btrfs: fix direct I/O writes for split bios on zoned devices
[linux-block.git] / fs / btrfs / scrub.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a2de733c 2/*
b6bfebc1 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
4 */
5
a2de733c 6#include <linux/blkdev.h>
558540c1 7#include <linux/ratelimit.h>
de2491fd 8#include <linux/sched/mm.h>
d5178578 9#include <crypto/hash.h>
a2de733c 10#include "ctree.h"
6e80d4f8 11#include "discard.h"
a2de733c
AJ
12#include "volumes.h"
13#include "disk-io.h"
14#include "ordered-data.h"
0ef8e451 15#include "transaction.h"
558540c1 16#include "backref.h"
5da6fcbc 17#include "extent_io.h"
ff023aac 18#include "dev-replace.h"
21adbd5c 19#include "check-integrity.h"
606686ee 20#include "rcu-string.h"
53b381b3 21#include "raid56.h"
aac0023c 22#include "block-group.h"
12659251 23#include "zoned.h"
a2de733c
AJ
24
25/*
26 * This is only the first step towards a full-features scrub. It reads all
27 * extent and super block and verifies the checksums. In case a bad checksum
28 * is found or the extent cannot be read, good data will be written back if
29 * any can be found.
30 *
31 * Future enhancements:
a2de733c
AJ
32 * - In case an unrepairable extent is encountered, track which files are
33 * affected and report them
a2de733c 34 * - track and record media errors, throw out bad devices
a2de733c 35 * - add a mode to also read unallocated space
a2de733c
AJ
36 */
37
b5d67f64 38struct scrub_block;
d9d181c1 39struct scrub_ctx;
a2de733c 40
ff023aac 41/*
c9d328c0
QW
42 * The following three values only influence the performance.
43 *
ff023aac 44 * The last one configures the number of parallel and outstanding I/O
c9d328c0 45 * operations. The first one configures an upper limit for the number
ff023aac
SB
46 * of (dynamically allocated) pages that are added to a bio.
47 */
c9d328c0
QW
48#define SCRUB_PAGES_PER_BIO 32 /* 128KiB per bio for x86 */
49#define SCRUB_BIOS_PER_SCTX 64 /* 8MiB per device in flight for x86 */
7a9e9987
SB
50
51/*
0bb3acdc 52 * The following value times PAGE_SIZE needs to be large enough to match the
7a9e9987 53 * largest node/leaf/sector size that shall be supported.
7a9e9987 54 */
0bb3acdc 55#define SCRUB_MAX_PAGES_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
a2de733c 56
af8e2d1d 57struct scrub_recover {
6f615018 58 refcount_t refs;
4c664611 59 struct btrfs_io_context *bioc;
af8e2d1d
MX
60 u64 map_length;
61};
62
a2de733c 63struct scrub_page {
b5d67f64
SB
64 struct scrub_block *sblock;
65 struct page *page;
442a4f63 66 struct btrfs_device *dev;
5a6ac9ea 67 struct list_head list;
a2de733c
AJ
68 u64 flags; /* extent flags */
69 u64 generation;
b5d67f64
SB
70 u64 logical;
71 u64 physical;
ff023aac 72 u64 physical_for_dev_replace;
57019345 73 atomic_t refs;
2c363954 74 u8 mirror_num;
d08e38b6
CIK
75 unsigned int have_csum:1;
76 unsigned int io_error:1;
a2de733c 77 u8 csum[BTRFS_CSUM_SIZE];
af8e2d1d
MX
78
79 struct scrub_recover *recover;
a2de733c
AJ
80};
81
82struct scrub_bio {
83 int index;
d9d181c1 84 struct scrub_ctx *sctx;
a36cf8b8 85 struct btrfs_device *dev;
a2de733c 86 struct bio *bio;
4e4cbee9 87 blk_status_t status;
a2de733c
AJ
88 u64 logical;
89 u64 physical;
c9d328c0 90 struct scrub_page *pagev[SCRUB_PAGES_PER_BIO];
b5d67f64 91 int page_count;
a2de733c
AJ
92 int next_free;
93 struct btrfs_work work;
94};
95
b5d67f64 96struct scrub_block {
7a9e9987 97 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
98 int page_count;
99 atomic_t outstanding_pages;
186debd6 100 refcount_t refs; /* free mem on transition to zero */
d9d181c1 101 struct scrub_ctx *sctx;
5a6ac9ea 102 struct scrub_parity *sparity;
b5d67f64
SB
103 struct {
104 unsigned int header_error:1;
105 unsigned int checksum_error:1;
106 unsigned int no_io_error_seen:1;
442a4f63 107 unsigned int generation_error:1; /* also sets header_error */
5a6ac9ea
MX
108
109 /* The following is for the data used to check parity */
110 /* It is for the data with checksum */
111 unsigned int data_corrected:1;
b5d67f64 112 };
73ff61db 113 struct btrfs_work work;
b5d67f64
SB
114};
115
5a6ac9ea
MX
116/* Used for the chunks with parity stripe such RAID5/6 */
117struct scrub_parity {
118 struct scrub_ctx *sctx;
119
120 struct btrfs_device *scrub_dev;
121
122 u64 logic_start;
123
124 u64 logic_end;
125
126 int nsectors;
127
fa485d21 128 u32 stripe_len;
5a6ac9ea 129
78a76450 130 refcount_t refs;
5a6ac9ea
MX
131
132 struct list_head spages;
133
134 /* Work of parity check and repair */
135 struct btrfs_work work;
136
137 /* Mark the parity blocks which have data */
138 unsigned long *dbitmap;
139
140 /*
141 * Mark the parity blocks which have data, but errors happen when
142 * read data or check data
143 */
144 unsigned long *ebitmap;
145
a8753ee3 146 unsigned long bitmap[];
5a6ac9ea
MX
147};
148
d9d181c1 149struct scrub_ctx {
ff023aac 150 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
fb456252 151 struct btrfs_fs_info *fs_info;
a2de733c
AJ
152 int first_free;
153 int curr;
b6bfebc1
SB
154 atomic_t bios_in_flight;
155 atomic_t workers_pending;
a2de733c
AJ
156 spinlock_t list_lock;
157 wait_queue_head_t list_wait;
a2de733c
AJ
158 struct list_head csum_list;
159 atomic_t cancel_req;
8628764e 160 int readonly;
c9d328c0 161 int pages_per_bio;
63a212ab 162
eb3b5053
DS
163 /* State of IO submission throttling affecting the associated device */
164 ktime_t throttle_deadline;
165 u64 throttle_sent;
166
63a212ab 167 int is_dev_replace;
de17addc 168 u64 write_pointer;
3fb99303
DS
169
170 struct scrub_bio *wr_curr_bio;
171 struct mutex wr_lock;
3fb99303 172 struct btrfs_device *wr_tgtdev;
2073c4c2 173 bool flush_all_writes;
63a212ab 174
a2de733c
AJ
175 /*
176 * statistics
177 */
178 struct btrfs_scrub_progress stat;
179 spinlock_t stat_lock;
f55985f4
FM
180
181 /*
182 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 * decrement bios_in_flight and workers_pending and then do a wakeup
184 * on the list_wait wait queue. We must ensure the main scrub task
185 * doesn't free the scrub context before or while the workers are
186 * doing the wakeup() call.
187 */
99f4cdb1 188 refcount_t refs;
a2de733c
AJ
189};
190
558540c1
JS
191struct scrub_warning {
192 struct btrfs_path *path;
193 u64 extent_item_size;
558540c1 194 const char *errstr;
6aa21263 195 u64 physical;
558540c1
JS
196 u64 logical;
197 struct btrfs_device *dev;
558540c1
JS
198};
199
0966a7b1
QW
200struct full_stripe_lock {
201 struct rb_node node;
202 u64 logical;
203 u64 refs;
204 struct mutex mutex;
205};
206
be50a8dd 207static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
ff023aac 208 struct scrub_block *sblocks_for_recheck);
34f5c8e9 209static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
210 struct scrub_block *sblock,
211 int retry_failed_mirror);
ba7cf988 212static void scrub_recheck_block_checksum(struct scrub_block *sblock);
b5d67f64 213static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 214 struct scrub_block *sblock_good);
b5d67f64
SB
215static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
216 struct scrub_block *sblock_good,
217 int page_num, int force_write);
ff023aac
SB
218static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
219static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
220 int page_num);
b5d67f64
SB
221static int scrub_checksum_data(struct scrub_block *sblock);
222static int scrub_checksum_tree_block(struct scrub_block *sblock);
223static int scrub_checksum_super(struct scrub_block *sblock);
b5d67f64 224static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
225static void scrub_page_get(struct scrub_page *spage);
226static void scrub_page_put(struct scrub_page *spage);
5a6ac9ea
MX
227static void scrub_parity_get(struct scrub_parity *sparity);
228static void scrub_parity_put(struct scrub_parity *sparity);
fa485d21 229static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
a36cf8b8 230 u64 physical, struct btrfs_device *dev, u64 flags,
96e63a45 231 u64 gen, int mirror_num, u8 *csum,
ff023aac 232 u64 physical_for_dev_replace);
4246a0b6 233static void scrub_bio_end_io(struct bio *bio);
b5d67f64
SB
234static void scrub_bio_end_io_worker(struct btrfs_work *work);
235static void scrub_block_complete(struct scrub_block *sblock);
ff023aac 236static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
fa485d21 237 u64 extent_logical, u32 extent_len,
ff023aac
SB
238 u64 *extent_physical,
239 struct btrfs_device **extent_dev,
240 int *extent_mirror_num);
ff023aac
SB
241static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
242 struct scrub_page *spage);
243static void scrub_wr_submit(struct scrub_ctx *sctx);
4246a0b6 244static void scrub_wr_bio_end_io(struct bio *bio);
ff023aac 245static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
f55985f4 246static void scrub_put_ctx(struct scrub_ctx *sctx);
1623edeb 247
261d2dcb 248static inline int scrub_is_page_on_raid56(struct scrub_page *spage)
762221f0 249{
261d2dcb 250 return spage->recover &&
4c664611 251 (spage->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
762221f0 252}
1623edeb 253
b6bfebc1
SB
254static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
255{
99f4cdb1 256 refcount_inc(&sctx->refs);
b6bfebc1
SB
257 atomic_inc(&sctx->bios_in_flight);
258}
259
260static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
261{
262 atomic_dec(&sctx->bios_in_flight);
263 wake_up(&sctx->list_wait);
f55985f4 264 scrub_put_ctx(sctx);
b6bfebc1
SB
265}
266
cb7ab021 267static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
268{
269 while (atomic_read(&fs_info->scrub_pause_req)) {
270 mutex_unlock(&fs_info->scrub_lock);
271 wait_event(fs_info->scrub_pause_wait,
272 atomic_read(&fs_info->scrub_pause_req) == 0);
273 mutex_lock(&fs_info->scrub_lock);
274 }
275}
276
0e22be89 277static void scrub_pause_on(struct btrfs_fs_info *fs_info)
cb7ab021
WS
278{
279 atomic_inc(&fs_info->scrubs_paused);
280 wake_up(&fs_info->scrub_pause_wait);
0e22be89 281}
cb7ab021 282
0e22be89
Z
283static void scrub_pause_off(struct btrfs_fs_info *fs_info)
284{
cb7ab021
WS
285 mutex_lock(&fs_info->scrub_lock);
286 __scrub_blocked_if_needed(fs_info);
287 atomic_dec(&fs_info->scrubs_paused);
288 mutex_unlock(&fs_info->scrub_lock);
289
290 wake_up(&fs_info->scrub_pause_wait);
291}
292
0e22be89
Z
293static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
294{
295 scrub_pause_on(fs_info);
296 scrub_pause_off(fs_info);
297}
298
0966a7b1
QW
299/*
300 * Insert new full stripe lock into full stripe locks tree
301 *
302 * Return pointer to existing or newly inserted full_stripe_lock structure if
303 * everything works well.
304 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
305 *
306 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
307 * function
308 */
309static struct full_stripe_lock *insert_full_stripe_lock(
310 struct btrfs_full_stripe_locks_tree *locks_root,
311 u64 fstripe_logical)
312{
313 struct rb_node **p;
314 struct rb_node *parent = NULL;
315 struct full_stripe_lock *entry;
316 struct full_stripe_lock *ret;
317
a32bf9a3 318 lockdep_assert_held(&locks_root->lock);
0966a7b1
QW
319
320 p = &locks_root->root.rb_node;
321 while (*p) {
322 parent = *p;
323 entry = rb_entry(parent, struct full_stripe_lock, node);
324 if (fstripe_logical < entry->logical) {
325 p = &(*p)->rb_left;
326 } else if (fstripe_logical > entry->logical) {
327 p = &(*p)->rb_right;
328 } else {
329 entry->refs++;
330 return entry;
331 }
332 }
333
a5fb1142
FM
334 /*
335 * Insert new lock.
a5fb1142 336 */
0966a7b1
QW
337 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
338 if (!ret)
339 return ERR_PTR(-ENOMEM);
340 ret->logical = fstripe_logical;
341 ret->refs = 1;
342 mutex_init(&ret->mutex);
343
344 rb_link_node(&ret->node, parent, p);
345 rb_insert_color(&ret->node, &locks_root->root);
346 return ret;
347}
348
349/*
350 * Search for a full stripe lock of a block group
351 *
352 * Return pointer to existing full stripe lock if found
353 * Return NULL if not found
354 */
355static struct full_stripe_lock *search_full_stripe_lock(
356 struct btrfs_full_stripe_locks_tree *locks_root,
357 u64 fstripe_logical)
358{
359 struct rb_node *node;
360 struct full_stripe_lock *entry;
361
a32bf9a3 362 lockdep_assert_held(&locks_root->lock);
0966a7b1
QW
363
364 node = locks_root->root.rb_node;
365 while (node) {
366 entry = rb_entry(node, struct full_stripe_lock, node);
367 if (fstripe_logical < entry->logical)
368 node = node->rb_left;
369 else if (fstripe_logical > entry->logical)
370 node = node->rb_right;
371 else
372 return entry;
373 }
374 return NULL;
375}
376
377/*
378 * Helper to get full stripe logical from a normal bytenr.
379 *
380 * Caller must ensure @cache is a RAID56 block group.
381 */
32da5386 382static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
0966a7b1
QW
383{
384 u64 ret;
385
386 /*
387 * Due to chunk item size limit, full stripe length should not be
388 * larger than U32_MAX. Just a sanity check here.
389 */
390 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
391
392 /*
393 * round_down() can only handle power of 2, while RAID56 full
394 * stripe length can be 64KiB * n, so we need to manually round down.
395 */
b3470b5d
DS
396 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
397 cache->full_stripe_len + cache->start;
0966a7b1
QW
398 return ret;
399}
400
401/*
402 * Lock a full stripe to avoid concurrency of recovery and read
403 *
404 * It's only used for profiles with parities (RAID5/6), for other profiles it
405 * does nothing.
406 *
407 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
408 * So caller must call unlock_full_stripe() at the same context.
409 *
410 * Return <0 if encounters error.
411 */
412static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
413 bool *locked_ret)
414{
32da5386 415 struct btrfs_block_group *bg_cache;
0966a7b1
QW
416 struct btrfs_full_stripe_locks_tree *locks_root;
417 struct full_stripe_lock *existing;
418 u64 fstripe_start;
419 int ret = 0;
420
421 *locked_ret = false;
422 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
423 if (!bg_cache) {
424 ASSERT(0);
425 return -ENOENT;
426 }
427
428 /* Profiles not based on parity don't need full stripe lock */
429 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
430 goto out;
431 locks_root = &bg_cache->full_stripe_locks_root;
432
433 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
434
435 /* Now insert the full stripe lock */
436 mutex_lock(&locks_root->lock);
437 existing = insert_full_stripe_lock(locks_root, fstripe_start);
438 mutex_unlock(&locks_root->lock);
439 if (IS_ERR(existing)) {
440 ret = PTR_ERR(existing);
441 goto out;
442 }
443 mutex_lock(&existing->mutex);
444 *locked_ret = true;
445out:
446 btrfs_put_block_group(bg_cache);
447 return ret;
448}
449
450/*
451 * Unlock a full stripe.
452 *
453 * NOTE: Caller must ensure it's the same context calling corresponding
454 * lock_full_stripe().
455 *
456 * Return 0 if we unlock full stripe without problem.
457 * Return <0 for error
458 */
459static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
460 bool locked)
461{
32da5386 462 struct btrfs_block_group *bg_cache;
0966a7b1
QW
463 struct btrfs_full_stripe_locks_tree *locks_root;
464 struct full_stripe_lock *fstripe_lock;
465 u64 fstripe_start;
466 bool freeit = false;
467 int ret = 0;
468
469 /* If we didn't acquire full stripe lock, no need to continue */
470 if (!locked)
471 return 0;
472
473 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
474 if (!bg_cache) {
475 ASSERT(0);
476 return -ENOENT;
477 }
478 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
479 goto out;
480
481 locks_root = &bg_cache->full_stripe_locks_root;
482 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
483
484 mutex_lock(&locks_root->lock);
485 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
486 /* Unpaired unlock_full_stripe() detected */
487 if (!fstripe_lock) {
488 WARN_ON(1);
489 ret = -ENOENT;
490 mutex_unlock(&locks_root->lock);
491 goto out;
492 }
493
494 if (fstripe_lock->refs == 0) {
495 WARN_ON(1);
496 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
497 fstripe_lock->logical);
498 } else {
499 fstripe_lock->refs--;
500 }
501
502 if (fstripe_lock->refs == 0) {
503 rb_erase(&fstripe_lock->node, &locks_root->root);
504 freeit = true;
505 }
506 mutex_unlock(&locks_root->lock);
507
508 mutex_unlock(&fstripe_lock->mutex);
509 if (freeit)
510 kfree(fstripe_lock);
511out:
512 btrfs_put_block_group(bg_cache);
513 return ret;
514}
515
d9d181c1 516static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 517{
d9d181c1 518 while (!list_empty(&sctx->csum_list)) {
a2de733c 519 struct btrfs_ordered_sum *sum;
d9d181c1 520 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
521 struct btrfs_ordered_sum, list);
522 list_del(&sum->list);
523 kfree(sum);
524 }
525}
526
d9d181c1 527static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
528{
529 int i;
a2de733c 530
d9d181c1 531 if (!sctx)
a2de733c
AJ
532 return;
533
b5d67f64 534 /* this can happen when scrub is cancelled */
d9d181c1
SB
535 if (sctx->curr != -1) {
536 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
537
538 for (i = 0; i < sbio->page_count; i++) {
ff023aac 539 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
540 scrub_block_put(sbio->pagev[i]->sblock);
541 }
542 bio_put(sbio->bio);
543 }
544
ff023aac 545 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 546 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
547
548 if (!sbio)
549 break;
a2de733c
AJ
550 kfree(sbio);
551 }
552
3fb99303 553 kfree(sctx->wr_curr_bio);
d9d181c1
SB
554 scrub_free_csums(sctx);
555 kfree(sctx);
a2de733c
AJ
556}
557
f55985f4
FM
558static void scrub_put_ctx(struct scrub_ctx *sctx)
559{
99f4cdb1 560 if (refcount_dec_and_test(&sctx->refs))
f55985f4
FM
561 scrub_free_ctx(sctx);
562}
563
92f7ba43
DS
564static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
565 struct btrfs_fs_info *fs_info, int is_dev_replace)
a2de733c 566{
d9d181c1 567 struct scrub_ctx *sctx;
a2de733c 568 int i;
a2de733c 569
58c4e173 570 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
d9d181c1 571 if (!sctx)
a2de733c 572 goto nomem;
99f4cdb1 573 refcount_set(&sctx->refs, 1);
63a212ab 574 sctx->is_dev_replace = is_dev_replace;
c9d328c0 575 sctx->pages_per_bio = SCRUB_PAGES_PER_BIO;
d9d181c1 576 sctx->curr = -1;
92f7ba43 577 sctx->fs_info = fs_info;
e49be14b 578 INIT_LIST_HEAD(&sctx->csum_list);
ff023aac 579 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
580 struct scrub_bio *sbio;
581
58c4e173 582 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
a2de733c
AJ
583 if (!sbio)
584 goto nomem;
d9d181c1 585 sctx->bios[i] = sbio;
a2de733c 586
a2de733c 587 sbio->index = i;
d9d181c1 588 sbio->sctx = sctx;
b5d67f64 589 sbio->page_count = 0;
a0cac0ec
OS
590 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
591 NULL);
a2de733c 592
ff023aac 593 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 594 sctx->bios[i]->next_free = i + 1;
0ef8e451 595 else
d9d181c1
SB
596 sctx->bios[i]->next_free = -1;
597 }
598 sctx->first_free = 0;
b6bfebc1
SB
599 atomic_set(&sctx->bios_in_flight, 0);
600 atomic_set(&sctx->workers_pending, 0);
d9d181c1 601 atomic_set(&sctx->cancel_req, 0);
d9d181c1
SB
602
603 spin_lock_init(&sctx->list_lock);
604 spin_lock_init(&sctx->stat_lock);
605 init_waitqueue_head(&sctx->list_wait);
eb3b5053 606 sctx->throttle_deadline = 0;
ff023aac 607
3fb99303
DS
608 WARN_ON(sctx->wr_curr_bio != NULL);
609 mutex_init(&sctx->wr_lock);
610 sctx->wr_curr_bio = NULL;
8fcdac3f 611 if (is_dev_replace) {
ded56184 612 WARN_ON(!fs_info->dev_replace.tgtdev);
ded56184 613 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
2073c4c2 614 sctx->flush_all_writes = false;
ff023aac 615 }
8fcdac3f 616
d9d181c1 617 return sctx;
a2de733c
AJ
618
619nomem:
d9d181c1 620 scrub_free_ctx(sctx);
a2de733c
AJ
621 return ERR_PTR(-ENOMEM);
622}
623
ff023aac
SB
624static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
625 void *warn_ctx)
558540c1 626{
558540c1
JS
627 u32 nlink;
628 int ret;
629 int i;
de2491fd 630 unsigned nofs_flag;
558540c1
JS
631 struct extent_buffer *eb;
632 struct btrfs_inode_item *inode_item;
ff023aac 633 struct scrub_warning *swarn = warn_ctx;
fb456252 634 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
558540c1
JS
635 struct inode_fs_paths *ipath = NULL;
636 struct btrfs_root *local_root;
1d4c08e0 637 struct btrfs_key key;
558540c1 638
56e9357a 639 local_root = btrfs_get_fs_root(fs_info, root, true);
558540c1
JS
640 if (IS_ERR(local_root)) {
641 ret = PTR_ERR(local_root);
642 goto err;
643 }
644
14692cc1
DS
645 /*
646 * this makes the path point to (inum INODE_ITEM ioff)
647 */
1d4c08e0
DS
648 key.objectid = inum;
649 key.type = BTRFS_INODE_ITEM_KEY;
650 key.offset = 0;
651
652 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1 653 if (ret) {
00246528 654 btrfs_put_root(local_root);
558540c1
JS
655 btrfs_release_path(swarn->path);
656 goto err;
657 }
658
659 eb = swarn->path->nodes[0];
660 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
661 struct btrfs_inode_item);
558540c1
JS
662 nlink = btrfs_inode_nlink(eb, inode_item);
663 btrfs_release_path(swarn->path);
664
de2491fd
DS
665 /*
666 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
667 * uses GFP_NOFS in this context, so we keep it consistent but it does
668 * not seem to be strictly necessary.
669 */
670 nofs_flag = memalloc_nofs_save();
558540c1 671 ipath = init_ipath(4096, local_root, swarn->path);
de2491fd 672 memalloc_nofs_restore(nofs_flag);
26bdef54 673 if (IS_ERR(ipath)) {
00246528 674 btrfs_put_root(local_root);
26bdef54
DC
675 ret = PTR_ERR(ipath);
676 ipath = NULL;
677 goto err;
678 }
558540c1
JS
679 ret = paths_from_inode(inum, ipath);
680
681 if (ret < 0)
682 goto err;
683
684 /*
685 * we deliberately ignore the bit ipath might have been too small to
686 * hold all of the paths here
687 */
688 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
5d163e0e 689 btrfs_warn_in_rcu(fs_info,
8df507cb 690"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
5d163e0e
JM
691 swarn->errstr, swarn->logical,
692 rcu_str_deref(swarn->dev->name),
6aa21263 693 swarn->physical,
5d163e0e 694 root, inum, offset,
8df507cb 695 fs_info->sectorsize, nlink,
5d163e0e 696 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1 697
00246528 698 btrfs_put_root(local_root);
558540c1
JS
699 free_ipath(ipath);
700 return 0;
701
702err:
5d163e0e 703 btrfs_warn_in_rcu(fs_info,
6aa21263 704 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
5d163e0e
JM
705 swarn->errstr, swarn->logical,
706 rcu_str_deref(swarn->dev->name),
6aa21263 707 swarn->physical,
5d163e0e 708 root, inum, offset, ret);
558540c1
JS
709
710 free_ipath(ipath);
711 return 0;
712}
713
b5d67f64 714static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 715{
a36cf8b8
SB
716 struct btrfs_device *dev;
717 struct btrfs_fs_info *fs_info;
558540c1
JS
718 struct btrfs_path *path;
719 struct btrfs_key found_key;
720 struct extent_buffer *eb;
721 struct btrfs_extent_item *ei;
722 struct scrub_warning swarn;
69917e43
LB
723 unsigned long ptr = 0;
724 u64 extent_item_pos;
725 u64 flags = 0;
558540c1 726 u64 ref_root;
69917e43 727 u32 item_size;
07c9a8e0 728 u8 ref_level = 0;
69917e43 729 int ret;
558540c1 730
a36cf8b8 731 WARN_ON(sblock->page_count < 1);
7a9e9987 732 dev = sblock->pagev[0]->dev;
fb456252 733 fs_info = sblock->sctx->fs_info;
a36cf8b8 734
558540c1 735 path = btrfs_alloc_path();
8b9456da
DS
736 if (!path)
737 return;
558540c1 738
6aa21263 739 swarn.physical = sblock->pagev[0]->physical;
7a9e9987 740 swarn.logical = sblock->pagev[0]->logical;
558540c1 741 swarn.errstr = errstr;
a36cf8b8 742 swarn.dev = NULL;
558540c1 743
69917e43
LB
744 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
745 &flags);
558540c1
JS
746 if (ret < 0)
747 goto out;
748
4692cf58 749 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
750 swarn.extent_item_size = found_key.offset;
751
752 eb = path->nodes[0];
753 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
3212fa14 754 item_size = btrfs_item_size(eb, path->slots[0]);
558540c1 755
69917e43 756 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 757 do {
6eda71d0
LB
758 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
759 item_size, &ref_root,
760 &ref_level);
ecaeb14b 761 btrfs_warn_in_rcu(fs_info,
6aa21263 762"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
5d163e0e 763 errstr, swarn.logical,
606686ee 764 rcu_str_deref(dev->name),
6aa21263 765 swarn.physical,
558540c1
JS
766 ref_level ? "node" : "leaf",
767 ret < 0 ? -1 : ref_level,
768 ret < 0 ? -1 : ref_root);
769 } while (ret != 1);
d8fe29e9 770 btrfs_release_path(path);
558540c1 771 } else {
d8fe29e9 772 btrfs_release_path(path);
558540c1 773 swarn.path = path;
a36cf8b8 774 swarn.dev = dev;
7a3ae2f8
JS
775 iterate_extent_inodes(fs_info, found_key.objectid,
776 extent_item_pos, 1,
c995ab3c 777 scrub_print_warning_inode, &swarn, false);
558540c1
JS
778 }
779
780out:
781 btrfs_free_path(path);
558540c1
JS
782}
783
af8e2d1d
MX
784static inline void scrub_get_recover(struct scrub_recover *recover)
785{
6f615018 786 refcount_inc(&recover->refs);
af8e2d1d
MX
787}
788
e501bfe3
QW
789static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
790 struct scrub_recover *recover)
af8e2d1d 791{
6f615018 792 if (refcount_dec_and_test(&recover->refs)) {
e501bfe3 793 btrfs_bio_counter_dec(fs_info);
4c664611 794 btrfs_put_bioc(recover->bioc);
af8e2d1d
MX
795 kfree(recover);
796 }
797}
798
a2de733c 799/*
b5d67f64
SB
800 * scrub_handle_errored_block gets called when either verification of the
801 * pages failed or the bio failed to read, e.g. with EIO. In the latter
802 * case, this function handles all pages in the bio, even though only one
803 * may be bad.
804 * The goal of this function is to repair the errored block by using the
805 * contents of one of the mirrors.
a2de733c 806 */
b5d67f64 807static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 808{
d9d181c1 809 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 810 struct btrfs_device *dev;
b5d67f64 811 struct btrfs_fs_info *fs_info;
b5d67f64 812 u64 logical;
b5d67f64
SB
813 unsigned int failed_mirror_index;
814 unsigned int is_metadata;
815 unsigned int have_csum;
b5d67f64
SB
816 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
817 struct scrub_block *sblock_bad;
818 int ret;
819 int mirror_index;
820 int page_num;
821 int success;
28d70e23 822 bool full_stripe_locked;
7c3c7cb9 823 unsigned int nofs_flag;
8bb1cf1b 824 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
825 DEFAULT_RATELIMIT_BURST);
826
827 BUG_ON(sblock_to_check->page_count < 1);
fb456252 828 fs_info = sctx->fs_info;
4ded4f63
SB
829 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
830 /*
831 * if we find an error in a super block, we just report it.
832 * They will get written with the next transaction commit
833 * anyway
834 */
835 spin_lock(&sctx->stat_lock);
836 ++sctx->stat.super_errors;
837 spin_unlock(&sctx->stat_lock);
838 return 0;
839 }
7a9e9987 840 logical = sblock_to_check->pagev[0]->logical;
7a9e9987
SB
841 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
842 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
843 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 844 BTRFS_EXTENT_FLAG_DATA);
7a9e9987 845 have_csum = sblock_to_check->pagev[0]->have_csum;
7a9e9987 846 dev = sblock_to_check->pagev[0]->dev;
13db62b7 847
554aed7d
JT
848 if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
849 return 0;
f7ef5287 850
7c3c7cb9
FM
851 /*
852 * We must use GFP_NOFS because the scrub task might be waiting for a
853 * worker task executing this function and in turn a transaction commit
854 * might be waiting the scrub task to pause (which needs to wait for all
855 * the worker tasks to complete before pausing).
856 * We do allocations in the workers through insert_full_stripe_lock()
857 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
858 * this function.
859 */
860 nofs_flag = memalloc_nofs_save();
28d70e23
QW
861 /*
862 * For RAID5/6, race can happen for a different device scrub thread.
863 * For data corruption, Parity and Data threads will both try
864 * to recovery the data.
865 * Race can lead to doubly added csum error, or even unrecoverable
866 * error.
867 */
868 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
869 if (ret < 0) {
7c3c7cb9 870 memalloc_nofs_restore(nofs_flag);
28d70e23
QW
871 spin_lock(&sctx->stat_lock);
872 if (ret == -ENOMEM)
873 sctx->stat.malloc_errors++;
874 sctx->stat.read_errors++;
875 sctx->stat.uncorrectable_errors++;
876 spin_unlock(&sctx->stat_lock);
877 return ret;
878 }
879
b5d67f64
SB
880 /*
881 * read all mirrors one after the other. This includes to
882 * re-read the extent or metadata block that failed (that was
883 * the cause that this fixup code is called) another time,
8df507cb 884 * sector by sector this time in order to know which sectors
b5d67f64
SB
885 * caused I/O errors and which ones are good (for all mirrors).
886 * It is the goal to handle the situation when more than one
887 * mirror contains I/O errors, but the errors do not
888 * overlap, i.e. the data can be repaired by selecting the
8df507cb
QW
889 * sectors from those mirrors without I/O error on the
890 * particular sectors. One example (with blocks >= 2 * sectorsize)
891 * would be that mirror #1 has an I/O error on the first sector,
892 * the second sector is good, and mirror #2 has an I/O error on
893 * the second sector, but the first sector is good.
894 * Then the first sector of the first mirror can be repaired by
895 * taking the first sector of the second mirror, and the
896 * second sector of the second mirror can be repaired by
897 * copying the contents of the 2nd sector of the 1st mirror.
898 * One more note: if the sectors of one mirror contain I/O
b5d67f64
SB
899 * errors, the checksum cannot be verified. In order to get
900 * the best data for repairing, the first attempt is to find
901 * a mirror without I/O errors and with a validated checksum.
8df507cb 902 * Only if this is not possible, the sectors are picked from
b5d67f64
SB
903 * mirrors with I/O errors without considering the checksum.
904 * If the latter is the case, at the end, the checksum of the
905 * repaired area is verified in order to correctly maintain
906 * the statistics.
907 */
908
31e818fe 909 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
7c3c7cb9 910 sizeof(*sblocks_for_recheck), GFP_KERNEL);
b5d67f64 911 if (!sblocks_for_recheck) {
d9d181c1
SB
912 spin_lock(&sctx->stat_lock);
913 sctx->stat.malloc_errors++;
914 sctx->stat.read_errors++;
915 sctx->stat.uncorrectable_errors++;
916 spin_unlock(&sctx->stat_lock);
a36cf8b8 917 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 918 goto out;
a2de733c
AJ
919 }
920
b5d67f64 921 /* setup the context, map the logical blocks and alloc the pages */
be50a8dd 922 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
b5d67f64 923 if (ret) {
d9d181c1
SB
924 spin_lock(&sctx->stat_lock);
925 sctx->stat.read_errors++;
926 sctx->stat.uncorrectable_errors++;
927 spin_unlock(&sctx->stat_lock);
a36cf8b8 928 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
929 goto out;
930 }
931 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
932 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 933
b5d67f64 934 /* build and submit the bios for the failed mirror, check checksums */
affe4a5a 935 scrub_recheck_block(fs_info, sblock_bad, 1);
a2de733c 936
b5d67f64
SB
937 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
938 sblock_bad->no_io_error_seen) {
939 /*
940 * the error disappeared after reading page by page, or
941 * the area was part of a huge bio and other parts of the
942 * bio caused I/O errors, or the block layer merged several
943 * read requests into one and the error is caused by a
944 * different bio (usually one of the two latter cases is
945 * the cause)
946 */
d9d181c1
SB
947 spin_lock(&sctx->stat_lock);
948 sctx->stat.unverified_errors++;
5a6ac9ea 949 sblock_to_check->data_corrected = 1;
d9d181c1 950 spin_unlock(&sctx->stat_lock);
a2de733c 951
ff023aac
SB
952 if (sctx->is_dev_replace)
953 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 954 goto out;
a2de733c 955 }
a2de733c 956
b5d67f64 957 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
958 spin_lock(&sctx->stat_lock);
959 sctx->stat.read_errors++;
960 spin_unlock(&sctx->stat_lock);
8bb1cf1b 961 if (__ratelimit(&rs))
b5d67f64 962 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 963 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 964 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
965 spin_lock(&sctx->stat_lock);
966 sctx->stat.csum_errors++;
967 spin_unlock(&sctx->stat_lock);
8bb1cf1b 968 if (__ratelimit(&rs))
b5d67f64 969 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 970 btrfs_dev_stat_inc_and_print(dev,
442a4f63 971 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 972 } else if (sblock_bad->header_error) {
d9d181c1
SB
973 spin_lock(&sctx->stat_lock);
974 sctx->stat.verify_errors++;
975 spin_unlock(&sctx->stat_lock);
8bb1cf1b 976 if (__ratelimit(&rs))
b5d67f64
SB
977 scrub_print_warning("checksum/header error",
978 sblock_to_check);
442a4f63 979 if (sblock_bad->generation_error)
a36cf8b8 980 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
981 BTRFS_DEV_STAT_GENERATION_ERRS);
982 else
a36cf8b8 983 btrfs_dev_stat_inc_and_print(dev,
442a4f63 984 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 985 }
a2de733c 986
33ef30ad
ID
987 if (sctx->readonly) {
988 ASSERT(!sctx->is_dev_replace);
989 goto out;
990 }
a2de733c 991
b5d67f64
SB
992 /*
993 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
994 * checksums.
995 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
996 * errors and also does not have a checksum error.
997 * If one is found, and if a checksum is present, the full block
998 * that is known to contain an error is rewritten. Afterwards
999 * the block is known to be corrected.
1000 * If a mirror is found which is completely correct, and no
1001 * checksum is present, only those pages are rewritten that had
1002 * an I/O error in the block to be repaired, since it cannot be
1003 * determined, which copy of the other pages is better (and it
1004 * could happen otherwise that a correct page would be
1005 * overwritten by a bad one).
1006 */
762221f0 1007 for (mirror_index = 0; ;mirror_index++) {
cb2ced73 1008 struct scrub_block *sblock_other;
b5d67f64 1009
cb2ced73
SB
1010 if (mirror_index == failed_mirror_index)
1011 continue;
762221f0
LB
1012
1013 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1014 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1015 if (mirror_index >= BTRFS_MAX_MIRRORS)
1016 break;
1017 if (!sblocks_for_recheck[mirror_index].page_count)
1018 break;
1019
1020 sblock_other = sblocks_for_recheck + mirror_index;
1021 } else {
1022 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
4c664611 1023 int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
762221f0
LB
1024
1025 if (mirror_index >= max_allowed)
1026 break;
1027 if (!sblocks_for_recheck[1].page_count)
1028 break;
1029
1030 ASSERT(failed_mirror_index == 0);
1031 sblock_other = sblocks_for_recheck + 1;
1032 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1033 }
cb2ced73
SB
1034
1035 /* build and submit the bios, check checksums */
affe4a5a 1036 scrub_recheck_block(fs_info, sblock_other, 0);
34f5c8e9
SB
1037
1038 if (!sblock_other->header_error &&
b5d67f64
SB
1039 !sblock_other->checksum_error &&
1040 sblock_other->no_io_error_seen) {
ff023aac
SB
1041 if (sctx->is_dev_replace) {
1042 scrub_write_block_to_dev_replace(sblock_other);
114ab50d 1043 goto corrected_error;
ff023aac 1044 } else {
ff023aac 1045 ret = scrub_repair_block_from_good_copy(
114ab50d
ZL
1046 sblock_bad, sblock_other);
1047 if (!ret)
1048 goto corrected_error;
ff023aac 1049 }
b5d67f64
SB
1050 }
1051 }
a2de733c 1052
b968fed1
ZL
1053 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1054 goto did_not_correct_error;
ff023aac
SB
1055
1056 /*
ff023aac 1057 * In case of I/O errors in the area that is supposed to be
8df507cb
QW
1058 * repaired, continue by picking good copies of those sectors.
1059 * Select the good sectors from mirrors to rewrite bad sectors from
b5d67f64
SB
1060 * the area to fix. Afterwards verify the checksum of the block
1061 * that is supposed to be repaired. This verification step is
1062 * only done for the purpose of statistic counting and for the
1063 * final scrub report, whether errors remain.
1064 * A perfect algorithm could make use of the checksum and try
8df507cb 1065 * all possible combinations of sectors from the different mirrors
b5d67f64 1066 * until the checksum verification succeeds. For example, when
8df507cb 1067 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
b5d67f64 1068 * of mirror #2 is readable but the final checksum test fails,
8df507cb 1069 * then the 2nd sector of mirror #3 could be tried, whether now
01327610 1070 * the final checksum succeeds. But this would be a rare
b5d67f64
SB
1071 * exception and is therefore not implemented. At least it is
1072 * avoided that the good copy is overwritten.
1073 * A more useful improvement would be to pick the sectors
1074 * without I/O error based on sector sizes (512 bytes on legacy
8df507cb 1075 * disks) instead of on sectorsize. Then maybe 512 byte of one
b5d67f64 1076 * mirror could be repaired by taking 512 byte of a different
8df507cb 1077 * mirror, even if other 512 byte sectors in the same sectorsize
b5d67f64 1078 * area are unreadable.
a2de733c 1079 */
b5d67f64 1080 success = 1;
b968fed1
ZL
1081 for (page_num = 0; page_num < sblock_bad->page_count;
1082 page_num++) {
261d2dcb 1083 struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
b968fed1 1084 struct scrub_block *sblock_other = NULL;
b5d67f64 1085
b968fed1 1086 /* skip no-io-error page in scrub */
261d2dcb 1087 if (!spage_bad->io_error && !sctx->is_dev_replace)
a2de733c 1088 continue;
b5d67f64 1089
4759700a
LB
1090 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1091 /*
1092 * In case of dev replace, if raid56 rebuild process
1093 * didn't work out correct data, then copy the content
1094 * in sblock_bad to make sure target device is identical
1095 * to source device, instead of writing garbage data in
1096 * sblock_for_recheck array to target device.
1097 */
1098 sblock_other = NULL;
261d2dcb 1099 } else if (spage_bad->io_error) {
4759700a 1100 /* try to find no-io-error page in mirrors */
b968fed1
ZL
1101 for (mirror_index = 0;
1102 mirror_index < BTRFS_MAX_MIRRORS &&
1103 sblocks_for_recheck[mirror_index].page_count > 0;
1104 mirror_index++) {
1105 if (!sblocks_for_recheck[mirror_index].
1106 pagev[page_num]->io_error) {
1107 sblock_other = sblocks_for_recheck +
1108 mirror_index;
1109 break;
b5d67f64
SB
1110 }
1111 }
b968fed1
ZL
1112 if (!sblock_other)
1113 success = 0;
96e36920 1114 }
a2de733c 1115
b968fed1
ZL
1116 if (sctx->is_dev_replace) {
1117 /*
1118 * did not find a mirror to fetch the page
1119 * from. scrub_write_page_to_dev_replace()
1120 * handles this case (page->io_error), by
1121 * filling the block with zeros before
1122 * submitting the write request
1123 */
1124 if (!sblock_other)
1125 sblock_other = sblock_bad;
1126
1127 if (scrub_write_page_to_dev_replace(sblock_other,
1128 page_num) != 0) {
e37abe97 1129 atomic64_inc(
0b246afa 1130 &fs_info->dev_replace.num_write_errors);
b968fed1
ZL
1131 success = 0;
1132 }
1133 } else if (sblock_other) {
1134 ret = scrub_repair_page_from_good_copy(sblock_bad,
1135 sblock_other,
1136 page_num, 0);
1137 if (0 == ret)
261d2dcb 1138 spage_bad->io_error = 0;
b968fed1
ZL
1139 else
1140 success = 0;
b5d67f64 1141 }
a2de733c 1142 }
a2de733c 1143
b968fed1 1144 if (success && !sctx->is_dev_replace) {
b5d67f64
SB
1145 if (is_metadata || have_csum) {
1146 /*
1147 * need to verify the checksum now that all
1148 * sectors on disk are repaired (the write
1149 * request for data to be repaired is on its way).
1150 * Just be lazy and use scrub_recheck_block()
1151 * which re-reads the data before the checksum
1152 * is verified, but most likely the data comes out
1153 * of the page cache.
1154 */
affe4a5a 1155 scrub_recheck_block(fs_info, sblock_bad, 1);
34f5c8e9 1156 if (!sblock_bad->header_error &&
b5d67f64
SB
1157 !sblock_bad->checksum_error &&
1158 sblock_bad->no_io_error_seen)
1159 goto corrected_error;
1160 else
1161 goto did_not_correct_error;
1162 } else {
1163corrected_error:
d9d181c1
SB
1164 spin_lock(&sctx->stat_lock);
1165 sctx->stat.corrected_errors++;
5a6ac9ea 1166 sblock_to_check->data_corrected = 1;
d9d181c1 1167 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1168 btrfs_err_rl_in_rcu(fs_info,
1169 "fixed up error at logical %llu on dev %s",
c1c9ff7c 1170 logical, rcu_str_deref(dev->name));
8628764e 1171 }
b5d67f64
SB
1172 } else {
1173did_not_correct_error:
d9d181c1
SB
1174 spin_lock(&sctx->stat_lock);
1175 sctx->stat.uncorrectable_errors++;
1176 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1177 btrfs_err_rl_in_rcu(fs_info,
1178 "unable to fixup (regular) error at logical %llu on dev %s",
c1c9ff7c 1179 logical, rcu_str_deref(dev->name));
96e36920 1180 }
a2de733c 1181
b5d67f64
SB
1182out:
1183 if (sblocks_for_recheck) {
1184 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1185 mirror_index++) {
1186 struct scrub_block *sblock = sblocks_for_recheck +
1187 mirror_index;
af8e2d1d 1188 struct scrub_recover *recover;
b5d67f64
SB
1189 int page_index;
1190
7a9e9987
SB
1191 for (page_index = 0; page_index < sblock->page_count;
1192 page_index++) {
1193 sblock->pagev[page_index]->sblock = NULL;
af8e2d1d
MX
1194 recover = sblock->pagev[page_index]->recover;
1195 if (recover) {
e501bfe3 1196 scrub_put_recover(fs_info, recover);
af8e2d1d
MX
1197 sblock->pagev[page_index]->recover =
1198 NULL;
1199 }
7a9e9987
SB
1200 scrub_page_put(sblock->pagev[page_index]);
1201 }
b5d67f64
SB
1202 }
1203 kfree(sblocks_for_recheck);
1204 }
a2de733c 1205
28d70e23 1206 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
7c3c7cb9 1207 memalloc_nofs_restore(nofs_flag);
28d70e23
QW
1208 if (ret < 0)
1209 return ret;
b5d67f64
SB
1210 return 0;
1211}
a2de733c 1212
4c664611 1213static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
af8e2d1d 1214{
4c664611 1215 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
10f11900 1216 return 2;
4c664611 1217 else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
10f11900
ZL
1218 return 3;
1219 else
4c664611 1220 return (int)bioc->num_stripes;
af8e2d1d
MX
1221}
1222
10f11900
ZL
1223static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1224 u64 *raid_map,
af8e2d1d
MX
1225 u64 mapped_length,
1226 int nstripes, int mirror,
1227 int *stripe_index,
1228 u64 *stripe_offset)
1229{
1230 int i;
1231
ffe2d203 1232 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
af8e2d1d
MX
1233 /* RAID5/6 */
1234 for (i = 0; i < nstripes; i++) {
1235 if (raid_map[i] == RAID6_Q_STRIPE ||
1236 raid_map[i] == RAID5_P_STRIPE)
1237 continue;
1238
1239 if (logical >= raid_map[i] &&
1240 logical < raid_map[i] + mapped_length)
1241 break;
1242 }
1243
1244 *stripe_index = i;
1245 *stripe_offset = logical - raid_map[i];
1246 } else {
1247 /* The other RAID type */
1248 *stripe_index = mirror;
1249 *stripe_offset = 0;
1250 }
1251}
1252
be50a8dd 1253static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
b5d67f64
SB
1254 struct scrub_block *sblocks_for_recheck)
1255{
be50a8dd 1256 struct scrub_ctx *sctx = original_sblock->sctx;
fb456252 1257 struct btrfs_fs_info *fs_info = sctx->fs_info;
8df507cb 1258 u64 length = original_sblock->page_count * fs_info->sectorsize;
be50a8dd 1259 u64 logical = original_sblock->pagev[0]->logical;
4734b7ed
ZL
1260 u64 generation = original_sblock->pagev[0]->generation;
1261 u64 flags = original_sblock->pagev[0]->flags;
1262 u64 have_csum = original_sblock->pagev[0]->have_csum;
af8e2d1d 1263 struct scrub_recover *recover;
4c664611 1264 struct btrfs_io_context *bioc;
af8e2d1d
MX
1265 u64 sublen;
1266 u64 mapped_length;
1267 u64 stripe_offset;
1268 int stripe_index;
be50a8dd 1269 int page_index = 0;
b5d67f64 1270 int mirror_index;
af8e2d1d 1271 int nmirrors;
b5d67f64
SB
1272 int ret;
1273
1274 /*
57019345 1275 * note: the two members refs and outstanding_pages
b5d67f64
SB
1276 * are not used (and not set) in the blocks that are used for
1277 * the recheck procedure
1278 */
1279
b5d67f64 1280 while (length > 0) {
8df507cb 1281 sublen = min_t(u64, length, fs_info->sectorsize);
af8e2d1d 1282 mapped_length = sublen;
4c664611 1283 bioc = NULL;
a2de733c 1284
b5d67f64 1285 /*
8df507cb
QW
1286 * With a length of sectorsize, each returned stripe represents
1287 * one mirror
b5d67f64 1288 */
e501bfe3 1289 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 1290 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
4c664611
QW
1291 logical, &mapped_length, &bioc);
1292 if (ret || !bioc || mapped_length < sublen) {
1293 btrfs_put_bioc(bioc);
e501bfe3 1294 btrfs_bio_counter_dec(fs_info);
b5d67f64
SB
1295 return -EIO;
1296 }
a2de733c 1297
af8e2d1d
MX
1298 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1299 if (!recover) {
4c664611 1300 btrfs_put_bioc(bioc);
e501bfe3 1301 btrfs_bio_counter_dec(fs_info);
af8e2d1d
MX
1302 return -ENOMEM;
1303 }
1304
6f615018 1305 refcount_set(&recover->refs, 1);
4c664611 1306 recover->bioc = bioc;
af8e2d1d
MX
1307 recover->map_length = mapped_length;
1308
0bb3acdc 1309 ASSERT(page_index < SCRUB_MAX_PAGES_PER_BLOCK);
af8e2d1d 1310
4c664611 1311 nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
10f11900 1312
af8e2d1d 1313 for (mirror_index = 0; mirror_index < nmirrors;
b5d67f64
SB
1314 mirror_index++) {
1315 struct scrub_block *sblock;
261d2dcb 1316 struct scrub_page *spage;
b5d67f64 1317
b5d67f64 1318 sblock = sblocks_for_recheck + mirror_index;
7a9e9987 1319 sblock->sctx = sctx;
4734b7ed 1320
261d2dcb
QW
1321 spage = kzalloc(sizeof(*spage), GFP_NOFS);
1322 if (!spage) {
7a9e9987 1323leave_nomem:
d9d181c1
SB
1324 spin_lock(&sctx->stat_lock);
1325 sctx->stat.malloc_errors++;
1326 spin_unlock(&sctx->stat_lock);
e501bfe3 1327 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1328 return -ENOMEM;
1329 }
261d2dcb
QW
1330 scrub_page_get(spage);
1331 sblock->pagev[page_index] = spage;
1332 spage->sblock = sblock;
1333 spage->flags = flags;
1334 spage->generation = generation;
1335 spage->logical = logical;
1336 spage->have_csum = have_csum;
4734b7ed 1337 if (have_csum)
261d2dcb 1338 memcpy(spage->csum,
4734b7ed 1339 original_sblock->pagev[0]->csum,
2ae0c2d8 1340 sctx->fs_info->csum_size);
af8e2d1d 1341
10f11900 1342 scrub_stripe_index_and_offset(logical,
4c664611
QW
1343 bioc->map_type,
1344 bioc->raid_map,
af8e2d1d 1345 mapped_length,
4c664611
QW
1346 bioc->num_stripes -
1347 bioc->num_tgtdevs,
af8e2d1d
MX
1348 mirror_index,
1349 &stripe_index,
1350 &stripe_offset);
4c664611 1351 spage->physical = bioc->stripes[stripe_index].physical +
af8e2d1d 1352 stripe_offset;
4c664611 1353 spage->dev = bioc->stripes[stripe_index].dev;
af8e2d1d 1354
ff023aac 1355 BUG_ON(page_index >= original_sblock->page_count);
261d2dcb 1356 spage->physical_for_dev_replace =
ff023aac
SB
1357 original_sblock->pagev[page_index]->
1358 physical_for_dev_replace;
7a9e9987 1359 /* for missing devices, dev->bdev is NULL */
261d2dcb 1360 spage->mirror_num = mirror_index + 1;
b5d67f64 1361 sblock->page_count++;
261d2dcb
QW
1362 spage->page = alloc_page(GFP_NOFS);
1363 if (!spage->page)
7a9e9987 1364 goto leave_nomem;
af8e2d1d
MX
1365
1366 scrub_get_recover(recover);
261d2dcb 1367 spage->recover = recover;
b5d67f64 1368 }
e501bfe3 1369 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1370 length -= sublen;
1371 logical += sublen;
1372 page_index++;
1373 }
1374
1375 return 0;
96e36920
ID
1376}
1377
4246a0b6 1378static void scrub_bio_wait_endio(struct bio *bio)
af8e2d1d 1379{
b4ff5ad7 1380 complete(bio->bi_private);
af8e2d1d
MX
1381}
1382
af8e2d1d
MX
1383static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1384 struct bio *bio,
261d2dcb 1385 struct scrub_page *spage)
af8e2d1d 1386{
b4ff5ad7 1387 DECLARE_COMPLETION_ONSTACK(done);
af8e2d1d 1388 int ret;
762221f0 1389 int mirror_num;
af8e2d1d 1390
261d2dcb 1391 bio->bi_iter.bi_sector = spage->logical >> 9;
af8e2d1d
MX
1392 bio->bi_private = &done;
1393 bio->bi_end_io = scrub_bio_wait_endio;
1394
261d2dcb 1395 mirror_num = spage->sblock->pagev[0]->mirror_num;
6a258d72 1396 ret = raid56_parity_recover(bio, spage->recover->bioc,
261d2dcb 1397 spage->recover->map_length,
762221f0 1398 mirror_num, 0);
af8e2d1d
MX
1399 if (ret)
1400 return ret;
1401
b4ff5ad7
LB
1402 wait_for_completion_io(&done);
1403 return blk_status_to_errno(bio->bi_status);
af8e2d1d
MX
1404}
1405
6ca1765b
LB
1406static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1407 struct scrub_block *sblock)
1408{
1409 struct scrub_page *first_page = sblock->pagev[0];
1410 struct bio *bio;
1411 int page_num;
1412
1413 /* All pages in sblock belong to the same stripe on the same device. */
1414 ASSERT(first_page->dev);
1415 if (!first_page->dev->bdev)
1416 goto out;
1417
c3a3b19b 1418 bio = btrfs_bio_alloc(BIO_MAX_VECS);
6ca1765b
LB
1419 bio_set_dev(bio, first_page->dev->bdev);
1420
1421 for (page_num = 0; page_num < sblock->page_count; page_num++) {
261d2dcb 1422 struct scrub_page *spage = sblock->pagev[page_num];
6ca1765b 1423
261d2dcb
QW
1424 WARN_ON(!spage->page);
1425 bio_add_page(bio, spage->page, PAGE_SIZE, 0);
6ca1765b
LB
1426 }
1427
1428 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1429 bio_put(bio);
1430 goto out;
1431 }
1432
1433 bio_put(bio);
1434
1435 scrub_recheck_block_checksum(sblock);
1436
1437 return;
1438out:
1439 for (page_num = 0; page_num < sblock->page_count; page_num++)
1440 sblock->pagev[page_num]->io_error = 1;
1441
1442 sblock->no_io_error_seen = 0;
1443}
1444
b5d67f64
SB
1445/*
1446 * this function will check the on disk data for checksum errors, header
1447 * errors and read I/O errors. If any I/O errors happen, the exact pages
1448 * which are errored are marked as being bad. The goal is to enable scrub
1449 * to take those pages that are not errored from all the mirrors so that
1450 * the pages that are errored in the just handled mirror can be repaired.
1451 */
34f5c8e9 1452static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
1453 struct scrub_block *sblock,
1454 int retry_failed_mirror)
96e36920 1455{
b5d67f64 1456 int page_num;
96e36920 1457
b5d67f64 1458 sblock->no_io_error_seen = 1;
96e36920 1459
6ca1765b
LB
1460 /* short cut for raid56 */
1461 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1462 return scrub_recheck_block_on_raid56(fs_info, sblock);
1463
b5d67f64
SB
1464 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1465 struct bio *bio;
261d2dcb 1466 struct scrub_page *spage = sblock->pagev[page_num];
b5d67f64 1467
261d2dcb
QW
1468 if (spage->dev->bdev == NULL) {
1469 spage->io_error = 1;
ea9947b4
SB
1470 sblock->no_io_error_seen = 0;
1471 continue;
1472 }
1473
261d2dcb 1474 WARN_ON(!spage->page);
c3a3b19b 1475 bio = btrfs_bio_alloc(1);
261d2dcb 1476 bio_set_dev(bio, spage->dev->bdev);
b5d67f64 1477
8df507cb 1478 bio_add_page(bio, spage->page, fs_info->sectorsize, 0);
261d2dcb 1479 bio->bi_iter.bi_sector = spage->physical >> 9;
6ca1765b 1480 bio->bi_opf = REQ_OP_READ;
af8e2d1d 1481
6ca1765b 1482 if (btrfsic_submit_bio_wait(bio)) {
261d2dcb 1483 spage->io_error = 1;
6ca1765b 1484 sblock->no_io_error_seen = 0;
af8e2d1d 1485 }
33879d45 1486
b5d67f64
SB
1487 bio_put(bio);
1488 }
96e36920 1489
b5d67f64 1490 if (sblock->no_io_error_seen)
ba7cf988 1491 scrub_recheck_block_checksum(sblock);
a2de733c
AJ
1492}
1493
17a9be2f
MX
1494static inline int scrub_check_fsid(u8 fsid[],
1495 struct scrub_page *spage)
1496{
1497 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1498 int ret;
1499
44880fdc 1500 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
17a9be2f
MX
1501 return !ret;
1502}
1503
ba7cf988 1504static void scrub_recheck_block_checksum(struct scrub_block *sblock)
a2de733c 1505{
ba7cf988
ZL
1506 sblock->header_error = 0;
1507 sblock->checksum_error = 0;
1508 sblock->generation_error = 0;
b5d67f64 1509
ba7cf988
ZL
1510 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1511 scrub_checksum_data(sblock);
1512 else
1513 scrub_checksum_tree_block(sblock);
a2de733c
AJ
1514}
1515
b5d67f64 1516static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 1517 struct scrub_block *sblock_good)
b5d67f64
SB
1518{
1519 int page_num;
1520 int ret = 0;
96e36920 1521
b5d67f64
SB
1522 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1523 int ret_sub;
96e36920 1524
b5d67f64
SB
1525 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1526 sblock_good,
114ab50d 1527 page_num, 1);
b5d67f64
SB
1528 if (ret_sub)
1529 ret = ret_sub;
a2de733c 1530 }
b5d67f64
SB
1531
1532 return ret;
1533}
1534
1535static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1536 struct scrub_block *sblock_good,
1537 int page_num, int force_write)
1538{
261d2dcb
QW
1539 struct scrub_page *spage_bad = sblock_bad->pagev[page_num];
1540 struct scrub_page *spage_good = sblock_good->pagev[page_num];
0b246afa 1541 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
8df507cb 1542 const u32 sectorsize = fs_info->sectorsize;
b5d67f64 1543
261d2dcb
QW
1544 BUG_ON(spage_bad->page == NULL);
1545 BUG_ON(spage_good->page == NULL);
b5d67f64 1546 if (force_write || sblock_bad->header_error ||
261d2dcb 1547 sblock_bad->checksum_error || spage_bad->io_error) {
b5d67f64
SB
1548 struct bio *bio;
1549 int ret;
b5d67f64 1550
261d2dcb 1551 if (!spage_bad->dev->bdev) {
0b246afa 1552 btrfs_warn_rl(fs_info,
5d163e0e 1553 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
ff023aac
SB
1554 return -EIO;
1555 }
1556
c3a3b19b 1557 bio = btrfs_bio_alloc(1);
261d2dcb
QW
1558 bio_set_dev(bio, spage_bad->dev->bdev);
1559 bio->bi_iter.bi_sector = spage_bad->physical >> 9;
ebcc3263 1560 bio->bi_opf = REQ_OP_WRITE;
b5d67f64 1561
8df507cb
QW
1562 ret = bio_add_page(bio, spage_good->page, sectorsize, 0);
1563 if (ret != sectorsize) {
b5d67f64
SB
1564 bio_put(bio);
1565 return -EIO;
13db62b7 1566 }
b5d67f64 1567
4e49ea4a 1568 if (btrfsic_submit_bio_wait(bio)) {
261d2dcb 1569 btrfs_dev_stat_inc_and_print(spage_bad->dev,
442a4f63 1570 BTRFS_DEV_STAT_WRITE_ERRS);
e37abe97 1571 atomic64_inc(&fs_info->dev_replace.num_write_errors);
442a4f63
SB
1572 bio_put(bio);
1573 return -EIO;
1574 }
b5d67f64 1575 bio_put(bio);
a2de733c
AJ
1576 }
1577
b5d67f64
SB
1578 return 0;
1579}
1580
ff023aac
SB
1581static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1582{
0b246afa 1583 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
ff023aac
SB
1584 int page_num;
1585
5a6ac9ea
MX
1586 /*
1587 * This block is used for the check of the parity on the source device,
1588 * so the data needn't be written into the destination device.
1589 */
1590 if (sblock->sparity)
1591 return;
1592
ff023aac
SB
1593 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1594 int ret;
1595
1596 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1597 if (ret)
e37abe97 1598 atomic64_inc(&fs_info->dev_replace.num_write_errors);
ff023aac
SB
1599 }
1600}
1601
1602static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1603 int page_num)
1604{
1605 struct scrub_page *spage = sblock->pagev[page_num];
1606
1607 BUG_ON(spage->page == NULL);
a8b3a890
DS
1608 if (spage->io_error)
1609 clear_page(page_address(spage->page));
ff023aac 1610
ff023aac
SB
1611 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1612}
1613
de17addc
NA
1614static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1615{
1616 int ret = 0;
1617 u64 length;
1618
1619 if (!btrfs_is_zoned(sctx->fs_info))
1620 return 0;
1621
7db1c5d1
NA
1622 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1623 return 0;
1624
de17addc
NA
1625 if (sctx->write_pointer < physical) {
1626 length = physical - sctx->write_pointer;
1627
1628 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1629 sctx->write_pointer, length);
1630 if (!ret)
1631 sctx->write_pointer = physical;
1632 }
1633 return ret;
1634}
1635
ff023aac
SB
1636static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1637 struct scrub_page *spage)
1638{
ff023aac
SB
1639 struct scrub_bio *sbio;
1640 int ret;
8df507cb 1641 const u32 sectorsize = sctx->fs_info->sectorsize;
ff023aac 1642
3fb99303 1643 mutex_lock(&sctx->wr_lock);
ff023aac 1644again:
3fb99303
DS
1645 if (!sctx->wr_curr_bio) {
1646 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
58c4e173 1647 GFP_KERNEL);
3fb99303
DS
1648 if (!sctx->wr_curr_bio) {
1649 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1650 return -ENOMEM;
1651 }
3fb99303
DS
1652 sctx->wr_curr_bio->sctx = sctx;
1653 sctx->wr_curr_bio->page_count = 0;
ff023aac 1654 }
3fb99303 1655 sbio = sctx->wr_curr_bio;
ff023aac
SB
1656 if (sbio->page_count == 0) {
1657 struct bio *bio;
1658
de17addc
NA
1659 ret = fill_writer_pointer_gap(sctx,
1660 spage->physical_for_dev_replace);
1661 if (ret) {
1662 mutex_unlock(&sctx->wr_lock);
1663 return ret;
1664 }
1665
ff023aac
SB
1666 sbio->physical = spage->physical_for_dev_replace;
1667 sbio->logical = spage->logical;
3fb99303 1668 sbio->dev = sctx->wr_tgtdev;
ff023aac
SB
1669 bio = sbio->bio;
1670 if (!bio) {
c9d328c0 1671 bio = btrfs_bio_alloc(sctx->pages_per_bio);
ff023aac
SB
1672 sbio->bio = bio;
1673 }
1674
1675 bio->bi_private = sbio;
1676 bio->bi_end_io = scrub_wr_bio_end_io;
74d46992 1677 bio_set_dev(bio, sbio->dev->bdev);
4f024f37 1678 bio->bi_iter.bi_sector = sbio->physical >> 9;
ebcc3263 1679 bio->bi_opf = REQ_OP_WRITE;
4e4cbee9 1680 sbio->status = 0;
8df507cb 1681 } else if (sbio->physical + sbio->page_count * sectorsize !=
ff023aac 1682 spage->physical_for_dev_replace ||
8df507cb 1683 sbio->logical + sbio->page_count * sectorsize !=
ff023aac
SB
1684 spage->logical) {
1685 scrub_wr_submit(sctx);
1686 goto again;
1687 }
1688
8df507cb
QW
1689 ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
1690 if (ret != sectorsize) {
ff023aac
SB
1691 if (sbio->page_count < 1) {
1692 bio_put(sbio->bio);
1693 sbio->bio = NULL;
3fb99303 1694 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1695 return -EIO;
1696 }
1697 scrub_wr_submit(sctx);
1698 goto again;
1699 }
1700
1701 sbio->pagev[sbio->page_count] = spage;
1702 scrub_page_get(spage);
1703 sbio->page_count++;
c9d328c0 1704 if (sbio->page_count == sctx->pages_per_bio)
ff023aac 1705 scrub_wr_submit(sctx);
3fb99303 1706 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1707
1708 return 0;
1709}
1710
1711static void scrub_wr_submit(struct scrub_ctx *sctx)
1712{
ff023aac
SB
1713 struct scrub_bio *sbio;
1714
3fb99303 1715 if (!sctx->wr_curr_bio)
ff023aac
SB
1716 return;
1717
3fb99303
DS
1718 sbio = sctx->wr_curr_bio;
1719 sctx->wr_curr_bio = NULL;
309dca30 1720 WARN_ON(!sbio->bio->bi_bdev);
ff023aac
SB
1721 scrub_pending_bio_inc(sctx);
1722 /* process all writes in a single worker thread. Then the block layer
1723 * orders the requests before sending them to the driver which
1724 * doubled the write performance on spinning disks when measured
1725 * with Linux 3.5 */
4e49ea4a 1726 btrfsic_submit_bio(sbio->bio);
de17addc
NA
1727
1728 if (btrfs_is_zoned(sctx->fs_info))
8df507cb
QW
1729 sctx->write_pointer = sbio->physical + sbio->page_count *
1730 sctx->fs_info->sectorsize;
ff023aac
SB
1731}
1732
4246a0b6 1733static void scrub_wr_bio_end_io(struct bio *bio)
ff023aac
SB
1734{
1735 struct scrub_bio *sbio = bio->bi_private;
fb456252 1736 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
ff023aac 1737
4e4cbee9 1738 sbio->status = bio->bi_status;
ff023aac
SB
1739 sbio->bio = bio;
1740
a0cac0ec 1741 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1742 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1743}
1744
1745static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1746{
1747 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1748 struct scrub_ctx *sctx = sbio->sctx;
1749 int i;
1750
c9d328c0 1751 ASSERT(sbio->page_count <= SCRUB_PAGES_PER_BIO);
4e4cbee9 1752 if (sbio->status) {
ff023aac 1753 struct btrfs_dev_replace *dev_replace =
fb456252 1754 &sbio->sctx->fs_info->dev_replace;
ff023aac
SB
1755
1756 for (i = 0; i < sbio->page_count; i++) {
1757 struct scrub_page *spage = sbio->pagev[i];
1758
1759 spage->io_error = 1;
e37abe97 1760 atomic64_inc(&dev_replace->num_write_errors);
ff023aac
SB
1761 }
1762 }
1763
1764 for (i = 0; i < sbio->page_count; i++)
1765 scrub_page_put(sbio->pagev[i]);
1766
1767 bio_put(sbio->bio);
1768 kfree(sbio);
1769 scrub_pending_bio_dec(sctx);
1770}
1771
1772static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1773{
1774 u64 flags;
1775 int ret;
1776
ba7cf988
ZL
1777 /*
1778 * No need to initialize these stats currently,
1779 * because this function only use return value
1780 * instead of these stats value.
1781 *
1782 * Todo:
1783 * always use stats
1784 */
1785 sblock->header_error = 0;
1786 sblock->generation_error = 0;
1787 sblock->checksum_error = 0;
1788
7a9e9987
SB
1789 WARN_ON(sblock->page_count < 1);
1790 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1791 ret = 0;
1792 if (flags & BTRFS_EXTENT_FLAG_DATA)
1793 ret = scrub_checksum_data(sblock);
1794 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1795 ret = scrub_checksum_tree_block(sblock);
1796 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1797 (void)scrub_checksum_super(sblock);
1798 else
1799 WARN_ON(1);
1800 if (ret)
1801 scrub_handle_errored_block(sblock);
ff023aac
SB
1802
1803 return ret;
a2de733c
AJ
1804}
1805
b5d67f64 1806static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1807{
d9d181c1 1808 struct scrub_ctx *sctx = sblock->sctx;
d5178578
JT
1809 struct btrfs_fs_info *fs_info = sctx->fs_info;
1810 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a2de733c 1811 u8 csum[BTRFS_CSUM_SIZE];
d41ebef2 1812 struct scrub_page *spage;
b0485252 1813 char *kaddr;
a2de733c 1814
b5d67f64 1815 BUG_ON(sblock->page_count < 1);
d41ebef2
DS
1816 spage = sblock->pagev[0];
1817 if (!spage->have_csum)
a2de733c
AJ
1818 return 0;
1819
d41ebef2 1820 kaddr = page_address(spage->page);
b5d67f64 1821
771aba0d
DS
1822 shash->tfm = fs_info->csum_shash;
1823 crypto_shash_init(shash);
b5d67f64 1824
b29dca44
QW
1825 /*
1826 * In scrub_pages() and scrub_pages_for_parity() we ensure each spage
1827 * only contains one sector of data.
1828 */
1829 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
a2de733c 1830
b29dca44
QW
1831 if (memcmp(csum, spage->csum, fs_info->csum_size))
1832 sblock->checksum_error = 1;
ba7cf988 1833 return sblock->checksum_error;
a2de733c
AJ
1834}
1835
b5d67f64 1836static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1837{
d9d181c1 1838 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1839 struct btrfs_header *h;
0b246afa 1840 struct btrfs_fs_info *fs_info = sctx->fs_info;
d5178578 1841 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
b5d67f64
SB
1842 u8 calculated_csum[BTRFS_CSUM_SIZE];
1843 u8 on_disk_csum[BTRFS_CSUM_SIZE];
53f3251d
QW
1844 /*
1845 * This is done in sectorsize steps even for metadata as there's a
1846 * constraint for nodesize to be aligned to sectorsize. This will need
1847 * to change so we don't misuse data and metadata units like that.
1848 */
1849 const u32 sectorsize = sctx->fs_info->sectorsize;
1850 const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
521e1022 1851 int i;
100aa5d9 1852 struct scrub_page *spage;
b0485252 1853 char *kaddr;
d5178578 1854
b5d67f64 1855 BUG_ON(sblock->page_count < 1);
53f3251d
QW
1856
1857 /* Each member in pagev is just one block, not a full page */
1858 ASSERT(sblock->page_count == num_sectors);
1859
100aa5d9
DS
1860 spage = sblock->pagev[0];
1861 kaddr = page_address(spage->page);
b0485252 1862 h = (struct btrfs_header *)kaddr;
2ae0c2d8 1863 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
a2de733c
AJ
1864
1865 /*
1866 * we don't use the getter functions here, as we
1867 * a) don't have an extent buffer and
1868 * b) the page is already kmapped
1869 */
100aa5d9 1870 if (spage->logical != btrfs_stack_header_bytenr(h))
ba7cf988 1871 sblock->header_error = 1;
a2de733c 1872
100aa5d9 1873 if (spage->generation != btrfs_stack_header_generation(h)) {
ba7cf988
ZL
1874 sblock->header_error = 1;
1875 sblock->generation_error = 1;
1876 }
a2de733c 1877
100aa5d9 1878 if (!scrub_check_fsid(h->fsid, spage))
ba7cf988 1879 sblock->header_error = 1;
a2de733c
AJ
1880
1881 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1882 BTRFS_UUID_SIZE))
ba7cf988 1883 sblock->header_error = 1;
a2de733c 1884
521e1022
DS
1885 shash->tfm = fs_info->csum_shash;
1886 crypto_shash_init(shash);
1887 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
53f3251d 1888 sectorsize - BTRFS_CSUM_SIZE);
b5d67f64 1889
53f3251d 1890 for (i = 1; i < num_sectors; i++) {
521e1022 1891 kaddr = page_address(sblock->pagev[i]->page);
53f3251d 1892 crypto_shash_update(shash, kaddr, sectorsize);
b5d67f64
SB
1893 }
1894
d5178578 1895 crypto_shash_final(shash, calculated_csum);
2ae0c2d8 1896 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
ba7cf988 1897 sblock->checksum_error = 1;
a2de733c 1898
ba7cf988 1899 return sblock->header_error || sblock->checksum_error;
a2de733c
AJ
1900}
1901
b5d67f64 1902static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1903{
1904 struct btrfs_super_block *s;
d9d181c1 1905 struct scrub_ctx *sctx = sblock->sctx;
d5178578
JT
1906 struct btrfs_fs_info *fs_info = sctx->fs_info;
1907 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
b5d67f64 1908 u8 calculated_csum[BTRFS_CSUM_SIZE];
c7460541 1909 struct scrub_page *spage;
b0485252 1910 char *kaddr;
442a4f63
SB
1911 int fail_gen = 0;
1912 int fail_cor = 0;
d5178578 1913
b5d67f64 1914 BUG_ON(sblock->page_count < 1);
c7460541
DS
1915 spage = sblock->pagev[0];
1916 kaddr = page_address(spage->page);
b0485252 1917 s = (struct btrfs_super_block *)kaddr;
a2de733c 1918
c7460541 1919 if (spage->logical != btrfs_super_bytenr(s))
442a4f63 1920 ++fail_cor;
a2de733c 1921
c7460541 1922 if (spage->generation != btrfs_super_generation(s))
442a4f63 1923 ++fail_gen;
a2de733c 1924
c7460541 1925 if (!scrub_check_fsid(s->fsid, spage))
442a4f63 1926 ++fail_cor;
a2de733c 1927
83cf6d5e
DS
1928 shash->tfm = fs_info->csum_shash;
1929 crypto_shash_init(shash);
1930 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
1931 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
b5d67f64 1932
2ae0c2d8 1933 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
442a4f63 1934 ++fail_cor;
a2de733c 1935
442a4f63 1936 if (fail_cor + fail_gen) {
a2de733c
AJ
1937 /*
1938 * if we find an error in a super block, we just report it.
1939 * They will get written with the next transaction commit
1940 * anyway
1941 */
d9d181c1
SB
1942 spin_lock(&sctx->stat_lock);
1943 ++sctx->stat.super_errors;
1944 spin_unlock(&sctx->stat_lock);
442a4f63 1945 if (fail_cor)
c7460541 1946 btrfs_dev_stat_inc_and_print(spage->dev,
442a4f63
SB
1947 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1948 else
c7460541 1949 btrfs_dev_stat_inc_and_print(spage->dev,
442a4f63 1950 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1951 }
1952
442a4f63 1953 return fail_cor + fail_gen;
a2de733c
AJ
1954}
1955
b5d67f64
SB
1956static void scrub_block_get(struct scrub_block *sblock)
1957{
186debd6 1958 refcount_inc(&sblock->refs);
b5d67f64
SB
1959}
1960
1961static void scrub_block_put(struct scrub_block *sblock)
1962{
186debd6 1963 if (refcount_dec_and_test(&sblock->refs)) {
b5d67f64
SB
1964 int i;
1965
5a6ac9ea
MX
1966 if (sblock->sparity)
1967 scrub_parity_put(sblock->sparity);
1968
b5d67f64 1969 for (i = 0; i < sblock->page_count; i++)
7a9e9987 1970 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
1971 kfree(sblock);
1972 }
1973}
1974
7a9e9987
SB
1975static void scrub_page_get(struct scrub_page *spage)
1976{
57019345 1977 atomic_inc(&spage->refs);
7a9e9987
SB
1978}
1979
1980static void scrub_page_put(struct scrub_page *spage)
1981{
57019345 1982 if (atomic_dec_and_test(&spage->refs)) {
7a9e9987
SB
1983 if (spage->page)
1984 __free_page(spage->page);
1985 kfree(spage);
1986 }
1987}
1988
eb3b5053
DS
1989/*
1990 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1991 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1992 */
1993static void scrub_throttle(struct scrub_ctx *sctx)
1994{
1995 const int time_slice = 1000;
1996 struct scrub_bio *sbio;
1997 struct btrfs_device *device;
1998 s64 delta;
1999 ktime_t now;
2000 u32 div;
2001 u64 bwlimit;
2002
2003 sbio = sctx->bios[sctx->curr];
2004 device = sbio->dev;
2005 bwlimit = READ_ONCE(device->scrub_speed_max);
2006 if (bwlimit == 0)
2007 return;
2008
2009 /*
2010 * Slice is divided into intervals when the IO is submitted, adjust by
2011 * bwlimit and maximum of 64 intervals.
2012 */
2013 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2014 div = min_t(u32, 64, div);
2015
2016 /* Start new epoch, set deadline */
2017 now = ktime_get();
2018 if (sctx->throttle_deadline == 0) {
2019 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2020 sctx->throttle_sent = 0;
2021 }
2022
2023 /* Still in the time to send? */
2024 if (ktime_before(now, sctx->throttle_deadline)) {
2025 /* If current bio is within the limit, send it */
2026 sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2027 if (sctx->throttle_sent <= div_u64(bwlimit, div))
2028 return;
2029
2030 /* We're over the limit, sleep until the rest of the slice */
2031 delta = ktime_ms_delta(sctx->throttle_deadline, now);
2032 } else {
2033 /* New request after deadline, start new epoch */
2034 delta = 0;
2035 }
2036
2037 if (delta) {
2038 long timeout;
2039
2040 timeout = div_u64(delta * HZ, 1000);
2041 schedule_timeout_interruptible(timeout);
2042 }
2043
2044 /* Next call will start the deadline period */
2045 sctx->throttle_deadline = 0;
2046}
2047
d9d181c1 2048static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
2049{
2050 struct scrub_bio *sbio;
2051
d9d181c1 2052 if (sctx->curr == -1)
1623edeb 2053 return;
a2de733c 2054
eb3b5053
DS
2055 scrub_throttle(sctx);
2056
d9d181c1
SB
2057 sbio = sctx->bios[sctx->curr];
2058 sctx->curr = -1;
b6bfebc1 2059 scrub_pending_bio_inc(sctx);
4e49ea4a 2060 btrfsic_submit_bio(sbio->bio);
a2de733c
AJ
2061}
2062
ff023aac
SB
2063static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2064 struct scrub_page *spage)
a2de733c 2065{
b5d67f64 2066 struct scrub_block *sblock = spage->sblock;
a2de733c 2067 struct scrub_bio *sbio;
8df507cb 2068 const u32 sectorsize = sctx->fs_info->sectorsize;
69f4cb52 2069 int ret;
a2de733c
AJ
2070
2071again:
2072 /*
2073 * grab a fresh bio or wait for one to become available
2074 */
d9d181c1
SB
2075 while (sctx->curr == -1) {
2076 spin_lock(&sctx->list_lock);
2077 sctx->curr = sctx->first_free;
2078 if (sctx->curr != -1) {
2079 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2080 sctx->bios[sctx->curr]->next_free = -1;
2081 sctx->bios[sctx->curr]->page_count = 0;
2082 spin_unlock(&sctx->list_lock);
a2de733c 2083 } else {
d9d181c1
SB
2084 spin_unlock(&sctx->list_lock);
2085 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
2086 }
2087 }
d9d181c1 2088 sbio = sctx->bios[sctx->curr];
b5d67f64 2089 if (sbio->page_count == 0) {
69f4cb52
AJ
2090 struct bio *bio;
2091
b5d67f64
SB
2092 sbio->physical = spage->physical;
2093 sbio->logical = spage->logical;
a36cf8b8 2094 sbio->dev = spage->dev;
b5d67f64
SB
2095 bio = sbio->bio;
2096 if (!bio) {
c9d328c0 2097 bio = btrfs_bio_alloc(sctx->pages_per_bio);
b5d67f64
SB
2098 sbio->bio = bio;
2099 }
69f4cb52
AJ
2100
2101 bio->bi_private = sbio;
2102 bio->bi_end_io = scrub_bio_end_io;
74d46992 2103 bio_set_dev(bio, sbio->dev->bdev);
4f024f37 2104 bio->bi_iter.bi_sector = sbio->physical >> 9;
ebcc3263 2105 bio->bi_opf = REQ_OP_READ;
4e4cbee9 2106 sbio->status = 0;
8df507cb 2107 } else if (sbio->physical + sbio->page_count * sectorsize !=
b5d67f64 2108 spage->physical ||
8df507cb 2109 sbio->logical + sbio->page_count * sectorsize !=
a36cf8b8
SB
2110 spage->logical ||
2111 sbio->dev != spage->dev) {
d9d181c1 2112 scrub_submit(sctx);
a2de733c
AJ
2113 goto again;
2114 }
69f4cb52 2115
b5d67f64 2116 sbio->pagev[sbio->page_count] = spage;
8df507cb
QW
2117 ret = bio_add_page(sbio->bio, spage->page, sectorsize, 0);
2118 if (ret != sectorsize) {
b5d67f64
SB
2119 if (sbio->page_count < 1) {
2120 bio_put(sbio->bio);
2121 sbio->bio = NULL;
2122 return -EIO;
2123 }
d9d181c1 2124 scrub_submit(sctx);
69f4cb52
AJ
2125 goto again;
2126 }
2127
ff023aac 2128 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
2129 atomic_inc(&sblock->outstanding_pages);
2130 sbio->page_count++;
c9d328c0 2131 if (sbio->page_count == sctx->pages_per_bio)
d9d181c1 2132 scrub_submit(sctx);
b5d67f64
SB
2133
2134 return 0;
2135}
2136
22365979 2137static void scrub_missing_raid56_end_io(struct bio *bio)
73ff61db
OS
2138{
2139 struct scrub_block *sblock = bio->bi_private;
fb456252 2140 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
73ff61db 2141
4e4cbee9 2142 if (bio->bi_status)
73ff61db
OS
2143 sblock->no_io_error_seen = 0;
2144
4673272f
ST
2145 bio_put(bio);
2146
73ff61db
OS
2147 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2148}
2149
2150static void scrub_missing_raid56_worker(struct btrfs_work *work)
2151{
2152 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2153 struct scrub_ctx *sctx = sblock->sctx;
0b246afa 2154 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2155 u64 logical;
2156 struct btrfs_device *dev;
2157
73ff61db
OS
2158 logical = sblock->pagev[0]->logical;
2159 dev = sblock->pagev[0]->dev;
2160
affe4a5a 2161 if (sblock->no_io_error_seen)
ba7cf988 2162 scrub_recheck_block_checksum(sblock);
73ff61db
OS
2163
2164 if (!sblock->no_io_error_seen) {
2165 spin_lock(&sctx->stat_lock);
2166 sctx->stat.read_errors++;
2167 spin_unlock(&sctx->stat_lock);
0b246afa 2168 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2169 "IO error rebuilding logical %llu for dev %s",
73ff61db
OS
2170 logical, rcu_str_deref(dev->name));
2171 } else if (sblock->header_error || sblock->checksum_error) {
2172 spin_lock(&sctx->stat_lock);
2173 sctx->stat.uncorrectable_errors++;
2174 spin_unlock(&sctx->stat_lock);
0b246afa 2175 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2176 "failed to rebuild valid logical %llu for dev %s",
73ff61db
OS
2177 logical, rcu_str_deref(dev->name));
2178 } else {
2179 scrub_write_block_to_dev_replace(sblock);
2180 }
2181
2073c4c2 2182 if (sctx->is_dev_replace && sctx->flush_all_writes) {
3fb99303 2183 mutex_lock(&sctx->wr_lock);
73ff61db 2184 scrub_wr_submit(sctx);
3fb99303 2185 mutex_unlock(&sctx->wr_lock);
73ff61db
OS
2186 }
2187
57d4f0b8 2188 scrub_block_put(sblock);
73ff61db
OS
2189 scrub_pending_bio_dec(sctx);
2190}
2191
2192static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2193{
2194 struct scrub_ctx *sctx = sblock->sctx;
fb456252 2195 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2196 u64 length = sblock->page_count * PAGE_SIZE;
2197 u64 logical = sblock->pagev[0]->logical;
4c664611 2198 struct btrfs_io_context *bioc = NULL;
73ff61db
OS
2199 struct bio *bio;
2200 struct btrfs_raid_bio *rbio;
2201 int ret;
2202 int i;
2203
ae6529c3 2204 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 2205 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
4c664611
QW
2206 &length, &bioc);
2207 if (ret || !bioc || !bioc->raid_map)
2208 goto bioc_out;
73ff61db
OS
2209
2210 if (WARN_ON(!sctx->is_dev_replace ||
4c664611 2211 !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
73ff61db
OS
2212 /*
2213 * We shouldn't be scrubbing a missing device. Even for dev
2214 * replace, we should only get here for RAID 5/6. We either
2215 * managed to mount something with no mirrors remaining or
2216 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2217 */
4c664611 2218 goto bioc_out;
73ff61db
OS
2219 }
2220
c3a3b19b 2221 bio = btrfs_bio_alloc(BIO_MAX_VECS);
73ff61db
OS
2222 bio->bi_iter.bi_sector = logical >> 9;
2223 bio->bi_private = sblock;
2224 bio->bi_end_io = scrub_missing_raid56_end_io;
2225
6a258d72 2226 rbio = raid56_alloc_missing_rbio(bio, bioc, length);
73ff61db
OS
2227 if (!rbio)
2228 goto rbio_out;
2229
2230 for (i = 0; i < sblock->page_count; i++) {
2231 struct scrub_page *spage = sblock->pagev[i];
2232
2233 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2234 }
2235
a0cac0ec 2236 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
73ff61db
OS
2237 scrub_block_get(sblock);
2238 scrub_pending_bio_inc(sctx);
2239 raid56_submit_missing_rbio(rbio);
2240 return;
2241
2242rbio_out:
2243 bio_put(bio);
4c664611 2244bioc_out:
ae6529c3 2245 btrfs_bio_counter_dec(fs_info);
4c664611 2246 btrfs_put_bioc(bioc);
73ff61db
OS
2247 spin_lock(&sctx->stat_lock);
2248 sctx->stat.malloc_errors++;
2249 spin_unlock(&sctx->stat_lock);
2250}
2251
fa485d21 2252static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u32 len,
a36cf8b8 2253 u64 physical, struct btrfs_device *dev, u64 flags,
96e63a45 2254 u64 gen, int mirror_num, u8 *csum,
ff023aac 2255 u64 physical_for_dev_replace)
b5d67f64
SB
2256{
2257 struct scrub_block *sblock;
d0a7a9c0 2258 const u32 sectorsize = sctx->fs_info->sectorsize;
b5d67f64
SB
2259 int index;
2260
58c4e173 2261 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
b5d67f64 2262 if (!sblock) {
d9d181c1
SB
2263 spin_lock(&sctx->stat_lock);
2264 sctx->stat.malloc_errors++;
2265 spin_unlock(&sctx->stat_lock);
b5d67f64 2266 return -ENOMEM;
a2de733c 2267 }
b5d67f64 2268
7a9e9987
SB
2269 /* one ref inside this function, plus one for each page added to
2270 * a bio later on */
186debd6 2271 refcount_set(&sblock->refs, 1);
d9d181c1 2272 sblock->sctx = sctx;
b5d67f64
SB
2273 sblock->no_io_error_seen = 1;
2274
2275 for (index = 0; len > 0; index++) {
7a9e9987 2276 struct scrub_page *spage;
d0a7a9c0
QW
2277 /*
2278 * Here we will allocate one page for one sector to scrub.
2279 * This is fine if PAGE_SIZE == sectorsize, but will cost
2280 * more memory for PAGE_SIZE > sectorsize case.
2281 */
2282 u32 l = min(sectorsize, len);
b5d67f64 2283
58c4e173 2284 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
7a9e9987
SB
2285 if (!spage) {
2286leave_nomem:
d9d181c1
SB
2287 spin_lock(&sctx->stat_lock);
2288 sctx->stat.malloc_errors++;
2289 spin_unlock(&sctx->stat_lock);
7a9e9987 2290 scrub_block_put(sblock);
b5d67f64
SB
2291 return -ENOMEM;
2292 }
0bb3acdc 2293 ASSERT(index < SCRUB_MAX_PAGES_PER_BLOCK);
7a9e9987
SB
2294 scrub_page_get(spage);
2295 sblock->pagev[index] = spage;
b5d67f64 2296 spage->sblock = sblock;
a36cf8b8 2297 spage->dev = dev;
b5d67f64
SB
2298 spage->flags = flags;
2299 spage->generation = gen;
2300 spage->logical = logical;
2301 spage->physical = physical;
ff023aac 2302 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2303 spage->mirror_num = mirror_num;
2304 if (csum) {
2305 spage->have_csum = 1;
2ae0c2d8 2306 memcpy(spage->csum, csum, sctx->fs_info->csum_size);
b5d67f64
SB
2307 } else {
2308 spage->have_csum = 0;
2309 }
2310 sblock->page_count++;
58c4e173 2311 spage->page = alloc_page(GFP_KERNEL);
7a9e9987
SB
2312 if (!spage->page)
2313 goto leave_nomem;
b5d67f64
SB
2314 len -= l;
2315 logical += l;
2316 physical += l;
ff023aac 2317 physical_for_dev_replace += l;
b5d67f64
SB
2318 }
2319
7a9e9987 2320 WARN_ON(sblock->page_count == 0);
e6e674bd 2321 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
73ff61db
OS
2322 /*
2323 * This case should only be hit for RAID 5/6 device replace. See
2324 * the comment in scrub_missing_raid56_pages() for details.
2325 */
2326 scrub_missing_raid56_pages(sblock);
2327 } else {
2328 for (index = 0; index < sblock->page_count; index++) {
2329 struct scrub_page *spage = sblock->pagev[index];
2330 int ret;
1bc87793 2331
73ff61db
OS
2332 ret = scrub_add_page_to_rd_bio(sctx, spage);
2333 if (ret) {
2334 scrub_block_put(sblock);
2335 return ret;
2336 }
b5d67f64 2337 }
a2de733c 2338
96e63a45 2339 if (flags & BTRFS_EXTENT_FLAG_SUPER)
73ff61db
OS
2340 scrub_submit(sctx);
2341 }
a2de733c 2342
b5d67f64
SB
2343 /* last one frees, either here or in bio completion for last page */
2344 scrub_block_put(sblock);
a2de733c
AJ
2345 return 0;
2346}
2347
4246a0b6 2348static void scrub_bio_end_io(struct bio *bio)
b5d67f64
SB
2349{
2350 struct scrub_bio *sbio = bio->bi_private;
fb456252 2351 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
b5d67f64 2352
4e4cbee9 2353 sbio->status = bio->bi_status;
b5d67f64
SB
2354 sbio->bio = bio;
2355
0339ef2f 2356 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2357}
2358
2359static void scrub_bio_end_io_worker(struct btrfs_work *work)
2360{
2361 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2362 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2363 int i;
2364
c9d328c0 2365 ASSERT(sbio->page_count <= SCRUB_PAGES_PER_BIO);
4e4cbee9 2366 if (sbio->status) {
b5d67f64
SB
2367 for (i = 0; i < sbio->page_count; i++) {
2368 struct scrub_page *spage = sbio->pagev[i];
2369
2370 spage->io_error = 1;
2371 spage->sblock->no_io_error_seen = 0;
2372 }
2373 }
2374
2375 /* now complete the scrub_block items that have all pages completed */
2376 for (i = 0; i < sbio->page_count; i++) {
2377 struct scrub_page *spage = sbio->pagev[i];
2378 struct scrub_block *sblock = spage->sblock;
2379
2380 if (atomic_dec_and_test(&sblock->outstanding_pages))
2381 scrub_block_complete(sblock);
2382 scrub_block_put(sblock);
2383 }
2384
b5d67f64
SB
2385 bio_put(sbio->bio);
2386 sbio->bio = NULL;
d9d181c1
SB
2387 spin_lock(&sctx->list_lock);
2388 sbio->next_free = sctx->first_free;
2389 sctx->first_free = sbio->index;
2390 spin_unlock(&sctx->list_lock);
ff023aac 2391
2073c4c2 2392 if (sctx->is_dev_replace && sctx->flush_all_writes) {
3fb99303 2393 mutex_lock(&sctx->wr_lock);
ff023aac 2394 scrub_wr_submit(sctx);
3fb99303 2395 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
2396 }
2397
b6bfebc1 2398 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2399}
2400
5a6ac9ea
MX
2401static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2402 unsigned long *bitmap,
fa485d21 2403 u64 start, u32 len)
5a6ac9ea 2404{
972d7219 2405 u64 offset;
7736b0a4 2406 u32 nsectors;
ab108d99 2407 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
5a6ac9ea
MX
2408
2409 if (len >= sparity->stripe_len) {
2410 bitmap_set(bitmap, 0, sparity->nsectors);
2411 return;
2412 }
2413
2414 start -= sparity->logic_start;
972d7219 2415 start = div64_u64_rem(start, sparity->stripe_len, &offset);
ab108d99 2416 offset = offset >> sectorsize_bits;
fa485d21 2417 nsectors = len >> sectorsize_bits;
5a6ac9ea
MX
2418
2419 if (offset + nsectors <= sparity->nsectors) {
2420 bitmap_set(bitmap, offset, nsectors);
2421 return;
2422 }
2423
2424 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2425 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2426}
2427
2428static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
fa485d21 2429 u64 start, u32 len)
5a6ac9ea
MX
2430{
2431 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2432}
2433
2434static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
fa485d21 2435 u64 start, u32 len)
5a6ac9ea
MX
2436{
2437 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2438}
2439
b5d67f64
SB
2440static void scrub_block_complete(struct scrub_block *sblock)
2441{
5a6ac9ea
MX
2442 int corrupted = 0;
2443
ff023aac 2444 if (!sblock->no_io_error_seen) {
5a6ac9ea 2445 corrupted = 1;
b5d67f64 2446 scrub_handle_errored_block(sblock);
ff023aac
SB
2447 } else {
2448 /*
2449 * if has checksum error, write via repair mechanism in
2450 * dev replace case, otherwise write here in dev replace
2451 * case.
2452 */
5a6ac9ea
MX
2453 corrupted = scrub_checksum(sblock);
2454 if (!corrupted && sblock->sctx->is_dev_replace)
ff023aac
SB
2455 scrub_write_block_to_dev_replace(sblock);
2456 }
5a6ac9ea
MX
2457
2458 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2459 u64 start = sblock->pagev[0]->logical;
2460 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
8df507cb 2461 sblock->sctx->fs_info->sectorsize;
5a6ac9ea 2462
fa485d21 2463 ASSERT(end - start <= U32_MAX);
5a6ac9ea
MX
2464 scrub_parity_mark_sectors_error(sblock->sparity,
2465 start, end - start);
2466 }
b5d67f64
SB
2467}
2468
480a8ec8
QW
2469static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2470{
2471 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2472 list_del(&sum->list);
2473 kfree(sum);
2474}
2475
2476/*
2477 * Find the desired csum for range [logical, logical + sectorsize), and store
2478 * the csum into @csum.
2479 *
2480 * The search source is sctx->csum_list, which is a pre-populated list
1a9fd417 2481 * storing bytenr ordered csum ranges. We're responsible to cleanup any range
480a8ec8
QW
2482 * that is before @logical.
2483 *
2484 * Return 0 if there is no csum for the range.
2485 * Return 1 if there is csum for the range and copied to @csum.
2486 */
3b5753ec 2487static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
a2de733c 2488{
480a8ec8 2489 bool found = false;
a2de733c 2490
d9d181c1 2491 while (!list_empty(&sctx->csum_list)) {
480a8ec8
QW
2492 struct btrfs_ordered_sum *sum = NULL;
2493 unsigned long index;
2494 unsigned long num_sectors;
2495
d9d181c1 2496 sum = list_first_entry(&sctx->csum_list,
a2de733c 2497 struct btrfs_ordered_sum, list);
480a8ec8 2498 /* The current csum range is beyond our range, no csum found */
a2de733c 2499 if (sum->bytenr > logical)
a2de733c
AJ
2500 break;
2501
480a8ec8
QW
2502 /*
2503 * The current sum is before our bytenr, since scrub is always
2504 * done in bytenr order, the csum will never be used anymore,
2505 * clean it up so that later calls won't bother with the range,
2506 * and continue search the next range.
2507 */
2508 if (sum->bytenr + sum->len <= logical) {
2509 drop_csum_range(sctx, sum);
2510 continue;
2511 }
a2de733c 2512
480a8ec8
QW
2513 /* Now the csum range covers our bytenr, copy the csum */
2514 found = true;
2515 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2516 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
1d1bf92d 2517
480a8ec8
QW
2518 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2519 sctx->fs_info->csum_size);
2520
2521 /* Cleanup the range if we're at the end of the csum range */
2522 if (index == num_sectors - 1)
2523 drop_csum_range(sctx, sum);
2524 break;
a2de733c 2525 }
480a8ec8
QW
2526 if (!found)
2527 return 0;
f51a4a18 2528 return 1;
a2de733c
AJ
2529}
2530
2531/* scrub extent tries to collect up to 64 kB for each bio */
6ca1765b 2532static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
fa485d21 2533 u64 logical, u32 len,
a36cf8b8 2534 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2535 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2536{
2537 int ret;
2538 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2539 u32 blocksize;
2540
2541 if (flags & BTRFS_EXTENT_FLAG_DATA) {
6ca1765b
LB
2542 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2543 blocksize = map->stripe_len;
2544 else
2545 blocksize = sctx->fs_info->sectorsize;
d9d181c1
SB
2546 spin_lock(&sctx->stat_lock);
2547 sctx->stat.data_extents_scrubbed++;
2548 sctx->stat.data_bytes_scrubbed += len;
2549 spin_unlock(&sctx->stat_lock);
b5d67f64 2550 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6ca1765b
LB
2551 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2552 blocksize = map->stripe_len;
2553 else
2554 blocksize = sctx->fs_info->nodesize;
d9d181c1
SB
2555 spin_lock(&sctx->stat_lock);
2556 sctx->stat.tree_extents_scrubbed++;
2557 sctx->stat.tree_bytes_scrubbed += len;
2558 spin_unlock(&sctx->stat_lock);
b5d67f64 2559 } else {
25cc1226 2560 blocksize = sctx->fs_info->sectorsize;
ff023aac 2561 WARN_ON(1);
b5d67f64 2562 }
a2de733c
AJ
2563
2564 while (len) {
fa485d21 2565 u32 l = min(len, blocksize);
a2de733c
AJ
2566 int have_csum = 0;
2567
2568 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2569 /* push csums to sbio */
3b5753ec 2570 have_csum = scrub_find_csum(sctx, logical, csum);
a2de733c 2571 if (have_csum == 0)
d9d181c1 2572 ++sctx->stat.no_csum;
a2de733c 2573 }
a36cf8b8 2574 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
96e63a45 2575 mirror_num, have_csum ? csum : NULL,
ff023aac 2576 physical_for_dev_replace);
a2de733c
AJ
2577 if (ret)
2578 return ret;
2579 len -= l;
2580 logical += l;
2581 physical += l;
ff023aac 2582 physical_for_dev_replace += l;
a2de733c
AJ
2583 }
2584 return 0;
2585}
2586
5a6ac9ea 2587static int scrub_pages_for_parity(struct scrub_parity *sparity,
fa485d21 2588 u64 logical, u32 len,
5a6ac9ea
MX
2589 u64 physical, struct btrfs_device *dev,
2590 u64 flags, u64 gen, int mirror_num, u8 *csum)
2591{
2592 struct scrub_ctx *sctx = sparity->sctx;
2593 struct scrub_block *sblock;
d0a7a9c0 2594 const u32 sectorsize = sctx->fs_info->sectorsize;
5a6ac9ea
MX
2595 int index;
2596
d0a7a9c0
QW
2597 ASSERT(IS_ALIGNED(len, sectorsize));
2598
58c4e173 2599 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
5a6ac9ea
MX
2600 if (!sblock) {
2601 spin_lock(&sctx->stat_lock);
2602 sctx->stat.malloc_errors++;
2603 spin_unlock(&sctx->stat_lock);
2604 return -ENOMEM;
2605 }
2606
2607 /* one ref inside this function, plus one for each page added to
2608 * a bio later on */
186debd6 2609 refcount_set(&sblock->refs, 1);
5a6ac9ea
MX
2610 sblock->sctx = sctx;
2611 sblock->no_io_error_seen = 1;
2612 sblock->sparity = sparity;
2613 scrub_parity_get(sparity);
2614
2615 for (index = 0; len > 0; index++) {
2616 struct scrub_page *spage;
5a6ac9ea 2617
58c4e173 2618 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
5a6ac9ea
MX
2619 if (!spage) {
2620leave_nomem:
2621 spin_lock(&sctx->stat_lock);
2622 sctx->stat.malloc_errors++;
2623 spin_unlock(&sctx->stat_lock);
2624 scrub_block_put(sblock);
2625 return -ENOMEM;
2626 }
0bb3acdc 2627 ASSERT(index < SCRUB_MAX_PAGES_PER_BLOCK);
5a6ac9ea
MX
2628 /* For scrub block */
2629 scrub_page_get(spage);
2630 sblock->pagev[index] = spage;
2631 /* For scrub parity */
2632 scrub_page_get(spage);
2633 list_add_tail(&spage->list, &sparity->spages);
2634 spage->sblock = sblock;
2635 spage->dev = dev;
2636 spage->flags = flags;
2637 spage->generation = gen;
2638 spage->logical = logical;
2639 spage->physical = physical;
2640 spage->mirror_num = mirror_num;
2641 if (csum) {
2642 spage->have_csum = 1;
2ae0c2d8 2643 memcpy(spage->csum, csum, sctx->fs_info->csum_size);
5a6ac9ea
MX
2644 } else {
2645 spage->have_csum = 0;
2646 }
2647 sblock->page_count++;
58c4e173 2648 spage->page = alloc_page(GFP_KERNEL);
5a6ac9ea
MX
2649 if (!spage->page)
2650 goto leave_nomem;
d0a7a9c0
QW
2651
2652
2653 /* Iterate over the stripe range in sectorsize steps */
2654 len -= sectorsize;
2655 logical += sectorsize;
2656 physical += sectorsize;
5a6ac9ea
MX
2657 }
2658
2659 WARN_ON(sblock->page_count == 0);
2660 for (index = 0; index < sblock->page_count; index++) {
2661 struct scrub_page *spage = sblock->pagev[index];
2662 int ret;
2663
2664 ret = scrub_add_page_to_rd_bio(sctx, spage);
2665 if (ret) {
2666 scrub_block_put(sblock);
2667 return ret;
2668 }
2669 }
2670
2671 /* last one frees, either here or in bio completion for last page */
2672 scrub_block_put(sblock);
2673 return 0;
2674}
2675
2676static int scrub_extent_for_parity(struct scrub_parity *sparity,
fa485d21 2677 u64 logical, u32 len,
5a6ac9ea
MX
2678 u64 physical, struct btrfs_device *dev,
2679 u64 flags, u64 gen, int mirror_num)
2680{
2681 struct scrub_ctx *sctx = sparity->sctx;
2682 int ret;
2683 u8 csum[BTRFS_CSUM_SIZE];
2684 u32 blocksize;
2685
e6e674bd 2686 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
4a770891
OS
2687 scrub_parity_mark_sectors_error(sparity, logical, len);
2688 return 0;
2689 }
2690
5a6ac9ea 2691 if (flags & BTRFS_EXTENT_FLAG_DATA) {
6ca1765b 2692 blocksize = sparity->stripe_len;
5a6ac9ea 2693 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6ca1765b 2694 blocksize = sparity->stripe_len;
5a6ac9ea 2695 } else {
25cc1226 2696 blocksize = sctx->fs_info->sectorsize;
5a6ac9ea
MX
2697 WARN_ON(1);
2698 }
2699
2700 while (len) {
fa485d21 2701 u32 l = min(len, blocksize);
5a6ac9ea
MX
2702 int have_csum = 0;
2703
2704 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2705 /* push csums to sbio */
3b5753ec 2706 have_csum = scrub_find_csum(sctx, logical, csum);
5a6ac9ea
MX
2707 if (have_csum == 0)
2708 goto skip;
2709 }
2710 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2711 flags, gen, mirror_num,
2712 have_csum ? csum : NULL);
5a6ac9ea
MX
2713 if (ret)
2714 return ret;
6b6d24b3 2715skip:
5a6ac9ea
MX
2716 len -= l;
2717 logical += l;
2718 physical += l;
2719 }
2720 return 0;
2721}
2722
3b080b25
WS
2723/*
2724 * Given a physical address, this will calculate it's
2725 * logical offset. if this is a parity stripe, it will return
2726 * the most left data stripe's logical offset.
2727 *
2728 * return 0 if it is a data stripe, 1 means parity stripe.
2729 */
2730static int get_raid56_logic_offset(u64 physical, int num,
5a6ac9ea
MX
2731 struct map_lookup *map, u64 *offset,
2732 u64 *stripe_start)
3b080b25
WS
2733{
2734 int i;
2735 int j = 0;
2736 u64 stripe_nr;
2737 u64 last_offset;
9d644a62
DS
2738 u32 stripe_index;
2739 u32 rot;
cff82672 2740 const int data_stripes = nr_data_stripes(map);
3b080b25 2741
cff82672 2742 last_offset = (physical - map->stripes[num].physical) * data_stripes;
5a6ac9ea
MX
2743 if (stripe_start)
2744 *stripe_start = last_offset;
2745
3b080b25 2746 *offset = last_offset;
cff82672 2747 for (i = 0; i < data_stripes; i++) {
3b080b25
WS
2748 *offset = last_offset + i * map->stripe_len;
2749
42c61ab6 2750 stripe_nr = div64_u64(*offset, map->stripe_len);
cff82672 2751 stripe_nr = div_u64(stripe_nr, data_stripes);
3b080b25
WS
2752
2753 /* Work out the disk rotation on this stripe-set */
47c5713f 2754 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
3b080b25
WS
2755 /* calculate which stripe this data locates */
2756 rot += i;
e4fbaee2 2757 stripe_index = rot % map->num_stripes;
3b080b25
WS
2758 if (stripe_index == num)
2759 return 0;
2760 if (stripe_index < num)
2761 j++;
2762 }
2763 *offset = last_offset + j * map->stripe_len;
2764 return 1;
2765}
2766
5a6ac9ea
MX
2767static void scrub_free_parity(struct scrub_parity *sparity)
2768{
2769 struct scrub_ctx *sctx = sparity->sctx;
2770 struct scrub_page *curr, *next;
2771 int nbits;
2772
2773 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2774 if (nbits) {
2775 spin_lock(&sctx->stat_lock);
2776 sctx->stat.read_errors += nbits;
2777 sctx->stat.uncorrectable_errors += nbits;
2778 spin_unlock(&sctx->stat_lock);
2779 }
2780
2781 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2782 list_del_init(&curr->list);
2783 scrub_page_put(curr);
2784 }
2785
2786 kfree(sparity);
2787}
2788
20b2e302
ZL
2789static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2790{
2791 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2792 work);
2793 struct scrub_ctx *sctx = sparity->sctx;
2794
2795 scrub_free_parity(sparity);
2796 scrub_pending_bio_dec(sctx);
2797}
2798
4246a0b6 2799static void scrub_parity_bio_endio(struct bio *bio)
5a6ac9ea
MX
2800{
2801 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
0b246afa 2802 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
5a6ac9ea 2803
4e4cbee9 2804 if (bio->bi_status)
5a6ac9ea
MX
2805 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2806 sparity->nsectors);
2807
5a6ac9ea 2808 bio_put(bio);
20b2e302 2809
a0cac0ec
OS
2810 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2811 NULL);
0b246afa 2812 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
5a6ac9ea
MX
2813}
2814
2815static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2816{
2817 struct scrub_ctx *sctx = sparity->sctx;
0b246afa 2818 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2819 struct bio *bio;
2820 struct btrfs_raid_bio *rbio;
4c664611 2821 struct btrfs_io_context *bioc = NULL;
5a6ac9ea
MX
2822 u64 length;
2823 int ret;
2824
2825 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2826 sparity->nsectors))
2827 goto out;
2828
a0dd59de 2829 length = sparity->logic_end - sparity->logic_start;
ae6529c3
QW
2830
2831 btrfs_bio_counter_inc_blocked(fs_info);
0b246afa 2832 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
4c664611
QW
2833 &length, &bioc);
2834 if (ret || !bioc || !bioc->raid_map)
2835 goto bioc_out;
5a6ac9ea 2836
c3a3b19b 2837 bio = btrfs_bio_alloc(BIO_MAX_VECS);
5a6ac9ea
MX
2838 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2839 bio->bi_private = sparity;
2840 bio->bi_end_io = scrub_parity_bio_endio;
2841
6a258d72
QW
2842 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, length,
2843 sparity->scrub_dev,
5a6ac9ea
MX
2844 sparity->dbitmap,
2845 sparity->nsectors);
2846 if (!rbio)
2847 goto rbio_out;
2848
5a6ac9ea
MX
2849 scrub_pending_bio_inc(sctx);
2850 raid56_parity_submit_scrub_rbio(rbio);
2851 return;
2852
2853rbio_out:
2854 bio_put(bio);
4c664611 2855bioc_out:
ae6529c3 2856 btrfs_bio_counter_dec(fs_info);
4c664611 2857 btrfs_put_bioc(bioc);
5a6ac9ea
MX
2858 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2859 sparity->nsectors);
2860 spin_lock(&sctx->stat_lock);
2861 sctx->stat.malloc_errors++;
2862 spin_unlock(&sctx->stat_lock);
2863out:
2864 scrub_free_parity(sparity);
2865}
2866
2867static inline int scrub_calc_parity_bitmap_len(int nsectors)
2868{
bfca9a6d 2869 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
5a6ac9ea
MX
2870}
2871
2872static void scrub_parity_get(struct scrub_parity *sparity)
2873{
78a76450 2874 refcount_inc(&sparity->refs);
5a6ac9ea
MX
2875}
2876
2877static void scrub_parity_put(struct scrub_parity *sparity)
2878{
78a76450 2879 if (!refcount_dec_and_test(&sparity->refs))
5a6ac9ea
MX
2880 return;
2881
2882 scrub_parity_check_and_repair(sparity);
2883}
2884
2885static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2886 struct map_lookup *map,
2887 struct btrfs_device *sdev,
5a6ac9ea
MX
2888 u64 logic_start,
2889 u64 logic_end)
2890{
fb456252 2891 struct btrfs_fs_info *fs_info = sctx->fs_info;
29cbcf40 2892 struct btrfs_root *root = btrfs_extent_root(fs_info, logic_start);
fc28b25e 2893 struct btrfs_root *csum_root;
5a6ac9ea 2894 struct btrfs_extent_item *extent;
4c664611 2895 struct btrfs_io_context *bioc = NULL;
2522dbe8 2896 struct btrfs_path *path;
5a6ac9ea
MX
2897 u64 flags;
2898 int ret;
2899 int slot;
2900 struct extent_buffer *l;
2901 struct btrfs_key key;
2902 u64 generation;
2903 u64 extent_logical;
2904 u64 extent_physical;
fa485d21
QW
2905 /* Check the comment in scrub_stripe() for why u32 is enough here */
2906 u32 extent_len;
4a770891 2907 u64 mapped_length;
5a6ac9ea
MX
2908 struct btrfs_device *extent_dev;
2909 struct scrub_parity *sparity;
2910 int nsectors;
2911 int bitmap_len;
2912 int extent_mirror_num;
2913 int stop_loop = 0;
2914
2522dbe8
QW
2915 path = btrfs_alloc_path();
2916 if (!path) {
2917 spin_lock(&sctx->stat_lock);
2918 sctx->stat.malloc_errors++;
2919 spin_unlock(&sctx->stat_lock);
2920 return -ENOMEM;
2921 }
2922 path->search_commit_root = 1;
2923 path->skip_locking = 1;
2924
fa485d21 2925 ASSERT(map->stripe_len <= U32_MAX);
ab108d99 2926 nsectors = map->stripe_len >> fs_info->sectorsize_bits;
5a6ac9ea
MX
2927 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2928 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2929 GFP_NOFS);
2930 if (!sparity) {
2931 spin_lock(&sctx->stat_lock);
2932 sctx->stat.malloc_errors++;
2933 spin_unlock(&sctx->stat_lock);
2522dbe8 2934 btrfs_free_path(path);
5a6ac9ea
MX
2935 return -ENOMEM;
2936 }
2937
fa485d21 2938 ASSERT(map->stripe_len <= U32_MAX);
5a6ac9ea
MX
2939 sparity->stripe_len = map->stripe_len;
2940 sparity->nsectors = nsectors;
2941 sparity->sctx = sctx;
2942 sparity->scrub_dev = sdev;
2943 sparity->logic_start = logic_start;
2944 sparity->logic_end = logic_end;
78a76450 2945 refcount_set(&sparity->refs, 1);
5a6ac9ea
MX
2946 INIT_LIST_HEAD(&sparity->spages);
2947 sparity->dbitmap = sparity->bitmap;
2948 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2949
2950 ret = 0;
2951 while (logic_start < logic_end) {
2952 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2953 key.type = BTRFS_METADATA_ITEM_KEY;
2954 else
2955 key.type = BTRFS_EXTENT_ITEM_KEY;
2956 key.objectid = logic_start;
2957 key.offset = (u64)-1;
2958
2959 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2960 if (ret < 0)
2961 goto out;
2962
2963 if (ret > 0) {
2964 ret = btrfs_previous_extent_item(root, path, 0);
2965 if (ret < 0)
2966 goto out;
2967 if (ret > 0) {
2968 btrfs_release_path(path);
2969 ret = btrfs_search_slot(NULL, root, &key,
2970 path, 0, 0);
2971 if (ret < 0)
2972 goto out;
2973 }
2974 }
2975
2976 stop_loop = 0;
2977 while (1) {
2978 u64 bytes;
2979
2980 l = path->nodes[0];
2981 slot = path->slots[0];
2982 if (slot >= btrfs_header_nritems(l)) {
2983 ret = btrfs_next_leaf(root, path);
2984 if (ret == 0)
2985 continue;
2986 if (ret < 0)
2987 goto out;
2988
2989 stop_loop = 1;
2990 break;
2991 }
2992 btrfs_item_key_to_cpu(l, &key, slot);
2993
d7cad238
ZL
2994 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2995 key.type != BTRFS_METADATA_ITEM_KEY)
2996 goto next;
2997
5a6ac9ea 2998 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 2999 bytes = fs_info->nodesize;
5a6ac9ea
MX
3000 else
3001 bytes = key.offset;
3002
3003 if (key.objectid + bytes <= logic_start)
3004 goto next;
3005
a0dd59de 3006 if (key.objectid >= logic_end) {
5a6ac9ea
MX
3007 stop_loop = 1;
3008 break;
3009 }
3010
3011 while (key.objectid >= logic_start + map->stripe_len)
3012 logic_start += map->stripe_len;
3013
3014 extent = btrfs_item_ptr(l, slot,
3015 struct btrfs_extent_item);
3016 flags = btrfs_extent_flags(l, extent);
3017 generation = btrfs_extent_generation(l, extent);
3018
a323e813
ZL
3019 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3020 (key.objectid < logic_start ||
3021 key.objectid + bytes >
3022 logic_start + map->stripe_len)) {
5d163e0e
JM
3023 btrfs_err(fs_info,
3024 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
a323e813 3025 key.objectid, logic_start);
9799d2c3
ZL
3026 spin_lock(&sctx->stat_lock);
3027 sctx->stat.uncorrectable_errors++;
3028 spin_unlock(&sctx->stat_lock);
5a6ac9ea
MX
3029 goto next;
3030 }
3031again:
3032 extent_logical = key.objectid;
fa485d21 3033 ASSERT(bytes <= U32_MAX);
5a6ac9ea
MX
3034 extent_len = bytes;
3035
3036 if (extent_logical < logic_start) {
3037 extent_len -= logic_start - extent_logical;
3038 extent_logical = logic_start;
3039 }
3040
3041 if (extent_logical + extent_len >
3042 logic_start + map->stripe_len)
3043 extent_len = logic_start + map->stripe_len -
3044 extent_logical;
3045
3046 scrub_parity_mark_sectors_data(sparity, extent_logical,
3047 extent_len);
3048
4a770891 3049 mapped_length = extent_len;
4c664611 3050 bioc = NULL;
cf8cddd3 3051 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
4c664611 3052 extent_logical, &mapped_length, &bioc,
cf8cddd3 3053 0);
4a770891 3054 if (!ret) {
4c664611 3055 if (!bioc || mapped_length < extent_len)
4a770891
OS
3056 ret = -EIO;
3057 }
3058 if (ret) {
4c664611 3059 btrfs_put_bioc(bioc);
4a770891
OS
3060 goto out;
3061 }
4c664611
QW
3062 extent_physical = bioc->stripes[0].physical;
3063 extent_mirror_num = bioc->mirror_num;
3064 extent_dev = bioc->stripes[0].dev;
3065 btrfs_put_bioc(bioc);
5a6ac9ea 3066
fc28b25e 3067 csum_root = btrfs_csum_root(fs_info, extent_logical);
5a6ac9ea
MX
3068 ret = btrfs_lookup_csums_range(csum_root,
3069 extent_logical,
3070 extent_logical + extent_len - 1,
3071 &sctx->csum_list, 1);
3072 if (ret)
3073 goto out;
3074
3075 ret = scrub_extent_for_parity(sparity, extent_logical,
3076 extent_len,
3077 extent_physical,
3078 extent_dev, flags,
3079 generation,
3080 extent_mirror_num);
6fa96d72
ZL
3081
3082 scrub_free_csums(sctx);
3083
5a6ac9ea
MX
3084 if (ret)
3085 goto out;
3086
5a6ac9ea
MX
3087 if (extent_logical + extent_len <
3088 key.objectid + bytes) {
3089 logic_start += map->stripe_len;
3090
3091 if (logic_start >= logic_end) {
3092 stop_loop = 1;
3093 break;
3094 }
3095
3096 if (logic_start < key.objectid + bytes) {
3097 cond_resched();
3098 goto again;
3099 }
3100 }
3101next:
3102 path->slots[0]++;
3103 }
3104
3105 btrfs_release_path(path);
3106
3107 if (stop_loop)
3108 break;
3109
3110 logic_start += map->stripe_len;
3111 }
3112out:
fa485d21
QW
3113 if (ret < 0) {
3114 ASSERT(logic_end - logic_start <= U32_MAX);
5a6ac9ea 3115 scrub_parity_mark_sectors_error(sparity, logic_start,
a0dd59de 3116 logic_end - logic_start);
fa485d21 3117 }
5a6ac9ea
MX
3118 scrub_parity_put(sparity);
3119 scrub_submit(sctx);
3fb99303 3120 mutex_lock(&sctx->wr_lock);
5a6ac9ea 3121 scrub_wr_submit(sctx);
3fb99303 3122 mutex_unlock(&sctx->wr_lock);
5a6ac9ea 3123
2522dbe8 3124 btrfs_free_path(path);
5a6ac9ea
MX
3125 return ret < 0 ? ret : 0;
3126}
3127
de17addc
NA
3128static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3129{
3130 if (!btrfs_is_zoned(sctx->fs_info))
3131 return;
3132
3133 sctx->flush_all_writes = true;
3134 scrub_submit(sctx);
3135 mutex_lock(&sctx->wr_lock);
3136 scrub_wr_submit(sctx);
3137 mutex_unlock(&sctx->wr_lock);
3138
3139 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3140}
3141
7db1c5d1
NA
3142static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3143 u64 physical, u64 physical_end)
3144{
3145 struct btrfs_fs_info *fs_info = sctx->fs_info;
3146 int ret = 0;
3147
3148 if (!btrfs_is_zoned(fs_info))
3149 return 0;
3150
3151 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3152
3153 mutex_lock(&sctx->wr_lock);
3154 if (sctx->write_pointer < physical_end) {
3155 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3156 physical,
3157 sctx->write_pointer);
3158 if (ret)
3159 btrfs_err(fs_info,
3160 "zoned: failed to recover write pointer");
3161 }
3162 mutex_unlock(&sctx->wr_lock);
3163 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3164
3165 return ret;
3166}
3167
d9d181c1 3168static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2ae8ae3d 3169 struct btrfs_block_group *bg,
a36cf8b8
SB
3170 struct map_lookup *map,
3171 struct btrfs_device *scrub_dev,
2ae8ae3d 3172 int stripe_index, u64 dev_extent_len)
a2de733c 3173{
2522dbe8 3174 struct btrfs_path *path;
fb456252 3175 struct btrfs_fs_info *fs_info = sctx->fs_info;
29cbcf40 3176 struct btrfs_root *root;
fc28b25e 3177 struct btrfs_root *csum_root;
a2de733c 3178 struct btrfs_extent_item *extent;
e7786c3a 3179 struct blk_plug plug;
2ae8ae3d 3180 const u64 chunk_logical = bg->start;
a2de733c
AJ
3181 u64 flags;
3182 int ret;
3183 int slot;
a2de733c 3184 u64 nstripes;
a2de733c 3185 struct extent_buffer *l;
a2de733c
AJ
3186 u64 physical;
3187 u64 logical;
625f1c8d 3188 u64 logic_end;
3b080b25 3189 u64 physical_end;
a2de733c 3190 u64 generation;
e12fa9cd 3191 int mirror_num;
e6c11f9a 3192 struct btrfs_key key;
5c07c53f 3193 u64 increment;
a2de733c 3194 u64 offset;
ff023aac
SB
3195 u64 extent_logical;
3196 u64 extent_physical;
fa485d21
QW
3197 /*
3198 * Unlike chunk length, extent length should never go beyond
3199 * BTRFS_MAX_EXTENT_SIZE, thus u32 is enough here.
3200 */
3201 u32 extent_len;
5a6ac9ea
MX
3202 u64 stripe_logical;
3203 u64 stripe_end;
ff023aac
SB
3204 struct btrfs_device *extent_dev;
3205 int extent_mirror_num;
3b080b25 3206 int stop_loop = 0;
53b381b3 3207
2ae8ae3d 3208 physical = map->stripes[stripe_index].physical;
a2de733c 3209 offset = 0;
2ae8ae3d 3210 nstripes = div64_u64(dev_extent_len, map->stripe_len);
7735cd75
DS
3211 mirror_num = 1;
3212 increment = map->stripe_len;
a2de733c 3213 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2ae8ae3d 3214 offset = map->stripe_len * stripe_index;
a2de733c 3215 increment = map->stripe_len * map->num_stripes;
a2de733c
AJ
3216 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3217 int factor = map->num_stripes / map->sub_stripes;
2ae8ae3d 3218 offset = map->stripe_len * (stripe_index / map->sub_stripes);
a2de733c 3219 increment = map->stripe_len * factor;
2ae8ae3d 3220 mirror_num = stripe_index % map->sub_stripes + 1;
c7369b3f 3221 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
2ae8ae3d 3222 mirror_num = stripe_index % map->num_stripes + 1;
a2de733c 3223 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2ae8ae3d 3224 mirror_num = stripe_index % map->num_stripes + 1;
ffe2d203 3225 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2ae8ae3d
QW
3226 get_raid56_logic_offset(physical, stripe_index, map, &offset,
3227 NULL);
3b080b25 3228 increment = map->stripe_len * nr_data_stripes(map);
a2de733c
AJ
3229 }
3230
3231 path = btrfs_alloc_path();
3232 if (!path)
3233 return -ENOMEM;
3234
b5d67f64
SB
3235 /*
3236 * work on commit root. The related disk blocks are static as
3237 * long as COW is applied. This means, it is save to rewrite
3238 * them to repair disk errors without any race conditions
3239 */
a2de733c
AJ
3240 path->search_commit_root = 1;
3241 path->skip_locking = 1;
dcf62b20 3242 path->reada = READA_FORWARD;
a2de733c 3243
2ae8ae3d 3244 logical = chunk_logical + offset;
3b080b25 3245 physical_end = physical + nstripes * map->stripe_len;
ffe2d203 3246 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2ae8ae3d 3247 get_raid56_logic_offset(physical_end, stripe_index,
5a6ac9ea 3248 map, &logic_end, NULL);
2ae8ae3d 3249 logic_end += chunk_logical;
3b080b25
WS
3250 } else {
3251 logic_end = logical + increment * nstripes;
3252 }
d9d181c1 3253 wait_event(sctx->list_wait,
b6bfebc1 3254 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 3255 scrub_blocked_if_needed(fs_info);
7a26285e 3256
29cbcf40 3257 root = btrfs_extent_root(fs_info, logical);
fc28b25e
JB
3258 csum_root = btrfs_csum_root(fs_info, logical);
3259
a2de733c
AJ
3260 /*
3261 * collect all data csums for the stripe to avoid seeking during
3262 * the scrub. This might currently (crc32) end up to be about 1MB
3263 */
e7786c3a 3264 blk_start_plug(&plug);
a2de733c 3265
de17addc
NA
3266 if (sctx->is_dev_replace &&
3267 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3268 mutex_lock(&sctx->wr_lock);
3269 sctx->write_pointer = physical;
3270 mutex_unlock(&sctx->wr_lock);
3271 sctx->flush_all_writes = true;
3272 }
3273
a2de733c
AJ
3274 /*
3275 * now find all extents for each stripe and scrub them
3276 */
a2de733c 3277 ret = 0;
3b080b25 3278 while (physical < physical_end) {
a2de733c
AJ
3279 /*
3280 * canceled?
3281 */
3282 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 3283 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
3284 ret = -ECANCELED;
3285 goto out;
3286 }
3287 /*
3288 * check to see if we have to pause
3289 */
3290 if (atomic_read(&fs_info->scrub_pause_req)) {
3291 /* push queued extents */
2073c4c2 3292 sctx->flush_all_writes = true;
d9d181c1 3293 scrub_submit(sctx);
3fb99303 3294 mutex_lock(&sctx->wr_lock);
ff023aac 3295 scrub_wr_submit(sctx);
3fb99303 3296 mutex_unlock(&sctx->wr_lock);
d9d181c1 3297 wait_event(sctx->list_wait,
b6bfebc1 3298 atomic_read(&sctx->bios_in_flight) == 0);
2073c4c2 3299 sctx->flush_all_writes = false;
3cb0929a 3300 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3301 }
3302
f2f66a2f 3303 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2ae8ae3d
QW
3304 ret = get_raid56_logic_offset(physical, stripe_index,
3305 map, &logical,
f2f66a2f 3306 &stripe_logical);
2ae8ae3d 3307 logical += chunk_logical;
f2f66a2f 3308 if (ret) {
7955323b 3309 /* it is parity strip */
2ae8ae3d 3310 stripe_logical += chunk_logical;
a0dd59de 3311 stripe_end = stripe_logical + increment;
f2f66a2f 3312 ret = scrub_raid56_parity(sctx, map, scrub_dev,
2522dbe8 3313 stripe_logical,
f2f66a2f
ZL
3314 stripe_end);
3315 if (ret)
3316 goto out;
3317 goto skip;
3318 }
3319 }
3320
7c76edb7
WS
3321 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3322 key.type = BTRFS_METADATA_ITEM_KEY;
3323 else
3324 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 3325 key.objectid = logical;
625f1c8d 3326 key.offset = (u64)-1;
a2de733c
AJ
3327
3328 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3329 if (ret < 0)
3330 goto out;
3173a18f 3331
8c51032f 3332 if (ret > 0) {
ade2e0b3 3333 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
3334 if (ret < 0)
3335 goto out;
8c51032f
AJ
3336 if (ret > 0) {
3337 /* there's no smaller item, so stick with the
3338 * larger one */
3339 btrfs_release_path(path);
3340 ret = btrfs_search_slot(NULL, root, &key,
3341 path, 0, 0);
3342 if (ret < 0)
3343 goto out;
3344 }
a2de733c
AJ
3345 }
3346
625f1c8d 3347 stop_loop = 0;
a2de733c 3348 while (1) {
3173a18f
JB
3349 u64 bytes;
3350
a2de733c
AJ
3351 l = path->nodes[0];
3352 slot = path->slots[0];
3353 if (slot >= btrfs_header_nritems(l)) {
3354 ret = btrfs_next_leaf(root, path);
3355 if (ret == 0)
3356 continue;
3357 if (ret < 0)
3358 goto out;
3359
625f1c8d 3360 stop_loop = 1;
a2de733c
AJ
3361 break;
3362 }
3363 btrfs_item_key_to_cpu(l, &key, slot);
3364
d7cad238
ZL
3365 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3366 key.type != BTRFS_METADATA_ITEM_KEY)
3367 goto next;
3368
3173a18f 3369 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 3370 bytes = fs_info->nodesize;
3173a18f
JB
3371 else
3372 bytes = key.offset;
3373
3374 if (key.objectid + bytes <= logical)
a2de733c
AJ
3375 goto next;
3376
625f1c8d
LB
3377 if (key.objectid >= logical + map->stripe_len) {
3378 /* out of this device extent */
3379 if (key.objectid >= logic_end)
3380 stop_loop = 1;
3381 break;
3382 }
a2de733c 3383
2473d24f
FM
3384 /*
3385 * If our block group was removed in the meanwhile, just
3386 * stop scrubbing since there is no point in continuing.
3387 * Continuing would prevent reusing its device extents
3388 * for new block groups for a long time.
3389 */
2ae8ae3d
QW
3390 spin_lock(&bg->lock);
3391 if (bg->removed) {
3392 spin_unlock(&bg->lock);
2473d24f
FM
3393 ret = 0;
3394 goto out;
3395 }
2ae8ae3d 3396 spin_unlock(&bg->lock);
2473d24f 3397
a2de733c
AJ
3398 extent = btrfs_item_ptr(l, slot,
3399 struct btrfs_extent_item);
3400 flags = btrfs_extent_flags(l, extent);
3401 generation = btrfs_extent_generation(l, extent);
3402
a323e813
ZL
3403 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3404 (key.objectid < logical ||
3405 key.objectid + bytes >
3406 logical + map->stripe_len)) {
efe120a0 3407 btrfs_err(fs_info,
5d163e0e 3408 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
c1c9ff7c 3409 key.objectid, logical);
9799d2c3
ZL
3410 spin_lock(&sctx->stat_lock);
3411 sctx->stat.uncorrectable_errors++;
3412 spin_unlock(&sctx->stat_lock);
a2de733c
AJ
3413 goto next;
3414 }
3415
625f1c8d
LB
3416again:
3417 extent_logical = key.objectid;
fa485d21 3418 ASSERT(bytes <= U32_MAX);
625f1c8d
LB
3419 extent_len = bytes;
3420
a2de733c
AJ
3421 /*
3422 * trim extent to this stripe
3423 */
625f1c8d
LB
3424 if (extent_logical < logical) {
3425 extent_len -= logical - extent_logical;
3426 extent_logical = logical;
a2de733c 3427 }
625f1c8d 3428 if (extent_logical + extent_len >
a2de733c 3429 logical + map->stripe_len) {
625f1c8d
LB
3430 extent_len = logical + map->stripe_len -
3431 extent_logical;
a2de733c
AJ
3432 }
3433
625f1c8d 3434 extent_physical = extent_logical - logical + physical;
ff023aac
SB
3435 extent_dev = scrub_dev;
3436 extent_mirror_num = mirror_num;
32934280 3437 if (sctx->is_dev_replace)
ff023aac
SB
3438 scrub_remap_extent(fs_info, extent_logical,
3439 extent_len, &extent_physical,
3440 &extent_dev,
3441 &extent_mirror_num);
625f1c8d 3442
89490303
FM
3443 if (flags & BTRFS_EXTENT_FLAG_DATA) {
3444 ret = btrfs_lookup_csums_range(csum_root,
3445 extent_logical,
3446 extent_logical + extent_len - 1,
3447 &sctx->csum_list, 1);
3448 if (ret)
3449 goto out;
3450 }
625f1c8d 3451
6ca1765b 3452 ret = scrub_extent(sctx, map, extent_logical, extent_len,
ff023aac
SB
3453 extent_physical, extent_dev, flags,
3454 generation, extent_mirror_num,
115930cb 3455 extent_logical - logical + physical);
6fa96d72
ZL
3456
3457 scrub_free_csums(sctx);
3458
a2de733c
AJ
3459 if (ret)
3460 goto out;
3461
de17addc
NA
3462 if (sctx->is_dev_replace)
3463 sync_replace_for_zoned(sctx);
3464
625f1c8d
LB
3465 if (extent_logical + extent_len <
3466 key.objectid + bytes) {
ffe2d203 3467 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25
WS
3468 /*
3469 * loop until we find next data stripe
3470 * or we have finished all stripes.
3471 */
5a6ac9ea
MX
3472loop:
3473 physical += map->stripe_len;
3474 ret = get_raid56_logic_offset(physical,
2ae8ae3d
QW
3475 stripe_index, map,
3476 &logical, &stripe_logical);
3477 logical += chunk_logical;
5a6ac9ea
MX
3478
3479 if (ret && physical < physical_end) {
2ae8ae3d 3480 stripe_logical += chunk_logical;
5a6ac9ea 3481 stripe_end = stripe_logical +
a0dd59de 3482 increment;
5a6ac9ea 3483 ret = scrub_raid56_parity(sctx,
2522dbe8 3484 map, scrub_dev,
5a6ac9ea
MX
3485 stripe_logical,
3486 stripe_end);
3487 if (ret)
3488 goto out;
3489 goto loop;
3490 }
3b080b25
WS
3491 } else {
3492 physical += map->stripe_len;
3493 logical += increment;
3494 }
625f1c8d
LB
3495 if (logical < key.objectid + bytes) {
3496 cond_resched();
3497 goto again;
3498 }
3499
3b080b25 3500 if (physical >= physical_end) {
625f1c8d
LB
3501 stop_loop = 1;
3502 break;
3503 }
3504 }
a2de733c
AJ
3505next:
3506 path->slots[0]++;
3507 }
71267333 3508 btrfs_release_path(path);
3b080b25 3509skip:
a2de733c
AJ
3510 logical += increment;
3511 physical += map->stripe_len;
d9d181c1 3512 spin_lock(&sctx->stat_lock);
625f1c8d 3513 if (stop_loop)
2ae8ae3d
QW
3514 sctx->stat.last_physical = map->stripes[stripe_index].physical +
3515 dev_extent_len;
625f1c8d
LB
3516 else
3517 sctx->stat.last_physical = physical;
d9d181c1 3518 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
3519 if (stop_loop)
3520 break;
a2de733c 3521 }
ff023aac 3522out:
a2de733c 3523 /* push queued extents */
d9d181c1 3524 scrub_submit(sctx);
3fb99303 3525 mutex_lock(&sctx->wr_lock);
ff023aac 3526 scrub_wr_submit(sctx);
3fb99303 3527 mutex_unlock(&sctx->wr_lock);
a2de733c 3528
e7786c3a 3529 blk_finish_plug(&plug);
a2de733c 3530 btrfs_free_path(path);
7db1c5d1
NA
3531
3532 if (sctx->is_dev_replace && ret >= 0) {
3533 int ret2;
3534
2ae8ae3d
QW
3535 ret2 = sync_write_pointer_for_zoned(sctx,
3536 chunk_logical + offset,
3537 map->stripes[stripe_index].physical,
3538 physical_end);
7db1c5d1
NA
3539 if (ret2)
3540 ret = ret2;
3541 }
3542
a2de733c
AJ
3543 return ret < 0 ? ret : 0;
3544}
3545
d9d181c1 3546static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
d04fbe19 3547 struct btrfs_block_group *bg,
a36cf8b8 3548 struct btrfs_device *scrub_dev,
020d5b73 3549 u64 dev_offset,
d04fbe19 3550 u64 dev_extent_len)
a2de733c 3551{
fb456252 3552 struct btrfs_fs_info *fs_info = sctx->fs_info;
c8bf1b67 3553 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
a2de733c
AJ
3554 struct map_lookup *map;
3555 struct extent_map *em;
3556 int i;
ff023aac 3557 int ret = 0;
a2de733c 3558
c8bf1b67 3559 read_lock(&map_tree->lock);
d04fbe19 3560 em = lookup_extent_mapping(map_tree, bg->start, bg->length);
c8bf1b67 3561 read_unlock(&map_tree->lock);
a2de733c 3562
020d5b73
FM
3563 if (!em) {
3564 /*
3565 * Might have been an unused block group deleted by the cleaner
3566 * kthread or relocation.
3567 */
d04fbe19
QW
3568 spin_lock(&bg->lock);
3569 if (!bg->removed)
020d5b73 3570 ret = -EINVAL;
d04fbe19 3571 spin_unlock(&bg->lock);
020d5b73
FM
3572
3573 return ret;
3574 }
d04fbe19 3575 if (em->start != bg->start)
a2de733c 3576 goto out;
d04fbe19 3577 if (em->len < dev_extent_len)
a2de733c
AJ
3578 goto out;
3579
d04fbe19 3580 map = em->map_lookup;
a2de733c 3581 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 3582 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 3583 map->stripes[i].physical == dev_offset) {
2ae8ae3d
QW
3584 ret = scrub_stripe(sctx, bg, map, scrub_dev, i,
3585 dev_extent_len);
a2de733c
AJ
3586 if (ret)
3587 goto out;
3588 }
3589 }
3590out:
3591 free_extent_map(em);
3592
3593 return ret;
3594}
3595
de17addc
NA
3596static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3597 struct btrfs_block_group *cache)
3598{
3599 struct btrfs_fs_info *fs_info = cache->fs_info;
3600 struct btrfs_trans_handle *trans;
3601
3602 if (!btrfs_is_zoned(fs_info))
3603 return 0;
3604
3605 btrfs_wait_block_group_reservations(cache);
3606 btrfs_wait_nocow_writers(cache);
3607 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3608
3609 trans = btrfs_join_transaction(root);
3610 if (IS_ERR(trans))
3611 return PTR_ERR(trans);
3612 return btrfs_commit_transaction(trans);
3613}
3614
a2de733c 3615static noinline_for_stack
a36cf8b8 3616int scrub_enumerate_chunks(struct scrub_ctx *sctx,
32934280 3617 struct btrfs_device *scrub_dev, u64 start, u64 end)
a2de733c
AJ
3618{
3619 struct btrfs_dev_extent *dev_extent = NULL;
3620 struct btrfs_path *path;
0b246afa
JM
3621 struct btrfs_fs_info *fs_info = sctx->fs_info;
3622 struct btrfs_root *root = fs_info->dev_root;
a2de733c 3623 u64 chunk_offset;
55e3a601 3624 int ret = 0;
76a8efa1 3625 int ro_set;
a2de733c
AJ
3626 int slot;
3627 struct extent_buffer *l;
3628 struct btrfs_key key;
3629 struct btrfs_key found_key;
32da5386 3630 struct btrfs_block_group *cache;
ff023aac 3631 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
3632
3633 path = btrfs_alloc_path();
3634 if (!path)
3635 return -ENOMEM;
3636
e4058b54 3637 path->reada = READA_FORWARD;
a2de733c
AJ
3638 path->search_commit_root = 1;
3639 path->skip_locking = 1;
3640
a36cf8b8 3641 key.objectid = scrub_dev->devid;
a2de733c
AJ
3642 key.offset = 0ull;
3643 key.type = BTRFS_DEV_EXTENT_KEY;
3644
a2de733c 3645 while (1) {
d04fbe19
QW
3646 u64 dev_extent_len;
3647
a2de733c
AJ
3648 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3649 if (ret < 0)
8c51032f
AJ
3650 break;
3651 if (ret > 0) {
3652 if (path->slots[0] >=
3653 btrfs_header_nritems(path->nodes[0])) {
3654 ret = btrfs_next_leaf(root, path);
55e3a601
Z
3655 if (ret < 0)
3656 break;
3657 if (ret > 0) {
3658 ret = 0;
8c51032f 3659 break;
55e3a601
Z
3660 }
3661 } else {
3662 ret = 0;
8c51032f
AJ
3663 }
3664 }
a2de733c
AJ
3665
3666 l = path->nodes[0];
3667 slot = path->slots[0];
3668
3669 btrfs_item_key_to_cpu(l, &found_key, slot);
3670
a36cf8b8 3671 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
3672 break;
3673
962a298f 3674 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
3675 break;
3676
3677 if (found_key.offset >= end)
3678 break;
3679
3680 if (found_key.offset < key.offset)
3681 break;
3682
3683 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
d04fbe19 3684 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
a2de733c 3685
d04fbe19 3686 if (found_key.offset + dev_extent_len <= start)
ced96edc 3687 goto skip;
a2de733c 3688
a2de733c
AJ
3689 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3690
3691 /*
3692 * get a reference on the corresponding block group to prevent
3693 * the chunk from going away while we scrub it
3694 */
3695 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
3696
3697 /* some chunks are removed but not committed to disk yet,
3698 * continue scrubbing */
3699 if (!cache)
3700 goto skip;
3701
78ce9fc2
NA
3702 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3703 spin_lock(&cache->lock);
3704 if (!cache->to_copy) {
3705 spin_unlock(&cache->lock);
0dc16ef4
FM
3706 btrfs_put_block_group(cache);
3707 goto skip;
78ce9fc2
NA
3708 }
3709 spin_unlock(&cache->lock);
3710 }
3711
2473d24f
FM
3712 /*
3713 * Make sure that while we are scrubbing the corresponding block
3714 * group doesn't get its logical address and its device extents
3715 * reused for another block group, which can possibly be of a
3716 * different type and different profile. We do this to prevent
3717 * false error detections and crashes due to bogus attempts to
3718 * repair extents.
3719 */
3720 spin_lock(&cache->lock);
3721 if (cache->removed) {
3722 spin_unlock(&cache->lock);
3723 btrfs_put_block_group(cache);
3724 goto skip;
3725 }
6b7304af 3726 btrfs_freeze_block_group(cache);
2473d24f
FM
3727 spin_unlock(&cache->lock);
3728
55e3a601
Z
3729 /*
3730 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3731 * to avoid deadlock caused by:
3732 * btrfs_inc_block_group_ro()
3733 * -> btrfs_wait_for_commit()
3734 * -> btrfs_commit_transaction()
3735 * -> btrfs_scrub_pause()
3736 */
3737 scrub_pause_on(fs_info);
b12de528
QW
3738
3739 /*
3740 * Don't do chunk preallocation for scrub.
3741 *
3742 * This is especially important for SYSTEM bgs, or we can hit
3743 * -EFBIG from btrfs_finish_chunk_alloc() like:
3744 * 1. The only SYSTEM bg is marked RO.
3745 * Since SYSTEM bg is small, that's pretty common.
3746 * 2. New SYSTEM bg will be allocated
3747 * Due to regular version will allocate new chunk.
3748 * 3. New SYSTEM bg is empty and will get cleaned up
3749 * Before cleanup really happens, it's marked RO again.
3750 * 4. Empty SYSTEM bg get scrubbed
3751 * We go back to 2.
3752 *
3753 * This can easily boost the amount of SYSTEM chunks if cleaner
3754 * thread can't be triggered fast enough, and use up all space
3755 * of btrfs_super_block::sys_chunk_array
1bbb97b8
QW
3756 *
3757 * While for dev replace, we need to try our best to mark block
3758 * group RO, to prevent race between:
3759 * - Write duplication
3760 * Contains latest data
3761 * - Scrub copy
3762 * Contains data from commit tree
3763 *
3764 * If target block group is not marked RO, nocow writes can
3765 * be overwritten by scrub copy, causing data corruption.
3766 * So for dev-replace, it's not allowed to continue if a block
3767 * group is not RO.
b12de528 3768 */
1bbb97b8 3769 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
de17addc
NA
3770 if (!ret && sctx->is_dev_replace) {
3771 ret = finish_extent_writes_for_zoned(root, cache);
3772 if (ret) {
3773 btrfs_dec_block_group_ro(cache);
3774 scrub_pause_off(fs_info);
3775 btrfs_put_block_group(cache);
3776 break;
3777 }
3778 }
3779
76a8efa1
Z
3780 if (ret == 0) {
3781 ro_set = 1;
1bbb97b8 3782 } else if (ret == -ENOSPC && !sctx->is_dev_replace) {
76a8efa1
Z
3783 /*
3784 * btrfs_inc_block_group_ro return -ENOSPC when it
3785 * failed in creating new chunk for metadata.
1bbb97b8 3786 * It is not a problem for scrub, because
76a8efa1
Z
3787 * metadata are always cowed, and our scrub paused
3788 * commit_transactions.
3789 */
3790 ro_set = 0;
195a49ea
FM
3791 } else if (ret == -ETXTBSY) {
3792 btrfs_warn(fs_info,
3793 "skipping scrub of block group %llu due to active swapfile",
3794 cache->start);
3795 scrub_pause_off(fs_info);
3796 ret = 0;
3797 goto skip_unfreeze;
76a8efa1 3798 } else {
5d163e0e 3799 btrfs_warn(fs_info,
913e1535 3800 "failed setting block group ro: %d", ret);
6b7304af 3801 btrfs_unfreeze_block_group(cache);
55e3a601 3802 btrfs_put_block_group(cache);
1bbb97b8 3803 scrub_pause_off(fs_info);
55e3a601
Z
3804 break;
3805 }
3806
1bbb97b8
QW
3807 /*
3808 * Now the target block is marked RO, wait for nocow writes to
3809 * finish before dev-replace.
3810 * COW is fine, as COW never overwrites extents in commit tree.
3811 */
3812 if (sctx->is_dev_replace) {
3813 btrfs_wait_nocow_writers(cache);
3814 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
3815 cache->length);
3816 }
3817
3818 scrub_pause_off(fs_info);
3ec17a67 3819 down_write(&dev_replace->rwsem);
d04fbe19 3820 dev_replace->cursor_right = found_key.offset + dev_extent_len;
ff023aac
SB
3821 dev_replace->cursor_left = found_key.offset;
3822 dev_replace->item_needs_writeback = 1;
cb5583dd
DS
3823 up_write(&dev_replace->rwsem);
3824
d04fbe19
QW
3825 ASSERT(cache->start == chunk_offset);
3826 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
3827 dev_extent_len);
ff023aac
SB
3828
3829 /*
3830 * flush, submit all pending read and write bios, afterwards
3831 * wait for them.
3832 * Note that in the dev replace case, a read request causes
3833 * write requests that are submitted in the read completion
3834 * worker. Therefore in the current situation, it is required
3835 * that all write requests are flushed, so that all read and
3836 * write requests are really completed when bios_in_flight
3837 * changes to 0.
3838 */
2073c4c2 3839 sctx->flush_all_writes = true;
ff023aac 3840 scrub_submit(sctx);
3fb99303 3841 mutex_lock(&sctx->wr_lock);
ff023aac 3842 scrub_wr_submit(sctx);
3fb99303 3843 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
3844
3845 wait_event(sctx->list_wait,
3846 atomic_read(&sctx->bios_in_flight) == 0);
b708ce96
Z
3847
3848 scrub_pause_on(fs_info);
12cf9372
WS
3849
3850 /*
3851 * must be called before we decrease @scrub_paused.
3852 * make sure we don't block transaction commit while
3853 * we are waiting pending workers finished.
3854 */
ff023aac
SB
3855 wait_event(sctx->list_wait,
3856 atomic_read(&sctx->workers_pending) == 0);
2073c4c2 3857 sctx->flush_all_writes = false;
12cf9372 3858
b708ce96 3859 scrub_pause_off(fs_info);
ff023aac 3860
78ce9fc2
NA
3861 if (sctx->is_dev_replace &&
3862 !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
3863 cache, found_key.offset))
3864 ro_set = 0;
3865
3ec17a67 3866 down_write(&dev_replace->rwsem);
1a1a8b73
FM
3867 dev_replace->cursor_left = dev_replace->cursor_right;
3868 dev_replace->item_needs_writeback = 1;
3ec17a67 3869 up_write(&dev_replace->rwsem);
1a1a8b73 3870
76a8efa1 3871 if (ro_set)
2ff7e61e 3872 btrfs_dec_block_group_ro(cache);
ff023aac 3873
758f2dfc
FM
3874 /*
3875 * We might have prevented the cleaner kthread from deleting
3876 * this block group if it was already unused because we raced
3877 * and set it to RO mode first. So add it back to the unused
3878 * list, otherwise it might not ever be deleted unless a manual
3879 * balance is triggered or it becomes used and unused again.
3880 */
3881 spin_lock(&cache->lock);
3882 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
bf38be65 3883 cache->used == 0) {
758f2dfc 3884 spin_unlock(&cache->lock);
6e80d4f8
DZ
3885 if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
3886 btrfs_discard_queue_work(&fs_info->discard_ctl,
3887 cache);
3888 else
3889 btrfs_mark_bg_unused(cache);
758f2dfc
FM
3890 } else {
3891 spin_unlock(&cache->lock);
3892 }
195a49ea 3893skip_unfreeze:
6b7304af 3894 btrfs_unfreeze_block_group(cache);
a2de733c
AJ
3895 btrfs_put_block_group(cache);
3896 if (ret)
3897 break;
32934280 3898 if (sctx->is_dev_replace &&
af1be4f8 3899 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
3900 ret = -EIO;
3901 break;
3902 }
3903 if (sctx->stat.malloc_errors > 0) {
3904 ret = -ENOMEM;
3905 break;
3906 }
ced96edc 3907skip:
d04fbe19 3908 key.offset = found_key.offset + dev_extent_len;
71267333 3909 btrfs_release_path(path);
a2de733c
AJ
3910 }
3911
a2de733c 3912 btrfs_free_path(path);
8c51032f 3913
55e3a601 3914 return ret;
a2de733c
AJ
3915}
3916
a36cf8b8
SB
3917static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3918 struct btrfs_device *scrub_dev)
a2de733c
AJ
3919{
3920 int i;
3921 u64 bytenr;
3922 u64 gen;
3923 int ret;
0b246afa 3924 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c 3925
84961539 3926 if (BTRFS_FS_ERROR(fs_info))
fbabd4a3 3927 return -EROFS;
79787eaa 3928
5f546063 3929 /* Seed devices of a new filesystem has their own generation. */
0b246afa 3930 if (scrub_dev->fs_devices != fs_info->fs_devices)
5f546063
MX
3931 gen = scrub_dev->generation;
3932 else
0b246afa 3933 gen = fs_info->last_trans_committed;
a2de733c
AJ
3934
3935 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3936 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3937 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3938 scrub_dev->commit_total_bytes)
a2de733c 3939 break;
12659251
NA
3940 if (!btrfs_check_super_location(scrub_dev, bytenr))
3941 continue;
a2de733c 3942
d9d181c1 3943 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 3944 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
96e63a45 3945 NULL, bytenr);
a2de733c
AJ
3946 if (ret)
3947 return ret;
3948 }
b6bfebc1 3949 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3950
3951 return 0;
3952}
3953
e89c4a9c
JB
3954static void scrub_workers_put(struct btrfs_fs_info *fs_info)
3955{
3956 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
3957 &fs_info->scrub_lock)) {
3958 struct btrfs_workqueue *scrub_workers = NULL;
3959 struct btrfs_workqueue *scrub_wr_comp = NULL;
3960 struct btrfs_workqueue *scrub_parity = NULL;
3961
3962 scrub_workers = fs_info->scrub_workers;
3963 scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3964 scrub_parity = fs_info->scrub_parity_workers;
3965
3966 fs_info->scrub_workers = NULL;
3967 fs_info->scrub_wr_completion_workers = NULL;
3968 fs_info->scrub_parity_workers = NULL;
3969 mutex_unlock(&fs_info->scrub_lock);
3970
3971 btrfs_destroy_workqueue(scrub_workers);
3972 btrfs_destroy_workqueue(scrub_wr_comp);
3973 btrfs_destroy_workqueue(scrub_parity);
3974 }
3975}
3976
a2de733c
AJ
3977/*
3978 * get a reference count on fs_info->scrub_workers. start worker if necessary
3979 */
ff023aac
SB
3980static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3981 int is_dev_replace)
a2de733c 3982{
e89c4a9c
JB
3983 struct btrfs_workqueue *scrub_workers = NULL;
3984 struct btrfs_workqueue *scrub_wr_comp = NULL;
3985 struct btrfs_workqueue *scrub_parity = NULL;
6f011058 3986 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
0339ef2f 3987 int max_active = fs_info->thread_pool_size;
e89c4a9c 3988 int ret = -ENOMEM;
a2de733c 3989
e89c4a9c
JB
3990 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
3991 return 0;
eb4318e5 3992
e89c4a9c
JB
3993 scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub", flags,
3994 is_dev_replace ? 1 : max_active, 4);
3995 if (!scrub_workers)
3996 goto fail_scrub_workers;
e82afc52 3997
e89c4a9c 3998 scrub_wr_comp = btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
20b2e302 3999 max_active, 2);
e89c4a9c
JB
4000 if (!scrub_wr_comp)
4001 goto fail_scrub_wr_completion_workers;
ff09c4ca 4002
e89c4a9c
JB
4003 scrub_parity = btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
4004 max_active, 2);
4005 if (!scrub_parity)
4006 goto fail_scrub_parity_workers;
4007
4008 mutex_lock(&fs_info->scrub_lock);
4009 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4010 ASSERT(fs_info->scrub_workers == NULL &&
4011 fs_info->scrub_wr_completion_workers == NULL &&
4012 fs_info->scrub_parity_workers == NULL);
4013 fs_info->scrub_workers = scrub_workers;
4014 fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4015 fs_info->scrub_parity_workers = scrub_parity;
ff09c4ca 4016 refcount_set(&fs_info->scrub_workers_refcnt, 1);
e89c4a9c
JB
4017 mutex_unlock(&fs_info->scrub_lock);
4018 return 0;
632dd772 4019 }
e89c4a9c
JB
4020 /* Other thread raced in and created the workers for us */
4021 refcount_inc(&fs_info->scrub_workers_refcnt);
4022 mutex_unlock(&fs_info->scrub_lock);
e82afc52 4023
e89c4a9c
JB
4024 ret = 0;
4025 btrfs_destroy_workqueue(scrub_parity);
e82afc52 4026fail_scrub_parity_workers:
e89c4a9c 4027 btrfs_destroy_workqueue(scrub_wr_comp);
e82afc52 4028fail_scrub_wr_completion_workers:
e89c4a9c 4029 btrfs_destroy_workqueue(scrub_workers);
e82afc52 4030fail_scrub_workers:
e89c4a9c 4031 return ret;
a2de733c
AJ
4032}
4033
aa1b8cd4
SB
4034int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4035 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 4036 int readonly, int is_dev_replace)
a2de733c 4037{
562d7b15 4038 struct btrfs_dev_lookup_args args = { .devid = devid };
d9d181c1 4039 struct scrub_ctx *sctx;
a2de733c
AJ
4040 int ret;
4041 struct btrfs_device *dev;
a5fb1142 4042 unsigned int nofs_flag;
a2de733c 4043
aa1b8cd4 4044 if (btrfs_fs_closing(fs_info))
6c3abeda 4045 return -EAGAIN;
a2de733c 4046
da17066c 4047 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
4048 /*
4049 * in this case scrub is unable to calculate the checksum
4050 * the way scrub is implemented. Do not handle this
4051 * situation at all because it won't ever happen.
4052 */
efe120a0
FH
4053 btrfs_err(fs_info,
4054 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
da17066c
JM
4055 fs_info->nodesize,
4056 BTRFS_STRIPE_LEN);
b5d67f64
SB
4057 return -EINVAL;
4058 }
4059
da17066c 4060 if (fs_info->nodesize >
7a9e9987 4061 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
da17066c 4062 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
7a9e9987
SB
4063 /*
4064 * would exhaust the array bounds of pagev member in
4065 * struct scrub_block
4066 */
5d163e0e
JM
4067 btrfs_err(fs_info,
4068 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
da17066c 4069 fs_info->nodesize,
7a9e9987 4070 SCRUB_MAX_PAGES_PER_BLOCK,
da17066c 4071 fs_info->sectorsize,
7a9e9987
SB
4072 SCRUB_MAX_PAGES_PER_BLOCK);
4073 return -EINVAL;
4074 }
4075
0e94c4f4
DS
4076 /* Allocate outside of device_list_mutex */
4077 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4078 if (IS_ERR(sctx))
4079 return PTR_ERR(sctx);
a2de733c 4080
e89c4a9c
JB
4081 ret = scrub_workers_get(fs_info, is_dev_replace);
4082 if (ret)
4083 goto out_free_ctx;
4084
aa1b8cd4 4085 mutex_lock(&fs_info->fs_devices->device_list_mutex);
562d7b15 4086 dev = btrfs_find_device(fs_info->fs_devices, &args);
e6e674bd
AJ
4087 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4088 !is_dev_replace)) {
aa1b8cd4 4089 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 4090 ret = -ENODEV;
e89c4a9c 4091 goto out;
a2de733c 4092 }
a2de733c 4093
ebbede42
AJ
4094 if (!is_dev_replace && !readonly &&
4095 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
5d68da3b 4096 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a4852cf2
DS
4097 btrfs_err_in_rcu(fs_info,
4098 "scrub on devid %llu: filesystem on %s is not writable",
4099 devid, rcu_str_deref(dev->name));
0e94c4f4 4100 ret = -EROFS;
e89c4a9c 4101 goto out;
5d68da3b
MX
4102 }
4103
3b7a016f 4104 mutex_lock(&fs_info->scrub_lock);
e12c9621 4105 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
401e29c1 4106 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
a2de733c 4107 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 4108 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 4109 ret = -EIO;
e89c4a9c 4110 goto out;
a2de733c
AJ
4111 }
4112
cb5583dd 4113 down_read(&fs_info->dev_replace.rwsem);
cadbc0a0 4114 if (dev->scrub_ctx ||
8dabb742
SB
4115 (!is_dev_replace &&
4116 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
cb5583dd 4117 up_read(&fs_info->dev_replace.rwsem);
a2de733c 4118 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 4119 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 4120 ret = -EINPROGRESS;
e89c4a9c 4121 goto out;
a2de733c 4122 }
cb5583dd 4123 up_read(&fs_info->dev_replace.rwsem);
3b7a016f 4124
d9d181c1 4125 sctx->readonly = readonly;
cadbc0a0 4126 dev->scrub_ctx = sctx;
3cb0929a 4127 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 4128
3cb0929a
WS
4129 /*
4130 * checking @scrub_pause_req here, we can avoid
4131 * race between committing transaction and scrubbing.
4132 */
cb7ab021 4133 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
4134 atomic_inc(&fs_info->scrubs_running);
4135 mutex_unlock(&fs_info->scrub_lock);
a2de733c 4136
a5fb1142
FM
4137 /*
4138 * In order to avoid deadlock with reclaim when there is a transaction
4139 * trying to pause scrub, make sure we use GFP_NOFS for all the
4140 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
4141 * invoked by our callees. The pausing request is done when the
4142 * transaction commit starts, and it blocks the transaction until scrub
4143 * is paused (done at specific points at scrub_stripe() or right above
4144 * before incrementing fs_info->scrubs_running).
4145 */
4146 nofs_flag = memalloc_nofs_save();
ff023aac 4147 if (!is_dev_replace) {
d1e14420 4148 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
9b011adf
WS
4149 /*
4150 * by holding device list mutex, we can
4151 * kick off writing super in log tree sync.
4152 */
3cb0929a 4153 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 4154 ret = scrub_supers(sctx, dev);
3cb0929a 4155 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 4156 }
a2de733c
AJ
4157
4158 if (!ret)
32934280 4159 ret = scrub_enumerate_chunks(sctx, dev, start, end);
a5fb1142 4160 memalloc_nofs_restore(nofs_flag);
a2de733c 4161
b6bfebc1 4162 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
4163 atomic_dec(&fs_info->scrubs_running);
4164 wake_up(&fs_info->scrub_pause_wait);
4165
b6bfebc1 4166 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 4167
a2de733c 4168 if (progress)
d9d181c1 4169 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c 4170
d1e14420
AJ
4171 if (!is_dev_replace)
4172 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4173 ret ? "not finished" : "finished", devid, ret);
4174
a2de733c 4175 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 4176 dev->scrub_ctx = NULL;
a2de733c
AJ
4177 mutex_unlock(&fs_info->scrub_lock);
4178
e89c4a9c 4179 scrub_workers_put(fs_info);
f55985f4 4180 scrub_put_ctx(sctx);
a2de733c 4181
0e94c4f4 4182 return ret;
e89c4a9c
JB
4183out:
4184 scrub_workers_put(fs_info);
0e94c4f4
DS
4185out_free_ctx:
4186 scrub_free_ctx(sctx);
4187
a2de733c
AJ
4188 return ret;
4189}
4190
2ff7e61e 4191void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
a2de733c 4192{
a2de733c
AJ
4193 mutex_lock(&fs_info->scrub_lock);
4194 atomic_inc(&fs_info->scrub_pause_req);
4195 while (atomic_read(&fs_info->scrubs_paused) !=
4196 atomic_read(&fs_info->scrubs_running)) {
4197 mutex_unlock(&fs_info->scrub_lock);
4198 wait_event(fs_info->scrub_pause_wait,
4199 atomic_read(&fs_info->scrubs_paused) ==
4200 atomic_read(&fs_info->scrubs_running));
4201 mutex_lock(&fs_info->scrub_lock);
4202 }
4203 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
4204}
4205
2ff7e61e 4206void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
a2de733c 4207{
a2de733c
AJ
4208 atomic_dec(&fs_info->scrub_pause_req);
4209 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
4210}
4211
aa1b8cd4 4212int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 4213{
a2de733c
AJ
4214 mutex_lock(&fs_info->scrub_lock);
4215 if (!atomic_read(&fs_info->scrubs_running)) {
4216 mutex_unlock(&fs_info->scrub_lock);
4217 return -ENOTCONN;
4218 }
4219
4220 atomic_inc(&fs_info->scrub_cancel_req);
4221 while (atomic_read(&fs_info->scrubs_running)) {
4222 mutex_unlock(&fs_info->scrub_lock);
4223 wait_event(fs_info->scrub_pause_wait,
4224 atomic_read(&fs_info->scrubs_running) == 0);
4225 mutex_lock(&fs_info->scrub_lock);
4226 }
4227 atomic_dec(&fs_info->scrub_cancel_req);
4228 mutex_unlock(&fs_info->scrub_lock);
4229
4230 return 0;
4231}
4232
163e97ee 4233int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
49b25e05 4234{
163e97ee 4235 struct btrfs_fs_info *fs_info = dev->fs_info;
d9d181c1 4236 struct scrub_ctx *sctx;
a2de733c
AJ
4237
4238 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 4239 sctx = dev->scrub_ctx;
d9d181c1 4240 if (!sctx) {
a2de733c
AJ
4241 mutex_unlock(&fs_info->scrub_lock);
4242 return -ENOTCONN;
4243 }
d9d181c1 4244 atomic_inc(&sctx->cancel_req);
cadbc0a0 4245 while (dev->scrub_ctx) {
a2de733c
AJ
4246 mutex_unlock(&fs_info->scrub_lock);
4247 wait_event(fs_info->scrub_pause_wait,
cadbc0a0 4248 dev->scrub_ctx == NULL);
a2de733c
AJ
4249 mutex_lock(&fs_info->scrub_lock);
4250 }
4251 mutex_unlock(&fs_info->scrub_lock);
4252
4253 return 0;
4254}
1623edeb 4255
2ff7e61e 4256int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
a2de733c
AJ
4257 struct btrfs_scrub_progress *progress)
4258{
562d7b15 4259 struct btrfs_dev_lookup_args args = { .devid = devid };
a2de733c 4260 struct btrfs_device *dev;
d9d181c1 4261 struct scrub_ctx *sctx = NULL;
a2de733c 4262
0b246afa 4263 mutex_lock(&fs_info->fs_devices->device_list_mutex);
562d7b15 4264 dev = btrfs_find_device(fs_info->fs_devices, &args);
a2de733c 4265 if (dev)
cadbc0a0 4266 sctx = dev->scrub_ctx;
d9d181c1
SB
4267 if (sctx)
4268 memcpy(progress, &sctx->stat, sizeof(*progress));
0b246afa 4269 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 4270
d9d181c1 4271 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 4272}
ff023aac
SB
4273
4274static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
fa485d21 4275 u64 extent_logical, u32 extent_len,
ff023aac
SB
4276 u64 *extent_physical,
4277 struct btrfs_device **extent_dev,
4278 int *extent_mirror_num)
4279{
4280 u64 mapped_length;
4c664611 4281 struct btrfs_io_context *bioc = NULL;
ff023aac
SB
4282 int ret;
4283
4284 mapped_length = extent_len;
cf8cddd3 4285 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4c664611
QW
4286 &mapped_length, &bioc, 0);
4287 if (ret || !bioc || mapped_length < extent_len ||
4288 !bioc->stripes[0].dev->bdev) {
4289 btrfs_put_bioc(bioc);
ff023aac
SB
4290 return;
4291 }
4292
4c664611
QW
4293 *extent_physical = bioc->stripes[0].physical;
4294 *extent_mirror_num = bioc->mirror_num;
4295 *extent_dev = bioc->stripes[0].dev;
4296 btrfs_put_bioc(bioc);
ff023aac 4297}