btrfs: add the beginning of async discard, discard workqueue
[linux-2.6-block.git] / fs / btrfs / scrub.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a2de733c 2/*
b6bfebc1 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
4 */
5
a2de733c 6#include <linux/blkdev.h>
558540c1 7#include <linux/ratelimit.h>
de2491fd 8#include <linux/sched/mm.h>
d5178578 9#include <crypto/hash.h>
a2de733c
AJ
10#include "ctree.h"
11#include "volumes.h"
12#include "disk-io.h"
13#include "ordered-data.h"
0ef8e451 14#include "transaction.h"
558540c1 15#include "backref.h"
5da6fcbc 16#include "extent_io.h"
ff023aac 17#include "dev-replace.h"
21adbd5c 18#include "check-integrity.h"
606686ee 19#include "rcu-string.h"
53b381b3 20#include "raid56.h"
aac0023c 21#include "block-group.h"
a2de733c
AJ
22
23/*
24 * This is only the first step towards a full-features scrub. It reads all
25 * extent and super block and verifies the checksums. In case a bad checksum
26 * is found or the extent cannot be read, good data will be written back if
27 * any can be found.
28 *
29 * Future enhancements:
a2de733c
AJ
30 * - In case an unrepairable extent is encountered, track which files are
31 * affected and report them
a2de733c 32 * - track and record media errors, throw out bad devices
a2de733c 33 * - add a mode to also read unallocated space
a2de733c
AJ
34 */
35
b5d67f64 36struct scrub_block;
d9d181c1 37struct scrub_ctx;
a2de733c 38
ff023aac
SB
39/*
40 * the following three values only influence the performance.
41 * The last one configures the number of parallel and outstanding I/O
42 * operations. The first two values configure an upper limit for the number
43 * of (dynamically allocated) pages that are added to a bio.
44 */
45#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
46#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
47#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
48
49/*
50 * the following value times PAGE_SIZE needs to be large enough to match the
51 * largest node/leaf/sector size that shall be supported.
52 * Values larger than BTRFS_STRIPE_LEN are not supported.
53 */
b5d67f64 54#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c 55
af8e2d1d 56struct scrub_recover {
6f615018 57 refcount_t refs;
af8e2d1d 58 struct btrfs_bio *bbio;
af8e2d1d
MX
59 u64 map_length;
60};
61
a2de733c 62struct scrub_page {
b5d67f64
SB
63 struct scrub_block *sblock;
64 struct page *page;
442a4f63 65 struct btrfs_device *dev;
5a6ac9ea 66 struct list_head list;
a2de733c
AJ
67 u64 flags; /* extent flags */
68 u64 generation;
b5d67f64
SB
69 u64 logical;
70 u64 physical;
ff023aac 71 u64 physical_for_dev_replace;
57019345 72 atomic_t refs;
b5d67f64
SB
73 struct {
74 unsigned int mirror_num:8;
75 unsigned int have_csum:1;
76 unsigned int io_error:1;
77 };
a2de733c 78 u8 csum[BTRFS_CSUM_SIZE];
af8e2d1d
MX
79
80 struct scrub_recover *recover;
a2de733c
AJ
81};
82
83struct scrub_bio {
84 int index;
d9d181c1 85 struct scrub_ctx *sctx;
a36cf8b8 86 struct btrfs_device *dev;
a2de733c 87 struct bio *bio;
4e4cbee9 88 blk_status_t status;
a2de733c
AJ
89 u64 logical;
90 u64 physical;
ff023aac
SB
91#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
92 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
93#else
94 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
95#endif
b5d67f64 96 int page_count;
a2de733c
AJ
97 int next_free;
98 struct btrfs_work work;
99};
100
b5d67f64 101struct scrub_block {
7a9e9987 102 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
103 int page_count;
104 atomic_t outstanding_pages;
186debd6 105 refcount_t refs; /* free mem on transition to zero */
d9d181c1 106 struct scrub_ctx *sctx;
5a6ac9ea 107 struct scrub_parity *sparity;
b5d67f64
SB
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
442a4f63 112 unsigned int generation_error:1; /* also sets header_error */
5a6ac9ea
MX
113
114 /* The following is for the data used to check parity */
115 /* It is for the data with checksum */
116 unsigned int data_corrected:1;
b5d67f64 117 };
73ff61db 118 struct btrfs_work work;
b5d67f64
SB
119};
120
5a6ac9ea
MX
121/* Used for the chunks with parity stripe such RAID5/6 */
122struct scrub_parity {
123 struct scrub_ctx *sctx;
124
125 struct btrfs_device *scrub_dev;
126
127 u64 logic_start;
128
129 u64 logic_end;
130
131 int nsectors;
132
972d7219 133 u64 stripe_len;
5a6ac9ea 134
78a76450 135 refcount_t refs;
5a6ac9ea
MX
136
137 struct list_head spages;
138
139 /* Work of parity check and repair */
140 struct btrfs_work work;
141
142 /* Mark the parity blocks which have data */
143 unsigned long *dbitmap;
144
145 /*
146 * Mark the parity blocks which have data, but errors happen when
147 * read data or check data
148 */
149 unsigned long *ebitmap;
150
151 unsigned long bitmap[0];
152};
153
d9d181c1 154struct scrub_ctx {
ff023aac 155 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
fb456252 156 struct btrfs_fs_info *fs_info;
a2de733c
AJ
157 int first_free;
158 int curr;
b6bfebc1
SB
159 atomic_t bios_in_flight;
160 atomic_t workers_pending;
a2de733c
AJ
161 spinlock_t list_lock;
162 wait_queue_head_t list_wait;
163 u16 csum_size;
164 struct list_head csum_list;
165 atomic_t cancel_req;
8628764e 166 int readonly;
ff023aac 167 int pages_per_rd_bio;
63a212ab
SB
168
169 int is_dev_replace;
3fb99303
DS
170
171 struct scrub_bio *wr_curr_bio;
172 struct mutex wr_lock;
173 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
3fb99303 174 struct btrfs_device *wr_tgtdev;
2073c4c2 175 bool flush_all_writes;
63a212ab 176
a2de733c
AJ
177 /*
178 * statistics
179 */
180 struct btrfs_scrub_progress stat;
181 spinlock_t stat_lock;
f55985f4
FM
182
183 /*
184 * Use a ref counter to avoid use-after-free issues. Scrub workers
185 * decrement bios_in_flight and workers_pending and then do a wakeup
186 * on the list_wait wait queue. We must ensure the main scrub task
187 * doesn't free the scrub context before or while the workers are
188 * doing the wakeup() call.
189 */
99f4cdb1 190 refcount_t refs;
a2de733c
AJ
191};
192
558540c1
JS
193struct scrub_warning {
194 struct btrfs_path *path;
195 u64 extent_item_size;
558540c1 196 const char *errstr;
6aa21263 197 u64 physical;
558540c1
JS
198 u64 logical;
199 struct btrfs_device *dev;
558540c1
JS
200};
201
0966a7b1
QW
202struct full_stripe_lock {
203 struct rb_node node;
204 u64 logical;
205 u64 refs;
206 struct mutex mutex;
207};
208
b6bfebc1
SB
209static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
210static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
b5d67f64 211static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
be50a8dd 212static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
ff023aac 213 struct scrub_block *sblocks_for_recheck);
34f5c8e9 214static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
215 struct scrub_block *sblock,
216 int retry_failed_mirror);
ba7cf988 217static void scrub_recheck_block_checksum(struct scrub_block *sblock);
b5d67f64 218static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 219 struct scrub_block *sblock_good);
b5d67f64
SB
220static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
221 struct scrub_block *sblock_good,
222 int page_num, int force_write);
ff023aac
SB
223static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
224static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
225 int page_num);
b5d67f64
SB
226static int scrub_checksum_data(struct scrub_block *sblock);
227static int scrub_checksum_tree_block(struct scrub_block *sblock);
228static int scrub_checksum_super(struct scrub_block *sblock);
229static void scrub_block_get(struct scrub_block *sblock);
230static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
231static void scrub_page_get(struct scrub_page *spage);
232static void scrub_page_put(struct scrub_page *spage);
5a6ac9ea
MX
233static void scrub_parity_get(struct scrub_parity *sparity);
234static void scrub_parity_put(struct scrub_parity *sparity);
ff023aac
SB
235static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
236 struct scrub_page *spage);
d9d181c1 237static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 238 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
239 u64 gen, int mirror_num, u8 *csum, int force,
240 u64 physical_for_dev_replace);
4246a0b6 241static void scrub_bio_end_io(struct bio *bio);
b5d67f64
SB
242static void scrub_bio_end_io_worker(struct btrfs_work *work);
243static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
244static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
245 u64 extent_logical, u64 extent_len,
246 u64 *extent_physical,
247 struct btrfs_device **extent_dev,
248 int *extent_mirror_num);
ff023aac
SB
249static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
250 struct scrub_page *spage);
251static void scrub_wr_submit(struct scrub_ctx *sctx);
4246a0b6 252static void scrub_wr_bio_end_io(struct bio *bio);
ff023aac 253static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
cb7ab021 254static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 255static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
f55985f4 256static void scrub_put_ctx(struct scrub_ctx *sctx);
1623edeb 257
762221f0
LB
258static inline int scrub_is_page_on_raid56(struct scrub_page *page)
259{
260 return page->recover &&
261 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
262}
1623edeb 263
b6bfebc1
SB
264static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
265{
99f4cdb1 266 refcount_inc(&sctx->refs);
b6bfebc1
SB
267 atomic_inc(&sctx->bios_in_flight);
268}
269
270static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
271{
272 atomic_dec(&sctx->bios_in_flight);
273 wake_up(&sctx->list_wait);
f55985f4 274 scrub_put_ctx(sctx);
b6bfebc1
SB
275}
276
cb7ab021 277static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
278{
279 while (atomic_read(&fs_info->scrub_pause_req)) {
280 mutex_unlock(&fs_info->scrub_lock);
281 wait_event(fs_info->scrub_pause_wait,
282 atomic_read(&fs_info->scrub_pause_req) == 0);
283 mutex_lock(&fs_info->scrub_lock);
284 }
285}
286
0e22be89 287static void scrub_pause_on(struct btrfs_fs_info *fs_info)
cb7ab021
WS
288{
289 atomic_inc(&fs_info->scrubs_paused);
290 wake_up(&fs_info->scrub_pause_wait);
0e22be89 291}
cb7ab021 292
0e22be89
Z
293static void scrub_pause_off(struct btrfs_fs_info *fs_info)
294{
cb7ab021
WS
295 mutex_lock(&fs_info->scrub_lock);
296 __scrub_blocked_if_needed(fs_info);
297 atomic_dec(&fs_info->scrubs_paused);
298 mutex_unlock(&fs_info->scrub_lock);
299
300 wake_up(&fs_info->scrub_pause_wait);
301}
302
0e22be89
Z
303static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
304{
305 scrub_pause_on(fs_info);
306 scrub_pause_off(fs_info);
307}
308
0966a7b1
QW
309/*
310 * Insert new full stripe lock into full stripe locks tree
311 *
312 * Return pointer to existing or newly inserted full_stripe_lock structure if
313 * everything works well.
314 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
315 *
316 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
317 * function
318 */
319static struct full_stripe_lock *insert_full_stripe_lock(
320 struct btrfs_full_stripe_locks_tree *locks_root,
321 u64 fstripe_logical)
322{
323 struct rb_node **p;
324 struct rb_node *parent = NULL;
325 struct full_stripe_lock *entry;
326 struct full_stripe_lock *ret;
327
a32bf9a3 328 lockdep_assert_held(&locks_root->lock);
0966a7b1
QW
329
330 p = &locks_root->root.rb_node;
331 while (*p) {
332 parent = *p;
333 entry = rb_entry(parent, struct full_stripe_lock, node);
334 if (fstripe_logical < entry->logical) {
335 p = &(*p)->rb_left;
336 } else if (fstripe_logical > entry->logical) {
337 p = &(*p)->rb_right;
338 } else {
339 entry->refs++;
340 return entry;
341 }
342 }
343
a5fb1142
FM
344 /*
345 * Insert new lock.
a5fb1142 346 */
0966a7b1
QW
347 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
348 if (!ret)
349 return ERR_PTR(-ENOMEM);
350 ret->logical = fstripe_logical;
351 ret->refs = 1;
352 mutex_init(&ret->mutex);
353
354 rb_link_node(&ret->node, parent, p);
355 rb_insert_color(&ret->node, &locks_root->root);
356 return ret;
357}
358
359/*
360 * Search for a full stripe lock of a block group
361 *
362 * Return pointer to existing full stripe lock if found
363 * Return NULL if not found
364 */
365static struct full_stripe_lock *search_full_stripe_lock(
366 struct btrfs_full_stripe_locks_tree *locks_root,
367 u64 fstripe_logical)
368{
369 struct rb_node *node;
370 struct full_stripe_lock *entry;
371
a32bf9a3 372 lockdep_assert_held(&locks_root->lock);
0966a7b1
QW
373
374 node = locks_root->root.rb_node;
375 while (node) {
376 entry = rb_entry(node, struct full_stripe_lock, node);
377 if (fstripe_logical < entry->logical)
378 node = node->rb_left;
379 else if (fstripe_logical > entry->logical)
380 node = node->rb_right;
381 else
382 return entry;
383 }
384 return NULL;
385}
386
387/*
388 * Helper to get full stripe logical from a normal bytenr.
389 *
390 * Caller must ensure @cache is a RAID56 block group.
391 */
32da5386 392static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
0966a7b1
QW
393{
394 u64 ret;
395
396 /*
397 * Due to chunk item size limit, full stripe length should not be
398 * larger than U32_MAX. Just a sanity check here.
399 */
400 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
401
402 /*
403 * round_down() can only handle power of 2, while RAID56 full
404 * stripe length can be 64KiB * n, so we need to manually round down.
405 */
b3470b5d
DS
406 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
407 cache->full_stripe_len + cache->start;
0966a7b1
QW
408 return ret;
409}
410
411/*
412 * Lock a full stripe to avoid concurrency of recovery and read
413 *
414 * It's only used for profiles with parities (RAID5/6), for other profiles it
415 * does nothing.
416 *
417 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
418 * So caller must call unlock_full_stripe() at the same context.
419 *
420 * Return <0 if encounters error.
421 */
422static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
423 bool *locked_ret)
424{
32da5386 425 struct btrfs_block_group *bg_cache;
0966a7b1
QW
426 struct btrfs_full_stripe_locks_tree *locks_root;
427 struct full_stripe_lock *existing;
428 u64 fstripe_start;
429 int ret = 0;
430
431 *locked_ret = false;
432 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
433 if (!bg_cache) {
434 ASSERT(0);
435 return -ENOENT;
436 }
437
438 /* Profiles not based on parity don't need full stripe lock */
439 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
440 goto out;
441 locks_root = &bg_cache->full_stripe_locks_root;
442
443 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
444
445 /* Now insert the full stripe lock */
446 mutex_lock(&locks_root->lock);
447 existing = insert_full_stripe_lock(locks_root, fstripe_start);
448 mutex_unlock(&locks_root->lock);
449 if (IS_ERR(existing)) {
450 ret = PTR_ERR(existing);
451 goto out;
452 }
453 mutex_lock(&existing->mutex);
454 *locked_ret = true;
455out:
456 btrfs_put_block_group(bg_cache);
457 return ret;
458}
459
460/*
461 * Unlock a full stripe.
462 *
463 * NOTE: Caller must ensure it's the same context calling corresponding
464 * lock_full_stripe().
465 *
466 * Return 0 if we unlock full stripe without problem.
467 * Return <0 for error
468 */
469static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
470 bool locked)
471{
32da5386 472 struct btrfs_block_group *bg_cache;
0966a7b1
QW
473 struct btrfs_full_stripe_locks_tree *locks_root;
474 struct full_stripe_lock *fstripe_lock;
475 u64 fstripe_start;
476 bool freeit = false;
477 int ret = 0;
478
479 /* If we didn't acquire full stripe lock, no need to continue */
480 if (!locked)
481 return 0;
482
483 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
484 if (!bg_cache) {
485 ASSERT(0);
486 return -ENOENT;
487 }
488 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
489 goto out;
490
491 locks_root = &bg_cache->full_stripe_locks_root;
492 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
493
494 mutex_lock(&locks_root->lock);
495 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
496 /* Unpaired unlock_full_stripe() detected */
497 if (!fstripe_lock) {
498 WARN_ON(1);
499 ret = -ENOENT;
500 mutex_unlock(&locks_root->lock);
501 goto out;
502 }
503
504 if (fstripe_lock->refs == 0) {
505 WARN_ON(1);
506 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
507 fstripe_lock->logical);
508 } else {
509 fstripe_lock->refs--;
510 }
511
512 if (fstripe_lock->refs == 0) {
513 rb_erase(&fstripe_lock->node, &locks_root->root);
514 freeit = true;
515 }
516 mutex_unlock(&locks_root->lock);
517
518 mutex_unlock(&fstripe_lock->mutex);
519 if (freeit)
520 kfree(fstripe_lock);
521out:
522 btrfs_put_block_group(bg_cache);
523 return ret;
524}
525
d9d181c1 526static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 527{
d9d181c1 528 while (!list_empty(&sctx->csum_list)) {
a2de733c 529 struct btrfs_ordered_sum *sum;
d9d181c1 530 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
531 struct btrfs_ordered_sum, list);
532 list_del(&sum->list);
533 kfree(sum);
534 }
535}
536
d9d181c1 537static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
538{
539 int i;
a2de733c 540
d9d181c1 541 if (!sctx)
a2de733c
AJ
542 return;
543
b5d67f64 544 /* this can happen when scrub is cancelled */
d9d181c1
SB
545 if (sctx->curr != -1) {
546 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
547
548 for (i = 0; i < sbio->page_count; i++) {
ff023aac 549 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
550 scrub_block_put(sbio->pagev[i]->sblock);
551 }
552 bio_put(sbio->bio);
553 }
554
ff023aac 555 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 556 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
557
558 if (!sbio)
559 break;
a2de733c
AJ
560 kfree(sbio);
561 }
562
3fb99303 563 kfree(sctx->wr_curr_bio);
d9d181c1
SB
564 scrub_free_csums(sctx);
565 kfree(sctx);
a2de733c
AJ
566}
567
f55985f4
FM
568static void scrub_put_ctx(struct scrub_ctx *sctx)
569{
99f4cdb1 570 if (refcount_dec_and_test(&sctx->refs))
f55985f4
FM
571 scrub_free_ctx(sctx);
572}
573
92f7ba43
DS
574static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
575 struct btrfs_fs_info *fs_info, int is_dev_replace)
a2de733c 576{
d9d181c1 577 struct scrub_ctx *sctx;
a2de733c 578 int i;
a2de733c 579
58c4e173 580 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
d9d181c1 581 if (!sctx)
a2de733c 582 goto nomem;
99f4cdb1 583 refcount_set(&sctx->refs, 1);
63a212ab 584 sctx->is_dev_replace = is_dev_replace;
b54ffb73 585 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1 586 sctx->curr = -1;
92f7ba43 587 sctx->fs_info = fs_info;
e49be14b 588 INIT_LIST_HEAD(&sctx->csum_list);
ff023aac 589 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
590 struct scrub_bio *sbio;
591
58c4e173 592 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
a2de733c
AJ
593 if (!sbio)
594 goto nomem;
d9d181c1 595 sctx->bios[i] = sbio;
a2de733c 596
a2de733c 597 sbio->index = i;
d9d181c1 598 sbio->sctx = sctx;
b5d67f64 599 sbio->page_count = 0;
a0cac0ec
OS
600 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
601 NULL);
a2de733c 602
ff023aac 603 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 604 sctx->bios[i]->next_free = i + 1;
0ef8e451 605 else
d9d181c1
SB
606 sctx->bios[i]->next_free = -1;
607 }
608 sctx->first_free = 0;
b6bfebc1
SB
609 atomic_set(&sctx->bios_in_flight, 0);
610 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
611 atomic_set(&sctx->cancel_req, 0);
612 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
d9d181c1
SB
613
614 spin_lock_init(&sctx->list_lock);
615 spin_lock_init(&sctx->stat_lock);
616 init_waitqueue_head(&sctx->list_wait);
ff023aac 617
3fb99303
DS
618 WARN_ON(sctx->wr_curr_bio != NULL);
619 mutex_init(&sctx->wr_lock);
620 sctx->wr_curr_bio = NULL;
8fcdac3f 621 if (is_dev_replace) {
ded56184 622 WARN_ON(!fs_info->dev_replace.tgtdev);
3fb99303 623 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
ded56184 624 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
2073c4c2 625 sctx->flush_all_writes = false;
ff023aac 626 }
8fcdac3f 627
d9d181c1 628 return sctx;
a2de733c
AJ
629
630nomem:
d9d181c1 631 scrub_free_ctx(sctx);
a2de733c
AJ
632 return ERR_PTR(-ENOMEM);
633}
634
ff023aac
SB
635static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
636 void *warn_ctx)
558540c1
JS
637{
638 u64 isize;
639 u32 nlink;
640 int ret;
641 int i;
de2491fd 642 unsigned nofs_flag;
558540c1
JS
643 struct extent_buffer *eb;
644 struct btrfs_inode_item *inode_item;
ff023aac 645 struct scrub_warning *swarn = warn_ctx;
fb456252 646 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
558540c1
JS
647 struct inode_fs_paths *ipath = NULL;
648 struct btrfs_root *local_root;
649 struct btrfs_key root_key;
1d4c08e0 650 struct btrfs_key key;
558540c1
JS
651
652 root_key.objectid = root;
653 root_key.type = BTRFS_ROOT_ITEM_KEY;
654 root_key.offset = (u64)-1;
655 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
656 if (IS_ERR(local_root)) {
657 ret = PTR_ERR(local_root);
658 goto err;
659 }
660
14692cc1
DS
661 /*
662 * this makes the path point to (inum INODE_ITEM ioff)
663 */
1d4c08e0
DS
664 key.objectid = inum;
665 key.type = BTRFS_INODE_ITEM_KEY;
666 key.offset = 0;
667
668 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1
JS
669 if (ret) {
670 btrfs_release_path(swarn->path);
671 goto err;
672 }
673
674 eb = swarn->path->nodes[0];
675 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
676 struct btrfs_inode_item);
677 isize = btrfs_inode_size(eb, inode_item);
678 nlink = btrfs_inode_nlink(eb, inode_item);
679 btrfs_release_path(swarn->path);
680
de2491fd
DS
681 /*
682 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
683 * uses GFP_NOFS in this context, so we keep it consistent but it does
684 * not seem to be strictly necessary.
685 */
686 nofs_flag = memalloc_nofs_save();
558540c1 687 ipath = init_ipath(4096, local_root, swarn->path);
de2491fd 688 memalloc_nofs_restore(nofs_flag);
26bdef54
DC
689 if (IS_ERR(ipath)) {
690 ret = PTR_ERR(ipath);
691 ipath = NULL;
692 goto err;
693 }
558540c1
JS
694 ret = paths_from_inode(inum, ipath);
695
696 if (ret < 0)
697 goto err;
698
699 /*
700 * we deliberately ignore the bit ipath might have been too small to
701 * hold all of the paths here
702 */
703 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
5d163e0e 704 btrfs_warn_in_rcu(fs_info,
6aa21263 705"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
5d163e0e
JM
706 swarn->errstr, swarn->logical,
707 rcu_str_deref(swarn->dev->name),
6aa21263 708 swarn->physical,
5d163e0e
JM
709 root, inum, offset,
710 min(isize - offset, (u64)PAGE_SIZE), nlink,
711 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
712
713 free_ipath(ipath);
714 return 0;
715
716err:
5d163e0e 717 btrfs_warn_in_rcu(fs_info,
6aa21263 718 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
5d163e0e
JM
719 swarn->errstr, swarn->logical,
720 rcu_str_deref(swarn->dev->name),
6aa21263 721 swarn->physical,
5d163e0e 722 root, inum, offset, ret);
558540c1
JS
723
724 free_ipath(ipath);
725 return 0;
726}
727
b5d67f64 728static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 729{
a36cf8b8
SB
730 struct btrfs_device *dev;
731 struct btrfs_fs_info *fs_info;
558540c1
JS
732 struct btrfs_path *path;
733 struct btrfs_key found_key;
734 struct extent_buffer *eb;
735 struct btrfs_extent_item *ei;
736 struct scrub_warning swarn;
69917e43
LB
737 unsigned long ptr = 0;
738 u64 extent_item_pos;
739 u64 flags = 0;
558540c1 740 u64 ref_root;
69917e43 741 u32 item_size;
07c9a8e0 742 u8 ref_level = 0;
69917e43 743 int ret;
558540c1 744
a36cf8b8 745 WARN_ON(sblock->page_count < 1);
7a9e9987 746 dev = sblock->pagev[0]->dev;
fb456252 747 fs_info = sblock->sctx->fs_info;
a36cf8b8 748
558540c1 749 path = btrfs_alloc_path();
8b9456da
DS
750 if (!path)
751 return;
558540c1 752
6aa21263 753 swarn.physical = sblock->pagev[0]->physical;
7a9e9987 754 swarn.logical = sblock->pagev[0]->logical;
558540c1 755 swarn.errstr = errstr;
a36cf8b8 756 swarn.dev = NULL;
558540c1 757
69917e43
LB
758 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
759 &flags);
558540c1
JS
760 if (ret < 0)
761 goto out;
762
4692cf58 763 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
764 swarn.extent_item_size = found_key.offset;
765
766 eb = path->nodes[0];
767 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
768 item_size = btrfs_item_size_nr(eb, path->slots[0]);
769
69917e43 770 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 771 do {
6eda71d0
LB
772 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
773 item_size, &ref_root,
774 &ref_level);
ecaeb14b 775 btrfs_warn_in_rcu(fs_info,
6aa21263 776"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
5d163e0e 777 errstr, swarn.logical,
606686ee 778 rcu_str_deref(dev->name),
6aa21263 779 swarn.physical,
558540c1
JS
780 ref_level ? "node" : "leaf",
781 ret < 0 ? -1 : ref_level,
782 ret < 0 ? -1 : ref_root);
783 } while (ret != 1);
d8fe29e9 784 btrfs_release_path(path);
558540c1 785 } else {
d8fe29e9 786 btrfs_release_path(path);
558540c1 787 swarn.path = path;
a36cf8b8 788 swarn.dev = dev;
7a3ae2f8
JS
789 iterate_extent_inodes(fs_info, found_key.objectid,
790 extent_item_pos, 1,
c995ab3c 791 scrub_print_warning_inode, &swarn, false);
558540c1
JS
792 }
793
794out:
795 btrfs_free_path(path);
558540c1
JS
796}
797
af8e2d1d
MX
798static inline void scrub_get_recover(struct scrub_recover *recover)
799{
6f615018 800 refcount_inc(&recover->refs);
af8e2d1d
MX
801}
802
e501bfe3
QW
803static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
804 struct scrub_recover *recover)
af8e2d1d 805{
6f615018 806 if (refcount_dec_and_test(&recover->refs)) {
e501bfe3 807 btrfs_bio_counter_dec(fs_info);
6e9606d2 808 btrfs_put_bbio(recover->bbio);
af8e2d1d
MX
809 kfree(recover);
810 }
811}
812
a2de733c 813/*
b5d67f64
SB
814 * scrub_handle_errored_block gets called when either verification of the
815 * pages failed or the bio failed to read, e.g. with EIO. In the latter
816 * case, this function handles all pages in the bio, even though only one
817 * may be bad.
818 * The goal of this function is to repair the errored block by using the
819 * contents of one of the mirrors.
a2de733c 820 */
b5d67f64 821static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 822{
d9d181c1 823 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 824 struct btrfs_device *dev;
b5d67f64 825 struct btrfs_fs_info *fs_info;
b5d67f64 826 u64 logical;
b5d67f64
SB
827 unsigned int failed_mirror_index;
828 unsigned int is_metadata;
829 unsigned int have_csum;
b5d67f64
SB
830 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
831 struct scrub_block *sblock_bad;
832 int ret;
833 int mirror_index;
834 int page_num;
835 int success;
28d70e23 836 bool full_stripe_locked;
7c3c7cb9 837 unsigned int nofs_flag;
558540c1 838 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
839 DEFAULT_RATELIMIT_BURST);
840
841 BUG_ON(sblock_to_check->page_count < 1);
fb456252 842 fs_info = sctx->fs_info;
4ded4f63
SB
843 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
844 /*
845 * if we find an error in a super block, we just report it.
846 * They will get written with the next transaction commit
847 * anyway
848 */
849 spin_lock(&sctx->stat_lock);
850 ++sctx->stat.super_errors;
851 spin_unlock(&sctx->stat_lock);
852 return 0;
853 }
7a9e9987 854 logical = sblock_to_check->pagev[0]->logical;
7a9e9987
SB
855 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
856 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
857 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 858 BTRFS_EXTENT_FLAG_DATA);
7a9e9987 859 have_csum = sblock_to_check->pagev[0]->have_csum;
7a9e9987 860 dev = sblock_to_check->pagev[0]->dev;
13db62b7 861
7c3c7cb9
FM
862 /*
863 * We must use GFP_NOFS because the scrub task might be waiting for a
864 * worker task executing this function and in turn a transaction commit
865 * might be waiting the scrub task to pause (which needs to wait for all
866 * the worker tasks to complete before pausing).
867 * We do allocations in the workers through insert_full_stripe_lock()
868 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
869 * this function.
870 */
871 nofs_flag = memalloc_nofs_save();
28d70e23
QW
872 /*
873 * For RAID5/6, race can happen for a different device scrub thread.
874 * For data corruption, Parity and Data threads will both try
875 * to recovery the data.
876 * Race can lead to doubly added csum error, or even unrecoverable
877 * error.
878 */
879 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
880 if (ret < 0) {
7c3c7cb9 881 memalloc_nofs_restore(nofs_flag);
28d70e23
QW
882 spin_lock(&sctx->stat_lock);
883 if (ret == -ENOMEM)
884 sctx->stat.malloc_errors++;
885 sctx->stat.read_errors++;
886 sctx->stat.uncorrectable_errors++;
887 spin_unlock(&sctx->stat_lock);
888 return ret;
889 }
890
b5d67f64
SB
891 /*
892 * read all mirrors one after the other. This includes to
893 * re-read the extent or metadata block that failed (that was
894 * the cause that this fixup code is called) another time,
895 * page by page this time in order to know which pages
896 * caused I/O errors and which ones are good (for all mirrors).
897 * It is the goal to handle the situation when more than one
898 * mirror contains I/O errors, but the errors do not
899 * overlap, i.e. the data can be repaired by selecting the
900 * pages from those mirrors without I/O error on the
901 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
902 * would be that mirror #1 has an I/O error on the first page,
903 * the second page is good, and mirror #2 has an I/O error on
904 * the second page, but the first page is good.
905 * Then the first page of the first mirror can be repaired by
906 * taking the first page of the second mirror, and the
907 * second page of the second mirror can be repaired by
908 * copying the contents of the 2nd page of the 1st mirror.
909 * One more note: if the pages of one mirror contain I/O
910 * errors, the checksum cannot be verified. In order to get
911 * the best data for repairing, the first attempt is to find
912 * a mirror without I/O errors and with a validated checksum.
913 * Only if this is not possible, the pages are picked from
914 * mirrors with I/O errors without considering the checksum.
915 * If the latter is the case, at the end, the checksum of the
916 * repaired area is verified in order to correctly maintain
917 * the statistics.
918 */
919
31e818fe 920 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
7c3c7cb9 921 sizeof(*sblocks_for_recheck), GFP_KERNEL);
b5d67f64 922 if (!sblocks_for_recheck) {
d9d181c1
SB
923 spin_lock(&sctx->stat_lock);
924 sctx->stat.malloc_errors++;
925 sctx->stat.read_errors++;
926 sctx->stat.uncorrectable_errors++;
927 spin_unlock(&sctx->stat_lock);
a36cf8b8 928 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 929 goto out;
a2de733c
AJ
930 }
931
b5d67f64 932 /* setup the context, map the logical blocks and alloc the pages */
be50a8dd 933 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
b5d67f64 934 if (ret) {
d9d181c1
SB
935 spin_lock(&sctx->stat_lock);
936 sctx->stat.read_errors++;
937 sctx->stat.uncorrectable_errors++;
938 spin_unlock(&sctx->stat_lock);
a36cf8b8 939 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
940 goto out;
941 }
942 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
943 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 944
b5d67f64 945 /* build and submit the bios for the failed mirror, check checksums */
affe4a5a 946 scrub_recheck_block(fs_info, sblock_bad, 1);
a2de733c 947
b5d67f64
SB
948 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
949 sblock_bad->no_io_error_seen) {
950 /*
951 * the error disappeared after reading page by page, or
952 * the area was part of a huge bio and other parts of the
953 * bio caused I/O errors, or the block layer merged several
954 * read requests into one and the error is caused by a
955 * different bio (usually one of the two latter cases is
956 * the cause)
957 */
d9d181c1
SB
958 spin_lock(&sctx->stat_lock);
959 sctx->stat.unverified_errors++;
5a6ac9ea 960 sblock_to_check->data_corrected = 1;
d9d181c1 961 spin_unlock(&sctx->stat_lock);
a2de733c 962
ff023aac
SB
963 if (sctx->is_dev_replace)
964 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 965 goto out;
a2de733c 966 }
a2de733c 967
b5d67f64 968 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
969 spin_lock(&sctx->stat_lock);
970 sctx->stat.read_errors++;
971 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
972 if (__ratelimit(&_rs))
973 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 974 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 975 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
976 spin_lock(&sctx->stat_lock);
977 sctx->stat.csum_errors++;
978 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
979 if (__ratelimit(&_rs))
980 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 981 btrfs_dev_stat_inc_and_print(dev,
442a4f63 982 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 983 } else if (sblock_bad->header_error) {
d9d181c1
SB
984 spin_lock(&sctx->stat_lock);
985 sctx->stat.verify_errors++;
986 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
987 if (__ratelimit(&_rs))
988 scrub_print_warning("checksum/header error",
989 sblock_to_check);
442a4f63 990 if (sblock_bad->generation_error)
a36cf8b8 991 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
992 BTRFS_DEV_STAT_GENERATION_ERRS);
993 else
a36cf8b8 994 btrfs_dev_stat_inc_and_print(dev,
442a4f63 995 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 996 }
a2de733c 997
33ef30ad
ID
998 if (sctx->readonly) {
999 ASSERT(!sctx->is_dev_replace);
1000 goto out;
1001 }
a2de733c 1002
b5d67f64
SB
1003 /*
1004 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1005 * checksums.
1006 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1007 * errors and also does not have a checksum error.
1008 * If one is found, and if a checksum is present, the full block
1009 * that is known to contain an error is rewritten. Afterwards
1010 * the block is known to be corrected.
1011 * If a mirror is found which is completely correct, and no
1012 * checksum is present, only those pages are rewritten that had
1013 * an I/O error in the block to be repaired, since it cannot be
1014 * determined, which copy of the other pages is better (and it
1015 * could happen otherwise that a correct page would be
1016 * overwritten by a bad one).
1017 */
762221f0 1018 for (mirror_index = 0; ;mirror_index++) {
cb2ced73 1019 struct scrub_block *sblock_other;
b5d67f64 1020
cb2ced73
SB
1021 if (mirror_index == failed_mirror_index)
1022 continue;
762221f0
LB
1023
1024 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1025 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1026 if (mirror_index >= BTRFS_MAX_MIRRORS)
1027 break;
1028 if (!sblocks_for_recheck[mirror_index].page_count)
1029 break;
1030
1031 sblock_other = sblocks_for_recheck + mirror_index;
1032 } else {
1033 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1034 int max_allowed = r->bbio->num_stripes -
1035 r->bbio->num_tgtdevs;
1036
1037 if (mirror_index >= max_allowed)
1038 break;
1039 if (!sblocks_for_recheck[1].page_count)
1040 break;
1041
1042 ASSERT(failed_mirror_index == 0);
1043 sblock_other = sblocks_for_recheck + 1;
1044 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1045 }
cb2ced73
SB
1046
1047 /* build and submit the bios, check checksums */
affe4a5a 1048 scrub_recheck_block(fs_info, sblock_other, 0);
34f5c8e9
SB
1049
1050 if (!sblock_other->header_error &&
b5d67f64
SB
1051 !sblock_other->checksum_error &&
1052 sblock_other->no_io_error_seen) {
ff023aac
SB
1053 if (sctx->is_dev_replace) {
1054 scrub_write_block_to_dev_replace(sblock_other);
114ab50d 1055 goto corrected_error;
ff023aac 1056 } else {
ff023aac 1057 ret = scrub_repair_block_from_good_copy(
114ab50d
ZL
1058 sblock_bad, sblock_other);
1059 if (!ret)
1060 goto corrected_error;
ff023aac 1061 }
b5d67f64
SB
1062 }
1063 }
a2de733c 1064
b968fed1
ZL
1065 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1066 goto did_not_correct_error;
ff023aac
SB
1067
1068 /*
ff023aac 1069 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1070 * repaired, continue by picking good copies of those pages.
1071 * Select the good pages from mirrors to rewrite bad pages from
1072 * the area to fix. Afterwards verify the checksum of the block
1073 * that is supposed to be repaired. This verification step is
1074 * only done for the purpose of statistic counting and for the
1075 * final scrub report, whether errors remain.
1076 * A perfect algorithm could make use of the checksum and try
1077 * all possible combinations of pages from the different mirrors
1078 * until the checksum verification succeeds. For example, when
1079 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1080 * of mirror #2 is readable but the final checksum test fails,
1081 * then the 2nd page of mirror #3 could be tried, whether now
01327610 1082 * the final checksum succeeds. But this would be a rare
b5d67f64
SB
1083 * exception and is therefore not implemented. At least it is
1084 * avoided that the good copy is overwritten.
1085 * A more useful improvement would be to pick the sectors
1086 * without I/O error based on sector sizes (512 bytes on legacy
1087 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1088 * mirror could be repaired by taking 512 byte of a different
1089 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1090 * area are unreadable.
a2de733c 1091 */
b5d67f64 1092 success = 1;
b968fed1
ZL
1093 for (page_num = 0; page_num < sblock_bad->page_count;
1094 page_num++) {
7a9e9987 1095 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b968fed1 1096 struct scrub_block *sblock_other = NULL;
b5d67f64 1097
b968fed1
ZL
1098 /* skip no-io-error page in scrub */
1099 if (!page_bad->io_error && !sctx->is_dev_replace)
a2de733c 1100 continue;
b5d67f64 1101
4759700a
LB
1102 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1103 /*
1104 * In case of dev replace, if raid56 rebuild process
1105 * didn't work out correct data, then copy the content
1106 * in sblock_bad to make sure target device is identical
1107 * to source device, instead of writing garbage data in
1108 * sblock_for_recheck array to target device.
1109 */
1110 sblock_other = NULL;
1111 } else if (page_bad->io_error) {
1112 /* try to find no-io-error page in mirrors */
b968fed1
ZL
1113 for (mirror_index = 0;
1114 mirror_index < BTRFS_MAX_MIRRORS &&
1115 sblocks_for_recheck[mirror_index].page_count > 0;
1116 mirror_index++) {
1117 if (!sblocks_for_recheck[mirror_index].
1118 pagev[page_num]->io_error) {
1119 sblock_other = sblocks_for_recheck +
1120 mirror_index;
1121 break;
b5d67f64
SB
1122 }
1123 }
b968fed1
ZL
1124 if (!sblock_other)
1125 success = 0;
96e36920 1126 }
a2de733c 1127
b968fed1
ZL
1128 if (sctx->is_dev_replace) {
1129 /*
1130 * did not find a mirror to fetch the page
1131 * from. scrub_write_page_to_dev_replace()
1132 * handles this case (page->io_error), by
1133 * filling the block with zeros before
1134 * submitting the write request
1135 */
1136 if (!sblock_other)
1137 sblock_other = sblock_bad;
1138
1139 if (scrub_write_page_to_dev_replace(sblock_other,
1140 page_num) != 0) {
e37abe97 1141 atomic64_inc(
0b246afa 1142 &fs_info->dev_replace.num_write_errors);
b968fed1
ZL
1143 success = 0;
1144 }
1145 } else if (sblock_other) {
1146 ret = scrub_repair_page_from_good_copy(sblock_bad,
1147 sblock_other,
1148 page_num, 0);
1149 if (0 == ret)
1150 page_bad->io_error = 0;
1151 else
1152 success = 0;
b5d67f64 1153 }
a2de733c 1154 }
a2de733c 1155
b968fed1 1156 if (success && !sctx->is_dev_replace) {
b5d67f64
SB
1157 if (is_metadata || have_csum) {
1158 /*
1159 * need to verify the checksum now that all
1160 * sectors on disk are repaired (the write
1161 * request for data to be repaired is on its way).
1162 * Just be lazy and use scrub_recheck_block()
1163 * which re-reads the data before the checksum
1164 * is verified, but most likely the data comes out
1165 * of the page cache.
1166 */
affe4a5a 1167 scrub_recheck_block(fs_info, sblock_bad, 1);
34f5c8e9 1168 if (!sblock_bad->header_error &&
b5d67f64
SB
1169 !sblock_bad->checksum_error &&
1170 sblock_bad->no_io_error_seen)
1171 goto corrected_error;
1172 else
1173 goto did_not_correct_error;
1174 } else {
1175corrected_error:
d9d181c1
SB
1176 spin_lock(&sctx->stat_lock);
1177 sctx->stat.corrected_errors++;
5a6ac9ea 1178 sblock_to_check->data_corrected = 1;
d9d181c1 1179 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1180 btrfs_err_rl_in_rcu(fs_info,
1181 "fixed up error at logical %llu on dev %s",
c1c9ff7c 1182 logical, rcu_str_deref(dev->name));
8628764e 1183 }
b5d67f64
SB
1184 } else {
1185did_not_correct_error:
d9d181c1
SB
1186 spin_lock(&sctx->stat_lock);
1187 sctx->stat.uncorrectable_errors++;
1188 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1189 btrfs_err_rl_in_rcu(fs_info,
1190 "unable to fixup (regular) error at logical %llu on dev %s",
c1c9ff7c 1191 logical, rcu_str_deref(dev->name));
96e36920 1192 }
a2de733c 1193
b5d67f64
SB
1194out:
1195 if (sblocks_for_recheck) {
1196 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1197 mirror_index++) {
1198 struct scrub_block *sblock = sblocks_for_recheck +
1199 mirror_index;
af8e2d1d 1200 struct scrub_recover *recover;
b5d67f64
SB
1201 int page_index;
1202
7a9e9987
SB
1203 for (page_index = 0; page_index < sblock->page_count;
1204 page_index++) {
1205 sblock->pagev[page_index]->sblock = NULL;
af8e2d1d
MX
1206 recover = sblock->pagev[page_index]->recover;
1207 if (recover) {
e501bfe3 1208 scrub_put_recover(fs_info, recover);
af8e2d1d
MX
1209 sblock->pagev[page_index]->recover =
1210 NULL;
1211 }
7a9e9987
SB
1212 scrub_page_put(sblock->pagev[page_index]);
1213 }
b5d67f64
SB
1214 }
1215 kfree(sblocks_for_recheck);
1216 }
a2de733c 1217
28d70e23 1218 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
7c3c7cb9 1219 memalloc_nofs_restore(nofs_flag);
28d70e23
QW
1220 if (ret < 0)
1221 return ret;
b5d67f64
SB
1222 return 0;
1223}
a2de733c 1224
8e5cfb55 1225static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
af8e2d1d 1226{
10f11900
ZL
1227 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1228 return 2;
1229 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1230 return 3;
1231 else
af8e2d1d 1232 return (int)bbio->num_stripes;
af8e2d1d
MX
1233}
1234
10f11900
ZL
1235static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1236 u64 *raid_map,
af8e2d1d
MX
1237 u64 mapped_length,
1238 int nstripes, int mirror,
1239 int *stripe_index,
1240 u64 *stripe_offset)
1241{
1242 int i;
1243
ffe2d203 1244 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
af8e2d1d
MX
1245 /* RAID5/6 */
1246 for (i = 0; i < nstripes; i++) {
1247 if (raid_map[i] == RAID6_Q_STRIPE ||
1248 raid_map[i] == RAID5_P_STRIPE)
1249 continue;
1250
1251 if (logical >= raid_map[i] &&
1252 logical < raid_map[i] + mapped_length)
1253 break;
1254 }
1255
1256 *stripe_index = i;
1257 *stripe_offset = logical - raid_map[i];
1258 } else {
1259 /* The other RAID type */
1260 *stripe_index = mirror;
1261 *stripe_offset = 0;
1262 }
1263}
1264
be50a8dd 1265static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
b5d67f64
SB
1266 struct scrub_block *sblocks_for_recheck)
1267{
be50a8dd 1268 struct scrub_ctx *sctx = original_sblock->sctx;
fb456252 1269 struct btrfs_fs_info *fs_info = sctx->fs_info;
be50a8dd
ZL
1270 u64 length = original_sblock->page_count * PAGE_SIZE;
1271 u64 logical = original_sblock->pagev[0]->logical;
4734b7ed
ZL
1272 u64 generation = original_sblock->pagev[0]->generation;
1273 u64 flags = original_sblock->pagev[0]->flags;
1274 u64 have_csum = original_sblock->pagev[0]->have_csum;
af8e2d1d
MX
1275 struct scrub_recover *recover;
1276 struct btrfs_bio *bbio;
af8e2d1d
MX
1277 u64 sublen;
1278 u64 mapped_length;
1279 u64 stripe_offset;
1280 int stripe_index;
be50a8dd 1281 int page_index = 0;
b5d67f64 1282 int mirror_index;
af8e2d1d 1283 int nmirrors;
b5d67f64
SB
1284 int ret;
1285
1286 /*
57019345 1287 * note: the two members refs and outstanding_pages
b5d67f64
SB
1288 * are not used (and not set) in the blocks that are used for
1289 * the recheck procedure
1290 */
1291
b5d67f64 1292 while (length > 0) {
af8e2d1d
MX
1293 sublen = min_t(u64, length, PAGE_SIZE);
1294 mapped_length = sublen;
1295 bbio = NULL;
a2de733c 1296
b5d67f64
SB
1297 /*
1298 * with a length of PAGE_SIZE, each returned stripe
1299 * represents one mirror
1300 */
e501bfe3 1301 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 1302 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
825ad4c9 1303 logical, &mapped_length, &bbio);
b5d67f64 1304 if (ret || !bbio || mapped_length < sublen) {
6e9606d2 1305 btrfs_put_bbio(bbio);
e501bfe3 1306 btrfs_bio_counter_dec(fs_info);
b5d67f64
SB
1307 return -EIO;
1308 }
a2de733c 1309
af8e2d1d
MX
1310 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1311 if (!recover) {
6e9606d2 1312 btrfs_put_bbio(bbio);
e501bfe3 1313 btrfs_bio_counter_dec(fs_info);
af8e2d1d
MX
1314 return -ENOMEM;
1315 }
1316
6f615018 1317 refcount_set(&recover->refs, 1);
af8e2d1d 1318 recover->bbio = bbio;
af8e2d1d
MX
1319 recover->map_length = mapped_length;
1320
24731149 1321 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
af8e2d1d 1322
be50a8dd 1323 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
10f11900 1324
af8e2d1d 1325 for (mirror_index = 0; mirror_index < nmirrors;
b5d67f64
SB
1326 mirror_index++) {
1327 struct scrub_block *sblock;
1328 struct scrub_page *page;
1329
b5d67f64 1330 sblock = sblocks_for_recheck + mirror_index;
7a9e9987 1331 sblock->sctx = sctx;
4734b7ed 1332
7a9e9987
SB
1333 page = kzalloc(sizeof(*page), GFP_NOFS);
1334 if (!page) {
1335leave_nomem:
d9d181c1
SB
1336 spin_lock(&sctx->stat_lock);
1337 sctx->stat.malloc_errors++;
1338 spin_unlock(&sctx->stat_lock);
e501bfe3 1339 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1340 return -ENOMEM;
1341 }
7a9e9987
SB
1342 scrub_page_get(page);
1343 sblock->pagev[page_index] = page;
4734b7ed
ZL
1344 page->sblock = sblock;
1345 page->flags = flags;
1346 page->generation = generation;
7a9e9987 1347 page->logical = logical;
4734b7ed
ZL
1348 page->have_csum = have_csum;
1349 if (have_csum)
1350 memcpy(page->csum,
1351 original_sblock->pagev[0]->csum,
1352 sctx->csum_size);
af8e2d1d 1353
10f11900
ZL
1354 scrub_stripe_index_and_offset(logical,
1355 bbio->map_type,
1356 bbio->raid_map,
af8e2d1d 1357 mapped_length,
e34c330d
ZL
1358 bbio->num_stripes -
1359 bbio->num_tgtdevs,
af8e2d1d
MX
1360 mirror_index,
1361 &stripe_index,
1362 &stripe_offset);
1363 page->physical = bbio->stripes[stripe_index].physical +
1364 stripe_offset;
1365 page->dev = bbio->stripes[stripe_index].dev;
1366
ff023aac
SB
1367 BUG_ON(page_index >= original_sblock->page_count);
1368 page->physical_for_dev_replace =
1369 original_sblock->pagev[page_index]->
1370 physical_for_dev_replace;
7a9e9987 1371 /* for missing devices, dev->bdev is NULL */
7a9e9987 1372 page->mirror_num = mirror_index + 1;
b5d67f64 1373 sblock->page_count++;
7a9e9987
SB
1374 page->page = alloc_page(GFP_NOFS);
1375 if (!page->page)
1376 goto leave_nomem;
af8e2d1d
MX
1377
1378 scrub_get_recover(recover);
1379 page->recover = recover;
b5d67f64 1380 }
e501bfe3 1381 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1382 length -= sublen;
1383 logical += sublen;
1384 page_index++;
1385 }
1386
1387 return 0;
96e36920
ID
1388}
1389
4246a0b6 1390static void scrub_bio_wait_endio(struct bio *bio)
af8e2d1d 1391{
b4ff5ad7 1392 complete(bio->bi_private);
af8e2d1d
MX
1393}
1394
af8e2d1d
MX
1395static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1396 struct bio *bio,
1397 struct scrub_page *page)
1398{
b4ff5ad7 1399 DECLARE_COMPLETION_ONSTACK(done);
af8e2d1d 1400 int ret;
762221f0 1401 int mirror_num;
af8e2d1d 1402
af8e2d1d
MX
1403 bio->bi_iter.bi_sector = page->logical >> 9;
1404 bio->bi_private = &done;
1405 bio->bi_end_io = scrub_bio_wait_endio;
1406
762221f0 1407 mirror_num = page->sblock->pagev[0]->mirror_num;
2ff7e61e 1408 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
af8e2d1d 1409 page->recover->map_length,
762221f0 1410 mirror_num, 0);
af8e2d1d
MX
1411 if (ret)
1412 return ret;
1413
b4ff5ad7
LB
1414 wait_for_completion_io(&done);
1415 return blk_status_to_errno(bio->bi_status);
af8e2d1d
MX
1416}
1417
6ca1765b
LB
1418static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1419 struct scrub_block *sblock)
1420{
1421 struct scrub_page *first_page = sblock->pagev[0];
1422 struct bio *bio;
1423 int page_num;
1424
1425 /* All pages in sblock belong to the same stripe on the same device. */
1426 ASSERT(first_page->dev);
1427 if (!first_page->dev->bdev)
1428 goto out;
1429
1430 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1431 bio_set_dev(bio, first_page->dev->bdev);
1432
1433 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1434 struct scrub_page *page = sblock->pagev[page_num];
1435
1436 WARN_ON(!page->page);
1437 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1438 }
1439
1440 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1441 bio_put(bio);
1442 goto out;
1443 }
1444
1445 bio_put(bio);
1446
1447 scrub_recheck_block_checksum(sblock);
1448
1449 return;
1450out:
1451 for (page_num = 0; page_num < sblock->page_count; page_num++)
1452 sblock->pagev[page_num]->io_error = 1;
1453
1454 sblock->no_io_error_seen = 0;
1455}
1456
b5d67f64
SB
1457/*
1458 * this function will check the on disk data for checksum errors, header
1459 * errors and read I/O errors. If any I/O errors happen, the exact pages
1460 * which are errored are marked as being bad. The goal is to enable scrub
1461 * to take those pages that are not errored from all the mirrors so that
1462 * the pages that are errored in the just handled mirror can be repaired.
1463 */
34f5c8e9 1464static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
1465 struct scrub_block *sblock,
1466 int retry_failed_mirror)
96e36920 1467{
b5d67f64 1468 int page_num;
96e36920 1469
b5d67f64 1470 sblock->no_io_error_seen = 1;
96e36920 1471
6ca1765b
LB
1472 /* short cut for raid56 */
1473 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1474 return scrub_recheck_block_on_raid56(fs_info, sblock);
1475
b5d67f64
SB
1476 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1477 struct bio *bio;
7a9e9987 1478 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1479
442a4f63 1480 if (page->dev->bdev == NULL) {
ea9947b4
SB
1481 page->io_error = 1;
1482 sblock->no_io_error_seen = 0;
1483 continue;
1484 }
1485
7a9e9987 1486 WARN_ON(!page->page);
c5e4c3d7 1487 bio = btrfs_io_bio_alloc(1);
74d46992 1488 bio_set_dev(bio, page->dev->bdev);
b5d67f64 1489
34f5c8e9 1490 bio_add_page(bio, page->page, PAGE_SIZE, 0);
6ca1765b
LB
1491 bio->bi_iter.bi_sector = page->physical >> 9;
1492 bio->bi_opf = REQ_OP_READ;
af8e2d1d 1493
6ca1765b
LB
1494 if (btrfsic_submit_bio_wait(bio)) {
1495 page->io_error = 1;
1496 sblock->no_io_error_seen = 0;
af8e2d1d 1497 }
33879d45 1498
b5d67f64
SB
1499 bio_put(bio);
1500 }
96e36920 1501
b5d67f64 1502 if (sblock->no_io_error_seen)
ba7cf988 1503 scrub_recheck_block_checksum(sblock);
a2de733c
AJ
1504}
1505
17a9be2f
MX
1506static inline int scrub_check_fsid(u8 fsid[],
1507 struct scrub_page *spage)
1508{
1509 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1510 int ret;
1511
44880fdc 1512 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
17a9be2f
MX
1513 return !ret;
1514}
1515
ba7cf988 1516static void scrub_recheck_block_checksum(struct scrub_block *sblock)
a2de733c 1517{
ba7cf988
ZL
1518 sblock->header_error = 0;
1519 sblock->checksum_error = 0;
1520 sblock->generation_error = 0;
b5d67f64 1521
ba7cf988
ZL
1522 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1523 scrub_checksum_data(sblock);
1524 else
1525 scrub_checksum_tree_block(sblock);
a2de733c
AJ
1526}
1527
b5d67f64 1528static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 1529 struct scrub_block *sblock_good)
b5d67f64
SB
1530{
1531 int page_num;
1532 int ret = 0;
96e36920 1533
b5d67f64
SB
1534 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1535 int ret_sub;
96e36920 1536
b5d67f64
SB
1537 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1538 sblock_good,
114ab50d 1539 page_num, 1);
b5d67f64
SB
1540 if (ret_sub)
1541 ret = ret_sub;
a2de733c 1542 }
b5d67f64
SB
1543
1544 return ret;
1545}
1546
1547static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1548 struct scrub_block *sblock_good,
1549 int page_num, int force_write)
1550{
7a9e9987
SB
1551 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1552 struct scrub_page *page_good = sblock_good->pagev[page_num];
0b246afa 1553 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
b5d67f64 1554
7a9e9987
SB
1555 BUG_ON(page_bad->page == NULL);
1556 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1557 if (force_write || sblock_bad->header_error ||
1558 sblock_bad->checksum_error || page_bad->io_error) {
1559 struct bio *bio;
1560 int ret;
b5d67f64 1561
ff023aac 1562 if (!page_bad->dev->bdev) {
0b246afa 1563 btrfs_warn_rl(fs_info,
5d163e0e 1564 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
ff023aac
SB
1565 return -EIO;
1566 }
1567
c5e4c3d7 1568 bio = btrfs_io_bio_alloc(1);
74d46992 1569 bio_set_dev(bio, page_bad->dev->bdev);
4f024f37 1570 bio->bi_iter.bi_sector = page_bad->physical >> 9;
ebcc3263 1571 bio->bi_opf = REQ_OP_WRITE;
b5d67f64
SB
1572
1573 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1574 if (PAGE_SIZE != ret) {
1575 bio_put(bio);
1576 return -EIO;
13db62b7 1577 }
b5d67f64 1578
4e49ea4a 1579 if (btrfsic_submit_bio_wait(bio)) {
442a4f63
SB
1580 btrfs_dev_stat_inc_and_print(page_bad->dev,
1581 BTRFS_DEV_STAT_WRITE_ERRS);
e37abe97 1582 atomic64_inc(&fs_info->dev_replace.num_write_errors);
442a4f63
SB
1583 bio_put(bio);
1584 return -EIO;
1585 }
b5d67f64 1586 bio_put(bio);
a2de733c
AJ
1587 }
1588
b5d67f64
SB
1589 return 0;
1590}
1591
ff023aac
SB
1592static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1593{
0b246afa 1594 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
ff023aac
SB
1595 int page_num;
1596
5a6ac9ea
MX
1597 /*
1598 * This block is used for the check of the parity on the source device,
1599 * so the data needn't be written into the destination device.
1600 */
1601 if (sblock->sparity)
1602 return;
1603
ff023aac
SB
1604 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1605 int ret;
1606
1607 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1608 if (ret)
e37abe97 1609 atomic64_inc(&fs_info->dev_replace.num_write_errors);
ff023aac
SB
1610 }
1611}
1612
1613static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1614 int page_num)
1615{
1616 struct scrub_page *spage = sblock->pagev[page_num];
1617
1618 BUG_ON(spage->page == NULL);
1619 if (spage->io_error) {
1620 void *mapped_buffer = kmap_atomic(spage->page);
1621
619a9742 1622 clear_page(mapped_buffer);
ff023aac
SB
1623 flush_dcache_page(spage->page);
1624 kunmap_atomic(mapped_buffer);
1625 }
1626 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1627}
1628
1629static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1630 struct scrub_page *spage)
1631{
ff023aac
SB
1632 struct scrub_bio *sbio;
1633 int ret;
1634
3fb99303 1635 mutex_lock(&sctx->wr_lock);
ff023aac 1636again:
3fb99303
DS
1637 if (!sctx->wr_curr_bio) {
1638 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
58c4e173 1639 GFP_KERNEL);
3fb99303
DS
1640 if (!sctx->wr_curr_bio) {
1641 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1642 return -ENOMEM;
1643 }
3fb99303
DS
1644 sctx->wr_curr_bio->sctx = sctx;
1645 sctx->wr_curr_bio->page_count = 0;
ff023aac 1646 }
3fb99303 1647 sbio = sctx->wr_curr_bio;
ff023aac
SB
1648 if (sbio->page_count == 0) {
1649 struct bio *bio;
1650
1651 sbio->physical = spage->physical_for_dev_replace;
1652 sbio->logical = spage->logical;
3fb99303 1653 sbio->dev = sctx->wr_tgtdev;
ff023aac
SB
1654 bio = sbio->bio;
1655 if (!bio) {
c5e4c3d7 1656 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
ff023aac
SB
1657 sbio->bio = bio;
1658 }
1659
1660 bio->bi_private = sbio;
1661 bio->bi_end_io = scrub_wr_bio_end_io;
74d46992 1662 bio_set_dev(bio, sbio->dev->bdev);
4f024f37 1663 bio->bi_iter.bi_sector = sbio->physical >> 9;
ebcc3263 1664 bio->bi_opf = REQ_OP_WRITE;
4e4cbee9 1665 sbio->status = 0;
ff023aac
SB
1666 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1667 spage->physical_for_dev_replace ||
1668 sbio->logical + sbio->page_count * PAGE_SIZE !=
1669 spage->logical) {
1670 scrub_wr_submit(sctx);
1671 goto again;
1672 }
1673
1674 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1675 if (ret != PAGE_SIZE) {
1676 if (sbio->page_count < 1) {
1677 bio_put(sbio->bio);
1678 sbio->bio = NULL;
3fb99303 1679 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1680 return -EIO;
1681 }
1682 scrub_wr_submit(sctx);
1683 goto again;
1684 }
1685
1686 sbio->pagev[sbio->page_count] = spage;
1687 scrub_page_get(spage);
1688 sbio->page_count++;
3fb99303 1689 if (sbio->page_count == sctx->pages_per_wr_bio)
ff023aac 1690 scrub_wr_submit(sctx);
3fb99303 1691 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1692
1693 return 0;
1694}
1695
1696static void scrub_wr_submit(struct scrub_ctx *sctx)
1697{
ff023aac
SB
1698 struct scrub_bio *sbio;
1699
3fb99303 1700 if (!sctx->wr_curr_bio)
ff023aac
SB
1701 return;
1702
3fb99303
DS
1703 sbio = sctx->wr_curr_bio;
1704 sctx->wr_curr_bio = NULL;
74d46992 1705 WARN_ON(!sbio->bio->bi_disk);
ff023aac
SB
1706 scrub_pending_bio_inc(sctx);
1707 /* process all writes in a single worker thread. Then the block layer
1708 * orders the requests before sending them to the driver which
1709 * doubled the write performance on spinning disks when measured
1710 * with Linux 3.5 */
4e49ea4a 1711 btrfsic_submit_bio(sbio->bio);
ff023aac
SB
1712}
1713
4246a0b6 1714static void scrub_wr_bio_end_io(struct bio *bio)
ff023aac
SB
1715{
1716 struct scrub_bio *sbio = bio->bi_private;
fb456252 1717 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
ff023aac 1718
4e4cbee9 1719 sbio->status = bio->bi_status;
ff023aac
SB
1720 sbio->bio = bio;
1721
a0cac0ec 1722 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1723 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1724}
1725
1726static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1727{
1728 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1729 struct scrub_ctx *sctx = sbio->sctx;
1730 int i;
1731
1732 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
4e4cbee9 1733 if (sbio->status) {
ff023aac 1734 struct btrfs_dev_replace *dev_replace =
fb456252 1735 &sbio->sctx->fs_info->dev_replace;
ff023aac
SB
1736
1737 for (i = 0; i < sbio->page_count; i++) {
1738 struct scrub_page *spage = sbio->pagev[i];
1739
1740 spage->io_error = 1;
e37abe97 1741 atomic64_inc(&dev_replace->num_write_errors);
ff023aac
SB
1742 }
1743 }
1744
1745 for (i = 0; i < sbio->page_count; i++)
1746 scrub_page_put(sbio->pagev[i]);
1747
1748 bio_put(sbio->bio);
1749 kfree(sbio);
1750 scrub_pending_bio_dec(sctx);
1751}
1752
1753static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1754{
1755 u64 flags;
1756 int ret;
1757
ba7cf988
ZL
1758 /*
1759 * No need to initialize these stats currently,
1760 * because this function only use return value
1761 * instead of these stats value.
1762 *
1763 * Todo:
1764 * always use stats
1765 */
1766 sblock->header_error = 0;
1767 sblock->generation_error = 0;
1768 sblock->checksum_error = 0;
1769
7a9e9987
SB
1770 WARN_ON(sblock->page_count < 1);
1771 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1772 ret = 0;
1773 if (flags & BTRFS_EXTENT_FLAG_DATA)
1774 ret = scrub_checksum_data(sblock);
1775 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1776 ret = scrub_checksum_tree_block(sblock);
1777 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1778 (void)scrub_checksum_super(sblock);
1779 else
1780 WARN_ON(1);
1781 if (ret)
1782 scrub_handle_errored_block(sblock);
ff023aac
SB
1783
1784 return ret;
a2de733c
AJ
1785}
1786
b5d67f64 1787static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1788{
d9d181c1 1789 struct scrub_ctx *sctx = sblock->sctx;
d5178578
JT
1790 struct btrfs_fs_info *fs_info = sctx->fs_info;
1791 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a2de733c 1792 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1793 u8 *on_disk_csum;
1794 struct page *page;
1795 void *buffer;
b5d67f64
SB
1796 u64 len;
1797 int index;
a2de733c 1798
b5d67f64 1799 BUG_ON(sblock->page_count < 1);
7a9e9987 1800 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1801 return 0;
1802
d5178578
JT
1803 shash->tfm = fs_info->csum_shash;
1804 crypto_shash_init(shash);
1805
7a9e9987
SB
1806 on_disk_csum = sblock->pagev[0]->csum;
1807 page = sblock->pagev[0]->page;
9613bebb 1808 buffer = kmap_atomic(page);
b5d67f64 1809
25cc1226 1810 len = sctx->fs_info->sectorsize;
b5d67f64
SB
1811 index = 0;
1812 for (;;) {
1813 u64 l = min_t(u64, len, PAGE_SIZE);
1814
d5178578 1815 crypto_shash_update(shash, buffer, l);
9613bebb 1816 kunmap_atomic(buffer);
b5d67f64
SB
1817 len -= l;
1818 if (len == 0)
1819 break;
1820 index++;
1821 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1822 BUG_ON(!sblock->pagev[index]->page);
1823 page = sblock->pagev[index]->page;
9613bebb 1824 buffer = kmap_atomic(page);
b5d67f64
SB
1825 }
1826
d5178578 1827 crypto_shash_final(shash, csum);
d9d181c1 1828 if (memcmp(csum, on_disk_csum, sctx->csum_size))
ba7cf988 1829 sblock->checksum_error = 1;
a2de733c 1830
ba7cf988 1831 return sblock->checksum_error;
a2de733c
AJ
1832}
1833
b5d67f64 1834static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1835{
d9d181c1 1836 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1837 struct btrfs_header *h;
0b246afa 1838 struct btrfs_fs_info *fs_info = sctx->fs_info;
d5178578 1839 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
b5d67f64
SB
1840 u8 calculated_csum[BTRFS_CSUM_SIZE];
1841 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1842 struct page *page;
1843 void *mapped_buffer;
1844 u64 mapped_size;
1845 void *p;
b5d67f64
SB
1846 u64 len;
1847 int index;
1848
d5178578
JT
1849 shash->tfm = fs_info->csum_shash;
1850 crypto_shash_init(shash);
1851
b5d67f64 1852 BUG_ON(sblock->page_count < 1);
7a9e9987 1853 page = sblock->pagev[0]->page;
9613bebb 1854 mapped_buffer = kmap_atomic(page);
b5d67f64 1855 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1856 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1857
1858 /*
1859 * we don't use the getter functions here, as we
1860 * a) don't have an extent buffer and
1861 * b) the page is already kmapped
1862 */
3cae210f 1863 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
ba7cf988 1864 sblock->header_error = 1;
a2de733c 1865
ba7cf988
ZL
1866 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1867 sblock->header_error = 1;
1868 sblock->generation_error = 1;
1869 }
a2de733c 1870
17a9be2f 1871 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
ba7cf988 1872 sblock->header_error = 1;
a2de733c
AJ
1873
1874 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1875 BTRFS_UUID_SIZE))
ba7cf988 1876 sblock->header_error = 1;
a2de733c 1877
25cc1226 1878 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1879 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1880 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1881 index = 0;
1882 for (;;) {
1883 u64 l = min_t(u64, len, mapped_size);
1884
d5178578 1885 crypto_shash_update(shash, p, l);
9613bebb 1886 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1887 len -= l;
1888 if (len == 0)
1889 break;
1890 index++;
1891 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1892 BUG_ON(!sblock->pagev[index]->page);
1893 page = sblock->pagev[index]->page;
9613bebb 1894 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1895 mapped_size = PAGE_SIZE;
1896 p = mapped_buffer;
1897 }
1898
d5178578 1899 crypto_shash_final(shash, calculated_csum);
d9d181c1 1900 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
ba7cf988 1901 sblock->checksum_error = 1;
a2de733c 1902
ba7cf988 1903 return sblock->header_error || sblock->checksum_error;
a2de733c
AJ
1904}
1905
b5d67f64 1906static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1907{
1908 struct btrfs_super_block *s;
d9d181c1 1909 struct scrub_ctx *sctx = sblock->sctx;
d5178578
JT
1910 struct btrfs_fs_info *fs_info = sctx->fs_info;
1911 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
b5d67f64
SB
1912 u8 calculated_csum[BTRFS_CSUM_SIZE];
1913 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1914 struct page *page;
1915 void *mapped_buffer;
1916 u64 mapped_size;
1917 void *p;
442a4f63
SB
1918 int fail_gen = 0;
1919 int fail_cor = 0;
b5d67f64
SB
1920 u64 len;
1921 int index;
a2de733c 1922
d5178578
JT
1923 shash->tfm = fs_info->csum_shash;
1924 crypto_shash_init(shash);
1925
b5d67f64 1926 BUG_ON(sblock->page_count < 1);
7a9e9987 1927 page = sblock->pagev[0]->page;
9613bebb 1928 mapped_buffer = kmap_atomic(page);
b5d67f64 1929 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 1930 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 1931
3cae210f 1932 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 1933 ++fail_cor;
a2de733c 1934
3cae210f 1935 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 1936 ++fail_gen;
a2de733c 1937
17a9be2f 1938 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
442a4f63 1939 ++fail_cor;
a2de733c 1940
b5d67f64
SB
1941 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1942 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1943 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1944 index = 0;
1945 for (;;) {
1946 u64 l = min_t(u64, len, mapped_size);
1947
d5178578 1948 crypto_shash_update(shash, p, l);
9613bebb 1949 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1950 len -= l;
1951 if (len == 0)
1952 break;
1953 index++;
1954 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1955 BUG_ON(!sblock->pagev[index]->page);
1956 page = sblock->pagev[index]->page;
9613bebb 1957 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1958 mapped_size = PAGE_SIZE;
1959 p = mapped_buffer;
1960 }
1961
d5178578 1962 crypto_shash_final(shash, calculated_csum);
d9d181c1 1963 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 1964 ++fail_cor;
a2de733c 1965
442a4f63 1966 if (fail_cor + fail_gen) {
a2de733c
AJ
1967 /*
1968 * if we find an error in a super block, we just report it.
1969 * They will get written with the next transaction commit
1970 * anyway
1971 */
d9d181c1
SB
1972 spin_lock(&sctx->stat_lock);
1973 ++sctx->stat.super_errors;
1974 spin_unlock(&sctx->stat_lock);
442a4f63 1975 if (fail_cor)
7a9e9987 1976 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
1977 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1978 else
7a9e9987 1979 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 1980 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1981 }
1982
442a4f63 1983 return fail_cor + fail_gen;
a2de733c
AJ
1984}
1985
b5d67f64
SB
1986static void scrub_block_get(struct scrub_block *sblock)
1987{
186debd6 1988 refcount_inc(&sblock->refs);
b5d67f64
SB
1989}
1990
1991static void scrub_block_put(struct scrub_block *sblock)
1992{
186debd6 1993 if (refcount_dec_and_test(&sblock->refs)) {
b5d67f64
SB
1994 int i;
1995
5a6ac9ea
MX
1996 if (sblock->sparity)
1997 scrub_parity_put(sblock->sparity);
1998
b5d67f64 1999 for (i = 0; i < sblock->page_count; i++)
7a9e9987 2000 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
2001 kfree(sblock);
2002 }
2003}
2004
7a9e9987
SB
2005static void scrub_page_get(struct scrub_page *spage)
2006{
57019345 2007 atomic_inc(&spage->refs);
7a9e9987
SB
2008}
2009
2010static void scrub_page_put(struct scrub_page *spage)
2011{
57019345 2012 if (atomic_dec_and_test(&spage->refs)) {
7a9e9987
SB
2013 if (spage->page)
2014 __free_page(spage->page);
2015 kfree(spage);
2016 }
2017}
2018
d9d181c1 2019static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
2020{
2021 struct scrub_bio *sbio;
2022
d9d181c1 2023 if (sctx->curr == -1)
1623edeb 2024 return;
a2de733c 2025
d9d181c1
SB
2026 sbio = sctx->bios[sctx->curr];
2027 sctx->curr = -1;
b6bfebc1 2028 scrub_pending_bio_inc(sctx);
4e49ea4a 2029 btrfsic_submit_bio(sbio->bio);
a2de733c
AJ
2030}
2031
ff023aac
SB
2032static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2033 struct scrub_page *spage)
a2de733c 2034{
b5d67f64 2035 struct scrub_block *sblock = spage->sblock;
a2de733c 2036 struct scrub_bio *sbio;
69f4cb52 2037 int ret;
a2de733c
AJ
2038
2039again:
2040 /*
2041 * grab a fresh bio or wait for one to become available
2042 */
d9d181c1
SB
2043 while (sctx->curr == -1) {
2044 spin_lock(&sctx->list_lock);
2045 sctx->curr = sctx->first_free;
2046 if (sctx->curr != -1) {
2047 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2048 sctx->bios[sctx->curr]->next_free = -1;
2049 sctx->bios[sctx->curr]->page_count = 0;
2050 spin_unlock(&sctx->list_lock);
a2de733c 2051 } else {
d9d181c1
SB
2052 spin_unlock(&sctx->list_lock);
2053 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
2054 }
2055 }
d9d181c1 2056 sbio = sctx->bios[sctx->curr];
b5d67f64 2057 if (sbio->page_count == 0) {
69f4cb52
AJ
2058 struct bio *bio;
2059
b5d67f64
SB
2060 sbio->physical = spage->physical;
2061 sbio->logical = spage->logical;
a36cf8b8 2062 sbio->dev = spage->dev;
b5d67f64
SB
2063 bio = sbio->bio;
2064 if (!bio) {
c5e4c3d7 2065 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
b5d67f64
SB
2066 sbio->bio = bio;
2067 }
69f4cb52
AJ
2068
2069 bio->bi_private = sbio;
2070 bio->bi_end_io = scrub_bio_end_io;
74d46992 2071 bio_set_dev(bio, sbio->dev->bdev);
4f024f37 2072 bio->bi_iter.bi_sector = sbio->physical >> 9;
ebcc3263 2073 bio->bi_opf = REQ_OP_READ;
4e4cbee9 2074 sbio->status = 0;
b5d67f64
SB
2075 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2076 spage->physical ||
2077 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
2078 spage->logical ||
2079 sbio->dev != spage->dev) {
d9d181c1 2080 scrub_submit(sctx);
a2de733c
AJ
2081 goto again;
2082 }
69f4cb52 2083
b5d67f64
SB
2084 sbio->pagev[sbio->page_count] = spage;
2085 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2086 if (ret != PAGE_SIZE) {
2087 if (sbio->page_count < 1) {
2088 bio_put(sbio->bio);
2089 sbio->bio = NULL;
2090 return -EIO;
2091 }
d9d181c1 2092 scrub_submit(sctx);
69f4cb52
AJ
2093 goto again;
2094 }
2095
ff023aac 2096 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
2097 atomic_inc(&sblock->outstanding_pages);
2098 sbio->page_count++;
ff023aac 2099 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 2100 scrub_submit(sctx);
b5d67f64
SB
2101
2102 return 0;
2103}
2104
22365979 2105static void scrub_missing_raid56_end_io(struct bio *bio)
73ff61db
OS
2106{
2107 struct scrub_block *sblock = bio->bi_private;
fb456252 2108 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
73ff61db 2109
4e4cbee9 2110 if (bio->bi_status)
73ff61db
OS
2111 sblock->no_io_error_seen = 0;
2112
4673272f
ST
2113 bio_put(bio);
2114
73ff61db
OS
2115 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2116}
2117
2118static void scrub_missing_raid56_worker(struct btrfs_work *work)
2119{
2120 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2121 struct scrub_ctx *sctx = sblock->sctx;
0b246afa 2122 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2123 u64 logical;
2124 struct btrfs_device *dev;
2125
73ff61db
OS
2126 logical = sblock->pagev[0]->logical;
2127 dev = sblock->pagev[0]->dev;
2128
affe4a5a 2129 if (sblock->no_io_error_seen)
ba7cf988 2130 scrub_recheck_block_checksum(sblock);
73ff61db
OS
2131
2132 if (!sblock->no_io_error_seen) {
2133 spin_lock(&sctx->stat_lock);
2134 sctx->stat.read_errors++;
2135 spin_unlock(&sctx->stat_lock);
0b246afa 2136 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2137 "IO error rebuilding logical %llu for dev %s",
73ff61db
OS
2138 logical, rcu_str_deref(dev->name));
2139 } else if (sblock->header_error || sblock->checksum_error) {
2140 spin_lock(&sctx->stat_lock);
2141 sctx->stat.uncorrectable_errors++;
2142 spin_unlock(&sctx->stat_lock);
0b246afa 2143 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2144 "failed to rebuild valid logical %llu for dev %s",
73ff61db
OS
2145 logical, rcu_str_deref(dev->name));
2146 } else {
2147 scrub_write_block_to_dev_replace(sblock);
2148 }
2149
2073c4c2 2150 if (sctx->is_dev_replace && sctx->flush_all_writes) {
3fb99303 2151 mutex_lock(&sctx->wr_lock);
73ff61db 2152 scrub_wr_submit(sctx);
3fb99303 2153 mutex_unlock(&sctx->wr_lock);
73ff61db
OS
2154 }
2155
57d4f0b8 2156 scrub_block_put(sblock);
73ff61db
OS
2157 scrub_pending_bio_dec(sctx);
2158}
2159
2160static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2161{
2162 struct scrub_ctx *sctx = sblock->sctx;
fb456252 2163 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2164 u64 length = sblock->page_count * PAGE_SIZE;
2165 u64 logical = sblock->pagev[0]->logical;
f1fee653 2166 struct btrfs_bio *bbio = NULL;
73ff61db
OS
2167 struct bio *bio;
2168 struct btrfs_raid_bio *rbio;
2169 int ret;
2170 int i;
2171
ae6529c3 2172 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 2173 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
825ad4c9 2174 &length, &bbio);
73ff61db
OS
2175 if (ret || !bbio || !bbio->raid_map)
2176 goto bbio_out;
2177
2178 if (WARN_ON(!sctx->is_dev_replace ||
2179 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2180 /*
2181 * We shouldn't be scrubbing a missing device. Even for dev
2182 * replace, we should only get here for RAID 5/6. We either
2183 * managed to mount something with no mirrors remaining or
2184 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2185 */
2186 goto bbio_out;
2187 }
2188
c5e4c3d7 2189 bio = btrfs_io_bio_alloc(0);
73ff61db
OS
2190 bio->bi_iter.bi_sector = logical >> 9;
2191 bio->bi_private = sblock;
2192 bio->bi_end_io = scrub_missing_raid56_end_io;
2193
2ff7e61e 2194 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
73ff61db
OS
2195 if (!rbio)
2196 goto rbio_out;
2197
2198 for (i = 0; i < sblock->page_count; i++) {
2199 struct scrub_page *spage = sblock->pagev[i];
2200
2201 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2202 }
2203
a0cac0ec 2204 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
73ff61db
OS
2205 scrub_block_get(sblock);
2206 scrub_pending_bio_inc(sctx);
2207 raid56_submit_missing_rbio(rbio);
2208 return;
2209
2210rbio_out:
2211 bio_put(bio);
2212bbio_out:
ae6529c3 2213 btrfs_bio_counter_dec(fs_info);
73ff61db
OS
2214 btrfs_put_bbio(bbio);
2215 spin_lock(&sctx->stat_lock);
2216 sctx->stat.malloc_errors++;
2217 spin_unlock(&sctx->stat_lock);
2218}
2219
d9d181c1 2220static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2221 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
2222 u64 gen, int mirror_num, u8 *csum, int force,
2223 u64 physical_for_dev_replace)
b5d67f64
SB
2224{
2225 struct scrub_block *sblock;
2226 int index;
2227
58c4e173 2228 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
b5d67f64 2229 if (!sblock) {
d9d181c1
SB
2230 spin_lock(&sctx->stat_lock);
2231 sctx->stat.malloc_errors++;
2232 spin_unlock(&sctx->stat_lock);
b5d67f64 2233 return -ENOMEM;
a2de733c 2234 }
b5d67f64 2235
7a9e9987
SB
2236 /* one ref inside this function, plus one for each page added to
2237 * a bio later on */
186debd6 2238 refcount_set(&sblock->refs, 1);
d9d181c1 2239 sblock->sctx = sctx;
b5d67f64
SB
2240 sblock->no_io_error_seen = 1;
2241
2242 for (index = 0; len > 0; index++) {
7a9e9987 2243 struct scrub_page *spage;
b5d67f64
SB
2244 u64 l = min_t(u64, len, PAGE_SIZE);
2245
58c4e173 2246 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
7a9e9987
SB
2247 if (!spage) {
2248leave_nomem:
d9d181c1
SB
2249 spin_lock(&sctx->stat_lock);
2250 sctx->stat.malloc_errors++;
2251 spin_unlock(&sctx->stat_lock);
7a9e9987 2252 scrub_block_put(sblock);
b5d67f64
SB
2253 return -ENOMEM;
2254 }
7a9e9987
SB
2255 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2256 scrub_page_get(spage);
2257 sblock->pagev[index] = spage;
b5d67f64 2258 spage->sblock = sblock;
a36cf8b8 2259 spage->dev = dev;
b5d67f64
SB
2260 spage->flags = flags;
2261 spage->generation = gen;
2262 spage->logical = logical;
2263 spage->physical = physical;
ff023aac 2264 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2265 spage->mirror_num = mirror_num;
2266 if (csum) {
2267 spage->have_csum = 1;
d9d181c1 2268 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2269 } else {
2270 spage->have_csum = 0;
2271 }
2272 sblock->page_count++;
58c4e173 2273 spage->page = alloc_page(GFP_KERNEL);
7a9e9987
SB
2274 if (!spage->page)
2275 goto leave_nomem;
b5d67f64
SB
2276 len -= l;
2277 logical += l;
2278 physical += l;
ff023aac 2279 physical_for_dev_replace += l;
b5d67f64
SB
2280 }
2281
7a9e9987 2282 WARN_ON(sblock->page_count == 0);
e6e674bd 2283 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
73ff61db
OS
2284 /*
2285 * This case should only be hit for RAID 5/6 device replace. See
2286 * the comment in scrub_missing_raid56_pages() for details.
2287 */
2288 scrub_missing_raid56_pages(sblock);
2289 } else {
2290 for (index = 0; index < sblock->page_count; index++) {
2291 struct scrub_page *spage = sblock->pagev[index];
2292 int ret;
1bc87793 2293
73ff61db
OS
2294 ret = scrub_add_page_to_rd_bio(sctx, spage);
2295 if (ret) {
2296 scrub_block_put(sblock);
2297 return ret;
2298 }
b5d67f64 2299 }
a2de733c 2300
73ff61db
OS
2301 if (force)
2302 scrub_submit(sctx);
2303 }
a2de733c 2304
b5d67f64
SB
2305 /* last one frees, either here or in bio completion for last page */
2306 scrub_block_put(sblock);
a2de733c
AJ
2307 return 0;
2308}
2309
4246a0b6 2310static void scrub_bio_end_io(struct bio *bio)
b5d67f64
SB
2311{
2312 struct scrub_bio *sbio = bio->bi_private;
fb456252 2313 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
b5d67f64 2314
4e4cbee9 2315 sbio->status = bio->bi_status;
b5d67f64
SB
2316 sbio->bio = bio;
2317
0339ef2f 2318 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2319}
2320
2321static void scrub_bio_end_io_worker(struct btrfs_work *work)
2322{
2323 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2324 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2325 int i;
2326
ff023aac 2327 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
4e4cbee9 2328 if (sbio->status) {
b5d67f64
SB
2329 for (i = 0; i < sbio->page_count; i++) {
2330 struct scrub_page *spage = sbio->pagev[i];
2331
2332 spage->io_error = 1;
2333 spage->sblock->no_io_error_seen = 0;
2334 }
2335 }
2336
2337 /* now complete the scrub_block items that have all pages completed */
2338 for (i = 0; i < sbio->page_count; i++) {
2339 struct scrub_page *spage = sbio->pagev[i];
2340 struct scrub_block *sblock = spage->sblock;
2341
2342 if (atomic_dec_and_test(&sblock->outstanding_pages))
2343 scrub_block_complete(sblock);
2344 scrub_block_put(sblock);
2345 }
2346
b5d67f64
SB
2347 bio_put(sbio->bio);
2348 sbio->bio = NULL;
d9d181c1
SB
2349 spin_lock(&sctx->list_lock);
2350 sbio->next_free = sctx->first_free;
2351 sctx->first_free = sbio->index;
2352 spin_unlock(&sctx->list_lock);
ff023aac 2353
2073c4c2 2354 if (sctx->is_dev_replace && sctx->flush_all_writes) {
3fb99303 2355 mutex_lock(&sctx->wr_lock);
ff023aac 2356 scrub_wr_submit(sctx);
3fb99303 2357 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
2358 }
2359
b6bfebc1 2360 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2361}
2362
5a6ac9ea
MX
2363static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2364 unsigned long *bitmap,
2365 u64 start, u64 len)
2366{
972d7219 2367 u64 offset;
7736b0a4
DS
2368 u64 nsectors64;
2369 u32 nsectors;
da17066c 2370 int sectorsize = sparity->sctx->fs_info->sectorsize;
5a6ac9ea
MX
2371
2372 if (len >= sparity->stripe_len) {
2373 bitmap_set(bitmap, 0, sparity->nsectors);
2374 return;
2375 }
2376
2377 start -= sparity->logic_start;
972d7219
LB
2378 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2379 offset = div_u64(offset, sectorsize);
7736b0a4
DS
2380 nsectors64 = div_u64(len, sectorsize);
2381
2382 ASSERT(nsectors64 < UINT_MAX);
2383 nsectors = (u32)nsectors64;
5a6ac9ea
MX
2384
2385 if (offset + nsectors <= sparity->nsectors) {
2386 bitmap_set(bitmap, offset, nsectors);
2387 return;
2388 }
2389
2390 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2391 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2392}
2393
2394static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2395 u64 start, u64 len)
2396{
2397 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2398}
2399
2400static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2401 u64 start, u64 len)
2402{
2403 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2404}
2405
b5d67f64
SB
2406static void scrub_block_complete(struct scrub_block *sblock)
2407{
5a6ac9ea
MX
2408 int corrupted = 0;
2409
ff023aac 2410 if (!sblock->no_io_error_seen) {
5a6ac9ea 2411 corrupted = 1;
b5d67f64 2412 scrub_handle_errored_block(sblock);
ff023aac
SB
2413 } else {
2414 /*
2415 * if has checksum error, write via repair mechanism in
2416 * dev replace case, otherwise write here in dev replace
2417 * case.
2418 */
5a6ac9ea
MX
2419 corrupted = scrub_checksum(sblock);
2420 if (!corrupted && sblock->sctx->is_dev_replace)
ff023aac
SB
2421 scrub_write_block_to_dev_replace(sblock);
2422 }
5a6ac9ea
MX
2423
2424 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2425 u64 start = sblock->pagev[0]->logical;
2426 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2427 PAGE_SIZE;
2428
2429 scrub_parity_mark_sectors_error(sblock->sparity,
2430 start, end - start);
2431 }
b5d67f64
SB
2432}
2433
3b5753ec 2434static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
a2de733c
AJ
2435{
2436 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2437 unsigned long index;
a2de733c 2438 unsigned long num_sectors;
a2de733c 2439
d9d181c1
SB
2440 while (!list_empty(&sctx->csum_list)) {
2441 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2442 struct btrfs_ordered_sum, list);
2443 if (sum->bytenr > logical)
2444 return 0;
2445 if (sum->bytenr + sum->len > logical)
2446 break;
2447
d9d181c1 2448 ++sctx->stat.csum_discards;
a2de733c
AJ
2449 list_del(&sum->list);
2450 kfree(sum);
2451 sum = NULL;
2452 }
2453 if (!sum)
2454 return 0;
2455
1d1bf92d
DS
2456 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2457 ASSERT(index < UINT_MAX);
2458
25cc1226 2459 num_sectors = sum->len / sctx->fs_info->sectorsize;
1e25a2e3 2460 memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
f51a4a18 2461 if (index == num_sectors - 1) {
a2de733c
AJ
2462 list_del(&sum->list);
2463 kfree(sum);
2464 }
f51a4a18 2465 return 1;
a2de733c
AJ
2466}
2467
2468/* scrub extent tries to collect up to 64 kB for each bio */
6ca1765b
LB
2469static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2470 u64 logical, u64 len,
a36cf8b8 2471 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2472 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2473{
2474 int ret;
2475 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2476 u32 blocksize;
2477
2478 if (flags & BTRFS_EXTENT_FLAG_DATA) {
6ca1765b
LB
2479 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2480 blocksize = map->stripe_len;
2481 else
2482 blocksize = sctx->fs_info->sectorsize;
d9d181c1
SB
2483 spin_lock(&sctx->stat_lock);
2484 sctx->stat.data_extents_scrubbed++;
2485 sctx->stat.data_bytes_scrubbed += len;
2486 spin_unlock(&sctx->stat_lock);
b5d67f64 2487 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6ca1765b
LB
2488 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2489 blocksize = map->stripe_len;
2490 else
2491 blocksize = sctx->fs_info->nodesize;
d9d181c1
SB
2492 spin_lock(&sctx->stat_lock);
2493 sctx->stat.tree_extents_scrubbed++;
2494 sctx->stat.tree_bytes_scrubbed += len;
2495 spin_unlock(&sctx->stat_lock);
b5d67f64 2496 } else {
25cc1226 2497 blocksize = sctx->fs_info->sectorsize;
ff023aac 2498 WARN_ON(1);
b5d67f64 2499 }
a2de733c
AJ
2500
2501 while (len) {
b5d67f64 2502 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2503 int have_csum = 0;
2504
2505 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2506 /* push csums to sbio */
3b5753ec 2507 have_csum = scrub_find_csum(sctx, logical, csum);
a2de733c 2508 if (have_csum == 0)
d9d181c1 2509 ++sctx->stat.no_csum;
a2de733c 2510 }
a36cf8b8 2511 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2512 mirror_num, have_csum ? csum : NULL, 0,
2513 physical_for_dev_replace);
a2de733c
AJ
2514 if (ret)
2515 return ret;
2516 len -= l;
2517 logical += l;
2518 physical += l;
ff023aac 2519 physical_for_dev_replace += l;
a2de733c
AJ
2520 }
2521 return 0;
2522}
2523
5a6ac9ea
MX
2524static int scrub_pages_for_parity(struct scrub_parity *sparity,
2525 u64 logical, u64 len,
2526 u64 physical, struct btrfs_device *dev,
2527 u64 flags, u64 gen, int mirror_num, u8 *csum)
2528{
2529 struct scrub_ctx *sctx = sparity->sctx;
2530 struct scrub_block *sblock;
2531 int index;
2532
58c4e173 2533 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
5a6ac9ea
MX
2534 if (!sblock) {
2535 spin_lock(&sctx->stat_lock);
2536 sctx->stat.malloc_errors++;
2537 spin_unlock(&sctx->stat_lock);
2538 return -ENOMEM;
2539 }
2540
2541 /* one ref inside this function, plus one for each page added to
2542 * a bio later on */
186debd6 2543 refcount_set(&sblock->refs, 1);
5a6ac9ea
MX
2544 sblock->sctx = sctx;
2545 sblock->no_io_error_seen = 1;
2546 sblock->sparity = sparity;
2547 scrub_parity_get(sparity);
2548
2549 for (index = 0; len > 0; index++) {
2550 struct scrub_page *spage;
2551 u64 l = min_t(u64, len, PAGE_SIZE);
2552
58c4e173 2553 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
5a6ac9ea
MX
2554 if (!spage) {
2555leave_nomem:
2556 spin_lock(&sctx->stat_lock);
2557 sctx->stat.malloc_errors++;
2558 spin_unlock(&sctx->stat_lock);
2559 scrub_block_put(sblock);
2560 return -ENOMEM;
2561 }
2562 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2563 /* For scrub block */
2564 scrub_page_get(spage);
2565 sblock->pagev[index] = spage;
2566 /* For scrub parity */
2567 scrub_page_get(spage);
2568 list_add_tail(&spage->list, &sparity->spages);
2569 spage->sblock = sblock;
2570 spage->dev = dev;
2571 spage->flags = flags;
2572 spage->generation = gen;
2573 spage->logical = logical;
2574 spage->physical = physical;
2575 spage->mirror_num = mirror_num;
2576 if (csum) {
2577 spage->have_csum = 1;
2578 memcpy(spage->csum, csum, sctx->csum_size);
2579 } else {
2580 spage->have_csum = 0;
2581 }
2582 sblock->page_count++;
58c4e173 2583 spage->page = alloc_page(GFP_KERNEL);
5a6ac9ea
MX
2584 if (!spage->page)
2585 goto leave_nomem;
2586 len -= l;
2587 logical += l;
2588 physical += l;
2589 }
2590
2591 WARN_ON(sblock->page_count == 0);
2592 for (index = 0; index < sblock->page_count; index++) {
2593 struct scrub_page *spage = sblock->pagev[index];
2594 int ret;
2595
2596 ret = scrub_add_page_to_rd_bio(sctx, spage);
2597 if (ret) {
2598 scrub_block_put(sblock);
2599 return ret;
2600 }
2601 }
2602
2603 /* last one frees, either here or in bio completion for last page */
2604 scrub_block_put(sblock);
2605 return 0;
2606}
2607
2608static int scrub_extent_for_parity(struct scrub_parity *sparity,
2609 u64 logical, u64 len,
2610 u64 physical, struct btrfs_device *dev,
2611 u64 flags, u64 gen, int mirror_num)
2612{
2613 struct scrub_ctx *sctx = sparity->sctx;
2614 int ret;
2615 u8 csum[BTRFS_CSUM_SIZE];
2616 u32 blocksize;
2617
e6e674bd 2618 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
4a770891
OS
2619 scrub_parity_mark_sectors_error(sparity, logical, len);
2620 return 0;
2621 }
2622
5a6ac9ea 2623 if (flags & BTRFS_EXTENT_FLAG_DATA) {
6ca1765b 2624 blocksize = sparity->stripe_len;
5a6ac9ea 2625 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6ca1765b 2626 blocksize = sparity->stripe_len;
5a6ac9ea 2627 } else {
25cc1226 2628 blocksize = sctx->fs_info->sectorsize;
5a6ac9ea
MX
2629 WARN_ON(1);
2630 }
2631
2632 while (len) {
2633 u64 l = min_t(u64, len, blocksize);
2634 int have_csum = 0;
2635
2636 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2637 /* push csums to sbio */
3b5753ec 2638 have_csum = scrub_find_csum(sctx, logical, csum);
5a6ac9ea
MX
2639 if (have_csum == 0)
2640 goto skip;
2641 }
2642 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2643 flags, gen, mirror_num,
2644 have_csum ? csum : NULL);
5a6ac9ea
MX
2645 if (ret)
2646 return ret;
6b6d24b3 2647skip:
5a6ac9ea
MX
2648 len -= l;
2649 logical += l;
2650 physical += l;
2651 }
2652 return 0;
2653}
2654
3b080b25
WS
2655/*
2656 * Given a physical address, this will calculate it's
2657 * logical offset. if this is a parity stripe, it will return
2658 * the most left data stripe's logical offset.
2659 *
2660 * return 0 if it is a data stripe, 1 means parity stripe.
2661 */
2662static int get_raid56_logic_offset(u64 physical, int num,
5a6ac9ea
MX
2663 struct map_lookup *map, u64 *offset,
2664 u64 *stripe_start)
3b080b25
WS
2665{
2666 int i;
2667 int j = 0;
2668 u64 stripe_nr;
2669 u64 last_offset;
9d644a62
DS
2670 u32 stripe_index;
2671 u32 rot;
cff82672 2672 const int data_stripes = nr_data_stripes(map);
3b080b25 2673
cff82672 2674 last_offset = (physical - map->stripes[num].physical) * data_stripes;
5a6ac9ea
MX
2675 if (stripe_start)
2676 *stripe_start = last_offset;
2677
3b080b25 2678 *offset = last_offset;
cff82672 2679 for (i = 0; i < data_stripes; i++) {
3b080b25
WS
2680 *offset = last_offset + i * map->stripe_len;
2681
42c61ab6 2682 stripe_nr = div64_u64(*offset, map->stripe_len);
cff82672 2683 stripe_nr = div_u64(stripe_nr, data_stripes);
3b080b25
WS
2684
2685 /* Work out the disk rotation on this stripe-set */
47c5713f 2686 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
3b080b25
WS
2687 /* calculate which stripe this data locates */
2688 rot += i;
e4fbaee2 2689 stripe_index = rot % map->num_stripes;
3b080b25
WS
2690 if (stripe_index == num)
2691 return 0;
2692 if (stripe_index < num)
2693 j++;
2694 }
2695 *offset = last_offset + j * map->stripe_len;
2696 return 1;
2697}
2698
5a6ac9ea
MX
2699static void scrub_free_parity(struct scrub_parity *sparity)
2700{
2701 struct scrub_ctx *sctx = sparity->sctx;
2702 struct scrub_page *curr, *next;
2703 int nbits;
2704
2705 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2706 if (nbits) {
2707 spin_lock(&sctx->stat_lock);
2708 sctx->stat.read_errors += nbits;
2709 sctx->stat.uncorrectable_errors += nbits;
2710 spin_unlock(&sctx->stat_lock);
2711 }
2712
2713 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2714 list_del_init(&curr->list);
2715 scrub_page_put(curr);
2716 }
2717
2718 kfree(sparity);
2719}
2720
20b2e302
ZL
2721static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2722{
2723 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2724 work);
2725 struct scrub_ctx *sctx = sparity->sctx;
2726
2727 scrub_free_parity(sparity);
2728 scrub_pending_bio_dec(sctx);
2729}
2730
4246a0b6 2731static void scrub_parity_bio_endio(struct bio *bio)
5a6ac9ea
MX
2732{
2733 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
0b246afa 2734 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
5a6ac9ea 2735
4e4cbee9 2736 if (bio->bi_status)
5a6ac9ea
MX
2737 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2738 sparity->nsectors);
2739
5a6ac9ea 2740 bio_put(bio);
20b2e302 2741
a0cac0ec
OS
2742 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2743 NULL);
0b246afa 2744 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
5a6ac9ea
MX
2745}
2746
2747static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2748{
2749 struct scrub_ctx *sctx = sparity->sctx;
0b246afa 2750 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2751 struct bio *bio;
2752 struct btrfs_raid_bio *rbio;
5a6ac9ea 2753 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2754 u64 length;
2755 int ret;
2756
2757 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2758 sparity->nsectors))
2759 goto out;
2760
a0dd59de 2761 length = sparity->logic_end - sparity->logic_start;
ae6529c3
QW
2762
2763 btrfs_bio_counter_inc_blocked(fs_info);
0b246afa 2764 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
825ad4c9 2765 &length, &bbio);
8e5cfb55 2766 if (ret || !bbio || !bbio->raid_map)
5a6ac9ea
MX
2767 goto bbio_out;
2768
c5e4c3d7 2769 bio = btrfs_io_bio_alloc(0);
5a6ac9ea
MX
2770 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2771 bio->bi_private = sparity;
2772 bio->bi_end_io = scrub_parity_bio_endio;
2773
2ff7e61e 2774 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
8e5cfb55 2775 length, sparity->scrub_dev,
5a6ac9ea
MX
2776 sparity->dbitmap,
2777 sparity->nsectors);
2778 if (!rbio)
2779 goto rbio_out;
2780
5a6ac9ea
MX
2781 scrub_pending_bio_inc(sctx);
2782 raid56_parity_submit_scrub_rbio(rbio);
2783 return;
2784
2785rbio_out:
2786 bio_put(bio);
2787bbio_out:
ae6529c3 2788 btrfs_bio_counter_dec(fs_info);
6e9606d2 2789 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2790 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2791 sparity->nsectors);
2792 spin_lock(&sctx->stat_lock);
2793 sctx->stat.malloc_errors++;
2794 spin_unlock(&sctx->stat_lock);
2795out:
2796 scrub_free_parity(sparity);
2797}
2798
2799static inline int scrub_calc_parity_bitmap_len(int nsectors)
2800{
bfca9a6d 2801 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
5a6ac9ea
MX
2802}
2803
2804static void scrub_parity_get(struct scrub_parity *sparity)
2805{
78a76450 2806 refcount_inc(&sparity->refs);
5a6ac9ea
MX
2807}
2808
2809static void scrub_parity_put(struct scrub_parity *sparity)
2810{
78a76450 2811 if (!refcount_dec_and_test(&sparity->refs))
5a6ac9ea
MX
2812 return;
2813
2814 scrub_parity_check_and_repair(sparity);
2815}
2816
2817static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2818 struct map_lookup *map,
2819 struct btrfs_device *sdev,
2820 struct btrfs_path *path,
2821 u64 logic_start,
2822 u64 logic_end)
2823{
fb456252 2824 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2825 struct btrfs_root *root = fs_info->extent_root;
2826 struct btrfs_root *csum_root = fs_info->csum_root;
2827 struct btrfs_extent_item *extent;
4a770891 2828 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2829 u64 flags;
2830 int ret;
2831 int slot;
2832 struct extent_buffer *l;
2833 struct btrfs_key key;
2834 u64 generation;
2835 u64 extent_logical;
2836 u64 extent_physical;
2837 u64 extent_len;
4a770891 2838 u64 mapped_length;
5a6ac9ea
MX
2839 struct btrfs_device *extent_dev;
2840 struct scrub_parity *sparity;
2841 int nsectors;
2842 int bitmap_len;
2843 int extent_mirror_num;
2844 int stop_loop = 0;
2845
0b246afa 2846 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
5a6ac9ea
MX
2847 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2848 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2849 GFP_NOFS);
2850 if (!sparity) {
2851 spin_lock(&sctx->stat_lock);
2852 sctx->stat.malloc_errors++;
2853 spin_unlock(&sctx->stat_lock);
2854 return -ENOMEM;
2855 }
2856
2857 sparity->stripe_len = map->stripe_len;
2858 sparity->nsectors = nsectors;
2859 sparity->sctx = sctx;
2860 sparity->scrub_dev = sdev;
2861 sparity->logic_start = logic_start;
2862 sparity->logic_end = logic_end;
78a76450 2863 refcount_set(&sparity->refs, 1);
5a6ac9ea
MX
2864 INIT_LIST_HEAD(&sparity->spages);
2865 sparity->dbitmap = sparity->bitmap;
2866 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2867
2868 ret = 0;
2869 while (logic_start < logic_end) {
2870 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2871 key.type = BTRFS_METADATA_ITEM_KEY;
2872 else
2873 key.type = BTRFS_EXTENT_ITEM_KEY;
2874 key.objectid = logic_start;
2875 key.offset = (u64)-1;
2876
2877 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2878 if (ret < 0)
2879 goto out;
2880
2881 if (ret > 0) {
2882 ret = btrfs_previous_extent_item(root, path, 0);
2883 if (ret < 0)
2884 goto out;
2885 if (ret > 0) {
2886 btrfs_release_path(path);
2887 ret = btrfs_search_slot(NULL, root, &key,
2888 path, 0, 0);
2889 if (ret < 0)
2890 goto out;
2891 }
2892 }
2893
2894 stop_loop = 0;
2895 while (1) {
2896 u64 bytes;
2897
2898 l = path->nodes[0];
2899 slot = path->slots[0];
2900 if (slot >= btrfs_header_nritems(l)) {
2901 ret = btrfs_next_leaf(root, path);
2902 if (ret == 0)
2903 continue;
2904 if (ret < 0)
2905 goto out;
2906
2907 stop_loop = 1;
2908 break;
2909 }
2910 btrfs_item_key_to_cpu(l, &key, slot);
2911
d7cad238
ZL
2912 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2913 key.type != BTRFS_METADATA_ITEM_KEY)
2914 goto next;
2915
5a6ac9ea 2916 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 2917 bytes = fs_info->nodesize;
5a6ac9ea
MX
2918 else
2919 bytes = key.offset;
2920
2921 if (key.objectid + bytes <= logic_start)
2922 goto next;
2923
a0dd59de 2924 if (key.objectid >= logic_end) {
5a6ac9ea
MX
2925 stop_loop = 1;
2926 break;
2927 }
2928
2929 while (key.objectid >= logic_start + map->stripe_len)
2930 logic_start += map->stripe_len;
2931
2932 extent = btrfs_item_ptr(l, slot,
2933 struct btrfs_extent_item);
2934 flags = btrfs_extent_flags(l, extent);
2935 generation = btrfs_extent_generation(l, extent);
2936
a323e813
ZL
2937 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2938 (key.objectid < logic_start ||
2939 key.objectid + bytes >
2940 logic_start + map->stripe_len)) {
5d163e0e
JM
2941 btrfs_err(fs_info,
2942 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
a323e813 2943 key.objectid, logic_start);
9799d2c3
ZL
2944 spin_lock(&sctx->stat_lock);
2945 sctx->stat.uncorrectable_errors++;
2946 spin_unlock(&sctx->stat_lock);
5a6ac9ea
MX
2947 goto next;
2948 }
2949again:
2950 extent_logical = key.objectid;
2951 extent_len = bytes;
2952
2953 if (extent_logical < logic_start) {
2954 extent_len -= logic_start - extent_logical;
2955 extent_logical = logic_start;
2956 }
2957
2958 if (extent_logical + extent_len >
2959 logic_start + map->stripe_len)
2960 extent_len = logic_start + map->stripe_len -
2961 extent_logical;
2962
2963 scrub_parity_mark_sectors_data(sparity, extent_logical,
2964 extent_len);
2965
4a770891 2966 mapped_length = extent_len;
f1fee653 2967 bbio = NULL;
cf8cddd3
CH
2968 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2969 extent_logical, &mapped_length, &bbio,
2970 0);
4a770891
OS
2971 if (!ret) {
2972 if (!bbio || mapped_length < extent_len)
2973 ret = -EIO;
2974 }
2975 if (ret) {
2976 btrfs_put_bbio(bbio);
2977 goto out;
2978 }
2979 extent_physical = bbio->stripes[0].physical;
2980 extent_mirror_num = bbio->mirror_num;
2981 extent_dev = bbio->stripes[0].dev;
2982 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2983
2984 ret = btrfs_lookup_csums_range(csum_root,
2985 extent_logical,
2986 extent_logical + extent_len - 1,
2987 &sctx->csum_list, 1);
2988 if (ret)
2989 goto out;
2990
2991 ret = scrub_extent_for_parity(sparity, extent_logical,
2992 extent_len,
2993 extent_physical,
2994 extent_dev, flags,
2995 generation,
2996 extent_mirror_num);
6fa96d72
ZL
2997
2998 scrub_free_csums(sctx);
2999
5a6ac9ea
MX
3000 if (ret)
3001 goto out;
3002
5a6ac9ea
MX
3003 if (extent_logical + extent_len <
3004 key.objectid + bytes) {
3005 logic_start += map->stripe_len;
3006
3007 if (logic_start >= logic_end) {
3008 stop_loop = 1;
3009 break;
3010 }
3011
3012 if (logic_start < key.objectid + bytes) {
3013 cond_resched();
3014 goto again;
3015 }
3016 }
3017next:
3018 path->slots[0]++;
3019 }
3020
3021 btrfs_release_path(path);
3022
3023 if (stop_loop)
3024 break;
3025
3026 logic_start += map->stripe_len;
3027 }
3028out:
3029 if (ret < 0)
3030 scrub_parity_mark_sectors_error(sparity, logic_start,
a0dd59de 3031 logic_end - logic_start);
5a6ac9ea
MX
3032 scrub_parity_put(sparity);
3033 scrub_submit(sctx);
3fb99303 3034 mutex_lock(&sctx->wr_lock);
5a6ac9ea 3035 scrub_wr_submit(sctx);
3fb99303 3036 mutex_unlock(&sctx->wr_lock);
5a6ac9ea
MX
3037
3038 btrfs_release_path(path);
3039 return ret < 0 ? ret : 0;
3040}
3041
d9d181c1 3042static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
3043 struct map_lookup *map,
3044 struct btrfs_device *scrub_dev,
32934280 3045 int num, u64 base, u64 length)
a2de733c 3046{
5a6ac9ea 3047 struct btrfs_path *path, *ppath;
fb456252 3048 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c
AJ
3049 struct btrfs_root *root = fs_info->extent_root;
3050 struct btrfs_root *csum_root = fs_info->csum_root;
3051 struct btrfs_extent_item *extent;
e7786c3a 3052 struct blk_plug plug;
a2de733c
AJ
3053 u64 flags;
3054 int ret;
3055 int slot;
a2de733c 3056 u64 nstripes;
a2de733c 3057 struct extent_buffer *l;
a2de733c
AJ
3058 u64 physical;
3059 u64 logical;
625f1c8d 3060 u64 logic_end;
3b080b25 3061 u64 physical_end;
a2de733c 3062 u64 generation;
e12fa9cd 3063 int mirror_num;
7a26285e
AJ
3064 struct reada_control *reada1;
3065 struct reada_control *reada2;
e6c11f9a 3066 struct btrfs_key key;
7a26285e 3067 struct btrfs_key key_end;
a2de733c
AJ
3068 u64 increment = map->stripe_len;
3069 u64 offset;
ff023aac
SB
3070 u64 extent_logical;
3071 u64 extent_physical;
3072 u64 extent_len;
5a6ac9ea
MX
3073 u64 stripe_logical;
3074 u64 stripe_end;
ff023aac
SB
3075 struct btrfs_device *extent_dev;
3076 int extent_mirror_num;
3b080b25 3077 int stop_loop = 0;
53b381b3 3078
3b080b25 3079 physical = map->stripes[num].physical;
a2de733c 3080 offset = 0;
42c61ab6 3081 nstripes = div64_u64(length, map->stripe_len);
a2de733c
AJ
3082 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3083 offset = map->stripe_len * num;
3084 increment = map->stripe_len * map->num_stripes;
193ea74b 3085 mirror_num = 1;
a2de733c
AJ
3086 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3087 int factor = map->num_stripes / map->sub_stripes;
3088 offset = map->stripe_len * (num / map->sub_stripes);
3089 increment = map->stripe_len * factor;
193ea74b 3090 mirror_num = num % map->sub_stripes + 1;
c7369b3f 3091 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
a2de733c 3092 increment = map->stripe_len;
193ea74b 3093 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
3094 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3095 increment = map->stripe_len;
193ea74b 3096 mirror_num = num % map->num_stripes + 1;
ffe2d203 3097 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5a6ac9ea 3098 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3b080b25
WS
3099 increment = map->stripe_len * nr_data_stripes(map);
3100 mirror_num = 1;
a2de733c
AJ
3101 } else {
3102 increment = map->stripe_len;
193ea74b 3103 mirror_num = 1;
a2de733c
AJ
3104 }
3105
3106 path = btrfs_alloc_path();
3107 if (!path)
3108 return -ENOMEM;
3109
5a6ac9ea
MX
3110 ppath = btrfs_alloc_path();
3111 if (!ppath) {
379d6854 3112 btrfs_free_path(path);
5a6ac9ea
MX
3113 return -ENOMEM;
3114 }
3115
b5d67f64
SB
3116 /*
3117 * work on commit root. The related disk blocks are static as
3118 * long as COW is applied. This means, it is save to rewrite
3119 * them to repair disk errors without any race conditions
3120 */
a2de733c
AJ
3121 path->search_commit_root = 1;
3122 path->skip_locking = 1;
3123
063c54dc
GH
3124 ppath->search_commit_root = 1;
3125 ppath->skip_locking = 1;
a2de733c 3126 /*
7a26285e
AJ
3127 * trigger the readahead for extent tree csum tree and wait for
3128 * completion. During readahead, the scrub is officially paused
3129 * to not hold off transaction commits
a2de733c
AJ
3130 */
3131 logical = base + offset;
3b080b25 3132 physical_end = physical + nstripes * map->stripe_len;
ffe2d203 3133 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25 3134 get_raid56_logic_offset(physical_end, num,
5a6ac9ea 3135 map, &logic_end, NULL);
3b080b25
WS
3136 logic_end += base;
3137 } else {
3138 logic_end = logical + increment * nstripes;
3139 }
d9d181c1 3140 wait_event(sctx->list_wait,
b6bfebc1 3141 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 3142 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
3143
3144 /* FIXME it might be better to start readahead at commit root */
e6c11f9a
DS
3145 key.objectid = logical;
3146 key.type = BTRFS_EXTENT_ITEM_KEY;
3147 key.offset = (u64)0;
3b080b25 3148 key_end.objectid = logic_end;
3173a18f
JB
3149 key_end.type = BTRFS_METADATA_ITEM_KEY;
3150 key_end.offset = (u64)-1;
e6c11f9a 3151 reada1 = btrfs_reada_add(root, &key, &key_end);
7a26285e 3152
e6c11f9a
DS
3153 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3154 key.type = BTRFS_EXTENT_CSUM_KEY;
3155 key.offset = logical;
7a26285e
AJ
3156 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3157 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 3158 key_end.offset = logic_end;
e6c11f9a 3159 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
7a26285e
AJ
3160
3161 if (!IS_ERR(reada1))
3162 btrfs_reada_wait(reada1);
3163 if (!IS_ERR(reada2))
3164 btrfs_reada_wait(reada2);
3165
a2de733c
AJ
3166
3167 /*
3168 * collect all data csums for the stripe to avoid seeking during
3169 * the scrub. This might currently (crc32) end up to be about 1MB
3170 */
e7786c3a 3171 blk_start_plug(&plug);
a2de733c 3172
a2de733c
AJ
3173 /*
3174 * now find all extents for each stripe and scrub them
3175 */
a2de733c 3176 ret = 0;
3b080b25 3177 while (physical < physical_end) {
a2de733c
AJ
3178 /*
3179 * canceled?
3180 */
3181 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 3182 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
3183 ret = -ECANCELED;
3184 goto out;
3185 }
3186 /*
3187 * check to see if we have to pause
3188 */
3189 if (atomic_read(&fs_info->scrub_pause_req)) {
3190 /* push queued extents */
2073c4c2 3191 sctx->flush_all_writes = true;
d9d181c1 3192 scrub_submit(sctx);
3fb99303 3193 mutex_lock(&sctx->wr_lock);
ff023aac 3194 scrub_wr_submit(sctx);
3fb99303 3195 mutex_unlock(&sctx->wr_lock);
d9d181c1 3196 wait_event(sctx->list_wait,
b6bfebc1 3197 atomic_read(&sctx->bios_in_flight) == 0);
2073c4c2 3198 sctx->flush_all_writes = false;
3cb0929a 3199 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3200 }
3201
f2f66a2f
ZL
3202 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3203 ret = get_raid56_logic_offset(physical, num, map,
3204 &logical,
3205 &stripe_logical);
3206 logical += base;
3207 if (ret) {
7955323b 3208 /* it is parity strip */
f2f66a2f 3209 stripe_logical += base;
a0dd59de 3210 stripe_end = stripe_logical + increment;
f2f66a2f
ZL
3211 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3212 ppath, stripe_logical,
3213 stripe_end);
3214 if (ret)
3215 goto out;
3216 goto skip;
3217 }
3218 }
3219
7c76edb7
WS
3220 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3221 key.type = BTRFS_METADATA_ITEM_KEY;
3222 else
3223 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 3224 key.objectid = logical;
625f1c8d 3225 key.offset = (u64)-1;
a2de733c
AJ
3226
3227 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3228 if (ret < 0)
3229 goto out;
3173a18f 3230
8c51032f 3231 if (ret > 0) {
ade2e0b3 3232 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
3233 if (ret < 0)
3234 goto out;
8c51032f
AJ
3235 if (ret > 0) {
3236 /* there's no smaller item, so stick with the
3237 * larger one */
3238 btrfs_release_path(path);
3239 ret = btrfs_search_slot(NULL, root, &key,
3240 path, 0, 0);
3241 if (ret < 0)
3242 goto out;
3243 }
a2de733c
AJ
3244 }
3245
625f1c8d 3246 stop_loop = 0;
a2de733c 3247 while (1) {
3173a18f
JB
3248 u64 bytes;
3249
a2de733c
AJ
3250 l = path->nodes[0];
3251 slot = path->slots[0];
3252 if (slot >= btrfs_header_nritems(l)) {
3253 ret = btrfs_next_leaf(root, path);
3254 if (ret == 0)
3255 continue;
3256 if (ret < 0)
3257 goto out;
3258
625f1c8d 3259 stop_loop = 1;
a2de733c
AJ
3260 break;
3261 }
3262 btrfs_item_key_to_cpu(l, &key, slot);
3263
d7cad238
ZL
3264 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3265 key.type != BTRFS_METADATA_ITEM_KEY)
3266 goto next;
3267
3173a18f 3268 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 3269 bytes = fs_info->nodesize;
3173a18f
JB
3270 else
3271 bytes = key.offset;
3272
3273 if (key.objectid + bytes <= logical)
a2de733c
AJ
3274 goto next;
3275
625f1c8d
LB
3276 if (key.objectid >= logical + map->stripe_len) {
3277 /* out of this device extent */
3278 if (key.objectid >= logic_end)
3279 stop_loop = 1;
3280 break;
3281 }
a2de733c
AJ
3282
3283 extent = btrfs_item_ptr(l, slot,
3284 struct btrfs_extent_item);
3285 flags = btrfs_extent_flags(l, extent);
3286 generation = btrfs_extent_generation(l, extent);
3287
a323e813
ZL
3288 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3289 (key.objectid < logical ||
3290 key.objectid + bytes >
3291 logical + map->stripe_len)) {
efe120a0 3292 btrfs_err(fs_info,
5d163e0e 3293 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
c1c9ff7c 3294 key.objectid, logical);
9799d2c3
ZL
3295 spin_lock(&sctx->stat_lock);
3296 sctx->stat.uncorrectable_errors++;
3297 spin_unlock(&sctx->stat_lock);
a2de733c
AJ
3298 goto next;
3299 }
3300
625f1c8d
LB
3301again:
3302 extent_logical = key.objectid;
3303 extent_len = bytes;
3304
a2de733c
AJ
3305 /*
3306 * trim extent to this stripe
3307 */
625f1c8d
LB
3308 if (extent_logical < logical) {
3309 extent_len -= logical - extent_logical;
3310 extent_logical = logical;
a2de733c 3311 }
625f1c8d 3312 if (extent_logical + extent_len >
a2de733c 3313 logical + map->stripe_len) {
625f1c8d
LB
3314 extent_len = logical + map->stripe_len -
3315 extent_logical;
a2de733c
AJ
3316 }
3317
625f1c8d 3318 extent_physical = extent_logical - logical + physical;
ff023aac
SB
3319 extent_dev = scrub_dev;
3320 extent_mirror_num = mirror_num;
32934280 3321 if (sctx->is_dev_replace)
ff023aac
SB
3322 scrub_remap_extent(fs_info, extent_logical,
3323 extent_len, &extent_physical,
3324 &extent_dev,
3325 &extent_mirror_num);
625f1c8d 3326
fe8cf654
ZL
3327 ret = btrfs_lookup_csums_range(csum_root,
3328 extent_logical,
3329 extent_logical +
3330 extent_len - 1,
3331 &sctx->csum_list, 1);
625f1c8d
LB
3332 if (ret)
3333 goto out;
3334
6ca1765b 3335 ret = scrub_extent(sctx, map, extent_logical, extent_len,
ff023aac
SB
3336 extent_physical, extent_dev, flags,
3337 generation, extent_mirror_num,
115930cb 3338 extent_logical - logical + physical);
6fa96d72
ZL
3339
3340 scrub_free_csums(sctx);
3341
a2de733c
AJ
3342 if (ret)
3343 goto out;
3344
625f1c8d
LB
3345 if (extent_logical + extent_len <
3346 key.objectid + bytes) {
ffe2d203 3347 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25
WS
3348 /*
3349 * loop until we find next data stripe
3350 * or we have finished all stripes.
3351 */
5a6ac9ea
MX
3352loop:
3353 physical += map->stripe_len;
3354 ret = get_raid56_logic_offset(physical,
3355 num, map, &logical,
3356 &stripe_logical);
3357 logical += base;
3358
3359 if (ret && physical < physical_end) {
3360 stripe_logical += base;
3361 stripe_end = stripe_logical +
a0dd59de 3362 increment;
5a6ac9ea
MX
3363 ret = scrub_raid56_parity(sctx,
3364 map, scrub_dev, ppath,
3365 stripe_logical,
3366 stripe_end);
3367 if (ret)
3368 goto out;
3369 goto loop;
3370 }
3b080b25
WS
3371 } else {
3372 physical += map->stripe_len;
3373 logical += increment;
3374 }
625f1c8d
LB
3375 if (logical < key.objectid + bytes) {
3376 cond_resched();
3377 goto again;
3378 }
3379
3b080b25 3380 if (physical >= physical_end) {
625f1c8d
LB
3381 stop_loop = 1;
3382 break;
3383 }
3384 }
a2de733c
AJ
3385next:
3386 path->slots[0]++;
3387 }
71267333 3388 btrfs_release_path(path);
3b080b25 3389skip:
a2de733c
AJ
3390 logical += increment;
3391 physical += map->stripe_len;
d9d181c1 3392 spin_lock(&sctx->stat_lock);
625f1c8d
LB
3393 if (stop_loop)
3394 sctx->stat.last_physical = map->stripes[num].physical +
3395 length;
3396 else
3397 sctx->stat.last_physical = physical;
d9d181c1 3398 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
3399 if (stop_loop)
3400 break;
a2de733c 3401 }
ff023aac 3402out:
a2de733c 3403 /* push queued extents */
d9d181c1 3404 scrub_submit(sctx);
3fb99303 3405 mutex_lock(&sctx->wr_lock);
ff023aac 3406 scrub_wr_submit(sctx);
3fb99303 3407 mutex_unlock(&sctx->wr_lock);
a2de733c 3408
e7786c3a 3409 blk_finish_plug(&plug);
a2de733c 3410 btrfs_free_path(path);
5a6ac9ea 3411 btrfs_free_path(ppath);
a2de733c
AJ
3412 return ret < 0 ? ret : 0;
3413}
3414
d9d181c1 3415static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8 3416 struct btrfs_device *scrub_dev,
a36cf8b8 3417 u64 chunk_offset, u64 length,
020d5b73 3418 u64 dev_offset,
32da5386 3419 struct btrfs_block_group *cache)
a2de733c 3420{
fb456252 3421 struct btrfs_fs_info *fs_info = sctx->fs_info;
c8bf1b67 3422 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
a2de733c
AJ
3423 struct map_lookup *map;
3424 struct extent_map *em;
3425 int i;
ff023aac 3426 int ret = 0;
a2de733c 3427
c8bf1b67
DS
3428 read_lock(&map_tree->lock);
3429 em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3430 read_unlock(&map_tree->lock);
a2de733c 3431
020d5b73
FM
3432 if (!em) {
3433 /*
3434 * Might have been an unused block group deleted by the cleaner
3435 * kthread or relocation.
3436 */
3437 spin_lock(&cache->lock);
3438 if (!cache->removed)
3439 ret = -EINVAL;
3440 spin_unlock(&cache->lock);
3441
3442 return ret;
3443 }
a2de733c 3444
95617d69 3445 map = em->map_lookup;
a2de733c
AJ
3446 if (em->start != chunk_offset)
3447 goto out;
3448
3449 if (em->len < length)
3450 goto out;
3451
3452 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 3453 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 3454 map->stripes[i].physical == dev_offset) {
a36cf8b8 3455 ret = scrub_stripe(sctx, map, scrub_dev, i,
32934280 3456 chunk_offset, length);
a2de733c
AJ
3457 if (ret)
3458 goto out;
3459 }
3460 }
3461out:
3462 free_extent_map(em);
3463
3464 return ret;
3465}
3466
3467static noinline_for_stack
a36cf8b8 3468int scrub_enumerate_chunks(struct scrub_ctx *sctx,
32934280 3469 struct btrfs_device *scrub_dev, u64 start, u64 end)
a2de733c
AJ
3470{
3471 struct btrfs_dev_extent *dev_extent = NULL;
3472 struct btrfs_path *path;
0b246afa
JM
3473 struct btrfs_fs_info *fs_info = sctx->fs_info;
3474 struct btrfs_root *root = fs_info->dev_root;
a2de733c 3475 u64 length;
a2de733c 3476 u64 chunk_offset;
55e3a601 3477 int ret = 0;
76a8efa1 3478 int ro_set;
a2de733c
AJ
3479 int slot;
3480 struct extent_buffer *l;
3481 struct btrfs_key key;
3482 struct btrfs_key found_key;
32da5386 3483 struct btrfs_block_group *cache;
ff023aac 3484 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
3485
3486 path = btrfs_alloc_path();
3487 if (!path)
3488 return -ENOMEM;
3489
e4058b54 3490 path->reada = READA_FORWARD;
a2de733c
AJ
3491 path->search_commit_root = 1;
3492 path->skip_locking = 1;
3493
a36cf8b8 3494 key.objectid = scrub_dev->devid;
a2de733c
AJ
3495 key.offset = 0ull;
3496 key.type = BTRFS_DEV_EXTENT_KEY;
3497
a2de733c
AJ
3498 while (1) {
3499 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3500 if (ret < 0)
8c51032f
AJ
3501 break;
3502 if (ret > 0) {
3503 if (path->slots[0] >=
3504 btrfs_header_nritems(path->nodes[0])) {
3505 ret = btrfs_next_leaf(root, path);
55e3a601
Z
3506 if (ret < 0)
3507 break;
3508 if (ret > 0) {
3509 ret = 0;
8c51032f 3510 break;
55e3a601
Z
3511 }
3512 } else {
3513 ret = 0;
8c51032f
AJ
3514 }
3515 }
a2de733c
AJ
3516
3517 l = path->nodes[0];
3518 slot = path->slots[0];
3519
3520 btrfs_item_key_to_cpu(l, &found_key, slot);
3521
a36cf8b8 3522 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
3523 break;
3524
962a298f 3525 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
3526 break;
3527
3528 if (found_key.offset >= end)
3529 break;
3530
3531 if (found_key.offset < key.offset)
3532 break;
3533
3534 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3535 length = btrfs_dev_extent_length(l, dev_extent);
3536
ced96edc
QW
3537 if (found_key.offset + length <= start)
3538 goto skip;
a2de733c 3539
a2de733c
AJ
3540 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3541
3542 /*
3543 * get a reference on the corresponding block group to prevent
3544 * the chunk from going away while we scrub it
3545 */
3546 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
3547
3548 /* some chunks are removed but not committed to disk yet,
3549 * continue scrubbing */
3550 if (!cache)
3551 goto skip;
3552
55e3a601
Z
3553 /*
3554 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3555 * to avoid deadlock caused by:
3556 * btrfs_inc_block_group_ro()
3557 * -> btrfs_wait_for_commit()
3558 * -> btrfs_commit_transaction()
3559 * -> btrfs_scrub_pause()
3560 */
3561 scrub_pause_on(fs_info);
b12de528
QW
3562
3563 /*
3564 * Don't do chunk preallocation for scrub.
3565 *
3566 * This is especially important for SYSTEM bgs, or we can hit
3567 * -EFBIG from btrfs_finish_chunk_alloc() like:
3568 * 1. The only SYSTEM bg is marked RO.
3569 * Since SYSTEM bg is small, that's pretty common.
3570 * 2. New SYSTEM bg will be allocated
3571 * Due to regular version will allocate new chunk.
3572 * 3. New SYSTEM bg is empty and will get cleaned up
3573 * Before cleanup really happens, it's marked RO again.
3574 * 4. Empty SYSTEM bg get scrubbed
3575 * We go back to 2.
3576 *
3577 * This can easily boost the amount of SYSTEM chunks if cleaner
3578 * thread can't be triggered fast enough, and use up all space
3579 * of btrfs_super_block::sys_chunk_array
3580 */
3581 ret = btrfs_inc_block_group_ro(cache, false);
55e3a601 3582 scrub_pause_off(fs_info);
76a8efa1
Z
3583
3584 if (ret == 0) {
3585 ro_set = 1;
3586 } else if (ret == -ENOSPC) {
3587 /*
3588 * btrfs_inc_block_group_ro return -ENOSPC when it
3589 * failed in creating new chunk for metadata.
3590 * It is not a problem for scrub/replace, because
3591 * metadata are always cowed, and our scrub paused
3592 * commit_transactions.
3593 */
3594 ro_set = 0;
3595 } else {
5d163e0e 3596 btrfs_warn(fs_info,
913e1535 3597 "failed setting block group ro: %d", ret);
55e3a601
Z
3598 btrfs_put_block_group(cache);
3599 break;
3600 }
3601
3ec17a67 3602 down_write(&dev_replace->rwsem);
ff023aac
SB
3603 dev_replace->cursor_right = found_key.offset + length;
3604 dev_replace->cursor_left = found_key.offset;
3605 dev_replace->item_needs_writeback = 1;
cb5583dd
DS
3606 up_write(&dev_replace->rwsem);
3607
8c204c96 3608 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
32934280 3609 found_key.offset, cache);
ff023aac
SB
3610
3611 /*
3612 * flush, submit all pending read and write bios, afterwards
3613 * wait for them.
3614 * Note that in the dev replace case, a read request causes
3615 * write requests that are submitted in the read completion
3616 * worker. Therefore in the current situation, it is required
3617 * that all write requests are flushed, so that all read and
3618 * write requests are really completed when bios_in_flight
3619 * changes to 0.
3620 */
2073c4c2 3621 sctx->flush_all_writes = true;
ff023aac 3622 scrub_submit(sctx);
3fb99303 3623 mutex_lock(&sctx->wr_lock);
ff023aac 3624 scrub_wr_submit(sctx);
3fb99303 3625 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
3626
3627 wait_event(sctx->list_wait,
3628 atomic_read(&sctx->bios_in_flight) == 0);
b708ce96
Z
3629
3630 scrub_pause_on(fs_info);
12cf9372
WS
3631
3632 /*
3633 * must be called before we decrease @scrub_paused.
3634 * make sure we don't block transaction commit while
3635 * we are waiting pending workers finished.
3636 */
ff023aac
SB
3637 wait_event(sctx->list_wait,
3638 atomic_read(&sctx->workers_pending) == 0);
2073c4c2 3639 sctx->flush_all_writes = false;
12cf9372 3640
b708ce96 3641 scrub_pause_off(fs_info);
ff023aac 3642
3ec17a67 3643 down_write(&dev_replace->rwsem);
1a1a8b73
FM
3644 dev_replace->cursor_left = dev_replace->cursor_right;
3645 dev_replace->item_needs_writeback = 1;
3ec17a67 3646 up_write(&dev_replace->rwsem);
1a1a8b73 3647
76a8efa1 3648 if (ro_set)
2ff7e61e 3649 btrfs_dec_block_group_ro(cache);
ff023aac 3650
758f2dfc
FM
3651 /*
3652 * We might have prevented the cleaner kthread from deleting
3653 * this block group if it was already unused because we raced
3654 * and set it to RO mode first. So add it back to the unused
3655 * list, otherwise it might not ever be deleted unless a manual
3656 * balance is triggered or it becomes used and unused again.
3657 */
3658 spin_lock(&cache->lock);
3659 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
bf38be65 3660 cache->used == 0) {
758f2dfc 3661 spin_unlock(&cache->lock);
031f24da 3662 btrfs_mark_bg_unused(cache);
758f2dfc
FM
3663 } else {
3664 spin_unlock(&cache->lock);
3665 }
3666
a2de733c
AJ
3667 btrfs_put_block_group(cache);
3668 if (ret)
3669 break;
32934280 3670 if (sctx->is_dev_replace &&
af1be4f8 3671 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
3672 ret = -EIO;
3673 break;
3674 }
3675 if (sctx->stat.malloc_errors > 0) {
3676 ret = -ENOMEM;
3677 break;
3678 }
ced96edc 3679skip:
a2de733c 3680 key.offset = found_key.offset + length;
71267333 3681 btrfs_release_path(path);
a2de733c
AJ
3682 }
3683
a2de733c 3684 btrfs_free_path(path);
8c51032f 3685
55e3a601 3686 return ret;
a2de733c
AJ
3687}
3688
a36cf8b8
SB
3689static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3690 struct btrfs_device *scrub_dev)
a2de733c
AJ
3691{
3692 int i;
3693 u64 bytenr;
3694 u64 gen;
3695 int ret;
0b246afa 3696 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c 3697
0b246afa 3698 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
79787eaa
JM
3699 return -EIO;
3700
5f546063 3701 /* Seed devices of a new filesystem has their own generation. */
0b246afa 3702 if (scrub_dev->fs_devices != fs_info->fs_devices)
5f546063
MX
3703 gen = scrub_dev->generation;
3704 else
0b246afa 3705 gen = fs_info->last_trans_committed;
a2de733c
AJ
3706
3707 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3708 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3709 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3710 scrub_dev->commit_total_bytes)
a2de733c
AJ
3711 break;
3712
d9d181c1 3713 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 3714 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 3715 NULL, 1, bytenr);
a2de733c
AJ
3716 if (ret)
3717 return ret;
3718 }
b6bfebc1 3719 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3720
3721 return 0;
3722}
3723
3724/*
3725 * get a reference count on fs_info->scrub_workers. start worker if necessary
3726 */
ff023aac
SB
3727static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3728 int is_dev_replace)
a2de733c 3729{
6f011058 3730 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
0339ef2f 3731 int max_active = fs_info->thread_pool_size;
a2de733c 3732
eb4318e5
AJ
3733 lockdep_assert_held(&fs_info->scrub_lock);
3734
ff09c4ca 3735 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
c8352942 3736 ASSERT(fs_info->scrub_workers == NULL);
af1cbe0a
DS
3737 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3738 flags, is_dev_replace ? 1 : max_active, 4);
e82afc52
ZL
3739 if (!fs_info->scrub_workers)
3740 goto fail_scrub_workers;
3741
c8352942 3742 ASSERT(fs_info->scrub_wr_completion_workers == NULL);
0339ef2f 3743 fs_info->scrub_wr_completion_workers =
cb001095 3744 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
0339ef2f 3745 max_active, 2);
e82afc52
ZL
3746 if (!fs_info->scrub_wr_completion_workers)
3747 goto fail_scrub_wr_completion_workers;
3748
c8352942 3749 ASSERT(fs_info->scrub_parity_workers == NULL);
20b2e302 3750 fs_info->scrub_parity_workers =
cb001095 3751 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
20b2e302 3752 max_active, 2);
e82afc52
ZL
3753 if (!fs_info->scrub_parity_workers)
3754 goto fail_scrub_parity_workers;
ff09c4ca
AJ
3755
3756 refcount_set(&fs_info->scrub_workers_refcnt, 1);
3757 } else {
3758 refcount_inc(&fs_info->scrub_workers_refcnt);
632dd772 3759 }
e82afc52
ZL
3760 return 0;
3761
3762fail_scrub_parity_workers:
e82afc52
ZL
3763 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3764fail_scrub_wr_completion_workers:
3765 btrfs_destroy_workqueue(fs_info->scrub_workers);
3766fail_scrub_workers:
3767 return -ENOMEM;
a2de733c
AJ
3768}
3769
aa1b8cd4
SB
3770int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3771 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 3772 int readonly, int is_dev_replace)
a2de733c 3773{
d9d181c1 3774 struct scrub_ctx *sctx;
a2de733c
AJ
3775 int ret;
3776 struct btrfs_device *dev;
a5fb1142 3777 unsigned int nofs_flag;
1cec3f27
AJ
3778 struct btrfs_workqueue *scrub_workers = NULL;
3779 struct btrfs_workqueue *scrub_wr_comp = NULL;
3780 struct btrfs_workqueue *scrub_parity = NULL;
a2de733c 3781
aa1b8cd4 3782 if (btrfs_fs_closing(fs_info))
6c3abeda 3783 return -EAGAIN;
a2de733c 3784
da17066c 3785 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
3786 /*
3787 * in this case scrub is unable to calculate the checksum
3788 * the way scrub is implemented. Do not handle this
3789 * situation at all because it won't ever happen.
3790 */
efe120a0
FH
3791 btrfs_err(fs_info,
3792 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
da17066c
JM
3793 fs_info->nodesize,
3794 BTRFS_STRIPE_LEN);
b5d67f64
SB
3795 return -EINVAL;
3796 }
3797
da17066c 3798 if (fs_info->sectorsize != PAGE_SIZE) {
b5d67f64 3799 /* not supported for data w/o checksums */
751bebbe 3800 btrfs_err_rl(fs_info,
5d163e0e 3801 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
da17066c 3802 fs_info->sectorsize, PAGE_SIZE);
a2de733c
AJ
3803 return -EINVAL;
3804 }
3805
da17066c 3806 if (fs_info->nodesize >
7a9e9987 3807 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
da17066c 3808 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
7a9e9987
SB
3809 /*
3810 * would exhaust the array bounds of pagev member in
3811 * struct scrub_block
3812 */
5d163e0e
JM
3813 btrfs_err(fs_info,
3814 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
da17066c 3815 fs_info->nodesize,
7a9e9987 3816 SCRUB_MAX_PAGES_PER_BLOCK,
da17066c 3817 fs_info->sectorsize,
7a9e9987
SB
3818 SCRUB_MAX_PAGES_PER_BLOCK);
3819 return -EINVAL;
3820 }
3821
0e94c4f4
DS
3822 /* Allocate outside of device_list_mutex */
3823 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3824 if (IS_ERR(sctx))
3825 return PTR_ERR(sctx);
a2de733c 3826
aa1b8cd4 3827 mutex_lock(&fs_info->fs_devices->device_list_mutex);
09ba3bc9 3828 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
e6e674bd
AJ
3829 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3830 !is_dev_replace)) {
aa1b8cd4 3831 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4
DS
3832 ret = -ENODEV;
3833 goto out_free_ctx;
a2de733c 3834 }
a2de733c 3835
ebbede42
AJ
3836 if (!is_dev_replace && !readonly &&
3837 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
5d68da3b 3838 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
672d5990
MT
3839 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3840 rcu_str_deref(dev->name));
0e94c4f4
DS
3841 ret = -EROFS;
3842 goto out_free_ctx;
5d68da3b
MX
3843 }
3844
3b7a016f 3845 mutex_lock(&fs_info->scrub_lock);
e12c9621 3846 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
401e29c1 3847 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
a2de733c 3848 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3849 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4
DS
3850 ret = -EIO;
3851 goto out_free_ctx;
a2de733c
AJ
3852 }
3853
cb5583dd 3854 down_read(&fs_info->dev_replace.rwsem);
cadbc0a0 3855 if (dev->scrub_ctx ||
8dabb742
SB
3856 (!is_dev_replace &&
3857 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
cb5583dd 3858 up_read(&fs_info->dev_replace.rwsem);
a2de733c 3859 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3860 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4
DS
3861 ret = -EINPROGRESS;
3862 goto out_free_ctx;
a2de733c 3863 }
cb5583dd 3864 up_read(&fs_info->dev_replace.rwsem);
3b7a016f
WS
3865
3866 ret = scrub_workers_get(fs_info, is_dev_replace);
3867 if (ret) {
3868 mutex_unlock(&fs_info->scrub_lock);
3869 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 3870 goto out_free_ctx;
3b7a016f
WS
3871 }
3872
d9d181c1 3873 sctx->readonly = readonly;
cadbc0a0 3874 dev->scrub_ctx = sctx;
3cb0929a 3875 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3876
3cb0929a
WS
3877 /*
3878 * checking @scrub_pause_req here, we can avoid
3879 * race between committing transaction and scrubbing.
3880 */
cb7ab021 3881 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3882 atomic_inc(&fs_info->scrubs_running);
3883 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3884
a5fb1142
FM
3885 /*
3886 * In order to avoid deadlock with reclaim when there is a transaction
3887 * trying to pause scrub, make sure we use GFP_NOFS for all the
3888 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3889 * invoked by our callees. The pausing request is done when the
3890 * transaction commit starts, and it blocks the transaction until scrub
3891 * is paused (done at specific points at scrub_stripe() or right above
3892 * before incrementing fs_info->scrubs_running).
3893 */
3894 nofs_flag = memalloc_nofs_save();
ff023aac 3895 if (!is_dev_replace) {
d1e14420 3896 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
9b011adf
WS
3897 /*
3898 * by holding device list mutex, we can
3899 * kick off writing super in log tree sync.
3900 */
3cb0929a 3901 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3902 ret = scrub_supers(sctx, dev);
3cb0929a 3903 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3904 }
a2de733c
AJ
3905
3906 if (!ret)
32934280 3907 ret = scrub_enumerate_chunks(sctx, dev, start, end);
a5fb1142 3908 memalloc_nofs_restore(nofs_flag);
a2de733c 3909
b6bfebc1 3910 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3911 atomic_dec(&fs_info->scrubs_running);
3912 wake_up(&fs_info->scrub_pause_wait);
3913
b6bfebc1 3914 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3915
a2de733c 3916 if (progress)
d9d181c1 3917 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c 3918
d1e14420
AJ
3919 if (!is_dev_replace)
3920 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3921 ret ? "not finished" : "finished", devid, ret);
3922
a2de733c 3923 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 3924 dev->scrub_ctx = NULL;
ff09c4ca 3925 if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
1cec3f27
AJ
3926 scrub_workers = fs_info->scrub_workers;
3927 scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3928 scrub_parity = fs_info->scrub_parity_workers;
c8352942
DS
3929
3930 fs_info->scrub_workers = NULL;
3931 fs_info->scrub_wr_completion_workers = NULL;
3932 fs_info->scrub_parity_workers = NULL;
1cec3f27 3933 }
a2de733c
AJ
3934 mutex_unlock(&fs_info->scrub_lock);
3935
1cec3f27
AJ
3936 btrfs_destroy_workqueue(scrub_workers);
3937 btrfs_destroy_workqueue(scrub_wr_comp);
3938 btrfs_destroy_workqueue(scrub_parity);
f55985f4 3939 scrub_put_ctx(sctx);
a2de733c 3940
0e94c4f4
DS
3941 return ret;
3942
3943out_free_ctx:
3944 scrub_free_ctx(sctx);
3945
a2de733c
AJ
3946 return ret;
3947}
3948
2ff7e61e 3949void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
a2de733c 3950{
a2de733c
AJ
3951 mutex_lock(&fs_info->scrub_lock);
3952 atomic_inc(&fs_info->scrub_pause_req);
3953 while (atomic_read(&fs_info->scrubs_paused) !=
3954 atomic_read(&fs_info->scrubs_running)) {
3955 mutex_unlock(&fs_info->scrub_lock);
3956 wait_event(fs_info->scrub_pause_wait,
3957 atomic_read(&fs_info->scrubs_paused) ==
3958 atomic_read(&fs_info->scrubs_running));
3959 mutex_lock(&fs_info->scrub_lock);
3960 }
3961 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
3962}
3963
2ff7e61e 3964void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
a2de733c 3965{
a2de733c
AJ
3966 atomic_dec(&fs_info->scrub_pause_req);
3967 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
3968}
3969
aa1b8cd4 3970int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 3971{
a2de733c
AJ
3972 mutex_lock(&fs_info->scrub_lock);
3973 if (!atomic_read(&fs_info->scrubs_running)) {
3974 mutex_unlock(&fs_info->scrub_lock);
3975 return -ENOTCONN;
3976 }
3977
3978 atomic_inc(&fs_info->scrub_cancel_req);
3979 while (atomic_read(&fs_info->scrubs_running)) {
3980 mutex_unlock(&fs_info->scrub_lock);
3981 wait_event(fs_info->scrub_pause_wait,
3982 atomic_read(&fs_info->scrubs_running) == 0);
3983 mutex_lock(&fs_info->scrub_lock);
3984 }
3985 atomic_dec(&fs_info->scrub_cancel_req);
3986 mutex_unlock(&fs_info->scrub_lock);
3987
3988 return 0;
3989}
3990
163e97ee 3991int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
49b25e05 3992{
163e97ee 3993 struct btrfs_fs_info *fs_info = dev->fs_info;
d9d181c1 3994 struct scrub_ctx *sctx;
a2de733c
AJ
3995
3996 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 3997 sctx = dev->scrub_ctx;
d9d181c1 3998 if (!sctx) {
a2de733c
AJ
3999 mutex_unlock(&fs_info->scrub_lock);
4000 return -ENOTCONN;
4001 }
d9d181c1 4002 atomic_inc(&sctx->cancel_req);
cadbc0a0 4003 while (dev->scrub_ctx) {
a2de733c
AJ
4004 mutex_unlock(&fs_info->scrub_lock);
4005 wait_event(fs_info->scrub_pause_wait,
cadbc0a0 4006 dev->scrub_ctx == NULL);
a2de733c
AJ
4007 mutex_lock(&fs_info->scrub_lock);
4008 }
4009 mutex_unlock(&fs_info->scrub_lock);
4010
4011 return 0;
4012}
1623edeb 4013
2ff7e61e 4014int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
a2de733c
AJ
4015 struct btrfs_scrub_progress *progress)
4016{
4017 struct btrfs_device *dev;
d9d181c1 4018 struct scrub_ctx *sctx = NULL;
a2de733c 4019
0b246afa 4020 mutex_lock(&fs_info->fs_devices->device_list_mutex);
09ba3bc9 4021 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
a2de733c 4022 if (dev)
cadbc0a0 4023 sctx = dev->scrub_ctx;
d9d181c1
SB
4024 if (sctx)
4025 memcpy(progress, &sctx->stat, sizeof(*progress));
0b246afa 4026 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 4027
d9d181c1 4028 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 4029}
ff023aac
SB
4030
4031static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4032 u64 extent_logical, u64 extent_len,
4033 u64 *extent_physical,
4034 struct btrfs_device **extent_dev,
4035 int *extent_mirror_num)
4036{
4037 u64 mapped_length;
4038 struct btrfs_bio *bbio = NULL;
4039 int ret;
4040
4041 mapped_length = extent_len;
cf8cddd3 4042 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
ff023aac
SB
4043 &mapped_length, &bbio, 0);
4044 if (ret || !bbio || mapped_length < extent_len ||
4045 !bbio->stripes[0].dev->bdev) {
6e9606d2 4046 btrfs_put_bbio(bbio);
ff023aac
SB
4047 return;
4048 }
4049
4050 *extent_physical = bbio->stripes[0].physical;
4051 *extent_mirror_num = bbio->mirror_num;
4052 *extent_dev = bbio->stripes[0].dev;
6e9606d2 4053 btrfs_put_bbio(bbio);
ff023aac 4054}