btrfs: rename extent buffer block group item accessors
[linux-2.6-block.git] / fs / btrfs / scrub.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
a2de733c 2/*
b6bfebc1 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
4 */
5
a2de733c 6#include <linux/blkdev.h>
558540c1 7#include <linux/ratelimit.h>
de2491fd 8#include <linux/sched/mm.h>
d5178578 9#include <crypto/hash.h>
a2de733c
AJ
10#include "ctree.h"
11#include "volumes.h"
12#include "disk-io.h"
13#include "ordered-data.h"
0ef8e451 14#include "transaction.h"
558540c1 15#include "backref.h"
5da6fcbc 16#include "extent_io.h"
ff023aac 17#include "dev-replace.h"
21adbd5c 18#include "check-integrity.h"
606686ee 19#include "rcu-string.h"
53b381b3 20#include "raid56.h"
aac0023c 21#include "block-group.h"
a2de733c
AJ
22
23/*
24 * This is only the first step towards a full-features scrub. It reads all
25 * extent and super block and verifies the checksums. In case a bad checksum
26 * is found or the extent cannot be read, good data will be written back if
27 * any can be found.
28 *
29 * Future enhancements:
a2de733c
AJ
30 * - In case an unrepairable extent is encountered, track which files are
31 * affected and report them
a2de733c 32 * - track and record media errors, throw out bad devices
a2de733c 33 * - add a mode to also read unallocated space
a2de733c
AJ
34 */
35
b5d67f64 36struct scrub_block;
d9d181c1 37struct scrub_ctx;
a2de733c 38
ff023aac
SB
39/*
40 * the following three values only influence the performance.
41 * The last one configures the number of parallel and outstanding I/O
42 * operations. The first two values configure an upper limit for the number
43 * of (dynamically allocated) pages that are added to a bio.
44 */
45#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
46#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
47#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
48
49/*
50 * the following value times PAGE_SIZE needs to be large enough to match the
51 * largest node/leaf/sector size that shall be supported.
52 * Values larger than BTRFS_STRIPE_LEN are not supported.
53 */
b5d67f64 54#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c 55
af8e2d1d 56struct scrub_recover {
6f615018 57 refcount_t refs;
af8e2d1d 58 struct btrfs_bio *bbio;
af8e2d1d
MX
59 u64 map_length;
60};
61
a2de733c 62struct scrub_page {
b5d67f64
SB
63 struct scrub_block *sblock;
64 struct page *page;
442a4f63 65 struct btrfs_device *dev;
5a6ac9ea 66 struct list_head list;
a2de733c
AJ
67 u64 flags; /* extent flags */
68 u64 generation;
b5d67f64
SB
69 u64 logical;
70 u64 physical;
ff023aac 71 u64 physical_for_dev_replace;
57019345 72 atomic_t refs;
b5d67f64
SB
73 struct {
74 unsigned int mirror_num:8;
75 unsigned int have_csum:1;
76 unsigned int io_error:1;
77 };
a2de733c 78 u8 csum[BTRFS_CSUM_SIZE];
af8e2d1d
MX
79
80 struct scrub_recover *recover;
a2de733c
AJ
81};
82
83struct scrub_bio {
84 int index;
d9d181c1 85 struct scrub_ctx *sctx;
a36cf8b8 86 struct btrfs_device *dev;
a2de733c 87 struct bio *bio;
4e4cbee9 88 blk_status_t status;
a2de733c
AJ
89 u64 logical;
90 u64 physical;
ff023aac
SB
91#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
92 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
93#else
94 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
95#endif
b5d67f64 96 int page_count;
a2de733c
AJ
97 int next_free;
98 struct btrfs_work work;
99};
100
b5d67f64 101struct scrub_block {
7a9e9987 102 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
103 int page_count;
104 atomic_t outstanding_pages;
186debd6 105 refcount_t refs; /* free mem on transition to zero */
d9d181c1 106 struct scrub_ctx *sctx;
5a6ac9ea 107 struct scrub_parity *sparity;
b5d67f64
SB
108 struct {
109 unsigned int header_error:1;
110 unsigned int checksum_error:1;
111 unsigned int no_io_error_seen:1;
442a4f63 112 unsigned int generation_error:1; /* also sets header_error */
5a6ac9ea
MX
113
114 /* The following is for the data used to check parity */
115 /* It is for the data with checksum */
116 unsigned int data_corrected:1;
b5d67f64 117 };
73ff61db 118 struct btrfs_work work;
b5d67f64
SB
119};
120
5a6ac9ea
MX
121/* Used for the chunks with parity stripe such RAID5/6 */
122struct scrub_parity {
123 struct scrub_ctx *sctx;
124
125 struct btrfs_device *scrub_dev;
126
127 u64 logic_start;
128
129 u64 logic_end;
130
131 int nsectors;
132
972d7219 133 u64 stripe_len;
5a6ac9ea 134
78a76450 135 refcount_t refs;
5a6ac9ea
MX
136
137 struct list_head spages;
138
139 /* Work of parity check and repair */
140 struct btrfs_work work;
141
142 /* Mark the parity blocks which have data */
143 unsigned long *dbitmap;
144
145 /*
146 * Mark the parity blocks which have data, but errors happen when
147 * read data or check data
148 */
149 unsigned long *ebitmap;
150
151 unsigned long bitmap[0];
152};
153
d9d181c1 154struct scrub_ctx {
ff023aac 155 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
fb456252 156 struct btrfs_fs_info *fs_info;
a2de733c
AJ
157 int first_free;
158 int curr;
b6bfebc1
SB
159 atomic_t bios_in_flight;
160 atomic_t workers_pending;
a2de733c
AJ
161 spinlock_t list_lock;
162 wait_queue_head_t list_wait;
163 u16 csum_size;
164 struct list_head csum_list;
165 atomic_t cancel_req;
8628764e 166 int readonly;
ff023aac 167 int pages_per_rd_bio;
63a212ab
SB
168
169 int is_dev_replace;
3fb99303
DS
170
171 struct scrub_bio *wr_curr_bio;
172 struct mutex wr_lock;
173 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
3fb99303 174 struct btrfs_device *wr_tgtdev;
2073c4c2 175 bool flush_all_writes;
63a212ab 176
a2de733c
AJ
177 /*
178 * statistics
179 */
180 struct btrfs_scrub_progress stat;
181 spinlock_t stat_lock;
f55985f4
FM
182
183 /*
184 * Use a ref counter to avoid use-after-free issues. Scrub workers
185 * decrement bios_in_flight and workers_pending and then do a wakeup
186 * on the list_wait wait queue. We must ensure the main scrub task
187 * doesn't free the scrub context before or while the workers are
188 * doing the wakeup() call.
189 */
99f4cdb1 190 refcount_t refs;
a2de733c
AJ
191};
192
558540c1
JS
193struct scrub_warning {
194 struct btrfs_path *path;
195 u64 extent_item_size;
558540c1 196 const char *errstr;
6aa21263 197 u64 physical;
558540c1
JS
198 u64 logical;
199 struct btrfs_device *dev;
558540c1
JS
200};
201
0966a7b1
QW
202struct full_stripe_lock {
203 struct rb_node node;
204 u64 logical;
205 u64 refs;
206 struct mutex mutex;
207};
208
b6bfebc1
SB
209static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
210static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
b5d67f64 211static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
be50a8dd 212static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
ff023aac 213 struct scrub_block *sblocks_for_recheck);
34f5c8e9 214static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
215 struct scrub_block *sblock,
216 int retry_failed_mirror);
ba7cf988 217static void scrub_recheck_block_checksum(struct scrub_block *sblock);
b5d67f64 218static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 219 struct scrub_block *sblock_good);
b5d67f64
SB
220static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
221 struct scrub_block *sblock_good,
222 int page_num, int force_write);
ff023aac
SB
223static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
224static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
225 int page_num);
b5d67f64
SB
226static int scrub_checksum_data(struct scrub_block *sblock);
227static int scrub_checksum_tree_block(struct scrub_block *sblock);
228static int scrub_checksum_super(struct scrub_block *sblock);
229static void scrub_block_get(struct scrub_block *sblock);
230static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
231static void scrub_page_get(struct scrub_page *spage);
232static void scrub_page_put(struct scrub_page *spage);
5a6ac9ea
MX
233static void scrub_parity_get(struct scrub_parity *sparity);
234static void scrub_parity_put(struct scrub_parity *sparity);
ff023aac
SB
235static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
236 struct scrub_page *spage);
d9d181c1 237static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 238 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
239 u64 gen, int mirror_num, u8 *csum, int force,
240 u64 physical_for_dev_replace);
4246a0b6 241static void scrub_bio_end_io(struct bio *bio);
b5d67f64
SB
242static void scrub_bio_end_io_worker(struct btrfs_work *work);
243static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
244static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
245 u64 extent_logical, u64 extent_len,
246 u64 *extent_physical,
247 struct btrfs_device **extent_dev,
248 int *extent_mirror_num);
ff023aac
SB
249static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
250 struct scrub_page *spage);
251static void scrub_wr_submit(struct scrub_ctx *sctx);
4246a0b6 252static void scrub_wr_bio_end_io(struct bio *bio);
ff023aac 253static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
cb7ab021 254static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 255static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
f55985f4 256static void scrub_put_ctx(struct scrub_ctx *sctx);
1623edeb 257
762221f0
LB
258static inline int scrub_is_page_on_raid56(struct scrub_page *page)
259{
260 return page->recover &&
261 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
262}
1623edeb 263
b6bfebc1
SB
264static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
265{
99f4cdb1 266 refcount_inc(&sctx->refs);
b6bfebc1
SB
267 atomic_inc(&sctx->bios_in_flight);
268}
269
270static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
271{
272 atomic_dec(&sctx->bios_in_flight);
273 wake_up(&sctx->list_wait);
f55985f4 274 scrub_put_ctx(sctx);
b6bfebc1
SB
275}
276
cb7ab021 277static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
278{
279 while (atomic_read(&fs_info->scrub_pause_req)) {
280 mutex_unlock(&fs_info->scrub_lock);
281 wait_event(fs_info->scrub_pause_wait,
282 atomic_read(&fs_info->scrub_pause_req) == 0);
283 mutex_lock(&fs_info->scrub_lock);
284 }
285}
286
0e22be89 287static void scrub_pause_on(struct btrfs_fs_info *fs_info)
cb7ab021
WS
288{
289 atomic_inc(&fs_info->scrubs_paused);
290 wake_up(&fs_info->scrub_pause_wait);
0e22be89 291}
cb7ab021 292
0e22be89
Z
293static void scrub_pause_off(struct btrfs_fs_info *fs_info)
294{
cb7ab021
WS
295 mutex_lock(&fs_info->scrub_lock);
296 __scrub_blocked_if_needed(fs_info);
297 atomic_dec(&fs_info->scrubs_paused);
298 mutex_unlock(&fs_info->scrub_lock);
299
300 wake_up(&fs_info->scrub_pause_wait);
301}
302
0e22be89
Z
303static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
304{
305 scrub_pause_on(fs_info);
306 scrub_pause_off(fs_info);
307}
308
0966a7b1
QW
309/*
310 * Insert new full stripe lock into full stripe locks tree
311 *
312 * Return pointer to existing or newly inserted full_stripe_lock structure if
313 * everything works well.
314 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
315 *
316 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
317 * function
318 */
319static struct full_stripe_lock *insert_full_stripe_lock(
320 struct btrfs_full_stripe_locks_tree *locks_root,
321 u64 fstripe_logical)
322{
323 struct rb_node **p;
324 struct rb_node *parent = NULL;
325 struct full_stripe_lock *entry;
326 struct full_stripe_lock *ret;
327
a32bf9a3 328 lockdep_assert_held(&locks_root->lock);
0966a7b1
QW
329
330 p = &locks_root->root.rb_node;
331 while (*p) {
332 parent = *p;
333 entry = rb_entry(parent, struct full_stripe_lock, node);
334 if (fstripe_logical < entry->logical) {
335 p = &(*p)->rb_left;
336 } else if (fstripe_logical > entry->logical) {
337 p = &(*p)->rb_right;
338 } else {
339 entry->refs++;
340 return entry;
341 }
342 }
343
a5fb1142
FM
344 /*
345 * Insert new lock.
a5fb1142 346 */
0966a7b1
QW
347 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
348 if (!ret)
349 return ERR_PTR(-ENOMEM);
350 ret->logical = fstripe_logical;
351 ret->refs = 1;
352 mutex_init(&ret->mutex);
353
354 rb_link_node(&ret->node, parent, p);
355 rb_insert_color(&ret->node, &locks_root->root);
356 return ret;
357}
358
359/*
360 * Search for a full stripe lock of a block group
361 *
362 * Return pointer to existing full stripe lock if found
363 * Return NULL if not found
364 */
365static struct full_stripe_lock *search_full_stripe_lock(
366 struct btrfs_full_stripe_locks_tree *locks_root,
367 u64 fstripe_logical)
368{
369 struct rb_node *node;
370 struct full_stripe_lock *entry;
371
a32bf9a3 372 lockdep_assert_held(&locks_root->lock);
0966a7b1
QW
373
374 node = locks_root->root.rb_node;
375 while (node) {
376 entry = rb_entry(node, struct full_stripe_lock, node);
377 if (fstripe_logical < entry->logical)
378 node = node->rb_left;
379 else if (fstripe_logical > entry->logical)
380 node = node->rb_right;
381 else
382 return entry;
383 }
384 return NULL;
385}
386
387/*
388 * Helper to get full stripe logical from a normal bytenr.
389 *
390 * Caller must ensure @cache is a RAID56 block group.
391 */
392static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
393 u64 bytenr)
394{
395 u64 ret;
396
397 /*
398 * Due to chunk item size limit, full stripe length should not be
399 * larger than U32_MAX. Just a sanity check here.
400 */
401 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
402
403 /*
404 * round_down() can only handle power of 2, while RAID56 full
405 * stripe length can be 64KiB * n, so we need to manually round down.
406 */
407 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
408 cache->full_stripe_len + cache->key.objectid;
409 return ret;
410}
411
412/*
413 * Lock a full stripe to avoid concurrency of recovery and read
414 *
415 * It's only used for profiles with parities (RAID5/6), for other profiles it
416 * does nothing.
417 *
418 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
419 * So caller must call unlock_full_stripe() at the same context.
420 *
421 * Return <0 if encounters error.
422 */
423static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
424 bool *locked_ret)
425{
426 struct btrfs_block_group_cache *bg_cache;
427 struct btrfs_full_stripe_locks_tree *locks_root;
428 struct full_stripe_lock *existing;
429 u64 fstripe_start;
430 int ret = 0;
431
432 *locked_ret = false;
433 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
434 if (!bg_cache) {
435 ASSERT(0);
436 return -ENOENT;
437 }
438
439 /* Profiles not based on parity don't need full stripe lock */
440 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
441 goto out;
442 locks_root = &bg_cache->full_stripe_locks_root;
443
444 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
445
446 /* Now insert the full stripe lock */
447 mutex_lock(&locks_root->lock);
448 existing = insert_full_stripe_lock(locks_root, fstripe_start);
449 mutex_unlock(&locks_root->lock);
450 if (IS_ERR(existing)) {
451 ret = PTR_ERR(existing);
452 goto out;
453 }
454 mutex_lock(&existing->mutex);
455 *locked_ret = true;
456out:
457 btrfs_put_block_group(bg_cache);
458 return ret;
459}
460
461/*
462 * Unlock a full stripe.
463 *
464 * NOTE: Caller must ensure it's the same context calling corresponding
465 * lock_full_stripe().
466 *
467 * Return 0 if we unlock full stripe without problem.
468 * Return <0 for error
469 */
470static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
471 bool locked)
472{
473 struct btrfs_block_group_cache *bg_cache;
474 struct btrfs_full_stripe_locks_tree *locks_root;
475 struct full_stripe_lock *fstripe_lock;
476 u64 fstripe_start;
477 bool freeit = false;
478 int ret = 0;
479
480 /* If we didn't acquire full stripe lock, no need to continue */
481 if (!locked)
482 return 0;
483
484 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
485 if (!bg_cache) {
486 ASSERT(0);
487 return -ENOENT;
488 }
489 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
490 goto out;
491
492 locks_root = &bg_cache->full_stripe_locks_root;
493 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
494
495 mutex_lock(&locks_root->lock);
496 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
497 /* Unpaired unlock_full_stripe() detected */
498 if (!fstripe_lock) {
499 WARN_ON(1);
500 ret = -ENOENT;
501 mutex_unlock(&locks_root->lock);
502 goto out;
503 }
504
505 if (fstripe_lock->refs == 0) {
506 WARN_ON(1);
507 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
508 fstripe_lock->logical);
509 } else {
510 fstripe_lock->refs--;
511 }
512
513 if (fstripe_lock->refs == 0) {
514 rb_erase(&fstripe_lock->node, &locks_root->root);
515 freeit = true;
516 }
517 mutex_unlock(&locks_root->lock);
518
519 mutex_unlock(&fstripe_lock->mutex);
520 if (freeit)
521 kfree(fstripe_lock);
522out:
523 btrfs_put_block_group(bg_cache);
524 return ret;
525}
526
d9d181c1 527static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 528{
d9d181c1 529 while (!list_empty(&sctx->csum_list)) {
a2de733c 530 struct btrfs_ordered_sum *sum;
d9d181c1 531 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
532 struct btrfs_ordered_sum, list);
533 list_del(&sum->list);
534 kfree(sum);
535 }
536}
537
d9d181c1 538static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
539{
540 int i;
a2de733c 541
d9d181c1 542 if (!sctx)
a2de733c
AJ
543 return;
544
b5d67f64 545 /* this can happen when scrub is cancelled */
d9d181c1
SB
546 if (sctx->curr != -1) {
547 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
548
549 for (i = 0; i < sbio->page_count; i++) {
ff023aac 550 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
551 scrub_block_put(sbio->pagev[i]->sblock);
552 }
553 bio_put(sbio->bio);
554 }
555
ff023aac 556 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 557 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
558
559 if (!sbio)
560 break;
a2de733c
AJ
561 kfree(sbio);
562 }
563
3fb99303 564 kfree(sctx->wr_curr_bio);
d9d181c1
SB
565 scrub_free_csums(sctx);
566 kfree(sctx);
a2de733c
AJ
567}
568
f55985f4
FM
569static void scrub_put_ctx(struct scrub_ctx *sctx)
570{
99f4cdb1 571 if (refcount_dec_and_test(&sctx->refs))
f55985f4
FM
572 scrub_free_ctx(sctx);
573}
574
92f7ba43
DS
575static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
576 struct btrfs_fs_info *fs_info, int is_dev_replace)
a2de733c 577{
d9d181c1 578 struct scrub_ctx *sctx;
a2de733c 579 int i;
a2de733c 580
58c4e173 581 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
d9d181c1 582 if (!sctx)
a2de733c 583 goto nomem;
99f4cdb1 584 refcount_set(&sctx->refs, 1);
63a212ab 585 sctx->is_dev_replace = is_dev_replace;
b54ffb73 586 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1 587 sctx->curr = -1;
92f7ba43 588 sctx->fs_info = fs_info;
e49be14b 589 INIT_LIST_HEAD(&sctx->csum_list);
ff023aac 590 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
591 struct scrub_bio *sbio;
592
58c4e173 593 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
a2de733c
AJ
594 if (!sbio)
595 goto nomem;
d9d181c1 596 sctx->bios[i] = sbio;
a2de733c 597
a2de733c 598 sbio->index = i;
d9d181c1 599 sbio->sctx = sctx;
b5d67f64 600 sbio->page_count = 0;
a0cac0ec
OS
601 btrfs_init_work(&sbio->work, scrub_bio_end_io_worker, NULL,
602 NULL);
a2de733c 603
ff023aac 604 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 605 sctx->bios[i]->next_free = i + 1;
0ef8e451 606 else
d9d181c1
SB
607 sctx->bios[i]->next_free = -1;
608 }
609 sctx->first_free = 0;
b6bfebc1
SB
610 atomic_set(&sctx->bios_in_flight, 0);
611 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
612 atomic_set(&sctx->cancel_req, 0);
613 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
d9d181c1
SB
614
615 spin_lock_init(&sctx->list_lock);
616 spin_lock_init(&sctx->stat_lock);
617 init_waitqueue_head(&sctx->list_wait);
ff023aac 618
3fb99303
DS
619 WARN_ON(sctx->wr_curr_bio != NULL);
620 mutex_init(&sctx->wr_lock);
621 sctx->wr_curr_bio = NULL;
8fcdac3f 622 if (is_dev_replace) {
ded56184 623 WARN_ON(!fs_info->dev_replace.tgtdev);
3fb99303 624 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
ded56184 625 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
2073c4c2 626 sctx->flush_all_writes = false;
ff023aac 627 }
8fcdac3f 628
d9d181c1 629 return sctx;
a2de733c
AJ
630
631nomem:
d9d181c1 632 scrub_free_ctx(sctx);
a2de733c
AJ
633 return ERR_PTR(-ENOMEM);
634}
635
ff023aac
SB
636static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
637 void *warn_ctx)
558540c1
JS
638{
639 u64 isize;
640 u32 nlink;
641 int ret;
642 int i;
de2491fd 643 unsigned nofs_flag;
558540c1
JS
644 struct extent_buffer *eb;
645 struct btrfs_inode_item *inode_item;
ff023aac 646 struct scrub_warning *swarn = warn_ctx;
fb456252 647 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
558540c1
JS
648 struct inode_fs_paths *ipath = NULL;
649 struct btrfs_root *local_root;
650 struct btrfs_key root_key;
1d4c08e0 651 struct btrfs_key key;
558540c1
JS
652
653 root_key.objectid = root;
654 root_key.type = BTRFS_ROOT_ITEM_KEY;
655 root_key.offset = (u64)-1;
656 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
657 if (IS_ERR(local_root)) {
658 ret = PTR_ERR(local_root);
659 goto err;
660 }
661
14692cc1
DS
662 /*
663 * this makes the path point to (inum INODE_ITEM ioff)
664 */
1d4c08e0
DS
665 key.objectid = inum;
666 key.type = BTRFS_INODE_ITEM_KEY;
667 key.offset = 0;
668
669 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1
JS
670 if (ret) {
671 btrfs_release_path(swarn->path);
672 goto err;
673 }
674
675 eb = swarn->path->nodes[0];
676 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
677 struct btrfs_inode_item);
678 isize = btrfs_inode_size(eb, inode_item);
679 nlink = btrfs_inode_nlink(eb, inode_item);
680 btrfs_release_path(swarn->path);
681
de2491fd
DS
682 /*
683 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
684 * uses GFP_NOFS in this context, so we keep it consistent but it does
685 * not seem to be strictly necessary.
686 */
687 nofs_flag = memalloc_nofs_save();
558540c1 688 ipath = init_ipath(4096, local_root, swarn->path);
de2491fd 689 memalloc_nofs_restore(nofs_flag);
26bdef54
DC
690 if (IS_ERR(ipath)) {
691 ret = PTR_ERR(ipath);
692 ipath = NULL;
693 goto err;
694 }
558540c1
JS
695 ret = paths_from_inode(inum, ipath);
696
697 if (ret < 0)
698 goto err;
699
700 /*
701 * we deliberately ignore the bit ipath might have been too small to
702 * hold all of the paths here
703 */
704 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
5d163e0e 705 btrfs_warn_in_rcu(fs_info,
6aa21263 706"%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
5d163e0e
JM
707 swarn->errstr, swarn->logical,
708 rcu_str_deref(swarn->dev->name),
6aa21263 709 swarn->physical,
5d163e0e
JM
710 root, inum, offset,
711 min(isize - offset, (u64)PAGE_SIZE), nlink,
712 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
713
714 free_ipath(ipath);
715 return 0;
716
717err:
5d163e0e 718 btrfs_warn_in_rcu(fs_info,
6aa21263 719 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
5d163e0e
JM
720 swarn->errstr, swarn->logical,
721 rcu_str_deref(swarn->dev->name),
6aa21263 722 swarn->physical,
5d163e0e 723 root, inum, offset, ret);
558540c1
JS
724
725 free_ipath(ipath);
726 return 0;
727}
728
b5d67f64 729static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 730{
a36cf8b8
SB
731 struct btrfs_device *dev;
732 struct btrfs_fs_info *fs_info;
558540c1
JS
733 struct btrfs_path *path;
734 struct btrfs_key found_key;
735 struct extent_buffer *eb;
736 struct btrfs_extent_item *ei;
737 struct scrub_warning swarn;
69917e43
LB
738 unsigned long ptr = 0;
739 u64 extent_item_pos;
740 u64 flags = 0;
558540c1 741 u64 ref_root;
69917e43 742 u32 item_size;
07c9a8e0 743 u8 ref_level = 0;
69917e43 744 int ret;
558540c1 745
a36cf8b8 746 WARN_ON(sblock->page_count < 1);
7a9e9987 747 dev = sblock->pagev[0]->dev;
fb456252 748 fs_info = sblock->sctx->fs_info;
a36cf8b8 749
558540c1 750 path = btrfs_alloc_path();
8b9456da
DS
751 if (!path)
752 return;
558540c1 753
6aa21263 754 swarn.physical = sblock->pagev[0]->physical;
7a9e9987 755 swarn.logical = sblock->pagev[0]->logical;
558540c1 756 swarn.errstr = errstr;
a36cf8b8 757 swarn.dev = NULL;
558540c1 758
69917e43
LB
759 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
760 &flags);
558540c1
JS
761 if (ret < 0)
762 goto out;
763
4692cf58 764 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
765 swarn.extent_item_size = found_key.offset;
766
767 eb = path->nodes[0];
768 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
769 item_size = btrfs_item_size_nr(eb, path->slots[0]);
770
69917e43 771 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 772 do {
6eda71d0
LB
773 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
774 item_size, &ref_root,
775 &ref_level);
ecaeb14b 776 btrfs_warn_in_rcu(fs_info,
6aa21263 777"%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
5d163e0e 778 errstr, swarn.logical,
606686ee 779 rcu_str_deref(dev->name),
6aa21263 780 swarn.physical,
558540c1
JS
781 ref_level ? "node" : "leaf",
782 ret < 0 ? -1 : ref_level,
783 ret < 0 ? -1 : ref_root);
784 } while (ret != 1);
d8fe29e9 785 btrfs_release_path(path);
558540c1 786 } else {
d8fe29e9 787 btrfs_release_path(path);
558540c1 788 swarn.path = path;
a36cf8b8 789 swarn.dev = dev;
7a3ae2f8
JS
790 iterate_extent_inodes(fs_info, found_key.objectid,
791 extent_item_pos, 1,
c995ab3c 792 scrub_print_warning_inode, &swarn, false);
558540c1
JS
793 }
794
795out:
796 btrfs_free_path(path);
558540c1
JS
797}
798
af8e2d1d
MX
799static inline void scrub_get_recover(struct scrub_recover *recover)
800{
6f615018 801 refcount_inc(&recover->refs);
af8e2d1d
MX
802}
803
e501bfe3
QW
804static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
805 struct scrub_recover *recover)
af8e2d1d 806{
6f615018 807 if (refcount_dec_and_test(&recover->refs)) {
e501bfe3 808 btrfs_bio_counter_dec(fs_info);
6e9606d2 809 btrfs_put_bbio(recover->bbio);
af8e2d1d
MX
810 kfree(recover);
811 }
812}
813
a2de733c 814/*
b5d67f64
SB
815 * scrub_handle_errored_block gets called when either verification of the
816 * pages failed or the bio failed to read, e.g. with EIO. In the latter
817 * case, this function handles all pages in the bio, even though only one
818 * may be bad.
819 * The goal of this function is to repair the errored block by using the
820 * contents of one of the mirrors.
a2de733c 821 */
b5d67f64 822static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 823{
d9d181c1 824 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 825 struct btrfs_device *dev;
b5d67f64 826 struct btrfs_fs_info *fs_info;
b5d67f64 827 u64 logical;
b5d67f64
SB
828 unsigned int failed_mirror_index;
829 unsigned int is_metadata;
830 unsigned int have_csum;
b5d67f64
SB
831 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
832 struct scrub_block *sblock_bad;
833 int ret;
834 int mirror_index;
835 int page_num;
836 int success;
28d70e23 837 bool full_stripe_locked;
7c3c7cb9 838 unsigned int nofs_flag;
558540c1 839 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
840 DEFAULT_RATELIMIT_BURST);
841
842 BUG_ON(sblock_to_check->page_count < 1);
fb456252 843 fs_info = sctx->fs_info;
4ded4f63
SB
844 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
845 /*
846 * if we find an error in a super block, we just report it.
847 * They will get written with the next transaction commit
848 * anyway
849 */
850 spin_lock(&sctx->stat_lock);
851 ++sctx->stat.super_errors;
852 spin_unlock(&sctx->stat_lock);
853 return 0;
854 }
7a9e9987 855 logical = sblock_to_check->pagev[0]->logical;
7a9e9987
SB
856 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
857 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
858 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 859 BTRFS_EXTENT_FLAG_DATA);
7a9e9987 860 have_csum = sblock_to_check->pagev[0]->have_csum;
7a9e9987 861 dev = sblock_to_check->pagev[0]->dev;
13db62b7 862
7c3c7cb9
FM
863 /*
864 * We must use GFP_NOFS because the scrub task might be waiting for a
865 * worker task executing this function and in turn a transaction commit
866 * might be waiting the scrub task to pause (which needs to wait for all
867 * the worker tasks to complete before pausing).
868 * We do allocations in the workers through insert_full_stripe_lock()
869 * and scrub_add_page_to_wr_bio(), which happens down the call chain of
870 * this function.
871 */
872 nofs_flag = memalloc_nofs_save();
28d70e23
QW
873 /*
874 * For RAID5/6, race can happen for a different device scrub thread.
875 * For data corruption, Parity and Data threads will both try
876 * to recovery the data.
877 * Race can lead to doubly added csum error, or even unrecoverable
878 * error.
879 */
880 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
881 if (ret < 0) {
7c3c7cb9 882 memalloc_nofs_restore(nofs_flag);
28d70e23
QW
883 spin_lock(&sctx->stat_lock);
884 if (ret == -ENOMEM)
885 sctx->stat.malloc_errors++;
886 sctx->stat.read_errors++;
887 sctx->stat.uncorrectable_errors++;
888 spin_unlock(&sctx->stat_lock);
889 return ret;
890 }
891
b5d67f64
SB
892 /*
893 * read all mirrors one after the other. This includes to
894 * re-read the extent or metadata block that failed (that was
895 * the cause that this fixup code is called) another time,
896 * page by page this time in order to know which pages
897 * caused I/O errors and which ones are good (for all mirrors).
898 * It is the goal to handle the situation when more than one
899 * mirror contains I/O errors, but the errors do not
900 * overlap, i.e. the data can be repaired by selecting the
901 * pages from those mirrors without I/O error on the
902 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
903 * would be that mirror #1 has an I/O error on the first page,
904 * the second page is good, and mirror #2 has an I/O error on
905 * the second page, but the first page is good.
906 * Then the first page of the first mirror can be repaired by
907 * taking the first page of the second mirror, and the
908 * second page of the second mirror can be repaired by
909 * copying the contents of the 2nd page of the 1st mirror.
910 * One more note: if the pages of one mirror contain I/O
911 * errors, the checksum cannot be verified. In order to get
912 * the best data for repairing, the first attempt is to find
913 * a mirror without I/O errors and with a validated checksum.
914 * Only if this is not possible, the pages are picked from
915 * mirrors with I/O errors without considering the checksum.
916 * If the latter is the case, at the end, the checksum of the
917 * repaired area is verified in order to correctly maintain
918 * the statistics.
919 */
920
31e818fe 921 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
7c3c7cb9 922 sizeof(*sblocks_for_recheck), GFP_KERNEL);
b5d67f64 923 if (!sblocks_for_recheck) {
d9d181c1
SB
924 spin_lock(&sctx->stat_lock);
925 sctx->stat.malloc_errors++;
926 sctx->stat.read_errors++;
927 sctx->stat.uncorrectable_errors++;
928 spin_unlock(&sctx->stat_lock);
a36cf8b8 929 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 930 goto out;
a2de733c
AJ
931 }
932
b5d67f64 933 /* setup the context, map the logical blocks and alloc the pages */
be50a8dd 934 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
b5d67f64 935 if (ret) {
d9d181c1
SB
936 spin_lock(&sctx->stat_lock);
937 sctx->stat.read_errors++;
938 sctx->stat.uncorrectable_errors++;
939 spin_unlock(&sctx->stat_lock);
a36cf8b8 940 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
941 goto out;
942 }
943 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
944 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 945
b5d67f64 946 /* build and submit the bios for the failed mirror, check checksums */
affe4a5a 947 scrub_recheck_block(fs_info, sblock_bad, 1);
a2de733c 948
b5d67f64
SB
949 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
950 sblock_bad->no_io_error_seen) {
951 /*
952 * the error disappeared after reading page by page, or
953 * the area was part of a huge bio and other parts of the
954 * bio caused I/O errors, or the block layer merged several
955 * read requests into one and the error is caused by a
956 * different bio (usually one of the two latter cases is
957 * the cause)
958 */
d9d181c1
SB
959 spin_lock(&sctx->stat_lock);
960 sctx->stat.unverified_errors++;
5a6ac9ea 961 sblock_to_check->data_corrected = 1;
d9d181c1 962 spin_unlock(&sctx->stat_lock);
a2de733c 963
ff023aac
SB
964 if (sctx->is_dev_replace)
965 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 966 goto out;
a2de733c 967 }
a2de733c 968
b5d67f64 969 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
970 spin_lock(&sctx->stat_lock);
971 sctx->stat.read_errors++;
972 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
973 if (__ratelimit(&_rs))
974 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 975 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 976 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
977 spin_lock(&sctx->stat_lock);
978 sctx->stat.csum_errors++;
979 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
980 if (__ratelimit(&_rs))
981 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 982 btrfs_dev_stat_inc_and_print(dev,
442a4f63 983 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 984 } else if (sblock_bad->header_error) {
d9d181c1
SB
985 spin_lock(&sctx->stat_lock);
986 sctx->stat.verify_errors++;
987 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
988 if (__ratelimit(&_rs))
989 scrub_print_warning("checksum/header error",
990 sblock_to_check);
442a4f63 991 if (sblock_bad->generation_error)
a36cf8b8 992 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
993 BTRFS_DEV_STAT_GENERATION_ERRS);
994 else
a36cf8b8 995 btrfs_dev_stat_inc_and_print(dev,
442a4f63 996 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 997 }
a2de733c 998
33ef30ad
ID
999 if (sctx->readonly) {
1000 ASSERT(!sctx->is_dev_replace);
1001 goto out;
1002 }
a2de733c 1003
b5d67f64
SB
1004 /*
1005 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1006 * checksums.
1007 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1008 * errors and also does not have a checksum error.
1009 * If one is found, and if a checksum is present, the full block
1010 * that is known to contain an error is rewritten. Afterwards
1011 * the block is known to be corrected.
1012 * If a mirror is found which is completely correct, and no
1013 * checksum is present, only those pages are rewritten that had
1014 * an I/O error in the block to be repaired, since it cannot be
1015 * determined, which copy of the other pages is better (and it
1016 * could happen otherwise that a correct page would be
1017 * overwritten by a bad one).
1018 */
762221f0 1019 for (mirror_index = 0; ;mirror_index++) {
cb2ced73 1020 struct scrub_block *sblock_other;
b5d67f64 1021
cb2ced73
SB
1022 if (mirror_index == failed_mirror_index)
1023 continue;
762221f0
LB
1024
1025 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1026 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1027 if (mirror_index >= BTRFS_MAX_MIRRORS)
1028 break;
1029 if (!sblocks_for_recheck[mirror_index].page_count)
1030 break;
1031
1032 sblock_other = sblocks_for_recheck + mirror_index;
1033 } else {
1034 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1035 int max_allowed = r->bbio->num_stripes -
1036 r->bbio->num_tgtdevs;
1037
1038 if (mirror_index >= max_allowed)
1039 break;
1040 if (!sblocks_for_recheck[1].page_count)
1041 break;
1042
1043 ASSERT(failed_mirror_index == 0);
1044 sblock_other = sblocks_for_recheck + 1;
1045 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1046 }
cb2ced73
SB
1047
1048 /* build and submit the bios, check checksums */
affe4a5a 1049 scrub_recheck_block(fs_info, sblock_other, 0);
34f5c8e9
SB
1050
1051 if (!sblock_other->header_error &&
b5d67f64
SB
1052 !sblock_other->checksum_error &&
1053 sblock_other->no_io_error_seen) {
ff023aac
SB
1054 if (sctx->is_dev_replace) {
1055 scrub_write_block_to_dev_replace(sblock_other);
114ab50d 1056 goto corrected_error;
ff023aac 1057 } else {
ff023aac 1058 ret = scrub_repair_block_from_good_copy(
114ab50d
ZL
1059 sblock_bad, sblock_other);
1060 if (!ret)
1061 goto corrected_error;
ff023aac 1062 }
b5d67f64
SB
1063 }
1064 }
a2de733c 1065
b968fed1
ZL
1066 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1067 goto did_not_correct_error;
ff023aac
SB
1068
1069 /*
ff023aac 1070 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1071 * repaired, continue by picking good copies of those pages.
1072 * Select the good pages from mirrors to rewrite bad pages from
1073 * the area to fix. Afterwards verify the checksum of the block
1074 * that is supposed to be repaired. This verification step is
1075 * only done for the purpose of statistic counting and for the
1076 * final scrub report, whether errors remain.
1077 * A perfect algorithm could make use of the checksum and try
1078 * all possible combinations of pages from the different mirrors
1079 * until the checksum verification succeeds. For example, when
1080 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081 * of mirror #2 is readable but the final checksum test fails,
1082 * then the 2nd page of mirror #3 could be tried, whether now
01327610 1083 * the final checksum succeeds. But this would be a rare
b5d67f64
SB
1084 * exception and is therefore not implemented. At least it is
1085 * avoided that the good copy is overwritten.
1086 * A more useful improvement would be to pick the sectors
1087 * without I/O error based on sector sizes (512 bytes on legacy
1088 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089 * mirror could be repaired by taking 512 byte of a different
1090 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091 * area are unreadable.
a2de733c 1092 */
b5d67f64 1093 success = 1;
b968fed1
ZL
1094 for (page_num = 0; page_num < sblock_bad->page_count;
1095 page_num++) {
7a9e9987 1096 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b968fed1 1097 struct scrub_block *sblock_other = NULL;
b5d67f64 1098
b968fed1
ZL
1099 /* skip no-io-error page in scrub */
1100 if (!page_bad->io_error && !sctx->is_dev_replace)
a2de733c 1101 continue;
b5d67f64 1102
4759700a
LB
1103 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1104 /*
1105 * In case of dev replace, if raid56 rebuild process
1106 * didn't work out correct data, then copy the content
1107 * in sblock_bad to make sure target device is identical
1108 * to source device, instead of writing garbage data in
1109 * sblock_for_recheck array to target device.
1110 */
1111 sblock_other = NULL;
1112 } else if (page_bad->io_error) {
1113 /* try to find no-io-error page in mirrors */
b968fed1
ZL
1114 for (mirror_index = 0;
1115 mirror_index < BTRFS_MAX_MIRRORS &&
1116 sblocks_for_recheck[mirror_index].page_count > 0;
1117 mirror_index++) {
1118 if (!sblocks_for_recheck[mirror_index].
1119 pagev[page_num]->io_error) {
1120 sblock_other = sblocks_for_recheck +
1121 mirror_index;
1122 break;
b5d67f64
SB
1123 }
1124 }
b968fed1
ZL
1125 if (!sblock_other)
1126 success = 0;
96e36920 1127 }
a2de733c 1128
b968fed1
ZL
1129 if (sctx->is_dev_replace) {
1130 /*
1131 * did not find a mirror to fetch the page
1132 * from. scrub_write_page_to_dev_replace()
1133 * handles this case (page->io_error), by
1134 * filling the block with zeros before
1135 * submitting the write request
1136 */
1137 if (!sblock_other)
1138 sblock_other = sblock_bad;
1139
1140 if (scrub_write_page_to_dev_replace(sblock_other,
1141 page_num) != 0) {
e37abe97 1142 atomic64_inc(
0b246afa 1143 &fs_info->dev_replace.num_write_errors);
b968fed1
ZL
1144 success = 0;
1145 }
1146 } else if (sblock_other) {
1147 ret = scrub_repair_page_from_good_copy(sblock_bad,
1148 sblock_other,
1149 page_num, 0);
1150 if (0 == ret)
1151 page_bad->io_error = 0;
1152 else
1153 success = 0;
b5d67f64 1154 }
a2de733c 1155 }
a2de733c 1156
b968fed1 1157 if (success && !sctx->is_dev_replace) {
b5d67f64
SB
1158 if (is_metadata || have_csum) {
1159 /*
1160 * need to verify the checksum now that all
1161 * sectors on disk are repaired (the write
1162 * request for data to be repaired is on its way).
1163 * Just be lazy and use scrub_recheck_block()
1164 * which re-reads the data before the checksum
1165 * is verified, but most likely the data comes out
1166 * of the page cache.
1167 */
affe4a5a 1168 scrub_recheck_block(fs_info, sblock_bad, 1);
34f5c8e9 1169 if (!sblock_bad->header_error &&
b5d67f64
SB
1170 !sblock_bad->checksum_error &&
1171 sblock_bad->no_io_error_seen)
1172 goto corrected_error;
1173 else
1174 goto did_not_correct_error;
1175 } else {
1176corrected_error:
d9d181c1
SB
1177 spin_lock(&sctx->stat_lock);
1178 sctx->stat.corrected_errors++;
5a6ac9ea 1179 sblock_to_check->data_corrected = 1;
d9d181c1 1180 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1181 btrfs_err_rl_in_rcu(fs_info,
1182 "fixed up error at logical %llu on dev %s",
c1c9ff7c 1183 logical, rcu_str_deref(dev->name));
8628764e 1184 }
b5d67f64
SB
1185 } else {
1186did_not_correct_error:
d9d181c1
SB
1187 spin_lock(&sctx->stat_lock);
1188 sctx->stat.uncorrectable_errors++;
1189 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1190 btrfs_err_rl_in_rcu(fs_info,
1191 "unable to fixup (regular) error at logical %llu on dev %s",
c1c9ff7c 1192 logical, rcu_str_deref(dev->name));
96e36920 1193 }
a2de733c 1194
b5d67f64
SB
1195out:
1196 if (sblocks_for_recheck) {
1197 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1198 mirror_index++) {
1199 struct scrub_block *sblock = sblocks_for_recheck +
1200 mirror_index;
af8e2d1d 1201 struct scrub_recover *recover;
b5d67f64
SB
1202 int page_index;
1203
7a9e9987
SB
1204 for (page_index = 0; page_index < sblock->page_count;
1205 page_index++) {
1206 sblock->pagev[page_index]->sblock = NULL;
af8e2d1d
MX
1207 recover = sblock->pagev[page_index]->recover;
1208 if (recover) {
e501bfe3 1209 scrub_put_recover(fs_info, recover);
af8e2d1d
MX
1210 sblock->pagev[page_index]->recover =
1211 NULL;
1212 }
7a9e9987
SB
1213 scrub_page_put(sblock->pagev[page_index]);
1214 }
b5d67f64
SB
1215 }
1216 kfree(sblocks_for_recheck);
1217 }
a2de733c 1218
28d70e23 1219 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
7c3c7cb9 1220 memalloc_nofs_restore(nofs_flag);
28d70e23
QW
1221 if (ret < 0)
1222 return ret;
b5d67f64
SB
1223 return 0;
1224}
a2de733c 1225
8e5cfb55 1226static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
af8e2d1d 1227{
10f11900
ZL
1228 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1229 return 2;
1230 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1231 return 3;
1232 else
af8e2d1d 1233 return (int)bbio->num_stripes;
af8e2d1d
MX
1234}
1235
10f11900
ZL
1236static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1237 u64 *raid_map,
af8e2d1d
MX
1238 u64 mapped_length,
1239 int nstripes, int mirror,
1240 int *stripe_index,
1241 u64 *stripe_offset)
1242{
1243 int i;
1244
ffe2d203 1245 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
af8e2d1d
MX
1246 /* RAID5/6 */
1247 for (i = 0; i < nstripes; i++) {
1248 if (raid_map[i] == RAID6_Q_STRIPE ||
1249 raid_map[i] == RAID5_P_STRIPE)
1250 continue;
1251
1252 if (logical >= raid_map[i] &&
1253 logical < raid_map[i] + mapped_length)
1254 break;
1255 }
1256
1257 *stripe_index = i;
1258 *stripe_offset = logical - raid_map[i];
1259 } else {
1260 /* The other RAID type */
1261 *stripe_index = mirror;
1262 *stripe_offset = 0;
1263 }
1264}
1265
be50a8dd 1266static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
b5d67f64
SB
1267 struct scrub_block *sblocks_for_recheck)
1268{
be50a8dd 1269 struct scrub_ctx *sctx = original_sblock->sctx;
fb456252 1270 struct btrfs_fs_info *fs_info = sctx->fs_info;
be50a8dd
ZL
1271 u64 length = original_sblock->page_count * PAGE_SIZE;
1272 u64 logical = original_sblock->pagev[0]->logical;
4734b7ed
ZL
1273 u64 generation = original_sblock->pagev[0]->generation;
1274 u64 flags = original_sblock->pagev[0]->flags;
1275 u64 have_csum = original_sblock->pagev[0]->have_csum;
af8e2d1d
MX
1276 struct scrub_recover *recover;
1277 struct btrfs_bio *bbio;
af8e2d1d
MX
1278 u64 sublen;
1279 u64 mapped_length;
1280 u64 stripe_offset;
1281 int stripe_index;
be50a8dd 1282 int page_index = 0;
b5d67f64 1283 int mirror_index;
af8e2d1d 1284 int nmirrors;
b5d67f64
SB
1285 int ret;
1286
1287 /*
57019345 1288 * note: the two members refs and outstanding_pages
b5d67f64
SB
1289 * are not used (and not set) in the blocks that are used for
1290 * the recheck procedure
1291 */
1292
b5d67f64 1293 while (length > 0) {
af8e2d1d
MX
1294 sublen = min_t(u64, length, PAGE_SIZE);
1295 mapped_length = sublen;
1296 bbio = NULL;
a2de733c 1297
b5d67f64
SB
1298 /*
1299 * with a length of PAGE_SIZE, each returned stripe
1300 * represents one mirror
1301 */
e501bfe3 1302 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 1303 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
825ad4c9 1304 logical, &mapped_length, &bbio);
b5d67f64 1305 if (ret || !bbio || mapped_length < sublen) {
6e9606d2 1306 btrfs_put_bbio(bbio);
e501bfe3 1307 btrfs_bio_counter_dec(fs_info);
b5d67f64
SB
1308 return -EIO;
1309 }
a2de733c 1310
af8e2d1d
MX
1311 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1312 if (!recover) {
6e9606d2 1313 btrfs_put_bbio(bbio);
e501bfe3 1314 btrfs_bio_counter_dec(fs_info);
af8e2d1d
MX
1315 return -ENOMEM;
1316 }
1317
6f615018 1318 refcount_set(&recover->refs, 1);
af8e2d1d 1319 recover->bbio = bbio;
af8e2d1d
MX
1320 recover->map_length = mapped_length;
1321
24731149 1322 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
af8e2d1d 1323
be50a8dd 1324 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
10f11900 1325
af8e2d1d 1326 for (mirror_index = 0; mirror_index < nmirrors;
b5d67f64
SB
1327 mirror_index++) {
1328 struct scrub_block *sblock;
1329 struct scrub_page *page;
1330
b5d67f64 1331 sblock = sblocks_for_recheck + mirror_index;
7a9e9987 1332 sblock->sctx = sctx;
4734b7ed 1333
7a9e9987
SB
1334 page = kzalloc(sizeof(*page), GFP_NOFS);
1335 if (!page) {
1336leave_nomem:
d9d181c1
SB
1337 spin_lock(&sctx->stat_lock);
1338 sctx->stat.malloc_errors++;
1339 spin_unlock(&sctx->stat_lock);
e501bfe3 1340 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1341 return -ENOMEM;
1342 }
7a9e9987
SB
1343 scrub_page_get(page);
1344 sblock->pagev[page_index] = page;
4734b7ed
ZL
1345 page->sblock = sblock;
1346 page->flags = flags;
1347 page->generation = generation;
7a9e9987 1348 page->logical = logical;
4734b7ed
ZL
1349 page->have_csum = have_csum;
1350 if (have_csum)
1351 memcpy(page->csum,
1352 original_sblock->pagev[0]->csum,
1353 sctx->csum_size);
af8e2d1d 1354
10f11900
ZL
1355 scrub_stripe_index_and_offset(logical,
1356 bbio->map_type,
1357 bbio->raid_map,
af8e2d1d 1358 mapped_length,
e34c330d
ZL
1359 bbio->num_stripes -
1360 bbio->num_tgtdevs,
af8e2d1d
MX
1361 mirror_index,
1362 &stripe_index,
1363 &stripe_offset);
1364 page->physical = bbio->stripes[stripe_index].physical +
1365 stripe_offset;
1366 page->dev = bbio->stripes[stripe_index].dev;
1367
ff023aac
SB
1368 BUG_ON(page_index >= original_sblock->page_count);
1369 page->physical_for_dev_replace =
1370 original_sblock->pagev[page_index]->
1371 physical_for_dev_replace;
7a9e9987 1372 /* for missing devices, dev->bdev is NULL */
7a9e9987 1373 page->mirror_num = mirror_index + 1;
b5d67f64 1374 sblock->page_count++;
7a9e9987
SB
1375 page->page = alloc_page(GFP_NOFS);
1376 if (!page->page)
1377 goto leave_nomem;
af8e2d1d
MX
1378
1379 scrub_get_recover(recover);
1380 page->recover = recover;
b5d67f64 1381 }
e501bfe3 1382 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1383 length -= sublen;
1384 logical += sublen;
1385 page_index++;
1386 }
1387
1388 return 0;
96e36920
ID
1389}
1390
4246a0b6 1391static void scrub_bio_wait_endio(struct bio *bio)
af8e2d1d 1392{
b4ff5ad7 1393 complete(bio->bi_private);
af8e2d1d
MX
1394}
1395
af8e2d1d
MX
1396static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1397 struct bio *bio,
1398 struct scrub_page *page)
1399{
b4ff5ad7 1400 DECLARE_COMPLETION_ONSTACK(done);
af8e2d1d 1401 int ret;
762221f0 1402 int mirror_num;
af8e2d1d 1403
af8e2d1d
MX
1404 bio->bi_iter.bi_sector = page->logical >> 9;
1405 bio->bi_private = &done;
1406 bio->bi_end_io = scrub_bio_wait_endio;
1407
762221f0 1408 mirror_num = page->sblock->pagev[0]->mirror_num;
2ff7e61e 1409 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
af8e2d1d 1410 page->recover->map_length,
762221f0 1411 mirror_num, 0);
af8e2d1d
MX
1412 if (ret)
1413 return ret;
1414
b4ff5ad7
LB
1415 wait_for_completion_io(&done);
1416 return blk_status_to_errno(bio->bi_status);
af8e2d1d
MX
1417}
1418
6ca1765b
LB
1419static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1420 struct scrub_block *sblock)
1421{
1422 struct scrub_page *first_page = sblock->pagev[0];
1423 struct bio *bio;
1424 int page_num;
1425
1426 /* All pages in sblock belong to the same stripe on the same device. */
1427 ASSERT(first_page->dev);
1428 if (!first_page->dev->bdev)
1429 goto out;
1430
1431 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1432 bio_set_dev(bio, first_page->dev->bdev);
1433
1434 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1435 struct scrub_page *page = sblock->pagev[page_num];
1436
1437 WARN_ON(!page->page);
1438 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1439 }
1440
1441 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1442 bio_put(bio);
1443 goto out;
1444 }
1445
1446 bio_put(bio);
1447
1448 scrub_recheck_block_checksum(sblock);
1449
1450 return;
1451out:
1452 for (page_num = 0; page_num < sblock->page_count; page_num++)
1453 sblock->pagev[page_num]->io_error = 1;
1454
1455 sblock->no_io_error_seen = 0;
1456}
1457
b5d67f64
SB
1458/*
1459 * this function will check the on disk data for checksum errors, header
1460 * errors and read I/O errors. If any I/O errors happen, the exact pages
1461 * which are errored are marked as being bad. The goal is to enable scrub
1462 * to take those pages that are not errored from all the mirrors so that
1463 * the pages that are errored in the just handled mirror can be repaired.
1464 */
34f5c8e9 1465static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
1466 struct scrub_block *sblock,
1467 int retry_failed_mirror)
96e36920 1468{
b5d67f64 1469 int page_num;
96e36920 1470
b5d67f64 1471 sblock->no_io_error_seen = 1;
96e36920 1472
6ca1765b
LB
1473 /* short cut for raid56 */
1474 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1475 return scrub_recheck_block_on_raid56(fs_info, sblock);
1476
b5d67f64
SB
1477 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1478 struct bio *bio;
7a9e9987 1479 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1480
442a4f63 1481 if (page->dev->bdev == NULL) {
ea9947b4
SB
1482 page->io_error = 1;
1483 sblock->no_io_error_seen = 0;
1484 continue;
1485 }
1486
7a9e9987 1487 WARN_ON(!page->page);
c5e4c3d7 1488 bio = btrfs_io_bio_alloc(1);
74d46992 1489 bio_set_dev(bio, page->dev->bdev);
b5d67f64 1490
34f5c8e9 1491 bio_add_page(bio, page->page, PAGE_SIZE, 0);
6ca1765b
LB
1492 bio->bi_iter.bi_sector = page->physical >> 9;
1493 bio->bi_opf = REQ_OP_READ;
af8e2d1d 1494
6ca1765b
LB
1495 if (btrfsic_submit_bio_wait(bio)) {
1496 page->io_error = 1;
1497 sblock->no_io_error_seen = 0;
af8e2d1d 1498 }
33879d45 1499
b5d67f64
SB
1500 bio_put(bio);
1501 }
96e36920 1502
b5d67f64 1503 if (sblock->no_io_error_seen)
ba7cf988 1504 scrub_recheck_block_checksum(sblock);
a2de733c
AJ
1505}
1506
17a9be2f
MX
1507static inline int scrub_check_fsid(u8 fsid[],
1508 struct scrub_page *spage)
1509{
1510 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1511 int ret;
1512
44880fdc 1513 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
17a9be2f
MX
1514 return !ret;
1515}
1516
ba7cf988 1517static void scrub_recheck_block_checksum(struct scrub_block *sblock)
a2de733c 1518{
ba7cf988
ZL
1519 sblock->header_error = 0;
1520 sblock->checksum_error = 0;
1521 sblock->generation_error = 0;
b5d67f64 1522
ba7cf988
ZL
1523 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1524 scrub_checksum_data(sblock);
1525 else
1526 scrub_checksum_tree_block(sblock);
a2de733c
AJ
1527}
1528
b5d67f64 1529static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 1530 struct scrub_block *sblock_good)
b5d67f64
SB
1531{
1532 int page_num;
1533 int ret = 0;
96e36920 1534
b5d67f64
SB
1535 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1536 int ret_sub;
96e36920 1537
b5d67f64
SB
1538 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1539 sblock_good,
114ab50d 1540 page_num, 1);
b5d67f64
SB
1541 if (ret_sub)
1542 ret = ret_sub;
a2de733c 1543 }
b5d67f64
SB
1544
1545 return ret;
1546}
1547
1548static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1549 struct scrub_block *sblock_good,
1550 int page_num, int force_write)
1551{
7a9e9987
SB
1552 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1553 struct scrub_page *page_good = sblock_good->pagev[page_num];
0b246afa 1554 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
b5d67f64 1555
7a9e9987
SB
1556 BUG_ON(page_bad->page == NULL);
1557 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1558 if (force_write || sblock_bad->header_error ||
1559 sblock_bad->checksum_error || page_bad->io_error) {
1560 struct bio *bio;
1561 int ret;
b5d67f64 1562
ff023aac 1563 if (!page_bad->dev->bdev) {
0b246afa 1564 btrfs_warn_rl(fs_info,
5d163e0e 1565 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
ff023aac
SB
1566 return -EIO;
1567 }
1568
c5e4c3d7 1569 bio = btrfs_io_bio_alloc(1);
74d46992 1570 bio_set_dev(bio, page_bad->dev->bdev);
4f024f37 1571 bio->bi_iter.bi_sector = page_bad->physical >> 9;
ebcc3263 1572 bio->bi_opf = REQ_OP_WRITE;
b5d67f64
SB
1573
1574 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1575 if (PAGE_SIZE != ret) {
1576 bio_put(bio);
1577 return -EIO;
13db62b7 1578 }
b5d67f64 1579
4e49ea4a 1580 if (btrfsic_submit_bio_wait(bio)) {
442a4f63
SB
1581 btrfs_dev_stat_inc_and_print(page_bad->dev,
1582 BTRFS_DEV_STAT_WRITE_ERRS);
e37abe97 1583 atomic64_inc(&fs_info->dev_replace.num_write_errors);
442a4f63
SB
1584 bio_put(bio);
1585 return -EIO;
1586 }
b5d67f64 1587 bio_put(bio);
a2de733c
AJ
1588 }
1589
b5d67f64
SB
1590 return 0;
1591}
1592
ff023aac
SB
1593static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1594{
0b246afa 1595 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
ff023aac
SB
1596 int page_num;
1597
5a6ac9ea
MX
1598 /*
1599 * This block is used for the check of the parity on the source device,
1600 * so the data needn't be written into the destination device.
1601 */
1602 if (sblock->sparity)
1603 return;
1604
ff023aac
SB
1605 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1606 int ret;
1607
1608 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1609 if (ret)
e37abe97 1610 atomic64_inc(&fs_info->dev_replace.num_write_errors);
ff023aac
SB
1611 }
1612}
1613
1614static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1615 int page_num)
1616{
1617 struct scrub_page *spage = sblock->pagev[page_num];
1618
1619 BUG_ON(spage->page == NULL);
1620 if (spage->io_error) {
1621 void *mapped_buffer = kmap_atomic(spage->page);
1622
619a9742 1623 clear_page(mapped_buffer);
ff023aac
SB
1624 flush_dcache_page(spage->page);
1625 kunmap_atomic(mapped_buffer);
1626 }
1627 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1628}
1629
1630static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1631 struct scrub_page *spage)
1632{
ff023aac
SB
1633 struct scrub_bio *sbio;
1634 int ret;
1635
3fb99303 1636 mutex_lock(&sctx->wr_lock);
ff023aac 1637again:
3fb99303
DS
1638 if (!sctx->wr_curr_bio) {
1639 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
58c4e173 1640 GFP_KERNEL);
3fb99303
DS
1641 if (!sctx->wr_curr_bio) {
1642 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1643 return -ENOMEM;
1644 }
3fb99303
DS
1645 sctx->wr_curr_bio->sctx = sctx;
1646 sctx->wr_curr_bio->page_count = 0;
ff023aac 1647 }
3fb99303 1648 sbio = sctx->wr_curr_bio;
ff023aac
SB
1649 if (sbio->page_count == 0) {
1650 struct bio *bio;
1651
1652 sbio->physical = spage->physical_for_dev_replace;
1653 sbio->logical = spage->logical;
3fb99303 1654 sbio->dev = sctx->wr_tgtdev;
ff023aac
SB
1655 bio = sbio->bio;
1656 if (!bio) {
c5e4c3d7 1657 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
ff023aac
SB
1658 sbio->bio = bio;
1659 }
1660
1661 bio->bi_private = sbio;
1662 bio->bi_end_io = scrub_wr_bio_end_io;
74d46992 1663 bio_set_dev(bio, sbio->dev->bdev);
4f024f37 1664 bio->bi_iter.bi_sector = sbio->physical >> 9;
ebcc3263 1665 bio->bi_opf = REQ_OP_WRITE;
4e4cbee9 1666 sbio->status = 0;
ff023aac
SB
1667 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1668 spage->physical_for_dev_replace ||
1669 sbio->logical + sbio->page_count * PAGE_SIZE !=
1670 spage->logical) {
1671 scrub_wr_submit(sctx);
1672 goto again;
1673 }
1674
1675 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1676 if (ret != PAGE_SIZE) {
1677 if (sbio->page_count < 1) {
1678 bio_put(sbio->bio);
1679 sbio->bio = NULL;
3fb99303 1680 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1681 return -EIO;
1682 }
1683 scrub_wr_submit(sctx);
1684 goto again;
1685 }
1686
1687 sbio->pagev[sbio->page_count] = spage;
1688 scrub_page_get(spage);
1689 sbio->page_count++;
3fb99303 1690 if (sbio->page_count == sctx->pages_per_wr_bio)
ff023aac 1691 scrub_wr_submit(sctx);
3fb99303 1692 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
1693
1694 return 0;
1695}
1696
1697static void scrub_wr_submit(struct scrub_ctx *sctx)
1698{
ff023aac
SB
1699 struct scrub_bio *sbio;
1700
3fb99303 1701 if (!sctx->wr_curr_bio)
ff023aac
SB
1702 return;
1703
3fb99303
DS
1704 sbio = sctx->wr_curr_bio;
1705 sctx->wr_curr_bio = NULL;
74d46992 1706 WARN_ON(!sbio->bio->bi_disk);
ff023aac
SB
1707 scrub_pending_bio_inc(sctx);
1708 /* process all writes in a single worker thread. Then the block layer
1709 * orders the requests before sending them to the driver which
1710 * doubled the write performance on spinning disks when measured
1711 * with Linux 3.5 */
4e49ea4a 1712 btrfsic_submit_bio(sbio->bio);
ff023aac
SB
1713}
1714
4246a0b6 1715static void scrub_wr_bio_end_io(struct bio *bio)
ff023aac
SB
1716{
1717 struct scrub_bio *sbio = bio->bi_private;
fb456252 1718 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
ff023aac 1719
4e4cbee9 1720 sbio->status = bio->bi_status;
ff023aac
SB
1721 sbio->bio = bio;
1722
a0cac0ec 1723 btrfs_init_work(&sbio->work, scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 1724 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
1725}
1726
1727static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1728{
1729 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1730 struct scrub_ctx *sctx = sbio->sctx;
1731 int i;
1732
1733 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
4e4cbee9 1734 if (sbio->status) {
ff023aac 1735 struct btrfs_dev_replace *dev_replace =
fb456252 1736 &sbio->sctx->fs_info->dev_replace;
ff023aac
SB
1737
1738 for (i = 0; i < sbio->page_count; i++) {
1739 struct scrub_page *spage = sbio->pagev[i];
1740
1741 spage->io_error = 1;
e37abe97 1742 atomic64_inc(&dev_replace->num_write_errors);
ff023aac
SB
1743 }
1744 }
1745
1746 for (i = 0; i < sbio->page_count; i++)
1747 scrub_page_put(sbio->pagev[i]);
1748
1749 bio_put(sbio->bio);
1750 kfree(sbio);
1751 scrub_pending_bio_dec(sctx);
1752}
1753
1754static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
1755{
1756 u64 flags;
1757 int ret;
1758
ba7cf988
ZL
1759 /*
1760 * No need to initialize these stats currently,
1761 * because this function only use return value
1762 * instead of these stats value.
1763 *
1764 * Todo:
1765 * always use stats
1766 */
1767 sblock->header_error = 0;
1768 sblock->generation_error = 0;
1769 sblock->checksum_error = 0;
1770
7a9e9987
SB
1771 WARN_ON(sblock->page_count < 1);
1772 flags = sblock->pagev[0]->flags;
b5d67f64
SB
1773 ret = 0;
1774 if (flags & BTRFS_EXTENT_FLAG_DATA)
1775 ret = scrub_checksum_data(sblock);
1776 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1777 ret = scrub_checksum_tree_block(sblock);
1778 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1779 (void)scrub_checksum_super(sblock);
1780 else
1781 WARN_ON(1);
1782 if (ret)
1783 scrub_handle_errored_block(sblock);
ff023aac
SB
1784
1785 return ret;
a2de733c
AJ
1786}
1787
b5d67f64 1788static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 1789{
d9d181c1 1790 struct scrub_ctx *sctx = sblock->sctx;
d5178578
JT
1791 struct btrfs_fs_info *fs_info = sctx->fs_info;
1792 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a2de733c 1793 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
1794 u8 *on_disk_csum;
1795 struct page *page;
1796 void *buffer;
b5d67f64
SB
1797 u64 len;
1798 int index;
a2de733c 1799
b5d67f64 1800 BUG_ON(sblock->page_count < 1);
7a9e9987 1801 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
1802 return 0;
1803
d5178578
JT
1804 shash->tfm = fs_info->csum_shash;
1805 crypto_shash_init(shash);
1806
7a9e9987
SB
1807 on_disk_csum = sblock->pagev[0]->csum;
1808 page = sblock->pagev[0]->page;
9613bebb 1809 buffer = kmap_atomic(page);
b5d67f64 1810
25cc1226 1811 len = sctx->fs_info->sectorsize;
b5d67f64
SB
1812 index = 0;
1813 for (;;) {
1814 u64 l = min_t(u64, len, PAGE_SIZE);
1815
d5178578 1816 crypto_shash_update(shash, buffer, l);
9613bebb 1817 kunmap_atomic(buffer);
b5d67f64
SB
1818 len -= l;
1819 if (len == 0)
1820 break;
1821 index++;
1822 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1823 BUG_ON(!sblock->pagev[index]->page);
1824 page = sblock->pagev[index]->page;
9613bebb 1825 buffer = kmap_atomic(page);
b5d67f64
SB
1826 }
1827
d5178578 1828 crypto_shash_final(shash, csum);
d9d181c1 1829 if (memcmp(csum, on_disk_csum, sctx->csum_size))
ba7cf988 1830 sblock->checksum_error = 1;
a2de733c 1831
ba7cf988 1832 return sblock->checksum_error;
a2de733c
AJ
1833}
1834
b5d67f64 1835static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 1836{
d9d181c1 1837 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 1838 struct btrfs_header *h;
0b246afa 1839 struct btrfs_fs_info *fs_info = sctx->fs_info;
d5178578 1840 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
b5d67f64
SB
1841 u8 calculated_csum[BTRFS_CSUM_SIZE];
1842 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1843 struct page *page;
1844 void *mapped_buffer;
1845 u64 mapped_size;
1846 void *p;
b5d67f64
SB
1847 u64 len;
1848 int index;
1849
d5178578
JT
1850 shash->tfm = fs_info->csum_shash;
1851 crypto_shash_init(shash);
1852
b5d67f64 1853 BUG_ON(sblock->page_count < 1);
7a9e9987 1854 page = sblock->pagev[0]->page;
9613bebb 1855 mapped_buffer = kmap_atomic(page);
b5d67f64 1856 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 1857 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
1858
1859 /*
1860 * we don't use the getter functions here, as we
1861 * a) don't have an extent buffer and
1862 * b) the page is already kmapped
1863 */
3cae210f 1864 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
ba7cf988 1865 sblock->header_error = 1;
a2de733c 1866
ba7cf988
ZL
1867 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1868 sblock->header_error = 1;
1869 sblock->generation_error = 1;
1870 }
a2de733c 1871
17a9be2f 1872 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
ba7cf988 1873 sblock->header_error = 1;
a2de733c
AJ
1874
1875 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1876 BTRFS_UUID_SIZE))
ba7cf988 1877 sblock->header_error = 1;
a2de733c 1878
25cc1226 1879 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
1880 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1881 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1882 index = 0;
1883 for (;;) {
1884 u64 l = min_t(u64, len, mapped_size);
1885
d5178578 1886 crypto_shash_update(shash, p, l);
9613bebb 1887 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1888 len -= l;
1889 if (len == 0)
1890 break;
1891 index++;
1892 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1893 BUG_ON(!sblock->pagev[index]->page);
1894 page = sblock->pagev[index]->page;
9613bebb 1895 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1896 mapped_size = PAGE_SIZE;
1897 p = mapped_buffer;
1898 }
1899
d5178578 1900 crypto_shash_final(shash, calculated_csum);
d9d181c1 1901 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
ba7cf988 1902 sblock->checksum_error = 1;
a2de733c 1903
ba7cf988 1904 return sblock->header_error || sblock->checksum_error;
a2de733c
AJ
1905}
1906
b5d67f64 1907static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
1908{
1909 struct btrfs_super_block *s;
d9d181c1 1910 struct scrub_ctx *sctx = sblock->sctx;
d5178578
JT
1911 struct btrfs_fs_info *fs_info = sctx->fs_info;
1912 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
b5d67f64
SB
1913 u8 calculated_csum[BTRFS_CSUM_SIZE];
1914 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1915 struct page *page;
1916 void *mapped_buffer;
1917 u64 mapped_size;
1918 void *p;
442a4f63
SB
1919 int fail_gen = 0;
1920 int fail_cor = 0;
b5d67f64
SB
1921 u64 len;
1922 int index;
a2de733c 1923
d5178578
JT
1924 shash->tfm = fs_info->csum_shash;
1925 crypto_shash_init(shash);
1926
b5d67f64 1927 BUG_ON(sblock->page_count < 1);
7a9e9987 1928 page = sblock->pagev[0]->page;
9613bebb 1929 mapped_buffer = kmap_atomic(page);
b5d67f64 1930 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 1931 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 1932
3cae210f 1933 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 1934 ++fail_cor;
a2de733c 1935
3cae210f 1936 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 1937 ++fail_gen;
a2de733c 1938
17a9be2f 1939 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
442a4f63 1940 ++fail_cor;
a2de733c 1941
b5d67f64
SB
1942 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1943 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1944 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1945 index = 0;
1946 for (;;) {
1947 u64 l = min_t(u64, len, mapped_size);
1948
d5178578 1949 crypto_shash_update(shash, p, l);
9613bebb 1950 kunmap_atomic(mapped_buffer);
b5d67f64
SB
1951 len -= l;
1952 if (len == 0)
1953 break;
1954 index++;
1955 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
1956 BUG_ON(!sblock->pagev[index]->page);
1957 page = sblock->pagev[index]->page;
9613bebb 1958 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
1959 mapped_size = PAGE_SIZE;
1960 p = mapped_buffer;
1961 }
1962
d5178578 1963 crypto_shash_final(shash, calculated_csum);
d9d181c1 1964 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 1965 ++fail_cor;
a2de733c 1966
442a4f63 1967 if (fail_cor + fail_gen) {
a2de733c
AJ
1968 /*
1969 * if we find an error in a super block, we just report it.
1970 * They will get written with the next transaction commit
1971 * anyway
1972 */
d9d181c1
SB
1973 spin_lock(&sctx->stat_lock);
1974 ++sctx->stat.super_errors;
1975 spin_unlock(&sctx->stat_lock);
442a4f63 1976 if (fail_cor)
7a9e9987 1977 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
1978 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1979 else
7a9e9987 1980 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 1981 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
1982 }
1983
442a4f63 1984 return fail_cor + fail_gen;
a2de733c
AJ
1985}
1986
b5d67f64
SB
1987static void scrub_block_get(struct scrub_block *sblock)
1988{
186debd6 1989 refcount_inc(&sblock->refs);
b5d67f64
SB
1990}
1991
1992static void scrub_block_put(struct scrub_block *sblock)
1993{
186debd6 1994 if (refcount_dec_and_test(&sblock->refs)) {
b5d67f64
SB
1995 int i;
1996
5a6ac9ea
MX
1997 if (sblock->sparity)
1998 scrub_parity_put(sblock->sparity);
1999
b5d67f64 2000 for (i = 0; i < sblock->page_count; i++)
7a9e9987 2001 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
2002 kfree(sblock);
2003 }
2004}
2005
7a9e9987
SB
2006static void scrub_page_get(struct scrub_page *spage)
2007{
57019345 2008 atomic_inc(&spage->refs);
7a9e9987
SB
2009}
2010
2011static void scrub_page_put(struct scrub_page *spage)
2012{
57019345 2013 if (atomic_dec_and_test(&spage->refs)) {
7a9e9987
SB
2014 if (spage->page)
2015 __free_page(spage->page);
2016 kfree(spage);
2017 }
2018}
2019
d9d181c1 2020static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
2021{
2022 struct scrub_bio *sbio;
2023
d9d181c1 2024 if (sctx->curr == -1)
1623edeb 2025 return;
a2de733c 2026
d9d181c1
SB
2027 sbio = sctx->bios[sctx->curr];
2028 sctx->curr = -1;
b6bfebc1 2029 scrub_pending_bio_inc(sctx);
4e49ea4a 2030 btrfsic_submit_bio(sbio->bio);
a2de733c
AJ
2031}
2032
ff023aac
SB
2033static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2034 struct scrub_page *spage)
a2de733c 2035{
b5d67f64 2036 struct scrub_block *sblock = spage->sblock;
a2de733c 2037 struct scrub_bio *sbio;
69f4cb52 2038 int ret;
a2de733c
AJ
2039
2040again:
2041 /*
2042 * grab a fresh bio or wait for one to become available
2043 */
d9d181c1
SB
2044 while (sctx->curr == -1) {
2045 spin_lock(&sctx->list_lock);
2046 sctx->curr = sctx->first_free;
2047 if (sctx->curr != -1) {
2048 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2049 sctx->bios[sctx->curr]->next_free = -1;
2050 sctx->bios[sctx->curr]->page_count = 0;
2051 spin_unlock(&sctx->list_lock);
a2de733c 2052 } else {
d9d181c1
SB
2053 spin_unlock(&sctx->list_lock);
2054 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
2055 }
2056 }
d9d181c1 2057 sbio = sctx->bios[sctx->curr];
b5d67f64 2058 if (sbio->page_count == 0) {
69f4cb52
AJ
2059 struct bio *bio;
2060
b5d67f64
SB
2061 sbio->physical = spage->physical;
2062 sbio->logical = spage->logical;
a36cf8b8 2063 sbio->dev = spage->dev;
b5d67f64
SB
2064 bio = sbio->bio;
2065 if (!bio) {
c5e4c3d7 2066 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
b5d67f64
SB
2067 sbio->bio = bio;
2068 }
69f4cb52
AJ
2069
2070 bio->bi_private = sbio;
2071 bio->bi_end_io = scrub_bio_end_io;
74d46992 2072 bio_set_dev(bio, sbio->dev->bdev);
4f024f37 2073 bio->bi_iter.bi_sector = sbio->physical >> 9;
ebcc3263 2074 bio->bi_opf = REQ_OP_READ;
4e4cbee9 2075 sbio->status = 0;
b5d67f64
SB
2076 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2077 spage->physical ||
2078 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
2079 spage->logical ||
2080 sbio->dev != spage->dev) {
d9d181c1 2081 scrub_submit(sctx);
a2de733c
AJ
2082 goto again;
2083 }
69f4cb52 2084
b5d67f64
SB
2085 sbio->pagev[sbio->page_count] = spage;
2086 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2087 if (ret != PAGE_SIZE) {
2088 if (sbio->page_count < 1) {
2089 bio_put(sbio->bio);
2090 sbio->bio = NULL;
2091 return -EIO;
2092 }
d9d181c1 2093 scrub_submit(sctx);
69f4cb52
AJ
2094 goto again;
2095 }
2096
ff023aac 2097 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
2098 atomic_inc(&sblock->outstanding_pages);
2099 sbio->page_count++;
ff023aac 2100 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 2101 scrub_submit(sctx);
b5d67f64
SB
2102
2103 return 0;
2104}
2105
22365979 2106static void scrub_missing_raid56_end_io(struct bio *bio)
73ff61db
OS
2107{
2108 struct scrub_block *sblock = bio->bi_private;
fb456252 2109 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
73ff61db 2110
4e4cbee9 2111 if (bio->bi_status)
73ff61db
OS
2112 sblock->no_io_error_seen = 0;
2113
4673272f
ST
2114 bio_put(bio);
2115
73ff61db
OS
2116 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2117}
2118
2119static void scrub_missing_raid56_worker(struct btrfs_work *work)
2120{
2121 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2122 struct scrub_ctx *sctx = sblock->sctx;
0b246afa 2123 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2124 u64 logical;
2125 struct btrfs_device *dev;
2126
73ff61db
OS
2127 logical = sblock->pagev[0]->logical;
2128 dev = sblock->pagev[0]->dev;
2129
affe4a5a 2130 if (sblock->no_io_error_seen)
ba7cf988 2131 scrub_recheck_block_checksum(sblock);
73ff61db
OS
2132
2133 if (!sblock->no_io_error_seen) {
2134 spin_lock(&sctx->stat_lock);
2135 sctx->stat.read_errors++;
2136 spin_unlock(&sctx->stat_lock);
0b246afa 2137 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2138 "IO error rebuilding logical %llu for dev %s",
73ff61db
OS
2139 logical, rcu_str_deref(dev->name));
2140 } else if (sblock->header_error || sblock->checksum_error) {
2141 spin_lock(&sctx->stat_lock);
2142 sctx->stat.uncorrectable_errors++;
2143 spin_unlock(&sctx->stat_lock);
0b246afa 2144 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2145 "failed to rebuild valid logical %llu for dev %s",
73ff61db
OS
2146 logical, rcu_str_deref(dev->name));
2147 } else {
2148 scrub_write_block_to_dev_replace(sblock);
2149 }
2150
2073c4c2 2151 if (sctx->is_dev_replace && sctx->flush_all_writes) {
3fb99303 2152 mutex_lock(&sctx->wr_lock);
73ff61db 2153 scrub_wr_submit(sctx);
3fb99303 2154 mutex_unlock(&sctx->wr_lock);
73ff61db
OS
2155 }
2156
57d4f0b8 2157 scrub_block_put(sblock);
73ff61db
OS
2158 scrub_pending_bio_dec(sctx);
2159}
2160
2161static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2162{
2163 struct scrub_ctx *sctx = sblock->sctx;
fb456252 2164 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2165 u64 length = sblock->page_count * PAGE_SIZE;
2166 u64 logical = sblock->pagev[0]->logical;
f1fee653 2167 struct btrfs_bio *bbio = NULL;
73ff61db
OS
2168 struct bio *bio;
2169 struct btrfs_raid_bio *rbio;
2170 int ret;
2171 int i;
2172
ae6529c3 2173 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 2174 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
825ad4c9 2175 &length, &bbio);
73ff61db
OS
2176 if (ret || !bbio || !bbio->raid_map)
2177 goto bbio_out;
2178
2179 if (WARN_ON(!sctx->is_dev_replace ||
2180 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2181 /*
2182 * We shouldn't be scrubbing a missing device. Even for dev
2183 * replace, we should only get here for RAID 5/6. We either
2184 * managed to mount something with no mirrors remaining or
2185 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2186 */
2187 goto bbio_out;
2188 }
2189
c5e4c3d7 2190 bio = btrfs_io_bio_alloc(0);
73ff61db
OS
2191 bio->bi_iter.bi_sector = logical >> 9;
2192 bio->bi_private = sblock;
2193 bio->bi_end_io = scrub_missing_raid56_end_io;
2194
2ff7e61e 2195 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
73ff61db
OS
2196 if (!rbio)
2197 goto rbio_out;
2198
2199 for (i = 0; i < sblock->page_count; i++) {
2200 struct scrub_page *spage = sblock->pagev[i];
2201
2202 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2203 }
2204
a0cac0ec 2205 btrfs_init_work(&sblock->work, scrub_missing_raid56_worker, NULL, NULL);
73ff61db
OS
2206 scrub_block_get(sblock);
2207 scrub_pending_bio_inc(sctx);
2208 raid56_submit_missing_rbio(rbio);
2209 return;
2210
2211rbio_out:
2212 bio_put(bio);
2213bbio_out:
ae6529c3 2214 btrfs_bio_counter_dec(fs_info);
73ff61db
OS
2215 btrfs_put_bbio(bbio);
2216 spin_lock(&sctx->stat_lock);
2217 sctx->stat.malloc_errors++;
2218 spin_unlock(&sctx->stat_lock);
2219}
2220
d9d181c1 2221static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2222 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
2223 u64 gen, int mirror_num, u8 *csum, int force,
2224 u64 physical_for_dev_replace)
b5d67f64
SB
2225{
2226 struct scrub_block *sblock;
2227 int index;
2228
58c4e173 2229 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
b5d67f64 2230 if (!sblock) {
d9d181c1
SB
2231 spin_lock(&sctx->stat_lock);
2232 sctx->stat.malloc_errors++;
2233 spin_unlock(&sctx->stat_lock);
b5d67f64 2234 return -ENOMEM;
a2de733c 2235 }
b5d67f64 2236
7a9e9987
SB
2237 /* one ref inside this function, plus one for each page added to
2238 * a bio later on */
186debd6 2239 refcount_set(&sblock->refs, 1);
d9d181c1 2240 sblock->sctx = sctx;
b5d67f64
SB
2241 sblock->no_io_error_seen = 1;
2242
2243 for (index = 0; len > 0; index++) {
7a9e9987 2244 struct scrub_page *spage;
b5d67f64
SB
2245 u64 l = min_t(u64, len, PAGE_SIZE);
2246
58c4e173 2247 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
7a9e9987
SB
2248 if (!spage) {
2249leave_nomem:
d9d181c1
SB
2250 spin_lock(&sctx->stat_lock);
2251 sctx->stat.malloc_errors++;
2252 spin_unlock(&sctx->stat_lock);
7a9e9987 2253 scrub_block_put(sblock);
b5d67f64
SB
2254 return -ENOMEM;
2255 }
7a9e9987
SB
2256 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2257 scrub_page_get(spage);
2258 sblock->pagev[index] = spage;
b5d67f64 2259 spage->sblock = sblock;
a36cf8b8 2260 spage->dev = dev;
b5d67f64
SB
2261 spage->flags = flags;
2262 spage->generation = gen;
2263 spage->logical = logical;
2264 spage->physical = physical;
ff023aac 2265 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2266 spage->mirror_num = mirror_num;
2267 if (csum) {
2268 spage->have_csum = 1;
d9d181c1 2269 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2270 } else {
2271 spage->have_csum = 0;
2272 }
2273 sblock->page_count++;
58c4e173 2274 spage->page = alloc_page(GFP_KERNEL);
7a9e9987
SB
2275 if (!spage->page)
2276 goto leave_nomem;
b5d67f64
SB
2277 len -= l;
2278 logical += l;
2279 physical += l;
ff023aac 2280 physical_for_dev_replace += l;
b5d67f64
SB
2281 }
2282
7a9e9987 2283 WARN_ON(sblock->page_count == 0);
e6e674bd 2284 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
73ff61db
OS
2285 /*
2286 * This case should only be hit for RAID 5/6 device replace. See
2287 * the comment in scrub_missing_raid56_pages() for details.
2288 */
2289 scrub_missing_raid56_pages(sblock);
2290 } else {
2291 for (index = 0; index < sblock->page_count; index++) {
2292 struct scrub_page *spage = sblock->pagev[index];
2293 int ret;
1bc87793 2294
73ff61db
OS
2295 ret = scrub_add_page_to_rd_bio(sctx, spage);
2296 if (ret) {
2297 scrub_block_put(sblock);
2298 return ret;
2299 }
b5d67f64 2300 }
a2de733c 2301
73ff61db
OS
2302 if (force)
2303 scrub_submit(sctx);
2304 }
a2de733c 2305
b5d67f64
SB
2306 /* last one frees, either here or in bio completion for last page */
2307 scrub_block_put(sblock);
a2de733c
AJ
2308 return 0;
2309}
2310
4246a0b6 2311static void scrub_bio_end_io(struct bio *bio)
b5d67f64
SB
2312{
2313 struct scrub_bio *sbio = bio->bi_private;
fb456252 2314 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
b5d67f64 2315
4e4cbee9 2316 sbio->status = bio->bi_status;
b5d67f64
SB
2317 sbio->bio = bio;
2318
0339ef2f 2319 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2320}
2321
2322static void scrub_bio_end_io_worker(struct btrfs_work *work)
2323{
2324 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2325 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2326 int i;
2327
ff023aac 2328 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
4e4cbee9 2329 if (sbio->status) {
b5d67f64
SB
2330 for (i = 0; i < sbio->page_count; i++) {
2331 struct scrub_page *spage = sbio->pagev[i];
2332
2333 spage->io_error = 1;
2334 spage->sblock->no_io_error_seen = 0;
2335 }
2336 }
2337
2338 /* now complete the scrub_block items that have all pages completed */
2339 for (i = 0; i < sbio->page_count; i++) {
2340 struct scrub_page *spage = sbio->pagev[i];
2341 struct scrub_block *sblock = spage->sblock;
2342
2343 if (atomic_dec_and_test(&sblock->outstanding_pages))
2344 scrub_block_complete(sblock);
2345 scrub_block_put(sblock);
2346 }
2347
b5d67f64
SB
2348 bio_put(sbio->bio);
2349 sbio->bio = NULL;
d9d181c1
SB
2350 spin_lock(&sctx->list_lock);
2351 sbio->next_free = sctx->first_free;
2352 sctx->first_free = sbio->index;
2353 spin_unlock(&sctx->list_lock);
ff023aac 2354
2073c4c2 2355 if (sctx->is_dev_replace && sctx->flush_all_writes) {
3fb99303 2356 mutex_lock(&sctx->wr_lock);
ff023aac 2357 scrub_wr_submit(sctx);
3fb99303 2358 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
2359 }
2360
b6bfebc1 2361 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2362}
2363
5a6ac9ea
MX
2364static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2365 unsigned long *bitmap,
2366 u64 start, u64 len)
2367{
972d7219 2368 u64 offset;
7736b0a4
DS
2369 u64 nsectors64;
2370 u32 nsectors;
da17066c 2371 int sectorsize = sparity->sctx->fs_info->sectorsize;
5a6ac9ea
MX
2372
2373 if (len >= sparity->stripe_len) {
2374 bitmap_set(bitmap, 0, sparity->nsectors);
2375 return;
2376 }
2377
2378 start -= sparity->logic_start;
972d7219
LB
2379 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2380 offset = div_u64(offset, sectorsize);
7736b0a4
DS
2381 nsectors64 = div_u64(len, sectorsize);
2382
2383 ASSERT(nsectors64 < UINT_MAX);
2384 nsectors = (u32)nsectors64;
5a6ac9ea
MX
2385
2386 if (offset + nsectors <= sparity->nsectors) {
2387 bitmap_set(bitmap, offset, nsectors);
2388 return;
2389 }
2390
2391 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2392 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2393}
2394
2395static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2396 u64 start, u64 len)
2397{
2398 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2399}
2400
2401static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2402 u64 start, u64 len)
2403{
2404 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2405}
2406
b5d67f64
SB
2407static void scrub_block_complete(struct scrub_block *sblock)
2408{
5a6ac9ea
MX
2409 int corrupted = 0;
2410
ff023aac 2411 if (!sblock->no_io_error_seen) {
5a6ac9ea 2412 corrupted = 1;
b5d67f64 2413 scrub_handle_errored_block(sblock);
ff023aac
SB
2414 } else {
2415 /*
2416 * if has checksum error, write via repair mechanism in
2417 * dev replace case, otherwise write here in dev replace
2418 * case.
2419 */
5a6ac9ea
MX
2420 corrupted = scrub_checksum(sblock);
2421 if (!corrupted && sblock->sctx->is_dev_replace)
ff023aac
SB
2422 scrub_write_block_to_dev_replace(sblock);
2423 }
5a6ac9ea
MX
2424
2425 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2426 u64 start = sblock->pagev[0]->logical;
2427 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2428 PAGE_SIZE;
2429
2430 scrub_parity_mark_sectors_error(sblock->sparity,
2431 start, end - start);
2432 }
b5d67f64
SB
2433}
2434
3b5753ec 2435static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
a2de733c
AJ
2436{
2437 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2438 unsigned long index;
a2de733c 2439 unsigned long num_sectors;
a2de733c 2440
d9d181c1
SB
2441 while (!list_empty(&sctx->csum_list)) {
2442 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2443 struct btrfs_ordered_sum, list);
2444 if (sum->bytenr > logical)
2445 return 0;
2446 if (sum->bytenr + sum->len > logical)
2447 break;
2448
d9d181c1 2449 ++sctx->stat.csum_discards;
a2de733c
AJ
2450 list_del(&sum->list);
2451 kfree(sum);
2452 sum = NULL;
2453 }
2454 if (!sum)
2455 return 0;
2456
1d1bf92d
DS
2457 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2458 ASSERT(index < UINT_MAX);
2459
25cc1226 2460 num_sectors = sum->len / sctx->fs_info->sectorsize;
1e25a2e3 2461 memcpy(csum, sum->sums + index * sctx->csum_size, sctx->csum_size);
f51a4a18 2462 if (index == num_sectors - 1) {
a2de733c
AJ
2463 list_del(&sum->list);
2464 kfree(sum);
2465 }
f51a4a18 2466 return 1;
a2de733c
AJ
2467}
2468
2469/* scrub extent tries to collect up to 64 kB for each bio */
6ca1765b
LB
2470static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2471 u64 logical, u64 len,
a36cf8b8 2472 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2473 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2474{
2475 int ret;
2476 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2477 u32 blocksize;
2478
2479 if (flags & BTRFS_EXTENT_FLAG_DATA) {
6ca1765b
LB
2480 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2481 blocksize = map->stripe_len;
2482 else
2483 blocksize = sctx->fs_info->sectorsize;
d9d181c1
SB
2484 spin_lock(&sctx->stat_lock);
2485 sctx->stat.data_extents_scrubbed++;
2486 sctx->stat.data_bytes_scrubbed += len;
2487 spin_unlock(&sctx->stat_lock);
b5d67f64 2488 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6ca1765b
LB
2489 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2490 blocksize = map->stripe_len;
2491 else
2492 blocksize = sctx->fs_info->nodesize;
d9d181c1
SB
2493 spin_lock(&sctx->stat_lock);
2494 sctx->stat.tree_extents_scrubbed++;
2495 sctx->stat.tree_bytes_scrubbed += len;
2496 spin_unlock(&sctx->stat_lock);
b5d67f64 2497 } else {
25cc1226 2498 blocksize = sctx->fs_info->sectorsize;
ff023aac 2499 WARN_ON(1);
b5d67f64 2500 }
a2de733c
AJ
2501
2502 while (len) {
b5d67f64 2503 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2504 int have_csum = 0;
2505
2506 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2507 /* push csums to sbio */
3b5753ec 2508 have_csum = scrub_find_csum(sctx, logical, csum);
a2de733c 2509 if (have_csum == 0)
d9d181c1 2510 ++sctx->stat.no_csum;
a2de733c 2511 }
a36cf8b8 2512 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2513 mirror_num, have_csum ? csum : NULL, 0,
2514 physical_for_dev_replace);
a2de733c
AJ
2515 if (ret)
2516 return ret;
2517 len -= l;
2518 logical += l;
2519 physical += l;
ff023aac 2520 physical_for_dev_replace += l;
a2de733c
AJ
2521 }
2522 return 0;
2523}
2524
5a6ac9ea
MX
2525static int scrub_pages_for_parity(struct scrub_parity *sparity,
2526 u64 logical, u64 len,
2527 u64 physical, struct btrfs_device *dev,
2528 u64 flags, u64 gen, int mirror_num, u8 *csum)
2529{
2530 struct scrub_ctx *sctx = sparity->sctx;
2531 struct scrub_block *sblock;
2532 int index;
2533
58c4e173 2534 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
5a6ac9ea
MX
2535 if (!sblock) {
2536 spin_lock(&sctx->stat_lock);
2537 sctx->stat.malloc_errors++;
2538 spin_unlock(&sctx->stat_lock);
2539 return -ENOMEM;
2540 }
2541
2542 /* one ref inside this function, plus one for each page added to
2543 * a bio later on */
186debd6 2544 refcount_set(&sblock->refs, 1);
5a6ac9ea
MX
2545 sblock->sctx = sctx;
2546 sblock->no_io_error_seen = 1;
2547 sblock->sparity = sparity;
2548 scrub_parity_get(sparity);
2549
2550 for (index = 0; len > 0; index++) {
2551 struct scrub_page *spage;
2552 u64 l = min_t(u64, len, PAGE_SIZE);
2553
58c4e173 2554 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
5a6ac9ea
MX
2555 if (!spage) {
2556leave_nomem:
2557 spin_lock(&sctx->stat_lock);
2558 sctx->stat.malloc_errors++;
2559 spin_unlock(&sctx->stat_lock);
2560 scrub_block_put(sblock);
2561 return -ENOMEM;
2562 }
2563 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2564 /* For scrub block */
2565 scrub_page_get(spage);
2566 sblock->pagev[index] = spage;
2567 /* For scrub parity */
2568 scrub_page_get(spage);
2569 list_add_tail(&spage->list, &sparity->spages);
2570 spage->sblock = sblock;
2571 spage->dev = dev;
2572 spage->flags = flags;
2573 spage->generation = gen;
2574 spage->logical = logical;
2575 spage->physical = physical;
2576 spage->mirror_num = mirror_num;
2577 if (csum) {
2578 spage->have_csum = 1;
2579 memcpy(spage->csum, csum, sctx->csum_size);
2580 } else {
2581 spage->have_csum = 0;
2582 }
2583 sblock->page_count++;
58c4e173 2584 spage->page = alloc_page(GFP_KERNEL);
5a6ac9ea
MX
2585 if (!spage->page)
2586 goto leave_nomem;
2587 len -= l;
2588 logical += l;
2589 physical += l;
2590 }
2591
2592 WARN_ON(sblock->page_count == 0);
2593 for (index = 0; index < sblock->page_count; index++) {
2594 struct scrub_page *spage = sblock->pagev[index];
2595 int ret;
2596
2597 ret = scrub_add_page_to_rd_bio(sctx, spage);
2598 if (ret) {
2599 scrub_block_put(sblock);
2600 return ret;
2601 }
2602 }
2603
2604 /* last one frees, either here or in bio completion for last page */
2605 scrub_block_put(sblock);
2606 return 0;
2607}
2608
2609static int scrub_extent_for_parity(struct scrub_parity *sparity,
2610 u64 logical, u64 len,
2611 u64 physical, struct btrfs_device *dev,
2612 u64 flags, u64 gen, int mirror_num)
2613{
2614 struct scrub_ctx *sctx = sparity->sctx;
2615 int ret;
2616 u8 csum[BTRFS_CSUM_SIZE];
2617 u32 blocksize;
2618
e6e674bd 2619 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
4a770891
OS
2620 scrub_parity_mark_sectors_error(sparity, logical, len);
2621 return 0;
2622 }
2623
5a6ac9ea 2624 if (flags & BTRFS_EXTENT_FLAG_DATA) {
6ca1765b 2625 blocksize = sparity->stripe_len;
5a6ac9ea 2626 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
6ca1765b 2627 blocksize = sparity->stripe_len;
5a6ac9ea 2628 } else {
25cc1226 2629 blocksize = sctx->fs_info->sectorsize;
5a6ac9ea
MX
2630 WARN_ON(1);
2631 }
2632
2633 while (len) {
2634 u64 l = min_t(u64, len, blocksize);
2635 int have_csum = 0;
2636
2637 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2638 /* push csums to sbio */
3b5753ec 2639 have_csum = scrub_find_csum(sctx, logical, csum);
5a6ac9ea
MX
2640 if (have_csum == 0)
2641 goto skip;
2642 }
2643 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2644 flags, gen, mirror_num,
2645 have_csum ? csum : NULL);
5a6ac9ea
MX
2646 if (ret)
2647 return ret;
6b6d24b3 2648skip:
5a6ac9ea
MX
2649 len -= l;
2650 logical += l;
2651 physical += l;
2652 }
2653 return 0;
2654}
2655
3b080b25
WS
2656/*
2657 * Given a physical address, this will calculate it's
2658 * logical offset. if this is a parity stripe, it will return
2659 * the most left data stripe's logical offset.
2660 *
2661 * return 0 if it is a data stripe, 1 means parity stripe.
2662 */
2663static int get_raid56_logic_offset(u64 physical, int num,
5a6ac9ea
MX
2664 struct map_lookup *map, u64 *offset,
2665 u64 *stripe_start)
3b080b25
WS
2666{
2667 int i;
2668 int j = 0;
2669 u64 stripe_nr;
2670 u64 last_offset;
9d644a62
DS
2671 u32 stripe_index;
2672 u32 rot;
cff82672 2673 const int data_stripes = nr_data_stripes(map);
3b080b25 2674
cff82672 2675 last_offset = (physical - map->stripes[num].physical) * data_stripes;
5a6ac9ea
MX
2676 if (stripe_start)
2677 *stripe_start = last_offset;
2678
3b080b25 2679 *offset = last_offset;
cff82672 2680 for (i = 0; i < data_stripes; i++) {
3b080b25
WS
2681 *offset = last_offset + i * map->stripe_len;
2682
42c61ab6 2683 stripe_nr = div64_u64(*offset, map->stripe_len);
cff82672 2684 stripe_nr = div_u64(stripe_nr, data_stripes);
3b080b25
WS
2685
2686 /* Work out the disk rotation on this stripe-set */
47c5713f 2687 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
3b080b25
WS
2688 /* calculate which stripe this data locates */
2689 rot += i;
e4fbaee2 2690 stripe_index = rot % map->num_stripes;
3b080b25
WS
2691 if (stripe_index == num)
2692 return 0;
2693 if (stripe_index < num)
2694 j++;
2695 }
2696 *offset = last_offset + j * map->stripe_len;
2697 return 1;
2698}
2699
5a6ac9ea
MX
2700static void scrub_free_parity(struct scrub_parity *sparity)
2701{
2702 struct scrub_ctx *sctx = sparity->sctx;
2703 struct scrub_page *curr, *next;
2704 int nbits;
2705
2706 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2707 if (nbits) {
2708 spin_lock(&sctx->stat_lock);
2709 sctx->stat.read_errors += nbits;
2710 sctx->stat.uncorrectable_errors += nbits;
2711 spin_unlock(&sctx->stat_lock);
2712 }
2713
2714 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2715 list_del_init(&curr->list);
2716 scrub_page_put(curr);
2717 }
2718
2719 kfree(sparity);
2720}
2721
20b2e302
ZL
2722static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2723{
2724 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2725 work);
2726 struct scrub_ctx *sctx = sparity->sctx;
2727
2728 scrub_free_parity(sparity);
2729 scrub_pending_bio_dec(sctx);
2730}
2731
4246a0b6 2732static void scrub_parity_bio_endio(struct bio *bio)
5a6ac9ea
MX
2733{
2734 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
0b246afa 2735 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
5a6ac9ea 2736
4e4cbee9 2737 if (bio->bi_status)
5a6ac9ea
MX
2738 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2739 sparity->nsectors);
2740
5a6ac9ea 2741 bio_put(bio);
20b2e302 2742
a0cac0ec
OS
2743 btrfs_init_work(&sparity->work, scrub_parity_bio_endio_worker, NULL,
2744 NULL);
0b246afa 2745 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
5a6ac9ea
MX
2746}
2747
2748static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2749{
2750 struct scrub_ctx *sctx = sparity->sctx;
0b246afa 2751 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2752 struct bio *bio;
2753 struct btrfs_raid_bio *rbio;
5a6ac9ea 2754 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2755 u64 length;
2756 int ret;
2757
2758 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2759 sparity->nsectors))
2760 goto out;
2761
a0dd59de 2762 length = sparity->logic_end - sparity->logic_start;
ae6529c3
QW
2763
2764 btrfs_bio_counter_inc_blocked(fs_info);
0b246afa 2765 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
825ad4c9 2766 &length, &bbio);
8e5cfb55 2767 if (ret || !bbio || !bbio->raid_map)
5a6ac9ea
MX
2768 goto bbio_out;
2769
c5e4c3d7 2770 bio = btrfs_io_bio_alloc(0);
5a6ac9ea
MX
2771 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2772 bio->bi_private = sparity;
2773 bio->bi_end_io = scrub_parity_bio_endio;
2774
2ff7e61e 2775 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
8e5cfb55 2776 length, sparity->scrub_dev,
5a6ac9ea
MX
2777 sparity->dbitmap,
2778 sparity->nsectors);
2779 if (!rbio)
2780 goto rbio_out;
2781
5a6ac9ea
MX
2782 scrub_pending_bio_inc(sctx);
2783 raid56_parity_submit_scrub_rbio(rbio);
2784 return;
2785
2786rbio_out:
2787 bio_put(bio);
2788bbio_out:
ae6529c3 2789 btrfs_bio_counter_dec(fs_info);
6e9606d2 2790 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2791 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2792 sparity->nsectors);
2793 spin_lock(&sctx->stat_lock);
2794 sctx->stat.malloc_errors++;
2795 spin_unlock(&sctx->stat_lock);
2796out:
2797 scrub_free_parity(sparity);
2798}
2799
2800static inline int scrub_calc_parity_bitmap_len(int nsectors)
2801{
bfca9a6d 2802 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
5a6ac9ea
MX
2803}
2804
2805static void scrub_parity_get(struct scrub_parity *sparity)
2806{
78a76450 2807 refcount_inc(&sparity->refs);
5a6ac9ea
MX
2808}
2809
2810static void scrub_parity_put(struct scrub_parity *sparity)
2811{
78a76450 2812 if (!refcount_dec_and_test(&sparity->refs))
5a6ac9ea
MX
2813 return;
2814
2815 scrub_parity_check_and_repair(sparity);
2816}
2817
2818static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2819 struct map_lookup *map,
2820 struct btrfs_device *sdev,
2821 struct btrfs_path *path,
2822 u64 logic_start,
2823 u64 logic_end)
2824{
fb456252 2825 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
2826 struct btrfs_root *root = fs_info->extent_root;
2827 struct btrfs_root *csum_root = fs_info->csum_root;
2828 struct btrfs_extent_item *extent;
4a770891 2829 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
2830 u64 flags;
2831 int ret;
2832 int slot;
2833 struct extent_buffer *l;
2834 struct btrfs_key key;
2835 u64 generation;
2836 u64 extent_logical;
2837 u64 extent_physical;
2838 u64 extent_len;
4a770891 2839 u64 mapped_length;
5a6ac9ea
MX
2840 struct btrfs_device *extent_dev;
2841 struct scrub_parity *sparity;
2842 int nsectors;
2843 int bitmap_len;
2844 int extent_mirror_num;
2845 int stop_loop = 0;
2846
0b246afa 2847 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
5a6ac9ea
MX
2848 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2849 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2850 GFP_NOFS);
2851 if (!sparity) {
2852 spin_lock(&sctx->stat_lock);
2853 sctx->stat.malloc_errors++;
2854 spin_unlock(&sctx->stat_lock);
2855 return -ENOMEM;
2856 }
2857
2858 sparity->stripe_len = map->stripe_len;
2859 sparity->nsectors = nsectors;
2860 sparity->sctx = sctx;
2861 sparity->scrub_dev = sdev;
2862 sparity->logic_start = logic_start;
2863 sparity->logic_end = logic_end;
78a76450 2864 refcount_set(&sparity->refs, 1);
5a6ac9ea
MX
2865 INIT_LIST_HEAD(&sparity->spages);
2866 sparity->dbitmap = sparity->bitmap;
2867 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2868
2869 ret = 0;
2870 while (logic_start < logic_end) {
2871 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2872 key.type = BTRFS_METADATA_ITEM_KEY;
2873 else
2874 key.type = BTRFS_EXTENT_ITEM_KEY;
2875 key.objectid = logic_start;
2876 key.offset = (u64)-1;
2877
2878 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2879 if (ret < 0)
2880 goto out;
2881
2882 if (ret > 0) {
2883 ret = btrfs_previous_extent_item(root, path, 0);
2884 if (ret < 0)
2885 goto out;
2886 if (ret > 0) {
2887 btrfs_release_path(path);
2888 ret = btrfs_search_slot(NULL, root, &key,
2889 path, 0, 0);
2890 if (ret < 0)
2891 goto out;
2892 }
2893 }
2894
2895 stop_loop = 0;
2896 while (1) {
2897 u64 bytes;
2898
2899 l = path->nodes[0];
2900 slot = path->slots[0];
2901 if (slot >= btrfs_header_nritems(l)) {
2902 ret = btrfs_next_leaf(root, path);
2903 if (ret == 0)
2904 continue;
2905 if (ret < 0)
2906 goto out;
2907
2908 stop_loop = 1;
2909 break;
2910 }
2911 btrfs_item_key_to_cpu(l, &key, slot);
2912
d7cad238
ZL
2913 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2914 key.type != BTRFS_METADATA_ITEM_KEY)
2915 goto next;
2916
5a6ac9ea 2917 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 2918 bytes = fs_info->nodesize;
5a6ac9ea
MX
2919 else
2920 bytes = key.offset;
2921
2922 if (key.objectid + bytes <= logic_start)
2923 goto next;
2924
a0dd59de 2925 if (key.objectid >= logic_end) {
5a6ac9ea
MX
2926 stop_loop = 1;
2927 break;
2928 }
2929
2930 while (key.objectid >= logic_start + map->stripe_len)
2931 logic_start += map->stripe_len;
2932
2933 extent = btrfs_item_ptr(l, slot,
2934 struct btrfs_extent_item);
2935 flags = btrfs_extent_flags(l, extent);
2936 generation = btrfs_extent_generation(l, extent);
2937
a323e813
ZL
2938 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2939 (key.objectid < logic_start ||
2940 key.objectid + bytes >
2941 logic_start + map->stripe_len)) {
5d163e0e
JM
2942 btrfs_err(fs_info,
2943 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
a323e813 2944 key.objectid, logic_start);
9799d2c3
ZL
2945 spin_lock(&sctx->stat_lock);
2946 sctx->stat.uncorrectable_errors++;
2947 spin_unlock(&sctx->stat_lock);
5a6ac9ea
MX
2948 goto next;
2949 }
2950again:
2951 extent_logical = key.objectid;
2952 extent_len = bytes;
2953
2954 if (extent_logical < logic_start) {
2955 extent_len -= logic_start - extent_logical;
2956 extent_logical = logic_start;
2957 }
2958
2959 if (extent_logical + extent_len >
2960 logic_start + map->stripe_len)
2961 extent_len = logic_start + map->stripe_len -
2962 extent_logical;
2963
2964 scrub_parity_mark_sectors_data(sparity, extent_logical,
2965 extent_len);
2966
4a770891 2967 mapped_length = extent_len;
f1fee653 2968 bbio = NULL;
cf8cddd3
CH
2969 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2970 extent_logical, &mapped_length, &bbio,
2971 0);
4a770891
OS
2972 if (!ret) {
2973 if (!bbio || mapped_length < extent_len)
2974 ret = -EIO;
2975 }
2976 if (ret) {
2977 btrfs_put_bbio(bbio);
2978 goto out;
2979 }
2980 extent_physical = bbio->stripes[0].physical;
2981 extent_mirror_num = bbio->mirror_num;
2982 extent_dev = bbio->stripes[0].dev;
2983 btrfs_put_bbio(bbio);
5a6ac9ea
MX
2984
2985 ret = btrfs_lookup_csums_range(csum_root,
2986 extent_logical,
2987 extent_logical + extent_len - 1,
2988 &sctx->csum_list, 1);
2989 if (ret)
2990 goto out;
2991
2992 ret = scrub_extent_for_parity(sparity, extent_logical,
2993 extent_len,
2994 extent_physical,
2995 extent_dev, flags,
2996 generation,
2997 extent_mirror_num);
6fa96d72
ZL
2998
2999 scrub_free_csums(sctx);
3000
5a6ac9ea
MX
3001 if (ret)
3002 goto out;
3003
5a6ac9ea
MX
3004 if (extent_logical + extent_len <
3005 key.objectid + bytes) {
3006 logic_start += map->stripe_len;
3007
3008 if (logic_start >= logic_end) {
3009 stop_loop = 1;
3010 break;
3011 }
3012
3013 if (logic_start < key.objectid + bytes) {
3014 cond_resched();
3015 goto again;
3016 }
3017 }
3018next:
3019 path->slots[0]++;
3020 }
3021
3022 btrfs_release_path(path);
3023
3024 if (stop_loop)
3025 break;
3026
3027 logic_start += map->stripe_len;
3028 }
3029out:
3030 if (ret < 0)
3031 scrub_parity_mark_sectors_error(sparity, logic_start,
a0dd59de 3032 logic_end - logic_start);
5a6ac9ea
MX
3033 scrub_parity_put(sparity);
3034 scrub_submit(sctx);
3fb99303 3035 mutex_lock(&sctx->wr_lock);
5a6ac9ea 3036 scrub_wr_submit(sctx);
3fb99303 3037 mutex_unlock(&sctx->wr_lock);
5a6ac9ea
MX
3038
3039 btrfs_release_path(path);
3040 return ret < 0 ? ret : 0;
3041}
3042
d9d181c1 3043static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
3044 struct map_lookup *map,
3045 struct btrfs_device *scrub_dev,
32934280 3046 int num, u64 base, u64 length)
a2de733c 3047{
5a6ac9ea 3048 struct btrfs_path *path, *ppath;
fb456252 3049 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c
AJ
3050 struct btrfs_root *root = fs_info->extent_root;
3051 struct btrfs_root *csum_root = fs_info->csum_root;
3052 struct btrfs_extent_item *extent;
e7786c3a 3053 struct blk_plug plug;
a2de733c
AJ
3054 u64 flags;
3055 int ret;
3056 int slot;
a2de733c 3057 u64 nstripes;
a2de733c 3058 struct extent_buffer *l;
a2de733c
AJ
3059 u64 physical;
3060 u64 logical;
625f1c8d 3061 u64 logic_end;
3b080b25 3062 u64 physical_end;
a2de733c 3063 u64 generation;
e12fa9cd 3064 int mirror_num;
7a26285e
AJ
3065 struct reada_control *reada1;
3066 struct reada_control *reada2;
e6c11f9a 3067 struct btrfs_key key;
7a26285e 3068 struct btrfs_key key_end;
a2de733c
AJ
3069 u64 increment = map->stripe_len;
3070 u64 offset;
ff023aac
SB
3071 u64 extent_logical;
3072 u64 extent_physical;
3073 u64 extent_len;
5a6ac9ea
MX
3074 u64 stripe_logical;
3075 u64 stripe_end;
ff023aac
SB
3076 struct btrfs_device *extent_dev;
3077 int extent_mirror_num;
3b080b25 3078 int stop_loop = 0;
53b381b3 3079
3b080b25 3080 physical = map->stripes[num].physical;
a2de733c 3081 offset = 0;
42c61ab6 3082 nstripes = div64_u64(length, map->stripe_len);
a2de733c
AJ
3083 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3084 offset = map->stripe_len * num;
3085 increment = map->stripe_len * map->num_stripes;
193ea74b 3086 mirror_num = 1;
a2de733c
AJ
3087 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3088 int factor = map->num_stripes / map->sub_stripes;
3089 offset = map->stripe_len * (num / map->sub_stripes);
3090 increment = map->stripe_len * factor;
193ea74b 3091 mirror_num = num % map->sub_stripes + 1;
c7369b3f 3092 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
a2de733c 3093 increment = map->stripe_len;
193ea74b 3094 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
3095 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3096 increment = map->stripe_len;
193ea74b 3097 mirror_num = num % map->num_stripes + 1;
ffe2d203 3098 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5a6ac9ea 3099 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3b080b25
WS
3100 increment = map->stripe_len * nr_data_stripes(map);
3101 mirror_num = 1;
a2de733c
AJ
3102 } else {
3103 increment = map->stripe_len;
193ea74b 3104 mirror_num = 1;
a2de733c
AJ
3105 }
3106
3107 path = btrfs_alloc_path();
3108 if (!path)
3109 return -ENOMEM;
3110
5a6ac9ea
MX
3111 ppath = btrfs_alloc_path();
3112 if (!ppath) {
379d6854 3113 btrfs_free_path(path);
5a6ac9ea
MX
3114 return -ENOMEM;
3115 }
3116
b5d67f64
SB
3117 /*
3118 * work on commit root. The related disk blocks are static as
3119 * long as COW is applied. This means, it is save to rewrite
3120 * them to repair disk errors without any race conditions
3121 */
a2de733c
AJ
3122 path->search_commit_root = 1;
3123 path->skip_locking = 1;
3124
063c54dc
GH
3125 ppath->search_commit_root = 1;
3126 ppath->skip_locking = 1;
a2de733c 3127 /*
7a26285e
AJ
3128 * trigger the readahead for extent tree csum tree and wait for
3129 * completion. During readahead, the scrub is officially paused
3130 * to not hold off transaction commits
a2de733c
AJ
3131 */
3132 logical = base + offset;
3b080b25 3133 physical_end = physical + nstripes * map->stripe_len;
ffe2d203 3134 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25 3135 get_raid56_logic_offset(physical_end, num,
5a6ac9ea 3136 map, &logic_end, NULL);
3b080b25
WS
3137 logic_end += base;
3138 } else {
3139 logic_end = logical + increment * nstripes;
3140 }
d9d181c1 3141 wait_event(sctx->list_wait,
b6bfebc1 3142 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 3143 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
3144
3145 /* FIXME it might be better to start readahead at commit root */
e6c11f9a
DS
3146 key.objectid = logical;
3147 key.type = BTRFS_EXTENT_ITEM_KEY;
3148 key.offset = (u64)0;
3b080b25 3149 key_end.objectid = logic_end;
3173a18f
JB
3150 key_end.type = BTRFS_METADATA_ITEM_KEY;
3151 key_end.offset = (u64)-1;
e6c11f9a 3152 reada1 = btrfs_reada_add(root, &key, &key_end);
7a26285e 3153
e6c11f9a
DS
3154 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3155 key.type = BTRFS_EXTENT_CSUM_KEY;
3156 key.offset = logical;
7a26285e
AJ
3157 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3158 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 3159 key_end.offset = logic_end;
e6c11f9a 3160 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
7a26285e
AJ
3161
3162 if (!IS_ERR(reada1))
3163 btrfs_reada_wait(reada1);
3164 if (!IS_ERR(reada2))
3165 btrfs_reada_wait(reada2);
3166
a2de733c
AJ
3167
3168 /*
3169 * collect all data csums for the stripe to avoid seeking during
3170 * the scrub. This might currently (crc32) end up to be about 1MB
3171 */
e7786c3a 3172 blk_start_plug(&plug);
a2de733c 3173
a2de733c
AJ
3174 /*
3175 * now find all extents for each stripe and scrub them
3176 */
a2de733c 3177 ret = 0;
3b080b25 3178 while (physical < physical_end) {
a2de733c
AJ
3179 /*
3180 * canceled?
3181 */
3182 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 3183 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
3184 ret = -ECANCELED;
3185 goto out;
3186 }
3187 /*
3188 * check to see if we have to pause
3189 */
3190 if (atomic_read(&fs_info->scrub_pause_req)) {
3191 /* push queued extents */
2073c4c2 3192 sctx->flush_all_writes = true;
d9d181c1 3193 scrub_submit(sctx);
3fb99303 3194 mutex_lock(&sctx->wr_lock);
ff023aac 3195 scrub_wr_submit(sctx);
3fb99303 3196 mutex_unlock(&sctx->wr_lock);
d9d181c1 3197 wait_event(sctx->list_wait,
b6bfebc1 3198 atomic_read(&sctx->bios_in_flight) == 0);
2073c4c2 3199 sctx->flush_all_writes = false;
3cb0929a 3200 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3201 }
3202
f2f66a2f
ZL
3203 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3204 ret = get_raid56_logic_offset(physical, num, map,
3205 &logical,
3206 &stripe_logical);
3207 logical += base;
3208 if (ret) {
7955323b 3209 /* it is parity strip */
f2f66a2f 3210 stripe_logical += base;
a0dd59de 3211 stripe_end = stripe_logical + increment;
f2f66a2f
ZL
3212 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3213 ppath, stripe_logical,
3214 stripe_end);
3215 if (ret)
3216 goto out;
3217 goto skip;
3218 }
3219 }
3220
7c76edb7
WS
3221 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3222 key.type = BTRFS_METADATA_ITEM_KEY;
3223 else
3224 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 3225 key.objectid = logical;
625f1c8d 3226 key.offset = (u64)-1;
a2de733c
AJ
3227
3228 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3229 if (ret < 0)
3230 goto out;
3173a18f 3231
8c51032f 3232 if (ret > 0) {
ade2e0b3 3233 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
3234 if (ret < 0)
3235 goto out;
8c51032f
AJ
3236 if (ret > 0) {
3237 /* there's no smaller item, so stick with the
3238 * larger one */
3239 btrfs_release_path(path);
3240 ret = btrfs_search_slot(NULL, root, &key,
3241 path, 0, 0);
3242 if (ret < 0)
3243 goto out;
3244 }
a2de733c
AJ
3245 }
3246
625f1c8d 3247 stop_loop = 0;
a2de733c 3248 while (1) {
3173a18f
JB
3249 u64 bytes;
3250
a2de733c
AJ
3251 l = path->nodes[0];
3252 slot = path->slots[0];
3253 if (slot >= btrfs_header_nritems(l)) {
3254 ret = btrfs_next_leaf(root, path);
3255 if (ret == 0)
3256 continue;
3257 if (ret < 0)
3258 goto out;
3259
625f1c8d 3260 stop_loop = 1;
a2de733c
AJ
3261 break;
3262 }
3263 btrfs_item_key_to_cpu(l, &key, slot);
3264
d7cad238
ZL
3265 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3266 key.type != BTRFS_METADATA_ITEM_KEY)
3267 goto next;
3268
3173a18f 3269 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 3270 bytes = fs_info->nodesize;
3173a18f
JB
3271 else
3272 bytes = key.offset;
3273
3274 if (key.objectid + bytes <= logical)
a2de733c
AJ
3275 goto next;
3276
625f1c8d
LB
3277 if (key.objectid >= logical + map->stripe_len) {
3278 /* out of this device extent */
3279 if (key.objectid >= logic_end)
3280 stop_loop = 1;
3281 break;
3282 }
a2de733c
AJ
3283
3284 extent = btrfs_item_ptr(l, slot,
3285 struct btrfs_extent_item);
3286 flags = btrfs_extent_flags(l, extent);
3287 generation = btrfs_extent_generation(l, extent);
3288
a323e813
ZL
3289 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3290 (key.objectid < logical ||
3291 key.objectid + bytes >
3292 logical + map->stripe_len)) {
efe120a0 3293 btrfs_err(fs_info,
5d163e0e 3294 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
c1c9ff7c 3295 key.objectid, logical);
9799d2c3
ZL
3296 spin_lock(&sctx->stat_lock);
3297 sctx->stat.uncorrectable_errors++;
3298 spin_unlock(&sctx->stat_lock);
a2de733c
AJ
3299 goto next;
3300 }
3301
625f1c8d
LB
3302again:
3303 extent_logical = key.objectid;
3304 extent_len = bytes;
3305
a2de733c
AJ
3306 /*
3307 * trim extent to this stripe
3308 */
625f1c8d
LB
3309 if (extent_logical < logical) {
3310 extent_len -= logical - extent_logical;
3311 extent_logical = logical;
a2de733c 3312 }
625f1c8d 3313 if (extent_logical + extent_len >
a2de733c 3314 logical + map->stripe_len) {
625f1c8d
LB
3315 extent_len = logical + map->stripe_len -
3316 extent_logical;
a2de733c
AJ
3317 }
3318
625f1c8d 3319 extent_physical = extent_logical - logical + physical;
ff023aac
SB
3320 extent_dev = scrub_dev;
3321 extent_mirror_num = mirror_num;
32934280 3322 if (sctx->is_dev_replace)
ff023aac
SB
3323 scrub_remap_extent(fs_info, extent_logical,
3324 extent_len, &extent_physical,
3325 &extent_dev,
3326 &extent_mirror_num);
625f1c8d 3327
fe8cf654
ZL
3328 ret = btrfs_lookup_csums_range(csum_root,
3329 extent_logical,
3330 extent_logical +
3331 extent_len - 1,
3332 &sctx->csum_list, 1);
625f1c8d
LB
3333 if (ret)
3334 goto out;
3335
6ca1765b 3336 ret = scrub_extent(sctx, map, extent_logical, extent_len,
ff023aac
SB
3337 extent_physical, extent_dev, flags,
3338 generation, extent_mirror_num,
115930cb 3339 extent_logical - logical + physical);
6fa96d72
ZL
3340
3341 scrub_free_csums(sctx);
3342
a2de733c
AJ
3343 if (ret)
3344 goto out;
3345
625f1c8d
LB
3346 if (extent_logical + extent_len <
3347 key.objectid + bytes) {
ffe2d203 3348 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25
WS
3349 /*
3350 * loop until we find next data stripe
3351 * or we have finished all stripes.
3352 */
5a6ac9ea
MX
3353loop:
3354 physical += map->stripe_len;
3355 ret = get_raid56_logic_offset(physical,
3356 num, map, &logical,
3357 &stripe_logical);
3358 logical += base;
3359
3360 if (ret && physical < physical_end) {
3361 stripe_logical += base;
3362 stripe_end = stripe_logical +
a0dd59de 3363 increment;
5a6ac9ea
MX
3364 ret = scrub_raid56_parity(sctx,
3365 map, scrub_dev, ppath,
3366 stripe_logical,
3367 stripe_end);
3368 if (ret)
3369 goto out;
3370 goto loop;
3371 }
3b080b25
WS
3372 } else {
3373 physical += map->stripe_len;
3374 logical += increment;
3375 }
625f1c8d
LB
3376 if (logical < key.objectid + bytes) {
3377 cond_resched();
3378 goto again;
3379 }
3380
3b080b25 3381 if (physical >= physical_end) {
625f1c8d
LB
3382 stop_loop = 1;
3383 break;
3384 }
3385 }
a2de733c
AJ
3386next:
3387 path->slots[0]++;
3388 }
71267333 3389 btrfs_release_path(path);
3b080b25 3390skip:
a2de733c
AJ
3391 logical += increment;
3392 physical += map->stripe_len;
d9d181c1 3393 spin_lock(&sctx->stat_lock);
625f1c8d
LB
3394 if (stop_loop)
3395 sctx->stat.last_physical = map->stripes[num].physical +
3396 length;
3397 else
3398 sctx->stat.last_physical = physical;
d9d181c1 3399 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
3400 if (stop_loop)
3401 break;
a2de733c 3402 }
ff023aac 3403out:
a2de733c 3404 /* push queued extents */
d9d181c1 3405 scrub_submit(sctx);
3fb99303 3406 mutex_lock(&sctx->wr_lock);
ff023aac 3407 scrub_wr_submit(sctx);
3fb99303 3408 mutex_unlock(&sctx->wr_lock);
a2de733c 3409
e7786c3a 3410 blk_finish_plug(&plug);
a2de733c 3411 btrfs_free_path(path);
5a6ac9ea 3412 btrfs_free_path(ppath);
a2de733c
AJ
3413 return ret < 0 ? ret : 0;
3414}
3415
d9d181c1 3416static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8 3417 struct btrfs_device *scrub_dev,
a36cf8b8 3418 u64 chunk_offset, u64 length,
020d5b73 3419 u64 dev_offset,
32934280 3420 struct btrfs_block_group_cache *cache)
a2de733c 3421{
fb456252 3422 struct btrfs_fs_info *fs_info = sctx->fs_info;
c8bf1b67 3423 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
a2de733c
AJ
3424 struct map_lookup *map;
3425 struct extent_map *em;
3426 int i;
ff023aac 3427 int ret = 0;
a2de733c 3428
c8bf1b67
DS
3429 read_lock(&map_tree->lock);
3430 em = lookup_extent_mapping(map_tree, chunk_offset, 1);
3431 read_unlock(&map_tree->lock);
a2de733c 3432
020d5b73
FM
3433 if (!em) {
3434 /*
3435 * Might have been an unused block group deleted by the cleaner
3436 * kthread or relocation.
3437 */
3438 spin_lock(&cache->lock);
3439 if (!cache->removed)
3440 ret = -EINVAL;
3441 spin_unlock(&cache->lock);
3442
3443 return ret;
3444 }
a2de733c 3445
95617d69 3446 map = em->map_lookup;
a2de733c
AJ
3447 if (em->start != chunk_offset)
3448 goto out;
3449
3450 if (em->len < length)
3451 goto out;
3452
3453 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 3454 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 3455 map->stripes[i].physical == dev_offset) {
a36cf8b8 3456 ret = scrub_stripe(sctx, map, scrub_dev, i,
32934280 3457 chunk_offset, length);
a2de733c
AJ
3458 if (ret)
3459 goto out;
3460 }
3461 }
3462out:
3463 free_extent_map(em);
3464
3465 return ret;
3466}
3467
3468static noinline_for_stack
a36cf8b8 3469int scrub_enumerate_chunks(struct scrub_ctx *sctx,
32934280 3470 struct btrfs_device *scrub_dev, u64 start, u64 end)
a2de733c
AJ
3471{
3472 struct btrfs_dev_extent *dev_extent = NULL;
3473 struct btrfs_path *path;
0b246afa
JM
3474 struct btrfs_fs_info *fs_info = sctx->fs_info;
3475 struct btrfs_root *root = fs_info->dev_root;
a2de733c 3476 u64 length;
a2de733c 3477 u64 chunk_offset;
55e3a601 3478 int ret = 0;
76a8efa1 3479 int ro_set;
a2de733c
AJ
3480 int slot;
3481 struct extent_buffer *l;
3482 struct btrfs_key key;
3483 struct btrfs_key found_key;
3484 struct btrfs_block_group_cache *cache;
ff023aac 3485 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
3486
3487 path = btrfs_alloc_path();
3488 if (!path)
3489 return -ENOMEM;
3490
e4058b54 3491 path->reada = READA_FORWARD;
a2de733c
AJ
3492 path->search_commit_root = 1;
3493 path->skip_locking = 1;
3494
a36cf8b8 3495 key.objectid = scrub_dev->devid;
a2de733c
AJ
3496 key.offset = 0ull;
3497 key.type = BTRFS_DEV_EXTENT_KEY;
3498
a2de733c
AJ
3499 while (1) {
3500 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3501 if (ret < 0)
8c51032f
AJ
3502 break;
3503 if (ret > 0) {
3504 if (path->slots[0] >=
3505 btrfs_header_nritems(path->nodes[0])) {
3506 ret = btrfs_next_leaf(root, path);
55e3a601
Z
3507 if (ret < 0)
3508 break;
3509 if (ret > 0) {
3510 ret = 0;
8c51032f 3511 break;
55e3a601
Z
3512 }
3513 } else {
3514 ret = 0;
8c51032f
AJ
3515 }
3516 }
a2de733c
AJ
3517
3518 l = path->nodes[0];
3519 slot = path->slots[0];
3520
3521 btrfs_item_key_to_cpu(l, &found_key, slot);
3522
a36cf8b8 3523 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
3524 break;
3525
962a298f 3526 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
3527 break;
3528
3529 if (found_key.offset >= end)
3530 break;
3531
3532 if (found_key.offset < key.offset)
3533 break;
3534
3535 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3536 length = btrfs_dev_extent_length(l, dev_extent);
3537
ced96edc
QW
3538 if (found_key.offset + length <= start)
3539 goto skip;
a2de733c 3540
a2de733c
AJ
3541 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3542
3543 /*
3544 * get a reference on the corresponding block group to prevent
3545 * the chunk from going away while we scrub it
3546 */
3547 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
3548
3549 /* some chunks are removed but not committed to disk yet,
3550 * continue scrubbing */
3551 if (!cache)
3552 goto skip;
3553
55e3a601
Z
3554 /*
3555 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3556 * to avoid deadlock caused by:
3557 * btrfs_inc_block_group_ro()
3558 * -> btrfs_wait_for_commit()
3559 * -> btrfs_commit_transaction()
3560 * -> btrfs_scrub_pause()
3561 */
3562 scrub_pause_on(fs_info);
c83488af 3563 ret = btrfs_inc_block_group_ro(cache);
32934280 3564 if (!ret && sctx->is_dev_replace) {
f0e9b7d6
FM
3565 /*
3566 * If we are doing a device replace wait for any tasks
52042d8e 3567 * that started delalloc right before we set the block
f0e9b7d6
FM
3568 * group to RO mode, as they might have just allocated
3569 * an extent from it or decided they could do a nocow
3570 * write. And if any such tasks did that, wait for their
3571 * ordered extents to complete and then commit the
3572 * current transaction, so that we can later see the new
3573 * extent items in the extent tree - the ordered extents
3574 * create delayed data references (for cow writes) when
3575 * they complete, which will be run and insert the
3576 * corresponding extent items into the extent tree when
3577 * we commit the transaction they used when running
3578 * inode.c:btrfs_finish_ordered_io(). We later use
3579 * the commit root of the extent tree to find extents
3580 * to copy from the srcdev into the tgtdev, and we don't
3581 * want to miss any new extents.
3582 */
3583 btrfs_wait_block_group_reservations(cache);
3584 btrfs_wait_nocow_writers(cache);
6374e57a 3585 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
f0e9b7d6
FM
3586 cache->key.objectid,
3587 cache->key.offset);
3588 if (ret > 0) {
3589 struct btrfs_trans_handle *trans;
3590
3591 trans = btrfs_join_transaction(root);
3592 if (IS_ERR(trans))
3593 ret = PTR_ERR(trans);
3594 else
3a45bb20 3595 ret = btrfs_commit_transaction(trans);
f0e9b7d6
FM
3596 if (ret) {
3597 scrub_pause_off(fs_info);
3598 btrfs_put_block_group(cache);
3599 break;
3600 }
3601 }
3602 }
55e3a601 3603 scrub_pause_off(fs_info);
76a8efa1
Z
3604
3605 if (ret == 0) {
3606 ro_set = 1;
3607 } else if (ret == -ENOSPC) {
3608 /*
3609 * btrfs_inc_block_group_ro return -ENOSPC when it
3610 * failed in creating new chunk for metadata.
3611 * It is not a problem for scrub/replace, because
3612 * metadata are always cowed, and our scrub paused
3613 * commit_transactions.
3614 */
3615 ro_set = 0;
3616 } else {
5d163e0e 3617 btrfs_warn(fs_info,
913e1535 3618 "failed setting block group ro: %d", ret);
55e3a601
Z
3619 btrfs_put_block_group(cache);
3620 break;
3621 }
3622
cb5583dd 3623 down_write(&fs_info->dev_replace.rwsem);
ff023aac
SB
3624 dev_replace->cursor_right = found_key.offset + length;
3625 dev_replace->cursor_left = found_key.offset;
3626 dev_replace->item_needs_writeback = 1;
cb5583dd
DS
3627 up_write(&dev_replace->rwsem);
3628
8c204c96 3629 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
32934280 3630 found_key.offset, cache);
ff023aac
SB
3631
3632 /*
3633 * flush, submit all pending read and write bios, afterwards
3634 * wait for them.
3635 * Note that in the dev replace case, a read request causes
3636 * write requests that are submitted in the read completion
3637 * worker. Therefore in the current situation, it is required
3638 * that all write requests are flushed, so that all read and
3639 * write requests are really completed when bios_in_flight
3640 * changes to 0.
3641 */
2073c4c2 3642 sctx->flush_all_writes = true;
ff023aac 3643 scrub_submit(sctx);
3fb99303 3644 mutex_lock(&sctx->wr_lock);
ff023aac 3645 scrub_wr_submit(sctx);
3fb99303 3646 mutex_unlock(&sctx->wr_lock);
ff023aac
SB
3647
3648 wait_event(sctx->list_wait,
3649 atomic_read(&sctx->bios_in_flight) == 0);
b708ce96
Z
3650
3651 scrub_pause_on(fs_info);
12cf9372
WS
3652
3653 /*
3654 * must be called before we decrease @scrub_paused.
3655 * make sure we don't block transaction commit while
3656 * we are waiting pending workers finished.
3657 */
ff023aac
SB
3658 wait_event(sctx->list_wait,
3659 atomic_read(&sctx->workers_pending) == 0);
2073c4c2 3660 sctx->flush_all_writes = false;
12cf9372 3661
b708ce96 3662 scrub_pause_off(fs_info);
ff023aac 3663
cb5583dd 3664 down_write(&fs_info->dev_replace.rwsem);
1a1a8b73
FM
3665 dev_replace->cursor_left = dev_replace->cursor_right;
3666 dev_replace->item_needs_writeback = 1;
cb5583dd 3667 up_write(&fs_info->dev_replace.rwsem);
1a1a8b73 3668
76a8efa1 3669 if (ro_set)
2ff7e61e 3670 btrfs_dec_block_group_ro(cache);
ff023aac 3671
758f2dfc
FM
3672 /*
3673 * We might have prevented the cleaner kthread from deleting
3674 * this block group if it was already unused because we raced
3675 * and set it to RO mode first. So add it back to the unused
3676 * list, otherwise it might not ever be deleted unless a manual
3677 * balance is triggered or it becomes used and unused again.
3678 */
3679 spin_lock(&cache->lock);
3680 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
bf38be65 3681 cache->used == 0) {
758f2dfc 3682 spin_unlock(&cache->lock);
031f24da 3683 btrfs_mark_bg_unused(cache);
758f2dfc
FM
3684 } else {
3685 spin_unlock(&cache->lock);
3686 }
3687
a2de733c
AJ
3688 btrfs_put_block_group(cache);
3689 if (ret)
3690 break;
32934280 3691 if (sctx->is_dev_replace &&
af1be4f8 3692 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
3693 ret = -EIO;
3694 break;
3695 }
3696 if (sctx->stat.malloc_errors > 0) {
3697 ret = -ENOMEM;
3698 break;
3699 }
ced96edc 3700skip:
a2de733c 3701 key.offset = found_key.offset + length;
71267333 3702 btrfs_release_path(path);
a2de733c
AJ
3703 }
3704
a2de733c 3705 btrfs_free_path(path);
8c51032f 3706
55e3a601 3707 return ret;
a2de733c
AJ
3708}
3709
a36cf8b8
SB
3710static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3711 struct btrfs_device *scrub_dev)
a2de733c
AJ
3712{
3713 int i;
3714 u64 bytenr;
3715 u64 gen;
3716 int ret;
0b246afa 3717 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c 3718
0b246afa 3719 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
79787eaa
JM
3720 return -EIO;
3721
5f546063 3722 /* Seed devices of a new filesystem has their own generation. */
0b246afa 3723 if (scrub_dev->fs_devices != fs_info->fs_devices)
5f546063
MX
3724 gen = scrub_dev->generation;
3725 else
0b246afa 3726 gen = fs_info->last_trans_committed;
a2de733c
AJ
3727
3728 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3729 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3730 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3731 scrub_dev->commit_total_bytes)
a2de733c
AJ
3732 break;
3733
d9d181c1 3734 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 3735 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 3736 NULL, 1, bytenr);
a2de733c
AJ
3737 if (ret)
3738 return ret;
3739 }
b6bfebc1 3740 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3741
3742 return 0;
3743}
3744
3745/*
3746 * get a reference count on fs_info->scrub_workers. start worker if necessary
3747 */
ff023aac
SB
3748static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3749 int is_dev_replace)
a2de733c 3750{
6f011058 3751 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
0339ef2f 3752 int max_active = fs_info->thread_pool_size;
a2de733c 3753
eb4318e5
AJ
3754 lockdep_assert_held(&fs_info->scrub_lock);
3755
ff09c4ca 3756 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
c8352942 3757 ASSERT(fs_info->scrub_workers == NULL);
af1cbe0a
DS
3758 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3759 flags, is_dev_replace ? 1 : max_active, 4);
e82afc52
ZL
3760 if (!fs_info->scrub_workers)
3761 goto fail_scrub_workers;
3762
c8352942 3763 ASSERT(fs_info->scrub_wr_completion_workers == NULL);
0339ef2f 3764 fs_info->scrub_wr_completion_workers =
cb001095 3765 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
0339ef2f 3766 max_active, 2);
e82afc52
ZL
3767 if (!fs_info->scrub_wr_completion_workers)
3768 goto fail_scrub_wr_completion_workers;
3769
c8352942 3770 ASSERT(fs_info->scrub_parity_workers == NULL);
20b2e302 3771 fs_info->scrub_parity_workers =
cb001095 3772 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
20b2e302 3773 max_active, 2);
e82afc52
ZL
3774 if (!fs_info->scrub_parity_workers)
3775 goto fail_scrub_parity_workers;
ff09c4ca
AJ
3776
3777 refcount_set(&fs_info->scrub_workers_refcnt, 1);
3778 } else {
3779 refcount_inc(&fs_info->scrub_workers_refcnt);
632dd772 3780 }
e82afc52
ZL
3781 return 0;
3782
3783fail_scrub_parity_workers:
e82afc52
ZL
3784 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3785fail_scrub_wr_completion_workers:
3786 btrfs_destroy_workqueue(fs_info->scrub_workers);
3787fail_scrub_workers:
3788 return -ENOMEM;
a2de733c
AJ
3789}
3790
aa1b8cd4
SB
3791int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3792 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 3793 int readonly, int is_dev_replace)
a2de733c 3794{
d9d181c1 3795 struct scrub_ctx *sctx;
a2de733c
AJ
3796 int ret;
3797 struct btrfs_device *dev;
a5fb1142 3798 unsigned int nofs_flag;
1cec3f27
AJ
3799 struct btrfs_workqueue *scrub_workers = NULL;
3800 struct btrfs_workqueue *scrub_wr_comp = NULL;
3801 struct btrfs_workqueue *scrub_parity = NULL;
a2de733c 3802
aa1b8cd4 3803 if (btrfs_fs_closing(fs_info))
6c3abeda 3804 return -EAGAIN;
a2de733c 3805
da17066c 3806 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
3807 /*
3808 * in this case scrub is unable to calculate the checksum
3809 * the way scrub is implemented. Do not handle this
3810 * situation at all because it won't ever happen.
3811 */
efe120a0
FH
3812 btrfs_err(fs_info,
3813 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
da17066c
JM
3814 fs_info->nodesize,
3815 BTRFS_STRIPE_LEN);
b5d67f64
SB
3816 return -EINVAL;
3817 }
3818
da17066c 3819 if (fs_info->sectorsize != PAGE_SIZE) {
b5d67f64 3820 /* not supported for data w/o checksums */
751bebbe 3821 btrfs_err_rl(fs_info,
5d163e0e 3822 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
da17066c 3823 fs_info->sectorsize, PAGE_SIZE);
a2de733c
AJ
3824 return -EINVAL;
3825 }
3826
da17066c 3827 if (fs_info->nodesize >
7a9e9987 3828 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
da17066c 3829 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
7a9e9987
SB
3830 /*
3831 * would exhaust the array bounds of pagev member in
3832 * struct scrub_block
3833 */
5d163e0e
JM
3834 btrfs_err(fs_info,
3835 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
da17066c 3836 fs_info->nodesize,
7a9e9987 3837 SCRUB_MAX_PAGES_PER_BLOCK,
da17066c 3838 fs_info->sectorsize,
7a9e9987
SB
3839 SCRUB_MAX_PAGES_PER_BLOCK);
3840 return -EINVAL;
3841 }
3842
0e94c4f4
DS
3843 /* Allocate outside of device_list_mutex */
3844 sctx = scrub_setup_ctx(fs_info, is_dev_replace);
3845 if (IS_ERR(sctx))
3846 return PTR_ERR(sctx);
a2de733c 3847
aa1b8cd4 3848 mutex_lock(&fs_info->fs_devices->device_list_mutex);
09ba3bc9 3849 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
e6e674bd
AJ
3850 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3851 !is_dev_replace)) {
aa1b8cd4 3852 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4
DS
3853 ret = -ENODEV;
3854 goto out_free_ctx;
a2de733c 3855 }
a2de733c 3856
ebbede42
AJ
3857 if (!is_dev_replace && !readonly &&
3858 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
5d68da3b 3859 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
672d5990
MT
3860 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3861 rcu_str_deref(dev->name));
0e94c4f4
DS
3862 ret = -EROFS;
3863 goto out_free_ctx;
5d68da3b
MX
3864 }
3865
3b7a016f 3866 mutex_lock(&fs_info->scrub_lock);
e12c9621 3867 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
401e29c1 3868 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
a2de733c 3869 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3870 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4
DS
3871 ret = -EIO;
3872 goto out_free_ctx;
a2de733c
AJ
3873 }
3874
cb5583dd 3875 down_read(&fs_info->dev_replace.rwsem);
cadbc0a0 3876 if (dev->scrub_ctx ||
8dabb742
SB
3877 (!is_dev_replace &&
3878 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
cb5583dd 3879 up_read(&fs_info->dev_replace.rwsem);
a2de733c 3880 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 3881 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4
DS
3882 ret = -EINPROGRESS;
3883 goto out_free_ctx;
a2de733c 3884 }
cb5583dd 3885 up_read(&fs_info->dev_replace.rwsem);
3b7a016f
WS
3886
3887 ret = scrub_workers_get(fs_info, is_dev_replace);
3888 if (ret) {
3889 mutex_unlock(&fs_info->scrub_lock);
3890 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
0e94c4f4 3891 goto out_free_ctx;
3b7a016f
WS
3892 }
3893
d9d181c1 3894 sctx->readonly = readonly;
cadbc0a0 3895 dev->scrub_ctx = sctx;
3cb0929a 3896 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 3897
3cb0929a
WS
3898 /*
3899 * checking @scrub_pause_req here, we can avoid
3900 * race between committing transaction and scrubbing.
3901 */
cb7ab021 3902 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3903 atomic_inc(&fs_info->scrubs_running);
3904 mutex_unlock(&fs_info->scrub_lock);
a2de733c 3905
a5fb1142
FM
3906 /*
3907 * In order to avoid deadlock with reclaim when there is a transaction
3908 * trying to pause scrub, make sure we use GFP_NOFS for all the
3909 * allocations done at btrfs_scrub_pages() and scrub_pages_for_parity()
3910 * invoked by our callees. The pausing request is done when the
3911 * transaction commit starts, and it blocks the transaction until scrub
3912 * is paused (done at specific points at scrub_stripe() or right above
3913 * before incrementing fs_info->scrubs_running).
3914 */
3915 nofs_flag = memalloc_nofs_save();
ff023aac 3916 if (!is_dev_replace) {
d1e14420 3917 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
9b011adf
WS
3918 /*
3919 * by holding device list mutex, we can
3920 * kick off writing super in log tree sync.
3921 */
3cb0929a 3922 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3923 ret = scrub_supers(sctx, dev);
3cb0929a 3924 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 3925 }
a2de733c
AJ
3926
3927 if (!ret)
32934280 3928 ret = scrub_enumerate_chunks(sctx, dev, start, end);
a5fb1142 3929 memalloc_nofs_restore(nofs_flag);
a2de733c 3930
b6bfebc1 3931 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
3932 atomic_dec(&fs_info->scrubs_running);
3933 wake_up(&fs_info->scrub_pause_wait);
3934
b6bfebc1 3935 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 3936
a2de733c 3937 if (progress)
d9d181c1 3938 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c 3939
d1e14420
AJ
3940 if (!is_dev_replace)
3941 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
3942 ret ? "not finished" : "finished", devid, ret);
3943
a2de733c 3944 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 3945 dev->scrub_ctx = NULL;
ff09c4ca 3946 if (refcount_dec_and_test(&fs_info->scrub_workers_refcnt)) {
1cec3f27
AJ
3947 scrub_workers = fs_info->scrub_workers;
3948 scrub_wr_comp = fs_info->scrub_wr_completion_workers;
3949 scrub_parity = fs_info->scrub_parity_workers;
c8352942
DS
3950
3951 fs_info->scrub_workers = NULL;
3952 fs_info->scrub_wr_completion_workers = NULL;
3953 fs_info->scrub_parity_workers = NULL;
1cec3f27 3954 }
a2de733c
AJ
3955 mutex_unlock(&fs_info->scrub_lock);
3956
1cec3f27
AJ
3957 btrfs_destroy_workqueue(scrub_workers);
3958 btrfs_destroy_workqueue(scrub_wr_comp);
3959 btrfs_destroy_workqueue(scrub_parity);
f55985f4 3960 scrub_put_ctx(sctx);
a2de733c 3961
0e94c4f4
DS
3962 return ret;
3963
3964out_free_ctx:
3965 scrub_free_ctx(sctx);
3966
a2de733c
AJ
3967 return ret;
3968}
3969
2ff7e61e 3970void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
a2de733c 3971{
a2de733c
AJ
3972 mutex_lock(&fs_info->scrub_lock);
3973 atomic_inc(&fs_info->scrub_pause_req);
3974 while (atomic_read(&fs_info->scrubs_paused) !=
3975 atomic_read(&fs_info->scrubs_running)) {
3976 mutex_unlock(&fs_info->scrub_lock);
3977 wait_event(fs_info->scrub_pause_wait,
3978 atomic_read(&fs_info->scrubs_paused) ==
3979 atomic_read(&fs_info->scrubs_running));
3980 mutex_lock(&fs_info->scrub_lock);
3981 }
3982 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
3983}
3984
2ff7e61e 3985void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
a2de733c 3986{
a2de733c
AJ
3987 atomic_dec(&fs_info->scrub_pause_req);
3988 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
3989}
3990
aa1b8cd4 3991int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 3992{
a2de733c
AJ
3993 mutex_lock(&fs_info->scrub_lock);
3994 if (!atomic_read(&fs_info->scrubs_running)) {
3995 mutex_unlock(&fs_info->scrub_lock);
3996 return -ENOTCONN;
3997 }
3998
3999 atomic_inc(&fs_info->scrub_cancel_req);
4000 while (atomic_read(&fs_info->scrubs_running)) {
4001 mutex_unlock(&fs_info->scrub_lock);
4002 wait_event(fs_info->scrub_pause_wait,
4003 atomic_read(&fs_info->scrubs_running) == 0);
4004 mutex_lock(&fs_info->scrub_lock);
4005 }
4006 atomic_dec(&fs_info->scrub_cancel_req);
4007 mutex_unlock(&fs_info->scrub_lock);
4008
4009 return 0;
4010}
4011
163e97ee 4012int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
49b25e05 4013{
163e97ee 4014 struct btrfs_fs_info *fs_info = dev->fs_info;
d9d181c1 4015 struct scrub_ctx *sctx;
a2de733c
AJ
4016
4017 mutex_lock(&fs_info->scrub_lock);
cadbc0a0 4018 sctx = dev->scrub_ctx;
d9d181c1 4019 if (!sctx) {
a2de733c
AJ
4020 mutex_unlock(&fs_info->scrub_lock);
4021 return -ENOTCONN;
4022 }
d9d181c1 4023 atomic_inc(&sctx->cancel_req);
cadbc0a0 4024 while (dev->scrub_ctx) {
a2de733c
AJ
4025 mutex_unlock(&fs_info->scrub_lock);
4026 wait_event(fs_info->scrub_pause_wait,
cadbc0a0 4027 dev->scrub_ctx == NULL);
a2de733c
AJ
4028 mutex_lock(&fs_info->scrub_lock);
4029 }
4030 mutex_unlock(&fs_info->scrub_lock);
4031
4032 return 0;
4033}
1623edeb 4034
2ff7e61e 4035int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
a2de733c
AJ
4036 struct btrfs_scrub_progress *progress)
4037{
4038 struct btrfs_device *dev;
d9d181c1 4039 struct scrub_ctx *sctx = NULL;
a2de733c 4040
0b246afa 4041 mutex_lock(&fs_info->fs_devices->device_list_mutex);
09ba3bc9 4042 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
a2de733c 4043 if (dev)
cadbc0a0 4044 sctx = dev->scrub_ctx;
d9d181c1
SB
4045 if (sctx)
4046 memcpy(progress, &sctx->stat, sizeof(*progress));
0b246afa 4047 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 4048
d9d181c1 4049 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 4050}
ff023aac
SB
4051
4052static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4053 u64 extent_logical, u64 extent_len,
4054 u64 *extent_physical,
4055 struct btrfs_device **extent_dev,
4056 int *extent_mirror_num)
4057{
4058 u64 mapped_length;
4059 struct btrfs_bio *bbio = NULL;
4060 int ret;
4061
4062 mapped_length = extent_len;
cf8cddd3 4063 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
ff023aac
SB
4064 &mapped_length, &bbio, 0);
4065 if (ret || !bbio || mapped_length < extent_len ||
4066 !bbio->stripes[0].dev->bdev) {
6e9606d2 4067 btrfs_put_bbio(bbio);
ff023aac
SB
4068 return;
4069 }
4070
4071 *extent_physical = bbio->stripes[0].physical;
4072 *extent_mirror_num = bbio->mirror_num;
4073 *extent_dev = bbio->stripes[0].dev;
6e9606d2 4074 btrfs_put_bbio(bbio);
ff023aac 4075}