Merge branch 'for-4.12-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[linux-block.git] / fs / btrfs / scrub.c
CommitLineData
a2de733c 1/*
b6bfebc1 2 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
a2de733c
AJ
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
a2de733c 19#include <linux/blkdev.h>
558540c1 20#include <linux/ratelimit.h>
a2de733c
AJ
21#include "ctree.h"
22#include "volumes.h"
23#include "disk-io.h"
24#include "ordered-data.h"
0ef8e451 25#include "transaction.h"
558540c1 26#include "backref.h"
5da6fcbc 27#include "extent_io.h"
ff023aac 28#include "dev-replace.h"
21adbd5c 29#include "check-integrity.h"
606686ee 30#include "rcu-string.h"
53b381b3 31#include "raid56.h"
a2de733c
AJ
32
33/*
34 * This is only the first step towards a full-features scrub. It reads all
35 * extent and super block and verifies the checksums. In case a bad checksum
36 * is found or the extent cannot be read, good data will be written back if
37 * any can be found.
38 *
39 * Future enhancements:
a2de733c
AJ
40 * - In case an unrepairable extent is encountered, track which files are
41 * affected and report them
a2de733c 42 * - track and record media errors, throw out bad devices
a2de733c 43 * - add a mode to also read unallocated space
a2de733c
AJ
44 */
45
b5d67f64 46struct scrub_block;
d9d181c1 47struct scrub_ctx;
a2de733c 48
ff023aac
SB
49/*
50 * the following three values only influence the performance.
51 * The last one configures the number of parallel and outstanding I/O
52 * operations. The first two values configure an upper limit for the number
53 * of (dynamically allocated) pages that are added to a bio.
54 */
55#define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
56#define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
57#define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
7a9e9987
SB
58
59/*
60 * the following value times PAGE_SIZE needs to be large enough to match the
61 * largest node/leaf/sector size that shall be supported.
62 * Values larger than BTRFS_STRIPE_LEN are not supported.
63 */
b5d67f64 64#define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
a2de733c 65
af8e2d1d 66struct scrub_recover {
6f615018 67 refcount_t refs;
af8e2d1d 68 struct btrfs_bio *bbio;
af8e2d1d
MX
69 u64 map_length;
70};
71
a2de733c 72struct scrub_page {
b5d67f64
SB
73 struct scrub_block *sblock;
74 struct page *page;
442a4f63 75 struct btrfs_device *dev;
5a6ac9ea 76 struct list_head list;
a2de733c
AJ
77 u64 flags; /* extent flags */
78 u64 generation;
b5d67f64
SB
79 u64 logical;
80 u64 physical;
ff023aac 81 u64 physical_for_dev_replace;
57019345 82 atomic_t refs;
b5d67f64
SB
83 struct {
84 unsigned int mirror_num:8;
85 unsigned int have_csum:1;
86 unsigned int io_error:1;
87 };
a2de733c 88 u8 csum[BTRFS_CSUM_SIZE];
af8e2d1d
MX
89
90 struct scrub_recover *recover;
a2de733c
AJ
91};
92
93struct scrub_bio {
94 int index;
d9d181c1 95 struct scrub_ctx *sctx;
a36cf8b8 96 struct btrfs_device *dev;
a2de733c
AJ
97 struct bio *bio;
98 int err;
99 u64 logical;
100 u64 physical;
ff023aac
SB
101#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
102 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
103#else
104 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
105#endif
b5d67f64 106 int page_count;
a2de733c
AJ
107 int next_free;
108 struct btrfs_work work;
109};
110
b5d67f64 111struct scrub_block {
7a9e9987 112 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
b5d67f64
SB
113 int page_count;
114 atomic_t outstanding_pages;
186debd6 115 refcount_t refs; /* free mem on transition to zero */
d9d181c1 116 struct scrub_ctx *sctx;
5a6ac9ea 117 struct scrub_parity *sparity;
b5d67f64
SB
118 struct {
119 unsigned int header_error:1;
120 unsigned int checksum_error:1;
121 unsigned int no_io_error_seen:1;
442a4f63 122 unsigned int generation_error:1; /* also sets header_error */
5a6ac9ea
MX
123
124 /* The following is for the data used to check parity */
125 /* It is for the data with checksum */
126 unsigned int data_corrected:1;
b5d67f64 127 };
73ff61db 128 struct btrfs_work work;
b5d67f64
SB
129};
130
5a6ac9ea
MX
131/* Used for the chunks with parity stripe such RAID5/6 */
132struct scrub_parity {
133 struct scrub_ctx *sctx;
134
135 struct btrfs_device *scrub_dev;
136
137 u64 logic_start;
138
139 u64 logic_end;
140
141 int nsectors;
142
972d7219 143 u64 stripe_len;
5a6ac9ea 144
78a76450 145 refcount_t refs;
5a6ac9ea
MX
146
147 struct list_head spages;
148
149 /* Work of parity check and repair */
150 struct btrfs_work work;
151
152 /* Mark the parity blocks which have data */
153 unsigned long *dbitmap;
154
155 /*
156 * Mark the parity blocks which have data, but errors happen when
157 * read data or check data
158 */
159 unsigned long *ebitmap;
160
161 unsigned long bitmap[0];
162};
163
ff023aac
SB
164struct scrub_wr_ctx {
165 struct scrub_bio *wr_curr_bio;
166 struct btrfs_device *tgtdev;
167 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
168 atomic_t flush_all_writes;
169 struct mutex wr_lock;
170};
171
d9d181c1 172struct scrub_ctx {
ff023aac 173 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
fb456252 174 struct btrfs_fs_info *fs_info;
a2de733c
AJ
175 int first_free;
176 int curr;
b6bfebc1
SB
177 atomic_t bios_in_flight;
178 atomic_t workers_pending;
a2de733c
AJ
179 spinlock_t list_lock;
180 wait_queue_head_t list_wait;
181 u16 csum_size;
182 struct list_head csum_list;
183 atomic_t cancel_req;
8628764e 184 int readonly;
ff023aac 185 int pages_per_rd_bio;
b5d67f64
SB
186 u32 sectorsize;
187 u32 nodesize;
63a212ab
SB
188
189 int is_dev_replace;
ff023aac 190 struct scrub_wr_ctx wr_ctx;
63a212ab 191
a2de733c
AJ
192 /*
193 * statistics
194 */
195 struct btrfs_scrub_progress stat;
196 spinlock_t stat_lock;
f55985f4
FM
197
198 /*
199 * Use a ref counter to avoid use-after-free issues. Scrub workers
200 * decrement bios_in_flight and workers_pending and then do a wakeup
201 * on the list_wait wait queue. We must ensure the main scrub task
202 * doesn't free the scrub context before or while the workers are
203 * doing the wakeup() call.
204 */
99f4cdb1 205 refcount_t refs;
a2de733c
AJ
206};
207
0ef8e451 208struct scrub_fixup_nodatasum {
d9d181c1 209 struct scrub_ctx *sctx;
a36cf8b8 210 struct btrfs_device *dev;
0ef8e451
JS
211 u64 logical;
212 struct btrfs_root *root;
213 struct btrfs_work work;
214 int mirror_num;
215};
216
652f25a2
JB
217struct scrub_nocow_inode {
218 u64 inum;
219 u64 offset;
220 u64 root;
221 struct list_head list;
222};
223
ff023aac
SB
224struct scrub_copy_nocow_ctx {
225 struct scrub_ctx *sctx;
226 u64 logical;
227 u64 len;
228 int mirror_num;
229 u64 physical_for_dev_replace;
652f25a2 230 struct list_head inodes;
ff023aac
SB
231 struct btrfs_work work;
232};
233
558540c1
JS
234struct scrub_warning {
235 struct btrfs_path *path;
236 u64 extent_item_size;
558540c1
JS
237 const char *errstr;
238 sector_t sector;
239 u64 logical;
240 struct btrfs_device *dev;
558540c1
JS
241};
242
0966a7b1
QW
243struct full_stripe_lock {
244 struct rb_node node;
245 u64 logical;
246 u64 refs;
247 struct mutex mutex;
248};
249
b6bfebc1
SB
250static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
251static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
252static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
253static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
b5d67f64 254static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
be50a8dd 255static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
ff023aac 256 struct scrub_block *sblocks_for_recheck);
34f5c8e9 257static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
258 struct scrub_block *sblock,
259 int retry_failed_mirror);
ba7cf988 260static void scrub_recheck_block_checksum(struct scrub_block *sblock);
b5d67f64 261static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 262 struct scrub_block *sblock_good);
b5d67f64
SB
263static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
264 struct scrub_block *sblock_good,
265 int page_num, int force_write);
ff023aac
SB
266static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
267static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
268 int page_num);
b5d67f64
SB
269static int scrub_checksum_data(struct scrub_block *sblock);
270static int scrub_checksum_tree_block(struct scrub_block *sblock);
271static int scrub_checksum_super(struct scrub_block *sblock);
272static void scrub_block_get(struct scrub_block *sblock);
273static void scrub_block_put(struct scrub_block *sblock);
7a9e9987
SB
274static void scrub_page_get(struct scrub_page *spage);
275static void scrub_page_put(struct scrub_page *spage);
5a6ac9ea
MX
276static void scrub_parity_get(struct scrub_parity *sparity);
277static void scrub_parity_put(struct scrub_parity *sparity);
ff023aac
SB
278static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
279 struct scrub_page *spage);
d9d181c1 280static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 281 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
282 u64 gen, int mirror_num, u8 *csum, int force,
283 u64 physical_for_dev_replace);
4246a0b6 284static void scrub_bio_end_io(struct bio *bio);
b5d67f64
SB
285static void scrub_bio_end_io_worker(struct btrfs_work *work);
286static void scrub_block_complete(struct scrub_block *sblock);
ff023aac
SB
287static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
288 u64 extent_logical, u64 extent_len,
289 u64 *extent_physical,
290 struct btrfs_device **extent_dev,
291 int *extent_mirror_num);
e5987e13 292static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
ff023aac
SB
293 struct btrfs_device *dev,
294 int is_dev_replace);
295static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
296static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
297 struct scrub_page *spage);
298static void scrub_wr_submit(struct scrub_ctx *sctx);
4246a0b6 299static void scrub_wr_bio_end_io(struct bio *bio);
ff023aac
SB
300static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
301static int write_page_nocow(struct scrub_ctx *sctx,
302 u64 physical_for_dev_replace, struct page *page);
303static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
652f25a2 304 struct scrub_copy_nocow_ctx *ctx);
ff023aac
SB
305static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
306 int mirror_num, u64 physical_for_dev_replace);
307static void copy_nocow_pages_worker(struct btrfs_work *work);
cb7ab021 308static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
3cb0929a 309static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
f55985f4 310static void scrub_put_ctx(struct scrub_ctx *sctx);
1623edeb
SB
311
312
b6bfebc1
SB
313static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
314{
99f4cdb1 315 refcount_inc(&sctx->refs);
b6bfebc1
SB
316 atomic_inc(&sctx->bios_in_flight);
317}
318
319static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
320{
321 atomic_dec(&sctx->bios_in_flight);
322 wake_up(&sctx->list_wait);
f55985f4 323 scrub_put_ctx(sctx);
b6bfebc1
SB
324}
325
cb7ab021 326static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
3cb0929a
WS
327{
328 while (atomic_read(&fs_info->scrub_pause_req)) {
329 mutex_unlock(&fs_info->scrub_lock);
330 wait_event(fs_info->scrub_pause_wait,
331 atomic_read(&fs_info->scrub_pause_req) == 0);
332 mutex_lock(&fs_info->scrub_lock);
333 }
334}
335
0e22be89 336static void scrub_pause_on(struct btrfs_fs_info *fs_info)
cb7ab021
WS
337{
338 atomic_inc(&fs_info->scrubs_paused);
339 wake_up(&fs_info->scrub_pause_wait);
0e22be89 340}
cb7ab021 341
0e22be89
Z
342static void scrub_pause_off(struct btrfs_fs_info *fs_info)
343{
cb7ab021
WS
344 mutex_lock(&fs_info->scrub_lock);
345 __scrub_blocked_if_needed(fs_info);
346 atomic_dec(&fs_info->scrubs_paused);
347 mutex_unlock(&fs_info->scrub_lock);
348
349 wake_up(&fs_info->scrub_pause_wait);
350}
351
0e22be89
Z
352static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
353{
354 scrub_pause_on(fs_info);
355 scrub_pause_off(fs_info);
356}
357
0966a7b1
QW
358/*
359 * Insert new full stripe lock into full stripe locks tree
360 *
361 * Return pointer to existing or newly inserted full_stripe_lock structure if
362 * everything works well.
363 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
364 *
365 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
366 * function
367 */
368static struct full_stripe_lock *insert_full_stripe_lock(
369 struct btrfs_full_stripe_locks_tree *locks_root,
370 u64 fstripe_logical)
371{
372 struct rb_node **p;
373 struct rb_node *parent = NULL;
374 struct full_stripe_lock *entry;
375 struct full_stripe_lock *ret;
376
377 WARN_ON(!mutex_is_locked(&locks_root->lock));
378
379 p = &locks_root->root.rb_node;
380 while (*p) {
381 parent = *p;
382 entry = rb_entry(parent, struct full_stripe_lock, node);
383 if (fstripe_logical < entry->logical) {
384 p = &(*p)->rb_left;
385 } else if (fstripe_logical > entry->logical) {
386 p = &(*p)->rb_right;
387 } else {
388 entry->refs++;
389 return entry;
390 }
391 }
392
393 /* Insert new lock */
394 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
395 if (!ret)
396 return ERR_PTR(-ENOMEM);
397 ret->logical = fstripe_logical;
398 ret->refs = 1;
399 mutex_init(&ret->mutex);
400
401 rb_link_node(&ret->node, parent, p);
402 rb_insert_color(&ret->node, &locks_root->root);
403 return ret;
404}
405
406/*
407 * Search for a full stripe lock of a block group
408 *
409 * Return pointer to existing full stripe lock if found
410 * Return NULL if not found
411 */
412static struct full_stripe_lock *search_full_stripe_lock(
413 struct btrfs_full_stripe_locks_tree *locks_root,
414 u64 fstripe_logical)
415{
416 struct rb_node *node;
417 struct full_stripe_lock *entry;
418
419 WARN_ON(!mutex_is_locked(&locks_root->lock));
420
421 node = locks_root->root.rb_node;
422 while (node) {
423 entry = rb_entry(node, struct full_stripe_lock, node);
424 if (fstripe_logical < entry->logical)
425 node = node->rb_left;
426 else if (fstripe_logical > entry->logical)
427 node = node->rb_right;
428 else
429 return entry;
430 }
431 return NULL;
432}
433
434/*
435 * Helper to get full stripe logical from a normal bytenr.
436 *
437 * Caller must ensure @cache is a RAID56 block group.
438 */
439static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
440 u64 bytenr)
441{
442 u64 ret;
443
444 /*
445 * Due to chunk item size limit, full stripe length should not be
446 * larger than U32_MAX. Just a sanity check here.
447 */
448 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
449
450 /*
451 * round_down() can only handle power of 2, while RAID56 full
452 * stripe length can be 64KiB * n, so we need to manually round down.
453 */
454 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
455 cache->full_stripe_len + cache->key.objectid;
456 return ret;
457}
458
459/*
460 * Lock a full stripe to avoid concurrency of recovery and read
461 *
462 * It's only used for profiles with parities (RAID5/6), for other profiles it
463 * does nothing.
464 *
465 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
466 * So caller must call unlock_full_stripe() at the same context.
467 *
468 * Return <0 if encounters error.
469 */
470static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
471 bool *locked_ret)
472{
473 struct btrfs_block_group_cache *bg_cache;
474 struct btrfs_full_stripe_locks_tree *locks_root;
475 struct full_stripe_lock *existing;
476 u64 fstripe_start;
477 int ret = 0;
478
479 *locked_ret = false;
480 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
481 if (!bg_cache) {
482 ASSERT(0);
483 return -ENOENT;
484 }
485
486 /* Profiles not based on parity don't need full stripe lock */
487 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
488 goto out;
489 locks_root = &bg_cache->full_stripe_locks_root;
490
491 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
492
493 /* Now insert the full stripe lock */
494 mutex_lock(&locks_root->lock);
495 existing = insert_full_stripe_lock(locks_root, fstripe_start);
496 mutex_unlock(&locks_root->lock);
497 if (IS_ERR(existing)) {
498 ret = PTR_ERR(existing);
499 goto out;
500 }
501 mutex_lock(&existing->mutex);
502 *locked_ret = true;
503out:
504 btrfs_put_block_group(bg_cache);
505 return ret;
506}
507
508/*
509 * Unlock a full stripe.
510 *
511 * NOTE: Caller must ensure it's the same context calling corresponding
512 * lock_full_stripe().
513 *
514 * Return 0 if we unlock full stripe without problem.
515 * Return <0 for error
516 */
517static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
518 bool locked)
519{
520 struct btrfs_block_group_cache *bg_cache;
521 struct btrfs_full_stripe_locks_tree *locks_root;
522 struct full_stripe_lock *fstripe_lock;
523 u64 fstripe_start;
524 bool freeit = false;
525 int ret = 0;
526
527 /* If we didn't acquire full stripe lock, no need to continue */
528 if (!locked)
529 return 0;
530
531 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
532 if (!bg_cache) {
533 ASSERT(0);
534 return -ENOENT;
535 }
536 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
537 goto out;
538
539 locks_root = &bg_cache->full_stripe_locks_root;
540 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
541
542 mutex_lock(&locks_root->lock);
543 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
544 /* Unpaired unlock_full_stripe() detected */
545 if (!fstripe_lock) {
546 WARN_ON(1);
547 ret = -ENOENT;
548 mutex_unlock(&locks_root->lock);
549 goto out;
550 }
551
552 if (fstripe_lock->refs == 0) {
553 WARN_ON(1);
554 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
555 fstripe_lock->logical);
556 } else {
557 fstripe_lock->refs--;
558 }
559
560 if (fstripe_lock->refs == 0) {
561 rb_erase(&fstripe_lock->node, &locks_root->root);
562 freeit = true;
563 }
564 mutex_unlock(&locks_root->lock);
565
566 mutex_unlock(&fstripe_lock->mutex);
567 if (freeit)
568 kfree(fstripe_lock);
569out:
570 btrfs_put_block_group(bg_cache);
571 return ret;
572}
573
b6bfebc1
SB
574/*
575 * used for workers that require transaction commits (i.e., for the
576 * NOCOW case)
577 */
578static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
579{
fb456252 580 struct btrfs_fs_info *fs_info = sctx->fs_info;
b6bfebc1 581
99f4cdb1 582 refcount_inc(&sctx->refs);
b6bfebc1
SB
583 /*
584 * increment scrubs_running to prevent cancel requests from
585 * completing as long as a worker is running. we must also
586 * increment scrubs_paused to prevent deadlocking on pause
587 * requests used for transactions commits (as the worker uses a
588 * transaction context). it is safe to regard the worker
589 * as paused for all matters practical. effectively, we only
590 * avoid cancellation requests from completing.
591 */
592 mutex_lock(&fs_info->scrub_lock);
593 atomic_inc(&fs_info->scrubs_running);
594 atomic_inc(&fs_info->scrubs_paused);
595 mutex_unlock(&fs_info->scrub_lock);
32a44789
WS
596
597 /*
598 * check if @scrubs_running=@scrubs_paused condition
599 * inside wait_event() is not an atomic operation.
600 * which means we may inc/dec @scrub_running/paused
601 * at any time. Let's wake up @scrub_pause_wait as
602 * much as we can to let commit transaction blocked less.
603 */
604 wake_up(&fs_info->scrub_pause_wait);
605
b6bfebc1
SB
606 atomic_inc(&sctx->workers_pending);
607}
608
609/* used for workers that require transaction commits */
610static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
611{
fb456252 612 struct btrfs_fs_info *fs_info = sctx->fs_info;
b6bfebc1
SB
613
614 /*
615 * see scrub_pending_trans_workers_inc() why we're pretending
616 * to be paused in the scrub counters
617 */
618 mutex_lock(&fs_info->scrub_lock);
619 atomic_dec(&fs_info->scrubs_running);
620 atomic_dec(&fs_info->scrubs_paused);
621 mutex_unlock(&fs_info->scrub_lock);
622 atomic_dec(&sctx->workers_pending);
623 wake_up(&fs_info->scrub_pause_wait);
624 wake_up(&sctx->list_wait);
f55985f4 625 scrub_put_ctx(sctx);
b6bfebc1
SB
626}
627
d9d181c1 628static void scrub_free_csums(struct scrub_ctx *sctx)
a2de733c 629{
d9d181c1 630 while (!list_empty(&sctx->csum_list)) {
a2de733c 631 struct btrfs_ordered_sum *sum;
d9d181c1 632 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
633 struct btrfs_ordered_sum, list);
634 list_del(&sum->list);
635 kfree(sum);
636 }
637}
638
d9d181c1 639static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
a2de733c
AJ
640{
641 int i;
a2de733c 642
d9d181c1 643 if (!sctx)
a2de733c
AJ
644 return;
645
ff023aac
SB
646 scrub_free_wr_ctx(&sctx->wr_ctx);
647
b5d67f64 648 /* this can happen when scrub is cancelled */
d9d181c1
SB
649 if (sctx->curr != -1) {
650 struct scrub_bio *sbio = sctx->bios[sctx->curr];
b5d67f64
SB
651
652 for (i = 0; i < sbio->page_count; i++) {
ff023aac 653 WARN_ON(!sbio->pagev[i]->page);
b5d67f64
SB
654 scrub_block_put(sbio->pagev[i]->sblock);
655 }
656 bio_put(sbio->bio);
657 }
658
ff023aac 659 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
d9d181c1 660 struct scrub_bio *sbio = sctx->bios[i];
a2de733c
AJ
661
662 if (!sbio)
663 break;
a2de733c
AJ
664 kfree(sbio);
665 }
666
d9d181c1
SB
667 scrub_free_csums(sctx);
668 kfree(sctx);
a2de733c
AJ
669}
670
f55985f4
FM
671static void scrub_put_ctx(struct scrub_ctx *sctx)
672{
99f4cdb1 673 if (refcount_dec_and_test(&sctx->refs))
f55985f4
FM
674 scrub_free_ctx(sctx);
675}
676
a2de733c 677static noinline_for_stack
63a212ab 678struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
a2de733c 679{
d9d181c1 680 struct scrub_ctx *sctx;
a2de733c 681 int i;
fb456252 682 struct btrfs_fs_info *fs_info = dev->fs_info;
ff023aac 683 int ret;
a2de733c 684
58c4e173 685 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
d9d181c1 686 if (!sctx)
a2de733c 687 goto nomem;
99f4cdb1 688 refcount_set(&sctx->refs, 1);
63a212ab 689 sctx->is_dev_replace = is_dev_replace;
b54ffb73 690 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
d9d181c1 691 sctx->curr = -1;
fb456252 692 sctx->fs_info = dev->fs_info;
ff023aac 693 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
a2de733c
AJ
694 struct scrub_bio *sbio;
695
58c4e173 696 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
a2de733c
AJ
697 if (!sbio)
698 goto nomem;
d9d181c1 699 sctx->bios[i] = sbio;
a2de733c 700
a2de733c 701 sbio->index = i;
d9d181c1 702 sbio->sctx = sctx;
b5d67f64 703 sbio->page_count = 0;
9e0af237
LB
704 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
705 scrub_bio_end_io_worker, NULL, NULL);
a2de733c 706
ff023aac 707 if (i != SCRUB_BIOS_PER_SCTX - 1)
d9d181c1 708 sctx->bios[i]->next_free = i + 1;
0ef8e451 709 else
d9d181c1
SB
710 sctx->bios[i]->next_free = -1;
711 }
712 sctx->first_free = 0;
0b246afa
JM
713 sctx->nodesize = fs_info->nodesize;
714 sctx->sectorsize = fs_info->sectorsize;
b6bfebc1
SB
715 atomic_set(&sctx->bios_in_flight, 0);
716 atomic_set(&sctx->workers_pending, 0);
d9d181c1
SB
717 atomic_set(&sctx->cancel_req, 0);
718 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
719 INIT_LIST_HEAD(&sctx->csum_list);
720
721 spin_lock_init(&sctx->list_lock);
722 spin_lock_init(&sctx->stat_lock);
723 init_waitqueue_head(&sctx->list_wait);
ff023aac 724
e5987e13 725 ret = scrub_setup_wr_ctx(&sctx->wr_ctx,
ff023aac
SB
726 fs_info->dev_replace.tgtdev, is_dev_replace);
727 if (ret) {
728 scrub_free_ctx(sctx);
729 return ERR_PTR(ret);
730 }
d9d181c1 731 return sctx;
a2de733c
AJ
732
733nomem:
d9d181c1 734 scrub_free_ctx(sctx);
a2de733c
AJ
735 return ERR_PTR(-ENOMEM);
736}
737
ff023aac
SB
738static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
739 void *warn_ctx)
558540c1
JS
740{
741 u64 isize;
742 u32 nlink;
743 int ret;
744 int i;
745 struct extent_buffer *eb;
746 struct btrfs_inode_item *inode_item;
ff023aac 747 struct scrub_warning *swarn = warn_ctx;
fb456252 748 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
558540c1
JS
749 struct inode_fs_paths *ipath = NULL;
750 struct btrfs_root *local_root;
751 struct btrfs_key root_key;
1d4c08e0 752 struct btrfs_key key;
558540c1
JS
753
754 root_key.objectid = root;
755 root_key.type = BTRFS_ROOT_ITEM_KEY;
756 root_key.offset = (u64)-1;
757 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
758 if (IS_ERR(local_root)) {
759 ret = PTR_ERR(local_root);
760 goto err;
761 }
762
14692cc1
DS
763 /*
764 * this makes the path point to (inum INODE_ITEM ioff)
765 */
1d4c08e0
DS
766 key.objectid = inum;
767 key.type = BTRFS_INODE_ITEM_KEY;
768 key.offset = 0;
769
770 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
558540c1
JS
771 if (ret) {
772 btrfs_release_path(swarn->path);
773 goto err;
774 }
775
776 eb = swarn->path->nodes[0];
777 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
778 struct btrfs_inode_item);
779 isize = btrfs_inode_size(eb, inode_item);
780 nlink = btrfs_inode_nlink(eb, inode_item);
781 btrfs_release_path(swarn->path);
782
783 ipath = init_ipath(4096, local_root, swarn->path);
26bdef54
DC
784 if (IS_ERR(ipath)) {
785 ret = PTR_ERR(ipath);
786 ipath = NULL;
787 goto err;
788 }
558540c1
JS
789 ret = paths_from_inode(inum, ipath);
790
791 if (ret < 0)
792 goto err;
793
794 /*
795 * we deliberately ignore the bit ipath might have been too small to
796 * hold all of the paths here
797 */
798 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
5d163e0e
JM
799 btrfs_warn_in_rcu(fs_info,
800 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
801 swarn->errstr, swarn->logical,
802 rcu_str_deref(swarn->dev->name),
803 (unsigned long long)swarn->sector,
804 root, inum, offset,
805 min(isize - offset, (u64)PAGE_SIZE), nlink,
806 (char *)(unsigned long)ipath->fspath->val[i]);
558540c1
JS
807
808 free_ipath(ipath);
809 return 0;
810
811err:
5d163e0e
JM
812 btrfs_warn_in_rcu(fs_info,
813 "%s at logical %llu on dev %s, sector %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
814 swarn->errstr, swarn->logical,
815 rcu_str_deref(swarn->dev->name),
816 (unsigned long long)swarn->sector,
817 root, inum, offset, ret);
558540c1
JS
818
819 free_ipath(ipath);
820 return 0;
821}
822
b5d67f64 823static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
558540c1 824{
a36cf8b8
SB
825 struct btrfs_device *dev;
826 struct btrfs_fs_info *fs_info;
558540c1
JS
827 struct btrfs_path *path;
828 struct btrfs_key found_key;
829 struct extent_buffer *eb;
830 struct btrfs_extent_item *ei;
831 struct scrub_warning swarn;
69917e43
LB
832 unsigned long ptr = 0;
833 u64 extent_item_pos;
834 u64 flags = 0;
558540c1 835 u64 ref_root;
69917e43 836 u32 item_size;
07c9a8e0 837 u8 ref_level = 0;
69917e43 838 int ret;
558540c1 839
a36cf8b8 840 WARN_ON(sblock->page_count < 1);
7a9e9987 841 dev = sblock->pagev[0]->dev;
fb456252 842 fs_info = sblock->sctx->fs_info;
a36cf8b8 843
558540c1 844 path = btrfs_alloc_path();
8b9456da
DS
845 if (!path)
846 return;
558540c1 847
7a9e9987
SB
848 swarn.sector = (sblock->pagev[0]->physical) >> 9;
849 swarn.logical = sblock->pagev[0]->logical;
558540c1 850 swarn.errstr = errstr;
a36cf8b8 851 swarn.dev = NULL;
558540c1 852
69917e43
LB
853 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
854 &flags);
558540c1
JS
855 if (ret < 0)
856 goto out;
857
4692cf58 858 extent_item_pos = swarn.logical - found_key.objectid;
558540c1
JS
859 swarn.extent_item_size = found_key.offset;
860
861 eb = path->nodes[0];
862 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
863 item_size = btrfs_item_size_nr(eb, path->slots[0]);
864
69917e43 865 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
558540c1 866 do {
6eda71d0
LB
867 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
868 item_size, &ref_root,
869 &ref_level);
ecaeb14b 870 btrfs_warn_in_rcu(fs_info,
5d163e0e
JM
871 "%s at logical %llu on dev %s, sector %llu: metadata %s (level %d) in tree %llu",
872 errstr, swarn.logical,
606686ee 873 rcu_str_deref(dev->name),
558540c1
JS
874 (unsigned long long)swarn.sector,
875 ref_level ? "node" : "leaf",
876 ret < 0 ? -1 : ref_level,
877 ret < 0 ? -1 : ref_root);
878 } while (ret != 1);
d8fe29e9 879 btrfs_release_path(path);
558540c1 880 } else {
d8fe29e9 881 btrfs_release_path(path);
558540c1 882 swarn.path = path;
a36cf8b8 883 swarn.dev = dev;
7a3ae2f8
JS
884 iterate_extent_inodes(fs_info, found_key.objectid,
885 extent_item_pos, 1,
558540c1
JS
886 scrub_print_warning_inode, &swarn);
887 }
888
889out:
890 btrfs_free_path(path);
558540c1
JS
891}
892
ff023aac 893static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
0ef8e451 894{
5da6fcbc 895 struct page *page = NULL;
0ef8e451 896 unsigned long index;
ff023aac 897 struct scrub_fixup_nodatasum *fixup = fixup_ctx;
0ef8e451 898 int ret;
5da6fcbc 899 int corrected = 0;
0ef8e451 900 struct btrfs_key key;
5da6fcbc 901 struct inode *inode = NULL;
6f1c3605 902 struct btrfs_fs_info *fs_info;
0ef8e451
JS
903 u64 end = offset + PAGE_SIZE - 1;
904 struct btrfs_root *local_root;
6f1c3605 905 int srcu_index;
0ef8e451
JS
906
907 key.objectid = root;
908 key.type = BTRFS_ROOT_ITEM_KEY;
909 key.offset = (u64)-1;
6f1c3605
LB
910
911 fs_info = fixup->root->fs_info;
912 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
913
914 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
915 if (IS_ERR(local_root)) {
916 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451 917 return PTR_ERR(local_root);
6f1c3605 918 }
0ef8e451
JS
919
920 key.type = BTRFS_INODE_ITEM_KEY;
921 key.objectid = inum;
922 key.offset = 0;
6f1c3605
LB
923 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
924 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
0ef8e451
JS
925 if (IS_ERR(inode))
926 return PTR_ERR(inode);
927
09cbfeaf 928 index = offset >> PAGE_SHIFT;
0ef8e451
JS
929
930 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
5da6fcbc
JS
931 if (!page) {
932 ret = -ENOMEM;
933 goto out;
934 }
935
936 if (PageUptodate(page)) {
5da6fcbc
JS
937 if (PageDirty(page)) {
938 /*
939 * we need to write the data to the defect sector. the
940 * data that was in that sector is not in memory,
941 * because the page was modified. we must not write the
942 * modified page to that sector.
943 *
944 * TODO: what could be done here: wait for the delalloc
945 * runner to write out that page (might involve
946 * COW) and see whether the sector is still
947 * referenced afterwards.
948 *
949 * For the meantime, we'll treat this error
950 * incorrectable, although there is a chance that a
951 * later scrub will find the bad sector again and that
952 * there's no dirty page in memory, then.
953 */
954 ret = -EIO;
955 goto out;
956 }
9d4f7f8a 957 ret = repair_io_failure(BTRFS_I(inode), offset, PAGE_SIZE,
5da6fcbc 958 fixup->logical, page,
ffdd2018 959 offset - page_offset(page),
5da6fcbc
JS
960 fixup->mirror_num);
961 unlock_page(page);
962 corrected = !ret;
963 } else {
964 /*
965 * we need to get good data first. the general readpage path
966 * will call repair_io_failure for us, we just have to make
967 * sure we read the bad mirror.
968 */
969 ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
ceeb0ae7 970 EXTENT_DAMAGED);
5da6fcbc
JS
971 if (ret) {
972 /* set_extent_bits should give proper error */
973 WARN_ON(ret > 0);
974 if (ret > 0)
975 ret = -EFAULT;
976 goto out;
977 }
978
979 ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
980 btrfs_get_extent,
981 fixup->mirror_num);
982 wait_on_page_locked(page);
983
984 corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
985 end, EXTENT_DAMAGED, 0, NULL);
986 if (!corrected)
987 clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
91166212 988 EXTENT_DAMAGED);
5da6fcbc
JS
989 }
990
991out:
992 if (page)
993 put_page(page);
7fb18a06
TK
994
995 iput(inode);
0ef8e451
JS
996
997 if (ret < 0)
998 return ret;
999
1000 if (ret == 0 && corrected) {
1001 /*
1002 * we only need to call readpage for one of the inodes belonging
1003 * to this extent. so make iterate_extent_inodes stop
1004 */
1005 return 1;
1006 }
1007
1008 return -EIO;
1009}
1010
1011static void scrub_fixup_nodatasum(struct btrfs_work *work)
1012{
0b246afa 1013 struct btrfs_fs_info *fs_info;
0ef8e451
JS
1014 int ret;
1015 struct scrub_fixup_nodatasum *fixup;
d9d181c1 1016 struct scrub_ctx *sctx;
0ef8e451 1017 struct btrfs_trans_handle *trans = NULL;
0ef8e451
JS
1018 struct btrfs_path *path;
1019 int uncorrectable = 0;
1020
1021 fixup = container_of(work, struct scrub_fixup_nodatasum, work);
d9d181c1 1022 sctx = fixup->sctx;
0b246afa 1023 fs_info = fixup->root->fs_info;
0ef8e451
JS
1024
1025 path = btrfs_alloc_path();
1026 if (!path) {
d9d181c1
SB
1027 spin_lock(&sctx->stat_lock);
1028 ++sctx->stat.malloc_errors;
1029 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
1030 uncorrectable = 1;
1031 goto out;
1032 }
1033
1034 trans = btrfs_join_transaction(fixup->root);
1035 if (IS_ERR(trans)) {
1036 uncorrectable = 1;
1037 goto out;
1038 }
1039
1040 /*
1041 * the idea is to trigger a regular read through the standard path. we
1042 * read a page from the (failed) logical address by specifying the
1043 * corresponding copynum of the failed sector. thus, that readpage is
1044 * expected to fail.
1045 * that is the point where on-the-fly error correction will kick in
1046 * (once it's finished) and rewrite the failed sector if a good copy
1047 * can be found.
1048 */
0b246afa
JM
1049 ret = iterate_inodes_from_logical(fixup->logical, fs_info, path,
1050 scrub_fixup_readpage, fixup);
0ef8e451
JS
1051 if (ret < 0) {
1052 uncorrectable = 1;
1053 goto out;
1054 }
1055 WARN_ON(ret != 1);
1056
d9d181c1
SB
1057 spin_lock(&sctx->stat_lock);
1058 ++sctx->stat.corrected_errors;
1059 spin_unlock(&sctx->stat_lock);
0ef8e451
JS
1060
1061out:
1062 if (trans && !IS_ERR(trans))
3a45bb20 1063 btrfs_end_transaction(trans);
0ef8e451 1064 if (uncorrectable) {
d9d181c1
SB
1065 spin_lock(&sctx->stat_lock);
1066 ++sctx->stat.uncorrectable_errors;
1067 spin_unlock(&sctx->stat_lock);
ff023aac 1068 btrfs_dev_replace_stats_inc(
0b246afa
JM
1069 &fs_info->dev_replace.num_uncorrectable_read_errors);
1070 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 1071 "unable to fixup (nodatasum) error at logical %llu on dev %s",
c1c9ff7c 1072 fixup->logical, rcu_str_deref(fixup->dev->name));
0ef8e451
JS
1073 }
1074
1075 btrfs_free_path(path);
1076 kfree(fixup);
1077
b6bfebc1 1078 scrub_pending_trans_workers_dec(sctx);
0ef8e451
JS
1079}
1080
af8e2d1d
MX
1081static inline void scrub_get_recover(struct scrub_recover *recover)
1082{
6f615018 1083 refcount_inc(&recover->refs);
af8e2d1d
MX
1084}
1085
e501bfe3
QW
1086static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
1087 struct scrub_recover *recover)
af8e2d1d 1088{
6f615018 1089 if (refcount_dec_and_test(&recover->refs)) {
e501bfe3 1090 btrfs_bio_counter_dec(fs_info);
6e9606d2 1091 btrfs_put_bbio(recover->bbio);
af8e2d1d
MX
1092 kfree(recover);
1093 }
1094}
1095
a2de733c 1096/*
b5d67f64
SB
1097 * scrub_handle_errored_block gets called when either verification of the
1098 * pages failed or the bio failed to read, e.g. with EIO. In the latter
1099 * case, this function handles all pages in the bio, even though only one
1100 * may be bad.
1101 * The goal of this function is to repair the errored block by using the
1102 * contents of one of the mirrors.
a2de733c 1103 */
b5d67f64 1104static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
a2de733c 1105{
d9d181c1 1106 struct scrub_ctx *sctx = sblock_to_check->sctx;
a36cf8b8 1107 struct btrfs_device *dev;
b5d67f64
SB
1108 struct btrfs_fs_info *fs_info;
1109 u64 length;
1110 u64 logical;
b5d67f64
SB
1111 unsigned int failed_mirror_index;
1112 unsigned int is_metadata;
1113 unsigned int have_csum;
b5d67f64
SB
1114 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
1115 struct scrub_block *sblock_bad;
1116 int ret;
1117 int mirror_index;
1118 int page_num;
1119 int success;
28d70e23 1120 bool full_stripe_locked;
558540c1 1121 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
b5d67f64
SB
1122 DEFAULT_RATELIMIT_BURST);
1123
1124 BUG_ON(sblock_to_check->page_count < 1);
fb456252 1125 fs_info = sctx->fs_info;
4ded4f63
SB
1126 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1127 /*
1128 * if we find an error in a super block, we just report it.
1129 * They will get written with the next transaction commit
1130 * anyway
1131 */
1132 spin_lock(&sctx->stat_lock);
1133 ++sctx->stat.super_errors;
1134 spin_unlock(&sctx->stat_lock);
1135 return 0;
1136 }
b5d67f64 1137 length = sblock_to_check->page_count * PAGE_SIZE;
7a9e9987 1138 logical = sblock_to_check->pagev[0]->logical;
7a9e9987
SB
1139 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
1140 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
1141 is_metadata = !(sblock_to_check->pagev[0]->flags &
b5d67f64 1142 BTRFS_EXTENT_FLAG_DATA);
7a9e9987 1143 have_csum = sblock_to_check->pagev[0]->have_csum;
7a9e9987 1144 dev = sblock_to_check->pagev[0]->dev;
13db62b7 1145
28d70e23
QW
1146 /*
1147 * For RAID5/6, race can happen for a different device scrub thread.
1148 * For data corruption, Parity and Data threads will both try
1149 * to recovery the data.
1150 * Race can lead to doubly added csum error, or even unrecoverable
1151 * error.
1152 */
1153 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1154 if (ret < 0) {
1155 spin_lock(&sctx->stat_lock);
1156 if (ret == -ENOMEM)
1157 sctx->stat.malloc_errors++;
1158 sctx->stat.read_errors++;
1159 sctx->stat.uncorrectable_errors++;
1160 spin_unlock(&sctx->stat_lock);
1161 return ret;
1162 }
1163
ff023aac
SB
1164 if (sctx->is_dev_replace && !is_metadata && !have_csum) {
1165 sblocks_for_recheck = NULL;
1166 goto nodatasum_case;
1167 }
1168
b5d67f64
SB
1169 /*
1170 * read all mirrors one after the other. This includes to
1171 * re-read the extent or metadata block that failed (that was
1172 * the cause that this fixup code is called) another time,
1173 * page by page this time in order to know which pages
1174 * caused I/O errors and which ones are good (for all mirrors).
1175 * It is the goal to handle the situation when more than one
1176 * mirror contains I/O errors, but the errors do not
1177 * overlap, i.e. the data can be repaired by selecting the
1178 * pages from those mirrors without I/O error on the
1179 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
1180 * would be that mirror #1 has an I/O error on the first page,
1181 * the second page is good, and mirror #2 has an I/O error on
1182 * the second page, but the first page is good.
1183 * Then the first page of the first mirror can be repaired by
1184 * taking the first page of the second mirror, and the
1185 * second page of the second mirror can be repaired by
1186 * copying the contents of the 2nd page of the 1st mirror.
1187 * One more note: if the pages of one mirror contain I/O
1188 * errors, the checksum cannot be verified. In order to get
1189 * the best data for repairing, the first attempt is to find
1190 * a mirror without I/O errors and with a validated checksum.
1191 * Only if this is not possible, the pages are picked from
1192 * mirrors with I/O errors without considering the checksum.
1193 * If the latter is the case, at the end, the checksum of the
1194 * repaired area is verified in order to correctly maintain
1195 * the statistics.
1196 */
1197
31e818fe
DS
1198 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
1199 sizeof(*sblocks_for_recheck), GFP_NOFS);
b5d67f64 1200 if (!sblocks_for_recheck) {
d9d181c1
SB
1201 spin_lock(&sctx->stat_lock);
1202 sctx->stat.malloc_errors++;
1203 sctx->stat.read_errors++;
1204 sctx->stat.uncorrectable_errors++;
1205 spin_unlock(&sctx->stat_lock);
a36cf8b8 1206 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 1207 goto out;
a2de733c
AJ
1208 }
1209
b5d67f64 1210 /* setup the context, map the logical blocks and alloc the pages */
be50a8dd 1211 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
b5d67f64 1212 if (ret) {
d9d181c1
SB
1213 spin_lock(&sctx->stat_lock);
1214 sctx->stat.read_errors++;
1215 sctx->stat.uncorrectable_errors++;
1216 spin_unlock(&sctx->stat_lock);
a36cf8b8 1217 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64
SB
1218 goto out;
1219 }
1220 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1221 sblock_bad = sblocks_for_recheck + failed_mirror_index;
13db62b7 1222
b5d67f64 1223 /* build and submit the bios for the failed mirror, check checksums */
affe4a5a 1224 scrub_recheck_block(fs_info, sblock_bad, 1);
a2de733c 1225
b5d67f64
SB
1226 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1227 sblock_bad->no_io_error_seen) {
1228 /*
1229 * the error disappeared after reading page by page, or
1230 * the area was part of a huge bio and other parts of the
1231 * bio caused I/O errors, or the block layer merged several
1232 * read requests into one and the error is caused by a
1233 * different bio (usually one of the two latter cases is
1234 * the cause)
1235 */
d9d181c1
SB
1236 spin_lock(&sctx->stat_lock);
1237 sctx->stat.unverified_errors++;
5a6ac9ea 1238 sblock_to_check->data_corrected = 1;
d9d181c1 1239 spin_unlock(&sctx->stat_lock);
a2de733c 1240
ff023aac
SB
1241 if (sctx->is_dev_replace)
1242 scrub_write_block_to_dev_replace(sblock_bad);
b5d67f64 1243 goto out;
a2de733c 1244 }
a2de733c 1245
b5d67f64 1246 if (!sblock_bad->no_io_error_seen) {
d9d181c1
SB
1247 spin_lock(&sctx->stat_lock);
1248 sctx->stat.read_errors++;
1249 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1250 if (__ratelimit(&_rs))
1251 scrub_print_warning("i/o error", sblock_to_check);
a36cf8b8 1252 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
b5d67f64 1253 } else if (sblock_bad->checksum_error) {
d9d181c1
SB
1254 spin_lock(&sctx->stat_lock);
1255 sctx->stat.csum_errors++;
1256 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1257 if (__ratelimit(&_rs))
1258 scrub_print_warning("checksum error", sblock_to_check);
a36cf8b8 1259 btrfs_dev_stat_inc_and_print(dev,
442a4f63 1260 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 1261 } else if (sblock_bad->header_error) {
d9d181c1
SB
1262 spin_lock(&sctx->stat_lock);
1263 sctx->stat.verify_errors++;
1264 spin_unlock(&sctx->stat_lock);
b5d67f64
SB
1265 if (__ratelimit(&_rs))
1266 scrub_print_warning("checksum/header error",
1267 sblock_to_check);
442a4f63 1268 if (sblock_bad->generation_error)
a36cf8b8 1269 btrfs_dev_stat_inc_and_print(dev,
442a4f63
SB
1270 BTRFS_DEV_STAT_GENERATION_ERRS);
1271 else
a36cf8b8 1272 btrfs_dev_stat_inc_and_print(dev,
442a4f63 1273 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b5d67f64 1274 }
a2de733c 1275
33ef30ad
ID
1276 if (sctx->readonly) {
1277 ASSERT(!sctx->is_dev_replace);
1278 goto out;
1279 }
a2de733c 1280
b5d67f64
SB
1281 if (!is_metadata && !have_csum) {
1282 struct scrub_fixup_nodatasum *fixup_nodatasum;
a2de733c 1283
ff023aac
SB
1284 WARN_ON(sctx->is_dev_replace);
1285
b25c94c5
ZL
1286nodatasum_case:
1287
b5d67f64
SB
1288 /*
1289 * !is_metadata and !have_csum, this means that the data
01327610 1290 * might not be COWed, that it might be modified
b5d67f64
SB
1291 * concurrently. The general strategy to work on the
1292 * commit root does not help in the case when COW is not
1293 * used.
1294 */
1295 fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
1296 if (!fixup_nodatasum)
1297 goto did_not_correct_error;
d9d181c1 1298 fixup_nodatasum->sctx = sctx;
a36cf8b8 1299 fixup_nodatasum->dev = dev;
b5d67f64
SB
1300 fixup_nodatasum->logical = logical;
1301 fixup_nodatasum->root = fs_info->extent_root;
1302 fixup_nodatasum->mirror_num = failed_mirror_index + 1;
b6bfebc1 1303 scrub_pending_trans_workers_inc(sctx);
9e0af237
LB
1304 btrfs_init_work(&fixup_nodatasum->work, btrfs_scrub_helper,
1305 scrub_fixup_nodatasum, NULL, NULL);
0339ef2f
QW
1306 btrfs_queue_work(fs_info->scrub_workers,
1307 &fixup_nodatasum->work);
b5d67f64 1308 goto out;
a2de733c
AJ
1309 }
1310
b5d67f64
SB
1311 /*
1312 * now build and submit the bios for the other mirrors, check
cb2ced73
SB
1313 * checksums.
1314 * First try to pick the mirror which is completely without I/O
b5d67f64
SB
1315 * errors and also does not have a checksum error.
1316 * If one is found, and if a checksum is present, the full block
1317 * that is known to contain an error is rewritten. Afterwards
1318 * the block is known to be corrected.
1319 * If a mirror is found which is completely correct, and no
1320 * checksum is present, only those pages are rewritten that had
1321 * an I/O error in the block to be repaired, since it cannot be
1322 * determined, which copy of the other pages is better (and it
1323 * could happen otherwise that a correct page would be
1324 * overwritten by a bad one).
1325 */
1326 for (mirror_index = 0;
1327 mirror_index < BTRFS_MAX_MIRRORS &&
1328 sblocks_for_recheck[mirror_index].page_count > 0;
1329 mirror_index++) {
cb2ced73 1330 struct scrub_block *sblock_other;
b5d67f64 1331
cb2ced73
SB
1332 if (mirror_index == failed_mirror_index)
1333 continue;
1334 sblock_other = sblocks_for_recheck + mirror_index;
1335
1336 /* build and submit the bios, check checksums */
affe4a5a 1337 scrub_recheck_block(fs_info, sblock_other, 0);
34f5c8e9
SB
1338
1339 if (!sblock_other->header_error &&
b5d67f64
SB
1340 !sblock_other->checksum_error &&
1341 sblock_other->no_io_error_seen) {
ff023aac
SB
1342 if (sctx->is_dev_replace) {
1343 scrub_write_block_to_dev_replace(sblock_other);
114ab50d 1344 goto corrected_error;
ff023aac 1345 } else {
ff023aac 1346 ret = scrub_repair_block_from_good_copy(
114ab50d
ZL
1347 sblock_bad, sblock_other);
1348 if (!ret)
1349 goto corrected_error;
ff023aac 1350 }
b5d67f64
SB
1351 }
1352 }
a2de733c 1353
b968fed1
ZL
1354 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1355 goto did_not_correct_error;
ff023aac
SB
1356
1357 /*
ff023aac 1358 * In case of I/O errors in the area that is supposed to be
b5d67f64
SB
1359 * repaired, continue by picking good copies of those pages.
1360 * Select the good pages from mirrors to rewrite bad pages from
1361 * the area to fix. Afterwards verify the checksum of the block
1362 * that is supposed to be repaired. This verification step is
1363 * only done for the purpose of statistic counting and for the
1364 * final scrub report, whether errors remain.
1365 * A perfect algorithm could make use of the checksum and try
1366 * all possible combinations of pages from the different mirrors
1367 * until the checksum verification succeeds. For example, when
1368 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1369 * of mirror #2 is readable but the final checksum test fails,
1370 * then the 2nd page of mirror #3 could be tried, whether now
01327610 1371 * the final checksum succeeds. But this would be a rare
b5d67f64
SB
1372 * exception and is therefore not implemented. At least it is
1373 * avoided that the good copy is overwritten.
1374 * A more useful improvement would be to pick the sectors
1375 * without I/O error based on sector sizes (512 bytes on legacy
1376 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1377 * mirror could be repaired by taking 512 byte of a different
1378 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1379 * area are unreadable.
a2de733c 1380 */
b5d67f64 1381 success = 1;
b968fed1
ZL
1382 for (page_num = 0; page_num < sblock_bad->page_count;
1383 page_num++) {
7a9e9987 1384 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
b968fed1 1385 struct scrub_block *sblock_other = NULL;
b5d67f64 1386
b968fed1
ZL
1387 /* skip no-io-error page in scrub */
1388 if (!page_bad->io_error && !sctx->is_dev_replace)
a2de733c 1389 continue;
b5d67f64 1390
b968fed1
ZL
1391 /* try to find no-io-error page in mirrors */
1392 if (page_bad->io_error) {
1393 for (mirror_index = 0;
1394 mirror_index < BTRFS_MAX_MIRRORS &&
1395 sblocks_for_recheck[mirror_index].page_count > 0;
1396 mirror_index++) {
1397 if (!sblocks_for_recheck[mirror_index].
1398 pagev[page_num]->io_error) {
1399 sblock_other = sblocks_for_recheck +
1400 mirror_index;
1401 break;
b5d67f64
SB
1402 }
1403 }
b968fed1
ZL
1404 if (!sblock_other)
1405 success = 0;
96e36920 1406 }
a2de733c 1407
b968fed1
ZL
1408 if (sctx->is_dev_replace) {
1409 /*
1410 * did not find a mirror to fetch the page
1411 * from. scrub_write_page_to_dev_replace()
1412 * handles this case (page->io_error), by
1413 * filling the block with zeros before
1414 * submitting the write request
1415 */
1416 if (!sblock_other)
1417 sblock_other = sblock_bad;
1418
1419 if (scrub_write_page_to_dev_replace(sblock_other,
1420 page_num) != 0) {
1421 btrfs_dev_replace_stats_inc(
0b246afa 1422 &fs_info->dev_replace.num_write_errors);
b968fed1
ZL
1423 success = 0;
1424 }
1425 } else if (sblock_other) {
1426 ret = scrub_repair_page_from_good_copy(sblock_bad,
1427 sblock_other,
1428 page_num, 0);
1429 if (0 == ret)
1430 page_bad->io_error = 0;
1431 else
1432 success = 0;
b5d67f64 1433 }
a2de733c 1434 }
a2de733c 1435
b968fed1 1436 if (success && !sctx->is_dev_replace) {
b5d67f64
SB
1437 if (is_metadata || have_csum) {
1438 /*
1439 * need to verify the checksum now that all
1440 * sectors on disk are repaired (the write
1441 * request for data to be repaired is on its way).
1442 * Just be lazy and use scrub_recheck_block()
1443 * which re-reads the data before the checksum
1444 * is verified, but most likely the data comes out
1445 * of the page cache.
1446 */
affe4a5a 1447 scrub_recheck_block(fs_info, sblock_bad, 1);
34f5c8e9 1448 if (!sblock_bad->header_error &&
b5d67f64
SB
1449 !sblock_bad->checksum_error &&
1450 sblock_bad->no_io_error_seen)
1451 goto corrected_error;
1452 else
1453 goto did_not_correct_error;
1454 } else {
1455corrected_error:
d9d181c1
SB
1456 spin_lock(&sctx->stat_lock);
1457 sctx->stat.corrected_errors++;
5a6ac9ea 1458 sblock_to_check->data_corrected = 1;
d9d181c1 1459 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1460 btrfs_err_rl_in_rcu(fs_info,
1461 "fixed up error at logical %llu on dev %s",
c1c9ff7c 1462 logical, rcu_str_deref(dev->name));
8628764e 1463 }
b5d67f64
SB
1464 } else {
1465did_not_correct_error:
d9d181c1
SB
1466 spin_lock(&sctx->stat_lock);
1467 sctx->stat.uncorrectable_errors++;
1468 spin_unlock(&sctx->stat_lock);
b14af3b4
DS
1469 btrfs_err_rl_in_rcu(fs_info,
1470 "unable to fixup (regular) error at logical %llu on dev %s",
c1c9ff7c 1471 logical, rcu_str_deref(dev->name));
96e36920 1472 }
a2de733c 1473
b5d67f64
SB
1474out:
1475 if (sblocks_for_recheck) {
1476 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1477 mirror_index++) {
1478 struct scrub_block *sblock = sblocks_for_recheck +
1479 mirror_index;
af8e2d1d 1480 struct scrub_recover *recover;
b5d67f64
SB
1481 int page_index;
1482
7a9e9987
SB
1483 for (page_index = 0; page_index < sblock->page_count;
1484 page_index++) {
1485 sblock->pagev[page_index]->sblock = NULL;
af8e2d1d
MX
1486 recover = sblock->pagev[page_index]->recover;
1487 if (recover) {
e501bfe3 1488 scrub_put_recover(fs_info, recover);
af8e2d1d
MX
1489 sblock->pagev[page_index]->recover =
1490 NULL;
1491 }
7a9e9987
SB
1492 scrub_page_put(sblock->pagev[page_index]);
1493 }
b5d67f64
SB
1494 }
1495 kfree(sblocks_for_recheck);
1496 }
a2de733c 1497
28d70e23
QW
1498 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1499 if (ret < 0)
1500 return ret;
b5d67f64
SB
1501 return 0;
1502}
a2de733c 1503
8e5cfb55 1504static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
af8e2d1d 1505{
10f11900
ZL
1506 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1507 return 2;
1508 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1509 return 3;
1510 else
af8e2d1d 1511 return (int)bbio->num_stripes;
af8e2d1d
MX
1512}
1513
10f11900
ZL
1514static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1515 u64 *raid_map,
af8e2d1d
MX
1516 u64 mapped_length,
1517 int nstripes, int mirror,
1518 int *stripe_index,
1519 u64 *stripe_offset)
1520{
1521 int i;
1522
ffe2d203 1523 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
af8e2d1d
MX
1524 /* RAID5/6 */
1525 for (i = 0; i < nstripes; i++) {
1526 if (raid_map[i] == RAID6_Q_STRIPE ||
1527 raid_map[i] == RAID5_P_STRIPE)
1528 continue;
1529
1530 if (logical >= raid_map[i] &&
1531 logical < raid_map[i] + mapped_length)
1532 break;
1533 }
1534
1535 *stripe_index = i;
1536 *stripe_offset = logical - raid_map[i];
1537 } else {
1538 /* The other RAID type */
1539 *stripe_index = mirror;
1540 *stripe_offset = 0;
1541 }
1542}
1543
be50a8dd 1544static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
b5d67f64
SB
1545 struct scrub_block *sblocks_for_recheck)
1546{
be50a8dd 1547 struct scrub_ctx *sctx = original_sblock->sctx;
fb456252 1548 struct btrfs_fs_info *fs_info = sctx->fs_info;
be50a8dd
ZL
1549 u64 length = original_sblock->page_count * PAGE_SIZE;
1550 u64 logical = original_sblock->pagev[0]->logical;
4734b7ed
ZL
1551 u64 generation = original_sblock->pagev[0]->generation;
1552 u64 flags = original_sblock->pagev[0]->flags;
1553 u64 have_csum = original_sblock->pagev[0]->have_csum;
af8e2d1d
MX
1554 struct scrub_recover *recover;
1555 struct btrfs_bio *bbio;
af8e2d1d
MX
1556 u64 sublen;
1557 u64 mapped_length;
1558 u64 stripe_offset;
1559 int stripe_index;
be50a8dd 1560 int page_index = 0;
b5d67f64 1561 int mirror_index;
af8e2d1d 1562 int nmirrors;
b5d67f64
SB
1563 int ret;
1564
1565 /*
57019345 1566 * note: the two members refs and outstanding_pages
b5d67f64
SB
1567 * are not used (and not set) in the blocks that are used for
1568 * the recheck procedure
1569 */
1570
b5d67f64 1571 while (length > 0) {
af8e2d1d
MX
1572 sublen = min_t(u64, length, PAGE_SIZE);
1573 mapped_length = sublen;
1574 bbio = NULL;
a2de733c 1575
b5d67f64
SB
1576 /*
1577 * with a length of PAGE_SIZE, each returned stripe
1578 * represents one mirror
1579 */
e501bfe3 1580 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 1581 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
825ad4c9 1582 logical, &mapped_length, &bbio);
b5d67f64 1583 if (ret || !bbio || mapped_length < sublen) {
6e9606d2 1584 btrfs_put_bbio(bbio);
e501bfe3 1585 btrfs_bio_counter_dec(fs_info);
b5d67f64
SB
1586 return -EIO;
1587 }
a2de733c 1588
af8e2d1d
MX
1589 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1590 if (!recover) {
6e9606d2 1591 btrfs_put_bbio(bbio);
e501bfe3 1592 btrfs_bio_counter_dec(fs_info);
af8e2d1d
MX
1593 return -ENOMEM;
1594 }
1595
6f615018 1596 refcount_set(&recover->refs, 1);
af8e2d1d 1597 recover->bbio = bbio;
af8e2d1d
MX
1598 recover->map_length = mapped_length;
1599
24731149 1600 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
af8e2d1d 1601
be50a8dd 1602 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
10f11900 1603
af8e2d1d 1604 for (mirror_index = 0; mirror_index < nmirrors;
b5d67f64
SB
1605 mirror_index++) {
1606 struct scrub_block *sblock;
1607 struct scrub_page *page;
1608
b5d67f64 1609 sblock = sblocks_for_recheck + mirror_index;
7a9e9987 1610 sblock->sctx = sctx;
4734b7ed 1611
7a9e9987
SB
1612 page = kzalloc(sizeof(*page), GFP_NOFS);
1613 if (!page) {
1614leave_nomem:
d9d181c1
SB
1615 spin_lock(&sctx->stat_lock);
1616 sctx->stat.malloc_errors++;
1617 spin_unlock(&sctx->stat_lock);
e501bfe3 1618 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1619 return -ENOMEM;
1620 }
7a9e9987
SB
1621 scrub_page_get(page);
1622 sblock->pagev[page_index] = page;
4734b7ed
ZL
1623 page->sblock = sblock;
1624 page->flags = flags;
1625 page->generation = generation;
7a9e9987 1626 page->logical = logical;
4734b7ed
ZL
1627 page->have_csum = have_csum;
1628 if (have_csum)
1629 memcpy(page->csum,
1630 original_sblock->pagev[0]->csum,
1631 sctx->csum_size);
af8e2d1d 1632
10f11900
ZL
1633 scrub_stripe_index_and_offset(logical,
1634 bbio->map_type,
1635 bbio->raid_map,
af8e2d1d 1636 mapped_length,
e34c330d
ZL
1637 bbio->num_stripes -
1638 bbio->num_tgtdevs,
af8e2d1d
MX
1639 mirror_index,
1640 &stripe_index,
1641 &stripe_offset);
1642 page->physical = bbio->stripes[stripe_index].physical +
1643 stripe_offset;
1644 page->dev = bbio->stripes[stripe_index].dev;
1645
ff023aac
SB
1646 BUG_ON(page_index >= original_sblock->page_count);
1647 page->physical_for_dev_replace =
1648 original_sblock->pagev[page_index]->
1649 physical_for_dev_replace;
7a9e9987 1650 /* for missing devices, dev->bdev is NULL */
7a9e9987 1651 page->mirror_num = mirror_index + 1;
b5d67f64 1652 sblock->page_count++;
7a9e9987
SB
1653 page->page = alloc_page(GFP_NOFS);
1654 if (!page->page)
1655 goto leave_nomem;
af8e2d1d
MX
1656
1657 scrub_get_recover(recover);
1658 page->recover = recover;
b5d67f64 1659 }
e501bfe3 1660 scrub_put_recover(fs_info, recover);
b5d67f64
SB
1661 length -= sublen;
1662 logical += sublen;
1663 page_index++;
1664 }
1665
1666 return 0;
96e36920
ID
1667}
1668
af8e2d1d
MX
1669struct scrub_bio_ret {
1670 struct completion event;
1671 int error;
1672};
1673
4246a0b6 1674static void scrub_bio_wait_endio(struct bio *bio)
af8e2d1d
MX
1675{
1676 struct scrub_bio_ret *ret = bio->bi_private;
1677
4246a0b6 1678 ret->error = bio->bi_error;
af8e2d1d
MX
1679 complete(&ret->event);
1680}
1681
1682static inline int scrub_is_page_on_raid56(struct scrub_page *page)
1683{
10f11900 1684 return page->recover &&
ffe2d203 1685 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
af8e2d1d
MX
1686}
1687
1688static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1689 struct bio *bio,
1690 struct scrub_page *page)
1691{
1692 struct scrub_bio_ret done;
1693 int ret;
1694
1695 init_completion(&done.event);
1696 done.error = 0;
1697 bio->bi_iter.bi_sector = page->logical >> 9;
1698 bio->bi_private = &done;
1699 bio->bi_end_io = scrub_bio_wait_endio;
1700
2ff7e61e 1701 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
af8e2d1d 1702 page->recover->map_length,
4245215d 1703 page->mirror_num, 0);
af8e2d1d
MX
1704 if (ret)
1705 return ret;
1706
1707 wait_for_completion(&done.event);
1708 if (done.error)
1709 return -EIO;
1710
1711 return 0;
1712}
1713
b5d67f64
SB
1714/*
1715 * this function will check the on disk data for checksum errors, header
1716 * errors and read I/O errors. If any I/O errors happen, the exact pages
1717 * which are errored are marked as being bad. The goal is to enable scrub
1718 * to take those pages that are not errored from all the mirrors so that
1719 * the pages that are errored in the just handled mirror can be repaired.
1720 */
34f5c8e9 1721static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
affe4a5a
ZL
1722 struct scrub_block *sblock,
1723 int retry_failed_mirror)
96e36920 1724{
b5d67f64 1725 int page_num;
96e36920 1726
b5d67f64 1727 sblock->no_io_error_seen = 1;
96e36920 1728
b5d67f64
SB
1729 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1730 struct bio *bio;
7a9e9987 1731 struct scrub_page *page = sblock->pagev[page_num];
b5d67f64 1732
442a4f63 1733 if (page->dev->bdev == NULL) {
ea9947b4
SB
1734 page->io_error = 1;
1735 sblock->no_io_error_seen = 0;
1736 continue;
1737 }
1738
7a9e9987 1739 WARN_ON(!page->page);
9be3395b 1740 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
34f5c8e9
SB
1741 if (!bio) {
1742 page->io_error = 1;
1743 sblock->no_io_error_seen = 0;
1744 continue;
1745 }
442a4f63 1746 bio->bi_bdev = page->dev->bdev;
b5d67f64 1747
34f5c8e9 1748 bio_add_page(bio, page->page, PAGE_SIZE, 0);
af8e2d1d 1749 if (!retry_failed_mirror && scrub_is_page_on_raid56(page)) {
1bcd7aa1
LB
1750 if (scrub_submit_raid56_bio_wait(fs_info, bio, page)) {
1751 page->io_error = 1;
af8e2d1d 1752 sblock->no_io_error_seen = 0;
1bcd7aa1 1753 }
af8e2d1d
MX
1754 } else {
1755 bio->bi_iter.bi_sector = page->physical >> 9;
37226b21 1756 bio_set_op_attrs(bio, REQ_OP_READ, 0);
af8e2d1d 1757
1bcd7aa1
LB
1758 if (btrfsic_submit_bio_wait(bio)) {
1759 page->io_error = 1;
af8e2d1d 1760 sblock->no_io_error_seen = 0;
1bcd7aa1 1761 }
af8e2d1d 1762 }
33879d45 1763
b5d67f64
SB
1764 bio_put(bio);
1765 }
96e36920 1766
b5d67f64 1767 if (sblock->no_io_error_seen)
ba7cf988 1768 scrub_recheck_block_checksum(sblock);
a2de733c
AJ
1769}
1770
17a9be2f
MX
1771static inline int scrub_check_fsid(u8 fsid[],
1772 struct scrub_page *spage)
1773{
1774 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1775 int ret;
1776
1777 ret = memcmp(fsid, fs_devices->fsid, BTRFS_UUID_SIZE);
1778 return !ret;
1779}
1780
ba7cf988 1781static void scrub_recheck_block_checksum(struct scrub_block *sblock)
a2de733c 1782{
ba7cf988
ZL
1783 sblock->header_error = 0;
1784 sblock->checksum_error = 0;
1785 sblock->generation_error = 0;
b5d67f64 1786
ba7cf988
ZL
1787 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1788 scrub_checksum_data(sblock);
1789 else
1790 scrub_checksum_tree_block(sblock);
a2de733c
AJ
1791}
1792
b5d67f64 1793static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
114ab50d 1794 struct scrub_block *sblock_good)
b5d67f64
SB
1795{
1796 int page_num;
1797 int ret = 0;
96e36920 1798
b5d67f64
SB
1799 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1800 int ret_sub;
96e36920 1801
b5d67f64
SB
1802 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1803 sblock_good,
114ab50d 1804 page_num, 1);
b5d67f64
SB
1805 if (ret_sub)
1806 ret = ret_sub;
a2de733c 1807 }
b5d67f64
SB
1808
1809 return ret;
1810}
1811
1812static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1813 struct scrub_block *sblock_good,
1814 int page_num, int force_write)
1815{
7a9e9987
SB
1816 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1817 struct scrub_page *page_good = sblock_good->pagev[page_num];
0b246afa 1818 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
b5d67f64 1819
7a9e9987
SB
1820 BUG_ON(page_bad->page == NULL);
1821 BUG_ON(page_good->page == NULL);
b5d67f64
SB
1822 if (force_write || sblock_bad->header_error ||
1823 sblock_bad->checksum_error || page_bad->io_error) {
1824 struct bio *bio;
1825 int ret;
b5d67f64 1826
ff023aac 1827 if (!page_bad->dev->bdev) {
0b246afa 1828 btrfs_warn_rl(fs_info,
5d163e0e 1829 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
ff023aac
SB
1830 return -EIO;
1831 }
1832
9be3395b 1833 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
1834 if (!bio)
1835 return -EIO;
442a4f63 1836 bio->bi_bdev = page_bad->dev->bdev;
4f024f37 1837 bio->bi_iter.bi_sector = page_bad->physical >> 9;
37226b21 1838 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
b5d67f64
SB
1839
1840 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1841 if (PAGE_SIZE != ret) {
1842 bio_put(bio);
1843 return -EIO;
13db62b7 1844 }
b5d67f64 1845
4e49ea4a 1846 if (btrfsic_submit_bio_wait(bio)) {
442a4f63
SB
1847 btrfs_dev_stat_inc_and_print(page_bad->dev,
1848 BTRFS_DEV_STAT_WRITE_ERRS);
ff023aac 1849 btrfs_dev_replace_stats_inc(
0b246afa 1850 &fs_info->dev_replace.num_write_errors);
442a4f63
SB
1851 bio_put(bio);
1852 return -EIO;
1853 }
b5d67f64 1854 bio_put(bio);
a2de733c
AJ
1855 }
1856
b5d67f64
SB
1857 return 0;
1858}
1859
ff023aac
SB
1860static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1861{
0b246afa 1862 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
ff023aac
SB
1863 int page_num;
1864
5a6ac9ea
MX
1865 /*
1866 * This block is used for the check of the parity on the source device,
1867 * so the data needn't be written into the destination device.
1868 */
1869 if (sblock->sparity)
1870 return;
1871
ff023aac
SB
1872 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1873 int ret;
1874
1875 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1876 if (ret)
1877 btrfs_dev_replace_stats_inc(
0b246afa 1878 &fs_info->dev_replace.num_write_errors);
ff023aac
SB
1879 }
1880}
1881
1882static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1883 int page_num)
1884{
1885 struct scrub_page *spage = sblock->pagev[page_num];
1886
1887 BUG_ON(spage->page == NULL);
1888 if (spage->io_error) {
1889 void *mapped_buffer = kmap_atomic(spage->page);
1890
619a9742 1891 clear_page(mapped_buffer);
ff023aac
SB
1892 flush_dcache_page(spage->page);
1893 kunmap_atomic(mapped_buffer);
1894 }
1895 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1896}
1897
1898static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1899 struct scrub_page *spage)
1900{
1901 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1902 struct scrub_bio *sbio;
1903 int ret;
1904
1905 mutex_lock(&wr_ctx->wr_lock);
1906again:
1907 if (!wr_ctx->wr_curr_bio) {
1908 wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
58c4e173 1909 GFP_KERNEL);
ff023aac
SB
1910 if (!wr_ctx->wr_curr_bio) {
1911 mutex_unlock(&wr_ctx->wr_lock);
1912 return -ENOMEM;
1913 }
1914 wr_ctx->wr_curr_bio->sctx = sctx;
1915 wr_ctx->wr_curr_bio->page_count = 0;
1916 }
1917 sbio = wr_ctx->wr_curr_bio;
1918 if (sbio->page_count == 0) {
1919 struct bio *bio;
1920
1921 sbio->physical = spage->physical_for_dev_replace;
1922 sbio->logical = spage->logical;
1923 sbio->dev = wr_ctx->tgtdev;
1924 bio = sbio->bio;
1925 if (!bio) {
58c4e173
DS
1926 bio = btrfs_io_bio_alloc(GFP_KERNEL,
1927 wr_ctx->pages_per_wr_bio);
ff023aac
SB
1928 if (!bio) {
1929 mutex_unlock(&wr_ctx->wr_lock);
1930 return -ENOMEM;
1931 }
1932 sbio->bio = bio;
1933 }
1934
1935 bio->bi_private = sbio;
1936 bio->bi_end_io = scrub_wr_bio_end_io;
1937 bio->bi_bdev = sbio->dev->bdev;
4f024f37 1938 bio->bi_iter.bi_sector = sbio->physical >> 9;
37226b21 1939 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
ff023aac
SB
1940 sbio->err = 0;
1941 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1942 spage->physical_for_dev_replace ||
1943 sbio->logical + sbio->page_count * PAGE_SIZE !=
1944 spage->logical) {
1945 scrub_wr_submit(sctx);
1946 goto again;
1947 }
1948
1949 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1950 if (ret != PAGE_SIZE) {
1951 if (sbio->page_count < 1) {
1952 bio_put(sbio->bio);
1953 sbio->bio = NULL;
1954 mutex_unlock(&wr_ctx->wr_lock);
1955 return -EIO;
1956 }
1957 scrub_wr_submit(sctx);
1958 goto again;
1959 }
1960
1961 sbio->pagev[sbio->page_count] = spage;
1962 scrub_page_get(spage);
1963 sbio->page_count++;
1964 if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1965 scrub_wr_submit(sctx);
1966 mutex_unlock(&wr_ctx->wr_lock);
1967
1968 return 0;
1969}
1970
1971static void scrub_wr_submit(struct scrub_ctx *sctx)
1972{
1973 struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1974 struct scrub_bio *sbio;
1975
1976 if (!wr_ctx->wr_curr_bio)
1977 return;
1978
1979 sbio = wr_ctx->wr_curr_bio;
1980 wr_ctx->wr_curr_bio = NULL;
1981 WARN_ON(!sbio->bio->bi_bdev);
1982 scrub_pending_bio_inc(sctx);
1983 /* process all writes in a single worker thread. Then the block layer
1984 * orders the requests before sending them to the driver which
1985 * doubled the write performance on spinning disks when measured
1986 * with Linux 3.5 */
4e49ea4a 1987 btrfsic_submit_bio(sbio->bio);
ff023aac
SB
1988}
1989
4246a0b6 1990static void scrub_wr_bio_end_io(struct bio *bio)
ff023aac
SB
1991{
1992 struct scrub_bio *sbio = bio->bi_private;
fb456252 1993 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
ff023aac 1994
4246a0b6 1995 sbio->err = bio->bi_error;
ff023aac
SB
1996 sbio->bio = bio;
1997
9e0af237
LB
1998 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1999 scrub_wr_bio_end_io_worker, NULL, NULL);
0339ef2f 2000 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
ff023aac
SB
2001}
2002
2003static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
2004{
2005 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2006 struct scrub_ctx *sctx = sbio->sctx;
2007 int i;
2008
2009 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
2010 if (sbio->err) {
2011 struct btrfs_dev_replace *dev_replace =
fb456252 2012 &sbio->sctx->fs_info->dev_replace;
ff023aac
SB
2013
2014 for (i = 0; i < sbio->page_count; i++) {
2015 struct scrub_page *spage = sbio->pagev[i];
2016
2017 spage->io_error = 1;
2018 btrfs_dev_replace_stats_inc(&dev_replace->
2019 num_write_errors);
2020 }
2021 }
2022
2023 for (i = 0; i < sbio->page_count; i++)
2024 scrub_page_put(sbio->pagev[i]);
2025
2026 bio_put(sbio->bio);
2027 kfree(sbio);
2028 scrub_pending_bio_dec(sctx);
2029}
2030
2031static int scrub_checksum(struct scrub_block *sblock)
b5d67f64
SB
2032{
2033 u64 flags;
2034 int ret;
2035
ba7cf988
ZL
2036 /*
2037 * No need to initialize these stats currently,
2038 * because this function only use return value
2039 * instead of these stats value.
2040 *
2041 * Todo:
2042 * always use stats
2043 */
2044 sblock->header_error = 0;
2045 sblock->generation_error = 0;
2046 sblock->checksum_error = 0;
2047
7a9e9987
SB
2048 WARN_ON(sblock->page_count < 1);
2049 flags = sblock->pagev[0]->flags;
b5d67f64
SB
2050 ret = 0;
2051 if (flags & BTRFS_EXTENT_FLAG_DATA)
2052 ret = scrub_checksum_data(sblock);
2053 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2054 ret = scrub_checksum_tree_block(sblock);
2055 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
2056 (void)scrub_checksum_super(sblock);
2057 else
2058 WARN_ON(1);
2059 if (ret)
2060 scrub_handle_errored_block(sblock);
ff023aac
SB
2061
2062 return ret;
a2de733c
AJ
2063}
2064
b5d67f64 2065static int scrub_checksum_data(struct scrub_block *sblock)
a2de733c 2066{
d9d181c1 2067 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 2068 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2069 u8 *on_disk_csum;
2070 struct page *page;
2071 void *buffer;
a2de733c 2072 u32 crc = ~(u32)0;
b5d67f64
SB
2073 u64 len;
2074 int index;
a2de733c 2075
b5d67f64 2076 BUG_ON(sblock->page_count < 1);
7a9e9987 2077 if (!sblock->pagev[0]->have_csum)
a2de733c
AJ
2078 return 0;
2079
7a9e9987
SB
2080 on_disk_csum = sblock->pagev[0]->csum;
2081 page = sblock->pagev[0]->page;
9613bebb 2082 buffer = kmap_atomic(page);
b5d67f64 2083
d9d181c1 2084 len = sctx->sectorsize;
b5d67f64
SB
2085 index = 0;
2086 for (;;) {
2087 u64 l = min_t(u64, len, PAGE_SIZE);
2088
b0496686 2089 crc = btrfs_csum_data(buffer, crc, l);
9613bebb 2090 kunmap_atomic(buffer);
b5d67f64
SB
2091 len -= l;
2092 if (len == 0)
2093 break;
2094 index++;
2095 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
2096 BUG_ON(!sblock->pagev[index]->page);
2097 page = sblock->pagev[index]->page;
9613bebb 2098 buffer = kmap_atomic(page);
b5d67f64
SB
2099 }
2100
a2de733c 2101 btrfs_csum_final(crc, csum);
d9d181c1 2102 if (memcmp(csum, on_disk_csum, sctx->csum_size))
ba7cf988 2103 sblock->checksum_error = 1;
a2de733c 2104
ba7cf988 2105 return sblock->checksum_error;
a2de733c
AJ
2106}
2107
b5d67f64 2108static int scrub_checksum_tree_block(struct scrub_block *sblock)
a2de733c 2109{
d9d181c1 2110 struct scrub_ctx *sctx = sblock->sctx;
a2de733c 2111 struct btrfs_header *h;
0b246afa 2112 struct btrfs_fs_info *fs_info = sctx->fs_info;
b5d67f64
SB
2113 u8 calculated_csum[BTRFS_CSUM_SIZE];
2114 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2115 struct page *page;
2116 void *mapped_buffer;
2117 u64 mapped_size;
2118 void *p;
a2de733c 2119 u32 crc = ~(u32)0;
b5d67f64
SB
2120 u64 len;
2121 int index;
2122
2123 BUG_ON(sblock->page_count < 1);
7a9e9987 2124 page = sblock->pagev[0]->page;
9613bebb 2125 mapped_buffer = kmap_atomic(page);
b5d67f64 2126 h = (struct btrfs_header *)mapped_buffer;
d9d181c1 2127 memcpy(on_disk_csum, h->csum, sctx->csum_size);
a2de733c
AJ
2128
2129 /*
2130 * we don't use the getter functions here, as we
2131 * a) don't have an extent buffer and
2132 * b) the page is already kmapped
2133 */
3cae210f 2134 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
ba7cf988 2135 sblock->header_error = 1;
a2de733c 2136
ba7cf988
ZL
2137 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
2138 sblock->header_error = 1;
2139 sblock->generation_error = 1;
2140 }
a2de733c 2141
17a9be2f 2142 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
ba7cf988 2143 sblock->header_error = 1;
a2de733c
AJ
2144
2145 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2146 BTRFS_UUID_SIZE))
ba7cf988 2147 sblock->header_error = 1;
a2de733c 2148
d9d181c1 2149 len = sctx->nodesize - BTRFS_CSUM_SIZE;
b5d67f64
SB
2150 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2151 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2152 index = 0;
2153 for (;;) {
2154 u64 l = min_t(u64, len, mapped_size);
2155
b0496686 2156 crc = btrfs_csum_data(p, crc, l);
9613bebb 2157 kunmap_atomic(mapped_buffer);
b5d67f64
SB
2158 len -= l;
2159 if (len == 0)
2160 break;
2161 index++;
2162 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
2163 BUG_ON(!sblock->pagev[index]->page);
2164 page = sblock->pagev[index]->page;
9613bebb 2165 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
2166 mapped_size = PAGE_SIZE;
2167 p = mapped_buffer;
2168 }
2169
2170 btrfs_csum_final(crc, calculated_csum);
d9d181c1 2171 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
ba7cf988 2172 sblock->checksum_error = 1;
a2de733c 2173
ba7cf988 2174 return sblock->header_error || sblock->checksum_error;
a2de733c
AJ
2175}
2176
b5d67f64 2177static int scrub_checksum_super(struct scrub_block *sblock)
a2de733c
AJ
2178{
2179 struct btrfs_super_block *s;
d9d181c1 2180 struct scrub_ctx *sctx = sblock->sctx;
b5d67f64
SB
2181 u8 calculated_csum[BTRFS_CSUM_SIZE];
2182 u8 on_disk_csum[BTRFS_CSUM_SIZE];
2183 struct page *page;
2184 void *mapped_buffer;
2185 u64 mapped_size;
2186 void *p;
a2de733c 2187 u32 crc = ~(u32)0;
442a4f63
SB
2188 int fail_gen = 0;
2189 int fail_cor = 0;
b5d67f64
SB
2190 u64 len;
2191 int index;
a2de733c 2192
b5d67f64 2193 BUG_ON(sblock->page_count < 1);
7a9e9987 2194 page = sblock->pagev[0]->page;
9613bebb 2195 mapped_buffer = kmap_atomic(page);
b5d67f64 2196 s = (struct btrfs_super_block *)mapped_buffer;
d9d181c1 2197 memcpy(on_disk_csum, s->csum, sctx->csum_size);
a2de733c 2198
3cae210f 2199 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
442a4f63 2200 ++fail_cor;
a2de733c 2201
3cae210f 2202 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
442a4f63 2203 ++fail_gen;
a2de733c 2204
17a9be2f 2205 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
442a4f63 2206 ++fail_cor;
a2de733c 2207
b5d67f64
SB
2208 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
2209 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
2210 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
2211 index = 0;
2212 for (;;) {
2213 u64 l = min_t(u64, len, mapped_size);
2214
b0496686 2215 crc = btrfs_csum_data(p, crc, l);
9613bebb 2216 kunmap_atomic(mapped_buffer);
b5d67f64
SB
2217 len -= l;
2218 if (len == 0)
2219 break;
2220 index++;
2221 BUG_ON(index >= sblock->page_count);
7a9e9987
SB
2222 BUG_ON(!sblock->pagev[index]->page);
2223 page = sblock->pagev[index]->page;
9613bebb 2224 mapped_buffer = kmap_atomic(page);
b5d67f64
SB
2225 mapped_size = PAGE_SIZE;
2226 p = mapped_buffer;
2227 }
2228
2229 btrfs_csum_final(crc, calculated_csum);
d9d181c1 2230 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
442a4f63 2231 ++fail_cor;
a2de733c 2232
442a4f63 2233 if (fail_cor + fail_gen) {
a2de733c
AJ
2234 /*
2235 * if we find an error in a super block, we just report it.
2236 * They will get written with the next transaction commit
2237 * anyway
2238 */
d9d181c1
SB
2239 spin_lock(&sctx->stat_lock);
2240 ++sctx->stat.super_errors;
2241 spin_unlock(&sctx->stat_lock);
442a4f63 2242 if (fail_cor)
7a9e9987 2243 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63
SB
2244 BTRFS_DEV_STAT_CORRUPTION_ERRS);
2245 else
7a9e9987 2246 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
442a4f63 2247 BTRFS_DEV_STAT_GENERATION_ERRS);
a2de733c
AJ
2248 }
2249
442a4f63 2250 return fail_cor + fail_gen;
a2de733c
AJ
2251}
2252
b5d67f64
SB
2253static void scrub_block_get(struct scrub_block *sblock)
2254{
186debd6 2255 refcount_inc(&sblock->refs);
b5d67f64
SB
2256}
2257
2258static void scrub_block_put(struct scrub_block *sblock)
2259{
186debd6 2260 if (refcount_dec_and_test(&sblock->refs)) {
b5d67f64
SB
2261 int i;
2262
5a6ac9ea
MX
2263 if (sblock->sparity)
2264 scrub_parity_put(sblock->sparity);
2265
b5d67f64 2266 for (i = 0; i < sblock->page_count; i++)
7a9e9987 2267 scrub_page_put(sblock->pagev[i]);
b5d67f64
SB
2268 kfree(sblock);
2269 }
2270}
2271
7a9e9987
SB
2272static void scrub_page_get(struct scrub_page *spage)
2273{
57019345 2274 atomic_inc(&spage->refs);
7a9e9987
SB
2275}
2276
2277static void scrub_page_put(struct scrub_page *spage)
2278{
57019345 2279 if (atomic_dec_and_test(&spage->refs)) {
7a9e9987
SB
2280 if (spage->page)
2281 __free_page(spage->page);
2282 kfree(spage);
2283 }
2284}
2285
d9d181c1 2286static void scrub_submit(struct scrub_ctx *sctx)
a2de733c
AJ
2287{
2288 struct scrub_bio *sbio;
2289
d9d181c1 2290 if (sctx->curr == -1)
1623edeb 2291 return;
a2de733c 2292
d9d181c1
SB
2293 sbio = sctx->bios[sctx->curr];
2294 sctx->curr = -1;
b6bfebc1 2295 scrub_pending_bio_inc(sctx);
4e49ea4a 2296 btrfsic_submit_bio(sbio->bio);
a2de733c
AJ
2297}
2298
ff023aac
SB
2299static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2300 struct scrub_page *spage)
a2de733c 2301{
b5d67f64 2302 struct scrub_block *sblock = spage->sblock;
a2de733c 2303 struct scrub_bio *sbio;
69f4cb52 2304 int ret;
a2de733c
AJ
2305
2306again:
2307 /*
2308 * grab a fresh bio or wait for one to become available
2309 */
d9d181c1
SB
2310 while (sctx->curr == -1) {
2311 spin_lock(&sctx->list_lock);
2312 sctx->curr = sctx->first_free;
2313 if (sctx->curr != -1) {
2314 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2315 sctx->bios[sctx->curr]->next_free = -1;
2316 sctx->bios[sctx->curr]->page_count = 0;
2317 spin_unlock(&sctx->list_lock);
a2de733c 2318 } else {
d9d181c1
SB
2319 spin_unlock(&sctx->list_lock);
2320 wait_event(sctx->list_wait, sctx->first_free != -1);
a2de733c
AJ
2321 }
2322 }
d9d181c1 2323 sbio = sctx->bios[sctx->curr];
b5d67f64 2324 if (sbio->page_count == 0) {
69f4cb52
AJ
2325 struct bio *bio;
2326
b5d67f64
SB
2327 sbio->physical = spage->physical;
2328 sbio->logical = spage->logical;
a36cf8b8 2329 sbio->dev = spage->dev;
b5d67f64
SB
2330 bio = sbio->bio;
2331 if (!bio) {
58c4e173
DS
2332 bio = btrfs_io_bio_alloc(GFP_KERNEL,
2333 sctx->pages_per_rd_bio);
b5d67f64
SB
2334 if (!bio)
2335 return -ENOMEM;
2336 sbio->bio = bio;
2337 }
69f4cb52
AJ
2338
2339 bio->bi_private = sbio;
2340 bio->bi_end_io = scrub_bio_end_io;
a36cf8b8 2341 bio->bi_bdev = sbio->dev->bdev;
4f024f37 2342 bio->bi_iter.bi_sector = sbio->physical >> 9;
37226b21 2343 bio_set_op_attrs(bio, REQ_OP_READ, 0);
69f4cb52 2344 sbio->err = 0;
b5d67f64
SB
2345 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2346 spage->physical ||
2347 sbio->logical + sbio->page_count * PAGE_SIZE !=
a36cf8b8
SB
2348 spage->logical ||
2349 sbio->dev != spage->dev) {
d9d181c1 2350 scrub_submit(sctx);
a2de733c
AJ
2351 goto again;
2352 }
69f4cb52 2353
b5d67f64
SB
2354 sbio->pagev[sbio->page_count] = spage;
2355 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2356 if (ret != PAGE_SIZE) {
2357 if (sbio->page_count < 1) {
2358 bio_put(sbio->bio);
2359 sbio->bio = NULL;
2360 return -EIO;
2361 }
d9d181c1 2362 scrub_submit(sctx);
69f4cb52
AJ
2363 goto again;
2364 }
2365
ff023aac 2366 scrub_block_get(sblock); /* one for the page added to the bio */
b5d67f64
SB
2367 atomic_inc(&sblock->outstanding_pages);
2368 sbio->page_count++;
ff023aac 2369 if (sbio->page_count == sctx->pages_per_rd_bio)
d9d181c1 2370 scrub_submit(sctx);
b5d67f64
SB
2371
2372 return 0;
2373}
2374
22365979 2375static void scrub_missing_raid56_end_io(struct bio *bio)
73ff61db
OS
2376{
2377 struct scrub_block *sblock = bio->bi_private;
fb456252 2378 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
73ff61db 2379
22365979 2380 if (bio->bi_error)
73ff61db
OS
2381 sblock->no_io_error_seen = 0;
2382
4673272f
ST
2383 bio_put(bio);
2384
73ff61db
OS
2385 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2386}
2387
2388static void scrub_missing_raid56_worker(struct btrfs_work *work)
2389{
2390 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2391 struct scrub_ctx *sctx = sblock->sctx;
0b246afa 2392 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2393 u64 logical;
2394 struct btrfs_device *dev;
2395
73ff61db
OS
2396 logical = sblock->pagev[0]->logical;
2397 dev = sblock->pagev[0]->dev;
2398
affe4a5a 2399 if (sblock->no_io_error_seen)
ba7cf988 2400 scrub_recheck_block_checksum(sblock);
73ff61db
OS
2401
2402 if (!sblock->no_io_error_seen) {
2403 spin_lock(&sctx->stat_lock);
2404 sctx->stat.read_errors++;
2405 spin_unlock(&sctx->stat_lock);
0b246afa 2406 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2407 "IO error rebuilding logical %llu for dev %s",
73ff61db
OS
2408 logical, rcu_str_deref(dev->name));
2409 } else if (sblock->header_error || sblock->checksum_error) {
2410 spin_lock(&sctx->stat_lock);
2411 sctx->stat.uncorrectable_errors++;
2412 spin_unlock(&sctx->stat_lock);
0b246afa 2413 btrfs_err_rl_in_rcu(fs_info,
b14af3b4 2414 "failed to rebuild valid logical %llu for dev %s",
73ff61db
OS
2415 logical, rcu_str_deref(dev->name));
2416 } else {
2417 scrub_write_block_to_dev_replace(sblock);
2418 }
2419
2420 scrub_block_put(sblock);
2421
2422 if (sctx->is_dev_replace &&
2423 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2424 mutex_lock(&sctx->wr_ctx.wr_lock);
2425 scrub_wr_submit(sctx);
2426 mutex_unlock(&sctx->wr_ctx.wr_lock);
2427 }
2428
2429 scrub_pending_bio_dec(sctx);
2430}
2431
2432static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2433{
2434 struct scrub_ctx *sctx = sblock->sctx;
fb456252 2435 struct btrfs_fs_info *fs_info = sctx->fs_info;
73ff61db
OS
2436 u64 length = sblock->page_count * PAGE_SIZE;
2437 u64 logical = sblock->pagev[0]->logical;
f1fee653 2438 struct btrfs_bio *bbio = NULL;
73ff61db
OS
2439 struct bio *bio;
2440 struct btrfs_raid_bio *rbio;
2441 int ret;
2442 int i;
2443
ae6529c3 2444 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 2445 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
825ad4c9 2446 &length, &bbio);
73ff61db
OS
2447 if (ret || !bbio || !bbio->raid_map)
2448 goto bbio_out;
2449
2450 if (WARN_ON(!sctx->is_dev_replace ||
2451 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2452 /*
2453 * We shouldn't be scrubbing a missing device. Even for dev
2454 * replace, we should only get here for RAID 5/6. We either
2455 * managed to mount something with no mirrors remaining or
2456 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2457 */
2458 goto bbio_out;
2459 }
2460
2461 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
2462 if (!bio)
2463 goto bbio_out;
2464
2465 bio->bi_iter.bi_sector = logical >> 9;
2466 bio->bi_private = sblock;
2467 bio->bi_end_io = scrub_missing_raid56_end_io;
2468
2ff7e61e 2469 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
73ff61db
OS
2470 if (!rbio)
2471 goto rbio_out;
2472
2473 for (i = 0; i < sblock->page_count; i++) {
2474 struct scrub_page *spage = sblock->pagev[i];
2475
2476 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2477 }
2478
2479 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2480 scrub_missing_raid56_worker, NULL, NULL);
2481 scrub_block_get(sblock);
2482 scrub_pending_bio_inc(sctx);
2483 raid56_submit_missing_rbio(rbio);
2484 return;
2485
2486rbio_out:
2487 bio_put(bio);
2488bbio_out:
ae6529c3 2489 btrfs_bio_counter_dec(fs_info);
73ff61db
OS
2490 btrfs_put_bbio(bbio);
2491 spin_lock(&sctx->stat_lock);
2492 sctx->stat.malloc_errors++;
2493 spin_unlock(&sctx->stat_lock);
2494}
2495
d9d181c1 2496static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2497 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac
SB
2498 u64 gen, int mirror_num, u8 *csum, int force,
2499 u64 physical_for_dev_replace)
b5d67f64
SB
2500{
2501 struct scrub_block *sblock;
2502 int index;
2503
58c4e173 2504 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
b5d67f64 2505 if (!sblock) {
d9d181c1
SB
2506 spin_lock(&sctx->stat_lock);
2507 sctx->stat.malloc_errors++;
2508 spin_unlock(&sctx->stat_lock);
b5d67f64 2509 return -ENOMEM;
a2de733c 2510 }
b5d67f64 2511
7a9e9987
SB
2512 /* one ref inside this function, plus one for each page added to
2513 * a bio later on */
186debd6 2514 refcount_set(&sblock->refs, 1);
d9d181c1 2515 sblock->sctx = sctx;
b5d67f64
SB
2516 sblock->no_io_error_seen = 1;
2517
2518 for (index = 0; len > 0; index++) {
7a9e9987 2519 struct scrub_page *spage;
b5d67f64
SB
2520 u64 l = min_t(u64, len, PAGE_SIZE);
2521
58c4e173 2522 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
7a9e9987
SB
2523 if (!spage) {
2524leave_nomem:
d9d181c1
SB
2525 spin_lock(&sctx->stat_lock);
2526 sctx->stat.malloc_errors++;
2527 spin_unlock(&sctx->stat_lock);
7a9e9987 2528 scrub_block_put(sblock);
b5d67f64
SB
2529 return -ENOMEM;
2530 }
7a9e9987
SB
2531 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2532 scrub_page_get(spage);
2533 sblock->pagev[index] = spage;
b5d67f64 2534 spage->sblock = sblock;
a36cf8b8 2535 spage->dev = dev;
b5d67f64
SB
2536 spage->flags = flags;
2537 spage->generation = gen;
2538 spage->logical = logical;
2539 spage->physical = physical;
ff023aac 2540 spage->physical_for_dev_replace = physical_for_dev_replace;
b5d67f64
SB
2541 spage->mirror_num = mirror_num;
2542 if (csum) {
2543 spage->have_csum = 1;
d9d181c1 2544 memcpy(spage->csum, csum, sctx->csum_size);
b5d67f64
SB
2545 } else {
2546 spage->have_csum = 0;
2547 }
2548 sblock->page_count++;
58c4e173 2549 spage->page = alloc_page(GFP_KERNEL);
7a9e9987
SB
2550 if (!spage->page)
2551 goto leave_nomem;
b5d67f64
SB
2552 len -= l;
2553 logical += l;
2554 physical += l;
ff023aac 2555 physical_for_dev_replace += l;
b5d67f64
SB
2556 }
2557
7a9e9987 2558 WARN_ON(sblock->page_count == 0);
73ff61db
OS
2559 if (dev->missing) {
2560 /*
2561 * This case should only be hit for RAID 5/6 device replace. See
2562 * the comment in scrub_missing_raid56_pages() for details.
2563 */
2564 scrub_missing_raid56_pages(sblock);
2565 } else {
2566 for (index = 0; index < sblock->page_count; index++) {
2567 struct scrub_page *spage = sblock->pagev[index];
2568 int ret;
1bc87793 2569
73ff61db
OS
2570 ret = scrub_add_page_to_rd_bio(sctx, spage);
2571 if (ret) {
2572 scrub_block_put(sblock);
2573 return ret;
2574 }
b5d67f64 2575 }
a2de733c 2576
73ff61db
OS
2577 if (force)
2578 scrub_submit(sctx);
2579 }
a2de733c 2580
b5d67f64
SB
2581 /* last one frees, either here or in bio completion for last page */
2582 scrub_block_put(sblock);
a2de733c
AJ
2583 return 0;
2584}
2585
4246a0b6 2586static void scrub_bio_end_io(struct bio *bio)
b5d67f64
SB
2587{
2588 struct scrub_bio *sbio = bio->bi_private;
fb456252 2589 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
b5d67f64 2590
4246a0b6 2591 sbio->err = bio->bi_error;
b5d67f64
SB
2592 sbio->bio = bio;
2593
0339ef2f 2594 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
b5d67f64
SB
2595}
2596
2597static void scrub_bio_end_io_worker(struct btrfs_work *work)
2598{
2599 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
d9d181c1 2600 struct scrub_ctx *sctx = sbio->sctx;
b5d67f64
SB
2601 int i;
2602
ff023aac 2603 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
b5d67f64
SB
2604 if (sbio->err) {
2605 for (i = 0; i < sbio->page_count; i++) {
2606 struct scrub_page *spage = sbio->pagev[i];
2607
2608 spage->io_error = 1;
2609 spage->sblock->no_io_error_seen = 0;
2610 }
2611 }
2612
2613 /* now complete the scrub_block items that have all pages completed */
2614 for (i = 0; i < sbio->page_count; i++) {
2615 struct scrub_page *spage = sbio->pagev[i];
2616 struct scrub_block *sblock = spage->sblock;
2617
2618 if (atomic_dec_and_test(&sblock->outstanding_pages))
2619 scrub_block_complete(sblock);
2620 scrub_block_put(sblock);
2621 }
2622
b5d67f64
SB
2623 bio_put(sbio->bio);
2624 sbio->bio = NULL;
d9d181c1
SB
2625 spin_lock(&sctx->list_lock);
2626 sbio->next_free = sctx->first_free;
2627 sctx->first_free = sbio->index;
2628 spin_unlock(&sctx->list_lock);
ff023aac
SB
2629
2630 if (sctx->is_dev_replace &&
2631 atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2632 mutex_lock(&sctx->wr_ctx.wr_lock);
2633 scrub_wr_submit(sctx);
2634 mutex_unlock(&sctx->wr_ctx.wr_lock);
2635 }
2636
b6bfebc1 2637 scrub_pending_bio_dec(sctx);
b5d67f64
SB
2638}
2639
5a6ac9ea
MX
2640static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2641 unsigned long *bitmap,
2642 u64 start, u64 len)
2643{
972d7219 2644 u64 offset;
5a6ac9ea 2645 int nsectors;
da17066c 2646 int sectorsize = sparity->sctx->fs_info->sectorsize;
5a6ac9ea
MX
2647
2648 if (len >= sparity->stripe_len) {
2649 bitmap_set(bitmap, 0, sparity->nsectors);
2650 return;
2651 }
2652
2653 start -= sparity->logic_start;
972d7219
LB
2654 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2655 offset = div_u64(offset, sectorsize);
5a6ac9ea
MX
2656 nsectors = (int)len / sectorsize;
2657
2658 if (offset + nsectors <= sparity->nsectors) {
2659 bitmap_set(bitmap, offset, nsectors);
2660 return;
2661 }
2662
2663 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2664 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2665}
2666
2667static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2668 u64 start, u64 len)
2669{
2670 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2671}
2672
2673static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2674 u64 start, u64 len)
2675{
2676 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2677}
2678
b5d67f64
SB
2679static void scrub_block_complete(struct scrub_block *sblock)
2680{
5a6ac9ea
MX
2681 int corrupted = 0;
2682
ff023aac 2683 if (!sblock->no_io_error_seen) {
5a6ac9ea 2684 corrupted = 1;
b5d67f64 2685 scrub_handle_errored_block(sblock);
ff023aac
SB
2686 } else {
2687 /*
2688 * if has checksum error, write via repair mechanism in
2689 * dev replace case, otherwise write here in dev replace
2690 * case.
2691 */
5a6ac9ea
MX
2692 corrupted = scrub_checksum(sblock);
2693 if (!corrupted && sblock->sctx->is_dev_replace)
ff023aac
SB
2694 scrub_write_block_to_dev_replace(sblock);
2695 }
5a6ac9ea
MX
2696
2697 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2698 u64 start = sblock->pagev[0]->logical;
2699 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2700 PAGE_SIZE;
2701
2702 scrub_parity_mark_sectors_error(sblock->sparity,
2703 start, end - start);
2704 }
b5d67f64
SB
2705}
2706
3b5753ec 2707static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
a2de733c
AJ
2708{
2709 struct btrfs_ordered_sum *sum = NULL;
f51a4a18 2710 unsigned long index;
a2de733c 2711 unsigned long num_sectors;
a2de733c 2712
d9d181c1
SB
2713 while (!list_empty(&sctx->csum_list)) {
2714 sum = list_first_entry(&sctx->csum_list,
a2de733c
AJ
2715 struct btrfs_ordered_sum, list);
2716 if (sum->bytenr > logical)
2717 return 0;
2718 if (sum->bytenr + sum->len > logical)
2719 break;
2720
d9d181c1 2721 ++sctx->stat.csum_discards;
a2de733c
AJ
2722 list_del(&sum->list);
2723 kfree(sum);
2724 sum = NULL;
2725 }
2726 if (!sum)
2727 return 0;
2728
f51a4a18 2729 index = ((u32)(logical - sum->bytenr)) / sctx->sectorsize;
d9d181c1 2730 num_sectors = sum->len / sctx->sectorsize;
f51a4a18
MX
2731 memcpy(csum, sum->sums + index, sctx->csum_size);
2732 if (index == num_sectors - 1) {
a2de733c
AJ
2733 list_del(&sum->list);
2734 kfree(sum);
2735 }
f51a4a18 2736 return 1;
a2de733c
AJ
2737}
2738
2739/* scrub extent tries to collect up to 64 kB for each bio */
d9d181c1 2740static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
a36cf8b8 2741 u64 physical, struct btrfs_device *dev, u64 flags,
ff023aac 2742 u64 gen, int mirror_num, u64 physical_for_dev_replace)
a2de733c
AJ
2743{
2744 int ret;
2745 u8 csum[BTRFS_CSUM_SIZE];
b5d67f64
SB
2746 u32 blocksize;
2747
2748 if (flags & BTRFS_EXTENT_FLAG_DATA) {
d9d181c1
SB
2749 blocksize = sctx->sectorsize;
2750 spin_lock(&sctx->stat_lock);
2751 sctx->stat.data_extents_scrubbed++;
2752 sctx->stat.data_bytes_scrubbed += len;
2753 spin_unlock(&sctx->stat_lock);
b5d67f64 2754 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
d9d181c1
SB
2755 blocksize = sctx->nodesize;
2756 spin_lock(&sctx->stat_lock);
2757 sctx->stat.tree_extents_scrubbed++;
2758 sctx->stat.tree_bytes_scrubbed += len;
2759 spin_unlock(&sctx->stat_lock);
b5d67f64 2760 } else {
d9d181c1 2761 blocksize = sctx->sectorsize;
ff023aac 2762 WARN_ON(1);
b5d67f64 2763 }
a2de733c
AJ
2764
2765 while (len) {
b5d67f64 2766 u64 l = min_t(u64, len, blocksize);
a2de733c
AJ
2767 int have_csum = 0;
2768
2769 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2770 /* push csums to sbio */
3b5753ec 2771 have_csum = scrub_find_csum(sctx, logical, csum);
a2de733c 2772 if (have_csum == 0)
d9d181c1 2773 ++sctx->stat.no_csum;
ff023aac
SB
2774 if (sctx->is_dev_replace && !have_csum) {
2775 ret = copy_nocow_pages(sctx, logical, l,
2776 mirror_num,
2777 physical_for_dev_replace);
2778 goto behind_scrub_pages;
2779 }
a2de733c 2780 }
a36cf8b8 2781 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
ff023aac
SB
2782 mirror_num, have_csum ? csum : NULL, 0,
2783 physical_for_dev_replace);
2784behind_scrub_pages:
a2de733c
AJ
2785 if (ret)
2786 return ret;
2787 len -= l;
2788 logical += l;
2789 physical += l;
ff023aac 2790 physical_for_dev_replace += l;
a2de733c
AJ
2791 }
2792 return 0;
2793}
2794
5a6ac9ea
MX
2795static int scrub_pages_for_parity(struct scrub_parity *sparity,
2796 u64 logical, u64 len,
2797 u64 physical, struct btrfs_device *dev,
2798 u64 flags, u64 gen, int mirror_num, u8 *csum)
2799{
2800 struct scrub_ctx *sctx = sparity->sctx;
2801 struct scrub_block *sblock;
2802 int index;
2803
58c4e173 2804 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
5a6ac9ea
MX
2805 if (!sblock) {
2806 spin_lock(&sctx->stat_lock);
2807 sctx->stat.malloc_errors++;
2808 spin_unlock(&sctx->stat_lock);
2809 return -ENOMEM;
2810 }
2811
2812 /* one ref inside this function, plus one for each page added to
2813 * a bio later on */
186debd6 2814 refcount_set(&sblock->refs, 1);
5a6ac9ea
MX
2815 sblock->sctx = sctx;
2816 sblock->no_io_error_seen = 1;
2817 sblock->sparity = sparity;
2818 scrub_parity_get(sparity);
2819
2820 for (index = 0; len > 0; index++) {
2821 struct scrub_page *spage;
2822 u64 l = min_t(u64, len, PAGE_SIZE);
2823
58c4e173 2824 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
5a6ac9ea
MX
2825 if (!spage) {
2826leave_nomem:
2827 spin_lock(&sctx->stat_lock);
2828 sctx->stat.malloc_errors++;
2829 spin_unlock(&sctx->stat_lock);
2830 scrub_block_put(sblock);
2831 return -ENOMEM;
2832 }
2833 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2834 /* For scrub block */
2835 scrub_page_get(spage);
2836 sblock->pagev[index] = spage;
2837 /* For scrub parity */
2838 scrub_page_get(spage);
2839 list_add_tail(&spage->list, &sparity->spages);
2840 spage->sblock = sblock;
2841 spage->dev = dev;
2842 spage->flags = flags;
2843 spage->generation = gen;
2844 spage->logical = logical;
2845 spage->physical = physical;
2846 spage->mirror_num = mirror_num;
2847 if (csum) {
2848 spage->have_csum = 1;
2849 memcpy(spage->csum, csum, sctx->csum_size);
2850 } else {
2851 spage->have_csum = 0;
2852 }
2853 sblock->page_count++;
58c4e173 2854 spage->page = alloc_page(GFP_KERNEL);
5a6ac9ea
MX
2855 if (!spage->page)
2856 goto leave_nomem;
2857 len -= l;
2858 logical += l;
2859 physical += l;
2860 }
2861
2862 WARN_ON(sblock->page_count == 0);
2863 for (index = 0; index < sblock->page_count; index++) {
2864 struct scrub_page *spage = sblock->pagev[index];
2865 int ret;
2866
2867 ret = scrub_add_page_to_rd_bio(sctx, spage);
2868 if (ret) {
2869 scrub_block_put(sblock);
2870 return ret;
2871 }
2872 }
2873
2874 /* last one frees, either here or in bio completion for last page */
2875 scrub_block_put(sblock);
2876 return 0;
2877}
2878
2879static int scrub_extent_for_parity(struct scrub_parity *sparity,
2880 u64 logical, u64 len,
2881 u64 physical, struct btrfs_device *dev,
2882 u64 flags, u64 gen, int mirror_num)
2883{
2884 struct scrub_ctx *sctx = sparity->sctx;
2885 int ret;
2886 u8 csum[BTRFS_CSUM_SIZE];
2887 u32 blocksize;
2888
4a770891
OS
2889 if (dev->missing) {
2890 scrub_parity_mark_sectors_error(sparity, logical, len);
2891 return 0;
2892 }
2893
5a6ac9ea
MX
2894 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2895 blocksize = sctx->sectorsize;
2896 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2897 blocksize = sctx->nodesize;
2898 } else {
2899 blocksize = sctx->sectorsize;
2900 WARN_ON(1);
2901 }
2902
2903 while (len) {
2904 u64 l = min_t(u64, len, blocksize);
2905 int have_csum = 0;
2906
2907 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2908 /* push csums to sbio */
3b5753ec 2909 have_csum = scrub_find_csum(sctx, logical, csum);
5a6ac9ea
MX
2910 if (have_csum == 0)
2911 goto skip;
2912 }
2913 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2914 flags, gen, mirror_num,
2915 have_csum ? csum : NULL);
5a6ac9ea
MX
2916 if (ret)
2917 return ret;
6b6d24b3 2918skip:
5a6ac9ea
MX
2919 len -= l;
2920 logical += l;
2921 physical += l;
2922 }
2923 return 0;
2924}
2925
3b080b25
WS
2926/*
2927 * Given a physical address, this will calculate it's
2928 * logical offset. if this is a parity stripe, it will return
2929 * the most left data stripe's logical offset.
2930 *
2931 * return 0 if it is a data stripe, 1 means parity stripe.
2932 */
2933static int get_raid56_logic_offset(u64 physical, int num,
5a6ac9ea
MX
2934 struct map_lookup *map, u64 *offset,
2935 u64 *stripe_start)
3b080b25
WS
2936{
2937 int i;
2938 int j = 0;
2939 u64 stripe_nr;
2940 u64 last_offset;
9d644a62
DS
2941 u32 stripe_index;
2942 u32 rot;
3b080b25
WS
2943
2944 last_offset = (physical - map->stripes[num].physical) *
2945 nr_data_stripes(map);
5a6ac9ea
MX
2946 if (stripe_start)
2947 *stripe_start = last_offset;
2948
3b080b25
WS
2949 *offset = last_offset;
2950 for (i = 0; i < nr_data_stripes(map); i++) {
2951 *offset = last_offset + i * map->stripe_len;
2952
42c61ab6 2953 stripe_nr = div64_u64(*offset, map->stripe_len);
b8b93add 2954 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
3b080b25
WS
2955
2956 /* Work out the disk rotation on this stripe-set */
47c5713f 2957 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
3b080b25
WS
2958 /* calculate which stripe this data locates */
2959 rot += i;
e4fbaee2 2960 stripe_index = rot % map->num_stripes;
3b080b25
WS
2961 if (stripe_index == num)
2962 return 0;
2963 if (stripe_index < num)
2964 j++;
2965 }
2966 *offset = last_offset + j * map->stripe_len;
2967 return 1;
2968}
2969
5a6ac9ea
MX
2970static void scrub_free_parity(struct scrub_parity *sparity)
2971{
2972 struct scrub_ctx *sctx = sparity->sctx;
2973 struct scrub_page *curr, *next;
2974 int nbits;
2975
2976 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2977 if (nbits) {
2978 spin_lock(&sctx->stat_lock);
2979 sctx->stat.read_errors += nbits;
2980 sctx->stat.uncorrectable_errors += nbits;
2981 spin_unlock(&sctx->stat_lock);
2982 }
2983
2984 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2985 list_del_init(&curr->list);
2986 scrub_page_put(curr);
2987 }
2988
2989 kfree(sparity);
2990}
2991
20b2e302
ZL
2992static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2993{
2994 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2995 work);
2996 struct scrub_ctx *sctx = sparity->sctx;
2997
2998 scrub_free_parity(sparity);
2999 scrub_pending_bio_dec(sctx);
3000}
3001
4246a0b6 3002static void scrub_parity_bio_endio(struct bio *bio)
5a6ac9ea
MX
3003{
3004 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
0b246afa 3005 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
5a6ac9ea 3006
4246a0b6 3007 if (bio->bi_error)
5a6ac9ea
MX
3008 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3009 sparity->nsectors);
3010
5a6ac9ea 3011 bio_put(bio);
20b2e302
ZL
3012
3013 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
3014 scrub_parity_bio_endio_worker, NULL, NULL);
0b246afa 3015 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
5a6ac9ea
MX
3016}
3017
3018static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
3019{
3020 struct scrub_ctx *sctx = sparity->sctx;
0b246afa 3021 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
3022 struct bio *bio;
3023 struct btrfs_raid_bio *rbio;
5a6ac9ea 3024 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
3025 u64 length;
3026 int ret;
3027
3028 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
3029 sparity->nsectors))
3030 goto out;
3031
a0dd59de 3032 length = sparity->logic_end - sparity->logic_start;
ae6529c3
QW
3033
3034 btrfs_bio_counter_inc_blocked(fs_info);
0b246afa 3035 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
825ad4c9 3036 &length, &bbio);
8e5cfb55 3037 if (ret || !bbio || !bbio->raid_map)
5a6ac9ea
MX
3038 goto bbio_out;
3039
3040 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3041 if (!bio)
3042 goto bbio_out;
3043
3044 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
3045 bio->bi_private = sparity;
3046 bio->bi_end_io = scrub_parity_bio_endio;
3047
2ff7e61e 3048 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
8e5cfb55 3049 length, sparity->scrub_dev,
5a6ac9ea
MX
3050 sparity->dbitmap,
3051 sparity->nsectors);
3052 if (!rbio)
3053 goto rbio_out;
3054
5a6ac9ea
MX
3055 scrub_pending_bio_inc(sctx);
3056 raid56_parity_submit_scrub_rbio(rbio);
3057 return;
3058
3059rbio_out:
3060 bio_put(bio);
3061bbio_out:
ae6529c3 3062 btrfs_bio_counter_dec(fs_info);
6e9606d2 3063 btrfs_put_bbio(bbio);
5a6ac9ea
MX
3064 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
3065 sparity->nsectors);
3066 spin_lock(&sctx->stat_lock);
3067 sctx->stat.malloc_errors++;
3068 spin_unlock(&sctx->stat_lock);
3069out:
3070 scrub_free_parity(sparity);
3071}
3072
3073static inline int scrub_calc_parity_bitmap_len(int nsectors)
3074{
bfca9a6d 3075 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
5a6ac9ea
MX
3076}
3077
3078static void scrub_parity_get(struct scrub_parity *sparity)
3079{
78a76450 3080 refcount_inc(&sparity->refs);
5a6ac9ea
MX
3081}
3082
3083static void scrub_parity_put(struct scrub_parity *sparity)
3084{
78a76450 3085 if (!refcount_dec_and_test(&sparity->refs))
5a6ac9ea
MX
3086 return;
3087
3088 scrub_parity_check_and_repair(sparity);
3089}
3090
3091static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3092 struct map_lookup *map,
3093 struct btrfs_device *sdev,
3094 struct btrfs_path *path,
3095 u64 logic_start,
3096 u64 logic_end)
3097{
fb456252 3098 struct btrfs_fs_info *fs_info = sctx->fs_info;
5a6ac9ea
MX
3099 struct btrfs_root *root = fs_info->extent_root;
3100 struct btrfs_root *csum_root = fs_info->csum_root;
3101 struct btrfs_extent_item *extent;
4a770891 3102 struct btrfs_bio *bbio = NULL;
5a6ac9ea
MX
3103 u64 flags;
3104 int ret;
3105 int slot;
3106 struct extent_buffer *l;
3107 struct btrfs_key key;
3108 u64 generation;
3109 u64 extent_logical;
3110 u64 extent_physical;
3111 u64 extent_len;
4a770891 3112 u64 mapped_length;
5a6ac9ea
MX
3113 struct btrfs_device *extent_dev;
3114 struct scrub_parity *sparity;
3115 int nsectors;
3116 int bitmap_len;
3117 int extent_mirror_num;
3118 int stop_loop = 0;
3119
0b246afa 3120 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
5a6ac9ea
MX
3121 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
3122 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
3123 GFP_NOFS);
3124 if (!sparity) {
3125 spin_lock(&sctx->stat_lock);
3126 sctx->stat.malloc_errors++;
3127 spin_unlock(&sctx->stat_lock);
3128 return -ENOMEM;
3129 }
3130
3131 sparity->stripe_len = map->stripe_len;
3132 sparity->nsectors = nsectors;
3133 sparity->sctx = sctx;
3134 sparity->scrub_dev = sdev;
3135 sparity->logic_start = logic_start;
3136 sparity->logic_end = logic_end;
78a76450 3137 refcount_set(&sparity->refs, 1);
5a6ac9ea
MX
3138 INIT_LIST_HEAD(&sparity->spages);
3139 sparity->dbitmap = sparity->bitmap;
3140 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
3141
3142 ret = 0;
3143 while (logic_start < logic_end) {
3144 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3145 key.type = BTRFS_METADATA_ITEM_KEY;
3146 else
3147 key.type = BTRFS_EXTENT_ITEM_KEY;
3148 key.objectid = logic_start;
3149 key.offset = (u64)-1;
3150
3151 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3152 if (ret < 0)
3153 goto out;
3154
3155 if (ret > 0) {
3156 ret = btrfs_previous_extent_item(root, path, 0);
3157 if (ret < 0)
3158 goto out;
3159 if (ret > 0) {
3160 btrfs_release_path(path);
3161 ret = btrfs_search_slot(NULL, root, &key,
3162 path, 0, 0);
3163 if (ret < 0)
3164 goto out;
3165 }
3166 }
3167
3168 stop_loop = 0;
3169 while (1) {
3170 u64 bytes;
3171
3172 l = path->nodes[0];
3173 slot = path->slots[0];
3174 if (slot >= btrfs_header_nritems(l)) {
3175 ret = btrfs_next_leaf(root, path);
3176 if (ret == 0)
3177 continue;
3178 if (ret < 0)
3179 goto out;
3180
3181 stop_loop = 1;
3182 break;
3183 }
3184 btrfs_item_key_to_cpu(l, &key, slot);
3185
d7cad238
ZL
3186 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3187 key.type != BTRFS_METADATA_ITEM_KEY)
3188 goto next;
3189
5a6ac9ea 3190 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 3191 bytes = fs_info->nodesize;
5a6ac9ea
MX
3192 else
3193 bytes = key.offset;
3194
3195 if (key.objectid + bytes <= logic_start)
3196 goto next;
3197
a0dd59de 3198 if (key.objectid >= logic_end) {
5a6ac9ea
MX
3199 stop_loop = 1;
3200 break;
3201 }
3202
3203 while (key.objectid >= logic_start + map->stripe_len)
3204 logic_start += map->stripe_len;
3205
3206 extent = btrfs_item_ptr(l, slot,
3207 struct btrfs_extent_item);
3208 flags = btrfs_extent_flags(l, extent);
3209 generation = btrfs_extent_generation(l, extent);
3210
a323e813
ZL
3211 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3212 (key.objectid < logic_start ||
3213 key.objectid + bytes >
3214 logic_start + map->stripe_len)) {
5d163e0e
JM
3215 btrfs_err(fs_info,
3216 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
a323e813 3217 key.objectid, logic_start);
9799d2c3
ZL
3218 spin_lock(&sctx->stat_lock);
3219 sctx->stat.uncorrectable_errors++;
3220 spin_unlock(&sctx->stat_lock);
5a6ac9ea
MX
3221 goto next;
3222 }
3223again:
3224 extent_logical = key.objectid;
3225 extent_len = bytes;
3226
3227 if (extent_logical < logic_start) {
3228 extent_len -= logic_start - extent_logical;
3229 extent_logical = logic_start;
3230 }
3231
3232 if (extent_logical + extent_len >
3233 logic_start + map->stripe_len)
3234 extent_len = logic_start + map->stripe_len -
3235 extent_logical;
3236
3237 scrub_parity_mark_sectors_data(sparity, extent_logical,
3238 extent_len);
3239
4a770891 3240 mapped_length = extent_len;
f1fee653 3241 bbio = NULL;
cf8cddd3
CH
3242 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
3243 extent_logical, &mapped_length, &bbio,
3244 0);
4a770891
OS
3245 if (!ret) {
3246 if (!bbio || mapped_length < extent_len)
3247 ret = -EIO;
3248 }
3249 if (ret) {
3250 btrfs_put_bbio(bbio);
3251 goto out;
3252 }
3253 extent_physical = bbio->stripes[0].physical;
3254 extent_mirror_num = bbio->mirror_num;
3255 extent_dev = bbio->stripes[0].dev;
3256 btrfs_put_bbio(bbio);
5a6ac9ea
MX
3257
3258 ret = btrfs_lookup_csums_range(csum_root,
3259 extent_logical,
3260 extent_logical + extent_len - 1,
3261 &sctx->csum_list, 1);
3262 if (ret)
3263 goto out;
3264
3265 ret = scrub_extent_for_parity(sparity, extent_logical,
3266 extent_len,
3267 extent_physical,
3268 extent_dev, flags,
3269 generation,
3270 extent_mirror_num);
6fa96d72
ZL
3271
3272 scrub_free_csums(sctx);
3273
5a6ac9ea
MX
3274 if (ret)
3275 goto out;
3276
5a6ac9ea
MX
3277 if (extent_logical + extent_len <
3278 key.objectid + bytes) {
3279 logic_start += map->stripe_len;
3280
3281 if (logic_start >= logic_end) {
3282 stop_loop = 1;
3283 break;
3284 }
3285
3286 if (logic_start < key.objectid + bytes) {
3287 cond_resched();
3288 goto again;
3289 }
3290 }
3291next:
3292 path->slots[0]++;
3293 }
3294
3295 btrfs_release_path(path);
3296
3297 if (stop_loop)
3298 break;
3299
3300 logic_start += map->stripe_len;
3301 }
3302out:
3303 if (ret < 0)
3304 scrub_parity_mark_sectors_error(sparity, logic_start,
a0dd59de 3305 logic_end - logic_start);
5a6ac9ea
MX
3306 scrub_parity_put(sparity);
3307 scrub_submit(sctx);
3308 mutex_lock(&sctx->wr_ctx.wr_lock);
3309 scrub_wr_submit(sctx);
3310 mutex_unlock(&sctx->wr_ctx.wr_lock);
3311
3312 btrfs_release_path(path);
3313 return ret < 0 ? ret : 0;
3314}
3315
d9d181c1 3316static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
a36cf8b8
SB
3317 struct map_lookup *map,
3318 struct btrfs_device *scrub_dev,
ff023aac
SB
3319 int num, u64 base, u64 length,
3320 int is_dev_replace)
a2de733c 3321{
5a6ac9ea 3322 struct btrfs_path *path, *ppath;
fb456252 3323 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c
AJ
3324 struct btrfs_root *root = fs_info->extent_root;
3325 struct btrfs_root *csum_root = fs_info->csum_root;
3326 struct btrfs_extent_item *extent;
e7786c3a 3327 struct blk_plug plug;
a2de733c
AJ
3328 u64 flags;
3329 int ret;
3330 int slot;
a2de733c 3331 u64 nstripes;
a2de733c 3332 struct extent_buffer *l;
a2de733c
AJ
3333 u64 physical;
3334 u64 logical;
625f1c8d 3335 u64 logic_end;
3b080b25 3336 u64 physical_end;
a2de733c 3337 u64 generation;
e12fa9cd 3338 int mirror_num;
7a26285e
AJ
3339 struct reada_control *reada1;
3340 struct reada_control *reada2;
e6c11f9a 3341 struct btrfs_key key;
7a26285e 3342 struct btrfs_key key_end;
a2de733c
AJ
3343 u64 increment = map->stripe_len;
3344 u64 offset;
ff023aac
SB
3345 u64 extent_logical;
3346 u64 extent_physical;
3347 u64 extent_len;
5a6ac9ea
MX
3348 u64 stripe_logical;
3349 u64 stripe_end;
ff023aac
SB
3350 struct btrfs_device *extent_dev;
3351 int extent_mirror_num;
3b080b25 3352 int stop_loop = 0;
53b381b3 3353
3b080b25 3354 physical = map->stripes[num].physical;
a2de733c 3355 offset = 0;
42c61ab6 3356 nstripes = div64_u64(length, map->stripe_len);
a2de733c
AJ
3357 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3358 offset = map->stripe_len * num;
3359 increment = map->stripe_len * map->num_stripes;
193ea74b 3360 mirror_num = 1;
a2de733c
AJ
3361 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3362 int factor = map->num_stripes / map->sub_stripes;
3363 offset = map->stripe_len * (num / map->sub_stripes);
3364 increment = map->stripe_len * factor;
193ea74b 3365 mirror_num = num % map->sub_stripes + 1;
a2de733c
AJ
3366 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3367 increment = map->stripe_len;
193ea74b 3368 mirror_num = num % map->num_stripes + 1;
a2de733c
AJ
3369 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3370 increment = map->stripe_len;
193ea74b 3371 mirror_num = num % map->num_stripes + 1;
ffe2d203 3372 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5a6ac9ea 3373 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3b080b25
WS
3374 increment = map->stripe_len * nr_data_stripes(map);
3375 mirror_num = 1;
a2de733c
AJ
3376 } else {
3377 increment = map->stripe_len;
193ea74b 3378 mirror_num = 1;
a2de733c
AJ
3379 }
3380
3381 path = btrfs_alloc_path();
3382 if (!path)
3383 return -ENOMEM;
3384
5a6ac9ea
MX
3385 ppath = btrfs_alloc_path();
3386 if (!ppath) {
379d6854 3387 btrfs_free_path(path);
5a6ac9ea
MX
3388 return -ENOMEM;
3389 }
3390
b5d67f64
SB
3391 /*
3392 * work on commit root. The related disk blocks are static as
3393 * long as COW is applied. This means, it is save to rewrite
3394 * them to repair disk errors without any race conditions
3395 */
a2de733c
AJ
3396 path->search_commit_root = 1;
3397 path->skip_locking = 1;
3398
063c54dc
GH
3399 ppath->search_commit_root = 1;
3400 ppath->skip_locking = 1;
a2de733c 3401 /*
7a26285e
AJ
3402 * trigger the readahead for extent tree csum tree and wait for
3403 * completion. During readahead, the scrub is officially paused
3404 * to not hold off transaction commits
a2de733c
AJ
3405 */
3406 logical = base + offset;
3b080b25 3407 physical_end = physical + nstripes * map->stripe_len;
ffe2d203 3408 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25 3409 get_raid56_logic_offset(physical_end, num,
5a6ac9ea 3410 map, &logic_end, NULL);
3b080b25
WS
3411 logic_end += base;
3412 } else {
3413 logic_end = logical + increment * nstripes;
3414 }
d9d181c1 3415 wait_event(sctx->list_wait,
b6bfebc1 3416 atomic_read(&sctx->bios_in_flight) == 0);
cb7ab021 3417 scrub_blocked_if_needed(fs_info);
7a26285e
AJ
3418
3419 /* FIXME it might be better to start readahead at commit root */
e6c11f9a
DS
3420 key.objectid = logical;
3421 key.type = BTRFS_EXTENT_ITEM_KEY;
3422 key.offset = (u64)0;
3b080b25 3423 key_end.objectid = logic_end;
3173a18f
JB
3424 key_end.type = BTRFS_METADATA_ITEM_KEY;
3425 key_end.offset = (u64)-1;
e6c11f9a 3426 reada1 = btrfs_reada_add(root, &key, &key_end);
7a26285e 3427
e6c11f9a
DS
3428 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3429 key.type = BTRFS_EXTENT_CSUM_KEY;
3430 key.offset = logical;
7a26285e
AJ
3431 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3432 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3b080b25 3433 key_end.offset = logic_end;
e6c11f9a 3434 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
7a26285e
AJ
3435
3436 if (!IS_ERR(reada1))
3437 btrfs_reada_wait(reada1);
3438 if (!IS_ERR(reada2))
3439 btrfs_reada_wait(reada2);
3440
a2de733c
AJ
3441
3442 /*
3443 * collect all data csums for the stripe to avoid seeking during
3444 * the scrub. This might currently (crc32) end up to be about 1MB
3445 */
e7786c3a 3446 blk_start_plug(&plug);
a2de733c 3447
a2de733c
AJ
3448 /*
3449 * now find all extents for each stripe and scrub them
3450 */
a2de733c 3451 ret = 0;
3b080b25 3452 while (physical < physical_end) {
a2de733c
AJ
3453 /*
3454 * canceled?
3455 */
3456 if (atomic_read(&fs_info->scrub_cancel_req) ||
d9d181c1 3457 atomic_read(&sctx->cancel_req)) {
a2de733c
AJ
3458 ret = -ECANCELED;
3459 goto out;
3460 }
3461 /*
3462 * check to see if we have to pause
3463 */
3464 if (atomic_read(&fs_info->scrub_pause_req)) {
3465 /* push queued extents */
ff023aac 3466 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
d9d181c1 3467 scrub_submit(sctx);
ff023aac
SB
3468 mutex_lock(&sctx->wr_ctx.wr_lock);
3469 scrub_wr_submit(sctx);
3470 mutex_unlock(&sctx->wr_ctx.wr_lock);
d9d181c1 3471 wait_event(sctx->list_wait,
b6bfebc1 3472 atomic_read(&sctx->bios_in_flight) == 0);
ff023aac 3473 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3cb0929a 3474 scrub_blocked_if_needed(fs_info);
a2de733c
AJ
3475 }
3476
f2f66a2f
ZL
3477 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3478 ret = get_raid56_logic_offset(physical, num, map,
3479 &logical,
3480 &stripe_logical);
3481 logical += base;
3482 if (ret) {
7955323b 3483 /* it is parity strip */
f2f66a2f 3484 stripe_logical += base;
a0dd59de 3485 stripe_end = stripe_logical + increment;
f2f66a2f
ZL
3486 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3487 ppath, stripe_logical,
3488 stripe_end);
3489 if (ret)
3490 goto out;
3491 goto skip;
3492 }
3493 }
3494
7c76edb7
WS
3495 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3496 key.type = BTRFS_METADATA_ITEM_KEY;
3497 else
3498 key.type = BTRFS_EXTENT_ITEM_KEY;
a2de733c 3499 key.objectid = logical;
625f1c8d 3500 key.offset = (u64)-1;
a2de733c
AJ
3501
3502 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3503 if (ret < 0)
3504 goto out;
3173a18f 3505
8c51032f 3506 if (ret > 0) {
ade2e0b3 3507 ret = btrfs_previous_extent_item(root, path, 0);
a2de733c
AJ
3508 if (ret < 0)
3509 goto out;
8c51032f
AJ
3510 if (ret > 0) {
3511 /* there's no smaller item, so stick with the
3512 * larger one */
3513 btrfs_release_path(path);
3514 ret = btrfs_search_slot(NULL, root, &key,
3515 path, 0, 0);
3516 if (ret < 0)
3517 goto out;
3518 }
a2de733c
AJ
3519 }
3520
625f1c8d 3521 stop_loop = 0;
a2de733c 3522 while (1) {
3173a18f
JB
3523 u64 bytes;
3524
a2de733c
AJ
3525 l = path->nodes[0];
3526 slot = path->slots[0];
3527 if (slot >= btrfs_header_nritems(l)) {
3528 ret = btrfs_next_leaf(root, path);
3529 if (ret == 0)
3530 continue;
3531 if (ret < 0)
3532 goto out;
3533
625f1c8d 3534 stop_loop = 1;
a2de733c
AJ
3535 break;
3536 }
3537 btrfs_item_key_to_cpu(l, &key, slot);
3538
d7cad238
ZL
3539 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3540 key.type != BTRFS_METADATA_ITEM_KEY)
3541 goto next;
3542
3173a18f 3543 if (key.type == BTRFS_METADATA_ITEM_KEY)
0b246afa 3544 bytes = fs_info->nodesize;
3173a18f
JB
3545 else
3546 bytes = key.offset;
3547
3548 if (key.objectid + bytes <= logical)
a2de733c
AJ
3549 goto next;
3550
625f1c8d
LB
3551 if (key.objectid >= logical + map->stripe_len) {
3552 /* out of this device extent */
3553 if (key.objectid >= logic_end)
3554 stop_loop = 1;
3555 break;
3556 }
a2de733c
AJ
3557
3558 extent = btrfs_item_ptr(l, slot,
3559 struct btrfs_extent_item);
3560 flags = btrfs_extent_flags(l, extent);
3561 generation = btrfs_extent_generation(l, extent);
3562
a323e813
ZL
3563 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3564 (key.objectid < logical ||
3565 key.objectid + bytes >
3566 logical + map->stripe_len)) {
efe120a0 3567 btrfs_err(fs_info,
5d163e0e 3568 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
c1c9ff7c 3569 key.objectid, logical);
9799d2c3
ZL
3570 spin_lock(&sctx->stat_lock);
3571 sctx->stat.uncorrectable_errors++;
3572 spin_unlock(&sctx->stat_lock);
a2de733c
AJ
3573 goto next;
3574 }
3575
625f1c8d
LB
3576again:
3577 extent_logical = key.objectid;
3578 extent_len = bytes;
3579
a2de733c
AJ
3580 /*
3581 * trim extent to this stripe
3582 */
625f1c8d
LB
3583 if (extent_logical < logical) {
3584 extent_len -= logical - extent_logical;
3585 extent_logical = logical;
a2de733c 3586 }
625f1c8d 3587 if (extent_logical + extent_len >
a2de733c 3588 logical + map->stripe_len) {
625f1c8d
LB
3589 extent_len = logical + map->stripe_len -
3590 extent_logical;
a2de733c
AJ
3591 }
3592
625f1c8d 3593 extent_physical = extent_logical - logical + physical;
ff023aac
SB
3594 extent_dev = scrub_dev;
3595 extent_mirror_num = mirror_num;
3596 if (is_dev_replace)
3597 scrub_remap_extent(fs_info, extent_logical,
3598 extent_len, &extent_physical,
3599 &extent_dev,
3600 &extent_mirror_num);
625f1c8d 3601
fe8cf654
ZL
3602 ret = btrfs_lookup_csums_range(csum_root,
3603 extent_logical,
3604 extent_logical +
3605 extent_len - 1,
3606 &sctx->csum_list, 1);
625f1c8d
LB
3607 if (ret)
3608 goto out;
3609
ff023aac
SB
3610 ret = scrub_extent(sctx, extent_logical, extent_len,
3611 extent_physical, extent_dev, flags,
3612 generation, extent_mirror_num,
115930cb 3613 extent_logical - logical + physical);
6fa96d72
ZL
3614
3615 scrub_free_csums(sctx);
3616
a2de733c
AJ
3617 if (ret)
3618 goto out;
3619
625f1c8d
LB
3620 if (extent_logical + extent_len <
3621 key.objectid + bytes) {
ffe2d203 3622 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3b080b25
WS
3623 /*
3624 * loop until we find next data stripe
3625 * or we have finished all stripes.
3626 */
5a6ac9ea
MX
3627loop:
3628 physical += map->stripe_len;
3629 ret = get_raid56_logic_offset(physical,
3630 num, map, &logical,
3631 &stripe_logical);
3632 logical += base;
3633
3634 if (ret && physical < physical_end) {
3635 stripe_logical += base;
3636 stripe_end = stripe_logical +
a0dd59de 3637 increment;
5a6ac9ea
MX
3638 ret = scrub_raid56_parity(sctx,
3639 map, scrub_dev, ppath,
3640 stripe_logical,
3641 stripe_end);
3642 if (ret)
3643 goto out;
3644 goto loop;
3645 }
3b080b25
WS
3646 } else {
3647 physical += map->stripe_len;
3648 logical += increment;
3649 }
625f1c8d
LB
3650 if (logical < key.objectid + bytes) {
3651 cond_resched();
3652 goto again;
3653 }
3654
3b080b25 3655 if (physical >= physical_end) {
625f1c8d
LB
3656 stop_loop = 1;
3657 break;
3658 }
3659 }
a2de733c
AJ
3660next:
3661 path->slots[0]++;
3662 }
71267333 3663 btrfs_release_path(path);
3b080b25 3664skip:
a2de733c
AJ
3665 logical += increment;
3666 physical += map->stripe_len;
d9d181c1 3667 spin_lock(&sctx->stat_lock);
625f1c8d
LB
3668 if (stop_loop)
3669 sctx->stat.last_physical = map->stripes[num].physical +
3670 length;
3671 else
3672 sctx->stat.last_physical = physical;
d9d181c1 3673 spin_unlock(&sctx->stat_lock);
625f1c8d
LB
3674 if (stop_loop)
3675 break;
a2de733c 3676 }
ff023aac 3677out:
a2de733c 3678 /* push queued extents */
d9d181c1 3679 scrub_submit(sctx);
ff023aac
SB
3680 mutex_lock(&sctx->wr_ctx.wr_lock);
3681 scrub_wr_submit(sctx);
3682 mutex_unlock(&sctx->wr_ctx.wr_lock);
a2de733c 3683
e7786c3a 3684 blk_finish_plug(&plug);
a2de733c 3685 btrfs_free_path(path);
5a6ac9ea 3686 btrfs_free_path(ppath);
a2de733c
AJ
3687 return ret < 0 ? ret : 0;
3688}
3689
d9d181c1 3690static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
a36cf8b8 3691 struct btrfs_device *scrub_dev,
a36cf8b8 3692 u64 chunk_offset, u64 length,
020d5b73
FM
3693 u64 dev_offset,
3694 struct btrfs_block_group_cache *cache,
3695 int is_dev_replace)
a2de733c 3696{
fb456252
JM
3697 struct btrfs_fs_info *fs_info = sctx->fs_info;
3698 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
a2de733c
AJ
3699 struct map_lookup *map;
3700 struct extent_map *em;
3701 int i;
ff023aac 3702 int ret = 0;
a2de733c
AJ
3703
3704 read_lock(&map_tree->map_tree.lock);
3705 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3706 read_unlock(&map_tree->map_tree.lock);
3707
020d5b73
FM
3708 if (!em) {
3709 /*
3710 * Might have been an unused block group deleted by the cleaner
3711 * kthread or relocation.
3712 */
3713 spin_lock(&cache->lock);
3714 if (!cache->removed)
3715 ret = -EINVAL;
3716 spin_unlock(&cache->lock);
3717
3718 return ret;
3719 }
a2de733c 3720
95617d69 3721 map = em->map_lookup;
a2de733c
AJ
3722 if (em->start != chunk_offset)
3723 goto out;
3724
3725 if (em->len < length)
3726 goto out;
3727
3728 for (i = 0; i < map->num_stripes; ++i) {
a36cf8b8 3729 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
859acaf1 3730 map->stripes[i].physical == dev_offset) {
a36cf8b8 3731 ret = scrub_stripe(sctx, map, scrub_dev, i,
ff023aac
SB
3732 chunk_offset, length,
3733 is_dev_replace);
a2de733c
AJ
3734 if (ret)
3735 goto out;
3736 }
3737 }
3738out:
3739 free_extent_map(em);
3740
3741 return ret;
3742}
3743
3744static noinline_for_stack
a36cf8b8 3745int scrub_enumerate_chunks(struct scrub_ctx *sctx,
ff023aac
SB
3746 struct btrfs_device *scrub_dev, u64 start, u64 end,
3747 int is_dev_replace)
a2de733c
AJ
3748{
3749 struct btrfs_dev_extent *dev_extent = NULL;
3750 struct btrfs_path *path;
0b246afa
JM
3751 struct btrfs_fs_info *fs_info = sctx->fs_info;
3752 struct btrfs_root *root = fs_info->dev_root;
a2de733c 3753 u64 length;
a2de733c 3754 u64 chunk_offset;
55e3a601 3755 int ret = 0;
76a8efa1 3756 int ro_set;
a2de733c
AJ
3757 int slot;
3758 struct extent_buffer *l;
3759 struct btrfs_key key;
3760 struct btrfs_key found_key;
3761 struct btrfs_block_group_cache *cache;
ff023aac 3762 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
a2de733c
AJ
3763
3764 path = btrfs_alloc_path();
3765 if (!path)
3766 return -ENOMEM;
3767
e4058b54 3768 path->reada = READA_FORWARD;
a2de733c
AJ
3769 path->search_commit_root = 1;
3770 path->skip_locking = 1;
3771
a36cf8b8 3772 key.objectid = scrub_dev->devid;
a2de733c
AJ
3773 key.offset = 0ull;
3774 key.type = BTRFS_DEV_EXTENT_KEY;
3775
a2de733c
AJ
3776 while (1) {
3777 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3778 if (ret < 0)
8c51032f
AJ
3779 break;
3780 if (ret > 0) {
3781 if (path->slots[0] >=
3782 btrfs_header_nritems(path->nodes[0])) {
3783 ret = btrfs_next_leaf(root, path);
55e3a601
Z
3784 if (ret < 0)
3785 break;
3786 if (ret > 0) {
3787 ret = 0;
8c51032f 3788 break;
55e3a601
Z
3789 }
3790 } else {
3791 ret = 0;
8c51032f
AJ
3792 }
3793 }
a2de733c
AJ
3794
3795 l = path->nodes[0];
3796 slot = path->slots[0];
3797
3798 btrfs_item_key_to_cpu(l, &found_key, slot);
3799
a36cf8b8 3800 if (found_key.objectid != scrub_dev->devid)
a2de733c
AJ
3801 break;
3802
962a298f 3803 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
a2de733c
AJ
3804 break;
3805
3806 if (found_key.offset >= end)
3807 break;
3808
3809 if (found_key.offset < key.offset)
3810 break;
3811
3812 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3813 length = btrfs_dev_extent_length(l, dev_extent);
3814
ced96edc
QW
3815 if (found_key.offset + length <= start)
3816 goto skip;
a2de733c 3817
a2de733c
AJ
3818 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3819
3820 /*
3821 * get a reference on the corresponding block group to prevent
3822 * the chunk from going away while we scrub it
3823 */
3824 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
ced96edc
QW
3825
3826 /* some chunks are removed but not committed to disk yet,
3827 * continue scrubbing */
3828 if (!cache)
3829 goto skip;
3830
55e3a601
Z
3831 /*
3832 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3833 * to avoid deadlock caused by:
3834 * btrfs_inc_block_group_ro()
3835 * -> btrfs_wait_for_commit()
3836 * -> btrfs_commit_transaction()
3837 * -> btrfs_scrub_pause()
3838 */
3839 scrub_pause_on(fs_info);
5e00f193 3840 ret = btrfs_inc_block_group_ro(fs_info, cache);
f0e9b7d6
FM
3841 if (!ret && is_dev_replace) {
3842 /*
3843 * If we are doing a device replace wait for any tasks
3844 * that started dellaloc right before we set the block
3845 * group to RO mode, as they might have just allocated
3846 * an extent from it or decided they could do a nocow
3847 * write. And if any such tasks did that, wait for their
3848 * ordered extents to complete and then commit the
3849 * current transaction, so that we can later see the new
3850 * extent items in the extent tree - the ordered extents
3851 * create delayed data references (for cow writes) when
3852 * they complete, which will be run and insert the
3853 * corresponding extent items into the extent tree when
3854 * we commit the transaction they used when running
3855 * inode.c:btrfs_finish_ordered_io(). We later use
3856 * the commit root of the extent tree to find extents
3857 * to copy from the srcdev into the tgtdev, and we don't
3858 * want to miss any new extents.
3859 */
3860 btrfs_wait_block_group_reservations(cache);
3861 btrfs_wait_nocow_writers(cache);
3862 ret = btrfs_wait_ordered_roots(fs_info, -1,
3863 cache->key.objectid,
3864 cache->key.offset);
3865 if (ret > 0) {
3866 struct btrfs_trans_handle *trans;
3867
3868 trans = btrfs_join_transaction(root);
3869 if (IS_ERR(trans))
3870 ret = PTR_ERR(trans);
3871 else
3a45bb20 3872 ret = btrfs_commit_transaction(trans);
f0e9b7d6
FM
3873 if (ret) {
3874 scrub_pause_off(fs_info);
3875 btrfs_put_block_group(cache);
3876 break;
3877 }
3878 }
3879 }
55e3a601 3880 scrub_pause_off(fs_info);
76a8efa1
Z
3881
3882 if (ret == 0) {
3883 ro_set = 1;
3884 } else if (ret == -ENOSPC) {
3885 /*
3886 * btrfs_inc_block_group_ro return -ENOSPC when it
3887 * failed in creating new chunk for metadata.
3888 * It is not a problem for scrub/replace, because
3889 * metadata are always cowed, and our scrub paused
3890 * commit_transactions.
3891 */
3892 ro_set = 0;
3893 } else {
5d163e0e
JM
3894 btrfs_warn(fs_info,
3895 "failed setting block group ro, ret=%d\n",
76a8efa1 3896 ret);
55e3a601
Z
3897 btrfs_put_block_group(cache);
3898 break;
3899 }
3900
81e87a73 3901 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
ff023aac
SB
3902 dev_replace->cursor_right = found_key.offset + length;
3903 dev_replace->cursor_left = found_key.offset;
3904 dev_replace->item_needs_writeback = 1;
81e87a73 3905 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
8c204c96 3906 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
020d5b73 3907 found_key.offset, cache, is_dev_replace);
ff023aac
SB
3908
3909 /*
3910 * flush, submit all pending read and write bios, afterwards
3911 * wait for them.
3912 * Note that in the dev replace case, a read request causes
3913 * write requests that are submitted in the read completion
3914 * worker. Therefore in the current situation, it is required
3915 * that all write requests are flushed, so that all read and
3916 * write requests are really completed when bios_in_flight
3917 * changes to 0.
3918 */
3919 atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
3920 scrub_submit(sctx);
3921 mutex_lock(&sctx->wr_ctx.wr_lock);
3922 scrub_wr_submit(sctx);
3923 mutex_unlock(&sctx->wr_ctx.wr_lock);
3924
3925 wait_event(sctx->list_wait,
3926 atomic_read(&sctx->bios_in_flight) == 0);
b708ce96
Z
3927
3928 scrub_pause_on(fs_info);
12cf9372
WS
3929
3930 /*
3931 * must be called before we decrease @scrub_paused.
3932 * make sure we don't block transaction commit while
3933 * we are waiting pending workers finished.
3934 */
ff023aac
SB
3935 wait_event(sctx->list_wait,
3936 atomic_read(&sctx->workers_pending) == 0);
12cf9372
WS
3937 atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
3938
b708ce96 3939 scrub_pause_off(fs_info);
ff023aac 3940
1a1a8b73
FM
3941 btrfs_dev_replace_lock(&fs_info->dev_replace, 1);
3942 dev_replace->cursor_left = dev_replace->cursor_right;
3943 dev_replace->item_needs_writeback = 1;
3944 btrfs_dev_replace_unlock(&fs_info->dev_replace, 1);
3945
76a8efa1 3946 if (ro_set)
2ff7e61e 3947 btrfs_dec_block_group_ro(cache);
ff023aac 3948
758f2dfc
FM
3949 /*
3950 * We might have prevented the cleaner kthread from deleting
3951 * this block group if it was already unused because we raced
3952 * and set it to RO mode first. So add it back to the unused
3953 * list, otherwise it might not ever be deleted unless a manual
3954 * balance is triggered or it becomes used and unused again.
3955 */
3956 spin_lock(&cache->lock);
3957 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3958 btrfs_block_group_used(&cache->item) == 0) {
3959 spin_unlock(&cache->lock);
3960 spin_lock(&fs_info->unused_bgs_lock);
3961 if (list_empty(&cache->bg_list)) {
3962 btrfs_get_block_group(cache);
3963 list_add_tail(&cache->bg_list,
3964 &fs_info->unused_bgs);
3965 }
3966 spin_unlock(&fs_info->unused_bgs_lock);
3967 } else {
3968 spin_unlock(&cache->lock);
3969 }
3970
a2de733c
AJ
3971 btrfs_put_block_group(cache);
3972 if (ret)
3973 break;
af1be4f8
SB
3974 if (is_dev_replace &&
3975 atomic64_read(&dev_replace->num_write_errors) > 0) {
ff023aac
SB
3976 ret = -EIO;
3977 break;
3978 }
3979 if (sctx->stat.malloc_errors > 0) {
3980 ret = -ENOMEM;
3981 break;
3982 }
ced96edc 3983skip:
a2de733c 3984 key.offset = found_key.offset + length;
71267333 3985 btrfs_release_path(path);
a2de733c
AJ
3986 }
3987
a2de733c 3988 btrfs_free_path(path);
8c51032f 3989
55e3a601 3990 return ret;
a2de733c
AJ
3991}
3992
a36cf8b8
SB
3993static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3994 struct btrfs_device *scrub_dev)
a2de733c
AJ
3995{
3996 int i;
3997 u64 bytenr;
3998 u64 gen;
3999 int ret;
0b246afa 4000 struct btrfs_fs_info *fs_info = sctx->fs_info;
a2de733c 4001
0b246afa 4002 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
79787eaa
JM
4003 return -EIO;
4004
5f546063 4005 /* Seed devices of a new filesystem has their own generation. */
0b246afa 4006 if (scrub_dev->fs_devices != fs_info->fs_devices)
5f546063
MX
4007 gen = scrub_dev->generation;
4008 else
0b246afa 4009 gen = fs_info->last_trans_committed;
a2de733c
AJ
4010
4011 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4012 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
4013 if (bytenr + BTRFS_SUPER_INFO_SIZE >
4014 scrub_dev->commit_total_bytes)
a2de733c
AJ
4015 break;
4016
d9d181c1 4017 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
a36cf8b8 4018 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
ff023aac 4019 NULL, 1, bytenr);
a2de733c
AJ
4020 if (ret)
4021 return ret;
4022 }
b6bfebc1 4023 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
4024
4025 return 0;
4026}
4027
4028/*
4029 * get a reference count on fs_info->scrub_workers. start worker if necessary
4030 */
ff023aac
SB
4031static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4032 int is_dev_replace)
a2de733c 4033{
6f011058 4034 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
0339ef2f 4035 int max_active = fs_info->thread_pool_size;
a2de733c 4036
632dd772 4037 if (fs_info->scrub_workers_refcnt == 0) {
ff023aac 4038 if (is_dev_replace)
0339ef2f 4039 fs_info->scrub_workers =
cb001095 4040 btrfs_alloc_workqueue(fs_info, "scrub", flags,
0339ef2f 4041 1, 4);
ff023aac 4042 else
0339ef2f 4043 fs_info->scrub_workers =
cb001095 4044 btrfs_alloc_workqueue(fs_info, "scrub", flags,
0339ef2f 4045 max_active, 4);
e82afc52
ZL
4046 if (!fs_info->scrub_workers)
4047 goto fail_scrub_workers;
4048
0339ef2f 4049 fs_info->scrub_wr_completion_workers =
cb001095 4050 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
0339ef2f 4051 max_active, 2);
e82afc52
ZL
4052 if (!fs_info->scrub_wr_completion_workers)
4053 goto fail_scrub_wr_completion_workers;
4054
0339ef2f 4055 fs_info->scrub_nocow_workers =
cb001095 4056 btrfs_alloc_workqueue(fs_info, "scrubnc", flags, 1, 0);
e82afc52
ZL
4057 if (!fs_info->scrub_nocow_workers)
4058 goto fail_scrub_nocow_workers;
20b2e302 4059 fs_info->scrub_parity_workers =
cb001095 4060 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
20b2e302 4061 max_active, 2);
e82afc52
ZL
4062 if (!fs_info->scrub_parity_workers)
4063 goto fail_scrub_parity_workers;
632dd772 4064 }
a2de733c 4065 ++fs_info->scrub_workers_refcnt;
e82afc52
ZL
4066 return 0;
4067
4068fail_scrub_parity_workers:
4069 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
4070fail_scrub_nocow_workers:
4071 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4072fail_scrub_wr_completion_workers:
4073 btrfs_destroy_workqueue(fs_info->scrub_workers);
4074fail_scrub_workers:
4075 return -ENOMEM;
a2de733c
AJ
4076}
4077
aa1b8cd4 4078static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
a2de733c 4079{
ff023aac 4080 if (--fs_info->scrub_workers_refcnt == 0) {
0339ef2f
QW
4081 btrfs_destroy_workqueue(fs_info->scrub_workers);
4082 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
4083 btrfs_destroy_workqueue(fs_info->scrub_nocow_workers);
20b2e302 4084 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
ff023aac 4085 }
a2de733c 4086 WARN_ON(fs_info->scrub_workers_refcnt < 0);
a2de733c
AJ
4087}
4088
aa1b8cd4
SB
4089int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4090 u64 end, struct btrfs_scrub_progress *progress,
63a212ab 4091 int readonly, int is_dev_replace)
a2de733c 4092{
d9d181c1 4093 struct scrub_ctx *sctx;
a2de733c
AJ
4094 int ret;
4095 struct btrfs_device *dev;
5d68da3b 4096 struct rcu_string *name;
a2de733c 4097
aa1b8cd4 4098 if (btrfs_fs_closing(fs_info))
a2de733c
AJ
4099 return -EINVAL;
4100
da17066c 4101 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
b5d67f64
SB
4102 /*
4103 * in this case scrub is unable to calculate the checksum
4104 * the way scrub is implemented. Do not handle this
4105 * situation at all because it won't ever happen.
4106 */
efe120a0
FH
4107 btrfs_err(fs_info,
4108 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
da17066c
JM
4109 fs_info->nodesize,
4110 BTRFS_STRIPE_LEN);
b5d67f64
SB
4111 return -EINVAL;
4112 }
4113
da17066c 4114 if (fs_info->sectorsize != PAGE_SIZE) {
b5d67f64 4115 /* not supported for data w/o checksums */
751bebbe 4116 btrfs_err_rl(fs_info,
5d163e0e 4117 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
da17066c 4118 fs_info->sectorsize, PAGE_SIZE);
a2de733c
AJ
4119 return -EINVAL;
4120 }
4121
da17066c 4122 if (fs_info->nodesize >
7a9e9987 4123 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
da17066c 4124 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
7a9e9987
SB
4125 /*
4126 * would exhaust the array bounds of pagev member in
4127 * struct scrub_block
4128 */
5d163e0e
JM
4129 btrfs_err(fs_info,
4130 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
da17066c 4131 fs_info->nodesize,
7a9e9987 4132 SCRUB_MAX_PAGES_PER_BLOCK,
da17066c 4133 fs_info->sectorsize,
7a9e9987
SB
4134 SCRUB_MAX_PAGES_PER_BLOCK);
4135 return -EINVAL;
4136 }
4137
a2de733c 4138
aa1b8cd4
SB
4139 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4140 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
63a212ab 4141 if (!dev || (dev->missing && !is_dev_replace)) {
aa1b8cd4 4142 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
4143 return -ENODEV;
4144 }
a2de733c 4145
5d68da3b
MX
4146 if (!is_dev_replace && !readonly && !dev->writeable) {
4147 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4148 rcu_read_lock();
4149 name = rcu_dereference(dev->name);
4150 btrfs_err(fs_info, "scrub: device %s is not writable",
4151 name->str);
4152 rcu_read_unlock();
4153 return -EROFS;
4154 }
4155
3b7a016f 4156 mutex_lock(&fs_info->scrub_lock);
63a212ab 4157 if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
a2de733c 4158 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 4159 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
aa1b8cd4 4160 return -EIO;
a2de733c
AJ
4161 }
4162
73beece9 4163 btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
8dabb742
SB
4164 if (dev->scrub_device ||
4165 (!is_dev_replace &&
4166 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
73beece9 4167 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
a2de733c 4168 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4 4169 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c
AJ
4170 return -EINPROGRESS;
4171 }
73beece9 4172 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
3b7a016f
WS
4173
4174 ret = scrub_workers_get(fs_info, is_dev_replace);
4175 if (ret) {
4176 mutex_unlock(&fs_info->scrub_lock);
4177 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4178 return ret;
4179 }
4180
63a212ab 4181 sctx = scrub_setup_ctx(dev, is_dev_replace);
d9d181c1 4182 if (IS_ERR(sctx)) {
a2de733c 4183 mutex_unlock(&fs_info->scrub_lock);
aa1b8cd4
SB
4184 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4185 scrub_workers_put(fs_info);
d9d181c1 4186 return PTR_ERR(sctx);
a2de733c 4187 }
d9d181c1
SB
4188 sctx->readonly = readonly;
4189 dev->scrub_device = sctx;
3cb0929a 4190 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 4191
3cb0929a
WS
4192 /*
4193 * checking @scrub_pause_req here, we can avoid
4194 * race between committing transaction and scrubbing.
4195 */
cb7ab021 4196 __scrub_blocked_if_needed(fs_info);
a2de733c
AJ
4197 atomic_inc(&fs_info->scrubs_running);
4198 mutex_unlock(&fs_info->scrub_lock);
a2de733c 4199
ff023aac 4200 if (!is_dev_replace) {
9b011adf
WS
4201 /*
4202 * by holding device list mutex, we can
4203 * kick off writing super in log tree sync.
4204 */
3cb0929a 4205 mutex_lock(&fs_info->fs_devices->device_list_mutex);
ff023aac 4206 ret = scrub_supers(sctx, dev);
3cb0929a 4207 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
ff023aac 4208 }
a2de733c
AJ
4209
4210 if (!ret)
ff023aac
SB
4211 ret = scrub_enumerate_chunks(sctx, dev, start, end,
4212 is_dev_replace);
a2de733c 4213
b6bfebc1 4214 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
a2de733c
AJ
4215 atomic_dec(&fs_info->scrubs_running);
4216 wake_up(&fs_info->scrub_pause_wait);
4217
b6bfebc1 4218 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
0ef8e451 4219
a2de733c 4220 if (progress)
d9d181c1 4221 memcpy(progress, &sctx->stat, sizeof(*progress));
a2de733c
AJ
4222
4223 mutex_lock(&fs_info->scrub_lock);
4224 dev->scrub_device = NULL;
3b7a016f 4225 scrub_workers_put(fs_info);
a2de733c
AJ
4226 mutex_unlock(&fs_info->scrub_lock);
4227
f55985f4 4228 scrub_put_ctx(sctx);
a2de733c
AJ
4229
4230 return ret;
4231}
4232
2ff7e61e 4233void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
a2de733c 4234{
a2de733c
AJ
4235 mutex_lock(&fs_info->scrub_lock);
4236 atomic_inc(&fs_info->scrub_pause_req);
4237 while (atomic_read(&fs_info->scrubs_paused) !=
4238 atomic_read(&fs_info->scrubs_running)) {
4239 mutex_unlock(&fs_info->scrub_lock);
4240 wait_event(fs_info->scrub_pause_wait,
4241 atomic_read(&fs_info->scrubs_paused) ==
4242 atomic_read(&fs_info->scrubs_running));
4243 mutex_lock(&fs_info->scrub_lock);
4244 }
4245 mutex_unlock(&fs_info->scrub_lock);
a2de733c
AJ
4246}
4247
2ff7e61e 4248void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
a2de733c 4249{
a2de733c
AJ
4250 atomic_dec(&fs_info->scrub_pause_req);
4251 wake_up(&fs_info->scrub_pause_wait);
a2de733c
AJ
4252}
4253
aa1b8cd4 4254int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
a2de733c 4255{
a2de733c
AJ
4256 mutex_lock(&fs_info->scrub_lock);
4257 if (!atomic_read(&fs_info->scrubs_running)) {
4258 mutex_unlock(&fs_info->scrub_lock);
4259 return -ENOTCONN;
4260 }
4261
4262 atomic_inc(&fs_info->scrub_cancel_req);
4263 while (atomic_read(&fs_info->scrubs_running)) {
4264 mutex_unlock(&fs_info->scrub_lock);
4265 wait_event(fs_info->scrub_pause_wait,
4266 atomic_read(&fs_info->scrubs_running) == 0);
4267 mutex_lock(&fs_info->scrub_lock);
4268 }
4269 atomic_dec(&fs_info->scrub_cancel_req);
4270 mutex_unlock(&fs_info->scrub_lock);
4271
4272 return 0;
4273}
4274
aa1b8cd4
SB
4275int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
4276 struct btrfs_device *dev)
49b25e05 4277{
d9d181c1 4278 struct scrub_ctx *sctx;
a2de733c
AJ
4279
4280 mutex_lock(&fs_info->scrub_lock);
d9d181c1
SB
4281 sctx = dev->scrub_device;
4282 if (!sctx) {
a2de733c
AJ
4283 mutex_unlock(&fs_info->scrub_lock);
4284 return -ENOTCONN;
4285 }
d9d181c1 4286 atomic_inc(&sctx->cancel_req);
a2de733c
AJ
4287 while (dev->scrub_device) {
4288 mutex_unlock(&fs_info->scrub_lock);
4289 wait_event(fs_info->scrub_pause_wait,
4290 dev->scrub_device == NULL);
4291 mutex_lock(&fs_info->scrub_lock);
4292 }
4293 mutex_unlock(&fs_info->scrub_lock);
4294
4295 return 0;
4296}
1623edeb 4297
2ff7e61e 4298int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
a2de733c
AJ
4299 struct btrfs_scrub_progress *progress)
4300{
4301 struct btrfs_device *dev;
d9d181c1 4302 struct scrub_ctx *sctx = NULL;
a2de733c 4303
0b246afa
JM
4304 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4305 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
a2de733c 4306 if (dev)
d9d181c1
SB
4307 sctx = dev->scrub_device;
4308 if (sctx)
4309 memcpy(progress, &sctx->stat, sizeof(*progress));
0b246afa 4310 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a2de733c 4311
d9d181c1 4312 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
a2de733c 4313}
ff023aac
SB
4314
4315static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4316 u64 extent_logical, u64 extent_len,
4317 u64 *extent_physical,
4318 struct btrfs_device **extent_dev,
4319 int *extent_mirror_num)
4320{
4321 u64 mapped_length;
4322 struct btrfs_bio *bbio = NULL;
4323 int ret;
4324
4325 mapped_length = extent_len;
cf8cddd3 4326 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
ff023aac
SB
4327 &mapped_length, &bbio, 0);
4328 if (ret || !bbio || mapped_length < extent_len ||
4329 !bbio->stripes[0].dev->bdev) {
6e9606d2 4330 btrfs_put_bbio(bbio);
ff023aac
SB
4331 return;
4332 }
4333
4334 *extent_physical = bbio->stripes[0].physical;
4335 *extent_mirror_num = bbio->mirror_num;
4336 *extent_dev = bbio->stripes[0].dev;
6e9606d2 4337 btrfs_put_bbio(bbio);
ff023aac
SB
4338}
4339
e5987e13 4340static int scrub_setup_wr_ctx(struct scrub_wr_ctx *wr_ctx,
ff023aac
SB
4341 struct btrfs_device *dev,
4342 int is_dev_replace)
4343{
4344 WARN_ON(wr_ctx->wr_curr_bio != NULL);
4345
4346 mutex_init(&wr_ctx->wr_lock);
4347 wr_ctx->wr_curr_bio = NULL;
4348 if (!is_dev_replace)
4349 return 0;
4350
4351 WARN_ON(!dev->bdev);
b54ffb73 4352 wr_ctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
ff023aac
SB
4353 wr_ctx->tgtdev = dev;
4354 atomic_set(&wr_ctx->flush_all_writes, 0);
4355 return 0;
4356}
4357
4358static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
4359{
4360 mutex_lock(&wr_ctx->wr_lock);
4361 kfree(wr_ctx->wr_curr_bio);
4362 wr_ctx->wr_curr_bio = NULL;
4363 mutex_unlock(&wr_ctx->wr_lock);
4364}
4365
4366static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
4367 int mirror_num, u64 physical_for_dev_replace)
4368{
4369 struct scrub_copy_nocow_ctx *nocow_ctx;
fb456252 4370 struct btrfs_fs_info *fs_info = sctx->fs_info;
ff023aac
SB
4371
4372 nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
4373 if (!nocow_ctx) {
4374 spin_lock(&sctx->stat_lock);
4375 sctx->stat.malloc_errors++;
4376 spin_unlock(&sctx->stat_lock);
4377 return -ENOMEM;
4378 }
4379
4380 scrub_pending_trans_workers_inc(sctx);
4381
4382 nocow_ctx->sctx = sctx;
4383 nocow_ctx->logical = logical;
4384 nocow_ctx->len = len;
4385 nocow_ctx->mirror_num = mirror_num;
4386 nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
9e0af237
LB
4387 btrfs_init_work(&nocow_ctx->work, btrfs_scrubnc_helper,
4388 copy_nocow_pages_worker, NULL, NULL);
652f25a2 4389 INIT_LIST_HEAD(&nocow_ctx->inodes);
0339ef2f
QW
4390 btrfs_queue_work(fs_info->scrub_nocow_workers,
4391 &nocow_ctx->work);
ff023aac
SB
4392
4393 return 0;
4394}
4395
652f25a2
JB
4396static int record_inode_for_nocow(u64 inum, u64 offset, u64 root, void *ctx)
4397{
4398 struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
4399 struct scrub_nocow_inode *nocow_inode;
4400
4401 nocow_inode = kzalloc(sizeof(*nocow_inode), GFP_NOFS);
4402 if (!nocow_inode)
4403 return -ENOMEM;
4404 nocow_inode->inum = inum;
4405 nocow_inode->offset = offset;
4406 nocow_inode->root = root;
4407 list_add_tail(&nocow_inode->list, &nocow_ctx->inodes);
4408 return 0;
4409}
4410
4411#define COPY_COMPLETE 1
4412
ff023aac
SB
4413static void copy_nocow_pages_worker(struct btrfs_work *work)
4414{
4415 struct scrub_copy_nocow_ctx *nocow_ctx =
4416 container_of(work, struct scrub_copy_nocow_ctx, work);
4417 struct scrub_ctx *sctx = nocow_ctx->sctx;
0b246afa
JM
4418 struct btrfs_fs_info *fs_info = sctx->fs_info;
4419 struct btrfs_root *root = fs_info->extent_root;
ff023aac
SB
4420 u64 logical = nocow_ctx->logical;
4421 u64 len = nocow_ctx->len;
4422 int mirror_num = nocow_ctx->mirror_num;
4423 u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
4424 int ret;
4425 struct btrfs_trans_handle *trans = NULL;
ff023aac 4426 struct btrfs_path *path;
ff023aac
SB
4427 int not_written = 0;
4428
ff023aac
SB
4429 path = btrfs_alloc_path();
4430 if (!path) {
4431 spin_lock(&sctx->stat_lock);
4432 sctx->stat.malloc_errors++;
4433 spin_unlock(&sctx->stat_lock);
4434 not_written = 1;
4435 goto out;
4436 }
4437
4438 trans = btrfs_join_transaction(root);
4439 if (IS_ERR(trans)) {
4440 not_written = 1;
4441 goto out;
4442 }
4443
4444 ret = iterate_inodes_from_logical(logical, fs_info, path,
652f25a2 4445 record_inode_for_nocow, nocow_ctx);
ff023aac 4446 if (ret != 0 && ret != -ENOENT) {
5d163e0e
JM
4447 btrfs_warn(fs_info,
4448 "iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %u, ret %d",
4449 logical, physical_for_dev_replace, len, mirror_num,
4450 ret);
ff023aac
SB
4451 not_written = 1;
4452 goto out;
4453 }
4454
3a45bb20 4455 btrfs_end_transaction(trans);
652f25a2
JB
4456 trans = NULL;
4457 while (!list_empty(&nocow_ctx->inodes)) {
4458 struct scrub_nocow_inode *entry;
4459 entry = list_first_entry(&nocow_ctx->inodes,
4460 struct scrub_nocow_inode,
4461 list);
4462 list_del_init(&entry->list);
4463 ret = copy_nocow_pages_for_inode(entry->inum, entry->offset,
4464 entry->root, nocow_ctx);
4465 kfree(entry);
4466 if (ret == COPY_COMPLETE) {
4467 ret = 0;
4468 break;
4469 } else if (ret) {
4470 break;
4471 }
4472 }
ff023aac 4473out:
652f25a2
JB
4474 while (!list_empty(&nocow_ctx->inodes)) {
4475 struct scrub_nocow_inode *entry;
4476 entry = list_first_entry(&nocow_ctx->inodes,
4477 struct scrub_nocow_inode,
4478 list);
4479 list_del_init(&entry->list);
4480 kfree(entry);
4481 }
ff023aac 4482 if (trans && !IS_ERR(trans))
3a45bb20 4483 btrfs_end_transaction(trans);
ff023aac
SB
4484 if (not_written)
4485 btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
4486 num_uncorrectable_read_errors);
4487
4488 btrfs_free_path(path);
4489 kfree(nocow_ctx);
4490
4491 scrub_pending_trans_workers_dec(sctx);
4492}
4493
1c8c9c52 4494static int check_extent_to_block(struct btrfs_inode *inode, u64 start, u64 len,
32159242
GH
4495 u64 logical)
4496{
4497 struct extent_state *cached_state = NULL;
4498 struct btrfs_ordered_extent *ordered;
4499 struct extent_io_tree *io_tree;
4500 struct extent_map *em;
4501 u64 lockstart = start, lockend = start + len - 1;
4502 int ret = 0;
4503
1c8c9c52 4504 io_tree = &inode->io_tree;
32159242 4505
ff13db41 4506 lock_extent_bits(io_tree, lockstart, lockend, &cached_state);
1c8c9c52 4507 ordered = btrfs_lookup_ordered_range(inode, lockstart, len);
32159242
GH
4508 if (ordered) {
4509 btrfs_put_ordered_extent(ordered);
4510 ret = 1;
4511 goto out_unlock;
4512 }
4513
4514 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
4515 if (IS_ERR(em)) {
4516 ret = PTR_ERR(em);
4517 goto out_unlock;
4518 }
4519
4520 /*
4521 * This extent does not actually cover the logical extent anymore,
4522 * move on to the next inode.
4523 */
4524 if (em->block_start > logical ||
4525 em->block_start + em->block_len < logical + len) {
4526 free_extent_map(em);
4527 ret = 1;
4528 goto out_unlock;
4529 }
4530 free_extent_map(em);
4531
4532out_unlock:
4533 unlock_extent_cached(io_tree, lockstart, lockend, &cached_state,
4534 GFP_NOFS);
4535 return ret;
4536}
4537
652f25a2
JB
4538static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
4539 struct scrub_copy_nocow_ctx *nocow_ctx)
ff023aac 4540{
fb456252 4541 struct btrfs_fs_info *fs_info = nocow_ctx->sctx->fs_info;
ff023aac 4542 struct btrfs_key key;
826aa0a8
MX
4543 struct inode *inode;
4544 struct page *page;
ff023aac 4545 struct btrfs_root *local_root;
652f25a2 4546 struct extent_io_tree *io_tree;
ff023aac 4547 u64 physical_for_dev_replace;
32159242 4548 u64 nocow_ctx_logical;
652f25a2 4549 u64 len = nocow_ctx->len;
826aa0a8 4550 unsigned long index;
6f1c3605 4551 int srcu_index;
652f25a2
JB
4552 int ret = 0;
4553 int err = 0;
ff023aac
SB
4554
4555 key.objectid = root;
4556 key.type = BTRFS_ROOT_ITEM_KEY;
4557 key.offset = (u64)-1;
6f1c3605
LB
4558
4559 srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
4560
ff023aac 4561 local_root = btrfs_read_fs_root_no_name(fs_info, &key);
6f1c3605
LB
4562 if (IS_ERR(local_root)) {
4563 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac 4564 return PTR_ERR(local_root);
6f1c3605 4565 }
ff023aac
SB
4566
4567 key.type = BTRFS_INODE_ITEM_KEY;
4568 key.objectid = inum;
4569 key.offset = 0;
4570 inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
6f1c3605 4571 srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
ff023aac
SB
4572 if (IS_ERR(inode))
4573 return PTR_ERR(inode);
4574
edd1400b 4575 /* Avoid truncate/dio/punch hole.. */
5955102c 4576 inode_lock(inode);
edd1400b
MX
4577 inode_dio_wait(inode);
4578
ff023aac 4579 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
652f25a2 4580 io_tree = &BTRFS_I(inode)->io_tree;
32159242 4581 nocow_ctx_logical = nocow_ctx->logical;
652f25a2 4582
1c8c9c52
NB
4583 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
4584 nocow_ctx_logical);
32159242
GH
4585 if (ret) {
4586 ret = ret > 0 ? 0 : ret;
4587 goto out;
652f25a2 4588 }
652f25a2 4589
09cbfeaf
KS
4590 while (len >= PAGE_SIZE) {
4591 index = offset >> PAGE_SHIFT;
edd1400b 4592again:
ff023aac
SB
4593 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
4594 if (!page) {
efe120a0 4595 btrfs_err(fs_info, "find_or_create_page() failed");
ff023aac 4596 ret = -ENOMEM;
826aa0a8 4597 goto out;
ff023aac
SB
4598 }
4599
4600 if (PageUptodate(page)) {
4601 if (PageDirty(page))
4602 goto next_page;
4603 } else {
4604 ClearPageError(page);
32159242 4605 err = extent_read_full_page(io_tree, page,
652f25a2
JB
4606 btrfs_get_extent,
4607 nocow_ctx->mirror_num);
826aa0a8
MX
4608 if (err) {
4609 ret = err;
ff023aac
SB
4610 goto next_page;
4611 }
edd1400b 4612
26b25891 4613 lock_page(page);
edd1400b
MX
4614 /*
4615 * If the page has been remove from the page cache,
4616 * the data on it is meaningless, because it may be
4617 * old one, the new data may be written into the new
4618 * page in the page cache.
4619 */
4620 if (page->mapping != inode->i_mapping) {
652f25a2 4621 unlock_page(page);
09cbfeaf 4622 put_page(page);
edd1400b
MX
4623 goto again;
4624 }
ff023aac
SB
4625 if (!PageUptodate(page)) {
4626 ret = -EIO;
4627 goto next_page;
4628 }
4629 }
32159242 4630
1c8c9c52 4631 ret = check_extent_to_block(BTRFS_I(inode), offset, len,
32159242
GH
4632 nocow_ctx_logical);
4633 if (ret) {
4634 ret = ret > 0 ? 0 : ret;
4635 goto next_page;
4636 }
4637
826aa0a8
MX
4638 err = write_page_nocow(nocow_ctx->sctx,
4639 physical_for_dev_replace, page);
4640 if (err)
4641 ret = err;
ff023aac 4642next_page:
826aa0a8 4643 unlock_page(page);
09cbfeaf 4644 put_page(page);
826aa0a8
MX
4645
4646 if (ret)
4647 break;
4648
09cbfeaf
KS
4649 offset += PAGE_SIZE;
4650 physical_for_dev_replace += PAGE_SIZE;
4651 nocow_ctx_logical += PAGE_SIZE;
4652 len -= PAGE_SIZE;
ff023aac 4653 }
652f25a2 4654 ret = COPY_COMPLETE;
826aa0a8 4655out:
5955102c 4656 inode_unlock(inode);
826aa0a8 4657 iput(inode);
ff023aac
SB
4658 return ret;
4659}
4660
4661static int write_page_nocow(struct scrub_ctx *sctx,
4662 u64 physical_for_dev_replace, struct page *page)
4663{
4664 struct bio *bio;
4665 struct btrfs_device *dev;
4666 int ret;
ff023aac
SB
4667
4668 dev = sctx->wr_ctx.tgtdev;
4669 if (!dev)
4670 return -EIO;
4671 if (!dev->bdev) {
fb456252 4672 btrfs_warn_rl(dev->fs_info,
94647322 4673 "scrub write_page_nocow(bdev == NULL) is unexpected");
ff023aac
SB
4674 return -EIO;
4675 }
9be3395b 4676 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
ff023aac
SB
4677 if (!bio) {
4678 spin_lock(&sctx->stat_lock);
4679 sctx->stat.malloc_errors++;
4680 spin_unlock(&sctx->stat_lock);
4681 return -ENOMEM;
4682 }
4f024f37
KO
4683 bio->bi_iter.bi_size = 0;
4684 bio->bi_iter.bi_sector = physical_for_dev_replace >> 9;
ff023aac 4685 bio->bi_bdev = dev->bdev;
70fd7614 4686 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
09cbfeaf
KS
4687 ret = bio_add_page(bio, page, PAGE_SIZE, 0);
4688 if (ret != PAGE_SIZE) {
ff023aac
SB
4689leave_with_eio:
4690 bio_put(bio);
4691 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4692 return -EIO;
4693 }
ff023aac 4694
4e49ea4a 4695 if (btrfsic_submit_bio_wait(bio))
ff023aac
SB
4696 goto leave_with_eio;
4697
4698 bio_put(bio);
4699 return 0;
4700}