_inode_last_extent <
6461 sctx->cur_inode_size) {
16e7549f
JB
6462 ret = get_last_extent(sctx, (u64)-1);
6463 if (ret)
6464 goto out;
6465 }
6466 if (sctx->cur_inode_last_extent <
6467 sctx->cur_inode_size) {
6468 ret = send_hole(sctx, sctx->cur_inode_size);
6469 if (ret)
6470 goto out;
6471 }
6472 }
ffa7c429
FM
6473 if (need_truncate) {
6474 ret = send_truncate(sctx, sctx->cur_ino,
6475 sctx->cur_inode_gen,
6476 sctx->cur_inode_size);
6477 if (ret < 0)
6478 goto out;
6479 }
31db9f7c
AB
6480 }
6481
6482 if (need_chown) {
6483 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6484 left_uid, left_gid);
6485 if (ret < 0)
6486 goto out;
6487 }
6488 if (need_chmod) {
6489 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6490 left_mode);
6491 if (ret < 0)
6492 goto out;
6493 }
48247359
DS
6494 if (need_fileattr) {
6495 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6496 left_fileattr);
6497 if (ret < 0)
6498 goto out;
6499 }
c86eab81
DS
6500
6501 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6502 && sctx->cur_inode_needs_verity) {
38622010
BB
6503 ret = process_verity(sctx);
6504 if (ret < 0)
6505 goto out;
6506 }
31db9f7c 6507
89efda52
MPS
6508 ret = send_capabilities(sctx);
6509 if (ret < 0)
6510 goto out;
6511
31db9f7c 6512 /*
9f03740a
FDBM
6513 * If other directory inodes depended on our current directory
6514 * inode's move/rename, now do their move/rename operations.
31db9f7c 6515 */
9f03740a
FDBM
6516 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6517 ret = apply_children_dir_moves(sctx);
6518 if (ret)
6519 goto out;
fcbd2154
FM
6520 /*
6521 * Need to send that every time, no matter if it actually
6522 * changed between the two trees as we have done changes to
6523 * the inode before. If our inode is a directory and it's
6524 * waiting to be moved/renamed, we will send its utimes when
6525 * it's moved/renamed, therefore we don't need to do it here.
6526 */
6527 sctx->send_progress = sctx->cur_ino + 1;
6528 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6529 if (ret < 0)
6530 goto out;
9f03740a
FDBM
6531 }
6532
31db9f7c
AB
6533out:
6534 return ret;
6535}
6536
152555b3
FM
6537static void close_current_inode(struct send_ctx *sctx)
6538{
6539 u64 i_size;
6540
6541 if (sctx->cur_inode == NULL)
6542 return;
6543
6544 i_size = i_size_read(sctx->cur_inode);
6545
6546 /*
6547 * If we are doing an incremental send, we may have extents between the
6548 * last processed extent and the i_size that have not been processed
6549 * because they haven't changed but we may have read some of their pages
6550 * through readahead, see the comments at send_extent_data().
6551 */
6552 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6553 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6554 sctx->page_cache_clear_start,
6555 round_up(i_size, PAGE_SIZE) - 1);
6556
6557 iput(sctx->cur_inode);
6558 sctx->cur_inode = NULL;
6559}
6560
31db9f7c
AB
6561static int changed_inode(struct send_ctx *sctx,
6562 enum btrfs_compare_tree_result result)
6563{
6564 int ret = 0;
6565 struct btrfs_key *key = sctx->cmp_key;
6566 struct btrfs_inode_item *left_ii = NULL;
6567 struct btrfs_inode_item *right_ii = NULL;
6568 u64 left_gen = 0;
6569 u64 right_gen = 0;
6570
152555b3 6571 close_current_inode(sctx);
521b6803 6572
31db9f7c 6573 sctx->cur_ino = key->objectid;
9555e1f1 6574 sctx->cur_inode_new_gen = false;
16e7549f 6575 sctx->cur_inode_last_extent = (u64)-1;
ffa7c429 6576 sctx->cur_inode_next_write_offset = 0;
46b2f459 6577 sctx->ignore_cur_inode = false;
e479d9bb
AB
6578
6579 /*
6580 * Set send_progress to current inode. This will tell all get_cur_xxx
6581 * functions that the current inode's refs are not updated yet. Later,
6582 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6583 */
31db9f7c
AB
6584 sctx->send_progress = sctx->cur_ino;
6585
6586 if (result == BTRFS_COMPARE_TREE_NEW ||
6587 result == BTRFS_COMPARE_TREE_CHANGED) {
6588 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6589 sctx->left_path->slots[0],
6590 struct btrfs_inode_item);
6591 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6592 left_ii);
6593 } else {
6594 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6595 sctx->right_path->slots[0],
6596 struct btrfs_inode_item);
6597 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6598 right_ii);
6599 }
6600 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6601 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6602 sctx->right_path->slots[0],
6603 struct btrfs_inode_item);
6604
6605 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6606 right_ii);
6d85ed05
AB
6607
6608 /*
6609 * The cur_ino = root dir case is special here. We can't treat
6610 * the inode as deleted+reused because it would generate a
6611 * stream that tries to delete/mkdir the root dir.
6612 */
6613 if (left_gen != right_gen &&
6614 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
9555e1f1 6615 sctx->cur_inode_new_gen = true;
31db9f7c
AB
6616 }
6617
46b2f459
FM
6618 /*
6619 * Normally we do not find inodes with a link count of zero (orphans)
6620 * because the most common case is to create a snapshot and use it
6621 * for a send operation. However other less common use cases involve
6622 * using a subvolume and send it after turning it to RO mode just
6623 * after deleting all hard links of a file while holding an open
6624 * file descriptor against it or turning a RO snapshot into RW mode,
6625 * keep an open file descriptor against a file, delete it and then
6626 * turn the snapshot back to RO mode before using it for a send
9ed0a72e
BC
6627 * operation. The former is what the receiver operation does.
6628 * Therefore, if we want to send these snapshots soon after they're
6629 * received, we need to handle orphan inodes as well. Moreover, orphans
6630 * can appear not only in the send snapshot but also in the parent
6631 * snapshot. Here are several cases:
6632 *
6633 * Case 1: BTRFS_COMPARE_TREE_NEW
6634 * | send snapshot | action
6635 * --------------------------------
6636 * nlink | 0 | ignore
6637 *
6638 * Case 2: BTRFS_COMPARE_TREE_DELETED
6639 * | parent snapshot | action
6640 * ----------------------------------
6641 * nlink | 0 | as usual
6642 * Note: No unlinks will be sent because there're no paths for it.
6643 *
6644 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6645 * | | parent snapshot | send snapshot | action
6646 * -----------------------------------------------------------------------
6647 * subcase 1 | nlink | 0 | 0 | ignore
6648 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6649 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6650 *
46b2f459 6651 */
9ed0a72e
BC
6652 if (result == BTRFS_COMPARE_TREE_NEW) {
6653 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
46b2f459 6654 sctx->ignore_cur_inode = true;
46b2f459
FM
6655 goto out;
6656 }
31db9f7c 6657 sctx->cur_inode_gen = left_gen;
9555e1f1
DS
6658 sctx->cur_inode_new = true;
6659 sctx->cur_inode_deleted = false;
31db9f7c
AB
6660 sctx->cur_inode_size = btrfs_inode_size(
6661 sctx->left_path->nodes[0], left_ii);
6662 sctx->cur_inode_mode = btrfs_inode_mode(
6663 sctx->left_path->nodes[0], left_ii);
644d1940
LB
6664 sctx->cur_inode_rdev = btrfs_inode_rdev(
6665 sctx->left_path->nodes[0], left_ii);
31db9f7c 6666 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
1f4692da 6667 ret = send_create_inode_if_needed(sctx);
31db9f7c
AB
6668 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6669 sctx->cur_inode_gen = right_gen;
9555e1f1
DS
6670 sctx->cur_inode_new = false;
6671 sctx->cur_inode_deleted = true;
31db9f7c
AB
6672 sctx->cur_inode_size = btrfs_inode_size(
6673 sctx->right_path->nodes[0], right_ii);
6674 sctx->cur_inode_mode = btrfs_inode_mode(
6675 sctx->right_path->nodes[0], right_ii);
6676 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
9ed0a72e
BC
6677 u32 new_nlinks, old_nlinks;
6678
6679 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6680 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6681 if (new_nlinks == 0 && old_nlinks == 0) {
6682 sctx->ignore_cur_inode = true;
6683 goto out;
6684 } else if (new_nlinks == 0 || old_nlinks == 0) {
6685 sctx->cur_inode_new_gen = 1;
6686 }
766702ef
AB
6687 /*
6688 * We need to do some special handling in case the inode was
6689 * reported as changed with a changed generation number. This
6690 * means that the original inode was deleted and new inode
6691 * reused the same inum. So we have to treat the old inode as
6692 * deleted and the new one as new.
6693 */
31db9f7c 6694 if (sctx->cur_inode_new_gen) {
766702ef
AB
6695 /*
6696 * First, process the inode as if it was deleted.
6697 */
9b8be45f
BC
6698 if (old_nlinks > 0) {
6699 sctx->cur_inode_gen = right_gen;
6700 sctx->cur_inode_new = false;
6701 sctx->cur_inode_deleted = true;
6702 sctx->cur_inode_size = btrfs_inode_size(
6703 sctx->right_path->nodes[0], right_ii);
6704 sctx->cur_inode_mode = btrfs_inode_mode(
6705 sctx->right_path->nodes[0], right_ii);
6706 ret = process_all_refs(sctx,
6707 BTRFS_COMPARE_TREE_DELETED);
6708 if (ret < 0)
6709 goto out;
6710 }
31db9f7c 6711
766702ef
AB
6712 /*
6713 * Now process the inode as if it was new.
6714 */
9ed0a72e
BC
6715 if (new_nlinks > 0) {
6716 sctx->cur_inode_gen = left_gen;
6717 sctx->cur_inode_new = true;
6718 sctx->cur_inode_deleted = false;
6719 sctx->cur_inode_size = btrfs_inode_size(
6720 sctx->left_path->nodes[0],
6721 left_ii);
6722 sctx->cur_inode_mode = btrfs_inode_mode(
6723 sctx->left_path->nodes[0],
6724 left_ii);
6725 sctx->cur_inode_rdev = btrfs_inode_rdev(
6726 sctx->left_path->nodes[0],
6727 left_ii);
6728 ret = send_create_inode_if_needed(sctx);
6729 if (ret < 0)
6730 goto out;
31db9f7c 6731
9ed0a72e
BC
6732 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6733 if (ret < 0)
6734 goto out;
6735 /*
6736 * Advance send_progress now as we did not get
6737 * into process_recorded_refs_if_needed in the
6738 * new_gen case.
6739 */
6740 sctx->send_progress = sctx->cur_ino + 1;
766702ef 6741
9ed0a72e
BC
6742 /*
6743 * Now process all extents and xattrs of the
6744 * inode as if they were all new.
6745 */
6746 ret = process_all_extents(sctx);
6747 if (ret < 0)
6748 goto out;
6749 ret = process_all_new_xattrs(sctx);
6750 if (ret < 0)
6751 goto out;
6752 }
31db9f7c
AB
6753 } else {
6754 sctx->cur_inode_gen = left_gen;
9555e1f1
DS
6755 sctx->cur_inode_new = false;
6756 sctx->cur_inode_new_gen = false;
6757 sctx->cur_inode_deleted = false;
31db9f7c
AB
6758 sctx->cur_inode_size = btrfs_inode_size(
6759 sctx->left_path->nodes[0], left_ii);
6760 sctx->cur_inode_mode = btrfs_inode_mode(
6761 sctx->left_path->nodes[0], left_ii);
6762 }
6763 }
6764
6765out:
6766 return ret;
6767}
6768
766702ef
AB
6769/*
6770 * We have to process new refs before deleted refs, but compare_trees gives us
6771 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6772 * first and later process them in process_recorded_refs.
6773 * For the cur_inode_new_gen case, we skip recording completely because
6774 * changed_inode did already initiate processing of refs. The reason for this is
6775 * that in this case, compare_tree actually compares the refs of 2 different
6776 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6777 * refs of the right tree as deleted and all refs of the left tree as new.
6778 */
31db9f7c
AB
6779static int changed_ref(struct send_ctx *sctx,
6780 enum btrfs_compare_tree_result result)
6781{
6782 int ret = 0;
6783
95155585
FM
6784 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6785 inconsistent_snapshot_error(sctx, result, "reference");
6786 return -EIO;
6787 }
31db9f7c
AB
6788
6789 if (!sctx->cur_inode_new_gen &&
6790 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6791 if (result == BTRFS_COMPARE_TREE_NEW)
6792 ret = record_new_ref(sctx);
6793 else if (result == BTRFS_COMPARE_TREE_DELETED)
6794 ret = record_deleted_ref(sctx);
6795 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6796 ret = record_changed_ref(sctx);
6797 }
6798
6799 return ret;
6800}
6801
766702ef
AB
6802/*
6803 * Process new/deleted/changed xattrs. We skip processing in the
6804 * cur_inode_new_gen case because changed_inode did already initiate processing
6805 * of xattrs. The reason is the same as in changed_ref
6806 */
31db9f7c
AB
6807static int changed_xattr(struct send_ctx *sctx,
6808 enum btrfs_compare_tree_result result)
6809{
6810 int ret = 0;
6811
95155585
FM
6812 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6813 inconsistent_snapshot_error(sctx, result, "xattr");
6814 return -EIO;
6815 }
31db9f7c
AB
6816
6817 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6818 if (result == BTRFS_COMPARE_TREE_NEW)
6819 ret = process_new_xattr(sctx);
6820 else if (result == BTRFS_COMPARE_TREE_DELETED)
6821 ret = process_deleted_xattr(sctx);
6822 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6823 ret = process_changed_xattr(sctx);
6824 }
6825
6826 return ret;
6827}
6828
766702ef
AB
6829/*
6830 * Process new/deleted/changed extents. We skip processing in the
6831 * cur_inode_new_gen case because changed_inode did already initiate processing
6832 * of extents. The reason is the same as in changed_ref
6833 */
31db9f7c
AB
6834static int changed_extent(struct send_ctx *sctx,
6835 enum btrfs_compare_tree_result result)
6836{
6837 int ret = 0;
6838
b4f9a1a8
FM
6839 /*
6840 * We have found an extent item that changed without the inode item
6841 * having changed. This can happen either after relocation (where the
6842 * disk_bytenr of an extent item is replaced at
6843 * relocation.c:replace_file_extents()) or after deduplication into a
6844 * file in both the parent and send snapshots (where an extent item can
6845 * get modified or replaced with a new one). Note that deduplication
6846 * updates the inode item, but it only changes the iversion (sequence
6847 * field in the inode item) of the inode, so if a file is deduplicated
6848 * the same amount of times in both the parent and send snapshots, its
1a9fd417 6849 * iversion becomes the same in both snapshots, whence the inode item is
b4f9a1a8
FM
6850 * the same on both snapshots.
6851 */
6852 if (sctx->cur_ino != sctx->cmp_key->objectid)
6853 return 0;
31db9f7c
AB
6854
6855 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6856 if (result != BTRFS_COMPARE_TREE_DELETED)
6857 ret = process_extent(sctx, sctx->left_path,
6858 sctx->cmp_key);
6859 }
6860
6861 return ret;
6862}
6863
38622010
BB
6864static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
6865{
6866 int ret = 0;
6867
6868 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6869 if (result == BTRFS_COMPARE_TREE_NEW)
6870 sctx->cur_inode_needs_verity = true;
6871 }
6872 return ret;
6873}
6874
ba5e8f2e
JB
6875static int dir_changed(struct send_ctx *sctx, u64 dir)
6876{
6877 u64 orig_gen, new_gen;
6878 int ret;
6879
7e93f6dc 6880 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
ba5e8f2e
JB
6881 if (ret)
6882 return ret;
6883
7e93f6dc 6884 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
ba5e8f2e
JB
6885 if (ret)
6886 return ret;
6887
6888 return (orig_gen != new_gen) ? 1 : 0;
6889}
6890
6891static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6892 struct btrfs_key *key)
6893{
6894 struct btrfs_inode_extref *extref;
6895 struct extent_buffer *leaf;
6896 u64 dirid = 0, last_dirid = 0;
6897 unsigned long ptr;
6898 u32 item_size;
6899 u32 cur_offset = 0;
6900 int ref_name_len;
6901 int ret = 0;
6902
6903 /* Easy case, just check this one dirid */
6904 if (key->type == BTRFS_INODE_REF_KEY) {
6905 dirid = key->offset;
6906
6907 ret = dir_changed(sctx, dirid);
6908 goto out;
6909 }
6910
6911 leaf = path->nodes[0];
3212fa14 6912 item_size = btrfs_item_size(leaf, path->slots[0]);
ba5e8f2e
JB
6913 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6914 while (cur_offset < item_size) {
6915 extref = (struct btrfs_inode_extref *)(ptr +
6916 cur_offset);
6917 dirid = btrfs_inode_extref_parent(leaf, extref);
6918 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6919 cur_offset += ref_name_len + sizeof(*extref);
6920 if (dirid == last_dirid)
6921 continue;
6922 ret = dir_changed(sctx, dirid);
6923 if (ret)
6924 break;
6925 last_dirid = dirid;
6926 }
6927out:
6928 return ret;
6929}
6930
766702ef
AB
6931/*
6932 * Updates compare related fields in sctx and simply forwards to the actual
6933 * changed_xxx functions.
6934 */
ee8c494f 6935static int changed_cb(struct btrfs_path *left_path,
31db9f7c
AB
6936 struct btrfs_path *right_path,
6937 struct btrfs_key *key,
6938 enum btrfs_compare_tree_result result,
88980383 6939 struct send_ctx *sctx)
31db9f7c
AB
6940{
6941 int ret = 0;
31db9f7c 6942
d96b3424
FM
6943 /*
6944 * We can not hold the commit root semaphore here. This is because in
6945 * the case of sending and receiving to the same filesystem, using a
6946 * pipe, could result in a deadlock:
6947 *
6948 * 1) The task running send blocks on the pipe because it's full;
6949 *
6950 * 2) The task running receive, which is the only consumer of the pipe,
6951 * is waiting for a transaction commit (for example due to a space
6952 * reservation when doing a write or triggering a transaction commit
6953 * when creating a subvolume);
6954 *
6955 * 3) The transaction is waiting to write lock the commit root semaphore,
6956 * but can not acquire it since it's being held at 1).
6957 *
6958 * Down this call chain we write to the pipe through kernel_write().
6959 * The same type of problem can also happen when sending to a file that
6960 * is stored in the same filesystem - when reserving space for a write
6961 * into the file, we can trigger a transaction commit.
6962 *
6963 * Our caller has supplied us with clones of leaves from the send and
6964 * parent roots, so we're safe here from a concurrent relocation and
6965 * further reallocation of metadata extents while we are here. Below we
6966 * also assert that the leaves are clones.
6967 */
6968 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
6969
6970 /*
6971 * We always have a send root, so left_path is never NULL. We will not
6972 * have a leaf when we have reached the end of the send root but have
6973 * not yet reached the end of the parent root.
6974 */
6975 if (left_path->nodes[0])
6976 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
6977 &left_path->nodes[0]->bflags));
6978 /*
6979 * When doing a full send we don't have a parent root, so right_path is
6980 * NULL. When doing an incremental send, we may have reached the end of
6981 * the parent root already, so we don't have a leaf at right_path.
6982 */
6983 if (right_path && right_path->nodes[0])
6984 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
6985 &right_path->nodes[0]->bflags));
6986
ba5e8f2e 6987 if (result == BTRFS_COMPARE_TREE_SAME) {
16e7549f
JB
6988 if (key->type == BTRFS_INODE_REF_KEY ||
6989 key->type == BTRFS_INODE_EXTREF_KEY) {
6990 ret = compare_refs(sctx, left_path, key);
6991 if (!ret)
6992 return 0;
6993 if (ret < 0)
6994 return ret;
6995 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6996 return maybe_send_hole(sctx, left_path, key);
6997 } else {
ba5e8f2e 6998 return 0;
16e7549f 6999 }
ba5e8f2e
JB
7000 result = BTRFS_COMPARE_TREE_CHANGED;
7001 ret = 0;
7002 }
7003
31db9f7c
AB
7004 sctx->left_path = left_path;
7005 sctx->right_path = right_path;
7006 sctx->cmp_key = key;
7007
7008 ret = finish_inode_if_needed(sctx, 0);
7009 if (ret < 0)
7010 goto out;
7011
2981e225
AB
7012 /* Ignore non-FS objects */
7013 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7014 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7015 goto out;
7016
46b2f459 7017 if (key->type == BTRFS_INODE_ITEM_KEY) {
31db9f7c 7018 ret = changed_inode(sctx, result);
46b2f459
FM
7019 } else if (!sctx->ignore_cur_inode) {
7020 if (key->type == BTRFS_INODE_REF_KEY ||
7021 key->type == BTRFS_INODE_EXTREF_KEY)
7022 ret = changed_ref(sctx, result);
7023 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7024 ret = changed_xattr(sctx, result);
7025 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7026 ret = changed_extent(sctx, result);
38622010
BB
7027 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7028 key->offset == 0)
7029 ret = changed_verity(sctx, result);
46b2f459 7030 }
31db9f7c
AB
7031
7032out:
7033 return ret;
7034}
7035
d96b3424
FM
7036static int search_key_again(const struct send_ctx *sctx,
7037 struct btrfs_root *root,
7038 struct btrfs_path *path,
7039 const struct btrfs_key *key)
7040{
7041 int ret;
7042
7043 if (!path->need_commit_sem)
7044 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7045
7046 /*
7047 * Roots used for send operations are readonly and no one can add,
7048 * update or remove keys from them, so we should be able to find our
7049 * key again. The only exception is deduplication, which can operate on
7050 * readonly roots and add, update or remove keys to/from them - but at
7051 * the moment we don't allow it to run in parallel with send.
7052 */
7053 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7054 ASSERT(ret <= 0);
7055 if (ret > 0) {
7056 btrfs_print_tree(path->nodes[path->lowest_level], false);
7057 btrfs_err(root->fs_info,
7058"send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7059 key->objectid, key->type, key->offset,
7060 (root == sctx->parent_root ? "parent" : "send"),
7061 root->root_key.objectid, path->lowest_level,
7062 path->slots[path->lowest_level]);
7063 return -EUCLEAN;
7064 }
7065
7066 return ret;
7067}
7068
31db9f7c
AB
7069static int full_send_tree(struct send_ctx *sctx)
7070{
7071 int ret;
31db9f7c
AB
7072 struct btrfs_root *send_root = sctx->send_root;
7073 struct btrfs_key key;
d96b3424 7074 struct btrfs_fs_info *fs_info = send_root->fs_info;
31db9f7c 7075 struct btrfs_path *path;
31db9f7c
AB
7076
7077 path = alloc_path_for_send();
7078 if (!path)
7079 return -ENOMEM;
ace75066 7080 path->reada = READA_FORWARD_ALWAYS;
31db9f7c 7081
31db9f7c
AB
7082 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7083 key.type = BTRFS_INODE_ITEM_KEY;
7084 key.offset = 0;
7085
d96b3424
FM
7086 down_read(&fs_info->commit_root_sem);
7087 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7088 up_read(&fs_info->commit_root_sem);
7089
31db9f7c
AB
7090 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7091 if (ret < 0)
7092 goto out;
7093 if (ret)
7094 goto out_finish;
7095
7096 while (1) {
d96b3424 7097 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
31db9f7c 7098
ca5d2ba1 7099 ret = changed_cb(path, NULL, &key,
ee8c494f 7100 BTRFS_COMPARE_TREE_NEW, sctx);
31db9f7c
AB
7101 if (ret < 0)
7102 goto out;
7103
d96b3424
FM
7104 down_read(&fs_info->commit_root_sem);
7105 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7106 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7107 up_read(&fs_info->commit_root_sem);
7108 /*
7109 * A transaction used for relocating a block group was
7110 * committed or is about to finish its commit. Release
7111 * our path (leaf) and restart the search, so that we
7112 * avoid operating on any file extent items that are
7113 * stale, with a disk_bytenr that reflects a pre
7114 * relocation value. This way we avoid as much as
7115 * possible to fallback to regular writes when checking
7116 * if we can clone file ranges.
7117 */
7118 btrfs_release_path(path);
7119 ret = search_key_again(sctx, send_root, path, &key);
7120 if (ret < 0)
7121 goto out;
7122 } else {
7123 up_read(&fs_info->commit_root_sem);
7124 }
7125
31db9f7c
AB
7126 ret = btrfs_next_item(send_root, path);
7127 if (ret < 0)
7128 goto out;
7129 if (ret) {
7130 ret = 0;
7131 break;
7132 }
7133 }
7134
7135out_finish:
7136 ret = finish_inode_if_needed(sctx, 1);
7137
7138out:
7139 btrfs_free_path(path);
31db9f7c
AB
7140 return ret;
7141}
7142
d96b3424
FM
7143static int replace_node_with_clone(struct btrfs_path *path, int level)
7144{
7145 struct extent_buffer *clone;
7146
7147 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7148 if (!clone)
7149 return -ENOMEM;
7150
7151 free_extent_buffer(path->nodes[level]);
7152 path->nodes[level] = clone;
7153
7154 return 0;
7155}
7156
2ce73c63 7157static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
18d0f5c6
DS
7158{
7159 struct extent_buffer *eb;
2ce73c63
FM
7160 struct extent_buffer *parent = path->nodes[*level];
7161 int slot = path->slots[*level];
7162 const int nritems = btrfs_header_nritems(parent);
7163 u64 reada_max;
7164 u64 reada_done = 0;
18d0f5c6 7165
d96b3424
FM
7166 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7167
18d0f5c6 7168 BUG_ON(*level == 0);
2ce73c63 7169 eb = btrfs_read_node_slot(parent, slot);
18d0f5c6
DS
7170 if (IS_ERR(eb))
7171 return PTR_ERR(eb);
7172
2ce73c63
FM
7173 /*
7174 * Trigger readahead for the next leaves we will process, so that it is
7175 * very likely that when we need them they are already in memory and we
7176 * will not block on disk IO. For nodes we only do readahead for one,
7177 * since the time window between processing nodes is typically larger.
7178 */
7179 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7180
7181 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7182 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7183 btrfs_readahead_node_child(parent, slot);
7184 reada_done += eb->fs_info->nodesize;
7185 }
7186 }
7187
18d0f5c6
DS
7188 path->nodes[*level - 1] = eb;
7189 path->slots[*level - 1] = 0;
7190 (*level)--;
d96b3424
FM
7191
7192 if (*level == 0)
7193 return replace_node_with_clone(path, 0);
7194
18d0f5c6
DS
7195 return 0;
7196}
7197
7198static int tree_move_next_or_upnext(struct btrfs_path *path,
7199 int *level, int root_level)
7200{
7201 int ret = 0;
7202 int nritems;
7203 nritems = btrfs_header_nritems(path->nodes[*level]);
7204
7205 path->slots[*level]++;
7206
7207 while (path->slots[*level] >= nritems) {
d96b3424
FM
7208 if (*level == root_level) {
7209 path->slots[*level] = nritems - 1;
18d0f5c6 7210 return -1;
d96b3424 7211 }
18d0f5c6
DS
7212
7213 /* move upnext */
7214 path->slots[*level] = 0;
7215 free_extent_buffer(path->nodes[*level]);
7216 path->nodes[*level] = NULL;
7217 (*level)++;
7218 path->slots[*level]++;
7219
7220 nritems = btrfs_header_nritems(path->nodes[*level]);
7221 ret = 1;
7222 }
7223 return ret;
7224}
7225
7226/*
7227 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7228 * or down.
7229 */
7230static int tree_advance(struct btrfs_path *path,
7231 int *level, int root_level,
7232 int allow_down,
2ce73c63
FM
7233 struct btrfs_key *key,
7234 u64 reada_min_gen)
18d0f5c6
DS
7235{
7236 int ret;
7237
7238 if (*level == 0 || !allow_down) {
7239 ret = tree_move_next_or_upnext(path, level, root_level);
7240 } else {
2ce73c63 7241 ret = tree_move_down(path, level, reada_min_gen);
18d0f5c6 7242 }
d96b3424
FM
7243
7244 /*
7245 * Even if we have reached the end of a tree, ret is -1, update the key
7246 * anyway, so that in case we need to restart due to a block group
7247 * relocation, we can assert that the last key of the root node still
7248 * exists in the tree.
7249 */
7250 if (*level == 0)
7251 btrfs_item_key_to_cpu(path->nodes[*level], key,
7252 path->slots[*level]);
7253 else
7254 btrfs_node_key_to_cpu(path->nodes[*level], key,
7255 path->slots[*level]);
7256
18d0f5c6
DS
7257 return ret;
7258}
7259
7260static int tree_compare_item(struct btrfs_path *left_path,
7261 struct btrfs_path *right_path,
7262 char *tmp_buf)
7263{
7264 int cmp;
7265 int len1, len2;
7266 unsigned long off1, off2;
7267
3212fa14
JB
7268 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7269 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
18d0f5c6
DS
7270 if (len1 != len2)
7271 return 1;
7272
7273 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7274 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7275 right_path->slots[0]);
7276
7277 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7278
7279 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7280 if (cmp)
7281 return 1;
7282 return 0;
7283}
7284
d96b3424
FM
7285/*
7286 * A transaction used for relocating a block group was committed or is about to
7287 * finish its commit. Release our paths and restart the search, so that we are
7288 * not using stale extent buffers:
7289 *
7290 * 1) For levels > 0, we are only holding references of extent buffers, without
7291 * any locks on them, which does not prevent them from having been relocated
7292 * and reallocated after the last time we released the commit root semaphore.
7293 * The exception are the root nodes, for which we always have a clone, see
7294 * the comment at btrfs_compare_trees();
7295 *
7296 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7297 * we are safe from the concurrent relocation and reallocation. However they
7298 * can have file extent items with a pre relocation disk_bytenr value, so we
7299 * restart the start from the current commit roots and clone the new leaves so
7300 * that we get the post relocation disk_bytenr values. Not doing so, could
7301 * make us clone the wrong data in case there are new extents using the old
7302 * disk_bytenr that happen to be shared.
7303 */
7304static int restart_after_relocation(struct btrfs_path *left_path,
7305 struct btrfs_path *right_path,
7306 const struct btrfs_key *left_key,
7307 const struct btrfs_key *right_key,
7308 int left_level,
7309 int right_level,
7310 const struct send_ctx *sctx)
7311{
7312 int root_level;
7313 int ret;
7314
7315 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7316
7317 btrfs_release_path(left_path);
7318 btrfs_release_path(right_path);
7319
7320 /*
7321 * Since keys can not be added or removed to/from our roots because they
7322 * are readonly and we do not allow deduplication to run in parallel
7323 * (which can add, remove or change keys), the layout of the trees should
7324 * not change.
7325 */
7326 left_path->lowest_level = left_level;
7327 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7328 if (ret < 0)
7329 return ret;
7330
7331 right_path->lowest_level = right_level;
7332 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7333 if (ret < 0)
7334 return ret;
7335
7336 /*
7337 * If the lowest level nodes are leaves, clone them so that they can be
7338 * safely used by changed_cb() while not under the protection of the
7339 * commit root semaphore, even if relocation and reallocation happens in
7340 * parallel.
7341 */
7342 if (left_level == 0) {
7343 ret = replace_node_with_clone(left_path, 0);
7344 if (ret < 0)
7345 return ret;
7346 }
7347
7348 if (right_level == 0) {
7349 ret = replace_node_with_clone(right_path, 0);
7350 if (ret < 0)
7351 return ret;
7352 }
7353
7354 /*
7355 * Now clone the root nodes (unless they happen to be the leaves we have
7356 * already cloned). This is to protect against concurrent snapshotting of
7357 * the send and parent roots (see the comment at btrfs_compare_trees()).
7358 */
7359 root_level = btrfs_header_level(sctx->send_root->commit_root);
7360 if (root_level > 0) {
7361 ret = replace_node_with_clone(left_path, root_level);
7362 if (ret < 0)
7363 return ret;
7364 }
7365
7366 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7367 if (root_level > 0) {
7368 ret = replace_node_with_clone(right_path, root_level);
7369 if (ret < 0)
7370 return ret;
7371 }
7372
7373 return 0;
7374}
7375
18d0f5c6
DS
7376/*
7377 * This function compares two trees and calls the provided callback for
7378 * every changed/new/deleted item it finds.
7379 * If shared tree blocks are encountered, whole subtrees are skipped, making
7380 * the compare pretty fast on snapshotted subvolumes.
7381 *
7382 * This currently works on commit roots only. As commit roots are read only,
7383 * we don't do any locking. The commit roots are protected with transactions.
7384 * Transactions are ended and rejoined when a commit is tried in between.
7385 *
7386 * This function checks for modifications done to the trees while comparing.
7387 * If it detects a change, it aborts immediately.
7388 */
7389static int btrfs_compare_trees(struct btrfs_root *left_root,
88980383 7390 struct btrfs_root *right_root, struct send_ctx *sctx)
18d0f5c6
DS
7391{
7392 struct btrfs_fs_info *fs_info = left_root->fs_info;
7393 int ret;
7394 int cmp;
7395 struct btrfs_path *left_path = NULL;
7396 struct btrfs_path *right_path = NULL;
7397 struct btrfs_key left_key;
7398 struct btrfs_key right_key;
7399 char *tmp_buf = NULL;
7400 int left_root_level;
7401 int right_root_level;
7402 int left_level;
7403 int right_level;
d96b3424
FM
7404 int left_end_reached = 0;
7405 int right_end_reached = 0;
7406 int advance_left = 0;
7407 int advance_right = 0;
18d0f5c6
DS
7408 u64 left_blockptr;
7409 u64 right_blockptr;
7410 u64 left_gen;
7411 u64 right_gen;
2ce73c63 7412 u64 reada_min_gen;
18d0f5c6
DS
7413
7414 left_path = btrfs_alloc_path();
7415 if (!left_path) {
7416 ret = -ENOMEM;
7417 goto out;
7418 }
7419 right_path = btrfs_alloc_path();
7420 if (!right_path) {
7421 ret = -ENOMEM;
7422 goto out;
7423 }
7424
7425 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7426 if (!tmp_buf) {
7427 ret = -ENOMEM;
7428 goto out;
7429 }
7430
7431 left_path->search_commit_root = 1;
7432 left_path->skip_locking = 1;
7433 right_path->search_commit_root = 1;
7434 right_path->skip_locking = 1;
7435
7436 /*
7437 * Strategy: Go to the first items of both trees. Then do
7438 *
7439 * If both trees are at level 0
7440 * Compare keys of current items
7441 * If left < right treat left item as new, advance left tree
7442 * and repeat
7443 * If left > right treat right item as deleted, advance right tree
7444 * and repeat
7445 * If left == right do deep compare of items, treat as changed if
7446 * needed, advance both trees and repeat
7447 * If both trees are at the same level but not at level 0
7448 * Compare keys of current nodes/leafs
7449 * If left < right advance left tree and repeat
7450 * If left > right advance right tree and repeat
7451 * If left == right compare blockptrs of the next nodes/leafs
7452 * If they match advance both trees but stay at the same level
7453 * and repeat
7454 * If they don't match advance both trees while allowing to go
7455 * deeper and repeat
7456 * If tree levels are different
7457 * Advance the tree that needs it and repeat
7458 *
7459 * Advancing a tree means:
7460 * If we are at level 0, try to go to the next slot. If that's not
7461 * possible, go one level up and repeat. Stop when we found a level
7462 * where we could go to the next slot. We may at this point be on a
7463 * node or a leaf.
7464 *
7465 * If we are not at level 0 and not on shared tree blocks, go one
7466 * level deeper.
7467 *
7468 * If we are not at level 0 and on shared tree blocks, go one slot to
7469 * the right if possible or go up and right.
7470 */
7471
7472 down_read(&fs_info->commit_root_sem);
7473 left_level = btrfs_header_level(left_root->commit_root);
7474 left_root_level = left_level;
d96b3424
FM
7475 /*
7476 * We clone the root node of the send and parent roots to prevent races
7477 * with snapshot creation of these roots. Snapshot creation COWs the
7478 * root node of a tree, so after the transaction is committed the old
7479 * extent can be reallocated while this send operation is still ongoing.
7480 * So we clone them, under the commit root semaphore, to be race free.
7481 */
18d0f5c6
DS
7482 left_path->nodes[left_level] =
7483 btrfs_clone_extent_buffer(left_root->commit_root);
7484 if (!left_path->nodes[left_level]) {
18d0f5c6 7485 ret = -ENOMEM;
d96b3424 7486 goto out_unlock;
18d0f5c6
DS
7487 }
7488
7489 right_level = btrfs_header_level(right_root->commit_root);
7490 right_root_level = right_level;
7491 right_path->nodes[right_level] =
7492 btrfs_clone_extent_buffer(right_root->commit_root);
7493 if (!right_path->nodes[right_level]) {
18d0f5c6 7494 ret = -ENOMEM;
d96b3424 7495 goto out_unlock;
18d0f5c6 7496 }
2ce73c63
FM
7497 /*
7498 * Our right root is the parent root, while the left root is the "send"
7499 * root. We know that all new nodes/leaves in the left root must have
7500 * a generation greater than the right root's generation, so we trigger
7501 * readahead for those nodes and leaves of the left root, as we know we
7502 * will need to read them at some point.
7503 */
7504 reada_min_gen = btrfs_header_generation(right_root->commit_root);
18d0f5c6
DS
7505
7506 if (left_level == 0)
7507 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7508 &left_key, left_path->slots[left_level]);
7509 else
7510 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7511 &left_key, left_path->slots[left_level]);
7512 if (right_level == 0)
7513 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7514 &right_key, right_path->slots[right_level]);
7515 else
7516 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7517 &right_key, right_path->slots[right_level]);
7518
d96b3424 7519 sctx->last_reloc_trans = fs_info->last_reloc_trans;
18d0f5c6
DS
7520
7521 while (1) {
d96b3424
FM
7522 if (need_resched() ||
7523 rwsem_is_contended(&fs_info->commit_root_sem)) {
7524 up_read(&fs_info->commit_root_sem);
7525 cond_resched();
7526 down_read(&fs_info->commit_root_sem);
7527 }
7528
7529 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7530 ret = restart_after_relocation(left_path, right_path,
7531 &left_key, &right_key,
7532 left_level, right_level,
7533 sctx);
7534 if (ret < 0)
7535 goto out_unlock;
7536 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7537 }
7538
18d0f5c6
DS
7539 if (advance_left && !left_end_reached) {
7540 ret = tree_advance(left_path, &left_level,
7541 left_root_level,
7542 advance_left != ADVANCE_ONLY_NEXT,
2ce73c63 7543 &left_key, reada_min_gen);
18d0f5c6
DS
7544 if (ret == -1)
7545 left_end_reached = ADVANCE;
7546 else if (ret < 0)
d96b3424 7547 goto out_unlock;
18d0f5c6
DS
7548 advance_left = 0;
7549 }
7550 if (advance_right && !right_end_reached) {
7551 ret = tree_advance(right_path, &right_level,
7552 right_root_level,
7553 advance_right != ADVANCE_ONLY_NEXT,
2ce73c63 7554 &right_key, reada_min_gen);
18d0f5c6
DS
7555 if (ret == -1)
7556 right_end_reached = ADVANCE;
7557 else if (ret < 0)
d96b3424 7558 goto out_unlock;
18d0f5c6
DS
7559 advance_right = 0;
7560 }
7561
7562 if (left_end_reached && right_end_reached) {
7563 ret = 0;
d96b3424 7564 goto out_unlock;
18d0f5c6
DS
7565 } else if (left_end_reached) {
7566 if (right_level == 0) {
d96b3424 7567 up_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7568 ret = changed_cb(left_path, right_path,
7569 &right_key,
7570 BTRFS_COMPARE_TREE_DELETED,
88980383 7571 sctx);
18d0f5c6
DS
7572 if (ret < 0)
7573 goto out;
d96b3424 7574 down_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7575 }
7576 advance_right = ADVANCE;
7577 continue;
7578 } else if (right_end_reached) {
7579 if (left_level == 0) {
d96b3424 7580 up_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7581 ret = changed_cb(left_path, right_path,
7582 &left_key,
7583 BTRFS_COMPARE_TREE_NEW,
88980383 7584 sctx);
18d0f5c6
DS
7585 if (ret < 0)
7586 goto out;
d96b3424 7587 down_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7588 }
7589 advance_left = ADVANCE;
7590 continue;
7591 }
7592
7593 if (left_level == 0 && right_level == 0) {
d96b3424 7594 up_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7595 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7596 if (cmp < 0) {
7597 ret = changed_cb(left_path, right_path,
7598 &left_key,
7599 BTRFS_COMPARE_TREE_NEW,
88980383 7600 sctx);
18d0f5c6
DS
7601 advance_left = ADVANCE;
7602 } else if (cmp > 0) {
7603 ret = changed_cb(left_path, right_path,
7604 &right_key,
7605 BTRFS_COMPARE_TREE_DELETED,
88980383 7606 sctx);
18d0f5c6
DS
7607 advance_right = ADVANCE;
7608 } else {
7609 enum btrfs_compare_tree_result result;
7610
7611 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7612 ret = tree_compare_item(left_path, right_path,
7613 tmp_buf);
7614 if (ret)
7615 result = BTRFS_COMPARE_TREE_CHANGED;
7616 else
7617 result = BTRFS_COMPARE_TREE_SAME;
7618 ret = changed_cb(left_path, right_path,
88980383 7619 &left_key, result, sctx);
18d0f5c6
DS
7620 advance_left = ADVANCE;
7621 advance_right = ADVANCE;
7622 }
d96b3424
FM
7623
7624 if (ret < 0)
7625 goto out;
7626 down_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7627 } else if (left_level == right_level) {
7628 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7629 if (cmp < 0) {
7630 advance_left = ADVANCE;
7631 } else if (cmp > 0) {
7632 advance_right = ADVANCE;
7633 } else {
7634 left_blockptr = btrfs_node_blockptr(
7635 left_path->nodes[left_level],
7636 left_path->slots[left_level]);
7637 right_blockptr = btrfs_node_blockptr(
7638 right_path->nodes[right_level],
7639 right_path->slots[right_level]);
7640 left_gen = btrfs_node_ptr_generation(
7641 left_path->nodes[left_level],
7642 left_path->slots[left_level]);
7643 right_gen = btrfs_node_ptr_generation(
7644 right_path->nodes[right_level],
7645 right_path->slots[right_level]);
7646 if (left_blockptr == right_blockptr &&
7647 left_gen == right_gen) {
7648 /*
7649 * As we're on a shared block, don't
7650 * allow to go deeper.
7651 */
7652 advance_left = ADVANCE_ONLY_NEXT;
7653 advance_right = ADVANCE_ONLY_NEXT;
7654 } else {
7655 advance_left = ADVANCE;
7656 advance_right = ADVANCE;
7657 }
7658 }
7659 } else if (left_level < right_level) {
7660 advance_right = ADVANCE;
7661 } else {
7662 advance_left = ADVANCE;
7663 }
7664 }
7665
d96b3424
FM
7666out_unlock:
7667 up_read(&fs_info->commit_root_sem);
18d0f5c6
DS
7668out:
7669 btrfs_free_path(left_path);
7670 btrfs_free_path(right_path);
7671 kvfree(tmp_buf);
7672 return ret;
7673}
7674
31db9f7c
AB
7675static int send_subvol(struct send_ctx *sctx)
7676{
7677 int ret;
7678
c2c71324
SB
7679 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7680 ret = send_header(sctx);
7681 if (ret < 0)
7682 goto out;
7683 }
31db9f7c
AB
7684
7685 ret = send_subvol_begin(sctx);
7686 if (ret < 0)
7687 goto out;
7688
7689 if (sctx->parent_root) {
1b51d6fc 7690 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
31db9f7c
AB
7691 if (ret < 0)
7692 goto out;
7693 ret = finish_inode_if_needed(sctx, 1);
7694 if (ret < 0)
7695 goto out;
7696 } else {
7697 ret = full_send_tree(sctx);
7698 if (ret < 0)
7699 goto out;
7700 }
7701
7702out:
31db9f7c
AB
7703 free_recorded_refs(sctx);
7704 return ret;
7705}
7706
e5fa8f86
FM
7707/*
7708 * If orphan cleanup did remove any orphans from a root, it means the tree
7709 * was modified and therefore the commit root is not the same as the current
7710 * root anymore. This is a problem, because send uses the commit root and
7711 * therefore can see inode items that don't exist in the current root anymore,
7712 * and for example make calls to btrfs_iget, which will do tree lookups based
7713 * on the current root and not on the commit root. Those lookups will fail,
7714 * returning a -ESTALE error, and making send fail with that error. So make
7715 * sure a send does not see any orphans we have just removed, and that it will
7716 * see the same inodes regardless of whether a transaction commit happened
7717 * before it started (meaning that the commit root will be the same as the
7718 * current root) or not.
7719 */
7720static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7721{
7722 int i;
7723 struct btrfs_trans_handle *trans = NULL;
7724
7725again:
7726 if (sctx->parent_root &&
7727 sctx->parent_root->node != sctx->parent_root->commit_root)
7728 goto commit_trans;
7729
7730 for (i = 0; i < sctx->clone_roots_cnt; i++)
7731 if (sctx->clone_roots[i].root->node !=
7732 sctx->clone_roots[i].root->commit_root)
7733 goto commit_trans;
7734
7735 if (trans)
3a45bb20 7736 return btrfs_end_transaction(trans);
e5fa8f86
FM
7737
7738 return 0;
7739
7740commit_trans:
7741 /* Use any root, all fs roots will get their commit roots updated. */
7742 if (!trans) {
7743 trans = btrfs_join_transaction(sctx->send_root);
7744 if (IS_ERR(trans))
7745 return PTR_ERR(trans);
7746 goto again;
7747 }
7748
3a45bb20 7749 return btrfs_commit_transaction(trans);
e5fa8f86
FM
7750}
7751
9f89d5de
FM
7752/*
7753 * Make sure any existing dellaloc is flushed for any root used by a send
7754 * operation so that we do not miss any data and we do not race with writeback
7755 * finishing and changing a tree while send is using the tree. This could
7756 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7757 * a send operation then uses the subvolume.
7758 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7759 */
7760static int flush_delalloc_roots(struct send_ctx *sctx)
7761{
7762 struct btrfs_root *root = sctx->parent_root;
7763 int ret;
7764 int i;
7765
7766 if (root) {
f9baa501 7767 ret = btrfs_start_delalloc_snapshot(root, false);
9f89d5de
FM
7768 if (ret)
7769 return ret;
7770 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7771 }
7772
7773 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7774 root = sctx->clone_roots[i].root;
f9baa501 7775 ret = btrfs_start_delalloc_snapshot(root, false);
9f89d5de
FM
7776 if (ret)
7777 return ret;
7778 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7779 }
7780
7781 return 0;
7782}
7783
66ef7d65
DS
7784static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7785{
7786 spin_lock(&root->root_item_lock);
7787 root->send_in_progress--;
7788 /*
7789 * Not much left to do, we don't know why it's unbalanced and
7790 * can't blindly reset it to 0.
7791 */
7792 if (root->send_in_progress < 0)
7793 btrfs_err(root->fs_info,
f5686e3a 7794 "send_in_progress unbalanced %d root %llu",
0b246afa 7795 root->send_in_progress, root->root_key.objectid);
66ef7d65
DS
7796 spin_unlock(&root->root_item_lock);
7797}
7798
62d54f3a
FM
7799static void dedupe_in_progress_warn(const struct btrfs_root *root)
7800{
7801 btrfs_warn_rl(root->fs_info,
7802"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7803 root->root_key.objectid, root->dedupe_in_progress);
7804}
7805
9ad12305 7806long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
31db9f7c
AB
7807{
7808 int ret = 0;
9ad12305 7809 struct btrfs_root *send_root = BTRFS_I(inode)->root;
0b246afa 7810 struct btrfs_fs_info *fs_info = send_root->fs_info;
31db9f7c 7811 struct btrfs_root *clone_root;
31db9f7c
AB
7812 struct send_ctx *sctx = NULL;
7813 u32 i;
7814 u64 *clone_sources_tmp = NULL;
2c686537 7815 int clone_sources_to_rollback = 0;
bae12df9 7816 size_t alloc_size;
896c14f9 7817 int sort_clone_roots = 0;
31db9f7c
AB
7818
7819 if (!capable(CAP_SYS_ADMIN))
7820 return -EPERM;
7821
2c686537
DS
7822 /*
7823 * The subvolume must remain read-only during send, protect against
521e0546 7824 * making it RW. This also protects against deletion.
2c686537
DS
7825 */
7826 spin_lock(&send_root->root_item_lock);
62d54f3a
FM
7827 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7828 dedupe_in_progress_warn(send_root);
7829 spin_unlock(&send_root->root_item_lock);
7830 return -EAGAIN;
7831 }
2c686537
DS
7832 send_root->send_in_progress++;
7833 spin_unlock(&send_root->root_item_lock);
7834
2c686537
DS
7835 /*
7836 * Userspace tools do the checks and warn the user if it's
7837 * not RO.
7838 */
7839 if (!btrfs_root_readonly(send_root)) {
7840 ret = -EPERM;
7841 goto out;
7842 }
7843
457ae726
DC
7844 /*
7845 * Check that we don't overflow at later allocations, we request
7846 * clone_sources_count + 1 items, and compare to unsigned long inside
7847 * access_ok.
7848 */
f5ecec3c 7849 if (arg->clone_sources_count >
457ae726 7850 ULONG_MAX / sizeof(struct clone_root) - 1) {
f5ecec3c
DC
7851 ret = -EINVAL;
7852 goto out;
7853 }
7854
c2c71324 7855 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
cb95e7bf
MF
7856 ret = -EINVAL;
7857 goto out;
7858 }
7859
e780b0d1 7860 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
31db9f7c
AB
7861 if (!sctx) {
7862 ret = -ENOMEM;
7863 goto out;
7864 }
7865
7866 INIT_LIST_HEAD(&sctx->new_refs);
7867 INIT_LIST_HEAD(&sctx->deleted_refs);
5b8418b8 7868 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
31db9f7c
AB
7869 INIT_LIST_HEAD(&sctx->name_cache_list);
7870
cb95e7bf
MF
7871 sctx->flags = arg->flags;
7872
e77fbf99
DS
7873 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
7874 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
7875 ret = -EPROTO;
7876 goto out;
7877 }
7878 /* Zero means "use the highest version" */
7879 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
7880 } else {
7881 sctx->proto = 1;
7882 }
d6815592
OS
7883 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
7884 ret = -EINVAL;
7885 goto out;
7886 }
e77fbf99 7887
31db9f7c 7888 sctx->send_filp = fget(arg->send_fd);
ecc7ada7
TI
7889 if (!sctx->send_filp) {
7890 ret = -EBADF;
31db9f7c
AB
7891 goto out;
7892 }
7893
31db9f7c 7894 sctx->send_root = send_root;
521e0546
DS
7895 /*
7896 * Unlikely but possible, if the subvolume is marked for deletion but
7897 * is slow to remove the directory entry, send can still be started
7898 */
7899 if (btrfs_root_dead(sctx->send_root)) {
7900 ret = -EPERM;
7901 goto out;
7902 }
7903
31db9f7c
AB
7904 sctx->clone_roots_cnt = arg->clone_sources_count;
7905
a4b333f2
OS
7906 if (sctx->proto >= 2) {
7907 u32 send_buf_num_pages;
7908
875c627c 7909 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
a4b333f2
OS
7910 sctx->send_buf = vmalloc(sctx->send_max_size);
7911 if (!sctx->send_buf) {
7912 ret = -ENOMEM;
7913 goto out;
7914 }
7915 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
7916 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
7917 sizeof(*sctx->send_buf_pages),
7918 GFP_KERNEL);
7919 if (!sctx->send_buf_pages) {
7920 ret = -ENOMEM;
7921 goto out;
7922 }
7923 for (i = 0; i < send_buf_num_pages; i++) {
7924 sctx->send_buf_pages[i] =
7925 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
7926 }
7927 } else {
356bbbb6 7928 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
a4b333f2
OS
7929 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7930 }
31db9f7c 7931 if (!sctx->send_buf) {
752ade68
MH
7932 ret = -ENOMEM;
7933 goto out;
31db9f7c
AB
7934 }
7935
9f03740a
FDBM
7936 sctx->pending_dir_moves = RB_ROOT;
7937 sctx->waiting_dir_moves = RB_ROOT;
9dc44214 7938 sctx->orphan_dirs = RB_ROOT;
3aa5bd36
BC
7939 sctx->rbtree_new_refs = RB_ROOT;
7940 sctx->rbtree_deleted_refs = RB_ROOT;
9f03740a 7941
bae12df9
DE
7942 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7943 arg->clone_sources_count + 1,
7944 GFP_KERNEL);
31db9f7c 7945 if (!sctx->clone_roots) {
818e010b
DS
7946 ret = -ENOMEM;
7947 goto out;
31db9f7c
AB
7948 }
7949
bae12df9
DE
7950 alloc_size = array_size(sizeof(*arg->clone_sources),
7951 arg->clone_sources_count);
e55d1153 7952
31db9f7c 7953 if (arg->clone_sources_count) {
752ade68 7954 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
31db9f7c 7955 if (!clone_sources_tmp) {
752ade68
MH
7956 ret = -ENOMEM;
7957 goto out;
31db9f7c
AB
7958 }
7959
7960 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
e55d1153 7961 alloc_size);
31db9f7c
AB
7962 if (ret) {
7963 ret = -EFAULT;
7964 goto out;
7965 }
7966
7967 for (i = 0; i < arg->clone_sources_count; i++) {
56e9357a
DS
7968 clone_root = btrfs_get_fs_root(fs_info,
7969 clone_sources_tmp[i], true);
31db9f7c
AB
7970 if (IS_ERR(clone_root)) {
7971 ret = PTR_ERR(clone_root);
7972 goto out;
7973 }
2c686537 7974 spin_lock(&clone_root->root_item_lock);
5cc2b17e
FM
7975 if (!btrfs_root_readonly(clone_root) ||
7976 btrfs_root_dead(clone_root)) {
2c686537 7977 spin_unlock(&clone_root->root_item_lock);
00246528 7978 btrfs_put_root(clone_root);
2c686537
DS
7979 ret = -EPERM;
7980 goto out;
7981 }
62d54f3a
FM
7982 if (clone_root->dedupe_in_progress) {
7983 dedupe_in_progress_warn(clone_root);
7984 spin_unlock(&clone_root->root_item_lock);
00246528 7985 btrfs_put_root(clone_root);
62d54f3a
FM
7986 ret = -EAGAIN;
7987 goto out;
7988 }
2f1f465a 7989 clone_root->send_in_progress++;
2c686537 7990 spin_unlock(&clone_root->root_item_lock);
18f687d5 7991
31db9f7c 7992 sctx->clone_roots[i].root = clone_root;
2f1f465a 7993 clone_sources_to_rollback = i + 1;
31db9f7c 7994 }
2f91306a 7995 kvfree(clone_sources_tmp);
31db9f7c
AB
7996 clone_sources_tmp = NULL;
7997 }
7998
7999 if (arg->parent_root) {
56e9357a
DS
8000 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8001 true);
b1b19596
SB
8002 if (IS_ERR(sctx->parent_root)) {
8003 ret = PTR_ERR(sctx->parent_root);
31db9f7c
AB
8004 goto out;
8005 }
18f687d5 8006
2c686537
DS
8007 spin_lock(&sctx->parent_root->root_item_lock);
8008 sctx->parent_root->send_in_progress++;
521e0546
DS
8009 if (!btrfs_root_readonly(sctx->parent_root) ||
8010 btrfs_root_dead(sctx->parent_root)) {
2c686537
DS
8011 spin_unlock(&sctx->parent_root->root_item_lock);
8012 ret = -EPERM;
8013 goto out;
8014 }
62d54f3a
FM
8015 if (sctx->parent_root->dedupe_in_progress) {
8016 dedupe_in_progress_warn(sctx->parent_root);
8017 spin_unlock(&sctx->parent_root->root_item_lock);
62d54f3a
FM
8018 ret = -EAGAIN;
8019 goto out;
8020 }
2c686537 8021 spin_unlock(&sctx->parent_root->root_item_lock);
31db9f7c
AB
8022 }
8023
8024 /*
8025 * Clones from send_root are allowed, but only if the clone source
8026 * is behind the current send position. This is checked while searching
8027 * for possible clone sources.
8028 */
6f9a3da5 8029 sctx->clone_roots[sctx->clone_roots_cnt++].root =
00246528 8030 btrfs_grab_root(sctx->send_root);
31db9f7c
AB
8031
8032 /* We do a bsearch later */
8033 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8034 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8035 NULL);
896c14f9 8036 sort_clone_roots = 1;
31db9f7c 8037
9f89d5de
FM
8038 ret = flush_delalloc_roots(sctx);
8039 if (ret)
8040 goto out;
8041
e5fa8f86
FM
8042 ret = ensure_commit_roots_uptodate(sctx);
8043 if (ret)
8044 goto out;
8045
31db9f7c
AB
8046 ret = send_subvol(sctx);
8047 if (ret < 0)
8048 goto out;
8049
c2c71324
SB
8050 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8051 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8052 if (ret < 0)
8053 goto out;
8054 ret = send_cmd(sctx);
8055 if (ret < 0)
8056 goto out;
8057 }
31db9f7c
AB
8058
8059out:
9f03740a
FDBM
8060 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8061 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8062 struct rb_node *n;
8063 struct pending_dir_move *pm;
8064
8065 n = rb_first(&sctx->pending_dir_moves);
8066 pm = rb_entry(n, struct pending_dir_move, node);
8067 while (!list_empty(&pm->list)) {
8068 struct pending_dir_move *pm2;
8069
8070 pm2 = list_first_entry(&pm->list,
8071 struct pending_dir_move, list);
8072 free_pending_move(sctx, pm2);
8073 }
8074 free_pending_move(sctx, pm);
8075 }
8076
8077 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8078 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8079 struct rb_node *n;
8080 struct waiting_dir_move *dm;
8081
8082 n = rb_first(&sctx->waiting_dir_moves);
8083 dm = rb_entry(n, struct waiting_dir_move, node);
8084 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8085 kfree(dm);
8086 }
8087
9dc44214
FM
8088 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8089 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8090 struct rb_node *n;
8091 struct orphan_dir_info *odi;
8092
8093 n = rb_first(&sctx->orphan_dirs);
8094 odi = rb_entry(n, struct orphan_dir_info, node);
8095 free_orphan_dir_info(sctx, odi);
8096 }
8097
896c14f9 8098 if (sort_clone_roots) {
6f9a3da5 8099 for (i = 0; i < sctx->clone_roots_cnt; i++) {
896c14f9
WS
8100 btrfs_root_dec_send_in_progress(
8101 sctx->clone_roots[i].root);
00246528 8102 btrfs_put_root(sctx->clone_roots[i].root);
6f9a3da5 8103 }
896c14f9 8104 } else {
6f9a3da5 8105 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
896c14f9
WS
8106 btrfs_root_dec_send_in_progress(
8107 sctx->clone_roots[i].root);
00246528 8108 btrfs_put_root(sctx->clone_roots[i].root);
6f9a3da5 8109 }
896c14f9
WS
8110
8111 btrfs_root_dec_send_in_progress(send_root);
8112 }
6f9a3da5 8113 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
66ef7d65 8114 btrfs_root_dec_send_in_progress(sctx->parent_root);
00246528 8115 btrfs_put_root(sctx->parent_root);
6f9a3da5 8116 }
2c686537 8117
2f91306a 8118 kvfree(clone_sources_tmp);
31db9f7c
AB
8119
8120 if (sctx) {
8121 if (sctx->send_filp)
8122 fput(sctx->send_filp);
8123
c03d01f3 8124 kvfree(sctx->clone_roots);
a4b333f2 8125 kfree(sctx->send_buf_pages);
6ff48ce0 8126 kvfree(sctx->send_buf);
38622010 8127 kvfree(sctx->verity_descriptor);
31db9f7c
AB
8128
8129 name_cache_free(sctx);
8130
152555b3 8131 close_current_inode(sctx);
521b6803 8132
31db9f7c
AB
8133 kfree(sctx);
8134 }
8135
8136 return ret;
8137}