btrfs: fix race between quota rescan and disable leading to NULL pointer deref
[linux-block.git] / fs / btrfs / raid56.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
53b381b3
DW
2/*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
53b381b3 5 */
c1d7c514 6
53b381b3 7#include <linux/sched.h>
53b381b3
DW
8#include <linux/bio.h>
9#include <linux/slab.h>
53b381b3 10#include <linux/blkdev.h>
53b381b3
DW
11#include <linux/raid/pq.h>
12#include <linux/hash.h>
13#include <linux/list_sort.h>
14#include <linux/raid/xor.h>
818e010b 15#include <linux/mm.h>
9b569ea0 16#include "messages.h"
cea62800 17#include "misc.h"
53b381b3 18#include "ctree.h"
53b381b3 19#include "disk-io.h"
53b381b3
DW
20#include "volumes.h"
21#include "raid56.h"
22#include "async-thread.h"
c5a41562 23#include "file-item.h"
7a315072 24#include "btrfs_inode.h"
53b381b3
DW
25
26/* set when additional merges to this rbio are not allowed */
27#define RBIO_RMW_LOCKED_BIT 1
28
4ae10b3a
CM
29/*
30 * set when this rbio is sitting in the hash, but it is just a cache
31 * of past RMW
32 */
33#define RBIO_CACHE_BIT 2
34
35/*
36 * set when it is safe to trust the stripe_pages for caching
37 */
38#define RBIO_CACHE_READY_BIT 3
39
4ae10b3a
CM
40#define RBIO_CACHE_SIZE 1024
41
8a953348
DS
42#define BTRFS_STRIPE_HASH_TABLE_BITS 11
43
44/* Used by the raid56 code to lock stripes for read/modify/write */
45struct btrfs_stripe_hash {
46 struct list_head hash_list;
47 spinlock_t lock;
48};
49
50/* Used by the raid56 code to lock stripes for read/modify/write */
51struct btrfs_stripe_hash_table {
52 struct list_head stripe_cache;
53 spinlock_t cache_lock;
54 int cache_size;
55 struct btrfs_stripe_hash table[];
56};
57
eb357060
QW
58/*
59 * A bvec like structure to present a sector inside a page.
60 *
61 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
62 */
63struct sector_ptr {
64 struct page *page;
00425dd9
QW
65 unsigned int pgoff:24;
66 unsigned int uptodate:8;
eb357060
QW
67};
68
93723095
QW
69static void rmw_rbio_work(struct work_struct *work);
70static void rmw_rbio_work_locked(struct work_struct *work);
53b381b3
DW
71static void index_rbio_pages(struct btrfs_raid_bio *rbio);
72static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
73
6bfd0133
QW
74static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check);
75static void scrub_rbio_work_locked(struct work_struct *work);
5a6ac9ea 76
797d74b7
QW
77static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
78{
2942a50d 79 bitmap_free(rbio->error_bitmap);
797d74b7
QW
80 kfree(rbio->stripe_pages);
81 kfree(rbio->bio_sectors);
82 kfree(rbio->stripe_sectors);
83 kfree(rbio->finish_pointers);
84}
85
ff2b64a2
QW
86static void free_raid_bio(struct btrfs_raid_bio *rbio)
87{
88 int i;
89
90 if (!refcount_dec_and_test(&rbio->refs))
91 return;
92
93 WARN_ON(!list_empty(&rbio->stripe_cache));
94 WARN_ON(!list_empty(&rbio->hash_list));
95 WARN_ON(!bio_list_empty(&rbio->bio_list));
96
97 for (i = 0; i < rbio->nr_pages; i++) {
98 if (rbio->stripe_pages[i]) {
99 __free_page(rbio->stripe_pages[i]);
100 rbio->stripe_pages[i] = NULL;
101 }
102 }
103
104 btrfs_put_bioc(rbio->bioc);
797d74b7 105 free_raid_bio_pointers(rbio);
ff2b64a2
QW
106 kfree(rbio);
107}
108
385de0ef 109static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
ac638859 110{
385de0ef
CH
111 INIT_WORK(&rbio->work, work_func);
112 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
ac638859
DS
113}
114
53b381b3
DW
115/*
116 * the stripe hash table is used for locking, and to collect
117 * bios in hopes of making a full stripe
118 */
119int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
120{
121 struct btrfs_stripe_hash_table *table;
122 struct btrfs_stripe_hash_table *x;
123 struct btrfs_stripe_hash *cur;
124 struct btrfs_stripe_hash *h;
125 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
126 int i;
127
128 if (info->stripe_hash_table)
129 return 0;
130
83c8266a
DS
131 /*
132 * The table is large, starting with order 4 and can go as high as
133 * order 7 in case lock debugging is turned on.
134 *
135 * Try harder to allocate and fallback to vmalloc to lower the chance
136 * of a failing mount.
137 */
ee787f95 138 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
818e010b
DS
139 if (!table)
140 return -ENOMEM;
53b381b3 141
4ae10b3a
CM
142 spin_lock_init(&table->cache_lock);
143 INIT_LIST_HEAD(&table->stripe_cache);
144
53b381b3
DW
145 h = table->table;
146
147 for (i = 0; i < num_entries; i++) {
148 cur = h + i;
149 INIT_LIST_HEAD(&cur->hash_list);
150 spin_lock_init(&cur->lock);
53b381b3
DW
151 }
152
153 x = cmpxchg(&info->stripe_hash_table, NULL, table);
fe3b7bb0 154 kvfree(x);
53b381b3
DW
155 return 0;
156}
157
4ae10b3a
CM
158/*
159 * caching an rbio means to copy anything from the
ac26df8b 160 * bio_sectors array into the stripe_pages array. We
4ae10b3a
CM
161 * use the page uptodate bit in the stripe cache array
162 * to indicate if it has valid data
163 *
164 * once the caching is done, we set the cache ready
165 * bit.
166 */
167static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
168{
169 int i;
4ae10b3a
CM
170 int ret;
171
172 ret = alloc_rbio_pages(rbio);
173 if (ret)
174 return;
175
00425dd9
QW
176 for (i = 0; i < rbio->nr_sectors; i++) {
177 /* Some range not covered by bio (partial write), skip it */
88074c8b
QW
178 if (!rbio->bio_sectors[i].page) {
179 /*
180 * Even if the sector is not covered by bio, if it is
181 * a data sector it should still be uptodate as it is
182 * read from disk.
183 */
184 if (i < rbio->nr_data * rbio->stripe_nsectors)
185 ASSERT(rbio->stripe_sectors[i].uptodate);
00425dd9 186 continue;
88074c8b 187 }
00425dd9
QW
188
189 ASSERT(rbio->stripe_sectors[i].page);
190 memcpy_page(rbio->stripe_sectors[i].page,
191 rbio->stripe_sectors[i].pgoff,
192 rbio->bio_sectors[i].page,
193 rbio->bio_sectors[i].pgoff,
194 rbio->bioc->fs_info->sectorsize);
195 rbio->stripe_sectors[i].uptodate = 1;
196 }
4ae10b3a
CM
197 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
198}
199
53b381b3
DW
200/*
201 * we hash on the first logical address of the stripe
202 */
203static int rbio_bucket(struct btrfs_raid_bio *rbio)
204{
4c664611 205 u64 num = rbio->bioc->raid_map[0];
53b381b3
DW
206
207 /*
208 * we shift down quite a bit. We're using byte
209 * addressing, and most of the lower bits are zeros.
210 * This tends to upset hash_64, and it consistently
211 * returns just one or two different values.
212 *
213 * shifting off the lower bits fixes things.
214 */
215 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
216}
217
d4e28d9b
QW
218static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
219 unsigned int page_nr)
220{
221 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
222 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
223 int i;
224
225 ASSERT(page_nr < rbio->nr_pages);
226
227 for (i = sectors_per_page * page_nr;
228 i < sectors_per_page * page_nr + sectors_per_page;
229 i++) {
230 if (!rbio->stripe_sectors[i].uptodate)
231 return false;
232 }
233 return true;
234}
235
eb357060
QW
236/*
237 * Update the stripe_sectors[] array to use correct page and pgoff
238 *
239 * Should be called every time any page pointer in stripes_pages[] got modified.
240 */
241static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
242{
243 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
244 u32 offset;
245 int i;
246
247 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
248 int page_index = offset >> PAGE_SHIFT;
249
250 ASSERT(page_index < rbio->nr_pages);
251 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
252 rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
253 }
254}
255
4d100466
QW
256static void steal_rbio_page(struct btrfs_raid_bio *src,
257 struct btrfs_raid_bio *dest, int page_nr)
258{
259 const u32 sectorsize = src->bioc->fs_info->sectorsize;
260 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
261 int i;
262
263 if (dest->stripe_pages[page_nr])
264 __free_page(dest->stripe_pages[page_nr]);
265 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
266 src->stripe_pages[page_nr] = NULL;
267
268 /* Also update the sector->uptodate bits. */
269 for (i = sectors_per_page * page_nr;
270 i < sectors_per_page * page_nr + sectors_per_page; i++)
271 dest->stripe_sectors[i].uptodate = true;
272}
273
88074c8b
QW
274static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
275{
276 const int sector_nr = (page_nr << PAGE_SHIFT) >>
277 rbio->bioc->fs_info->sectorsize_bits;
278
279 /*
280 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
281 * we won't have a page which is half data half parity.
282 *
283 * Thus if the first sector of the page belongs to data stripes, then
284 * the full page belongs to data stripes.
285 */
286 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
287}
288
4ae10b3a 289/*
d4e28d9b
QW
290 * Stealing an rbio means taking all the uptodate pages from the stripe array
291 * in the source rbio and putting them into the destination rbio.
292 *
293 * This will also update the involved stripe_sectors[] which are referring to
294 * the old pages.
4ae10b3a
CM
295 */
296static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
297{
298 int i;
4ae10b3a
CM
299
300 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
301 return;
302
303 for (i = 0; i < dest->nr_pages; i++) {
88074c8b
QW
304 struct page *p = src->stripe_pages[i];
305
306 /*
307 * We don't need to steal P/Q pages as they will always be
308 * regenerated for RMW or full write anyway.
309 */
310 if (!is_data_stripe_page(src, i))
4ae10b3a 311 continue;
4ae10b3a 312
88074c8b
QW
313 /*
314 * If @src already has RBIO_CACHE_READY_BIT, it should have
315 * all data stripe pages present and uptodate.
316 */
317 ASSERT(p);
318 ASSERT(full_page_sectors_uptodate(src, i));
4d100466 319 steal_rbio_page(src, dest, i);
4ae10b3a 320 }
eb357060
QW
321 index_stripe_sectors(dest);
322 index_stripe_sectors(src);
4ae10b3a
CM
323}
324
53b381b3
DW
325/*
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
329 *
330 * must be called with dest->rbio_list_lock held
331 */
332static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
334{
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
bd8f7e62
QW
337 /* Also inherit the bitmaps from @victim. */
338 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
339 dest->stripe_nsectors);
53b381b3
DW
340 bio_list_init(&victim->bio_list);
341}
342
343/*
4ae10b3a
CM
344 * used to prune items that are in the cache. The caller
345 * must hold the hash table lock.
346 */
347static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
348{
349 int bucket = rbio_bucket(rbio);
350 struct btrfs_stripe_hash_table *table;
351 struct btrfs_stripe_hash *h;
352 int freeit = 0;
353
354 /*
355 * check the bit again under the hash table lock.
356 */
357 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
358 return;
359
6a258d72 360 table = rbio->bioc->fs_info->stripe_hash_table;
4ae10b3a
CM
361 h = table->table + bucket;
362
363 /* hold the lock for the bucket because we may be
364 * removing it from the hash table
365 */
366 spin_lock(&h->lock);
367
368 /*
369 * hold the lock for the bio list because we need
370 * to make sure the bio list is empty
371 */
372 spin_lock(&rbio->bio_list_lock);
373
374 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
375 list_del_init(&rbio->stripe_cache);
376 table->cache_size -= 1;
377 freeit = 1;
378
379 /* if the bio list isn't empty, this rbio is
380 * still involved in an IO. We take it out
381 * of the cache list, and drop the ref that
382 * was held for the list.
383 *
384 * If the bio_list was empty, we also remove
385 * the rbio from the hash_table, and drop
386 * the corresponding ref
387 */
388 if (bio_list_empty(&rbio->bio_list)) {
389 if (!list_empty(&rbio->hash_list)) {
390 list_del_init(&rbio->hash_list);
dec95574 391 refcount_dec(&rbio->refs);
4ae10b3a
CM
392 BUG_ON(!list_empty(&rbio->plug_list));
393 }
394 }
395 }
396
397 spin_unlock(&rbio->bio_list_lock);
398 spin_unlock(&h->lock);
399
400 if (freeit)
ff2b64a2 401 free_raid_bio(rbio);
4ae10b3a
CM
402}
403
404/*
405 * prune a given rbio from the cache
406 */
407static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
408{
409 struct btrfs_stripe_hash_table *table;
410 unsigned long flags;
411
412 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
413 return;
414
6a258d72 415 table = rbio->bioc->fs_info->stripe_hash_table;
4ae10b3a
CM
416
417 spin_lock_irqsave(&table->cache_lock, flags);
418 __remove_rbio_from_cache(rbio);
419 spin_unlock_irqrestore(&table->cache_lock, flags);
420}
421
422/*
423 * remove everything in the cache
424 */
48a3b636 425static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
426{
427 struct btrfs_stripe_hash_table *table;
428 unsigned long flags;
429 struct btrfs_raid_bio *rbio;
430
431 table = info->stripe_hash_table;
432
433 spin_lock_irqsave(&table->cache_lock, flags);
434 while (!list_empty(&table->stripe_cache)) {
435 rbio = list_entry(table->stripe_cache.next,
436 struct btrfs_raid_bio,
437 stripe_cache);
438 __remove_rbio_from_cache(rbio);
439 }
440 spin_unlock_irqrestore(&table->cache_lock, flags);
441}
442
443/*
444 * remove all cached entries and free the hash table
445 * used by unmount
53b381b3
DW
446 */
447void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
448{
449 if (!info->stripe_hash_table)
450 return;
4ae10b3a 451 btrfs_clear_rbio_cache(info);
f749303b 452 kvfree(info->stripe_hash_table);
53b381b3
DW
453 info->stripe_hash_table = NULL;
454}
455
4ae10b3a
CM
456/*
457 * insert an rbio into the stripe cache. It
458 * must have already been prepared by calling
459 * cache_rbio_pages
460 *
461 * If this rbio was already cached, it gets
462 * moved to the front of the lru.
463 *
464 * If the size of the rbio cache is too big, we
465 * prune an item.
466 */
467static void cache_rbio(struct btrfs_raid_bio *rbio)
468{
469 struct btrfs_stripe_hash_table *table;
470 unsigned long flags;
471
472 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
473 return;
474
6a258d72 475 table = rbio->bioc->fs_info->stripe_hash_table;
4ae10b3a
CM
476
477 spin_lock_irqsave(&table->cache_lock, flags);
478 spin_lock(&rbio->bio_list_lock);
479
480 /* bump our ref if we were not in the list before */
481 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
dec95574 482 refcount_inc(&rbio->refs);
4ae10b3a
CM
483
484 if (!list_empty(&rbio->stripe_cache)){
485 list_move(&rbio->stripe_cache, &table->stripe_cache);
486 } else {
487 list_add(&rbio->stripe_cache, &table->stripe_cache);
488 table->cache_size += 1;
489 }
490
491 spin_unlock(&rbio->bio_list_lock);
492
493 if (table->cache_size > RBIO_CACHE_SIZE) {
494 struct btrfs_raid_bio *found;
495
496 found = list_entry(table->stripe_cache.prev,
497 struct btrfs_raid_bio,
498 stripe_cache);
499
500 if (found != rbio)
501 __remove_rbio_from_cache(found);
502 }
503
504 spin_unlock_irqrestore(&table->cache_lock, flags);
4ae10b3a
CM
505}
506
53b381b3
DW
507/*
508 * helper function to run the xor_blocks api. It is only
509 * able to do MAX_XOR_BLOCKS at a time, so we need to
510 * loop through.
511 */
512static void run_xor(void **pages, int src_cnt, ssize_t len)
513{
514 int src_off = 0;
515 int xor_src_cnt = 0;
516 void *dest = pages[src_cnt];
517
518 while(src_cnt > 0) {
519 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
520 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
521
522 src_cnt -= xor_src_cnt;
523 src_off += xor_src_cnt;
524 }
525}
526
527/*
176571a1
DS
528 * Returns true if the bio list inside this rbio covers an entire stripe (no
529 * rmw required).
53b381b3 530 */
176571a1 531static int rbio_is_full(struct btrfs_raid_bio *rbio)
53b381b3 532{
176571a1 533 unsigned long flags;
53b381b3
DW
534 unsigned long size = rbio->bio_list_bytes;
535 int ret = 1;
536
176571a1 537 spin_lock_irqsave(&rbio->bio_list_lock, flags);
ff18a4af 538 if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
53b381b3 539 ret = 0;
ff18a4af 540 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
53b381b3 541 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
176571a1 542
53b381b3
DW
543 return ret;
544}
545
546/*
547 * returns 1 if it is safe to merge two rbios together.
548 * The merging is safe if the two rbios correspond to
549 * the same stripe and if they are both going in the same
550 * direction (read vs write), and if neither one is
551 * locked for final IO
552 *
553 * The caller is responsible for locking such that
554 * rmw_locked is safe to test
555 */
556static int rbio_can_merge(struct btrfs_raid_bio *last,
557 struct btrfs_raid_bio *cur)
558{
559 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
560 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
561 return 0;
562
4ae10b3a
CM
563 /*
564 * we can't merge with cached rbios, since the
565 * idea is that when we merge the destination
566 * rbio is going to run our IO for us. We can
01327610 567 * steal from cached rbios though, other functions
4ae10b3a
CM
568 * handle that.
569 */
570 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
571 test_bit(RBIO_CACHE_BIT, &cur->flags))
572 return 0;
573
4c664611 574 if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
53b381b3
DW
575 return 0;
576
5a6ac9ea
MX
577 /* we can't merge with different operations */
578 if (last->operation != cur->operation)
579 return 0;
580 /*
581 * We've need read the full stripe from the drive.
582 * check and repair the parity and write the new results.
583 *
584 * We're not allowed to add any new bios to the
585 * bio list here, anyone else that wants to
586 * change this stripe needs to do their own rmw.
587 */
db34be19 588 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 589 return 0;
53b381b3 590
ad3daf1c
QW
591 if (last->operation == BTRFS_RBIO_REBUILD_MISSING ||
592 last->operation == BTRFS_RBIO_READ_REBUILD)
b4ee1782
OS
593 return 0;
594
53b381b3
DW
595 return 1;
596}
597
3e77605d
QW
598static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
599 unsigned int stripe_nr,
600 unsigned int sector_nr)
601{
602 ASSERT(stripe_nr < rbio->real_stripes);
603 ASSERT(sector_nr < rbio->stripe_nsectors);
604
605 return stripe_nr * rbio->stripe_nsectors + sector_nr;
606}
607
608/* Return a sector from rbio->stripe_sectors, not from the bio list */
609static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
610 unsigned int stripe_nr,
611 unsigned int sector_nr)
612{
613 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
614 sector_nr)];
615}
616
1145059a
QW
617/* Grab a sector inside P stripe */
618static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
619 unsigned int sector_nr)
b7178a5f 620{
1145059a 621 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
b7178a5f
ZL
622}
623
1145059a
QW
624/* Grab a sector inside Q stripe, return NULL if not RAID6 */
625static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
626 unsigned int sector_nr)
53b381b3 627{
1145059a
QW
628 if (rbio->nr_data + 1 == rbio->real_stripes)
629 return NULL;
630 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
53b381b3
DW
631}
632
53b381b3
DW
633/*
634 * The first stripe in the table for a logical address
635 * has the lock. rbios are added in one of three ways:
636 *
637 * 1) Nobody has the stripe locked yet. The rbio is given
638 * the lock and 0 is returned. The caller must start the IO
639 * themselves.
640 *
641 * 2) Someone has the stripe locked, but we're able to merge
642 * with the lock owner. The rbio is freed and the IO will
643 * start automatically along with the existing rbio. 1 is returned.
644 *
645 * 3) Someone has the stripe locked, but we're not able to merge.
646 * The rbio is added to the lock owner's plug list, or merged into
647 * an rbio already on the plug list. When the lock owner unlocks,
648 * the next rbio on the list is run and the IO is started automatically.
649 * 1 is returned
650 *
651 * If we return 0, the caller still owns the rbio and must continue with
652 * IO submission. If we return 1, the caller must assume the rbio has
653 * already been freed.
654 */
655static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
656{
721860d5 657 struct btrfs_stripe_hash *h;
53b381b3
DW
658 struct btrfs_raid_bio *cur;
659 struct btrfs_raid_bio *pending;
660 unsigned long flags;
53b381b3 661 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 662 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3 663 int ret = 0;
53b381b3 664
6a258d72 665 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
721860d5 666
53b381b3
DW
667 spin_lock_irqsave(&h->lock, flags);
668 list_for_each_entry(cur, &h->hash_list, hash_list) {
4c664611 669 if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
9d6cb1b0 670 continue;
4ae10b3a 671
9d6cb1b0 672 spin_lock(&cur->bio_list_lock);
4ae10b3a 673
9d6cb1b0
JT
674 /* Can we steal this cached rbio's pages? */
675 if (bio_list_empty(&cur->bio_list) &&
676 list_empty(&cur->plug_list) &&
677 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
678 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
679 list_del_init(&cur->hash_list);
680 refcount_dec(&cur->refs);
53b381b3 681
9d6cb1b0
JT
682 steal_rbio(cur, rbio);
683 cache_drop = cur;
684 spin_unlock(&cur->bio_list_lock);
4ae10b3a 685
9d6cb1b0
JT
686 goto lockit;
687 }
53b381b3 688
9d6cb1b0
JT
689 /* Can we merge into the lock owner? */
690 if (rbio_can_merge(cur, rbio)) {
691 merge_rbio(cur, rbio);
53b381b3 692 spin_unlock(&cur->bio_list_lock);
9d6cb1b0 693 freeit = rbio;
53b381b3
DW
694 ret = 1;
695 goto out;
696 }
9d6cb1b0
JT
697
698
699 /*
700 * We couldn't merge with the running rbio, see if we can merge
701 * with the pending ones. We don't have to check for rmw_locked
702 * because there is no way they are inside finish_rmw right now
703 */
704 list_for_each_entry(pending, &cur->plug_list, plug_list) {
705 if (rbio_can_merge(pending, rbio)) {
706 merge_rbio(pending, rbio);
707 spin_unlock(&cur->bio_list_lock);
708 freeit = rbio;
709 ret = 1;
710 goto out;
711 }
712 }
713
714 /*
715 * No merging, put us on the tail of the plug list, our rbio
716 * will be started with the currently running rbio unlocks
717 */
718 list_add_tail(&rbio->plug_list, &cur->plug_list);
719 spin_unlock(&cur->bio_list_lock);
720 ret = 1;
721 goto out;
53b381b3 722 }
4ae10b3a 723lockit:
dec95574 724 refcount_inc(&rbio->refs);
53b381b3
DW
725 list_add(&rbio->hash_list, &h->hash_list);
726out:
727 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
728 if (cache_drop)
729 remove_rbio_from_cache(cache_drop);
53b381b3 730 if (freeit)
ff2b64a2 731 free_raid_bio(freeit);
53b381b3
DW
732 return ret;
733}
734
d817ce35
QW
735static void recover_rbio_work_locked(struct work_struct *work);
736
53b381b3
DW
737/*
738 * called as rmw or parity rebuild is completed. If the plug list has more
739 * rbios waiting for this stripe, the next one on the list will be started
740 */
741static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
742{
743 int bucket;
744 struct btrfs_stripe_hash *h;
745 unsigned long flags;
4ae10b3a 746 int keep_cache = 0;
53b381b3
DW
747
748 bucket = rbio_bucket(rbio);
6a258d72 749 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
53b381b3 750
4ae10b3a
CM
751 if (list_empty(&rbio->plug_list))
752 cache_rbio(rbio);
753
53b381b3
DW
754 spin_lock_irqsave(&h->lock, flags);
755 spin_lock(&rbio->bio_list_lock);
756
757 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
758 /*
759 * if we're still cached and there is no other IO
760 * to perform, just leave this rbio here for others
761 * to steal from later
762 */
763 if (list_empty(&rbio->plug_list) &&
764 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
765 keep_cache = 1;
766 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
767 BUG_ON(!bio_list_empty(&rbio->bio_list));
768 goto done;
769 }
53b381b3
DW
770
771 list_del_init(&rbio->hash_list);
dec95574 772 refcount_dec(&rbio->refs);
53b381b3
DW
773
774 /*
775 * we use the plug list to hold all the rbios
776 * waiting for the chance to lock this stripe.
777 * hand the lock over to one of them.
778 */
779 if (!list_empty(&rbio->plug_list)) {
780 struct btrfs_raid_bio *next;
781 struct list_head *head = rbio->plug_list.next;
782
783 next = list_entry(head, struct btrfs_raid_bio,
784 plug_list);
785
786 list_del_init(&rbio->plug_list);
787
788 list_add(&next->hash_list, &h->hash_list);
dec95574 789 refcount_inc(&next->refs);
53b381b3
DW
790 spin_unlock(&rbio->bio_list_lock);
791 spin_unlock_irqrestore(&h->lock, flags);
792
1b94b556 793 if (next->operation == BTRFS_RBIO_READ_REBUILD)
d817ce35 794 start_async_work(next, recover_rbio_work_locked);
b4ee1782
OS
795 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
796 steal_rbio(rbio, next);
d817ce35 797 start_async_work(next, recover_rbio_work_locked);
b4ee1782 798 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 799 steal_rbio(rbio, next);
93723095 800 start_async_work(next, rmw_rbio_work_locked);
5a6ac9ea
MX
801 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
802 steal_rbio(rbio, next);
6bfd0133 803 start_async_work(next, scrub_rbio_work_locked);
4ae10b3a 804 }
53b381b3
DW
805
806 goto done_nolock;
53b381b3
DW
807 }
808 }
4ae10b3a 809done:
53b381b3
DW
810 spin_unlock(&rbio->bio_list_lock);
811 spin_unlock_irqrestore(&h->lock, flags);
812
813done_nolock:
4ae10b3a
CM
814 if (!keep_cache)
815 remove_rbio_from_cache(rbio);
53b381b3
DW
816}
817
7583d8d0 818static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
53b381b3 819{
7583d8d0
LB
820 struct bio *next;
821
822 while (cur) {
823 next = cur->bi_next;
824 cur->bi_next = NULL;
825 cur->bi_status = err;
826 bio_endio(cur);
827 cur = next;
828 }
53b381b3
DW
829}
830
831/*
832 * this frees the rbio and runs through all the bios in the
833 * bio_list and calls end_io on them
834 */
4e4cbee9 835static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
53b381b3
DW
836{
837 struct bio *cur = bio_list_get(&rbio->bio_list);
7583d8d0 838 struct bio *extra;
4245215d 839
c5a41562
QW
840 kfree(rbio->csum_buf);
841 bitmap_free(rbio->csum_bitmap);
842 rbio->csum_buf = NULL;
843 rbio->csum_bitmap = NULL;
844
bd8f7e62
QW
845 /*
846 * Clear the data bitmap, as the rbio may be cached for later usage.
847 * do this before before unlock_stripe() so there will be no new bio
848 * for this bio.
849 */
850 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
4245215d 851
7583d8d0
LB
852 /*
853 * At this moment, rbio->bio_list is empty, however since rbio does not
854 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
855 * hash list, rbio may be merged with others so that rbio->bio_list
856 * becomes non-empty.
857 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
858 * more and we can call bio_endio() on all queued bios.
859 */
860 unlock_stripe(rbio);
861 extra = bio_list_get(&rbio->bio_list);
ff2b64a2 862 free_raid_bio(rbio);
53b381b3 863
7583d8d0
LB
864 rbio_endio_bio_list(cur, err);
865 if (extra)
866 rbio_endio_bio_list(extra, err);
53b381b3
DW
867}
868
43dd529a
DS
869/*
870 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
3e77605d
QW
871 *
872 * @rbio: The raid bio
873 * @stripe_nr: Stripe number, valid range [0, real_stripe)
874 * @sector_nr: Sector number inside the stripe,
875 * valid range [0, stripe_nsectors)
876 * @bio_list_only: Whether to use sectors inside the bio list only.
877 *
878 * The read/modify/write code wants to reuse the original bio page as much
879 * as possible, and only use stripe_sectors as fallback.
880 */
881static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
882 int stripe_nr, int sector_nr,
883 bool bio_list_only)
884{
885 struct sector_ptr *sector;
886 int index;
887
888 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes);
889 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
890
891 index = stripe_nr * rbio->stripe_nsectors + sector_nr;
892 ASSERT(index >= 0 && index < rbio->nr_sectors);
893
894 spin_lock_irq(&rbio->bio_list_lock);
895 sector = &rbio->bio_sectors[index];
896 if (sector->page || bio_list_only) {
897 /* Don't return sector without a valid page pointer */
898 if (!sector->page)
899 sector = NULL;
900 spin_unlock_irq(&rbio->bio_list_lock);
901 return sector;
902 }
903 spin_unlock_irq(&rbio->bio_list_lock);
904
905 return &rbio->stripe_sectors[index];
906}
907
53b381b3
DW
908/*
909 * allocation and initial setup for the btrfs_raid_bio. Not
910 * this does not allocate any pages for rbio->pages.
911 */
2ff7e61e 912static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
ff18a4af 913 struct btrfs_io_context *bioc)
53b381b3 914{
843de58b 915 const unsigned int real_stripes = bioc->num_stripes - bioc->num_tgtdevs;
ff18a4af 916 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
843de58b 917 const unsigned int num_pages = stripe_npages * real_stripes;
ff18a4af
CH
918 const unsigned int stripe_nsectors =
919 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
94efbe19 920 const unsigned int num_sectors = stripe_nsectors * real_stripes;
53b381b3 921 struct btrfs_raid_bio *rbio;
53b381b3 922
94efbe19
QW
923 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */
924 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
c67c68eb
QW
925 /*
926 * Our current stripe len should be fixed to 64k thus stripe_nsectors
927 * (at most 16) should be no larger than BITS_PER_LONG.
928 */
929 ASSERT(stripe_nsectors <= BITS_PER_LONG);
843de58b 930
797d74b7 931 rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
af8e2d1d 932 if (!rbio)
53b381b3 933 return ERR_PTR(-ENOMEM);
797d74b7
QW
934 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
935 GFP_NOFS);
936 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
937 GFP_NOFS);
938 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
939 GFP_NOFS);
940 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
2942a50d 941 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
797d74b7
QW
942
943 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
2942a50d 944 !rbio->finish_pointers || !rbio->error_bitmap) {
797d74b7
QW
945 free_raid_bio_pointers(rbio);
946 kfree(rbio);
947 return ERR_PTR(-ENOMEM);
948 }
53b381b3
DW
949
950 bio_list_init(&rbio->bio_list);
d817ce35 951 init_waitqueue_head(&rbio->io_wait);
53b381b3
DW
952 INIT_LIST_HEAD(&rbio->plug_list);
953 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 954 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3 955 INIT_LIST_HEAD(&rbio->hash_list);
f1c29379 956 btrfs_get_bioc(bioc);
4c664611 957 rbio->bioc = bioc;
53b381b3 958 rbio->nr_pages = num_pages;
94efbe19 959 rbio->nr_sectors = num_sectors;
2c8cdd6e 960 rbio->real_stripes = real_stripes;
5a6ac9ea 961 rbio->stripe_npages = stripe_npages;
94efbe19 962 rbio->stripe_nsectors = stripe_nsectors;
dec95574 963 refcount_set(&rbio->refs, 1);
b89e1b01 964 atomic_set(&rbio->stripes_pending, 0);
53b381b3 965
0b30f719
QW
966 ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
967 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
53b381b3 968
53b381b3
DW
969 return rbio;
970}
971
972/* allocate pages for all the stripes in the bio, including parity */
973static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
974{
eb357060
QW
975 int ret;
976
977 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages);
978 if (ret < 0)
979 return ret;
980 /* Mapping all sectors */
981 index_stripe_sectors(rbio);
982 return 0;
53b381b3
DW
983}
984
b7178a5f 985/* only allocate pages for p/q stripes */
53b381b3
DW
986static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
987{
f77183dc 988 const int data_pages = rbio->nr_data * rbio->stripe_npages;
eb357060 989 int ret;
53b381b3 990
eb357060
QW
991 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
992 rbio->stripe_pages + data_pages);
993 if (ret < 0)
994 return ret;
995
996 index_stripe_sectors(rbio);
997 return 0;
53b381b3
DW
998}
999
75b47033
QW
1000/*
1001 * Return the total numer of errors found in the vertical stripe of @sector_nr.
1002 *
1003 * @faila and @failb will also be updated to the first and second stripe
1004 * number of the errors.
1005 */
1006static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1007 int *faila, int *failb)
1008{
1009 int stripe_nr;
1010 int found_errors = 0;
1011
ad3daf1c
QW
1012 if (faila || failb) {
1013 /*
1014 * Both @faila and @failb should be valid pointers if any of
1015 * them is specified.
1016 */
1017 ASSERT(faila && failb);
1018 *faila = -1;
1019 *failb = -1;
1020 }
75b47033
QW
1021
1022 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1023 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1024
1025 if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1026 found_errors++;
ad3daf1c
QW
1027 if (faila) {
1028 /* Update faila and failb. */
1029 if (*faila < 0)
1030 *faila = stripe_nr;
1031 else if (*failb < 0)
1032 *failb = stripe_nr;
1033 }
75b47033
QW
1034 }
1035 }
1036 return found_errors;
1037}
1038
53b381b3 1039/*
3e77605d
QW
1040 * Add a single sector @sector into our list of bios for IO.
1041 *
1042 * Return 0 if everything went well.
1043 * Return <0 for error.
53b381b3 1044 */
3e77605d
QW
1045static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1046 struct bio_list *bio_list,
1047 struct sector_ptr *sector,
1048 unsigned int stripe_nr,
1049 unsigned int sector_nr,
bf9486d6 1050 enum req_op op)
53b381b3 1051{
3e77605d 1052 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
53b381b3 1053 struct bio *last = bio_list->tail;
53b381b3
DW
1054 int ret;
1055 struct bio *bio;
4c664611 1056 struct btrfs_io_stripe *stripe;
53b381b3
DW
1057 u64 disk_start;
1058
3e77605d
QW
1059 /*
1060 * Note: here stripe_nr has taken device replace into consideration,
1061 * thus it can be larger than rbio->real_stripe.
1062 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1063 */
1064 ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes);
1065 ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors);
1066 ASSERT(sector->page);
1067
4c664611 1068 stripe = &rbio->bioc->stripes[stripe_nr];
3e77605d 1069 disk_start = stripe->physical + sector_nr * sectorsize;
53b381b3
DW
1070
1071 /* if the device is missing, just fail this stripe */
2942a50d 1072 if (!stripe->dev->bdev) {
ad3daf1c
QW
1073 int found_errors;
1074
2942a50d
QW
1075 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1076 rbio->error_bitmap);
ad3daf1c
QW
1077
1078 /* Check if we have reached tolerance early. */
1079 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1080 NULL, NULL);
1081 if (found_errors > rbio->bioc->max_errors)
1082 return -EIO;
1083 return 0;
2942a50d 1084 }
53b381b3
DW
1085
1086 /* see if we can add this page onto our existing bio */
1087 if (last) {
1201b58b 1088 u64 last_end = last->bi_iter.bi_sector << 9;
4f024f37 1089 last_end += last->bi_iter.bi_size;
53b381b3
DW
1090
1091 /*
1092 * we can't merge these if they are from different
1093 * devices or if they are not contiguous
1094 */
f90ae76a 1095 if (last_end == disk_start && !last->bi_status &&
309dca30 1096 last->bi_bdev == stripe->dev->bdev) {
3e77605d
QW
1097 ret = bio_add_page(last, sector->page, sectorsize,
1098 sector->pgoff);
1099 if (ret == sectorsize)
53b381b3
DW
1100 return 0;
1101 }
1102 }
1103
1104 /* put a new bio on the list */
ff18a4af
CH
1105 bio = bio_alloc(stripe->dev->bdev,
1106 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
bf9486d6 1107 op, GFP_NOFS);
4f024f37 1108 bio->bi_iter.bi_sector = disk_start >> 9;
e01bf588 1109 bio->bi_private = rbio;
53b381b3 1110
3e77605d 1111 bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
53b381b3
DW
1112 bio_list_add(bio_list, bio);
1113 return 0;
1114}
1115
00425dd9
QW
1116static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1117{
1118 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1119 struct bio_vec bvec;
1120 struct bvec_iter iter;
1121 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1122 rbio->bioc->raid_map[0];
1123
00425dd9
QW
1124 bio_for_each_segment(bvec, bio, iter) {
1125 u32 bvec_offset;
1126
1127 for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1128 bvec_offset += sectorsize, offset += sectorsize) {
1129 int index = offset / sectorsize;
1130 struct sector_ptr *sector = &rbio->bio_sectors[index];
1131
1132 sector->page = bvec.bv_page;
1133 sector->pgoff = bvec.bv_offset + bvec_offset;
1134 ASSERT(sector->pgoff < PAGE_SIZE);
1135 }
1136 }
1137}
1138
53b381b3
DW
1139/*
1140 * helper function to walk our bio list and populate the bio_pages array with
1141 * the result. This seems expensive, but it is faster than constantly
1142 * searching through the bio list as we setup the IO in finish_rmw or stripe
1143 * reconstruction.
1144 *
1145 * This must be called before you trust the answers from page_in_rbio
1146 */
1147static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1148{
1149 struct bio *bio;
53b381b3
DW
1150
1151 spin_lock_irq(&rbio->bio_list_lock);
00425dd9
QW
1152 bio_list_for_each(bio, &rbio->bio_list)
1153 index_one_bio(rbio, bio);
1154
53b381b3
DW
1155 spin_unlock_irq(&rbio->bio_list_lock);
1156}
1157
b8bea09a
QW
1158static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1159 struct raid56_bio_trace_info *trace_info)
1160{
1161 const struct btrfs_io_context *bioc = rbio->bioc;
1162 int i;
1163
1164 ASSERT(bioc);
1165
1166 /* We rely on bio->bi_bdev to find the stripe number. */
1167 if (!bio->bi_bdev)
1168 goto not_found;
1169
1170 for (i = 0; i < bioc->num_stripes; i++) {
1171 if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1172 continue;
1173 trace_info->stripe_nr = i;
1174 trace_info->devid = bioc->stripes[i].dev->devid;
1175 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1176 bioc->stripes[i].physical;
1177 return;
1178 }
1179
1180not_found:
1181 trace_info->devid = -1;
1182 trace_info->offset = -1;
1183 trace_info->stripe_nr = -1;
1184}
1185
30e3c897
QW
1186/* Generate PQ for one veritical stripe. */
1187static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1188{
1189 void **pointers = rbio->finish_pointers;
1190 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1191 struct sector_ptr *sector;
1192 int stripe;
1193 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1194
1195 /* First collect one sector from each data stripe */
1196 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1197 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1198 pointers[stripe] = kmap_local_page(sector->page) +
1199 sector->pgoff;
1200 }
1201
1202 /* Then add the parity stripe */
1203 sector = rbio_pstripe_sector(rbio, sectornr);
1204 sector->uptodate = 1;
1205 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1206
1207 if (has_qstripe) {
1208 /*
1209 * RAID6, add the qstripe and call the library function
1210 * to fill in our p/q
1211 */
1212 sector = rbio_qstripe_sector(rbio, sectornr);
1213 sector->uptodate = 1;
1214 pointers[stripe++] = kmap_local_page(sector->page) +
1215 sector->pgoff;
1216
1217 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1218 pointers);
1219 } else {
1220 /* raid5 */
1221 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1222 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1223 }
1224 for (stripe = stripe - 1; stripe >= 0; stripe--)
1225 kunmap_local(pointers[stripe]);
1226}
1227
6486d21c
QW
1228static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1229 struct bio_list *bio_list)
53b381b3 1230{
6486d21c 1231 struct bio *bio;
36920044
QW
1232 /* The total sector number inside the full stripe. */
1233 int total_sector_nr;
3e77605d 1234 int sectornr;
6486d21c 1235 int stripe;
53b381b3
DW
1236 int ret;
1237
6486d21c 1238 ASSERT(bio_list_size(bio_list) == 0);
53b381b3 1239
bd8f7e62
QW
1240 /* We should have at least one data sector. */
1241 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1242
5eb30ee2
QW
1243 /*
1244 * Reset errors, as we may have errors inherited from from degraded
1245 * write.
1246 */
2942a50d 1247 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
5eb30ee2 1248
53b381b3 1249 /*
6486d21c 1250 * Start assembly. Make bios for everything from the higher layers (the
36920044 1251 * bio_list in our rbio) and our P/Q. Ignore everything else.
53b381b3 1252 */
36920044
QW
1253 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1254 total_sector_nr++) {
1255 struct sector_ptr *sector;
3e77605d 1256
36920044
QW
1257 stripe = total_sector_nr / rbio->stripe_nsectors;
1258 sectornr = total_sector_nr % rbio->stripe_nsectors;
53b381b3 1259
36920044
QW
1260 /* This vertical stripe has no data, skip it. */
1261 if (!test_bit(sectornr, &rbio->dbitmap))
1262 continue;
53b381b3 1263
36920044
QW
1264 if (stripe < rbio->nr_data) {
1265 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1266 if (!sector)
1267 continue;
1268 } else {
1269 sector = rbio_stripe_sector(rbio, stripe, sectornr);
53b381b3 1270 }
36920044 1271
6486d21c 1272 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
ff18a4af 1273 sectornr, REQ_OP_WRITE);
36920044 1274 if (ret)
6486d21c 1275 goto error;
53b381b3
DW
1276 }
1277
6486d21c
QW
1278 if (likely(!rbio->bioc->num_tgtdevs))
1279 return 0;
2c8cdd6e 1280
6486d21c 1281 /* Make a copy for the replace target device. */
36920044
QW
1282 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1283 total_sector_nr++) {
1284 struct sector_ptr *sector;
2c8cdd6e 1285
36920044
QW
1286 stripe = total_sector_nr / rbio->stripe_nsectors;
1287 sectornr = total_sector_nr % rbio->stripe_nsectors;
3e77605d 1288
6486d21c 1289 if (!rbio->bioc->tgtdev_map[stripe]) {
36920044
QW
1290 /*
1291 * We can skip the whole stripe completely, note
1292 * total_sector_nr will be increased by one anyway.
1293 */
1294 ASSERT(sectornr == 0);
1295 total_sector_nr += rbio->stripe_nsectors - 1;
1296 continue;
1297 }
2c8cdd6e 1298
36920044
QW
1299 /* This vertical stripe has no data, skip it. */
1300 if (!test_bit(sectornr, &rbio->dbitmap))
1301 continue;
2c8cdd6e 1302
36920044
QW
1303 if (stripe < rbio->nr_data) {
1304 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1305 if (!sector)
1306 continue;
1307 } else {
1308 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2c8cdd6e 1309 }
36920044 1310
6486d21c 1311 ret = rbio_add_io_sector(rbio, bio_list, sector,
36920044 1312 rbio->bioc->tgtdev_map[stripe],
ff18a4af 1313 sectornr, REQ_OP_WRITE);
36920044 1314 if (ret)
6486d21c 1315 goto error;
2c8cdd6e
MX
1316 }
1317
6486d21c
QW
1318 return 0;
1319error:
1320 while ((bio = bio_list_pop(bio_list)))
1321 bio_put(bio);
1322 return -EIO;
1323}
1324
2942a50d
QW
1325static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1326{
1327 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1328 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1329 rbio->bioc->raid_map[0];
1330 int total_nr_sector = offset >> fs_info->sectorsize_bits;
1331
1332 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1333
1334 bitmap_set(rbio->error_bitmap, total_nr_sector,
1335 bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1336
1337 /*
1338 * Special handling for raid56_alloc_missing_rbio() used by
1339 * scrub/replace. Unlike call path in raid56_parity_recover(), they
1340 * pass an empty bio here. Thus we have to find out the missing device
1341 * and mark the stripe error instead.
1342 */
1343 if (bio->bi_iter.bi_size == 0) {
1344 bool found_missing = false;
1345 int stripe_nr;
1346
1347 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1348 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1349 found_missing = true;
1350 bitmap_set(rbio->error_bitmap,
1351 stripe_nr * rbio->stripe_nsectors,
1352 rbio->stripe_nsectors);
1353 }
1354 }
1355 ASSERT(found_missing);
1356 }
1357}
1358
5fdb7afc
QW
1359/*
1360 * For subpage case, we can no longer set page Uptodate directly for
1361 * stripe_pages[], thus we need to locate the sector.
1362 */
1363static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1364 struct page *page,
1365 unsigned int pgoff)
1366{
1367 int i;
1368
1369 for (i = 0; i < rbio->nr_sectors; i++) {
1370 struct sector_ptr *sector = &rbio->stripe_sectors[i];
1371
1372 if (sector->page == page && sector->pgoff == pgoff)
1373 return sector;
1374 }
1375 return NULL;
1376}
1377
53b381b3
DW
1378/*
1379 * this sets each page in the bio uptodate. It should only be used on private
1380 * rbio pages, nothing that comes in from the higher layers
1381 */
5fdb7afc 1382static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
53b381b3 1383{
5fdb7afc 1384 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
0198e5b7 1385 struct bio_vec *bvec;
6dc4f100 1386 struct bvec_iter_all iter_all;
6592e58c 1387
0198e5b7 1388 ASSERT(!bio_flagged(bio, BIO_CLONED));
53b381b3 1389
5fdb7afc
QW
1390 bio_for_each_segment_all(bvec, bio, iter_all) {
1391 struct sector_ptr *sector;
1392 int pgoff;
1393
1394 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1395 pgoff += sectorsize) {
1396 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1397 ASSERT(sector);
1398 if (sector)
1399 sector->uptodate = 1;
1400 }
1401 }
53b381b3
DW
1402}
1403
2942a50d
QW
1404static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1405{
1406 struct bio_vec *bv = bio_first_bvec_all(bio);
1407 int i;
1408
1409 for (i = 0; i < rbio->nr_sectors; i++) {
1410 struct sector_ptr *sector;
1411
1412 sector = &rbio->stripe_sectors[i];
1413 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1414 break;
1415 sector = &rbio->bio_sectors[i];
1416 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1417 break;
1418 }
1419 ASSERT(i < rbio->nr_sectors);
1420 return i;
1421}
1422
1423static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1424{
1425 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1426 u32 bio_size = 0;
1427 struct bio_vec *bvec;
1428 struct bvec_iter_all iter_all;
1429
1430 bio_for_each_segment_all(bvec, bio, iter_all)
1431 bio_size += bvec->bv_len;
1432
1433 bitmap_set(rbio->error_bitmap, total_sector_nr,
1434 bio_size >> rbio->bioc->fs_info->sectorsize_bits);
1435}
1436
7a315072
QW
1437/* Verify the data sectors at read time. */
1438static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1439 struct bio *bio)
1440{
1441 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1442 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1443 struct bio_vec *bvec;
1444 struct bvec_iter_all iter_all;
1445
1446 /* No data csum for the whole stripe, no need to verify. */
1447 if (!rbio->csum_bitmap || !rbio->csum_buf)
1448 return;
1449
1450 /* P/Q stripes, they have no data csum to verify against. */
1451 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1452 return;
1453
1454 bio_for_each_segment_all(bvec, bio, iter_all) {
1455 int bv_offset;
1456
1457 for (bv_offset = bvec->bv_offset;
1458 bv_offset < bvec->bv_offset + bvec->bv_len;
1459 bv_offset += fs_info->sectorsize, total_sector_nr++) {
1460 u8 csum_buf[BTRFS_CSUM_SIZE];
1461 u8 *expected_csum = rbio->csum_buf +
1462 total_sector_nr * fs_info->csum_size;
1463 int ret;
1464
1465 /* No csum for this sector, skip to the next sector. */
1466 if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1467 continue;
1468
1469 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1470 bv_offset, csum_buf, expected_csum);
1471 if (ret < 0)
1472 set_bit(total_sector_nr, rbio->error_bitmap);
1473 }
1474 }
1475}
1476
d817ce35
QW
1477static void raid_wait_read_end_io(struct bio *bio)
1478{
1479 struct btrfs_raid_bio *rbio = bio->bi_private;
1480
7a315072 1481 if (bio->bi_status) {
2942a50d 1482 rbio_update_error_bitmap(rbio, bio);
7a315072 1483 } else {
d817ce35 1484 set_bio_pages_uptodate(rbio, bio);
7a315072
QW
1485 verify_bio_data_sectors(rbio, bio);
1486 }
d817ce35
QW
1487
1488 bio_put(bio);
1489 if (atomic_dec_and_test(&rbio->stripes_pending))
1490 wake_up(&rbio->io_wait);
1491}
1492
1493static void submit_read_bios(struct btrfs_raid_bio *rbio,
1494 struct bio_list *bio_list)
1495{
1496 struct bio *bio;
1497
1498 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1499 while ((bio = bio_list_pop(bio_list))) {
1500 bio->bi_end_io = raid_wait_read_end_io;
1501
1502 if (trace_raid56_scrub_read_recover_enabled()) {
1503 struct raid56_bio_trace_info trace_info = { 0 };
1504
1505 bio_get_trace_info(rbio, bio, &trace_info);
1506 trace_raid56_scrub_read_recover(rbio, bio, &trace_info);
1507 }
1508 submit_bio(bio);
1509 }
1510}
1511
509c27aa
QW
1512static int rmw_assemble_read_bios(struct btrfs_raid_bio *rbio,
1513 struct bio_list *bio_list)
53b381b3 1514{
53b381b3 1515 struct bio *bio;
509c27aa
QW
1516 int total_sector_nr;
1517 int ret = 0;
53b381b3 1518
509c27aa 1519 ASSERT(bio_list_size(bio_list) == 0);
53b381b3 1520
7a315072
QW
1521 /*
1522 * Build a list of bios to read all sectors (including data and P/Q).
1523 *
1524 * This behaviro is to compensate the later csum verification and
1525 * recovery.
1526 */
1527 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
550cdeb3
QW
1528 total_sector_nr++) {
1529 struct sector_ptr *sector;
1530 int stripe = total_sector_nr / rbio->stripe_nsectors;
1531 int sectornr = total_sector_nr % rbio->stripe_nsectors;
3e77605d 1532
550cdeb3 1533 sector = rbio_stripe_sector(rbio, stripe, sectornr);
509c27aa 1534 ret = rbio_add_io_sector(rbio, bio_list, sector,
ff18a4af 1535 stripe, sectornr, REQ_OP_READ);
550cdeb3
QW
1536 if (ret)
1537 goto cleanup;
53b381b3 1538 }
509c27aa
QW
1539 return 0;
1540
1541cleanup:
1542 while ((bio = bio_list_pop(bio_list)))
1543 bio_put(bio);
1544 return ret;
1545}
1546
5eb30ee2
QW
1547static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1548{
1549 const int data_pages = rbio->nr_data * rbio->stripe_npages;
1550 int ret;
1551
1552 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages);
1553 if (ret < 0)
1554 return ret;
1555
1556 index_stripe_sectors(rbio);
1557 return 0;
1558}
1559
6ac0f488
CM
1560/*
1561 * We use plugging call backs to collect full stripes.
1562 * Any time we get a partial stripe write while plugged
1563 * we collect it into a list. When the unplug comes down,
1564 * we sort the list by logical block number and merge
1565 * everything we can into the same rbios
1566 */
1567struct btrfs_plug_cb {
1568 struct blk_plug_cb cb;
1569 struct btrfs_fs_info *info;
1570 struct list_head rbio_list;
385de0ef 1571 struct work_struct work;
6ac0f488
CM
1572};
1573
1574/*
1575 * rbios on the plug list are sorted for easier merging.
1576 */
4f0f586b
ST
1577static int plug_cmp(void *priv, const struct list_head *a,
1578 const struct list_head *b)
6ac0f488 1579{
214cc184
DS
1580 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1581 plug_list);
1582 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1583 plug_list);
4f024f37
KO
1584 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1585 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1586
1587 if (a_sector < b_sector)
1588 return -1;
1589 if (a_sector > b_sector)
1590 return 1;
1591 return 0;
1592}
1593
93723095 1594static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
6ac0f488 1595{
93723095 1596 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
6ac0f488
CM
1597 struct btrfs_raid_bio *cur;
1598 struct btrfs_raid_bio *last = NULL;
1599
6ac0f488 1600 list_sort(NULL, &plug->rbio_list, plug_cmp);
93723095 1601
6ac0f488
CM
1602 while (!list_empty(&plug->rbio_list)) {
1603 cur = list_entry(plug->rbio_list.next,
1604 struct btrfs_raid_bio, plug_list);
1605 list_del_init(&cur->plug_list);
1606
1607 if (rbio_is_full(cur)) {
93723095
QW
1608 /* We have a full stripe, queue it down. */
1609 start_async_work(cur, rmw_rbio_work);
6ac0f488
CM
1610 continue;
1611 }
1612 if (last) {
1613 if (rbio_can_merge(last, cur)) {
1614 merge_rbio(last, cur);
ff2b64a2 1615 free_raid_bio(cur);
6ac0f488 1616 continue;
6ac0f488 1617 }
93723095 1618 start_async_work(last, rmw_rbio_work);
6ac0f488
CM
1619 }
1620 last = cur;
1621 }
93723095
QW
1622 if (last)
1623 start_async_work(last, rmw_rbio_work);
6ac0f488
CM
1624 kfree(plug);
1625}
1626
bd8f7e62
QW
1627/* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1628static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1629{
1630 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1631 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1632 const u64 full_stripe_start = rbio->bioc->raid_map[0];
1633 const u32 orig_len = orig_bio->bi_iter.bi_size;
1634 const u32 sectorsize = fs_info->sectorsize;
1635 u64 cur_logical;
1636
1637 ASSERT(orig_logical >= full_stripe_start &&
1638 orig_logical + orig_len <= full_stripe_start +
ff18a4af 1639 rbio->nr_data * BTRFS_STRIPE_LEN);
bd8f7e62
QW
1640
1641 bio_list_add(&rbio->bio_list, orig_bio);
1642 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1643
1644 /* Update the dbitmap. */
1645 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1646 cur_logical += sectorsize) {
1647 int bit = ((u32)(cur_logical - full_stripe_start) >>
1648 fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1649
1650 set_bit(bit, &rbio->dbitmap);
1651 }
1652}
1653
53b381b3
DW
1654/*
1655 * our main entry point for writes from the rest of the FS.
1656 */
31683f4a 1657void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
53b381b3 1658{
6a258d72 1659 struct btrfs_fs_info *fs_info = bioc->fs_info;
53b381b3 1660 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1661 struct btrfs_plug_cb *plug = NULL;
1662 struct blk_plug_cb *cb;
31683f4a 1663 int ret = 0;
53b381b3 1664
ff18a4af 1665 rbio = alloc_rbio(fs_info, bioc);
af8e2d1d 1666 if (IS_ERR(rbio)) {
31683f4a 1667 ret = PTR_ERR(rbio);
f1c29379 1668 goto fail;
af8e2d1d 1669 }
1b94b556 1670 rbio->operation = BTRFS_RBIO_WRITE;
bd8f7e62 1671 rbio_add_bio(rbio, bio);
6ac0f488
CM
1672
1673 /*
93723095 1674 * Don't plug on full rbios, just get them out the door
6ac0f488
CM
1675 * as quickly as we can
1676 */
93723095
QW
1677 if (rbio_is_full(rbio))
1678 goto queue_rbio;
6ac0f488 1679
93723095 1680 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
6ac0f488
CM
1681 if (cb) {
1682 plug = container_of(cb, struct btrfs_plug_cb, cb);
1683 if (!plug->info) {
0b246afa 1684 plug->info = fs_info;
6ac0f488
CM
1685 INIT_LIST_HEAD(&plug->rbio_list);
1686 }
1687 list_add_tail(&rbio->plug_list, &plug->rbio_list);
93723095 1688 return;
6ac0f488 1689 }
93723095
QW
1690queue_rbio:
1691 /*
1692 * Either we don't have any existing plug, or we're doing a full stripe,
1693 * can queue the rmw work now.
1694 */
1695 start_async_work(rbio, rmw_rbio_work);
31683f4a
CH
1696
1697 return;
1698
f1c29379 1699fail:
31683f4a
CH
1700 bio->bi_status = errno_to_blk_status(ret);
1701 bio_endio(bio);
53b381b3
DW
1702}
1703
7a315072
QW
1704static int verify_one_sector(struct btrfs_raid_bio *rbio,
1705 int stripe_nr, int sector_nr)
1706{
1707 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1708 struct sector_ptr *sector;
1709 u8 csum_buf[BTRFS_CSUM_SIZE];
1710 u8 *csum_expected;
1711 int ret;
1712
1713 if (!rbio->csum_bitmap || !rbio->csum_buf)
1714 return 0;
1715
1716 /* No way to verify P/Q as they are not covered by data csum. */
1717 if (stripe_nr >= rbio->nr_data)
1718 return 0;
1719 /*
1720 * If we're rebuilding a read, we have to use pages from the
1721 * bio list if possible.
1722 */
1723 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1724 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
1725 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1726 } else {
1727 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1728 }
1729
1730 ASSERT(sector->page);
1731
1732 csum_expected = rbio->csum_buf +
1733 (stripe_nr * rbio->stripe_nsectors + sector_nr) *
1734 fs_info->csum_size;
1735 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1736 csum_buf, csum_expected);
1737 return ret;
1738}
1739
9c5ff9b4
QW
1740/*
1741 * Recover a vertical stripe specified by @sector_nr.
1742 * @*pointers are the pre-allocated pointers by the caller, so we don't
1743 * need to allocate/free the pointers again and again.
1744 */
75b47033
QW
1745static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1746 void **pointers, void **unmap_array)
9c5ff9b4
QW
1747{
1748 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1749 struct sector_ptr *sector;
1750 const u32 sectorsize = fs_info->sectorsize;
75b47033
QW
1751 int found_errors;
1752 int faila;
1753 int failb;
9c5ff9b4 1754 int stripe_nr;
7a315072 1755 int ret = 0;
9c5ff9b4
QW
1756
1757 /*
1758 * Now we just use bitmap to mark the horizontal stripes in
1759 * which we have data when doing parity scrub.
1760 */
1761 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1762 !test_bit(sector_nr, &rbio->dbitmap))
75b47033
QW
1763 return 0;
1764
1765 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1766 &failb);
1767 /*
1768 * No errors in the veritical stripe, skip it. Can happen for recovery
1769 * which only part of a stripe failed csum check.
1770 */
1771 if (!found_errors)
1772 return 0;
1773
1774 if (found_errors > rbio->bioc->max_errors)
1775 return -EIO;
9c5ff9b4
QW
1776
1777 /*
1778 * Setup our array of pointers with sectors from each stripe
1779 *
1780 * NOTE: store a duplicate array of pointers to preserve the
1781 * pointer order.
1782 */
1783 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1784 /*
75b47033
QW
1785 * If we're rebuilding a read, we have to use pages from the
1786 * bio list if possible.
9c5ff9b4
QW
1787 */
1788 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
75b47033 1789 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) {
9c5ff9b4
QW
1790 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1791 } else {
1792 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1793 }
1794 ASSERT(sector->page);
1795 pointers[stripe_nr] = kmap_local_page(sector->page) +
1796 sector->pgoff;
1797 unmap_array[stripe_nr] = pointers[stripe_nr];
1798 }
1799
1800 /* All raid6 handling here */
1801 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1802 /* Single failure, rebuild from parity raid5 style */
1803 if (failb < 0) {
1804 if (faila == rbio->nr_data)
1805 /*
1806 * Just the P stripe has failed, without
1807 * a bad data or Q stripe.
1808 * We have nothing to do, just skip the
1809 * recovery for this stripe.
1810 */
1811 goto cleanup;
1812 /*
1813 * a single failure in raid6 is rebuilt
1814 * in the pstripe code below
1815 */
1816 goto pstripe;
1817 }
1818
1819 /*
1820 * If the q stripe is failed, do a pstripe reconstruction from
1821 * the xors.
1822 * If both the q stripe and the P stripe are failed, we're
1823 * here due to a crc mismatch and we can't give them the
1824 * data they want.
1825 */
1826 if (rbio->bioc->raid_map[failb] == RAID6_Q_STRIPE) {
1827 if (rbio->bioc->raid_map[faila] ==
1828 RAID5_P_STRIPE)
1829 /*
1830 * Only P and Q are corrupted.
1831 * We only care about data stripes recovery,
1832 * can skip this vertical stripe.
1833 */
1834 goto cleanup;
1835 /*
1836 * Otherwise we have one bad data stripe and
1837 * a good P stripe. raid5!
1838 */
1839 goto pstripe;
1840 }
1841
1842 if (rbio->bioc->raid_map[failb] == RAID5_P_STRIPE) {
1843 raid6_datap_recov(rbio->real_stripes, sectorsize,
1844 faila, pointers);
1845 } else {
1846 raid6_2data_recov(rbio->real_stripes, sectorsize,
1847 faila, failb, pointers);
1848 }
1849 } else {
1850 void *p;
1851
1852 /* Rebuild from P stripe here (raid5 or raid6). */
1853 ASSERT(failb == -1);
1854pstripe:
1855 /* Copy parity block into failed block to start with */
1856 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1857
1858 /* Rearrange the pointer array */
1859 p = pointers[faila];
1860 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1861 stripe_nr++)
1862 pointers[stripe_nr] = pointers[stripe_nr + 1];
1863 pointers[rbio->nr_data - 1] = p;
1864
1865 /* Xor in the rest */
1866 run_xor(pointers, rbio->nr_data - 1, sectorsize);
1867
1868 }
1869
1870 /*
1871 * No matter if this is a RMW or recovery, we should have all
1872 * failed sectors repaired in the vertical stripe, thus they are now
1873 * uptodate.
1874 * Especially if we determine to cache the rbio, we need to
1875 * have at least all data sectors uptodate.
7a315072
QW
1876 *
1877 * If possible, also check if the repaired sector matches its data
1878 * checksum.
9c5ff9b4 1879 */
75b47033 1880 if (faila >= 0) {
7a315072
QW
1881 ret = verify_one_sector(rbio, faila, sector_nr);
1882 if (ret < 0)
1883 goto cleanup;
1884
75b47033 1885 sector = rbio_stripe_sector(rbio, faila, sector_nr);
9c5ff9b4
QW
1886 sector->uptodate = 1;
1887 }
75b47033 1888 if (failb >= 0) {
7a315072
QW
1889 ret = verify_one_sector(rbio, faila, sector_nr);
1890 if (ret < 0)
1891 goto cleanup;
1892
75b47033 1893 sector = rbio_stripe_sector(rbio, failb, sector_nr);
9c5ff9b4
QW
1894 sector->uptodate = 1;
1895 }
1896
1897cleanup:
1898 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1899 kunmap_local(unmap_array[stripe_nr]);
7a315072 1900 return ret;
9c5ff9b4
QW
1901}
1902
ec936b03 1903static int recover_sectors(struct btrfs_raid_bio *rbio)
53b381b3 1904{
9c5ff9b4
QW
1905 void **pointers = NULL;
1906 void **unmap_array = NULL;
ec936b03
QW
1907 int sectornr;
1908 int ret = 0;
53b381b3 1909
07e4d380 1910 /*
ec936b03
QW
1911 * @pointers array stores the pointer for each sector.
1912 *
1913 * @unmap_array stores copy of pointers that does not get reordered
1914 * during reconstruction so that kunmap_local works.
07e4d380 1915 */
31e818fe 1916 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
94a0b58d 1917 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
ec936b03
QW
1918 if (!pointers || !unmap_array) {
1919 ret = -ENOMEM;
1920 goto out;
94a0b58d
IW
1921 }
1922
b4ee1782
OS
1923 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1924 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1925 spin_lock_irq(&rbio->bio_list_lock);
1926 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1927 spin_unlock_irq(&rbio->bio_list_lock);
1928 }
1929
1930 index_rbio_pages(rbio);
1931
75b47033
QW
1932 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
1933 ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
1934 if (ret < 0)
1935 break;
1936 }
53b381b3 1937
ec936b03 1938out:
53b381b3 1939 kfree(pointers);
ec936b03
QW
1940 kfree(unmap_array);
1941 return ret;
1942}
1943
d31968d9
QW
1944static int recover_assemble_read_bios(struct btrfs_raid_bio *rbio,
1945 struct bio_list *bio_list)
53b381b3 1946{
53b381b3 1947 struct bio *bio;
d31968d9
QW
1948 int total_sector_nr;
1949 int ret = 0;
53b381b3 1950
d31968d9 1951 ASSERT(bio_list_size(bio_list) == 0);
53b381b3 1952 /*
f6065f8e
QW
1953 * Read everything that hasn't failed. However this time we will
1954 * not trust any cached sector.
1955 * As we may read out some stale data but higher layer is not reading
1956 * that stale part.
1957 *
1958 * So here we always re-read everything in recovery path.
53b381b3 1959 */
ef340fcc
QW
1960 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1961 total_sector_nr++) {
1962 int stripe = total_sector_nr / rbio->stripe_nsectors;
1963 int sectornr = total_sector_nr % rbio->stripe_nsectors;
1964 struct sector_ptr *sector;
1965
75b47033
QW
1966 /*
1967 * Skip the range which has error. It can be a range which is
1968 * marked error (for csum mismatch), or it can be a missing
1969 * device.
1970 */
1971 if (!rbio->bioc->stripes[stripe].dev->bdev ||
1972 test_bit(total_sector_nr, rbio->error_bitmap)) {
1973 /*
1974 * Also set the error bit for missing device, which
1975 * may not yet have its error bit set.
1976 */
1977 set_bit(total_sector_nr, rbio->error_bitmap);
53b381b3 1978 continue;
5588383e 1979 }
75b47033 1980
ef340fcc 1981 sector = rbio_stripe_sector(rbio, stripe, sectornr);
d31968d9 1982 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
ff18a4af 1983 sectornr, REQ_OP_READ);
ef340fcc 1984 if (ret < 0)
d31968d9 1985 goto error;
53b381b3 1986 }
d31968d9
QW
1987 return 0;
1988error:
1989 while ((bio = bio_list_pop(bio_list)))
1990 bio_put(bio);
1991
1992 return -EIO;
1993}
1994
d817ce35
QW
1995static int recover_rbio(struct btrfs_raid_bio *rbio)
1996{
1997 struct bio_list bio_list;
1998 struct bio *bio;
1999 int ret;
2000
2001 /*
2002 * Either we're doing recover for a read failure or degraded write,
75b47033 2003 * caller should have set error bitmap correctly.
d817ce35 2004 */
2942a50d 2005 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
d817ce35
QW
2006 bio_list_init(&bio_list);
2007
d817ce35
QW
2008 /* For recovery, we need to read all sectors including P/Q. */
2009 ret = alloc_rbio_pages(rbio);
2010 if (ret < 0)
2011 goto out;
2012
2013 index_rbio_pages(rbio);
2014
2015 ret = recover_assemble_read_bios(rbio, &bio_list);
2016 if (ret < 0)
2017 goto out;
2018
2019 submit_read_bios(rbio, &bio_list);
2020 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2021
d817ce35
QW
2022 ret = recover_sectors(rbio);
2023
2024out:
2025 while ((bio = bio_list_pop(&bio_list)))
2026 bio_put(bio);
2027
2028 return ret;
2029}
2030
2031static void recover_rbio_work(struct work_struct *work)
2032{
2033 struct btrfs_raid_bio *rbio;
2034 int ret;
2035
2036 rbio = container_of(work, struct btrfs_raid_bio, work);
2037
2038 ret = lock_stripe_add(rbio);
2039 if (ret == 0) {
2040 ret = recover_rbio(rbio);
2041 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2042 }
2043}
2044
2045static void recover_rbio_work_locked(struct work_struct *work)
2046{
2047 struct btrfs_raid_bio *rbio;
2048 int ret;
2049
2050 rbio = container_of(work, struct btrfs_raid_bio, work);
2051
2052 ret = recover_rbio(rbio);
2053 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2054}
2055
75b47033
QW
2056static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2057{
2058 bool found = false;
2059 int sector_nr;
2060
2061 /*
2062 * This is for RAID6 extra recovery tries, thus mirror number should
2063 * be large than 2.
2064 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2065 * RAID5 methods.
2066 */
2067 ASSERT(mirror_num > 2);
2068 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2069 int found_errors;
2070 int faila;
2071 int failb;
2072
2073 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2074 &faila, &failb);
2075 /* This vertical stripe doesn't have errors. */
2076 if (!found_errors)
2077 continue;
2078
2079 /*
2080 * If we found errors, there should be only one error marked
2081 * by previous set_rbio_range_error().
2082 */
2083 ASSERT(found_errors == 1);
2084 found = true;
2085
2086 /* Now select another stripe to mark as error. */
2087 failb = rbio->real_stripes - (mirror_num - 1);
2088 if (failb <= faila)
2089 failb--;
2090
2091 /* Set the extra bit in error bitmap. */
2092 if (failb >= 0)
2093 set_bit(failb * rbio->stripe_nsectors + sector_nr,
2094 rbio->error_bitmap);
2095 }
2096
2097 /* We should found at least one vertical stripe with error.*/
2098 ASSERT(found);
2099}
2100
53b381b3
DW
2101/*
2102 * the main entry point for reads from the higher layers. This
2103 * is really only called when the normal read path had a failure,
2104 * so we assume the bio they send down corresponds to a failed part
2105 * of the drive.
2106 */
6065fd95 2107void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
f1c29379 2108 int mirror_num)
53b381b3 2109{
6a258d72 2110 struct btrfs_fs_info *fs_info = bioc->fs_info;
53b381b3 2111 struct btrfs_raid_bio *rbio;
53b381b3 2112
ff18a4af 2113 rbio = alloc_rbio(fs_info, bioc);
af8e2d1d 2114 if (IS_ERR(rbio)) {
6065fd95 2115 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
d817ce35
QW
2116 bio_endio(bio);
2117 return;
af8e2d1d 2118 }
53b381b3 2119
1b94b556 2120 rbio->operation = BTRFS_RBIO_READ_REBUILD;
bd8f7e62 2121 rbio_add_bio(rbio, bio);
53b381b3 2122
2942a50d
QW
2123 set_rbio_range_error(rbio, bio);
2124
53b381b3 2125 /*
8810f751
LB
2126 * Loop retry:
2127 * for 'mirror == 2', reconstruct from all other stripes.
2128 * for 'mirror_num > 2', select a stripe to fail on every retry.
53b381b3 2129 */
ad3daf1c 2130 if (mirror_num > 2)
75b47033 2131 set_rbio_raid6_extra_error(rbio, mirror_num);
53b381b3 2132
d817ce35 2133 start_async_work(rbio, recover_rbio_work);
53b381b3
DW
2134}
2135
c5a41562
QW
2136static void fill_data_csums(struct btrfs_raid_bio *rbio)
2137{
2138 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2139 struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2140 rbio->bioc->raid_map[0]);
2141 const u64 start = rbio->bioc->raid_map[0];
2142 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2143 fs_info->sectorsize_bits;
2144 int ret;
2145
2146 /* The rbio should not have its csum buffer initialized. */
2147 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2148
2149 /*
2150 * Skip the csum search if:
2151 *
2152 * - The rbio doesn't belong to data block groups
2153 * Then we are doing IO for tree blocks, no need to search csums.
2154 *
2155 * - The rbio belongs to mixed block groups
2156 * This is to avoid deadlock, as we're already holding the full
2157 * stripe lock, if we trigger a metadata read, and it needs to do
2158 * raid56 recovery, we will deadlock.
2159 */
2160 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2161 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2162 return;
2163
2164 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2165 fs_info->csum_size, GFP_NOFS);
2166 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2167 GFP_NOFS);
2168 if (!rbio->csum_buf || !rbio->csum_bitmap) {
2169 ret = -ENOMEM;
2170 goto error;
2171 }
2172
2173 ret = btrfs_lookup_csums_bitmap(csum_root, start, start + len - 1,
2174 rbio->csum_buf, rbio->csum_bitmap);
2175 if (ret < 0)
2176 goto error;
2177 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2178 goto no_csum;
2179 return;
2180
2181error:
2182 /*
2183 * We failed to allocate memory or grab the csum, but it's not fatal,
2184 * we can still continue. But better to warn users that RMW is no
2185 * longer safe for this particular sub-stripe write.
2186 */
2187 btrfs_warn_rl(fs_info,
2188"sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2189 rbio->bioc->raid_map[0], ret);
2190no_csum:
2191 kfree(rbio->csum_buf);
2192 bitmap_free(rbio->csum_bitmap);
2193 rbio->csum_buf = NULL;
2194 rbio->csum_bitmap = NULL;
2195}
2196
7a315072 2197static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
5eb30ee2
QW
2198{
2199 struct bio_list bio_list;
2200 struct bio *bio;
2201 int ret;
2202
2203 bio_list_init(&bio_list);
5eb30ee2 2204
c5a41562
QW
2205 /*
2206 * Fill the data csums we need for data verification. We need to fill
2207 * the csum_bitmap/csum_buf first, as our endio function will try to
2208 * verify the data sectors.
2209 */
2210 fill_data_csums(rbio);
2211
5eb30ee2
QW
2212 ret = rmw_assemble_read_bios(rbio, &bio_list);
2213 if (ret < 0)
2214 goto out;
2215
2216 submit_read_bios(rbio, &bio_list);
2217 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
7a315072
QW
2218
2219 /*
2220 * We may or may not have any corrupted sectors (including missing dev
2221 * and csum mismatch), just let recover_sectors() to handle them all.
2222 */
2223 ret = recover_sectors(rbio);
5eb30ee2
QW
2224 return ret;
2225out:
2226 while ((bio = bio_list_pop(&bio_list)))
2227 bio_put(bio);
2228
2229 return ret;
2230}
2231
2232static void raid_wait_write_end_io(struct bio *bio)
2233{
2234 struct btrfs_raid_bio *rbio = bio->bi_private;
2235 blk_status_t err = bio->bi_status;
2236
ad3daf1c 2237 if (err)
2942a50d 2238 rbio_update_error_bitmap(rbio, bio);
5eb30ee2
QW
2239 bio_put(bio);
2240 if (atomic_dec_and_test(&rbio->stripes_pending))
2241 wake_up(&rbio->io_wait);
2242}
2243
2244static void submit_write_bios(struct btrfs_raid_bio *rbio,
2245 struct bio_list *bio_list)
2246{
2247 struct bio *bio;
2248
2249 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2250 while ((bio = bio_list_pop(bio_list))) {
2251 bio->bi_end_io = raid_wait_write_end_io;
2252
2253 if (trace_raid56_write_stripe_enabled()) {
2254 struct raid56_bio_trace_info trace_info = { 0 };
2255
2256 bio_get_trace_info(rbio, bio, &trace_info);
2257 trace_raid56_write_stripe(rbio, bio, &trace_info);
2258 }
2259 submit_bio(bio);
2260 }
2261}
2262
7a315072
QW
2263/*
2264 * To determine if we need to read any sector from the disk.
2265 * Should only be utilized in RMW path, to skip cached rbio.
2266 */
2267static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2268{
2269 int i;
2270
2271 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2272 struct sector_ptr *sector = &rbio->stripe_sectors[i];
2273
2274 /*
2275 * We have a sector which doesn't have page nor uptodate,
2276 * thus this rbio can not be cached one, as cached one must
2277 * have all its data sectors present and uptodate.
2278 */
2279 if (!sector->page || !sector->uptodate)
2280 return true;
2281 }
2282 return false;
2283}
2284
93723095 2285static int rmw_rbio(struct btrfs_raid_bio *rbio)
5eb30ee2
QW
2286{
2287 struct bio_list bio_list;
2288 int sectornr;
2289 int ret = 0;
2290
2291 /*
2292 * Allocate the pages for parity first, as P/Q pages will always be
2293 * needed for both full-stripe and sub-stripe writes.
2294 */
2295 ret = alloc_rbio_parity_pages(rbio);
2296 if (ret < 0)
2297 return ret;
2298
7a315072
QW
2299 /*
2300 * Either full stripe write, or we have every data sector already
2301 * cached, can go to write path immediately.
2302 */
2303 if (rbio_is_full(rbio) || !need_read_stripe_sectors(rbio))
5eb30ee2 2304 goto write;
7a315072 2305
5eb30ee2
QW
2306 /*
2307 * Now we're doing sub-stripe write, also need all data stripes to do
2308 * the full RMW.
2309 */
2310 ret = alloc_rbio_data_pages(rbio);
2311 if (ret < 0)
2312 return ret;
2313
5eb30ee2
QW
2314 index_rbio_pages(rbio);
2315
7a315072 2316 ret = rmw_read_wait_recover(rbio);
5eb30ee2
QW
2317 if (ret < 0)
2318 return ret;
2319
5eb30ee2
QW
2320write:
2321 /*
2322 * At this stage we're not allowed to add any new bios to the
2323 * bio list any more, anyone else that wants to change this stripe
2324 * needs to do their own rmw.
2325 */
2326 spin_lock_irq(&rbio->bio_list_lock);
2327 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2328 spin_unlock_irq(&rbio->bio_list_lock);
2329
2942a50d 2330 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
5eb30ee2
QW
2331
2332 index_rbio_pages(rbio);
2333
2334 /*
2335 * We don't cache full rbios because we're assuming
2336 * the higher layers are unlikely to use this area of
2337 * the disk again soon. If they do use it again,
2338 * hopefully they will send another full bio.
2339 */
2340 if (!rbio_is_full(rbio))
2341 cache_rbio_pages(rbio);
2342 else
2343 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2344
2345 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2346 generate_pq_vertical(rbio, sectornr);
2347
2348 bio_list_init(&bio_list);
2349 ret = rmw_assemble_write_bios(rbio, &bio_list);
2350 if (ret < 0)
2351 return ret;
2352
2353 /* We should have at least one bio assembled. */
2354 ASSERT(bio_list_size(&bio_list));
2355 submit_write_bios(rbio, &bio_list);
2356 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2357
ad3daf1c
QW
2358 /* We may have more errors than our tolerance during the read. */
2359 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2360 int found_errors;
2361
2362 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2363 if (found_errors > rbio->bioc->max_errors) {
2364 ret = -EIO;
2365 break;
2366 }
2367 }
5eb30ee2
QW
2368 return ret;
2369}
2370
93723095
QW
2371static void rmw_rbio_work(struct work_struct *work)
2372{
2373 struct btrfs_raid_bio *rbio;
2374 int ret;
2375
2376 rbio = container_of(work, struct btrfs_raid_bio, work);
2377
2378 ret = lock_stripe_add(rbio);
2379 if (ret == 0) {
2380 ret = rmw_rbio(rbio);
2381 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2382 }
2383}
2384
2385static void rmw_rbio_work_locked(struct work_struct *work)
53b381b3
DW
2386{
2387 struct btrfs_raid_bio *rbio;
93723095 2388 int ret;
53b381b3
DW
2389
2390 rbio = container_of(work, struct btrfs_raid_bio, work);
93723095
QW
2391
2392 ret = rmw_rbio(rbio);
2393 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
53b381b3
DW
2394}
2395
5a6ac9ea
MX
2396/*
2397 * The following code is used to scrub/replace the parity stripe
2398 *
4c664611 2399 * Caller must have already increased bio_counter for getting @bioc.
ae6529c3 2400 *
5a6ac9ea
MX
2401 * Note: We need make sure all the pages that add into the scrub/replace
2402 * raid bio are correct and not be changed during the scrub/replace. That
2403 * is those pages just hold metadata or file data with checksum.
2404 */
2405
6a258d72
QW
2406struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2407 struct btrfs_io_context *bioc,
ff18a4af 2408 struct btrfs_device *scrub_dev,
6a258d72 2409 unsigned long *dbitmap, int stripe_nsectors)
5a6ac9ea 2410{
6a258d72 2411 struct btrfs_fs_info *fs_info = bioc->fs_info;
5a6ac9ea
MX
2412 struct btrfs_raid_bio *rbio;
2413 int i;
2414
ff18a4af 2415 rbio = alloc_rbio(fs_info, bioc);
5a6ac9ea
MX
2416 if (IS_ERR(rbio))
2417 return NULL;
2418 bio_list_add(&rbio->bio_list, bio);
2419 /*
2420 * This is a special bio which is used to hold the completion handler
2421 * and make the scrub rbio is similar to the other types
2422 */
2423 ASSERT(!bio->bi_iter.bi_size);
2424 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2425
9cd3a7eb 2426 /*
4c664611 2427 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
9cd3a7eb
LB
2428 * to the end position, so this search can start from the first parity
2429 * stripe.
2430 */
2431 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
4c664611 2432 if (bioc->stripes[i].dev == scrub_dev) {
5a6ac9ea
MX
2433 rbio->scrubp = i;
2434 break;
2435 }
2436 }
9cd3a7eb 2437 ASSERT(i < rbio->real_stripes);
5a6ac9ea 2438
c67c68eb 2439 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
5a6ac9ea
MX
2440 return rbio;
2441}
2442
b4ee1782
OS
2443/* Used for both parity scrub and missing. */
2444void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
6346f6bf 2445 unsigned int pgoff, u64 logical)
5a6ac9ea 2446{
6346f6bf 2447 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
5a6ac9ea
MX
2448 int stripe_offset;
2449 int index;
2450
4c664611 2451 ASSERT(logical >= rbio->bioc->raid_map[0]);
6346f6bf 2452 ASSERT(logical + sectorsize <= rbio->bioc->raid_map[0] +
ff18a4af 2453 BTRFS_STRIPE_LEN * rbio->nr_data);
4c664611 2454 stripe_offset = (int)(logical - rbio->bioc->raid_map[0]);
6346f6bf
QW
2455 index = stripe_offset / sectorsize;
2456 rbio->bio_sectors[index].page = page;
2457 rbio->bio_sectors[index].pgoff = pgoff;
5a6ac9ea
MX
2458}
2459
2460/*
2461 * We just scrub the parity that we have correct data on the same horizontal,
2462 * so we needn't allocate all pages for all the stripes.
2463 */
2464static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2465{
3907ce29 2466 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
aee35e4b 2467 int total_sector_nr;
5a6ac9ea 2468
aee35e4b
QW
2469 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2470 total_sector_nr++) {
2471 struct page *page;
2472 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2473 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
5a6ac9ea 2474
aee35e4b
QW
2475 if (!test_bit(sectornr, &rbio->dbitmap))
2476 continue;
2477 if (rbio->stripe_pages[index])
2478 continue;
2479 page = alloc_page(GFP_NOFS);
2480 if (!page)
2481 return -ENOMEM;
2482 rbio->stripe_pages[index] = page;
5a6ac9ea 2483 }
eb357060 2484 index_stripe_sectors(rbio);
5a6ac9ea
MX
2485 return 0;
2486}
2487
6bfd0133 2488static int finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check)
5a6ac9ea 2489{
4c664611 2490 struct btrfs_io_context *bioc = rbio->bioc;
46900662 2491 const u32 sectorsize = bioc->fs_info->sectorsize;
1389053e 2492 void **pointers = rbio->finish_pointers;
c67c68eb 2493 unsigned long *pbitmap = &rbio->finish_pbitmap;
5a6ac9ea
MX
2494 int nr_data = rbio->nr_data;
2495 int stripe;
3e77605d 2496 int sectornr;
c17af965 2497 bool has_qstripe;
46900662
QW
2498 struct sector_ptr p_sector = { 0 };
2499 struct sector_ptr q_sector = { 0 };
5a6ac9ea
MX
2500 struct bio_list bio_list;
2501 struct bio *bio;
76035976 2502 int is_replace = 0;
5a6ac9ea
MX
2503 int ret;
2504
2505 bio_list_init(&bio_list);
2506
c17af965
DS
2507 if (rbio->real_stripes - rbio->nr_data == 1)
2508 has_qstripe = false;
2509 else if (rbio->real_stripes - rbio->nr_data == 2)
2510 has_qstripe = true;
2511 else
5a6ac9ea 2512 BUG();
5a6ac9ea 2513
4c664611 2514 if (bioc->num_tgtdevs && bioc->tgtdev_map[rbio->scrubp]) {
76035976 2515 is_replace = 1;
c67c68eb 2516 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
76035976
MX
2517 }
2518
5a6ac9ea
MX
2519 /*
2520 * Because the higher layers(scrubber) are unlikely to
2521 * use this area of the disk again soon, so don't cache
2522 * it.
2523 */
2524 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2525
2526 if (!need_check)
2527 goto writeback;
2528
46900662
QW
2529 p_sector.page = alloc_page(GFP_NOFS);
2530 if (!p_sector.page)
6bfd0133 2531 return -ENOMEM;
46900662
QW
2532 p_sector.pgoff = 0;
2533 p_sector.uptodate = 1;
5a6ac9ea 2534
c17af965 2535 if (has_qstripe) {
d70cef0d 2536 /* RAID6, allocate and map temp space for the Q stripe */
46900662
QW
2537 q_sector.page = alloc_page(GFP_NOFS);
2538 if (!q_sector.page) {
2539 __free_page(p_sector.page);
2540 p_sector.page = NULL;
6bfd0133 2541 return -ENOMEM;
5a6ac9ea 2542 }
46900662
QW
2543 q_sector.pgoff = 0;
2544 q_sector.uptodate = 1;
2545 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
5a6ac9ea
MX
2546 }
2547
2942a50d 2548 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
5a6ac9ea 2549
d70cef0d 2550 /* Map the parity stripe just once */
46900662 2551 pointers[nr_data] = kmap_local_page(p_sector.page);
d70cef0d 2552
c67c68eb 2553 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
46900662 2554 struct sector_ptr *sector;
5a6ac9ea 2555 void *parity;
46900662 2556
5a6ac9ea
MX
2557 /* first collect one page from each data stripe */
2558 for (stripe = 0; stripe < nr_data; stripe++) {
46900662
QW
2559 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2560 pointers[stripe] = kmap_local_page(sector->page) +
2561 sector->pgoff;
5a6ac9ea
MX
2562 }
2563
c17af965 2564 if (has_qstripe) {
d70cef0d 2565 /* RAID6, call the library function to fill in our P/Q */
46900662 2566 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
5a6ac9ea
MX
2567 pointers);
2568 } else {
2569 /* raid5 */
46900662
QW
2570 memcpy(pointers[nr_data], pointers[0], sectorsize);
2571 run_xor(pointers + 1, nr_data - 1, sectorsize);
5a6ac9ea
MX
2572 }
2573
01327610 2574 /* Check scrubbing parity and repair it */
46900662
QW
2575 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2576 parity = kmap_local_page(sector->page) + sector->pgoff;
2577 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2578 memcpy(parity, pointers[rbio->scrubp], sectorsize);
5a6ac9ea
MX
2579 else
2580 /* Parity is right, needn't writeback */
c67c68eb 2581 bitmap_clear(&rbio->dbitmap, sectornr, 1);
58c1a35c 2582 kunmap_local(parity);
5a6ac9ea 2583
94a0b58d
IW
2584 for (stripe = nr_data - 1; stripe >= 0; stripe--)
2585 kunmap_local(pointers[stripe]);
5a6ac9ea
MX
2586 }
2587
94a0b58d 2588 kunmap_local(pointers[nr_data]);
46900662
QW
2589 __free_page(p_sector.page);
2590 p_sector.page = NULL;
2591 if (q_sector.page) {
94a0b58d 2592 kunmap_local(pointers[rbio->real_stripes - 1]);
46900662
QW
2593 __free_page(q_sector.page);
2594 q_sector.page = NULL;
d70cef0d 2595 }
5a6ac9ea
MX
2596
2597writeback:
2598 /*
2599 * time to start writing. Make bios for everything from the
2600 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2601 * everything else.
2602 */
c67c68eb 2603 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
3e77605d 2604 struct sector_ptr *sector;
5a6ac9ea 2605
3e77605d
QW
2606 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2607 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
ff18a4af 2608 sectornr, REQ_OP_WRITE);
5a6ac9ea
MX
2609 if (ret)
2610 goto cleanup;
2611 }
2612
76035976
MX
2613 if (!is_replace)
2614 goto submit_write;
2615
3e77605d
QW
2616 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2617 struct sector_ptr *sector;
76035976 2618
3e77605d
QW
2619 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2620 ret = rbio_add_io_sector(rbio, &bio_list, sector,
4c664611 2621 bioc->tgtdev_map[rbio->scrubp],
ff18a4af 2622 sectornr, REQ_OP_WRITE);
76035976
MX
2623 if (ret)
2624 goto cleanup;
2625 }
2626
2627submit_write:
6bfd0133
QW
2628 submit_write_bios(rbio, &bio_list);
2629 return 0;
5a6ac9ea
MX
2630
2631cleanup:
785884fc
LB
2632 while ((bio = bio_list_pop(&bio_list)))
2633 bio_put(bio);
6bfd0133 2634 return ret;
5a6ac9ea
MX
2635}
2636
2637static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2638{
2639 if (stripe >= 0 && stripe < rbio->nr_data)
2640 return 1;
2641 return 0;
2642}
2643
6bfd0133 2644static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
5a6ac9ea 2645{
75b47033
QW
2646 void **pointers = NULL;
2647 void **unmap_array = NULL;
2648 int sector_nr;
e7fc357e 2649 int ret = 0;
5a6ac9ea 2650
75b47033
QW
2651 /*
2652 * @pointers array stores the pointer for each sector.
2653 *
2654 * @unmap_array stores copy of pointers that does not get reordered
2655 * during reconstruction so that kunmap_local works.
2656 */
2657 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2658 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2659 if (!pointers || !unmap_array) {
2660 ret = -ENOMEM;
2661 goto out;
2662 }
5a6ac9ea 2663
75b47033
QW
2664 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2665 int dfail = 0, failp = -1;
2666 int faila;
2667 int failb;
2668 int found_errors;
5a6ac9ea 2669
75b47033
QW
2670 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2671 &faila, &failb);
2672 if (found_errors > rbio->bioc->max_errors) {
2673 ret = -EIO;
2674 goto out;
2675 }
2676 if (found_errors == 0)
2677 continue;
5a6ac9ea 2678
75b47033
QW
2679 /* We should have at least one error here. */
2680 ASSERT(faila >= 0 || failb >= 0);
5a6ac9ea 2681
75b47033
QW
2682 if (is_data_stripe(rbio, faila))
2683 dfail++;
2684 else if (is_parity_stripe(faila))
2685 failp = faila;
5a6ac9ea 2686
75b47033
QW
2687 if (is_data_stripe(rbio, failb))
2688 dfail++;
2689 else if (is_parity_stripe(failb))
2690 failp = failb;
2691 /*
2692 * Because we can not use a scrubbing parity to repair the
2693 * data, so the capability of the repair is declined. (In the
2694 * case of RAID5, we can not repair anything.)
2695 */
2696 if (dfail > rbio->bioc->max_errors - 1) {
2697 ret = -EIO;
2698 goto out;
2699 }
2700 /*
2701 * If all data is good, only parity is correctly, just repair
2702 * the parity, no need to recover data stripes.
2703 */
2704 if (dfail == 0)
2705 continue;
6bfd0133 2706
75b47033
QW
2707 /*
2708 * Here means we got one corrupted data stripe and one
2709 * corrupted parity on RAID6, if the corrupted parity is
2710 * scrubbing parity, luckily, use the other one to repair the
2711 * data, or we can not repair the data stripe.
2712 */
2713 if (failp != rbio->scrubp) {
2714 ret = -EIO;
2715 goto out;
2716 }
2717
2718 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2719 if (ret < 0)
2720 goto out;
2721 }
2722out:
2723 kfree(pointers);
2724 kfree(unmap_array);
6bfd0133 2725 return ret;
5a6ac9ea
MX
2726}
2727
cb3450b7
QW
2728static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio,
2729 struct bio_list *bio_list)
5a6ac9ea 2730{
5a6ac9ea 2731 struct bio *bio;
cb3450b7
QW
2732 int total_sector_nr;
2733 int ret = 0;
5a6ac9ea 2734
cb3450b7 2735 ASSERT(bio_list_size(bio_list) == 0);
5a6ac9ea 2736
1c10702e
QW
2737 /* Build a list of bios to read all the missing parts. */
2738 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2739 total_sector_nr++) {
2740 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2741 int stripe = total_sector_nr / rbio->stripe_nsectors;
2742 struct sector_ptr *sector;
5a6ac9ea 2743
1c10702e
QW
2744 /* No data in the vertical stripe, no need to read. */
2745 if (!test_bit(sectornr, &rbio->dbitmap))
2746 continue;
5a6ac9ea 2747
1c10702e
QW
2748 /*
2749 * We want to find all the sectors missing from the rbio and
2750 * read them from the disk. If sector_in_rbio() finds a sector
2751 * in the bio list we don't need to read it off the stripe.
2752 */
2753 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2754 if (sector)
2755 continue;
2756
2757 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2758 /*
2759 * The bio cache may have handed us an uptodate sector. If so,
2760 * use it.
2761 */
2762 if (sector->uptodate)
2763 continue;
2764
cb3450b7 2765 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
ff18a4af 2766 sectornr, REQ_OP_READ);
1c10702e 2767 if (ret)
cb3450b7 2768 goto error;
5a6ac9ea 2769 }
cb3450b7
QW
2770 return 0;
2771error:
2772 while ((bio = bio_list_pop(bio_list)))
2773 bio_put(bio);
2774 return ret;
2775}
2776
6bfd0133 2777static int scrub_rbio(struct btrfs_raid_bio *rbio)
cb3450b7 2778{
6bfd0133 2779 bool need_check = false;
cb3450b7 2780 struct bio_list bio_list;
ad3daf1c 2781 int sector_nr;
cb3450b7
QW
2782 int ret;
2783 struct bio *bio;
2784
2785 bio_list_init(&bio_list);
2786
2787 ret = alloc_rbio_essential_pages(rbio);
2788 if (ret)
2789 goto cleanup;
2790
2942a50d
QW
2791 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2792
cb3450b7
QW
2793 ret = scrub_assemble_read_bios(rbio, &bio_list);
2794 if (ret < 0)
2795 goto cleanup;
5a6ac9ea 2796
6bfd0133
QW
2797 submit_read_bios(rbio, &bio_list);
2798 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
5a6ac9ea 2799
75b47033 2800 /* We may have some failures, recover the failed sectors first. */
6bfd0133
QW
2801 ret = recover_scrub_rbio(rbio);
2802 if (ret < 0)
2803 goto cleanup;
5a6ac9ea 2804
6bfd0133
QW
2805 /*
2806 * We have every sector properly prepared. Can finish the scrub
2807 * and writeback the good content.
2808 */
2809 ret = finish_parity_scrub(rbio, need_check);
2810 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
ad3daf1c
QW
2811 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2812 int found_errors;
2813
2814 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2815 if (found_errors > rbio->bioc->max_errors) {
2816 ret = -EIO;
2817 break;
2818 }
2819 }
6bfd0133 2820 return ret;
5a6ac9ea
MX
2821
2822cleanup:
785884fc
LB
2823 while ((bio = bio_list_pop(&bio_list)))
2824 bio_put(bio);
2825
6bfd0133 2826 return ret;
5a6ac9ea
MX
2827}
2828
6bfd0133 2829static void scrub_rbio_work_locked(struct work_struct *work)
5a6ac9ea
MX
2830{
2831 struct btrfs_raid_bio *rbio;
6bfd0133 2832 int ret;
5a6ac9ea
MX
2833
2834 rbio = container_of(work, struct btrfs_raid_bio, work);
6bfd0133
QW
2835 ret = scrub_rbio(rbio);
2836 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
5a6ac9ea
MX
2837}
2838
5a6ac9ea
MX
2839void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2840{
2841 if (!lock_stripe_add(rbio))
6bfd0133 2842 start_async_work(rbio, scrub_rbio_work_locked);
5a6ac9ea 2843}
b4ee1782
OS
2844
2845/* The following code is used for dev replace of a missing RAID 5/6 device. */
2846
2847struct btrfs_raid_bio *
ff18a4af 2848raid56_alloc_missing_rbio(struct bio *bio, struct btrfs_io_context *bioc)
b4ee1782 2849{
6a258d72 2850 struct btrfs_fs_info *fs_info = bioc->fs_info;
b4ee1782
OS
2851 struct btrfs_raid_bio *rbio;
2852
ff18a4af 2853 rbio = alloc_rbio(fs_info, bioc);
b4ee1782
OS
2854 if (IS_ERR(rbio))
2855 return NULL;
2856
2857 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2858 bio_list_add(&rbio->bio_list, bio);
2859 /*
2860 * This is a special bio which is used to hold the completion handler
2861 * and make the scrub rbio is similar to the other types
2862 */
2863 ASSERT(!bio->bi_iter.bi_size);
2864
2942a50d 2865 set_rbio_range_error(rbio, bio);
b4ee1782
OS
2866
2867 return rbio;
2868}
2869
b4ee1782
OS
2870void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2871{
d817ce35 2872 start_async_work(rbio, recover_rbio_work);
b4ee1782 2873}