Btrfs: fix wrong disk size when writing super blocks
[linux-2.6-block.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c 1/*
b6bfebc1 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a2de733c 19#include <linux/blkdev.h>
558540c1 20#include <linux/ratelimit.h>
a2de733c
AJ
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
0ef8e451 25#include "transaction.h"
558540c1 26#include "backref.h"
5da6fcbc 27#include "extent_io.h"
ff023aac 28#include "dev-replace.h"
21adbd5c 29#include "check-integrity.h"
606686ee 30#include "rcu-string.h"
53b381b3 31#include "raid56.h"
a2de733c
AJ
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
a2de733c
AJ
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
a2de733c 42 * - track and record media errors, throw out bad devices
a2de733c 43 * - add a mode to also read unallocated space
a2de733c
AJ
44 */
45
b5d67f64 46struct scrub_block;
d9d181c1 47struct scrub_ctx;
a2de733c 48
ff023aac
SB
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
b5d67f64 64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c
AJ
65
66struct scrub_page {
b5d67f64
SB
67 struct scrub_block *sblock;
68 struct page *page;
442a4f63 69 struct btrfs_device *dev;
a2de733c
AJ
70 u64 flags; /* extent flags */
71 u64 generation;
b5d67f64
SB
72 u64 logical;
73 u64 physical;
ff023aac 74 u64 physical_for_dev_replace;
7a9e9987 75 atomic_t ref_count;
b5d67f64
SB
76 struct {
77 unsigned int mirror_num:8;
78 unsigned int have_csum:1;
79 unsigned int io_error:1;
80 };
a2de733c
AJ
81 u8 csum[BTRFS_CSUM_SIZE];
82};
83
84struct scrub_bio {
85 int index;
d9d181c1 86 struct scrub_ctx *sctx;
a36cf8b8 87 struct btrfs_device *dev;
a2de733c
AJ
88 struct bio *bio;
89 int err;
90 u64 logical;
91 u64 physical;
ff023aac
SB
92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
93 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
94#else
95 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
96#endif
b5d67f64 97 int page_count;
a2de733c
AJ
98 int next_free;
99 struct btrfs_work work;
100};
101
b5d67f64 102struct scrub_block {
7a9e9987 103 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
104 int page_count;
105 atomic_t outstanding_pages;
106 atomic_t ref_count; /* free mem on transition to zero */
d9d181c1 107 struct scrub_ctx *sctx;
b5d67f64
SB
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
442a4f63 112 unsigned int generation_error:1; /* also sets header_error */
b5d67f64
SB
113 };
114};
115
ff023aac
SB
116struct scrub_wr_ctx {
117 struct scrub_bio *wr_curr_bio;
118 struct btrfs_device *tgtdev;
119 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
120 atomic_t flush_all_writes;
121 struct mutex wr_lock;
122};
123
d9d181c1 124struct scrub_ctx {
ff023aac 125 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
a36cf8b8 126 struct btrfs_root *dev_root;
a2de733c
AJ
127 int first_free;
128 int curr;
b6bfebc1
SB
129 atomic_t bios_in_flight;
130 atomic_t workers_pending;
a2de733c
AJ
131 spinlock_t list_lock;
132 wait_queue_head_t list_wait;
133 u16 csum_size;
134 struct list_head csum_list;
135 atomic_t cancel_req;
8628764e 136 int readonly;
ff023aac 137 int pages_per_rd_bio;
b5d67f64
SB
138 u32 sectorsize;
139 u32 nodesize;
63a212ab
SB
140
141 int is_dev_replace;
ff023aac 142 struct scrub_wr_ctx wr_ctx;
63a212ab 143
a2de733c
AJ
144 /*
145 * statistics
146 */
147 struct btrfs_scrub_progress stat;
148 spinlock_t stat_lock;
149};
150
0ef8e451 151struct scrub_fixup_nodatasum {
d9d181c1 152 struct scrub_ctx *sctx;
a36cf8b8 153 struct btrfs_device *dev;
0ef8e451
JS
154 u64 logical;
155 struct btrfs_root *root;
156 struct btrfs_work work;
157 int mirror_num;
158};
159
652f25a2
JB
160struct scrub_nocow_inode {
161 u64 inum;
162 u64 offset;
163 u64 root;
164 struct list_head list;
165};
166
ff023aac
SB
167struct scrub_copy_nocow_ctx {
168 struct scrub_ctx *sctx;
169 u64 logical;
170 u64 len;
171 int mirror_num;
172 u64 physical_for_dev_replace;
652f25a2 173 struct list_head inodes;
ff023aac
SB
174 struct btrfs_work work;
175};
176
558540c1
JS
177struct scrub_warning {
178 struct btrfs_path *path;
179 u64 extent_item_size;
180 char *scratch_buf;
181 char *msg_buf;
182 const char *errstr;
183 sector_t sector;
184 u64 logical;
185 struct btrfs_device *dev;
186 int msg_bufsize;
187 int scratch_bufsize;
188};
189
b5d67f64 190
b6bfebc1
SB
191static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
192static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
193static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
194static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
b5d67f64 195static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
d9d181c1 196static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 197 struct btrfs_fs_info *fs_info,
ff023aac 198 struct scrub_block *original_sblock,
b5d67f64 199 u64 length, u64 logical,
ff023aac 200 struct scrub_block *sblocks_for_recheck);
34f5c8e9
SB
201static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
202 struct scrub_block *sblock, int is_metadata,
203 int have_csum, u8 *csum, u64 generation,
204 u16 csum_size);
b5d67f64
SB
205static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
206 struct scrub_block *sblock,
207 int is_metadata, int have_csum,
208 const u8 *csum, u64 generation,
209 u16 csum_size);
b5d67f64
SB
210static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
211 struct scrub_block *sblock_good,
212 int force_write);
213static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
214 struct scrub_block *sblock_good,
215 int page_num, int force_write);
ff023aac
SB
216static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
217static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
218 int page_num);
b5d67f64
SB
219static int scrub_checksum_data(struct scrub_block *sblock);
220static int scrub_checksum_tree_block(struct scrub_block *sblock);
221static int scrub_checksum_super(struct scrub_block *sblock);
222static void scrub_block_get(struct scrub_block *sblock);
223static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
224static void scrub_page_get(struct scrub_page *spage);
225static void scrub_page_put(struct scrub_page *spage);
ff023aac
SB
226static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
227 struct scrub_page *spage);
d9d181c1 228static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 229 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
230 u64 gen, int mirror_num, u8 *csum, int force,
231 u64 physical_for_dev_replace);
1623edeb 232static void scrub_bio_end_io(struct bio *bio, int err);
b5d67f64
SB
233static void scrub_bio_end_io_worker(struct btrfs_work *work);
234static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
235static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
236 u64 extent_logical, u64 extent_len,
237 u64 *extent_physical,
238 struct btrfs_device **extent_dev,
239 int *extent_mirror_num);
240static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
241 struct scrub_wr_ctx *wr_ctx,
242 struct btrfs_fs_info *fs_info,
243 struct btrfs_device *dev,
244 int is_dev_replace);
245static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
246static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
247 struct scrub_page *spage);
248static void scrub_wr_submit(struct scrub_ctx *sctx);
249static void scrub_wr_bio_end_io(struct bio *bio, int err);
250static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
251static int write_page_nocow(struct scrub_ctx *sctx,
252 u64 physical_for_dev_replace, struct page *page);
253static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
652f25a2 254 struct scrub_copy_nocow_ctx *ctx);
ff023aac
SB
255static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
256 int mirror_num, u64 physical_for_dev_replace);
257static void copy_nocow_pages_worker(struct btrfs_work *work);
cb7ab021 258static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 259static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
1623edeb
SB
260
261
b6bfebc1
SB
262static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
263{
264 atomic_inc(&sctx->bios_in_flight);
265}
266
267static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
268{
269 atomic_dec(&sctx->bios_in_flight);
270 wake_up(&sctx->list_wait);
271}
272
cb7ab021 273static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
274{
275 while (atomic_read(&fs_info->scrub_pause_req)) {
276 mutex_unlock(&fs_info->scrub_lock);
277 wait_event(fs_info->scrub_pause_wait,
278 atomic_read(&fs_info->scrub_pause_req) == 0);
279 mutex_lock(&fs_info->scrub_lock);
280 }
281}
282
cb7ab021
WS
283static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
284{
285 atomic_inc(&fs_info->scrubs_paused);
286 wake_up(&fs_info->scrub_pause_wait);
287
288 mutex_lock(&fs_info->scrub_lock);
289 __scrub_blocked_if_needed(fs_info);
290 atomic_dec(&fs_info->scrubs_paused);
291 mutex_unlock(&fs_info->scrub_lock);
292
293 wake_up(&fs_info->scrub_pause_wait);
294}
295
b6bfebc1
SB
296/*
297 * used for workers that require transaction commits (i.e., for the
298 * NOCOW case)
299 */
300static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
301{
302 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
303
304 /*
305 * increment scrubs_running to prevent cancel requests from
306 * completing as long as a worker is running. we must also
307 * increment scrubs_paused to prevent deadlocking on pause
308 * requests used for transactions commits (as the worker uses a
309 * transaction context). it is safe to regard the worker
310 * as paused for all matters practical. effectively, we only
311 * avoid cancellation requests from completing.
312 */
313 mutex_lock(&fs_info->scrub_lock);
314 atomic_inc(&fs_info->scrubs_running);
315 atomic_inc(&fs_info->scrubs_paused);
316 mutex_unlock(&fs_info->scrub_lock);
32a44789
WS
317
318 /*
319 * check if @scrubs_running=@scrubs_paused condition
320 * inside wait_event() is not an atomic operation.
321 * which means we may inc/dec @scrub_running/paused
322 * at any time. Let's wake up @scrub_pause_wait as
323 * much as we can to let commit transaction blocked less.
324 */
325 wake_up(&fs_info->scrub_pause_wait);
326
b6bfebc1
SB
327 atomic_inc(&sctx->workers_pending);
328}
329
330/* used for workers that require transaction commits */
331static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
332{
333 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
334
335 /*
336 * see scrub_pending_trans_workers_inc() why we're pretending
337 * to be paused in the scrub counters
338 */
339 mutex_lock(&fs_info->scrub_lock);
340 atomic_dec(&fs_info->scrubs_running);
341 atomic_dec(&fs_info->scrubs_paused);
342 mutex_unlock(&fs_info->scrub_lock);
343 atomic_dec(&sctx->workers_pending);
344 wake_up(&fs_info->scrub_pause_wait);
345 wake_up(&sctx->list_wait);
346}
347
d9d181c1 348static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 349{
d9d181c1 350 while (!list_empty(&sctx->csum_list)) {
a2de733c 351 struct btrfs_ordered_sum *sum;
d9d181c1 352 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
353 struct btrfs_ordered_sum, list);
354 list_del(&sum->list);
355 kfree(sum);
356 }
357}
358
d9d181c1 359static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
360{
361 int i;
a2de733c 362
d9d181c1 363 if (!sctx)
a2de733c
AJ
364 return;
365
ff023aac
SB
366 scrub_free_wr_ctx(&sctx->wr_ctx);
367
b5d67f64 368 /* this can happen when scrub is cancelled */
d9d181c1
SB
369 if (sctx->curr != -1) {
370 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
371
372 for (i = 0; i < sbio->page_count; i++) {
ff023aac 373 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
374 scrub_block_put(sbio->pagev[i]->sblock);
375 }
376 bio_put(sbio->bio);
377 }
378
ff023aac 379 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 380 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
381
382 if (!sbio)
383 break;
a2de733c
AJ
384 kfree(sbio);
385 }
386
d9d181c1
SB
387 scrub_free_csums(sctx);
388 kfree(sctx);
a2de733c
AJ
389}
390
391static noinline_for_stack
63a212ab 392struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
a2de733c 393{
d9d181c1 394 struct scrub_ctx *sctx;
a2de733c 395 int i;
a2de733c 396 struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
ff023aac
SB
397 int pages_per_rd_bio;
398 int ret;
a2de733c 399
ff023aac
SB
400 /*
401 * the setting of pages_per_rd_bio is correct for scrub but might
402 * be wrong for the dev_replace code where we might read from
403 * different devices in the initial huge bios. However, that
404 * code is able to correctly handle the case when adding a page
405 * to a bio fails.
406 */
407 if (dev->bdev)
408 pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
409 bio_get_nr_vecs(dev->bdev));
410 else
411 pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1
SB
412 sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
413 if (!sctx)
a2de733c 414 goto nomem;
63a212ab 415 sctx->is_dev_replace = is_dev_replace;
ff023aac 416 sctx->pages_per_rd_bio = pages_per_rd_bio;
d9d181c1 417 sctx->curr = -1;
a36cf8b8 418 sctx->dev_root = dev->dev_root;
ff023aac 419 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
420 struct scrub_bio *sbio;
421
422 sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
423 if (!sbio)
424 goto nomem;
d9d181c1 425 sctx->bios[i] = sbio;
a2de733c 426
a2de733c 427 sbio->index = i;
d9d181c1 428 sbio->sctx = sctx;
b5d67f64 429 sbio->page_count = 0;
9e0af237
LB
430 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
431 scrub_bio_end_io_worker, NULL, NULL);
a2de733c 432
ff023aac 433 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 434 sctx->bios[i]->next_free = i + 1;
0ef8e451 435 else
d9d181c1
SB
436 sctx->bios[i]->next_free = -1;
437 }
438 sctx->first_free = 0;
439 sctx->nodesize = dev->dev_root->nodesize;
d9d181c1 440 sctx->sectorsize = dev->dev_root->sectorsize;
b6bfebc1
SB
441 atomic_set(&sctx->bios_in_flight, 0);
442 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
443 atomic_set(&sctx->cancel_req, 0);
444 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
445 INIT_LIST_HEAD(&sctx->csum_list);
446
447 spin_lock_init(&sctx->list_lock);
448 spin_lock_init(&sctx->stat_lock);
449 init_waitqueue_head(&sctx->list_wait);
ff023aac
SB
450
451 ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
452 fs_info->dev_replace.tgtdev, is_dev_replace);
453 if (ret) {
454 scrub_free_ctx(sctx);
455 return ERR_PTR(ret);
456 }
d9d181c1 457 return sctx;
a2de733c
AJ
458
459nomem:
d9d181c1 460 scrub_free_ctx(sctx);
a2de733c
AJ
461 return ERR_PTR(-ENOMEM);
462}
463
ff023aac
SB
464static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
465 void *warn_ctx)
558540c1
JS
466{
467 u64 isize;
468 u32 nlink;
469 int ret;
470 int i;
471 struct extent_buffer *eb;
472 struct btrfs_inode_item *inode_item;
ff023aac 473 struct scrub_warning *swarn = warn_ctx;
558540c1
JS
474 struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
475 struct inode_fs_paths *ipath = NULL;
476 struct btrfs_root *local_root;
477 struct btrfs_key root_key;
478
479 root_key.objectid = root;
480 root_key.type = BTRFS_ROOT_ITEM_KEY;
481 root_key.offset = (u64)-1;
482 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
483 if (IS_ERR(local_root)) {
484 ret = PTR_ERR(local_root);
485 goto err;
486 }
487
488 ret = inode_item_info(inum, 0, local_root, swarn->path);
489 if (ret) {
490 btrfs_release_path(swarn->path);
491 goto err;
492 }
493
494 eb = swarn->path->nodes[0];
495 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
496 struct btrfs_inode_item);
497 isize = btrfs_inode_size(eb, inode_item);
498 nlink = btrfs_inode_nlink(eb, inode_item);
499 btrfs_release_path(swarn->path);
500
501 ipath = init_ipath(4096, local_root, swarn->path);
26bdef54
DC
502 if (IS_ERR(ipath)) {
503 ret = PTR_ERR(ipath);
504 ipath = NULL;
505 goto err;
506 }
558540c1
JS
507 ret = paths_from_inode(inum, ipath);
508
509 if (ret < 0)
510 goto err;
511
512 /*
513 * we deliberately ignore the bit ipath might have been too small to
514 * hold all of the paths here
515 */
516 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
efe120a0 517 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
558540c1
JS
518 "%s, sector %llu, root %llu, inode %llu, offset %llu, "
519 "length %llu, links %u (path: %s)\n", swarn->errstr,
606686ee 520 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
521 (unsigned long long)swarn->sector, root, inum, offset,
522 min(isize - offset, (u64)PAGE_SIZE), nlink,
745c4d8e 523 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
524
525 free_ipath(ipath);
526 return 0;
527
528err:
efe120a0 529 printk_in_rcu(KERN_WARNING "BTRFS: %s at logical %llu on dev "
558540c1
JS
530 "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
531 "resolving failed with ret=%d\n", swarn->errstr,
606686ee 532 swarn->logical, rcu_str_deref(swarn->dev->name),
558540c1
JS
533 (unsigned long long)swarn->sector, root, inum, offset, ret);
534
535 free_ipath(ipath);
536 return 0;
537}
538
b5d67f64 539static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 540{
a36cf8b8
SB
541 struct btrfs_device *dev;
542 struct btrfs_fs_info *fs_info;
558540c1
JS
543 struct btrfs_path *path;
544 struct btrfs_key found_key;
545 struct extent_buffer *eb;
546 struct btrfs_extent_item *ei;
547 struct scrub_warning swarn;
69917e43
LB
548 unsigned long ptr = 0;
549 u64 extent_item_pos;
550 u64 flags = 0;
558540c1 551 u64 ref_root;
69917e43 552 u32 item_size;
558540c1 553 u8 ref_level;
558540c1 554 const int bufsize = 4096;
69917e43 555 int ret;
558540c1 556
a36cf8b8 557 WARN_ON(sblock->page_count < 1);
7a9e9987 558 dev = sblock->pagev[0]->dev;
a36cf8b8
SB
559 fs_info = sblock->sctx->dev_root->fs_info;
560
558540c1
JS
561 path = btrfs_alloc_path();
562
563 swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
564 swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
7a9e9987
SB
565 swarn.sector = (sblock->pagev[0]->physical) >> 9;
566 swarn.logical = sblock->pagev[0]->logical;
558540c1 567 swarn.errstr = errstr;
a36cf8b8 568 swarn.dev = NULL;
558540c1
JS
569 swarn.msg_bufsize = bufsize;
570 swarn.scratch_bufsize = bufsize;
571
572 if (!path || !swarn.scratch_buf || !swarn.msg_buf)
573 goto out;
574
69917e43
LB
575 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
576 &flags);
558540c1
JS
577 if (ret < 0)
578 goto out;
579
4692cf58 580 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
581 swarn.extent_item_size = found_key.offset;
582
583 eb = path->nodes[0];
584 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
585 item_size = btrfs_item_size_nr(eb, path->slots[0]);
586
69917e43 587 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 588 do {
6eda71d0
LB
589 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
590 item_size, &ref_root,
591 &ref_level);
606686ee 592 printk_in_rcu(KERN_WARNING
efe120a0 593 "BTRFS: %s at logical %llu on dev %s, "
558540c1 594 "sector %llu: metadata %s (level %d) in tree "
606686ee
JB
595 "%llu\n", errstr, swarn.logical,
596 rcu_str_deref(dev->name),
558540c1
JS
597 (unsigned long long)swarn.sector,
598 ref_level ? "node" : "leaf",
599 ret < 0 ? -1 : ref_level,
600 ret < 0 ? -1 : ref_root);
601 } while (ret != 1);
d8fe29e9 602 btrfs_release_path(path);
558540c1 603 } else {
d8fe29e9 604 btrfs_release_path(path);
558540c1 605 swarn.path = path;
a36cf8b8 606 swarn.dev = dev;
7a3ae2f8
JS
607 iterate_extent_inodes(fs_info, found_key.objectid,
608 extent_item_pos, 1,
558540c1
JS
609 scrub_print_warning_inode, &swarn);
610 }
611
612out:
613 btrfs_free_path(path);
614 kfree(swarn.scratch_buf);
615 kfree(swarn.msg_buf);
616}
617
ff023aac 618static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
0ef8e451 619{
5da6fcbc 620 struct page *page = NULL;
0ef8e451 621 unsigned long index;
ff023aac 622 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
0ef8e451 623 int ret;
5da6fcbc 624 int corrected = 0;
0ef8e451 625 struct btrfs_key key;
5da6fcbc 626 struct inode *inode = NULL;
6f1c3605 627 struct btrfs_fs_info *fs_info;
0ef8e451
JS
628 u64 end = offset + PAGE_SIZE - 1;
629 struct btrfs_root *local_root;
6f1c3605 630 int srcu_index;
0ef8e451
JS
631
632 key.objectid = root;
633 key.type = BTRFS_ROOT_ITEM_KEY;
634 key.offset = (u64)-1;
6f1c3605
LB
635
636 fs_info = fixup->root->fs_info;
637 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
638
639 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
640 if (IS_ERR(local_root)) {
641 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451 642 return PTR_ERR(local_root);
6f1c3605 643 }
0ef8e451
JS
644
645 key.type = BTRFS_INODE_ITEM_KEY;
646 key.objectid = inum;
647 key.offset = 0;
6f1c3605
LB
648 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
649 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451
JS
650 if (IS_ERR(inode))
651 return PTR_ERR(inode);
652
0ef8e451
JS
653 index = offset >> PAGE_CACHE_SHIFT;
654
655 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
5da6fcbc
JS
656 if (!page) {
657 ret = -ENOMEM;
658 goto out;
659 }
660
661 if (PageUptodate(page)) {
5da6fcbc
JS
662 if (PageDirty(page)) {
663 /*
664 * we need to write the data to the defect sector. the
665 * data that was in that sector is not in memory,
666 * because the page was modified. we must not write the
667 * modified page to that sector.
668 *
669 * TODO: what could be done here: wait for the delalloc
670 * runner to write out that page (might involve
671 * COW) and see whether the sector is still
672 * referenced afterwards.
673 *
674 * For the meantime, we'll treat this error
675 * incorrectable, although there is a chance that a
676 * later scrub will find the bad sector again and that
677 * there's no dirty page in memory, then.
678 */
679 ret = -EIO;
680 goto out;
681 }
3ec706c8
SB
682 fs_info = BTRFS_I(inode)->root->fs_info;
683 ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
5da6fcbc
JS
684 fixup->logical, page,
685 fixup->mirror_num);
686 unlock_page(page);
687 corrected = !ret;
688 } else {
689 /*
690 * we need to get good data first. the general readpage path
691 * will call repair_io_failure for us, we just have to make
692 * sure we read the bad mirror.
693 */
694 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
695 EXTENT_DAMAGED, GFP_NOFS);
696 if (ret) {
697 /* set_extent_bits should give proper error */
698 WARN_ON(ret > 0);
699 if (ret > 0)
700 ret = -EFAULT;
701 goto out;
702 }
703
704 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
705 btrfs_get_extent,
706 fixup->mirror_num);
707 wait_on_page_locked(page);
708
709 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
710 end, EXTENT_DAMAGED, 0, NULL);
711 if (!corrected)
712 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
713 EXTENT_DAMAGED, GFP_NOFS);
714 }
715
716out:
717 if (page)
718 put_page(page);
7fb18a06
TK
719
720 iput(inode);
0ef8e451
JS
721
722 if (ret < 0)
723 return ret;
724
725 if (ret == 0 && corrected) {
726 /*
727 * we only need to call readpage for one of the inodes belonging
728 * to this extent. so make iterate_extent_inodes stop
729 */
730 return 1;
731 }
732
733 return -EIO;
734}
735
736static void scrub_fixup_nodatasum(struct btrfs_work *work)
737{
738 int ret;
739 struct scrub_fixup_nodatasum *fixup;
d9d181c1 740 struct scrub_ctx *sctx;
0ef8e451 741 struct btrfs_trans_handle *trans = NULL;
0ef8e451
JS
742 struct btrfs_path *path;
743 int uncorrectable = 0;
744
745 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
d9d181c1 746 sctx = fixup->sctx;
0ef8e451
JS
747
748 path = btrfs_alloc_path();
749 if (!path) {
d9d181c1
SB
750 spin_lock(&sctx->stat_lock);
751 ++sctx->stat.malloc_errors;
752 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
753 uncorrectable = 1;
754 goto out;
755 }
756
757 trans = btrfs_join_transaction(fixup->root);
758 if (IS_ERR(trans)) {
759 uncorrectable = 1;
760 goto out;
761 }
762
763 /*
764 * the idea is to trigger a regular read through the standard path. we
765 * read a page from the (failed) logical address by specifying the
766 * corresponding copynum of the failed sector. thus, that readpage is
767 * expected to fail.
768 * that is the point where on-the-fly error correction will kick in
769 * (once it's finished) and rewrite the failed sector if a good copy
770 * can be found.
771 */
772 ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
773 path, scrub_fixup_readpage,
774 fixup);
775 if (ret < 0) {
776 uncorrectable = 1;
777 goto out;
778 }
779 WARN_ON(ret != 1);
780
d9d181c1
SB
781 spin_lock(&sctx->stat_lock);
782 ++sctx->stat.corrected_errors;
783 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
784
785out:
786 if (trans && !IS_ERR(trans))
787 btrfs_end_transaction(trans, fixup->root);
788 if (uncorrectable) {
d9d181c1
SB
789 spin_lock(&sctx->stat_lock);
790 ++sctx->stat.uncorrectable_errors;
791 spin_unlock(&sctx->stat_lock);
ff023aac
SB
792 btrfs_dev_replace_stats_inc(
793 &sctx->dev_root->fs_info->dev_replace.
794 num_uncorrectable_read_errors);
efe120a0
FH
795 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: "
796 "unable to fixup (nodatasum) error at logical %llu on dev %s\n",
c1c9ff7c 797 fixup->logical, rcu_str_deref(fixup->dev->name));
0ef8e451
JS
798 }
799
800 btrfs_free_path(path);
801 kfree(fixup);
802
b6bfebc1 803 scrub_pending_trans_workers_dec(sctx);
0ef8e451
JS
804}
805
a2de733c 806/*
b5d67f64
SB
807 * scrub_handle_errored_block gets called when either verification of the
808 * pages failed or the bio failed to read, e.g. with EIO. In the latter
809 * case, this function handles all pages in the bio, even though only one
810 * may be bad.
811 * The goal of this function is to repair the errored block by using the
812 * contents of one of the mirrors.
a2de733c 813 */
b5d67f64 814static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 815{
d9d181c1 816 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 817 struct btrfs_device *dev;
b5d67f64
SB
818 struct btrfs_fs_info *fs_info;
819 u64 length;
820 u64 logical;
821 u64 generation;
822 unsigned int failed_mirror_index;
823 unsigned int is_metadata;
824 unsigned int have_csum;
825 u8 *csum;
826 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
827 struct scrub_block *sblock_bad;
828 int ret;
829 int mirror_index;
830 int page_num;
831 int success;
558540c1 832 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
833 DEFAULT_RATELIMIT_BURST);
834
835 BUG_ON(sblock_to_check->page_count < 1);
a36cf8b8 836 fs_info = sctx->dev_root->fs_info;
4ded4f63
SB
837 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
838 /*
839 * if we find an error in a super block, we just report it.
840 * They will get written with the next transaction commit
841 * anyway
842 */
843 spin_lock(&sctx->stat_lock);
844 ++sctx->stat.super_errors;
845 spin_unlock(&sctx->stat_lock);
846 return 0;
847 }
b5d67f64 848 length = sblock_to_check->page_count * PAGE_SIZE;
7a9e9987
SB
849 logical = sblock_to_check->pagev[0]->logical;
850 generation = sblock_to_check->pagev[0]->generation;
851 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
852 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
853 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 854 BTRFS_EXTENT_FLAG_DATA);
7a9e9987
SB
855 have_csum = sblock_to_check->pagev[0]->have_csum;
856 csum = sblock_to_check->pagev[0]->csum;
857 dev = sblock_to_check->pagev[0]->dev;
13db62b7 858
ff023aac
SB
859 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
860 sblocks_for_recheck = NULL;
861 goto nodatasum_case;
862 }
863
b5d67f64
SB
864 /*
865 * read all mirrors one after the other. This includes to
866 * re-read the extent or metadata block that failed (that was
867 * the cause that this fixup code is called) another time,
868 * page by page this time in order to know which pages
869 * caused I/O errors and which ones are good (for all mirrors).
870 * It is the goal to handle the situation when more than one
871 * mirror contains I/O errors, but the errors do not
872 * overlap, i.e. the data can be repaired by selecting the
873 * pages from those mirrors without I/O error on the
874 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
875 * would be that mirror #1 has an I/O error on the first page,
876 * the second page is good, and mirror #2 has an I/O error on
877 * the second page, but the first page is good.
878 * Then the first page of the first mirror can be repaired by
879 * taking the first page of the second mirror, and the
880 * second page of the second mirror can be repaired by
881 * copying the contents of the 2nd page of the 1st mirror.
882 * One more note: if the pages of one mirror contain I/O
883 * errors, the checksum cannot be verified. In order to get
884 * the best data for repairing, the first attempt is to find
885 * a mirror without I/O errors and with a validated checksum.
886 * Only if this is not possible, the pages are picked from
887 * mirrors with I/O errors without considering the checksum.
888 * If the latter is the case, at the end, the checksum of the
889 * repaired area is verified in order to correctly maintain
890 * the statistics.
891 */
892
893 sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
894 sizeof(*sblocks_for_recheck),
895 GFP_NOFS);
896 if (!sblocks_for_recheck) {
d9d181c1
SB
897 spin_lock(&sctx->stat_lock);
898 sctx->stat.malloc_errors++;
899 sctx->stat.read_errors++;
900 sctx->stat.uncorrectable_errors++;
901 spin_unlock(&sctx->stat_lock);
a36cf8b8 902 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 903 goto out;
a2de733c
AJ
904 }
905
b5d67f64 906 /* setup the context, map the logical blocks and alloc the pages */
ff023aac 907 ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
b5d67f64
SB
908 logical, sblocks_for_recheck);
909 if (ret) {
d9d181c1
SB
910 spin_lock(&sctx->stat_lock);
911 sctx->stat.read_errors++;
912 sctx->stat.uncorrectable_errors++;
913 spin_unlock(&sctx->stat_lock);
a36cf8b8 914 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
915 goto out;
916 }
917 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
918 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 919
b5d67f64 920 /* build and submit the bios for the failed mirror, check checksums */
34f5c8e9
SB
921 scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
922 csum, generation, sctx->csum_size);
a2de733c 923
b5d67f64
SB
924 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
925 sblock_bad->no_io_error_seen) {
926 /*
927 * the error disappeared after reading page by page, or
928 * the area was part of a huge bio and other parts of the
929 * bio caused I/O errors, or the block layer merged several
930 * read requests into one and the error is caused by a
931 * different bio (usually one of the two latter cases is
932 * the cause)
933 */
d9d181c1
SB
934 spin_lock(&sctx->stat_lock);
935 sctx->stat.unverified_errors++;
936 spin_unlock(&sctx->stat_lock);
a2de733c 937
ff023aac
SB
938 if (sctx->is_dev_replace)
939 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 940 goto out;
a2de733c 941 }
a2de733c 942
b5d67f64 943 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
944 spin_lock(&sctx->stat_lock);
945 sctx->stat.read_errors++;
946 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
947 if (__ratelimit(&_rs))
948 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 949 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 950 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
951 spin_lock(&sctx->stat_lock);
952 sctx->stat.csum_errors++;
953 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
954 if (__ratelimit(&_rs))
955 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 956 btrfs_dev_stat_inc_and_print(dev,
442a4f63 957 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 958 } else if (sblock_bad->header_error) {
d9d181c1
SB
959 spin_lock(&sctx->stat_lock);
960 sctx->stat.verify_errors++;
961 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
962 if (__ratelimit(&_rs))
963 scrub_print_warning("checksum/header error",
964 sblock_to_check);
442a4f63 965 if (sblock_bad->generation_error)
a36cf8b8 966 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
967 BTRFS_DEV_STAT_GENERATION_ERRS);
968 else
a36cf8b8 969 btrfs_dev_stat_inc_and_print(dev,
442a4f63 970 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 971 }
a2de733c 972
33ef30ad
ID
973 if (sctx->readonly) {
974 ASSERT(!sctx->is_dev_replace);
975 goto out;
976 }
a2de733c 977
b5d67f64
SB
978 if (!is_metadata && !have_csum) {
979 struct scrub_fixup_nodatasum *fixup_nodatasum;
a2de733c 980
ff023aac
SB
981nodatasum_case:
982 WARN_ON(sctx->is_dev_replace);
983
b5d67f64
SB
984 /*
985 * !is_metadata and !have_csum, this means that the data
986 * might not be COW'ed, that it might be modified
987 * concurrently. The general strategy to work on the
988 * commit root does not help in the case when COW is not
989 * used.
990 */
991 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
992 if (!fixup_nodatasum)
993 goto did_not_correct_error;
d9d181c1 994 fixup_nodatasum->sctx = sctx;
a36cf8b8 995 fixup_nodatasum->dev = dev;
b5d67f64
SB
996 fixup_nodatasum->logical = logical;
997 fixup_nodatasum->root = fs_info->extent_root;
998 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
b6bfebc1 999 scrub_pending_trans_workers_inc(sctx);
9e0af237
LB
1000 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1001 scrub_fixup_nodatasum, NULL, NULL);
0339ef2f
QW
1002 btrfs_queue_work(fs_info->scrub_workers,
1003 &fixup_nodatasum->work);
b5d67f64 1004 goto out;
a2de733c
AJ
1005 }
1006
b5d67f64
SB
1007 /*
1008 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1009 * checksums.
1010 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1011 * errors and also does not have a checksum error.
1012 * If one is found, and if a checksum is present, the full block
1013 * that is known to contain an error is rewritten. Afterwards
1014 * the block is known to be corrected.
1015 * If a mirror is found which is completely correct, and no
1016 * checksum is present, only those pages are rewritten that had
1017 * an I/O error in the block to be repaired, since it cannot be
1018 * determined, which copy of the other pages is better (and it
1019 * could happen otherwise that a correct page would be
1020 * overwritten by a bad one).
1021 */
1022 for (mirror_index = 0;
1023 mirror_index < BTRFS_MAX_MIRRORS &&
1024 sblocks_for_recheck[mirror_index].page_count > 0;
1025 mirror_index++) {
cb2ced73 1026 struct scrub_block *sblock_other;
b5d67f64 1027
cb2ced73
SB
1028 if (mirror_index == failed_mirror_index)
1029 continue;
1030 sblock_other = sblocks_for_recheck + mirror_index;
1031
1032 /* build and submit the bios, check checksums */
34f5c8e9
SB
1033 scrub_recheck_block(fs_info, sblock_other, is_metadata,
1034 have_csum, csum, generation,
1035 sctx->csum_size);
1036
1037 if (!sblock_other->header_error &&
b5d67f64
SB
1038 !sblock_other->checksum_error &&
1039 sblock_other->no_io_error_seen) {
ff023aac
SB
1040 if (sctx->is_dev_replace) {
1041 scrub_write_block_to_dev_replace(sblock_other);
1042 } else {
1043 int force_write = is_metadata || have_csum;
1044
1045 ret = scrub_repair_block_from_good_copy(
1046 sblock_bad, sblock_other,
1047 force_write);
1048 }
b5d67f64
SB
1049 if (0 == ret)
1050 goto corrected_error;
1051 }
1052 }
a2de733c
AJ
1053
1054 /*
ff023aac
SB
1055 * for dev_replace, pick good pages and write to the target device.
1056 */
1057 if (sctx->is_dev_replace) {
1058 success = 1;
1059 for (page_num = 0; page_num < sblock_bad->page_count;
1060 page_num++) {
1061 int sub_success;
1062
1063 sub_success = 0;
1064 for (mirror_index = 0;
1065 mirror_index < BTRFS_MAX_MIRRORS &&
1066 sblocks_for_recheck[mirror_index].page_count > 0;
1067 mirror_index++) {
1068 struct scrub_block *sblock_other =
1069 sblocks_for_recheck + mirror_index;
1070 struct scrub_page *page_other =
1071 sblock_other->pagev[page_num];
1072
1073 if (!page_other->io_error) {
1074 ret = scrub_write_page_to_dev_replace(
1075 sblock_other, page_num);
1076 if (ret == 0) {
1077 /* succeeded for this page */
1078 sub_success = 1;
1079 break;
1080 } else {
1081 btrfs_dev_replace_stats_inc(
1082 &sctx->dev_root->
1083 fs_info->dev_replace.
1084 num_write_errors);
1085 }
1086 }
1087 }
1088
1089 if (!sub_success) {
1090 /*
1091 * did not find a mirror to fetch the page
1092 * from. scrub_write_page_to_dev_replace()
1093 * handles this case (page->io_error), by
1094 * filling the block with zeros before
1095 * submitting the write request
1096 */
1097 success = 0;
1098 ret = scrub_write_page_to_dev_replace(
1099 sblock_bad, page_num);
1100 if (ret)
1101 btrfs_dev_replace_stats_inc(
1102 &sctx->dev_root->fs_info->
1103 dev_replace.num_write_errors);
1104 }
1105 }
1106
1107 goto out;
1108 }
1109
1110 /*
1111 * for regular scrub, repair those pages that are errored.
1112 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1113 * repaired, continue by picking good copies of those pages.
1114 * Select the good pages from mirrors to rewrite bad pages from
1115 * the area to fix. Afterwards verify the checksum of the block
1116 * that is supposed to be repaired. This verification step is
1117 * only done for the purpose of statistic counting and for the
1118 * final scrub report, whether errors remain.
1119 * A perfect algorithm could make use of the checksum and try
1120 * all possible combinations of pages from the different mirrors
1121 * until the checksum verification succeeds. For example, when
1122 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1123 * of mirror #2 is readable but the final checksum test fails,
1124 * then the 2nd page of mirror #3 could be tried, whether now
1125 * the final checksum succeedes. But this would be a rare
1126 * exception and is therefore not implemented. At least it is
1127 * avoided that the good copy is overwritten.
1128 * A more useful improvement would be to pick the sectors
1129 * without I/O error based on sector sizes (512 bytes on legacy
1130 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1131 * mirror could be repaired by taking 512 byte of a different
1132 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1133 * area are unreadable.
a2de733c 1134 */
a2de733c 1135
b5d67f64
SB
1136 /* can only fix I/O errors from here on */
1137 if (sblock_bad->no_io_error_seen)
1138 goto did_not_correct_error;
1139
1140 success = 1;
1141 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
7a9e9987 1142 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b5d67f64
SB
1143
1144 if (!page_bad->io_error)
a2de733c 1145 continue;
b5d67f64
SB
1146
1147 for (mirror_index = 0;
1148 mirror_index < BTRFS_MAX_MIRRORS &&
1149 sblocks_for_recheck[mirror_index].page_count > 0;
1150 mirror_index++) {
1151 struct scrub_block *sblock_other = sblocks_for_recheck +
1152 mirror_index;
7a9e9987
SB
1153 struct scrub_page *page_other = sblock_other->pagev[
1154 page_num];
b5d67f64
SB
1155
1156 if (!page_other->io_error) {
1157 ret = scrub_repair_page_from_good_copy(
1158 sblock_bad, sblock_other, page_num, 0);
1159 if (0 == ret) {
1160 page_bad->io_error = 0;
1161 break; /* succeeded for this page */
1162 }
1163 }
96e36920 1164 }
a2de733c 1165
b5d67f64
SB
1166 if (page_bad->io_error) {
1167 /* did not find a mirror to copy the page from */
1168 success = 0;
1169 }
a2de733c 1170 }
a2de733c 1171
b5d67f64
SB
1172 if (success) {
1173 if (is_metadata || have_csum) {
1174 /*
1175 * need to verify the checksum now that all
1176 * sectors on disk are repaired (the write
1177 * request for data to be repaired is on its way).
1178 * Just be lazy and use scrub_recheck_block()
1179 * which re-reads the data before the checksum
1180 * is verified, but most likely the data comes out
1181 * of the page cache.
1182 */
34f5c8e9
SB
1183 scrub_recheck_block(fs_info, sblock_bad,
1184 is_metadata, have_csum, csum,
1185 generation, sctx->csum_size);
1186 if (!sblock_bad->header_error &&
b5d67f64
SB
1187 !sblock_bad->checksum_error &&
1188 sblock_bad->no_io_error_seen)
1189 goto corrected_error;
1190 else
1191 goto did_not_correct_error;
1192 } else {
1193corrected_error:
d9d181c1
SB
1194 spin_lock(&sctx->stat_lock);
1195 sctx->stat.corrected_errors++;
1196 spin_unlock(&sctx->stat_lock);
606686ee 1197 printk_ratelimited_in_rcu(KERN_ERR
efe120a0 1198 "BTRFS: fixed up error at logical %llu on dev %s\n",
c1c9ff7c 1199 logical, rcu_str_deref(dev->name));
8628764e 1200 }
b5d67f64
SB
1201 } else {
1202did_not_correct_error:
d9d181c1
SB
1203 spin_lock(&sctx->stat_lock);
1204 sctx->stat.uncorrectable_errors++;
1205 spin_unlock(&sctx->stat_lock);
606686ee 1206 printk_ratelimited_in_rcu(KERN_ERR
efe120a0 1207 "BTRFS: unable to fixup (regular) error at logical %llu on dev %s\n",
c1c9ff7c 1208 logical, rcu_str_deref(dev->name));
96e36920 1209 }
a2de733c 1210
b5d67f64
SB
1211out:
1212 if (sblocks_for_recheck) {
1213 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1214 mirror_index++) {
1215 struct scrub_block *sblock = sblocks_for_recheck +
1216 mirror_index;
1217 int page_index;
1218
7a9e9987
SB
1219 for (page_index = 0; page_index < sblock->page_count;
1220 page_index++) {
1221 sblock->pagev[page_index]->sblock = NULL;
1222 scrub_page_put(sblock->pagev[page_index]);
1223 }
b5d67f64
SB
1224 }
1225 kfree(sblocks_for_recheck);
1226 }
a2de733c 1227
b5d67f64
SB
1228 return 0;
1229}
a2de733c 1230
d9d181c1 1231static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
3ec706c8 1232 struct btrfs_fs_info *fs_info,
ff023aac 1233 struct scrub_block *original_sblock,
b5d67f64
SB
1234 u64 length, u64 logical,
1235 struct scrub_block *sblocks_for_recheck)
1236{
1237 int page_index;
1238 int mirror_index;
1239 int ret;
1240
1241 /*
7a9e9987 1242 * note: the two members ref_count and outstanding_pages
b5d67f64
SB
1243 * are not used (and not set) in the blocks that are used for
1244 * the recheck procedure
1245 */
1246
1247 page_index = 0;
1248 while (length > 0) {
1249 u64 sublen = min_t(u64, length, PAGE_SIZE);
1250 u64 mapped_length = sublen;
1251 struct btrfs_bio *bbio = NULL;
a2de733c 1252
b5d67f64
SB
1253 /*
1254 * with a length of PAGE_SIZE, each returned stripe
1255 * represents one mirror
1256 */
29a8d9a0
SB
1257 ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1258 &mapped_length, &bbio, 0);
b5d67f64
SB
1259 if (ret || !bbio || mapped_length < sublen) {
1260 kfree(bbio);
1261 return -EIO;
1262 }
a2de733c 1263
ff023aac 1264 BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
1265 for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1266 mirror_index++) {
1267 struct scrub_block *sblock;
1268 struct scrub_page *page;
1269
1270 if (mirror_index >= BTRFS_MAX_MIRRORS)
1271 continue;
1272
1273 sblock = sblocks_for_recheck + mirror_index;
7a9e9987
SB
1274 sblock->sctx = sctx;
1275 page = kzalloc(sizeof(*page), GFP_NOFS);
1276 if (!page) {
1277leave_nomem:
d9d181c1
SB
1278 spin_lock(&sctx->stat_lock);
1279 sctx->stat.malloc_errors++;
1280 spin_unlock(&sctx->stat_lock);
cf93dcce 1281 kfree(bbio);
b5d67f64
SB
1282 return -ENOMEM;
1283 }
7a9e9987
SB
1284 scrub_page_get(page);
1285 sblock->pagev[page_index] = page;
1286 page->logical = logical;
1287 page->physical = bbio->stripes[mirror_index].physical;
ff023aac
SB
1288 BUG_ON(page_index >= original_sblock->page_count);
1289 page->physical_for_dev_replace =
1290 original_sblock->pagev[page_index]->
1291 physical_for_dev_replace;
7a9e9987
SB
1292 /* for missing devices, dev->bdev is NULL */
1293 page->dev = bbio->stripes[mirror_index].dev;
1294 page->mirror_num = mirror_index + 1;
b5d67f64 1295 sblock->page_count++;
7a9e9987
SB
1296 page->page = alloc_page(GFP_NOFS);
1297 if (!page->page)
1298 goto leave_nomem;
b5d67f64
SB
1299 }
1300 kfree(bbio);
1301 length -= sublen;
1302 logical += sublen;
1303 page_index++;
1304 }
1305
1306 return 0;
96e36920
ID
1307}
1308
b5d67f64
SB
1309/*
1310 * this function will check the on disk data for checksum errors, header
1311 * errors and read I/O errors. If any I/O errors happen, the exact pages
1312 * which are errored are marked as being bad. The goal is to enable scrub
1313 * to take those pages that are not errored from all the mirrors so that
1314 * the pages that are errored in the just handled mirror can be repaired.
1315 */
34f5c8e9
SB
1316static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1317 struct scrub_block *sblock, int is_metadata,
1318 int have_csum, u8 *csum, u64 generation,
1319 u16 csum_size)
96e36920 1320{
b5d67f64 1321 int page_num;
96e36920 1322
b5d67f64
SB
1323 sblock->no_io_error_seen = 1;
1324 sblock->header_error = 0;
1325 sblock->checksum_error = 0;
96e36920 1326
b5d67f64
SB
1327 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1328 struct bio *bio;
7a9e9987 1329 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1330
442a4f63 1331 if (page->dev->bdev == NULL) {
ea9947b4
SB
1332 page->io_error = 1;
1333 sblock->no_io_error_seen = 0;
1334 continue;
1335 }
1336
7a9e9987 1337 WARN_ON(!page->page);
9be3395b 1338 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
34f5c8e9
SB
1339 if (!bio) {
1340 page->io_error = 1;
1341 sblock->no_io_error_seen = 0;
1342 continue;
1343 }
442a4f63 1344 bio->bi_bdev = page->dev->bdev;
4f024f37 1345 bio->bi_iter.bi_sector = page->physical >> 9;
b5d67f64 1346
34f5c8e9 1347 bio_add_page(bio, page->page, PAGE_SIZE, 0);
33879d45 1348 if (btrfsic_submit_bio_wait(READ, bio))
b5d67f64 1349 sblock->no_io_error_seen = 0;
33879d45 1350
b5d67f64
SB
1351 bio_put(bio);
1352 }
96e36920 1353
b5d67f64
SB
1354 if (sblock->no_io_error_seen)
1355 scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1356 have_csum, csum, generation,
1357 csum_size);
1358
34f5c8e9 1359 return;
a2de733c
AJ
1360}
1361
17a9be2f
MX
1362static inline int scrub_check_fsid(u8 fsid[],
1363 struct scrub_page *spage)
1364{
1365 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1366 int ret;
1367
1368 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1369 return !ret;
1370}
1371
b5d67f64
SB
1372static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1373 struct scrub_block *sblock,
1374 int is_metadata, int have_csum,
1375 const u8 *csum, u64 generation,
1376 u16 csum_size)
a2de733c 1377{
b5d67f64
SB
1378 int page_num;
1379 u8 calculated_csum[BTRFS_CSUM_SIZE];
1380 u32 crc = ~(u32)0;
b5d67f64
SB
1381 void *mapped_buffer;
1382
7a9e9987 1383 WARN_ON(!sblock->pagev[0]->page);
b5d67f64
SB
1384 if (is_metadata) {
1385 struct btrfs_header *h;
1386
7a9e9987 1387 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64
SB
1388 h = (struct btrfs_header *)mapped_buffer;
1389
3cae210f 1390 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h) ||
17a9be2f 1391 !scrub_check_fsid(h->fsid, sblock->pagev[0]) ||
b5d67f64 1392 memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
442a4f63 1393 BTRFS_UUID_SIZE)) {
b5d67f64 1394 sblock->header_error = 1;
3cae210f 1395 } else if (generation != btrfs_stack_header_generation(h)) {
442a4f63
SB
1396 sblock->header_error = 1;
1397 sblock->generation_error = 1;
1398 }
b5d67f64
SB
1399 csum = h->csum;
1400 } else {
1401 if (!have_csum)
1402 return;
a2de733c 1403
7a9e9987 1404 mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
b5d67f64 1405 }
a2de733c 1406
b5d67f64
SB
1407 for (page_num = 0;;) {
1408 if (page_num == 0 && is_metadata)
b0496686 1409 crc = btrfs_csum_data(
b5d67f64
SB
1410 ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1411 crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1412 else
b0496686 1413 crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
b5d67f64 1414
9613bebb 1415 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1416 page_num++;
1417 if (page_num >= sblock->page_count)
1418 break;
7a9e9987 1419 WARN_ON(!sblock->pagev[page_num]->page);
b5d67f64 1420
7a9e9987 1421 mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
b5d67f64
SB
1422 }
1423
1424 btrfs_csum_final(crc, calculated_csum);
1425 if (memcmp(calculated_csum, csum, csum_size))
1426 sblock->checksum_error = 1;
a2de733c
AJ
1427}
1428
b5d67f64
SB
1429static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1430 struct scrub_block *sblock_good,
1431 int force_write)
1432{
1433 int page_num;
1434 int ret = 0;
96e36920 1435
b5d67f64
SB
1436 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1437 int ret_sub;
96e36920 1438
b5d67f64
SB
1439 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1440 sblock_good,
1441 page_num,
1442 force_write);
1443 if (ret_sub)
1444 ret = ret_sub;
a2de733c 1445 }
b5d67f64
SB
1446
1447 return ret;
1448}
1449
1450static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1451 struct scrub_block *sblock_good,
1452 int page_num, int force_write)
1453{
7a9e9987
SB
1454 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1455 struct scrub_page *page_good = sblock_good->pagev[page_num];
b5d67f64 1456
7a9e9987
SB
1457 BUG_ON(page_bad->page == NULL);
1458 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1459 if (force_write || sblock_bad->header_error ||
1460 sblock_bad->checksum_error || page_bad->io_error) {
1461 struct bio *bio;
1462 int ret;
b5d67f64 1463
ff023aac 1464 if (!page_bad->dev->bdev) {
efe120a0
FH
1465 printk_ratelimited(KERN_WARNING "BTRFS: "
1466 "scrub_repair_page_from_good_copy(bdev == NULL) "
1467 "is unexpected!\n");
ff023aac
SB
1468 return -EIO;
1469 }
1470
9be3395b 1471 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1472 if (!bio)
1473 return -EIO;
442a4f63 1474 bio->bi_bdev = page_bad->dev->bdev;
4f024f37 1475 bio->bi_iter.bi_sector = page_bad->physical >> 9;
b5d67f64
SB
1476
1477 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1478 if (PAGE_SIZE != ret) {
1479 bio_put(bio);
1480 return -EIO;
13db62b7 1481 }
b5d67f64 1482
33879d45 1483 if (btrfsic_submit_bio_wait(WRITE, bio)) {
442a4f63
SB
1484 btrfs_dev_stat_inc_and_print(page_bad->dev,
1485 BTRFS_DEV_STAT_WRITE_ERRS);
ff023aac
SB
1486 btrfs_dev_replace_stats_inc(
1487 &sblock_bad->sctx->dev_root->fs_info->
1488 dev_replace.num_write_errors);
442a4f63
SB
1489 bio_put(bio);
1490 return -EIO;
1491 }
b5d67f64 1492 bio_put(bio);
a2de733c
AJ
1493 }
1494
b5d67f64
SB
1495 return 0;
1496}
1497
ff023aac
SB
1498static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1499{
1500 int page_num;
1501
1502 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1503 int ret;
1504
1505 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1506 if (ret)
1507 btrfs_dev_replace_stats_inc(
1508 &sblock->sctx->dev_root->fs_info->dev_replace.
1509 num_write_errors);
1510 }
1511}
1512
1513static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1514 int page_num)
1515{
1516 struct scrub_page *spage = sblock->pagev[page_num];
1517
1518 BUG_ON(spage->page == NULL);
1519 if (spage->io_error) {
1520 void *mapped_buffer = kmap_atomic(spage->page);
1521
1522 memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1523 flush_dcache_page(spage->page);
1524 kunmap_atomic(mapped_buffer);
1525 }
1526 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1527}
1528
1529static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1530 struct scrub_page *spage)
1531{
1532 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1533 struct scrub_bio *sbio;
1534 int ret;
1535
1536 mutex_lock(&wr_ctx->wr_lock);
1537again:
1538 if (!wr_ctx->wr_curr_bio) {
1539 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1540 GFP_NOFS);
1541 if (!wr_ctx->wr_curr_bio) {
1542 mutex_unlock(&wr_ctx->wr_lock);
1543 return -ENOMEM;
1544 }
1545 wr_ctx->wr_curr_bio->sctx = sctx;
1546 wr_ctx->wr_curr_bio->page_count = 0;
1547 }
1548 sbio = wr_ctx->wr_curr_bio;
1549 if (sbio->page_count == 0) {
1550 struct bio *bio;
1551
1552 sbio->physical = spage->physical_for_dev_replace;
1553 sbio->logical = spage->logical;
1554 sbio->dev = wr_ctx->tgtdev;
1555 bio = sbio->bio;
1556 if (!bio) {
9be3395b 1557 bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
ff023aac
SB
1558 if (!bio) {
1559 mutex_unlock(&wr_ctx->wr_lock);
1560 return -ENOMEM;
1561 }
1562 sbio->bio = bio;
1563 }
1564
1565 bio->bi_private = sbio;
1566 bio->bi_end_io = scrub_wr_bio_end_io;
1567 bio->bi_bdev = sbio->dev->bdev;
4f024f37 1568 bio->bi_iter.bi_sector = sbio->physical >> 9;
ff023aac
SB
1569 sbio->err = 0;
1570 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1571 spage->physical_for_dev_replace ||
1572 sbio->logical + sbio->page_count * PAGE_SIZE !=
1573 spage->logical) {
1574 scrub_wr_submit(sctx);
1575 goto again;
1576 }
1577
1578 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1579 if (ret != PAGE_SIZE) {
1580 if (sbio->page_count < 1) {
1581 bio_put(sbio->bio);
1582 sbio->bio = NULL;
1583 mutex_unlock(&wr_ctx->wr_lock);
1584 return -EIO;
1585 }
1586 scrub_wr_submit(sctx);
1587 goto again;
1588 }
1589
1590 sbio->pagev[sbio->page_count] = spage;
1591 scrub_page_get(spage);
1592 sbio->page_count++;
1593 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1594 scrub_wr_submit(sctx);
1595 mutex_unlock(&wr_ctx->wr_lock);
1596
1597 return 0;
1598}
1599
1600static void scrub_wr_submit(struct scrub_ctx *sctx)
1601{
1602 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1603 struct scrub_bio *sbio;
1604
1605 if (!wr_ctx->wr_curr_bio)
1606 return;
1607
1608 sbio = wr_ctx->wr_curr_bio;
1609 wr_ctx->wr_curr_bio = NULL;
1610 WARN_ON(!sbio->bio->bi_bdev);
1611 scrub_pending_bio_inc(sctx);
1612 /* process all writes in a single worker thread. Then the block layer
1613 * orders the requests before sending them to the driver which
1614 * doubled the write performance on spinning disks when measured
1615 * with Linux 3.5 */
1616 btrfsic_submit_bio(WRITE, sbio->bio);
1617}
1618
1619static void scrub_wr_bio_end_io(struct bio *bio, int err)
1620{
1621 struct scrub_bio *sbio = bio->bi_private;
1622 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1623
1624 sbio->err = err;
1625 sbio->bio = bio;
1626
9e0af237
LB
1627 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1628 scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1629 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1630}
1631
1632static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1633{
1634 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1635 struct scrub_ctx *sctx = sbio->sctx;
1636 int i;
1637
1638 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1639 if (sbio->err) {
1640 struct btrfs_dev_replace *dev_replace =
1641 &sbio->sctx->dev_root->fs_info->dev_replace;
1642
1643 for (i = 0; i < sbio->page_count; i++) {
1644 struct scrub_page *spage = sbio->pagev[i];
1645
1646 spage->io_error = 1;
1647 btrfs_dev_replace_stats_inc(&dev_replace->
1648 num_write_errors);
1649 }
1650 }
1651
1652 for (i = 0; i < sbio->page_count; i++)
1653 scrub_page_put(sbio->pagev[i]);
1654
1655 bio_put(sbio->bio);
1656 kfree(sbio);
1657 scrub_pending_bio_dec(sctx);
1658}
1659
1660static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1661{
1662 u64 flags;
1663 int ret;
1664
7a9e9987
SB
1665 WARN_ON(sblock->page_count < 1);
1666 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1667 ret = 0;
1668 if (flags & BTRFS_EXTENT_FLAG_DATA)
1669 ret = scrub_checksum_data(sblock);
1670 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1671 ret = scrub_checksum_tree_block(sblock);
1672 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1673 (void)scrub_checksum_super(sblock);
1674 else
1675 WARN_ON(1);
1676 if (ret)
1677 scrub_handle_errored_block(sblock);
ff023aac
SB
1678
1679 return ret;
a2de733c
AJ
1680}
1681
b5d67f64 1682static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1683{
d9d181c1 1684 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1685 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1686 u8 *on_disk_csum;
1687 struct page *page;
1688 void *buffer;
a2de733c
AJ
1689 u32 crc = ~(u32)0;
1690 int fail = 0;
b5d67f64
SB
1691 u64 len;
1692 int index;
a2de733c 1693
b5d67f64 1694 BUG_ON(sblock->page_count < 1);
7a9e9987 1695 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1696 return 0;
1697
7a9e9987
SB
1698 on_disk_csum = sblock->pagev[0]->csum;
1699 page = sblock->pagev[0]->page;
9613bebb 1700 buffer = kmap_atomic(page);
b5d67f64 1701
d9d181c1 1702 len = sctx->sectorsize;
b5d67f64
SB
1703 index = 0;
1704 for (;;) {
1705 u64 l = min_t(u64, len, PAGE_SIZE);
1706
b0496686 1707 crc = btrfs_csum_data(buffer, crc, l);
9613bebb 1708 kunmap_atomic(buffer);
b5d67f64
SB
1709 len -= l;
1710 if (len == 0)
1711 break;
1712 index++;
1713 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1714 BUG_ON(!sblock->pagev[index]->page);
1715 page = sblock->pagev[index]->page;
9613bebb 1716 buffer = kmap_atomic(page);
b5d67f64
SB
1717 }
1718
a2de733c 1719 btrfs_csum_final(crc, csum);
d9d181c1 1720 if (memcmp(csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1721 fail = 1;
1722
a2de733c
AJ
1723 return fail;
1724}
1725
b5d67f64 1726static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1727{
d9d181c1 1728 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1729 struct btrfs_header *h;
a36cf8b8 1730 struct btrfs_root *root = sctx->dev_root;
a2de733c 1731 struct btrfs_fs_info *fs_info = root->fs_info;
b5d67f64
SB
1732 u8 calculated_csum[BTRFS_CSUM_SIZE];
1733 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1734 struct page *page;
1735 void *mapped_buffer;
1736 u64 mapped_size;
1737 void *p;
a2de733c
AJ
1738 u32 crc = ~(u32)0;
1739 int fail = 0;
1740 int crc_fail = 0;
b5d67f64
SB
1741 u64 len;
1742 int index;
1743
1744 BUG_ON(sblock->page_count < 1);
7a9e9987 1745 page = sblock->pagev[0]->page;
9613bebb 1746 mapped_buffer = kmap_atomic(page);
b5d67f64 1747 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1748 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1749
1750 /*
1751 * we don't use the getter functions here, as we
1752 * a) don't have an extent buffer and
1753 * b) the page is already kmapped
1754 */
a2de733c 1755
3cae210f 1756 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
a2de733c
AJ
1757 ++fail;
1758
3cae210f 1759 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h))
a2de733c
AJ
1760 ++fail;
1761
17a9be2f 1762 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
a2de733c
AJ
1763 ++fail;
1764
1765 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1766 BTRFS_UUID_SIZE))
1767 ++fail;
1768
d9d181c1 1769 len = sctx->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1770 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1771 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1772 index = 0;
1773 for (;;) {
1774 u64 l = min_t(u64, len, mapped_size);
1775
b0496686 1776 crc = btrfs_csum_data(p, crc, l);
9613bebb 1777 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1778 len -= l;
1779 if (len == 0)
1780 break;
1781 index++;
1782 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1783 BUG_ON(!sblock->pagev[index]->page);
1784 page = sblock->pagev[index]->page;
9613bebb 1785 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1786 mapped_size = PAGE_SIZE;
1787 p = mapped_buffer;
1788 }
1789
1790 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1791 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
a2de733c
AJ
1792 ++crc_fail;
1793
a2de733c
AJ
1794 return fail || crc_fail;
1795}
1796
b5d67f64 1797static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1798{
1799 struct btrfs_super_block *s;
d9d181c1 1800 struct scrub_ctx *sctx = sblock->sctx;
b5d67f64
SB
1801 u8 calculated_csum[BTRFS_CSUM_SIZE];
1802 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1803 struct page *page;
1804 void *mapped_buffer;
1805 u64 mapped_size;
1806 void *p;
a2de733c 1807 u32 crc = ~(u32)0;
442a4f63
SB
1808 int fail_gen = 0;
1809 int fail_cor = 0;
b5d67f64
SB
1810 u64 len;
1811 int index;
a2de733c 1812
b5d67f64 1813 BUG_ON(sblock->page_count < 1);
7a9e9987 1814 page = sblock->pagev[0]->page;
9613bebb 1815 mapped_buffer = kmap_atomic(page);
b5d67f64 1816 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 1817 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 1818
3cae210f 1819 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 1820 ++fail_cor;
a2de733c 1821
3cae210f 1822 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 1823 ++fail_gen;
a2de733c 1824
17a9be2f 1825 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
442a4f63 1826 ++fail_cor;
a2de733c 1827
b5d67f64
SB
1828 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1829 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1830 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1831 index = 0;
1832 for (;;) {
1833 u64 l = min_t(u64, len, mapped_size);
1834
b0496686 1835 crc = btrfs_csum_data(p, crc, l);
9613bebb 1836 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1837 len -= l;
1838 if (len == 0)
1839 break;
1840 index++;
1841 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1842 BUG_ON(!sblock->pagev[index]->page);
1843 page = sblock->pagev[index]->page;
9613bebb 1844 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1845 mapped_size = PAGE_SIZE;
1846 p = mapped_buffer;
1847 }
1848
1849 btrfs_csum_final(crc, calculated_csum);
d9d181c1 1850 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 1851 ++fail_cor;
a2de733c 1852
442a4f63 1853 if (fail_cor + fail_gen) {
a2de733c
AJ
1854 /*
1855 * if we find an error in a super block, we just report it.
1856 * They will get written with the next transaction commit
1857 * anyway
1858 */
d9d181c1
SB
1859 spin_lock(&sctx->stat_lock);
1860 ++sctx->stat.super_errors;
1861 spin_unlock(&sctx->stat_lock);
442a4f63 1862 if (fail_cor)
7a9e9987 1863 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
1864 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1865 else
7a9e9987 1866 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 1867 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1868 }
1869
442a4f63 1870 return fail_cor + fail_gen;
a2de733c
AJ
1871}
1872
b5d67f64
SB
1873static void scrub_block_get(struct scrub_block *sblock)
1874{
1875 atomic_inc(&sblock->ref_count);
1876}
1877
1878static void scrub_block_put(struct scrub_block *sblock)
1879{
1880 if (atomic_dec_and_test(&sblock->ref_count)) {
1881 int i;
1882
1883 for (i = 0; i < sblock->page_count; i++)
7a9e9987 1884 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
1885 kfree(sblock);
1886 }
1887}
1888
7a9e9987
SB
1889static void scrub_page_get(struct scrub_page *spage)
1890{
1891 atomic_inc(&spage->ref_count);
1892}
1893
1894static void scrub_page_put(struct scrub_page *spage)
1895{
1896 if (atomic_dec_and_test(&spage->ref_count)) {
1897 if (spage->page)
1898 __free_page(spage->page);
1899 kfree(spage);
1900 }
1901}
1902
d9d181c1 1903static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
1904{
1905 struct scrub_bio *sbio;
1906
d9d181c1 1907 if (sctx->curr == -1)
1623edeb 1908 return;
a2de733c 1909
d9d181c1
SB
1910 sbio = sctx->bios[sctx->curr];
1911 sctx->curr = -1;
b6bfebc1 1912 scrub_pending_bio_inc(sctx);
a2de733c 1913
ff023aac
SB
1914 if (!sbio->bio->bi_bdev) {
1915 /*
1916 * this case should not happen. If btrfs_map_block() is
1917 * wrong, it could happen for dev-replace operations on
1918 * missing devices when no mirrors are available, but in
1919 * this case it should already fail the mount.
1920 * This case is handled correctly (but _very_ slowly).
1921 */
1922 printk_ratelimited(KERN_WARNING
efe120a0 1923 "BTRFS: scrub_submit(bio bdev == NULL) is unexpected!\n");
ff023aac
SB
1924 bio_endio(sbio->bio, -EIO);
1925 } else {
1926 btrfsic_submit_bio(READ, sbio->bio);
1927 }
a2de733c
AJ
1928}
1929
ff023aac
SB
1930static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1931 struct scrub_page *spage)
a2de733c 1932{
b5d67f64 1933 struct scrub_block *sblock = spage->sblock;
a2de733c 1934 struct scrub_bio *sbio;
69f4cb52 1935 int ret;
a2de733c
AJ
1936
1937again:
1938 /*
1939 * grab a fresh bio or wait for one to become available
1940 */
d9d181c1
SB
1941 while (sctx->curr == -1) {
1942 spin_lock(&sctx->list_lock);
1943 sctx->curr = sctx->first_free;
1944 if (sctx->curr != -1) {
1945 sctx->first_free = sctx->bios[sctx->curr]->next_free;
1946 sctx->bios[sctx->curr]->next_free = -1;
1947 sctx->bios[sctx->curr]->page_count = 0;
1948 spin_unlock(&sctx->list_lock);
a2de733c 1949 } else {
d9d181c1
SB
1950 spin_unlock(&sctx->list_lock);
1951 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
1952 }
1953 }
d9d181c1 1954 sbio = sctx->bios[sctx->curr];
b5d67f64 1955 if (sbio->page_count == 0) {
69f4cb52
AJ
1956 struct bio *bio;
1957
b5d67f64
SB
1958 sbio->physical = spage->physical;
1959 sbio->logical = spage->logical;
a36cf8b8 1960 sbio->dev = spage->dev;
b5d67f64
SB
1961 bio = sbio->bio;
1962 if (!bio) {
9be3395b 1963 bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
b5d67f64
SB
1964 if (!bio)
1965 return -ENOMEM;
1966 sbio->bio = bio;
1967 }
69f4cb52
AJ
1968
1969 bio->bi_private = sbio;
1970 bio->bi_end_io = scrub_bio_end_io;
a36cf8b8 1971 bio->bi_bdev = sbio->dev->bdev;
4f024f37 1972 bio->bi_iter.bi_sector = sbio->physical >> 9;
69f4cb52 1973 sbio->err = 0;
b5d67f64
SB
1974 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1975 spage->physical ||
1976 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
1977 spage->logical ||
1978 sbio->dev != spage->dev) {
d9d181c1 1979 scrub_submit(sctx);
a2de733c
AJ
1980 goto again;
1981 }
69f4cb52 1982
b5d67f64
SB
1983 sbio->pagev[sbio->page_count] = spage;
1984 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1985 if (ret != PAGE_SIZE) {
1986 if (sbio->page_count < 1) {
1987 bio_put(sbio->bio);
1988 sbio->bio = NULL;
1989 return -EIO;
1990 }
d9d181c1 1991 scrub_submit(sctx);
69f4cb52
AJ
1992 goto again;
1993 }
1994
ff023aac 1995 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
1996 atomic_inc(&sblock->outstanding_pages);
1997 sbio->page_count++;
ff023aac 1998 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 1999 scrub_submit(sctx);
b5d67f64
SB
2000
2001 return 0;
2002}
2003
d9d181c1 2004static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2005 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
2006 u64 gen, int mirror_num, u8 *csum, int force,
2007 u64 physical_for_dev_replace)
b5d67f64
SB
2008{
2009 struct scrub_block *sblock;
2010 int index;
2011
2012 sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
2013 if (!sblock) {
d9d181c1
SB
2014 spin_lock(&sctx->stat_lock);
2015 sctx->stat.malloc_errors++;
2016 spin_unlock(&sctx->stat_lock);
b5d67f64 2017 return -ENOMEM;
a2de733c 2018 }
b5d67f64 2019
7a9e9987
SB
2020 /* one ref inside this function, plus one for each page added to
2021 * a bio later on */
b5d67f64 2022 atomic_set(&sblock->ref_count, 1);
d9d181c1 2023 sblock->sctx = sctx;
b5d67f64
SB
2024 sblock->no_io_error_seen = 1;
2025
2026 for (index = 0; len > 0; index++) {
7a9e9987 2027 struct scrub_page *spage;
b5d67f64
SB
2028 u64 l = min_t(u64, len, PAGE_SIZE);
2029
7a9e9987
SB
2030 spage = kzalloc(sizeof(*spage), GFP_NOFS);
2031 if (!spage) {
2032leave_nomem:
d9d181c1
SB
2033 spin_lock(&sctx->stat_lock);
2034 sctx->stat.malloc_errors++;
2035 spin_unlock(&sctx->stat_lock);
7a9e9987 2036 scrub_block_put(sblock);
b5d67f64
SB
2037 return -ENOMEM;
2038 }
7a9e9987
SB
2039 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2040 scrub_page_get(spage);
2041 sblock->pagev[index] = spage;
b5d67f64 2042 spage->sblock = sblock;
a36cf8b8 2043 spage->dev = dev;
b5d67f64
SB
2044 spage->flags = flags;
2045 spage->generation = gen;
2046 spage->logical = logical;
2047 spage->physical = physical;
ff023aac 2048 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2049 spage->mirror_num = mirror_num;
2050 if (csum) {
2051 spage->have_csum = 1;
d9d181c1 2052 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2053 } else {
2054 spage->have_csum = 0;
2055 }
2056 sblock->page_count++;
7a9e9987
SB
2057 spage->page = alloc_page(GFP_NOFS);
2058 if (!spage->page)
2059 goto leave_nomem;
b5d67f64
SB
2060 len -= l;
2061 logical += l;
2062 physical += l;
ff023aac 2063 physical_for_dev_replace += l;
b5d67f64
SB
2064 }
2065
7a9e9987 2066 WARN_ON(sblock->page_count == 0);
b5d67f64 2067 for (index = 0; index < sblock->page_count; index++) {
7a9e9987 2068 struct scrub_page *spage = sblock->pagev[index];
1bc87793
AJ
2069 int ret;
2070
ff023aac 2071 ret = scrub_add_page_to_rd_bio(sctx, spage);
b5d67f64
SB
2072 if (ret) {
2073 scrub_block_put(sblock);
1bc87793 2074 return ret;
b5d67f64 2075 }
1bc87793 2076 }
a2de733c 2077
b5d67f64 2078 if (force)
d9d181c1 2079 scrub_submit(sctx);
a2de733c 2080
b5d67f64
SB
2081 /* last one frees, either here or in bio completion for last page */
2082 scrub_block_put(sblock);
a2de733c
AJ
2083 return 0;
2084}
2085
b5d67f64
SB
2086static void scrub_bio_end_io(struct bio *bio, int err)
2087{
2088 struct scrub_bio *sbio = bio->bi_private;
a36cf8b8 2089 struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
b5d67f64
SB
2090
2091 sbio->err = err;
2092 sbio->bio = bio;
2093
0339ef2f 2094 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2095}
2096
2097static void scrub_bio_end_io_worker(struct btrfs_work *work)
2098{
2099 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2100 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2101 int i;
2102
ff023aac 2103 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
2104 if (sbio->err) {
2105 for (i = 0; i < sbio->page_count; i++) {
2106 struct scrub_page *spage = sbio->pagev[i];
2107
2108 spage->io_error = 1;
2109 spage->sblock->no_io_error_seen = 0;
2110 }
2111 }
2112
2113 /* now complete the scrub_block items that have all pages completed */
2114 for (i = 0; i < sbio->page_count; i++) {
2115 struct scrub_page *spage = sbio->pagev[i];
2116 struct scrub_block *sblock = spage->sblock;
2117
2118 if (atomic_dec_and_test(&sblock->outstanding_pages))
2119 scrub_block_complete(sblock);
2120 scrub_block_put(sblock);
2121 }
2122
b5d67f64
SB
2123 bio_put(sbio->bio);
2124 sbio->bio = NULL;
d9d181c1
SB
2125 spin_lock(&sctx->list_lock);
2126 sbio->next_free = sctx->first_free;
2127 sctx->first_free = sbio->index;
2128 spin_unlock(&sctx->list_lock);
ff023aac
SB
2129
2130 if (sctx->is_dev_replace &&
2131 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2132 mutex_lock(&sctx->wr_ctx.wr_lock);
2133 scrub_wr_submit(sctx);
2134 mutex_unlock(&sctx->wr_ctx.wr_lock);
2135 }
2136
b6bfebc1 2137 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2138}
2139
2140static void scrub_block_complete(struct scrub_block *sblock)
2141{
ff023aac 2142 if (!sblock->no_io_error_seen) {
b5d67f64 2143 scrub_handle_errored_block(sblock);
ff023aac
SB
2144 } else {
2145 /*
2146 * if has checksum error, write via repair mechanism in
2147 * dev replace case, otherwise write here in dev replace
2148 * case.
2149 */
2150 if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2151 scrub_write_block_to_dev_replace(sblock);
2152 }
b5d67f64
SB
2153}
2154
d9d181c1 2155static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
a2de733c
AJ
2156 u8 *csum)
2157{
2158 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2159 unsigned long index;
a2de733c 2160 unsigned long num_sectors;
a2de733c 2161
d9d181c1
SB
2162 while (!list_empty(&sctx->csum_list)) {
2163 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2164 struct btrfs_ordered_sum, list);
2165 if (sum->bytenr > logical)
2166 return 0;
2167 if (sum->bytenr + sum->len > logical)
2168 break;
2169
d9d181c1 2170 ++sctx->stat.csum_discards;
a2de733c
AJ
2171 list_del(&sum->list);
2172 kfree(sum);
2173 sum = NULL;
2174 }
2175 if (!sum)
2176 return 0;
2177
f51a4a18 2178 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
d9d181c1 2179 num_sectors = sum->len / sctx->sectorsize;
f51a4a18
MX
2180 memcpy(csum, sum->sums + index, sctx->csum_size);
2181 if (index == num_sectors - 1) {
a2de733c
AJ
2182 list_del(&sum->list);
2183 kfree(sum);
2184 }
f51a4a18 2185 return 1;
a2de733c
AJ
2186}
2187
2188/* scrub extent tries to collect up to 64 kB for each bio */
d9d181c1 2189static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2190 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2191 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2192{
2193 int ret;
2194 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2195 u32 blocksize;
2196
2197 if (flags & BTRFS_EXTENT_FLAG_DATA) {
d9d181c1
SB
2198 blocksize = sctx->sectorsize;
2199 spin_lock(&sctx->stat_lock);
2200 sctx->stat.data_extents_scrubbed++;
2201 sctx->stat.data_bytes_scrubbed += len;
2202 spin_unlock(&sctx->stat_lock);
b5d67f64 2203 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
d9d181c1
SB
2204 blocksize = sctx->nodesize;
2205 spin_lock(&sctx->stat_lock);
2206 sctx->stat.tree_extents_scrubbed++;
2207 sctx->stat.tree_bytes_scrubbed += len;
2208 spin_unlock(&sctx->stat_lock);
b5d67f64 2209 } else {
d9d181c1 2210 blocksize = sctx->sectorsize;
ff023aac 2211 WARN_ON(1);
b5d67f64 2212 }
a2de733c
AJ
2213
2214 while (len) {
b5d67f64 2215 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2216 int have_csum = 0;
2217
2218 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2219 /* push csums to sbio */
d9d181c1 2220 have_csum = scrub_find_csum(sctx, logical, l, csum);
a2de733c 2221 if (have_csum == 0)
d9d181c1 2222 ++sctx->stat.no_csum;
ff023aac
SB
2223 if (sctx->is_dev_replace && !have_csum) {
2224 ret = copy_nocow_pages(sctx, logical, l,
2225 mirror_num,
2226 physical_for_dev_replace);
2227 goto behind_scrub_pages;
2228 }
a2de733c 2229 }
a36cf8b8 2230 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2231 mirror_num, have_csum ? csum : NULL, 0,
2232 physical_for_dev_replace);
2233behind_scrub_pages:
a2de733c
AJ
2234 if (ret)
2235 return ret;
2236 len -= l;
2237 logical += l;
2238 physical += l;
ff023aac 2239 physical_for_dev_replace += l;
a2de733c
AJ
2240 }
2241 return 0;
2242}
2243
3b080b25
WS
2244/*
2245 * Given a physical address, this will calculate it's
2246 * logical offset. if this is a parity stripe, it will return
2247 * the most left data stripe's logical offset.
2248 *
2249 * return 0 if it is a data stripe, 1 means parity stripe.
2250 */
2251static int get_raid56_logic_offset(u64 physical, int num,
2252 struct map_lookup *map, u64 *offset)
2253{
2254 int i;
2255 int j = 0;
2256 u64 stripe_nr;
2257 u64 last_offset;
2258 int stripe_index;
2259 int rot;
2260
2261 last_offset = (physical - map->stripes[num].physical) *
2262 nr_data_stripes(map);
2263 *offset = last_offset;
2264 for (i = 0; i < nr_data_stripes(map); i++) {
2265 *offset = last_offset + i * map->stripe_len;
2266
2267 stripe_nr = *offset;
2268 do_div(stripe_nr, map->stripe_len);
2269 do_div(stripe_nr, nr_data_stripes(map));
2270
2271 /* Work out the disk rotation on this stripe-set */
2272 rot = do_div(stripe_nr, map->num_stripes);
2273 /* calculate which stripe this data locates */
2274 rot += i;
e4fbaee2 2275 stripe_index = rot % map->num_stripes;
3b080b25
WS
2276 if (stripe_index == num)
2277 return 0;
2278 if (stripe_index < num)
2279 j++;
2280 }
2281 *offset = last_offset + j * map->stripe_len;
2282 return 1;
2283}
2284
d9d181c1 2285static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
2286 struct map_lookup *map,
2287 struct btrfs_device *scrub_dev,
ff023aac
SB
2288 int num, u64 base, u64 length,
2289 int is_dev_replace)
a2de733c
AJ
2290{
2291 struct btrfs_path *path;
a36cf8b8 2292 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
a2de733c
AJ
2293 struct btrfs_root *root = fs_info->extent_root;
2294 struct btrfs_root *csum_root = fs_info->csum_root;
2295 struct btrfs_extent_item *extent;
e7786c3a 2296 struct blk_plug plug;
a2de733c
AJ
2297 u64 flags;
2298 int ret;
2299 int slot;
a2de733c 2300 u64 nstripes;
a2de733c
AJ
2301 struct extent_buffer *l;
2302 struct btrfs_key key;
2303 u64 physical;
2304 u64 logical;
625f1c8d 2305 u64 logic_end;
3b080b25 2306 u64 physical_end;
a2de733c 2307 u64 generation;
e12fa9cd 2308 int mirror_num;
7a26285e
AJ
2309 struct reada_control *reada1;
2310 struct reada_control *reada2;
2311 struct btrfs_key key_start;
2312 struct btrfs_key key_end;
a2de733c
AJ
2313 u64 increment = map->stripe_len;
2314 u64 offset;
ff023aac
SB
2315 u64 extent_logical;
2316 u64 extent_physical;
2317 u64 extent_len;
2318 struct btrfs_device *extent_dev;
2319 int extent_mirror_num;
3b080b25 2320 int stop_loop = 0;
53b381b3 2321
a2de733c 2322 nstripes = length;
3b080b25 2323 physical = map->stripes[num].physical;
a2de733c
AJ
2324 offset = 0;
2325 do_div(nstripes, map->stripe_len);
2326 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2327 offset = map->stripe_len * num;
2328 increment = map->stripe_len * map->num_stripes;
193ea74b 2329 mirror_num = 1;
a2de733c
AJ
2330 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2331 int factor = map->num_stripes / map->sub_stripes;
2332 offset = map->stripe_len * (num / map->sub_stripes);
2333 increment = map->stripe_len * factor;
193ea74b 2334 mirror_num = num % map->sub_stripes + 1;
a2de733c
AJ
2335 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2336 increment = map->stripe_len;
193ea74b 2337 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
2338 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2339 increment = map->stripe_len;
193ea74b 2340 mirror_num = num % map->num_stripes + 1;
3b080b25
WS
2341 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2342 BTRFS_BLOCK_GROUP_RAID6)) {
2343 get_raid56_logic_offset(physical, num, map, &offset);
2344 increment = map->stripe_len * nr_data_stripes(map);
2345 mirror_num = 1;
a2de733c
AJ
2346 } else {
2347 increment = map->stripe_len;
193ea74b 2348 mirror_num = 1;
a2de733c
AJ
2349 }
2350
2351 path = btrfs_alloc_path();
2352 if (!path)
2353 return -ENOMEM;
2354
b5d67f64
SB
2355 /*
2356 * work on commit root. The related disk blocks are static as
2357 * long as COW is applied. This means, it is save to rewrite
2358 * them to repair disk errors without any race conditions
2359 */
a2de733c
AJ
2360 path->search_commit_root = 1;
2361 path->skip_locking = 1;
2362
2363 /*
7a26285e
AJ
2364 * trigger the readahead for extent tree csum tree and wait for
2365 * completion. During readahead, the scrub is officially paused
2366 * to not hold off transaction commits
a2de733c
AJ
2367 */
2368 logical = base + offset;
3b080b25
WS
2369 physical_end = physical + nstripes * map->stripe_len;
2370 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2371 BTRFS_BLOCK_GROUP_RAID6)) {
2372 get_raid56_logic_offset(physical_end, num,
2373 map, &logic_end);
2374 logic_end += base;
2375 } else {
2376 logic_end = logical + increment * nstripes;
2377 }
d9d181c1 2378 wait_event(sctx->list_wait,
b6bfebc1 2379 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 2380 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
2381
2382 /* FIXME it might be better to start readahead at commit root */
2383 key_start.objectid = logical;
2384 key_start.type = BTRFS_EXTENT_ITEM_KEY;
2385 key_start.offset = (u64)0;
3b080b25 2386 key_end.objectid = logic_end;
3173a18f
JB
2387 key_end.type = BTRFS_METADATA_ITEM_KEY;
2388 key_end.offset = (u64)-1;
7a26285e
AJ
2389 reada1 = btrfs_reada_add(root, &key_start, &key_end);
2390
2391 key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2392 key_start.type = BTRFS_EXTENT_CSUM_KEY;
2393 key_start.offset = logical;
2394 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2395 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 2396 key_end.offset = logic_end;
7a26285e
AJ
2397 reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2398
2399 if (!IS_ERR(reada1))
2400 btrfs_reada_wait(reada1);
2401 if (!IS_ERR(reada2))
2402 btrfs_reada_wait(reada2);
2403
a2de733c
AJ
2404
2405 /*
2406 * collect all data csums for the stripe to avoid seeking during
2407 * the scrub. This might currently (crc32) end up to be about 1MB
2408 */
e7786c3a 2409 blk_start_plug(&plug);
a2de733c 2410
a2de733c
AJ
2411 /*
2412 * now find all extents for each stripe and scrub them
2413 */
a2de733c 2414 ret = 0;
3b080b25
WS
2415 while (physical < physical_end) {
2416 /* for raid56, we skip parity stripe */
2417 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2418 BTRFS_BLOCK_GROUP_RAID6)) {
2419 ret = get_raid56_logic_offset(physical, num,
2420 map, &logical);
2421 logical += base;
2422 if (ret)
2423 goto skip;
2424 }
a2de733c
AJ
2425 /*
2426 * canceled?
2427 */
2428 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 2429 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
2430 ret = -ECANCELED;
2431 goto out;
2432 }
2433 /*
2434 * check to see if we have to pause
2435 */
2436 if (atomic_read(&fs_info->scrub_pause_req)) {
2437 /* push queued extents */
ff023aac 2438 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
d9d181c1 2439 scrub_submit(sctx);
ff023aac
SB
2440 mutex_lock(&sctx->wr_ctx.wr_lock);
2441 scrub_wr_submit(sctx);
2442 mutex_unlock(&sctx->wr_ctx.wr_lock);
d9d181c1 2443 wait_event(sctx->list_wait,
b6bfebc1 2444 atomic_read(&sctx->bios_in_flight) == 0);
ff023aac 2445 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3cb0929a 2446 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
2447 }
2448
7c76edb7
WS
2449 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2450 key.type = BTRFS_METADATA_ITEM_KEY;
2451 else
2452 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 2453 key.objectid = logical;
625f1c8d 2454 key.offset = (u64)-1;
a2de733c
AJ
2455
2456 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2457 if (ret < 0)
2458 goto out;
3173a18f 2459
8c51032f 2460 if (ret > 0) {
ade2e0b3 2461 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
2462 if (ret < 0)
2463 goto out;
8c51032f
AJ
2464 if (ret > 0) {
2465 /* there's no smaller item, so stick with the
2466 * larger one */
2467 btrfs_release_path(path);
2468 ret = btrfs_search_slot(NULL, root, &key,
2469 path, 0, 0);
2470 if (ret < 0)
2471 goto out;
2472 }
a2de733c
AJ
2473 }
2474
625f1c8d 2475 stop_loop = 0;
a2de733c 2476 while (1) {
3173a18f
JB
2477 u64 bytes;
2478
a2de733c
AJ
2479 l = path->nodes[0];
2480 slot = path->slots[0];
2481 if (slot >= btrfs_header_nritems(l)) {
2482 ret = btrfs_next_leaf(root, path);
2483 if (ret == 0)
2484 continue;
2485 if (ret < 0)
2486 goto out;
2487
625f1c8d 2488 stop_loop = 1;
a2de733c
AJ
2489 break;
2490 }
2491 btrfs_item_key_to_cpu(l, &key, slot);
2492
3173a18f 2493 if (key.type == BTRFS_METADATA_ITEM_KEY)
707e8a07 2494 bytes = root->nodesize;
3173a18f
JB
2495 else
2496 bytes = key.offset;
2497
2498 if (key.objectid + bytes <= logical)
a2de733c
AJ
2499 goto next;
2500
625f1c8d
LB
2501 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2502 key.type != BTRFS_METADATA_ITEM_KEY)
2503 goto next;
a2de733c 2504
625f1c8d
LB
2505 if (key.objectid >= logical + map->stripe_len) {
2506 /* out of this device extent */
2507 if (key.objectid >= logic_end)
2508 stop_loop = 1;
2509 break;
2510 }
a2de733c
AJ
2511
2512 extent = btrfs_item_ptr(l, slot,
2513 struct btrfs_extent_item);
2514 flags = btrfs_extent_flags(l, extent);
2515 generation = btrfs_extent_generation(l, extent);
2516
2517 if (key.objectid < logical &&
2518 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
efe120a0
FH
2519 btrfs_err(fs_info,
2520 "scrub: tree block %llu spanning "
2521 "stripes, ignored. logical=%llu",
c1c9ff7c 2522 key.objectid, logical);
a2de733c
AJ
2523 goto next;
2524 }
2525
625f1c8d
LB
2526again:
2527 extent_logical = key.objectid;
2528 extent_len = bytes;
2529
a2de733c
AJ
2530 /*
2531 * trim extent to this stripe
2532 */
625f1c8d
LB
2533 if (extent_logical < logical) {
2534 extent_len -= logical - extent_logical;
2535 extent_logical = logical;
a2de733c 2536 }
625f1c8d 2537 if (extent_logical + extent_len >
a2de733c 2538 logical + map->stripe_len) {
625f1c8d
LB
2539 extent_len = logical + map->stripe_len -
2540 extent_logical;
a2de733c
AJ
2541 }
2542
625f1c8d 2543 extent_physical = extent_logical - logical + physical;
ff023aac
SB
2544 extent_dev = scrub_dev;
2545 extent_mirror_num = mirror_num;
2546 if (is_dev_replace)
2547 scrub_remap_extent(fs_info, extent_logical,
2548 extent_len, &extent_physical,
2549 &extent_dev,
2550 &extent_mirror_num);
625f1c8d
LB
2551
2552 ret = btrfs_lookup_csums_range(csum_root, logical,
2553 logical + map->stripe_len - 1,
2554 &sctx->csum_list, 1);
2555 if (ret)
2556 goto out;
2557
ff023aac
SB
2558 ret = scrub_extent(sctx, extent_logical, extent_len,
2559 extent_physical, extent_dev, flags,
2560 generation, extent_mirror_num,
115930cb 2561 extent_logical - logical + physical);
a2de733c
AJ
2562 if (ret)
2563 goto out;
2564
d88d46c6 2565 scrub_free_csums(sctx);
625f1c8d
LB
2566 if (extent_logical + extent_len <
2567 key.objectid + bytes) {
3b080b25
WS
2568 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2569 BTRFS_BLOCK_GROUP_RAID6)) {
2570 /*
2571 * loop until we find next data stripe
2572 * or we have finished all stripes.
2573 */
2574 do {
2575 physical += map->stripe_len;
2576 ret = get_raid56_logic_offset(
2577 physical, num,
2578 map, &logical);
2579 logical += base;
2580 } while (physical < physical_end && ret);
2581 } else {
2582 physical += map->stripe_len;
2583 logical += increment;
2584 }
625f1c8d
LB
2585 if (logical < key.objectid + bytes) {
2586 cond_resched();
2587 goto again;
2588 }
2589
3b080b25 2590 if (physical >= physical_end) {
625f1c8d
LB
2591 stop_loop = 1;
2592 break;
2593 }
2594 }
a2de733c
AJ
2595next:
2596 path->slots[0]++;
2597 }
71267333 2598 btrfs_release_path(path);
3b080b25 2599skip:
a2de733c
AJ
2600 logical += increment;
2601 physical += map->stripe_len;
d9d181c1 2602 spin_lock(&sctx->stat_lock);
625f1c8d
LB
2603 if (stop_loop)
2604 sctx->stat.last_physical = map->stripes[num].physical +
2605 length;
2606 else
2607 sctx->stat.last_physical = physical;
d9d181c1 2608 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
2609 if (stop_loop)
2610 break;
a2de733c 2611 }
ff023aac 2612out:
a2de733c 2613 /* push queued extents */
d9d181c1 2614 scrub_submit(sctx);
ff023aac
SB
2615 mutex_lock(&sctx->wr_ctx.wr_lock);
2616 scrub_wr_submit(sctx);
2617 mutex_unlock(&sctx->wr_ctx.wr_lock);
a2de733c 2618
e7786c3a 2619 blk_finish_plug(&plug);
a2de733c
AJ
2620 btrfs_free_path(path);
2621 return ret < 0 ? ret : 0;
2622}
2623
d9d181c1 2624static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8
SB
2625 struct btrfs_device *scrub_dev,
2626 u64 chunk_tree, u64 chunk_objectid,
2627 u64 chunk_offset, u64 length,
ff023aac 2628 u64 dev_offset, int is_dev_replace)
a2de733c
AJ
2629{
2630 struct btrfs_mapping_tree *map_tree =
a36cf8b8 2631 &sctx->dev_root->fs_info->mapping_tree;
a2de733c
AJ
2632 struct map_lookup *map;
2633 struct extent_map *em;
2634 int i;
ff023aac 2635 int ret = 0;
a2de733c
AJ
2636
2637 read_lock(&map_tree->map_tree.lock);
2638 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2639 read_unlock(&map_tree->map_tree.lock);
2640
2641 if (!em)
2642 return -EINVAL;
2643
2644 map = (struct map_lookup *)em->bdev;
2645 if (em->start != chunk_offset)
2646 goto out;
2647
2648 if (em->len < length)
2649 goto out;
2650
2651 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 2652 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 2653 map->stripes[i].physical == dev_offset) {
a36cf8b8 2654 ret = scrub_stripe(sctx, map, scrub_dev, i,
ff023aac
SB
2655 chunk_offset, length,
2656 is_dev_replace);
a2de733c
AJ
2657 if (ret)
2658 goto out;
2659 }
2660 }
2661out:
2662 free_extent_map(em);
2663
2664 return ret;
2665}
2666
2667static noinline_for_stack
a36cf8b8 2668int scrub_enumerate_chunks(struct scrub_ctx *sctx,
ff023aac
SB
2669 struct btrfs_device *scrub_dev, u64 start, u64 end,
2670 int is_dev_replace)
a2de733c
AJ
2671{
2672 struct btrfs_dev_extent *dev_extent = NULL;
2673 struct btrfs_path *path;
a36cf8b8 2674 struct btrfs_root *root = sctx->dev_root;
a2de733c
AJ
2675 struct btrfs_fs_info *fs_info = root->fs_info;
2676 u64 length;
2677 u64 chunk_tree;
2678 u64 chunk_objectid;
2679 u64 chunk_offset;
2680 int ret;
2681 int slot;
2682 struct extent_buffer *l;
2683 struct btrfs_key key;
2684 struct btrfs_key found_key;
2685 struct btrfs_block_group_cache *cache;
ff023aac 2686 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
2687
2688 path = btrfs_alloc_path();
2689 if (!path)
2690 return -ENOMEM;
2691
2692 path->reada = 2;
2693 path->search_commit_root = 1;
2694 path->skip_locking = 1;
2695
a36cf8b8 2696 key.objectid = scrub_dev->devid;
a2de733c
AJ
2697 key.offset = 0ull;
2698 key.type = BTRFS_DEV_EXTENT_KEY;
2699
a2de733c
AJ
2700 while (1) {
2701 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2702 if (ret < 0)
8c51032f
AJ
2703 break;
2704 if (ret > 0) {
2705 if (path->slots[0] >=
2706 btrfs_header_nritems(path->nodes[0])) {
2707 ret = btrfs_next_leaf(root, path);
2708 if (ret)
2709 break;
2710 }
2711 }
a2de733c
AJ
2712
2713 l = path->nodes[0];
2714 slot = path->slots[0];
2715
2716 btrfs_item_key_to_cpu(l, &found_key, slot);
2717
a36cf8b8 2718 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
2719 break;
2720
962a298f 2721 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
2722 break;
2723
2724 if (found_key.offset >= end)
2725 break;
2726
2727 if (found_key.offset < key.offset)
2728 break;
2729
2730 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2731 length = btrfs_dev_extent_length(l, dev_extent);
2732
ced96edc
QW
2733 if (found_key.offset + length <= start)
2734 goto skip;
a2de733c
AJ
2735
2736 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2737 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2738 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2739
2740 /*
2741 * get a reference on the corresponding block group to prevent
2742 * the chunk from going away while we scrub it
2743 */
2744 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
2745
2746 /* some chunks are removed but not committed to disk yet,
2747 * continue scrubbing */
2748 if (!cache)
2749 goto skip;
2750
ff023aac
SB
2751 dev_replace->cursor_right = found_key.offset + length;
2752 dev_replace->cursor_left = found_key.offset;
2753 dev_replace->item_needs_writeback = 1;
a36cf8b8 2754 ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
ff023aac
SB
2755 chunk_offset, length, found_key.offset,
2756 is_dev_replace);
2757
2758 /*
2759 * flush, submit all pending read and write bios, afterwards
2760 * wait for them.
2761 * Note that in the dev replace case, a read request causes
2762 * write requests that are submitted in the read completion
2763 * worker. Therefore in the current situation, it is required
2764 * that all write requests are flushed, so that all read and
2765 * write requests are really completed when bios_in_flight
2766 * changes to 0.
2767 */
2768 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2769 scrub_submit(sctx);
2770 mutex_lock(&sctx->wr_ctx.wr_lock);
2771 scrub_wr_submit(sctx);
2772 mutex_unlock(&sctx->wr_ctx.wr_lock);
2773
2774 wait_event(sctx->list_wait,
2775 atomic_read(&sctx->bios_in_flight) == 0);
12cf9372
WS
2776 atomic_inc(&fs_info->scrubs_paused);
2777 wake_up(&fs_info->scrub_pause_wait);
2778
2779 /*
2780 * must be called before we decrease @scrub_paused.
2781 * make sure we don't block transaction commit while
2782 * we are waiting pending workers finished.
2783 */
ff023aac
SB
2784 wait_event(sctx->list_wait,
2785 atomic_read(&sctx->workers_pending) == 0);
12cf9372
WS
2786 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2787
2788 mutex_lock(&fs_info->scrub_lock);
2789 __scrub_blocked_if_needed(fs_info);
2790 atomic_dec(&fs_info->scrubs_paused);
2791 mutex_unlock(&fs_info->scrub_lock);
2792 wake_up(&fs_info->scrub_pause_wait);
ff023aac 2793
a2de733c
AJ
2794 btrfs_put_block_group(cache);
2795 if (ret)
2796 break;
af1be4f8
SB
2797 if (is_dev_replace &&
2798 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
2799 ret = -EIO;
2800 break;
2801 }
2802 if (sctx->stat.malloc_errors > 0) {
2803 ret = -ENOMEM;
2804 break;
2805 }
a2de733c 2806
539f358a
ID
2807 dev_replace->cursor_left = dev_replace->cursor_right;
2808 dev_replace->item_needs_writeback = 1;
ced96edc 2809skip:
a2de733c 2810 key.offset = found_key.offset + length;
71267333 2811 btrfs_release_path(path);
a2de733c
AJ
2812 }
2813
a2de733c 2814 btrfs_free_path(path);
8c51032f
AJ
2815
2816 /*
2817 * ret can still be 1 from search_slot or next_leaf,
2818 * that's not an error
2819 */
2820 return ret < 0 ? ret : 0;
a2de733c
AJ
2821}
2822
a36cf8b8
SB
2823static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2824 struct btrfs_device *scrub_dev)
a2de733c
AJ
2825{
2826 int i;
2827 u64 bytenr;
2828 u64 gen;
2829 int ret;
a36cf8b8 2830 struct btrfs_root *root = sctx->dev_root;
a2de733c 2831
87533c47 2832 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
79787eaa
JM
2833 return -EIO;
2834
5f546063
MX
2835 /* Seed devices of a new filesystem has their own generation. */
2836 if (scrub_dev->fs_devices != root->fs_info->fs_devices)
2837 gen = scrub_dev->generation;
2838 else
2839 gen = root->fs_info->last_trans_committed;
a2de733c
AJ
2840
2841 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2842 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
2843 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2844 scrub_dev->commit_total_bytes)
a2de733c
AJ
2845 break;
2846
d9d181c1 2847 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 2848 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 2849 NULL, 1, bytenr);
a2de733c
AJ
2850 if (ret)
2851 return ret;
2852 }
b6bfebc1 2853 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
2854
2855 return 0;
2856}
2857
2858/*
2859 * get a reference count on fs_info->scrub_workers. start worker if necessary
2860 */
ff023aac
SB
2861static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2862 int is_dev_replace)
a2de733c 2863{
0dc3b84a 2864 int ret = 0;
0339ef2f
QW
2865 int flags = WQ_FREEZABLE | WQ_UNBOUND;
2866 int max_active = fs_info->thread_pool_size;
a2de733c 2867
632dd772 2868 if (fs_info->scrub_workers_refcnt == 0) {
ff023aac 2869 if (is_dev_replace)
0339ef2f
QW
2870 fs_info->scrub_workers =
2871 btrfs_alloc_workqueue("btrfs-scrub", flags,
2872 1, 4);
ff023aac 2873 else
0339ef2f
QW
2874 fs_info->scrub_workers =
2875 btrfs_alloc_workqueue("btrfs-scrub", flags,
2876 max_active, 4);
2877 if (!fs_info->scrub_workers) {
2878 ret = -ENOMEM;
0dc3b84a 2879 goto out;
0339ef2f
QW
2880 }
2881 fs_info->scrub_wr_completion_workers =
2882 btrfs_alloc_workqueue("btrfs-scrubwrc", flags,
2883 max_active, 2);
2884 if (!fs_info->scrub_wr_completion_workers) {
2885 ret = -ENOMEM;
ff023aac 2886 goto out;
0339ef2f
QW
2887 }
2888 fs_info->scrub_nocow_workers =
2889 btrfs_alloc_workqueue("btrfs-scrubnc", flags, 1, 0);
2890 if (!fs_info->scrub_nocow_workers) {
2891 ret = -ENOMEM;
ff023aac 2892 goto out;
0339ef2f 2893 }
632dd772 2894 }
a2de733c 2895 ++fs_info->scrub_workers_refcnt;
0dc3b84a 2896out:
0dc3b84a 2897 return ret;
a2de733c
AJ
2898}
2899
aa1b8cd4 2900static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
a2de733c 2901{
ff023aac 2902 if (--fs_info->scrub_workers_refcnt == 0) {
0339ef2f
QW
2903 btrfs_destroy_workqueue(fs_info->scrub_workers);
2904 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
2905 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
ff023aac 2906 }
a2de733c 2907 WARN_ON(fs_info->scrub_workers_refcnt < 0);
a2de733c
AJ
2908}
2909
aa1b8cd4
SB
2910int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2911 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 2912 int readonly, int is_dev_replace)
a2de733c 2913{
d9d181c1 2914 struct scrub_ctx *sctx;
a2de733c
AJ
2915 int ret;
2916 struct btrfs_device *dev;
5d68da3b 2917 struct rcu_string *name;
a2de733c 2918
aa1b8cd4 2919 if (btrfs_fs_closing(fs_info))
a2de733c
AJ
2920 return -EINVAL;
2921
aa1b8cd4 2922 if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
2923 /*
2924 * in this case scrub is unable to calculate the checksum
2925 * the way scrub is implemented. Do not handle this
2926 * situation at all because it won't ever happen.
2927 */
efe120a0
FH
2928 btrfs_err(fs_info,
2929 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
aa1b8cd4 2930 fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
b5d67f64
SB
2931 return -EINVAL;
2932 }
2933
aa1b8cd4 2934 if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
b5d67f64 2935 /* not supported for data w/o checksums */
efe120a0
FH
2936 btrfs_err(fs_info,
2937 "scrub: size assumption sectorsize != PAGE_SIZE "
2938 "(%d != %lu) fails",
27f9f023 2939 fs_info->chunk_root->sectorsize, PAGE_SIZE);
a2de733c
AJ
2940 return -EINVAL;
2941 }
2942
7a9e9987
SB
2943 if (fs_info->chunk_root->nodesize >
2944 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2945 fs_info->chunk_root->sectorsize >
2946 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2947 /*
2948 * would exhaust the array bounds of pagev member in
2949 * struct scrub_block
2950 */
efe120a0
FH
2951 btrfs_err(fs_info, "scrub: size assumption nodesize and sectorsize "
2952 "<= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
7a9e9987
SB
2953 fs_info->chunk_root->nodesize,
2954 SCRUB_MAX_PAGES_PER_BLOCK,
2955 fs_info->chunk_root->sectorsize,
2956 SCRUB_MAX_PAGES_PER_BLOCK);
2957 return -EINVAL;
2958 }
2959
a2de733c 2960
aa1b8cd4
SB
2961 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
63a212ab 2963 if (!dev || (dev->missing && !is_dev_replace)) {
aa1b8cd4 2964 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
2965 return -ENODEV;
2966 }
a2de733c 2967
5d68da3b
MX
2968 if (!is_dev_replace && !readonly && !dev->writeable) {
2969 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2970 rcu_read_lock();
2971 name = rcu_dereference(dev->name);
2972 btrfs_err(fs_info, "scrub: device %s is not writable",
2973 name->str);
2974 rcu_read_unlock();
2975 return -EROFS;
2976 }
2977
3b7a016f 2978 mutex_lock(&fs_info->scrub_lock);
63a212ab 2979 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
a2de733c 2980 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 2981 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
aa1b8cd4 2982 return -EIO;
a2de733c
AJ
2983 }
2984
8dabb742
SB
2985 btrfs_dev_replace_lock(&fs_info->dev_replace);
2986 if (dev->scrub_device ||
2987 (!is_dev_replace &&
2988 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2989 btrfs_dev_replace_unlock(&fs_info->dev_replace);
a2de733c 2990 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 2991 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
2992 return -EINPROGRESS;
2993 }
8dabb742 2994 btrfs_dev_replace_unlock(&fs_info->dev_replace);
3b7a016f
WS
2995
2996 ret = scrub_workers_get(fs_info, is_dev_replace);
2997 if (ret) {
2998 mutex_unlock(&fs_info->scrub_lock);
2999 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3000 return ret;
3001 }
3002
63a212ab 3003 sctx = scrub_setup_ctx(dev, is_dev_replace);
d9d181c1 3004 if (IS_ERR(sctx)) {
a2de733c 3005 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
3006 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3007 scrub_workers_put(fs_info);
d9d181c1 3008 return PTR_ERR(sctx);
a2de733c 3009 }
d9d181c1
SB
3010 sctx->readonly = readonly;
3011 dev->scrub_device = sctx;
3cb0929a 3012 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3013
3cb0929a
WS
3014 /*
3015 * checking @scrub_pause_req here, we can avoid
3016 * race between committing transaction and scrubbing.
3017 */
cb7ab021 3018 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3019 atomic_inc(&fs_info->scrubs_running);
3020 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3021
ff023aac 3022 if (!is_dev_replace) {
9b011adf
WS
3023 /*
3024 * by holding device list mutex, we can
3025 * kick off writing super in log tree sync.
3026 */
3cb0929a 3027 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3028 ret = scrub_supers(sctx, dev);
3cb0929a 3029 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3030 }
a2de733c
AJ
3031
3032 if (!ret)
ff023aac
SB
3033 ret = scrub_enumerate_chunks(sctx, dev, start, end,
3034 is_dev_replace);
a2de733c 3035
b6bfebc1 3036 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3037 atomic_dec(&fs_info->scrubs_running);
3038 wake_up(&fs_info->scrub_pause_wait);
3039
b6bfebc1 3040 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3041
a2de733c 3042 if (progress)
d9d181c1 3043 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3044
3045 mutex_lock(&fs_info->scrub_lock);
3046 dev->scrub_device = NULL;
3b7a016f 3047 scrub_workers_put(fs_info);
a2de733c
AJ
3048 mutex_unlock(&fs_info->scrub_lock);
3049
d9d181c1 3050 scrub_free_ctx(sctx);
a2de733c
AJ
3051
3052 return ret;
3053}
3054
143bede5 3055void btrfs_scrub_pause(struct btrfs_root *root)
a2de733c
AJ
3056{
3057 struct btrfs_fs_info *fs_info = root->fs_info;
3058
3059 mutex_lock(&fs_info->scrub_lock);
3060 atomic_inc(&fs_info->scrub_pause_req);
3061 while (atomic_read(&fs_info->scrubs_paused) !=
3062 atomic_read(&fs_info->scrubs_running)) {
3063 mutex_unlock(&fs_info->scrub_lock);
3064 wait_event(fs_info->scrub_pause_wait,
3065 atomic_read(&fs_info->scrubs_paused) ==
3066 atomic_read(&fs_info->scrubs_running));
3067 mutex_lock(&fs_info->scrub_lock);
3068 }
3069 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
3070}
3071
143bede5 3072void btrfs_scrub_continue(struct btrfs_root *root)
a2de733c
AJ
3073{
3074 struct btrfs_fs_info *fs_info = root->fs_info;
3075
3076 atomic_dec(&fs_info->scrub_pause_req);
3077 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
3078}
3079
aa1b8cd4 3080int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 3081{
a2de733c
AJ
3082 mutex_lock(&fs_info->scrub_lock);
3083 if (!atomic_read(&fs_info->scrubs_running)) {
3084 mutex_unlock(&fs_info->scrub_lock);
3085 return -ENOTCONN;
3086 }
3087
3088 atomic_inc(&fs_info->scrub_cancel_req);
3089 while (atomic_read(&fs_info->scrubs_running)) {
3090 mutex_unlock(&fs_info->scrub_lock);
3091 wait_event(fs_info->scrub_pause_wait,
3092 atomic_read(&fs_info->scrubs_running) == 0);
3093 mutex_lock(&fs_info->scrub_lock);
3094 }
3095 atomic_dec(&fs_info->scrub_cancel_req);
3096 mutex_unlock(&fs_info->scrub_lock);
3097
3098 return 0;
3099}
3100
aa1b8cd4
SB
3101int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3102 struct btrfs_device *dev)
49b25e05 3103{
d9d181c1 3104 struct scrub_ctx *sctx;
a2de733c
AJ
3105
3106 mutex_lock(&fs_info->scrub_lock);
d9d181c1
SB
3107 sctx = dev->scrub_device;
3108 if (!sctx) {
a2de733c
AJ
3109 mutex_unlock(&fs_info->scrub_lock);
3110 return -ENOTCONN;
3111 }
d9d181c1 3112 atomic_inc(&sctx->cancel_req);
a2de733c
AJ
3113 while (dev->scrub_device) {
3114 mutex_unlock(&fs_info->scrub_lock);
3115 wait_event(fs_info->scrub_pause_wait,
3116 dev->scrub_device == NULL);
3117 mutex_lock(&fs_info->scrub_lock);
3118 }
3119 mutex_unlock(&fs_info->scrub_lock);
3120
3121 return 0;
3122}
1623edeb 3123
a2de733c
AJ
3124int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3125 struct btrfs_scrub_progress *progress)
3126{
3127 struct btrfs_device *dev;
d9d181c1 3128 struct scrub_ctx *sctx = NULL;
a2de733c
AJ
3129
3130 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
aa1b8cd4 3131 dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
a2de733c 3132 if (dev)
d9d181c1
SB
3133 sctx = dev->scrub_device;
3134 if (sctx)
3135 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
3136 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3137
d9d181c1 3138 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 3139}
ff023aac
SB
3140
3141static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3142 u64 extent_logical, u64 extent_len,
3143 u64 *extent_physical,
3144 struct btrfs_device **extent_dev,
3145 int *extent_mirror_num)
3146{
3147 u64 mapped_length;
3148 struct btrfs_bio *bbio = NULL;
3149 int ret;
3150
3151 mapped_length = extent_len;
3152 ret = btrfs_map_block(fs_info, READ, extent_logical,
3153 &mapped_length, &bbio, 0);
3154 if (ret || !bbio || mapped_length < extent_len ||
3155 !bbio->stripes[0].dev->bdev) {
3156 kfree(bbio);
3157 return;
3158 }
3159
3160 *extent_physical = bbio->stripes[0].physical;
3161 *extent_mirror_num = bbio->mirror_num;
3162 *extent_dev = bbio->stripes[0].dev;
3163 kfree(bbio);
3164}
3165
3166static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3167 struct scrub_wr_ctx *wr_ctx,
3168 struct btrfs_fs_info *fs_info,
3169 struct btrfs_device *dev,
3170 int is_dev_replace)
3171{
3172 WARN_ON(wr_ctx->wr_curr_bio != NULL);
3173
3174 mutex_init(&wr_ctx->wr_lock);
3175 wr_ctx->wr_curr_bio = NULL;
3176 if (!is_dev_replace)
3177 return 0;
3178
3179 WARN_ON(!dev->bdev);
3180 wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3181 bio_get_nr_vecs(dev->bdev));
3182 wr_ctx->tgtdev = dev;
3183 atomic_set(&wr_ctx->flush_all_writes, 0);
3184 return 0;
3185}
3186
3187static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3188{
3189 mutex_lock(&wr_ctx->wr_lock);
3190 kfree(wr_ctx->wr_curr_bio);
3191 wr_ctx->wr_curr_bio = NULL;
3192 mutex_unlock(&wr_ctx->wr_lock);
3193}
3194
3195static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3196 int mirror_num, u64 physical_for_dev_replace)
3197{
3198 struct scrub_copy_nocow_ctx *nocow_ctx;
3199 struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3200
3201 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3202 if (!nocow_ctx) {
3203 spin_lock(&sctx->stat_lock);
3204 sctx->stat.malloc_errors++;
3205 spin_unlock(&sctx->stat_lock);
3206 return -ENOMEM;
3207 }
3208
3209 scrub_pending_trans_workers_inc(sctx);
3210
3211 nocow_ctx->sctx = sctx;
3212 nocow_ctx->logical = logical;
3213 nocow_ctx->len = len;
3214 nocow_ctx->mirror_num = mirror_num;
3215 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
9e0af237
LB
3216 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
3217 copy_nocow_pages_worker, NULL, NULL);
652f25a2 3218 INIT_LIST_HEAD(&nocow_ctx->inodes);
0339ef2f
QW
3219 btrfs_queue_work(fs_info->scrub_nocow_workers,
3220 &nocow_ctx->work);
ff023aac
SB
3221
3222 return 0;
3223}
3224
652f25a2
JB
3225static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
3226{
3227 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3228 struct scrub_nocow_inode *nocow_inode;
3229
3230 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
3231 if (!nocow_inode)
3232 return -ENOMEM;
3233 nocow_inode->inum = inum;
3234 nocow_inode->offset = offset;
3235 nocow_inode->root = root;
3236 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
3237 return 0;
3238}
3239
3240#define COPY_COMPLETE 1
3241
ff023aac
SB
3242static void copy_nocow_pages_worker(struct btrfs_work *work)
3243{
3244 struct scrub_copy_nocow_ctx *nocow_ctx =
3245 container_of(work, struct scrub_copy_nocow_ctx, work);
3246 struct scrub_ctx *sctx = nocow_ctx->sctx;
3247 u64 logical = nocow_ctx->logical;
3248 u64 len = nocow_ctx->len;
3249 int mirror_num = nocow_ctx->mirror_num;
3250 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3251 int ret;
3252 struct btrfs_trans_handle *trans = NULL;
3253 struct btrfs_fs_info *fs_info;
3254 struct btrfs_path *path;
3255 struct btrfs_root *root;
3256 int not_written = 0;
3257
3258 fs_info = sctx->dev_root->fs_info;
3259 root = fs_info->extent_root;
3260
3261 path = btrfs_alloc_path();
3262 if (!path) {
3263 spin_lock(&sctx->stat_lock);
3264 sctx->stat.malloc_errors++;
3265 spin_unlock(&sctx->stat_lock);
3266 not_written = 1;
3267 goto out;
3268 }
3269
3270 trans = btrfs_join_transaction(root);
3271 if (IS_ERR(trans)) {
3272 not_written = 1;
3273 goto out;
3274 }
3275
3276 ret = iterate_inodes_from_logical(logical, fs_info, path,
652f25a2 3277 record_inode_for_nocow, nocow_ctx);
ff023aac 3278 if (ret != 0 && ret != -ENOENT) {
efe120a0
FH
3279 btrfs_warn(fs_info, "iterate_inodes_from_logical() failed: log %llu, "
3280 "phys %llu, len %llu, mir %u, ret %d",
118a0a25
GU
3281 logical, physical_for_dev_replace, len, mirror_num,
3282 ret);
ff023aac
SB
3283 not_written = 1;
3284 goto out;
3285 }
3286
652f25a2
JB
3287 btrfs_end_transaction(trans, root);
3288 trans = NULL;
3289 while (!list_empty(&nocow_ctx->inodes)) {
3290 struct scrub_nocow_inode *entry;
3291 entry = list_first_entry(&nocow_ctx->inodes,
3292 struct scrub_nocow_inode,
3293 list);
3294 list_del_init(&entry->list);
3295 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
3296 entry->root, nocow_ctx);
3297 kfree(entry);
3298 if (ret == COPY_COMPLETE) {
3299 ret = 0;
3300 break;
3301 } else if (ret) {
3302 break;
3303 }
3304 }
ff023aac 3305out:
652f25a2
JB
3306 while (!list_empty(&nocow_ctx->inodes)) {
3307 struct scrub_nocow_inode *entry;
3308 entry = list_first_entry(&nocow_ctx->inodes,
3309 struct scrub_nocow_inode,
3310 list);
3311 list_del_init(&entry->list);
3312 kfree(entry);
3313 }
ff023aac
SB
3314 if (trans && !IS_ERR(trans))
3315 btrfs_end_transaction(trans, root);
3316 if (not_written)
3317 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3318 num_uncorrectable_read_errors);
3319
3320 btrfs_free_path(path);
3321 kfree(nocow_ctx);
3322
3323 scrub_pending_trans_workers_dec(sctx);
3324}
3325
652f25a2
JB
3326static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
3327 struct scrub_copy_nocow_ctx *nocow_ctx)
ff023aac 3328{
826aa0a8 3329 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
ff023aac 3330 struct btrfs_key key;
826aa0a8
MX
3331 struct inode *inode;
3332 struct page *page;
ff023aac 3333 struct btrfs_root *local_root;
652f25a2
JB
3334 struct btrfs_ordered_extent *ordered;
3335 struct extent_map *em;
3336 struct extent_state *cached_state = NULL;
3337 struct extent_io_tree *io_tree;
ff023aac 3338 u64 physical_for_dev_replace;
652f25a2
JB
3339 u64 len = nocow_ctx->len;
3340 u64 lockstart = offset, lockend = offset + len - 1;
826aa0a8 3341 unsigned long index;
6f1c3605 3342 int srcu_index;
652f25a2
JB
3343 int ret = 0;
3344 int err = 0;
ff023aac
SB
3345
3346 key.objectid = root;
3347 key.type = BTRFS_ROOT_ITEM_KEY;
3348 key.offset = (u64)-1;
6f1c3605
LB
3349
3350 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3351
ff023aac 3352 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
6f1c3605
LB
3353 if (IS_ERR(local_root)) {
3354 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac 3355 return PTR_ERR(local_root);
6f1c3605 3356 }
ff023aac
SB
3357
3358 key.type = BTRFS_INODE_ITEM_KEY;
3359 key.objectid = inum;
3360 key.offset = 0;
3361 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
6f1c3605 3362 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac
SB
3363 if (IS_ERR(inode))
3364 return PTR_ERR(inode);
3365
edd1400b
MX
3366 /* Avoid truncate/dio/punch hole.. */
3367 mutex_lock(&inode->i_mutex);
3368 inode_dio_wait(inode);
3369
ff023aac 3370 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
652f25a2
JB
3371 io_tree = &BTRFS_I(inode)->io_tree;
3372
3373 lock_extent_bits(io_tree, lockstart, lockend, 0, &cached_state);
3374 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
3375 if (ordered) {
3376 btrfs_put_ordered_extent(ordered);
3377 goto out_unlock;
3378 }
3379
3380 em = btrfs_get_extent(inode, NULL, 0, lockstart, len, 0);
3381 if (IS_ERR(em)) {
3382 ret = PTR_ERR(em);
3383 goto out_unlock;
3384 }
3385
3386 /*
3387 * This extent does not actually cover the logical extent anymore,
3388 * move on to the next inode.
3389 */
3390 if (em->block_start > nocow_ctx->logical ||
3391 em->block_start + em->block_len < nocow_ctx->logical + len) {
3392 free_extent_map(em);
3393 goto out_unlock;
3394 }
3395 free_extent_map(em);
3396
ff023aac 3397 while (len >= PAGE_CACHE_SIZE) {
ff023aac 3398 index = offset >> PAGE_CACHE_SHIFT;
edd1400b 3399again:
ff023aac
SB
3400 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3401 if (!page) {
efe120a0 3402 btrfs_err(fs_info, "find_or_create_page() failed");
ff023aac 3403 ret = -ENOMEM;
826aa0a8 3404 goto out;
ff023aac
SB
3405 }
3406
3407 if (PageUptodate(page)) {
3408 if (PageDirty(page))
3409 goto next_page;
3410 } else {
3411 ClearPageError(page);
652f25a2
JB
3412 err = extent_read_full_page_nolock(io_tree, page,
3413 btrfs_get_extent,
3414 nocow_ctx->mirror_num);
826aa0a8
MX
3415 if (err) {
3416 ret = err;
ff023aac
SB
3417 goto next_page;
3418 }
edd1400b 3419
26b25891 3420 lock_page(page);
edd1400b
MX
3421 /*
3422 * If the page has been remove from the page cache,
3423 * the data on it is meaningless, because it may be
3424 * old one, the new data may be written into the new
3425 * page in the page cache.
3426 */
3427 if (page->mapping != inode->i_mapping) {
652f25a2 3428 unlock_page(page);
edd1400b
MX
3429 page_cache_release(page);
3430 goto again;
3431 }
ff023aac
SB
3432 if (!PageUptodate(page)) {
3433 ret = -EIO;
3434 goto next_page;
3435 }
3436 }
826aa0a8
MX
3437 err = write_page_nocow(nocow_ctx->sctx,
3438 physical_for_dev_replace, page);
3439 if (err)
3440 ret = err;
ff023aac 3441next_page:
826aa0a8
MX
3442 unlock_page(page);
3443 page_cache_release(page);
3444
3445 if (ret)
3446 break;
3447
ff023aac
SB
3448 offset += PAGE_CACHE_SIZE;
3449 physical_for_dev_replace += PAGE_CACHE_SIZE;
3450 len -= PAGE_CACHE_SIZE;
3451 }
652f25a2
JB
3452 ret = COPY_COMPLETE;
3453out_unlock:
3454 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
3455 GFP_NOFS);
826aa0a8 3456out:
edd1400b 3457 mutex_unlock(&inode->i_mutex);
826aa0a8 3458 iput(inode);
ff023aac
SB
3459 return ret;
3460}
3461
3462static int write_page_nocow(struct scrub_ctx *sctx,
3463 u64 physical_for_dev_replace, struct page *page)
3464{
3465 struct bio *bio;
3466 struct btrfs_device *dev;
3467 int ret;
ff023aac
SB
3468
3469 dev = sctx->wr_ctx.tgtdev;
3470 if (!dev)
3471 return -EIO;
3472 if (!dev->bdev) {
3473 printk_ratelimited(KERN_WARNING
efe120a0 3474 "BTRFS: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
ff023aac
SB
3475 return -EIO;
3476 }
9be3395b 3477 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
ff023aac
SB
3478 if (!bio) {
3479 spin_lock(&sctx->stat_lock);
3480 sctx->stat.malloc_errors++;
3481 spin_unlock(&sctx->stat_lock);
3482 return -ENOMEM;
3483 }
4f024f37
KO
3484 bio->bi_iter.bi_size = 0;
3485 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
ff023aac
SB
3486 bio->bi_bdev = dev->bdev;
3487 ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3488 if (ret != PAGE_CACHE_SIZE) {
3489leave_with_eio:
3490 bio_put(bio);
3491 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3492 return -EIO;
3493 }
ff023aac 3494
33879d45 3495 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio))
ff023aac
SB
3496 goto leave_with_eio;
3497
3498 bio_put(bio);
3499 return 0;
3500}