btrfs: raid56: reduce indentation in lock_stripe_add
[linux-block.git] / fs / btrfs / raid56.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
53b381b3
DW
2/*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
53b381b3 5 */
c1d7c514 6
53b381b3 7#include <linux/sched.h>
53b381b3
DW
8#include <linux/bio.h>
9#include <linux/slab.h>
53b381b3 10#include <linux/blkdev.h>
53b381b3
DW
11#include <linux/raid/pq.h>
12#include <linux/hash.h>
13#include <linux/list_sort.h>
14#include <linux/raid/xor.h>
818e010b 15#include <linux/mm.h>
53b381b3 16#include "ctree.h"
53b381b3 17#include "disk-io.h"
53b381b3
DW
18#include "volumes.h"
19#include "raid56.h"
20#include "async-thread.h"
53b381b3
DW
21
22/* set when additional merges to this rbio are not allowed */
23#define RBIO_RMW_LOCKED_BIT 1
24
4ae10b3a
CM
25/*
26 * set when this rbio is sitting in the hash, but it is just a cache
27 * of past RMW
28 */
29#define RBIO_CACHE_BIT 2
30
31/*
32 * set when it is safe to trust the stripe_pages for caching
33 */
34#define RBIO_CACHE_READY_BIT 3
35
4ae10b3a
CM
36#define RBIO_CACHE_SIZE 1024
37
8a953348
DS
38#define BTRFS_STRIPE_HASH_TABLE_BITS 11
39
40/* Used by the raid56 code to lock stripes for read/modify/write */
41struct btrfs_stripe_hash {
42 struct list_head hash_list;
43 spinlock_t lock;
44};
45
46/* Used by the raid56 code to lock stripes for read/modify/write */
47struct btrfs_stripe_hash_table {
48 struct list_head stripe_cache;
49 spinlock_t cache_lock;
50 int cache_size;
51 struct btrfs_stripe_hash table[];
52};
53
1b94b556 54enum btrfs_rbio_ops {
b4ee1782
OS
55 BTRFS_RBIO_WRITE,
56 BTRFS_RBIO_READ_REBUILD,
57 BTRFS_RBIO_PARITY_SCRUB,
58 BTRFS_RBIO_REBUILD_MISSING,
1b94b556
MX
59};
60
53b381b3
DW
61struct btrfs_raid_bio {
62 struct btrfs_fs_info *fs_info;
63 struct btrfs_bio *bbio;
64
53b381b3
DW
65 /* while we're doing rmw on a stripe
66 * we put it into a hash table so we can
67 * lock the stripe and merge more rbios
68 * into it.
69 */
70 struct list_head hash_list;
71
4ae10b3a
CM
72 /*
73 * LRU list for the stripe cache
74 */
75 struct list_head stripe_cache;
76
53b381b3
DW
77 /*
78 * for scheduling work in the helper threads
79 */
80 struct btrfs_work work;
81
82 /*
83 * bio list and bio_list_lock are used
84 * to add more bios into the stripe
85 * in hopes of avoiding the full rmw
86 */
87 struct bio_list bio_list;
88 spinlock_t bio_list_lock;
89
6ac0f488
CM
90 /* also protected by the bio_list_lock, the
91 * plug list is used by the plugging code
92 * to collect partial bios while plugged. The
93 * stripe locking code also uses it to hand off
53b381b3
DW
94 * the stripe lock to the next pending IO
95 */
96 struct list_head plug_list;
97
98 /*
99 * flags that tell us if it is safe to
100 * merge with this bio
101 */
102 unsigned long flags;
103
104 /* size of each individual stripe on disk */
105 int stripe_len;
106
107 /* number of data stripes (no p/q) */
108 int nr_data;
109
2c8cdd6e
MX
110 int real_stripes;
111
5a6ac9ea 112 int stripe_npages;
53b381b3
DW
113 /*
114 * set if we're doing a parity rebuild
115 * for a read from higher up, which is handled
116 * differently from a parity rebuild as part of
117 * rmw
118 */
1b94b556 119 enum btrfs_rbio_ops operation;
53b381b3
DW
120
121 /* first bad stripe */
122 int faila;
123
124 /* second bad stripe (for raid6 use) */
125 int failb;
126
5a6ac9ea 127 int scrubp;
53b381b3
DW
128 /*
129 * number of pages needed to represent the full
130 * stripe
131 */
132 int nr_pages;
133
134 /*
135 * size of all the bios in the bio_list. This
136 * helps us decide if the rbio maps to a full
137 * stripe or not
138 */
139 int bio_list_bytes;
140
4245215d
MX
141 int generic_bio_cnt;
142
dec95574 143 refcount_t refs;
53b381b3 144
b89e1b01
MX
145 atomic_t stripes_pending;
146
147 atomic_t error;
53b381b3
DW
148 /*
149 * these are two arrays of pointers. We allocate the
150 * rbio big enough to hold them both and setup their
151 * locations when the rbio is allocated
152 */
153
154 /* pointers to pages that we allocated for
155 * reading/writing stripes directly from the disk (including P/Q)
156 */
157 struct page **stripe_pages;
158
159 /*
160 * pointers to the pages in the bio_list. Stored
161 * here for faster lookup
162 */
163 struct page **bio_pages;
5a6ac9ea
MX
164
165 /*
166 * bitmap to record which horizontal stripe has data
167 */
168 unsigned long *dbitmap;
1389053e
KC
169
170 /* allocated with real_stripes-many pointers for finish_*() calls */
171 void **finish_pointers;
172
173 /* allocated with stripe_npages-many bits for finish_*() calls */
174 unsigned long *finish_pbitmap;
53b381b3
DW
175};
176
177static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
178static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
179static void rmw_work(struct btrfs_work *work);
180static void read_rebuild_work(struct btrfs_work *work);
53b381b3
DW
181static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
182static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
183static void __free_raid_bio(struct btrfs_raid_bio *rbio);
184static void index_rbio_pages(struct btrfs_raid_bio *rbio);
185static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
186
5a6ac9ea
MX
187static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
188 int need_check);
a81b747d 189static void scrub_parity_work(struct btrfs_work *work);
5a6ac9ea 190
ac638859
DS
191static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func)
192{
a0cac0ec 193 btrfs_init_work(&rbio->work, work_func, NULL, NULL);
ac638859
DS
194 btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work);
195}
196
53b381b3
DW
197/*
198 * the stripe hash table is used for locking, and to collect
199 * bios in hopes of making a full stripe
200 */
201int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
202{
203 struct btrfs_stripe_hash_table *table;
204 struct btrfs_stripe_hash_table *x;
205 struct btrfs_stripe_hash *cur;
206 struct btrfs_stripe_hash *h;
207 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
208 int i;
83c8266a 209 int table_size;
53b381b3
DW
210
211 if (info->stripe_hash_table)
212 return 0;
213
83c8266a
DS
214 /*
215 * The table is large, starting with order 4 and can go as high as
216 * order 7 in case lock debugging is turned on.
217 *
218 * Try harder to allocate and fallback to vmalloc to lower the chance
219 * of a failing mount.
220 */
221 table_size = sizeof(*table) + sizeof(*h) * num_entries;
818e010b
DS
222 table = kvzalloc(table_size, GFP_KERNEL);
223 if (!table)
224 return -ENOMEM;
53b381b3 225
4ae10b3a
CM
226 spin_lock_init(&table->cache_lock);
227 INIT_LIST_HEAD(&table->stripe_cache);
228
53b381b3
DW
229 h = table->table;
230
231 for (i = 0; i < num_entries; i++) {
232 cur = h + i;
233 INIT_LIST_HEAD(&cur->hash_list);
234 spin_lock_init(&cur->lock);
53b381b3
DW
235 }
236
237 x = cmpxchg(&info->stripe_hash_table, NULL, table);
f749303b
WS
238 if (x)
239 kvfree(x);
53b381b3
DW
240 return 0;
241}
242
4ae10b3a
CM
243/*
244 * caching an rbio means to copy anything from the
245 * bio_pages array into the stripe_pages array. We
246 * use the page uptodate bit in the stripe cache array
247 * to indicate if it has valid data
248 *
249 * once the caching is done, we set the cache ready
250 * bit.
251 */
252static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
253{
254 int i;
255 char *s;
256 char *d;
257 int ret;
258
259 ret = alloc_rbio_pages(rbio);
260 if (ret)
261 return;
262
263 for (i = 0; i < rbio->nr_pages; i++) {
264 if (!rbio->bio_pages[i])
265 continue;
266
267 s = kmap(rbio->bio_pages[i]);
268 d = kmap(rbio->stripe_pages[i]);
269
69d24804 270 copy_page(d, s);
4ae10b3a
CM
271
272 kunmap(rbio->bio_pages[i]);
273 kunmap(rbio->stripe_pages[i]);
274 SetPageUptodate(rbio->stripe_pages[i]);
275 }
276 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
277}
278
53b381b3
DW
279/*
280 * we hash on the first logical address of the stripe
281 */
282static int rbio_bucket(struct btrfs_raid_bio *rbio)
283{
8e5cfb55 284 u64 num = rbio->bbio->raid_map[0];
53b381b3
DW
285
286 /*
287 * we shift down quite a bit. We're using byte
288 * addressing, and most of the lower bits are zeros.
289 * This tends to upset hash_64, and it consistently
290 * returns just one or two different values.
291 *
292 * shifting off the lower bits fixes things.
293 */
294 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
295}
296
4ae10b3a
CM
297/*
298 * stealing an rbio means taking all the uptodate pages from the stripe
299 * array in the source rbio and putting them into the destination rbio
300 */
301static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
302{
303 int i;
304 struct page *s;
305 struct page *d;
306
307 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
308 return;
309
310 for (i = 0; i < dest->nr_pages; i++) {
311 s = src->stripe_pages[i];
312 if (!s || !PageUptodate(s)) {
313 continue;
314 }
315
316 d = dest->stripe_pages[i];
317 if (d)
318 __free_page(d);
319
320 dest->stripe_pages[i] = s;
321 src->stripe_pages[i] = NULL;
322 }
323}
324
53b381b3
DW
325/*
326 * merging means we take the bio_list from the victim and
327 * splice it into the destination. The victim should
328 * be discarded afterwards.
329 *
330 * must be called with dest->rbio_list_lock held
331 */
332static void merge_rbio(struct btrfs_raid_bio *dest,
333 struct btrfs_raid_bio *victim)
334{
335 bio_list_merge(&dest->bio_list, &victim->bio_list);
336 dest->bio_list_bytes += victim->bio_list_bytes;
4245215d 337 dest->generic_bio_cnt += victim->generic_bio_cnt;
53b381b3
DW
338 bio_list_init(&victim->bio_list);
339}
340
341/*
4ae10b3a
CM
342 * used to prune items that are in the cache. The caller
343 * must hold the hash table lock.
344 */
345static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
346{
347 int bucket = rbio_bucket(rbio);
348 struct btrfs_stripe_hash_table *table;
349 struct btrfs_stripe_hash *h;
350 int freeit = 0;
351
352 /*
353 * check the bit again under the hash table lock.
354 */
355 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
356 return;
357
358 table = rbio->fs_info->stripe_hash_table;
359 h = table->table + bucket;
360
361 /* hold the lock for the bucket because we may be
362 * removing it from the hash table
363 */
364 spin_lock(&h->lock);
365
366 /*
367 * hold the lock for the bio list because we need
368 * to make sure the bio list is empty
369 */
370 spin_lock(&rbio->bio_list_lock);
371
372 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
373 list_del_init(&rbio->stripe_cache);
374 table->cache_size -= 1;
375 freeit = 1;
376
377 /* if the bio list isn't empty, this rbio is
378 * still involved in an IO. We take it out
379 * of the cache list, and drop the ref that
380 * was held for the list.
381 *
382 * If the bio_list was empty, we also remove
383 * the rbio from the hash_table, and drop
384 * the corresponding ref
385 */
386 if (bio_list_empty(&rbio->bio_list)) {
387 if (!list_empty(&rbio->hash_list)) {
388 list_del_init(&rbio->hash_list);
dec95574 389 refcount_dec(&rbio->refs);
4ae10b3a
CM
390 BUG_ON(!list_empty(&rbio->plug_list));
391 }
392 }
393 }
394
395 spin_unlock(&rbio->bio_list_lock);
396 spin_unlock(&h->lock);
397
398 if (freeit)
399 __free_raid_bio(rbio);
400}
401
402/*
403 * prune a given rbio from the cache
404 */
405static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
406{
407 struct btrfs_stripe_hash_table *table;
408 unsigned long flags;
409
410 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
411 return;
412
413 table = rbio->fs_info->stripe_hash_table;
414
415 spin_lock_irqsave(&table->cache_lock, flags);
416 __remove_rbio_from_cache(rbio);
417 spin_unlock_irqrestore(&table->cache_lock, flags);
418}
419
420/*
421 * remove everything in the cache
422 */
48a3b636 423static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
4ae10b3a
CM
424{
425 struct btrfs_stripe_hash_table *table;
426 unsigned long flags;
427 struct btrfs_raid_bio *rbio;
428
429 table = info->stripe_hash_table;
430
431 spin_lock_irqsave(&table->cache_lock, flags);
432 while (!list_empty(&table->stripe_cache)) {
433 rbio = list_entry(table->stripe_cache.next,
434 struct btrfs_raid_bio,
435 stripe_cache);
436 __remove_rbio_from_cache(rbio);
437 }
438 spin_unlock_irqrestore(&table->cache_lock, flags);
439}
440
441/*
442 * remove all cached entries and free the hash table
443 * used by unmount
53b381b3
DW
444 */
445void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
446{
447 if (!info->stripe_hash_table)
448 return;
4ae10b3a 449 btrfs_clear_rbio_cache(info);
f749303b 450 kvfree(info->stripe_hash_table);
53b381b3
DW
451 info->stripe_hash_table = NULL;
452}
453
4ae10b3a
CM
454/*
455 * insert an rbio into the stripe cache. It
456 * must have already been prepared by calling
457 * cache_rbio_pages
458 *
459 * If this rbio was already cached, it gets
460 * moved to the front of the lru.
461 *
462 * If the size of the rbio cache is too big, we
463 * prune an item.
464 */
465static void cache_rbio(struct btrfs_raid_bio *rbio)
466{
467 struct btrfs_stripe_hash_table *table;
468 unsigned long flags;
469
470 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
471 return;
472
473 table = rbio->fs_info->stripe_hash_table;
474
475 spin_lock_irqsave(&table->cache_lock, flags);
476 spin_lock(&rbio->bio_list_lock);
477
478 /* bump our ref if we were not in the list before */
479 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
dec95574 480 refcount_inc(&rbio->refs);
4ae10b3a
CM
481
482 if (!list_empty(&rbio->stripe_cache)){
483 list_move(&rbio->stripe_cache, &table->stripe_cache);
484 } else {
485 list_add(&rbio->stripe_cache, &table->stripe_cache);
486 table->cache_size += 1;
487 }
488
489 spin_unlock(&rbio->bio_list_lock);
490
491 if (table->cache_size > RBIO_CACHE_SIZE) {
492 struct btrfs_raid_bio *found;
493
494 found = list_entry(table->stripe_cache.prev,
495 struct btrfs_raid_bio,
496 stripe_cache);
497
498 if (found != rbio)
499 __remove_rbio_from_cache(found);
500 }
501
502 spin_unlock_irqrestore(&table->cache_lock, flags);
4ae10b3a
CM
503}
504
53b381b3
DW
505/*
506 * helper function to run the xor_blocks api. It is only
507 * able to do MAX_XOR_BLOCKS at a time, so we need to
508 * loop through.
509 */
510static void run_xor(void **pages, int src_cnt, ssize_t len)
511{
512 int src_off = 0;
513 int xor_src_cnt = 0;
514 void *dest = pages[src_cnt];
515
516 while(src_cnt > 0) {
517 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
518 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
519
520 src_cnt -= xor_src_cnt;
521 src_off += xor_src_cnt;
522 }
523}
524
525/*
176571a1
DS
526 * Returns true if the bio list inside this rbio covers an entire stripe (no
527 * rmw required).
53b381b3 528 */
176571a1 529static int rbio_is_full(struct btrfs_raid_bio *rbio)
53b381b3 530{
176571a1 531 unsigned long flags;
53b381b3
DW
532 unsigned long size = rbio->bio_list_bytes;
533 int ret = 1;
534
176571a1 535 spin_lock_irqsave(&rbio->bio_list_lock, flags);
53b381b3
DW
536 if (size != rbio->nr_data * rbio->stripe_len)
537 ret = 0;
53b381b3 538 BUG_ON(size > rbio->nr_data * rbio->stripe_len);
53b381b3 539 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
176571a1 540
53b381b3
DW
541 return ret;
542}
543
544/*
545 * returns 1 if it is safe to merge two rbios together.
546 * The merging is safe if the two rbios correspond to
547 * the same stripe and if they are both going in the same
548 * direction (read vs write), and if neither one is
549 * locked for final IO
550 *
551 * The caller is responsible for locking such that
552 * rmw_locked is safe to test
553 */
554static int rbio_can_merge(struct btrfs_raid_bio *last,
555 struct btrfs_raid_bio *cur)
556{
557 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
558 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
559 return 0;
560
4ae10b3a
CM
561 /*
562 * we can't merge with cached rbios, since the
563 * idea is that when we merge the destination
564 * rbio is going to run our IO for us. We can
01327610 565 * steal from cached rbios though, other functions
4ae10b3a
CM
566 * handle that.
567 */
568 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
569 test_bit(RBIO_CACHE_BIT, &cur->flags))
570 return 0;
571
8e5cfb55
ZL
572 if (last->bbio->raid_map[0] !=
573 cur->bbio->raid_map[0])
53b381b3
DW
574 return 0;
575
5a6ac9ea
MX
576 /* we can't merge with different operations */
577 if (last->operation != cur->operation)
578 return 0;
579 /*
580 * We've need read the full stripe from the drive.
581 * check and repair the parity and write the new results.
582 *
583 * We're not allowed to add any new bios to the
584 * bio list here, anyone else that wants to
585 * change this stripe needs to do their own rmw.
586 */
db34be19 587 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
53b381b3 588 return 0;
53b381b3 589
db34be19 590 if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
b4ee1782
OS
591 return 0;
592
cc54ff62
LB
593 if (last->operation == BTRFS_RBIO_READ_REBUILD) {
594 int fa = last->faila;
595 int fb = last->failb;
596 int cur_fa = cur->faila;
597 int cur_fb = cur->failb;
598
599 if (last->faila >= last->failb) {
600 fa = last->failb;
601 fb = last->faila;
602 }
603
604 if (cur->faila >= cur->failb) {
605 cur_fa = cur->failb;
606 cur_fb = cur->faila;
607 }
608
609 if (fa != cur_fa || fb != cur_fb)
610 return 0;
611 }
53b381b3
DW
612 return 1;
613}
614
b7178a5f
ZL
615static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe,
616 int index)
617{
618 return stripe * rbio->stripe_npages + index;
619}
620
621/*
622 * these are just the pages from the rbio array, not from anything
623 * the FS sent down to us
624 */
625static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe,
626 int index)
627{
628 return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)];
629}
630
53b381b3
DW
631/*
632 * helper to index into the pstripe
633 */
634static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index)
635{
b7178a5f 636 return rbio_stripe_page(rbio, rbio->nr_data, index);
53b381b3
DW
637}
638
639/*
640 * helper to index into the qstripe, returns null
641 * if there is no qstripe
642 */
643static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index)
644{
2c8cdd6e 645 if (rbio->nr_data + 1 == rbio->real_stripes)
53b381b3 646 return NULL;
b7178a5f 647 return rbio_stripe_page(rbio, rbio->nr_data + 1, index);
53b381b3
DW
648}
649
650/*
651 * The first stripe in the table for a logical address
652 * has the lock. rbios are added in one of three ways:
653 *
654 * 1) Nobody has the stripe locked yet. The rbio is given
655 * the lock and 0 is returned. The caller must start the IO
656 * themselves.
657 *
658 * 2) Someone has the stripe locked, but we're able to merge
659 * with the lock owner. The rbio is freed and the IO will
660 * start automatically along with the existing rbio. 1 is returned.
661 *
662 * 3) Someone has the stripe locked, but we're not able to merge.
663 * The rbio is added to the lock owner's plug list, or merged into
664 * an rbio already on the plug list. When the lock owner unlocks,
665 * the next rbio on the list is run and the IO is started automatically.
666 * 1 is returned
667 *
668 * If we return 0, the caller still owns the rbio and must continue with
669 * IO submission. If we return 1, the caller must assume the rbio has
670 * already been freed.
671 */
672static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
673{
674 int bucket = rbio_bucket(rbio);
675 struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket;
676 struct btrfs_raid_bio *cur;
677 struct btrfs_raid_bio *pending;
678 unsigned long flags;
53b381b3 679 struct btrfs_raid_bio *freeit = NULL;
4ae10b3a 680 struct btrfs_raid_bio *cache_drop = NULL;
53b381b3 681 int ret = 0;
53b381b3
DW
682
683 spin_lock_irqsave(&h->lock, flags);
684 list_for_each_entry(cur, &h->hash_list, hash_list) {
9d6cb1b0
JT
685 if (cur->bbio->raid_map[0] != rbio->bbio->raid_map[0])
686 continue;
4ae10b3a 687
9d6cb1b0 688 spin_lock(&cur->bio_list_lock);
4ae10b3a 689
9d6cb1b0
JT
690 /* Can we steal this cached rbio's pages? */
691 if (bio_list_empty(&cur->bio_list) &&
692 list_empty(&cur->plug_list) &&
693 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
694 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
695 list_del_init(&cur->hash_list);
696 refcount_dec(&cur->refs);
53b381b3 697
9d6cb1b0
JT
698 steal_rbio(cur, rbio);
699 cache_drop = cur;
700 spin_unlock(&cur->bio_list_lock);
4ae10b3a 701
9d6cb1b0
JT
702 goto lockit;
703 }
53b381b3 704
9d6cb1b0
JT
705 /* Can we merge into the lock owner? */
706 if (rbio_can_merge(cur, rbio)) {
707 merge_rbio(cur, rbio);
53b381b3 708 spin_unlock(&cur->bio_list_lock);
9d6cb1b0 709 freeit = rbio;
53b381b3
DW
710 ret = 1;
711 goto out;
712 }
9d6cb1b0
JT
713
714
715 /*
716 * We couldn't merge with the running rbio, see if we can merge
717 * with the pending ones. We don't have to check for rmw_locked
718 * because there is no way they are inside finish_rmw right now
719 */
720 list_for_each_entry(pending, &cur->plug_list, plug_list) {
721 if (rbio_can_merge(pending, rbio)) {
722 merge_rbio(pending, rbio);
723 spin_unlock(&cur->bio_list_lock);
724 freeit = rbio;
725 ret = 1;
726 goto out;
727 }
728 }
729
730 /*
731 * No merging, put us on the tail of the plug list, our rbio
732 * will be started with the currently running rbio unlocks
733 */
734 list_add_tail(&rbio->plug_list, &cur->plug_list);
735 spin_unlock(&cur->bio_list_lock);
736 ret = 1;
737 goto out;
53b381b3 738 }
4ae10b3a 739lockit:
dec95574 740 refcount_inc(&rbio->refs);
53b381b3
DW
741 list_add(&rbio->hash_list, &h->hash_list);
742out:
743 spin_unlock_irqrestore(&h->lock, flags);
4ae10b3a
CM
744 if (cache_drop)
745 remove_rbio_from_cache(cache_drop);
53b381b3
DW
746 if (freeit)
747 __free_raid_bio(freeit);
748 return ret;
749}
750
751/*
752 * called as rmw or parity rebuild is completed. If the plug list has more
753 * rbios waiting for this stripe, the next one on the list will be started
754 */
755static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
756{
757 int bucket;
758 struct btrfs_stripe_hash *h;
759 unsigned long flags;
4ae10b3a 760 int keep_cache = 0;
53b381b3
DW
761
762 bucket = rbio_bucket(rbio);
763 h = rbio->fs_info->stripe_hash_table->table + bucket;
764
4ae10b3a
CM
765 if (list_empty(&rbio->plug_list))
766 cache_rbio(rbio);
767
53b381b3
DW
768 spin_lock_irqsave(&h->lock, flags);
769 spin_lock(&rbio->bio_list_lock);
770
771 if (!list_empty(&rbio->hash_list)) {
4ae10b3a
CM
772 /*
773 * if we're still cached and there is no other IO
774 * to perform, just leave this rbio here for others
775 * to steal from later
776 */
777 if (list_empty(&rbio->plug_list) &&
778 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
779 keep_cache = 1;
780 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
781 BUG_ON(!bio_list_empty(&rbio->bio_list));
782 goto done;
783 }
53b381b3
DW
784
785 list_del_init(&rbio->hash_list);
dec95574 786 refcount_dec(&rbio->refs);
53b381b3
DW
787
788 /*
789 * we use the plug list to hold all the rbios
790 * waiting for the chance to lock this stripe.
791 * hand the lock over to one of them.
792 */
793 if (!list_empty(&rbio->plug_list)) {
794 struct btrfs_raid_bio *next;
795 struct list_head *head = rbio->plug_list.next;
796
797 next = list_entry(head, struct btrfs_raid_bio,
798 plug_list);
799
800 list_del_init(&rbio->plug_list);
801
802 list_add(&next->hash_list, &h->hash_list);
dec95574 803 refcount_inc(&next->refs);
53b381b3
DW
804 spin_unlock(&rbio->bio_list_lock);
805 spin_unlock_irqrestore(&h->lock, flags);
806
1b94b556 807 if (next->operation == BTRFS_RBIO_READ_REBUILD)
e66d8d5a 808 start_async_work(next, read_rebuild_work);
b4ee1782
OS
809 else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
810 steal_rbio(rbio, next);
e66d8d5a 811 start_async_work(next, read_rebuild_work);
b4ee1782 812 } else if (next->operation == BTRFS_RBIO_WRITE) {
4ae10b3a 813 steal_rbio(rbio, next);
cf6a4a75 814 start_async_work(next, rmw_work);
5a6ac9ea
MX
815 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
816 steal_rbio(rbio, next);
a81b747d 817 start_async_work(next, scrub_parity_work);
4ae10b3a 818 }
53b381b3
DW
819
820 goto done_nolock;
53b381b3
DW
821 }
822 }
4ae10b3a 823done:
53b381b3
DW
824 spin_unlock(&rbio->bio_list_lock);
825 spin_unlock_irqrestore(&h->lock, flags);
826
827done_nolock:
4ae10b3a
CM
828 if (!keep_cache)
829 remove_rbio_from_cache(rbio);
53b381b3
DW
830}
831
832static void __free_raid_bio(struct btrfs_raid_bio *rbio)
833{
834 int i;
835
dec95574 836 if (!refcount_dec_and_test(&rbio->refs))
53b381b3
DW
837 return;
838
4ae10b3a 839 WARN_ON(!list_empty(&rbio->stripe_cache));
53b381b3
DW
840 WARN_ON(!list_empty(&rbio->hash_list));
841 WARN_ON(!bio_list_empty(&rbio->bio_list));
842
843 for (i = 0; i < rbio->nr_pages; i++) {
844 if (rbio->stripe_pages[i]) {
845 __free_page(rbio->stripe_pages[i]);
846 rbio->stripe_pages[i] = NULL;
847 }
848 }
af8e2d1d 849
6e9606d2 850 btrfs_put_bbio(rbio->bbio);
53b381b3
DW
851 kfree(rbio);
852}
853
7583d8d0 854static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
53b381b3 855{
7583d8d0
LB
856 struct bio *next;
857
858 while (cur) {
859 next = cur->bi_next;
860 cur->bi_next = NULL;
861 cur->bi_status = err;
862 bio_endio(cur);
863 cur = next;
864 }
53b381b3
DW
865}
866
867/*
868 * this frees the rbio and runs through all the bios in the
869 * bio_list and calls end_io on them
870 */
4e4cbee9 871static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
53b381b3
DW
872{
873 struct bio *cur = bio_list_get(&rbio->bio_list);
7583d8d0 874 struct bio *extra;
4245215d
MX
875
876 if (rbio->generic_bio_cnt)
877 btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt);
878
7583d8d0
LB
879 /*
880 * At this moment, rbio->bio_list is empty, however since rbio does not
881 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
882 * hash list, rbio may be merged with others so that rbio->bio_list
883 * becomes non-empty.
884 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
885 * more and we can call bio_endio() on all queued bios.
886 */
887 unlock_stripe(rbio);
888 extra = bio_list_get(&rbio->bio_list);
889 __free_raid_bio(rbio);
53b381b3 890
7583d8d0
LB
891 rbio_endio_bio_list(cur, err);
892 if (extra)
893 rbio_endio_bio_list(extra, err);
53b381b3
DW
894}
895
896/*
897 * end io function used by finish_rmw. When we finally
898 * get here, we've written a full stripe
899 */
4246a0b6 900static void raid_write_end_io(struct bio *bio)
53b381b3
DW
901{
902 struct btrfs_raid_bio *rbio = bio->bi_private;
4e4cbee9 903 blk_status_t err = bio->bi_status;
a6111d11 904 int max_errors;
53b381b3
DW
905
906 if (err)
907 fail_bio_stripe(rbio, bio);
908
909 bio_put(bio);
910
b89e1b01 911 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
912 return;
913
58efbc9f 914 err = BLK_STS_OK;
53b381b3
DW
915
916 /* OK, we have read all the stripes we need to. */
a6111d11
ZL
917 max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
918 0 : rbio->bbio->max_errors;
919 if (atomic_read(&rbio->error) > max_errors)
4e4cbee9 920 err = BLK_STS_IOERR;
53b381b3 921
4246a0b6 922 rbio_orig_end_io(rbio, err);
53b381b3
DW
923}
924
925/*
926 * the read/modify/write code wants to use the original bio for
927 * any pages it included, and then use the rbio for everything
928 * else. This function decides if a given index (stripe number)
929 * and page number in that stripe fall inside the original bio
930 * or the rbio.
931 *
932 * if you set bio_list_only, you'll get a NULL back for any ranges
933 * that are outside the bio_list
934 *
935 * This doesn't take any refs on anything, you get a bare page pointer
936 * and the caller must bump refs as required.
937 *
938 * You must call index_rbio_pages once before you can trust
939 * the answers from this function.
940 */
941static struct page *page_in_rbio(struct btrfs_raid_bio *rbio,
942 int index, int pagenr, int bio_list_only)
943{
944 int chunk_page;
945 struct page *p = NULL;
946
947 chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr;
948
949 spin_lock_irq(&rbio->bio_list_lock);
950 p = rbio->bio_pages[chunk_page];
951 spin_unlock_irq(&rbio->bio_list_lock);
952
953 if (p || bio_list_only)
954 return p;
955
956 return rbio->stripe_pages[chunk_page];
957}
958
959/*
960 * number of pages we need for the entire stripe across all the
961 * drives
962 */
963static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes)
964{
09cbfeaf 965 return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes;
53b381b3
DW
966}
967
968/*
969 * allocation and initial setup for the btrfs_raid_bio. Not
970 * this does not allocate any pages for rbio->pages.
971 */
2ff7e61e
JM
972static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
973 struct btrfs_bio *bbio,
974 u64 stripe_len)
53b381b3
DW
975{
976 struct btrfs_raid_bio *rbio;
977 int nr_data = 0;
2c8cdd6e
MX
978 int real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
979 int num_pages = rbio_nr_pages(stripe_len, real_stripes);
5a6ac9ea 980 int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE);
53b381b3
DW
981 void *p;
982
1389053e
KC
983 rbio = kzalloc(sizeof(*rbio) +
984 sizeof(*rbio->stripe_pages) * num_pages +
985 sizeof(*rbio->bio_pages) * num_pages +
986 sizeof(*rbio->finish_pointers) * real_stripes +
987 sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) +
988 sizeof(*rbio->finish_pbitmap) *
989 BITS_TO_LONGS(stripe_npages),
990 GFP_NOFS);
af8e2d1d 991 if (!rbio)
53b381b3 992 return ERR_PTR(-ENOMEM);
53b381b3
DW
993
994 bio_list_init(&rbio->bio_list);
995 INIT_LIST_HEAD(&rbio->plug_list);
996 spin_lock_init(&rbio->bio_list_lock);
4ae10b3a 997 INIT_LIST_HEAD(&rbio->stripe_cache);
53b381b3
DW
998 INIT_LIST_HEAD(&rbio->hash_list);
999 rbio->bbio = bbio;
2ff7e61e 1000 rbio->fs_info = fs_info;
53b381b3
DW
1001 rbio->stripe_len = stripe_len;
1002 rbio->nr_pages = num_pages;
2c8cdd6e 1003 rbio->real_stripes = real_stripes;
5a6ac9ea 1004 rbio->stripe_npages = stripe_npages;
53b381b3
DW
1005 rbio->faila = -1;
1006 rbio->failb = -1;
dec95574 1007 refcount_set(&rbio->refs, 1);
b89e1b01
MX
1008 atomic_set(&rbio->error, 0);
1009 atomic_set(&rbio->stripes_pending, 0);
53b381b3
DW
1010
1011 /*
1389053e 1012 * the stripe_pages, bio_pages, etc arrays point to the extra
53b381b3
DW
1013 * memory we allocated past the end of the rbio
1014 */
1015 p = rbio + 1;
1389053e
KC
1016#define CONSUME_ALLOC(ptr, count) do { \
1017 ptr = p; \
1018 p = (unsigned char *)p + sizeof(*(ptr)) * (count); \
1019 } while (0)
1020 CONSUME_ALLOC(rbio->stripe_pages, num_pages);
1021 CONSUME_ALLOC(rbio->bio_pages, num_pages);
1022 CONSUME_ALLOC(rbio->finish_pointers, real_stripes);
1023 CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages));
1024 CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages));
1025#undef CONSUME_ALLOC
53b381b3 1026
10f11900
ZL
1027 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1028 nr_data = real_stripes - 1;
1029 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
2c8cdd6e 1030 nr_data = real_stripes - 2;
53b381b3 1031 else
10f11900 1032 BUG();
53b381b3
DW
1033
1034 rbio->nr_data = nr_data;
1035 return rbio;
1036}
1037
1038/* allocate pages for all the stripes in the bio, including parity */
1039static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1040{
1041 int i;
1042 struct page *page;
1043
1044 for (i = 0; i < rbio->nr_pages; i++) {
1045 if (rbio->stripe_pages[i])
1046 continue;
1047 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1048 if (!page)
1049 return -ENOMEM;
1050 rbio->stripe_pages[i] = page;
53b381b3
DW
1051 }
1052 return 0;
1053}
1054
b7178a5f 1055/* only allocate pages for p/q stripes */
53b381b3
DW
1056static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1057{
1058 int i;
1059 struct page *page;
1060
b7178a5f 1061 i = rbio_stripe_page_index(rbio, rbio->nr_data, 0);
53b381b3
DW
1062
1063 for (; i < rbio->nr_pages; i++) {
1064 if (rbio->stripe_pages[i])
1065 continue;
1066 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1067 if (!page)
1068 return -ENOMEM;
1069 rbio->stripe_pages[i] = page;
1070 }
1071 return 0;
1072}
1073
1074/*
1075 * add a single page from a specific stripe into our list of bios for IO
1076 * this will try to merge into existing bios if possible, and returns
1077 * zero if all went well.
1078 */
48a3b636
ES
1079static int rbio_add_io_page(struct btrfs_raid_bio *rbio,
1080 struct bio_list *bio_list,
1081 struct page *page,
1082 int stripe_nr,
1083 unsigned long page_index,
1084 unsigned long bio_max_len)
53b381b3
DW
1085{
1086 struct bio *last = bio_list->tail;
1087 u64 last_end = 0;
1088 int ret;
1089 struct bio *bio;
1090 struct btrfs_bio_stripe *stripe;
1091 u64 disk_start;
1092
1093 stripe = &rbio->bbio->stripes[stripe_nr];
09cbfeaf 1094 disk_start = stripe->physical + (page_index << PAGE_SHIFT);
53b381b3
DW
1095
1096 /* if the device is missing, just fail this stripe */
1097 if (!stripe->dev->bdev)
1098 return fail_rbio_index(rbio, stripe_nr);
1099
1100 /* see if we can add this page onto our existing bio */
1101 if (last) {
4f024f37
KO
1102 last_end = (u64)last->bi_iter.bi_sector << 9;
1103 last_end += last->bi_iter.bi_size;
53b381b3
DW
1104
1105 /*
1106 * we can't merge these if they are from different
1107 * devices or if they are not contiguous
1108 */
1109 if (last_end == disk_start && stripe->dev->bdev &&
4e4cbee9 1110 !last->bi_status &&
74d46992
CH
1111 last->bi_disk == stripe->dev->bdev->bd_disk &&
1112 last->bi_partno == stripe->dev->bdev->bd_partno) {
09cbfeaf
KS
1113 ret = bio_add_page(last, page, PAGE_SIZE, 0);
1114 if (ret == PAGE_SIZE)
53b381b3
DW
1115 return 0;
1116 }
1117 }
1118
1119 /* put a new bio on the list */
c5e4c3d7 1120 bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1);
4f024f37 1121 bio->bi_iter.bi_size = 0;
74d46992 1122 bio_set_dev(bio, stripe->dev->bdev);
4f024f37 1123 bio->bi_iter.bi_sector = disk_start >> 9;
53b381b3 1124
09cbfeaf 1125 bio_add_page(bio, page, PAGE_SIZE, 0);
53b381b3
DW
1126 bio_list_add(bio_list, bio);
1127 return 0;
1128}
1129
1130/*
1131 * while we're doing the read/modify/write cycle, we could
1132 * have errors in reading pages off the disk. This checks
1133 * for errors and if we're not able to read the page it'll
1134 * trigger parity reconstruction. The rmw will be finished
1135 * after we've reconstructed the failed stripes
1136 */
1137static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio)
1138{
1139 if (rbio->faila >= 0 || rbio->failb >= 0) {
2c8cdd6e 1140 BUG_ON(rbio->faila == rbio->real_stripes - 1);
53b381b3
DW
1141 __raid56_parity_recover(rbio);
1142 } else {
1143 finish_rmw(rbio);
1144 }
1145}
1146
53b381b3
DW
1147/*
1148 * helper function to walk our bio list and populate the bio_pages array with
1149 * the result. This seems expensive, but it is faster than constantly
1150 * searching through the bio list as we setup the IO in finish_rmw or stripe
1151 * reconstruction.
1152 *
1153 * This must be called before you trust the answers from page_in_rbio
1154 */
1155static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1156{
1157 struct bio *bio;
1158 u64 start;
1159 unsigned long stripe_offset;
1160 unsigned long page_index;
53b381b3
DW
1161
1162 spin_lock_irq(&rbio->bio_list_lock);
1163 bio_list_for_each(bio, &rbio->bio_list) {
6592e58c
FM
1164 struct bio_vec bvec;
1165 struct bvec_iter iter;
1166 int i = 0;
1167
4f024f37 1168 start = (u64)bio->bi_iter.bi_sector << 9;
8e5cfb55 1169 stripe_offset = start - rbio->bbio->raid_map[0];
09cbfeaf 1170 page_index = stripe_offset >> PAGE_SHIFT;
53b381b3 1171
6592e58c
FM
1172 if (bio_flagged(bio, BIO_CLONED))
1173 bio->bi_iter = btrfs_io_bio(bio)->iter;
1174
1175 bio_for_each_segment(bvec, bio, iter) {
1176 rbio->bio_pages[page_index + i] = bvec.bv_page;
1177 i++;
1178 }
53b381b3
DW
1179 }
1180 spin_unlock_irq(&rbio->bio_list_lock);
1181}
1182
1183/*
1184 * this is called from one of two situations. We either
1185 * have a full stripe from the higher layers, or we've read all
1186 * the missing bits off disk.
1187 *
1188 * This will calculate the parity and then send down any
1189 * changed blocks.
1190 */
1191static noinline void finish_rmw(struct btrfs_raid_bio *rbio)
1192{
1193 struct btrfs_bio *bbio = rbio->bbio;
1389053e 1194 void **pointers = rbio->finish_pointers;
53b381b3
DW
1195 int nr_data = rbio->nr_data;
1196 int stripe;
1197 int pagenr;
1198 int p_stripe = -1;
1199 int q_stripe = -1;
1200 struct bio_list bio_list;
1201 struct bio *bio;
53b381b3
DW
1202 int ret;
1203
1204 bio_list_init(&bio_list);
1205
2c8cdd6e
MX
1206 if (rbio->real_stripes - rbio->nr_data == 1) {
1207 p_stripe = rbio->real_stripes - 1;
1208 } else if (rbio->real_stripes - rbio->nr_data == 2) {
1209 p_stripe = rbio->real_stripes - 2;
1210 q_stripe = rbio->real_stripes - 1;
53b381b3
DW
1211 } else {
1212 BUG();
1213 }
1214
1215 /* at this point we either have a full stripe,
1216 * or we've read the full stripe from the drive.
1217 * recalculate the parity and write the new results.
1218 *
1219 * We're not allowed to add any new bios to the
1220 * bio list here, anyone else that wants to
1221 * change this stripe needs to do their own rmw.
1222 */
1223 spin_lock_irq(&rbio->bio_list_lock);
1224 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1225 spin_unlock_irq(&rbio->bio_list_lock);
1226
b89e1b01 1227 atomic_set(&rbio->error, 0);
53b381b3
DW
1228
1229 /*
1230 * now that we've set rmw_locked, run through the
1231 * bio list one last time and map the page pointers
4ae10b3a
CM
1232 *
1233 * We don't cache full rbios because we're assuming
1234 * the higher layers are unlikely to use this area of
1235 * the disk again soon. If they do use it again,
1236 * hopefully they will send another full bio.
53b381b3
DW
1237 */
1238 index_rbio_pages(rbio);
4ae10b3a
CM
1239 if (!rbio_is_full(rbio))
1240 cache_rbio_pages(rbio);
1241 else
1242 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
53b381b3 1243
915e2290 1244 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1245 struct page *p;
1246 /* first collect one page from each data stripe */
1247 for (stripe = 0; stripe < nr_data; stripe++) {
1248 p = page_in_rbio(rbio, stripe, pagenr, 0);
1249 pointers[stripe] = kmap(p);
1250 }
1251
1252 /* then add the parity stripe */
1253 p = rbio_pstripe_page(rbio, pagenr);
1254 SetPageUptodate(p);
1255 pointers[stripe++] = kmap(p);
1256
1257 if (q_stripe != -1) {
1258
1259 /*
1260 * raid6, add the qstripe and call the
1261 * library function to fill in our p/q
1262 */
1263 p = rbio_qstripe_page(rbio, pagenr);
1264 SetPageUptodate(p);
1265 pointers[stripe++] = kmap(p);
1266
2c8cdd6e 1267 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
53b381b3
DW
1268 pointers);
1269 } else {
1270 /* raid5 */
69d24804 1271 copy_page(pointers[nr_data], pointers[0]);
09cbfeaf 1272 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
53b381b3
DW
1273 }
1274
1275
2c8cdd6e 1276 for (stripe = 0; stripe < rbio->real_stripes; stripe++)
53b381b3
DW
1277 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
1278 }
1279
1280 /*
1281 * time to start writing. Make bios for everything from the
1282 * higher layers (the bio_list in our rbio) and our p/q. Ignore
1283 * everything else.
1284 */
2c8cdd6e 1285 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
915e2290 1286 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1287 struct page *page;
1288 if (stripe < rbio->nr_data) {
1289 page = page_in_rbio(rbio, stripe, pagenr, 1);
1290 if (!page)
1291 continue;
1292 } else {
1293 page = rbio_stripe_page(rbio, stripe, pagenr);
1294 }
1295
1296 ret = rbio_add_io_page(rbio, &bio_list,
1297 page, stripe, pagenr, rbio->stripe_len);
1298 if (ret)
1299 goto cleanup;
1300 }
1301 }
1302
2c8cdd6e
MX
1303 if (likely(!bbio->num_tgtdevs))
1304 goto write_data;
1305
1306 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
1307 if (!bbio->tgtdev_map[stripe])
1308 continue;
1309
915e2290 1310 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
2c8cdd6e
MX
1311 struct page *page;
1312 if (stripe < rbio->nr_data) {
1313 page = page_in_rbio(rbio, stripe, pagenr, 1);
1314 if (!page)
1315 continue;
1316 } else {
1317 page = rbio_stripe_page(rbio, stripe, pagenr);
1318 }
1319
1320 ret = rbio_add_io_page(rbio, &bio_list, page,
1321 rbio->bbio->tgtdev_map[stripe],
1322 pagenr, rbio->stripe_len);
1323 if (ret)
1324 goto cleanup;
1325 }
1326 }
1327
1328write_data:
b89e1b01
MX
1329 atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list));
1330 BUG_ON(atomic_read(&rbio->stripes_pending) == 0);
53b381b3
DW
1331
1332 while (1) {
1333 bio = bio_list_pop(&bio_list);
1334 if (!bio)
1335 break;
1336
1337 bio->bi_private = rbio;
1338 bio->bi_end_io = raid_write_end_io;
ebcc3263 1339 bio->bi_opf = REQ_OP_WRITE;
4e49ea4a
MC
1340
1341 submit_bio(bio);
53b381b3
DW
1342 }
1343 return;
1344
1345cleanup:
58efbc9f 1346 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
1347
1348 while ((bio = bio_list_pop(&bio_list)))
1349 bio_put(bio);
53b381b3
DW
1350}
1351
1352/*
1353 * helper to find the stripe number for a given bio. Used to figure out which
1354 * stripe has failed. This expects the bio to correspond to a physical disk,
1355 * so it looks up based on physical sector numbers.
1356 */
1357static int find_bio_stripe(struct btrfs_raid_bio *rbio,
1358 struct bio *bio)
1359{
4f024f37 1360 u64 physical = bio->bi_iter.bi_sector;
53b381b3
DW
1361 u64 stripe_start;
1362 int i;
1363 struct btrfs_bio_stripe *stripe;
1364
1365 physical <<= 9;
1366
1367 for (i = 0; i < rbio->bbio->num_stripes; i++) {
1368 stripe = &rbio->bbio->stripes[i];
1369 stripe_start = stripe->physical;
1370 if (physical >= stripe_start &&
2c8cdd6e 1371 physical < stripe_start + rbio->stripe_len &&
047fdea6 1372 stripe->dev->bdev &&
74d46992
CH
1373 bio->bi_disk == stripe->dev->bdev->bd_disk &&
1374 bio->bi_partno == stripe->dev->bdev->bd_partno) {
53b381b3
DW
1375 return i;
1376 }
1377 }
1378 return -1;
1379}
1380
1381/*
1382 * helper to find the stripe number for a given
1383 * bio (before mapping). Used to figure out which stripe has
1384 * failed. This looks up based on logical block numbers.
1385 */
1386static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio,
1387 struct bio *bio)
1388{
4f024f37 1389 u64 logical = bio->bi_iter.bi_sector;
53b381b3
DW
1390 u64 stripe_start;
1391 int i;
1392
1393 logical <<= 9;
1394
1395 for (i = 0; i < rbio->nr_data; i++) {
8e5cfb55 1396 stripe_start = rbio->bbio->raid_map[i];
53b381b3
DW
1397 if (logical >= stripe_start &&
1398 logical < stripe_start + rbio->stripe_len) {
1399 return i;
1400 }
1401 }
1402 return -1;
1403}
1404
1405/*
1406 * returns -EIO if we had too many failures
1407 */
1408static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed)
1409{
1410 unsigned long flags;
1411 int ret = 0;
1412
1413 spin_lock_irqsave(&rbio->bio_list_lock, flags);
1414
1415 /* we already know this stripe is bad, move on */
1416 if (rbio->faila == failed || rbio->failb == failed)
1417 goto out;
1418
1419 if (rbio->faila == -1) {
1420 /* first failure on this rbio */
1421 rbio->faila = failed;
b89e1b01 1422 atomic_inc(&rbio->error);
53b381b3
DW
1423 } else if (rbio->failb == -1) {
1424 /* second failure on this rbio */
1425 rbio->failb = failed;
b89e1b01 1426 atomic_inc(&rbio->error);
53b381b3
DW
1427 } else {
1428 ret = -EIO;
1429 }
1430out:
1431 spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
1432
1433 return ret;
1434}
1435
1436/*
1437 * helper to fail a stripe based on a physical disk
1438 * bio.
1439 */
1440static int fail_bio_stripe(struct btrfs_raid_bio *rbio,
1441 struct bio *bio)
1442{
1443 int failed = find_bio_stripe(rbio, bio);
1444
1445 if (failed < 0)
1446 return -EIO;
1447
1448 return fail_rbio_index(rbio, failed);
1449}
1450
1451/*
1452 * this sets each page in the bio uptodate. It should only be used on private
1453 * rbio pages, nothing that comes in from the higher layers
1454 */
1455static void set_bio_pages_uptodate(struct bio *bio)
1456{
0198e5b7 1457 struct bio_vec *bvec;
6dc4f100 1458 struct bvec_iter_all iter_all;
6592e58c 1459
0198e5b7 1460 ASSERT(!bio_flagged(bio, BIO_CLONED));
53b381b3 1461
2b070cfe 1462 bio_for_each_segment_all(bvec, bio, iter_all)
0198e5b7 1463 SetPageUptodate(bvec->bv_page);
53b381b3
DW
1464}
1465
1466/*
1467 * end io for the read phase of the rmw cycle. All the bios here are physical
1468 * stripe bios we've read from the disk so we can recalculate the parity of the
1469 * stripe.
1470 *
1471 * This will usually kick off finish_rmw once all the bios are read in, but it
1472 * may trigger parity reconstruction if we had any errors along the way
1473 */
4246a0b6 1474static void raid_rmw_end_io(struct bio *bio)
53b381b3
DW
1475{
1476 struct btrfs_raid_bio *rbio = bio->bi_private;
1477
4e4cbee9 1478 if (bio->bi_status)
53b381b3
DW
1479 fail_bio_stripe(rbio, bio);
1480 else
1481 set_bio_pages_uptodate(bio);
1482
1483 bio_put(bio);
1484
b89e1b01 1485 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
1486 return;
1487
b89e1b01 1488 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
53b381b3
DW
1489 goto cleanup;
1490
1491 /*
1492 * this will normally call finish_rmw to start our write
1493 * but if there are any failed stripes we'll reconstruct
1494 * from parity first
1495 */
1496 validate_rbio_for_rmw(rbio);
1497 return;
1498
1499cleanup:
1500
58efbc9f 1501 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
1502}
1503
53b381b3
DW
1504/*
1505 * the stripe must be locked by the caller. It will
1506 * unlock after all the writes are done
1507 */
1508static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio)
1509{
1510 int bios_to_read = 0;
53b381b3
DW
1511 struct bio_list bio_list;
1512 int ret;
53b381b3
DW
1513 int pagenr;
1514 int stripe;
1515 struct bio *bio;
1516
1517 bio_list_init(&bio_list);
1518
1519 ret = alloc_rbio_pages(rbio);
1520 if (ret)
1521 goto cleanup;
1522
1523 index_rbio_pages(rbio);
1524
b89e1b01 1525 atomic_set(&rbio->error, 0);
53b381b3
DW
1526 /*
1527 * build a list of bios to read all the missing parts of this
1528 * stripe
1529 */
1530 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
915e2290 1531 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
1532 struct page *page;
1533 /*
1534 * we want to find all the pages missing from
1535 * the rbio and read them from the disk. If
1536 * page_in_rbio finds a page in the bio list
1537 * we don't need to read it off the stripe.
1538 */
1539 page = page_in_rbio(rbio, stripe, pagenr, 1);
1540 if (page)
1541 continue;
1542
1543 page = rbio_stripe_page(rbio, stripe, pagenr);
4ae10b3a
CM
1544 /*
1545 * the bio cache may have handed us an uptodate
1546 * page. If so, be happy and use it
1547 */
1548 if (PageUptodate(page))
1549 continue;
1550
53b381b3
DW
1551 ret = rbio_add_io_page(rbio, &bio_list, page,
1552 stripe, pagenr, rbio->stripe_len);
1553 if (ret)
1554 goto cleanup;
1555 }
1556 }
1557
1558 bios_to_read = bio_list_size(&bio_list);
1559 if (!bios_to_read) {
1560 /*
1561 * this can happen if others have merged with
1562 * us, it means there is nothing left to read.
1563 * But if there are missing devices it may not be
1564 * safe to do the full stripe write yet.
1565 */
1566 goto finish;
1567 }
1568
1569 /*
1570 * the bbio may be freed once we submit the last bio. Make sure
1571 * not to touch it after that
1572 */
b89e1b01 1573 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
1574 while (1) {
1575 bio = bio_list_pop(&bio_list);
1576 if (!bio)
1577 break;
1578
1579 bio->bi_private = rbio;
1580 bio->bi_end_io = raid_rmw_end_io;
ebcc3263 1581 bio->bi_opf = REQ_OP_READ;
53b381b3 1582
0b246afa 1583 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 1584
4e49ea4a 1585 submit_bio(bio);
53b381b3
DW
1586 }
1587 /* the actual write will happen once the reads are done */
1588 return 0;
1589
1590cleanup:
58efbc9f 1591 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
1592
1593 while ((bio = bio_list_pop(&bio_list)))
1594 bio_put(bio);
1595
53b381b3
DW
1596 return -EIO;
1597
1598finish:
1599 validate_rbio_for_rmw(rbio);
1600 return 0;
1601}
1602
1603/*
1604 * if the upper layers pass in a full stripe, we thank them by only allocating
1605 * enough pages to hold the parity, and sending it all down quickly.
1606 */
1607static int full_stripe_write(struct btrfs_raid_bio *rbio)
1608{
1609 int ret;
1610
1611 ret = alloc_rbio_parity_pages(rbio);
3cd846d1
MX
1612 if (ret) {
1613 __free_raid_bio(rbio);
53b381b3 1614 return ret;
3cd846d1 1615 }
53b381b3
DW
1616
1617 ret = lock_stripe_add(rbio);
1618 if (ret == 0)
1619 finish_rmw(rbio);
1620 return 0;
1621}
1622
1623/*
1624 * partial stripe writes get handed over to async helpers.
1625 * We're really hoping to merge a few more writes into this
1626 * rbio before calculating new parity
1627 */
1628static int partial_stripe_write(struct btrfs_raid_bio *rbio)
1629{
1630 int ret;
1631
1632 ret = lock_stripe_add(rbio);
1633 if (ret == 0)
cf6a4a75 1634 start_async_work(rbio, rmw_work);
53b381b3
DW
1635 return 0;
1636}
1637
1638/*
1639 * sometimes while we were reading from the drive to
1640 * recalculate parity, enough new bios come into create
1641 * a full stripe. So we do a check here to see if we can
1642 * go directly to finish_rmw
1643 */
1644static int __raid56_parity_write(struct btrfs_raid_bio *rbio)
1645{
1646 /* head off into rmw land if we don't have a full stripe */
1647 if (!rbio_is_full(rbio))
1648 return partial_stripe_write(rbio);
1649 return full_stripe_write(rbio);
1650}
1651
6ac0f488
CM
1652/*
1653 * We use plugging call backs to collect full stripes.
1654 * Any time we get a partial stripe write while plugged
1655 * we collect it into a list. When the unplug comes down,
1656 * we sort the list by logical block number and merge
1657 * everything we can into the same rbios
1658 */
1659struct btrfs_plug_cb {
1660 struct blk_plug_cb cb;
1661 struct btrfs_fs_info *info;
1662 struct list_head rbio_list;
1663 struct btrfs_work work;
1664};
1665
1666/*
1667 * rbios on the plug list are sorted for easier merging.
1668 */
1669static int plug_cmp(void *priv, struct list_head *a, struct list_head *b)
1670{
1671 struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1672 plug_list);
1673 struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1674 plug_list);
4f024f37
KO
1675 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1676 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
6ac0f488
CM
1677
1678 if (a_sector < b_sector)
1679 return -1;
1680 if (a_sector > b_sector)
1681 return 1;
1682 return 0;
1683}
1684
1685static void run_plug(struct btrfs_plug_cb *plug)
1686{
1687 struct btrfs_raid_bio *cur;
1688 struct btrfs_raid_bio *last = NULL;
1689
1690 /*
1691 * sort our plug list then try to merge
1692 * everything we can in hopes of creating full
1693 * stripes.
1694 */
1695 list_sort(NULL, &plug->rbio_list, plug_cmp);
1696 while (!list_empty(&plug->rbio_list)) {
1697 cur = list_entry(plug->rbio_list.next,
1698 struct btrfs_raid_bio, plug_list);
1699 list_del_init(&cur->plug_list);
1700
1701 if (rbio_is_full(cur)) {
c7b562c5
DS
1702 int ret;
1703
6ac0f488 1704 /* we have a full stripe, send it down */
c7b562c5
DS
1705 ret = full_stripe_write(cur);
1706 BUG_ON(ret);
6ac0f488
CM
1707 continue;
1708 }
1709 if (last) {
1710 if (rbio_can_merge(last, cur)) {
1711 merge_rbio(last, cur);
1712 __free_raid_bio(cur);
1713 continue;
1714
1715 }
1716 __raid56_parity_write(last);
1717 }
1718 last = cur;
1719 }
1720 if (last) {
1721 __raid56_parity_write(last);
1722 }
1723 kfree(plug);
1724}
1725
1726/*
1727 * if the unplug comes from schedule, we have to push the
1728 * work off to a helper thread
1729 */
1730static void unplug_work(struct btrfs_work *work)
1731{
1732 struct btrfs_plug_cb *plug;
1733 plug = container_of(work, struct btrfs_plug_cb, work);
1734 run_plug(plug);
1735}
1736
1737static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1738{
1739 struct btrfs_plug_cb *plug;
1740 plug = container_of(cb, struct btrfs_plug_cb, cb);
1741
1742 if (from_schedule) {
a0cac0ec 1743 btrfs_init_work(&plug->work, unplug_work, NULL, NULL);
d05a33ac
QW
1744 btrfs_queue_work(plug->info->rmw_workers,
1745 &plug->work);
6ac0f488
CM
1746 return;
1747 }
1748 run_plug(plug);
1749}
1750
53b381b3
DW
1751/*
1752 * our main entry point for writes from the rest of the FS.
1753 */
2ff7e61e 1754int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55 1755 struct btrfs_bio *bbio, u64 stripe_len)
53b381b3
DW
1756{
1757 struct btrfs_raid_bio *rbio;
6ac0f488
CM
1758 struct btrfs_plug_cb *plug = NULL;
1759 struct blk_plug_cb *cb;
4245215d 1760 int ret;
53b381b3 1761
2ff7e61e 1762 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 1763 if (IS_ERR(rbio)) {
6e9606d2 1764 btrfs_put_bbio(bbio);
53b381b3 1765 return PTR_ERR(rbio);
af8e2d1d 1766 }
53b381b3 1767 bio_list_add(&rbio->bio_list, bio);
4f024f37 1768 rbio->bio_list_bytes = bio->bi_iter.bi_size;
1b94b556 1769 rbio->operation = BTRFS_RBIO_WRITE;
6ac0f488 1770
0b246afa 1771 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
1772 rbio->generic_bio_cnt = 1;
1773
6ac0f488
CM
1774 /*
1775 * don't plug on full rbios, just get them out the door
1776 * as quickly as we can
1777 */
4245215d
MX
1778 if (rbio_is_full(rbio)) {
1779 ret = full_stripe_write(rbio);
1780 if (ret)
0b246afa 1781 btrfs_bio_counter_dec(fs_info);
4245215d
MX
1782 return ret;
1783 }
6ac0f488 1784
0b246afa 1785 cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug));
6ac0f488
CM
1786 if (cb) {
1787 plug = container_of(cb, struct btrfs_plug_cb, cb);
1788 if (!plug->info) {
0b246afa 1789 plug->info = fs_info;
6ac0f488
CM
1790 INIT_LIST_HEAD(&plug->rbio_list);
1791 }
1792 list_add_tail(&rbio->plug_list, &plug->rbio_list);
4245215d 1793 ret = 0;
6ac0f488 1794 } else {
4245215d
MX
1795 ret = __raid56_parity_write(rbio);
1796 if (ret)
0b246afa 1797 btrfs_bio_counter_dec(fs_info);
6ac0f488 1798 }
4245215d 1799 return ret;
53b381b3
DW
1800}
1801
1802/*
1803 * all parity reconstruction happens here. We've read in everything
1804 * we can find from the drives and this does the heavy lifting of
1805 * sorting the good from the bad.
1806 */
1807static void __raid_recover_end_io(struct btrfs_raid_bio *rbio)
1808{
1809 int pagenr, stripe;
1810 void **pointers;
1811 int faila = -1, failb = -1;
53b381b3 1812 struct page *page;
58efbc9f 1813 blk_status_t err;
53b381b3
DW
1814 int i;
1815
31e818fe 1816 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
53b381b3 1817 if (!pointers) {
58efbc9f 1818 err = BLK_STS_RESOURCE;
53b381b3
DW
1819 goto cleanup_io;
1820 }
1821
1822 faila = rbio->faila;
1823 failb = rbio->failb;
1824
b4ee1782
OS
1825 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1826 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
53b381b3
DW
1827 spin_lock_irq(&rbio->bio_list_lock);
1828 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
1829 spin_unlock_irq(&rbio->bio_list_lock);
1830 }
1831
1832 index_rbio_pages(rbio);
1833
915e2290 1834 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
5a6ac9ea
MX
1835 /*
1836 * Now we just use bitmap to mark the horizontal stripes in
1837 * which we have data when doing parity scrub.
1838 */
1839 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1840 !test_bit(pagenr, rbio->dbitmap))
1841 continue;
1842
53b381b3
DW
1843 /* setup our array of pointers with pages
1844 * from each stripe
1845 */
2c8cdd6e 1846 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1847 /*
1848 * if we're rebuilding a read, we have to use
1849 * pages from the bio list
1850 */
b4ee1782
OS
1851 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1852 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1853 (stripe == faila || stripe == failb)) {
1854 page = page_in_rbio(rbio, stripe, pagenr, 0);
1855 } else {
1856 page = rbio_stripe_page(rbio, stripe, pagenr);
1857 }
1858 pointers[stripe] = kmap(page);
1859 }
1860
1861 /* all raid6 handling here */
10f11900 1862 if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
1863 /*
1864 * single failure, rebuild from parity raid5
1865 * style
1866 */
1867 if (failb < 0) {
1868 if (faila == rbio->nr_data) {
1869 /*
1870 * Just the P stripe has failed, without
1871 * a bad data or Q stripe.
1872 * TODO, we should redo the xor here.
1873 */
58efbc9f 1874 err = BLK_STS_IOERR;
53b381b3
DW
1875 goto cleanup;
1876 }
1877 /*
1878 * a single failure in raid6 is rebuilt
1879 * in the pstripe code below
1880 */
1881 goto pstripe;
1882 }
1883
1884 /* make sure our ps and qs are in order */
1885 if (faila > failb) {
1886 int tmp = failb;
1887 failb = faila;
1888 faila = tmp;
1889 }
1890
1891 /* if the q stripe is failed, do a pstripe reconstruction
1892 * from the xors.
1893 * If both the q stripe and the P stripe are failed, we're
1894 * here due to a crc mismatch and we can't give them the
1895 * data they want
1896 */
8e5cfb55
ZL
1897 if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) {
1898 if (rbio->bbio->raid_map[faila] ==
1899 RAID5_P_STRIPE) {
58efbc9f 1900 err = BLK_STS_IOERR;
53b381b3
DW
1901 goto cleanup;
1902 }
1903 /*
1904 * otherwise we have one bad data stripe and
1905 * a good P stripe. raid5!
1906 */
1907 goto pstripe;
1908 }
1909
8e5cfb55 1910 if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) {
2c8cdd6e 1911 raid6_datap_recov(rbio->real_stripes,
53b381b3
DW
1912 PAGE_SIZE, faila, pointers);
1913 } else {
2c8cdd6e 1914 raid6_2data_recov(rbio->real_stripes,
53b381b3
DW
1915 PAGE_SIZE, faila, failb,
1916 pointers);
1917 }
1918 } else {
1919 void *p;
1920
1921 /* rebuild from P stripe here (raid5 or raid6) */
1922 BUG_ON(failb != -1);
1923pstripe:
1924 /* Copy parity block into failed block to start with */
69d24804 1925 copy_page(pointers[faila], pointers[rbio->nr_data]);
53b381b3
DW
1926
1927 /* rearrange the pointer array */
1928 p = pointers[faila];
1929 for (stripe = faila; stripe < rbio->nr_data - 1; stripe++)
1930 pointers[stripe] = pointers[stripe + 1];
1931 pointers[rbio->nr_data - 1] = p;
1932
1933 /* xor in the rest */
09cbfeaf 1934 run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE);
53b381b3
DW
1935 }
1936 /* if we're doing this rebuild as part of an rmw, go through
1937 * and set all of our private rbio pages in the
1938 * failed stripes as uptodate. This way finish_rmw will
1939 * know they can be trusted. If this was a read reconstruction,
1940 * other endio functions will fiddle the uptodate bits
1941 */
1b94b556 1942 if (rbio->operation == BTRFS_RBIO_WRITE) {
915e2290 1943 for (i = 0; i < rbio->stripe_npages; i++) {
53b381b3
DW
1944 if (faila != -1) {
1945 page = rbio_stripe_page(rbio, faila, i);
1946 SetPageUptodate(page);
1947 }
1948 if (failb != -1) {
1949 page = rbio_stripe_page(rbio, failb, i);
1950 SetPageUptodate(page);
1951 }
1952 }
1953 }
2c8cdd6e 1954 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
53b381b3
DW
1955 /*
1956 * if we're rebuilding a read, we have to use
1957 * pages from the bio list
1958 */
b4ee1782
OS
1959 if ((rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1960 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) &&
53b381b3
DW
1961 (stripe == faila || stripe == failb)) {
1962 page = page_in_rbio(rbio, stripe, pagenr, 0);
1963 } else {
1964 page = rbio_stripe_page(rbio, stripe, pagenr);
1965 }
1966 kunmap(page);
1967 }
1968 }
1969
58efbc9f 1970 err = BLK_STS_OK;
53b381b3
DW
1971cleanup:
1972 kfree(pointers);
1973
1974cleanup_io:
580c6efa
LB
1975 /*
1976 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a
1977 * valid rbio which is consistent with ondisk content, thus such a
1978 * valid rbio can be cached to avoid further disk reads.
1979 */
1980 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
1981 rbio->operation == BTRFS_RBIO_REBUILD_MISSING) {
44ac474d
LB
1982 /*
1983 * - In case of two failures, where rbio->failb != -1:
1984 *
1985 * Do not cache this rbio since the above read reconstruction
1986 * (raid6_datap_recov() or raid6_2data_recov()) may have
1987 * changed some content of stripes which are not identical to
1988 * on-disk content any more, otherwise, a later write/recover
1989 * may steal stripe_pages from this rbio and end up with
1990 * corruptions or rebuild failures.
1991 *
1992 * - In case of single failure, where rbio->failb == -1:
1993 *
1994 * Cache this rbio iff the above read reconstruction is
52042d8e 1995 * executed without problems.
44ac474d
LB
1996 */
1997 if (err == BLK_STS_OK && rbio->failb < 0)
4ae10b3a
CM
1998 cache_rbio_pages(rbio);
1999 else
2000 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2001
4246a0b6 2002 rbio_orig_end_io(rbio, err);
58efbc9f 2003 } else if (err == BLK_STS_OK) {
53b381b3
DW
2004 rbio->faila = -1;
2005 rbio->failb = -1;
5a6ac9ea
MX
2006
2007 if (rbio->operation == BTRFS_RBIO_WRITE)
2008 finish_rmw(rbio);
2009 else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB)
2010 finish_parity_scrub(rbio, 0);
2011 else
2012 BUG();
53b381b3 2013 } else {
4246a0b6 2014 rbio_orig_end_io(rbio, err);
53b381b3
DW
2015 }
2016}
2017
2018/*
2019 * This is called only for stripes we've read from disk to
2020 * reconstruct the parity.
2021 */
4246a0b6 2022static void raid_recover_end_io(struct bio *bio)
53b381b3
DW
2023{
2024 struct btrfs_raid_bio *rbio = bio->bi_private;
2025
2026 /*
2027 * we only read stripe pages off the disk, set them
2028 * up to date if there were no errors
2029 */
4e4cbee9 2030 if (bio->bi_status)
53b381b3
DW
2031 fail_bio_stripe(rbio, bio);
2032 else
2033 set_bio_pages_uptodate(bio);
2034 bio_put(bio);
2035
b89e1b01 2036 if (!atomic_dec_and_test(&rbio->stripes_pending))
53b381b3
DW
2037 return;
2038
b89e1b01 2039 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
58efbc9f 2040 rbio_orig_end_io(rbio, BLK_STS_IOERR);
53b381b3
DW
2041 else
2042 __raid_recover_end_io(rbio);
2043}
2044
2045/*
2046 * reads everything we need off the disk to reconstruct
2047 * the parity. endio handlers trigger final reconstruction
2048 * when the IO is done.
2049 *
2050 * This is used both for reads from the higher layers and for
2051 * parity construction required to finish a rmw cycle.
2052 */
2053static int __raid56_parity_recover(struct btrfs_raid_bio *rbio)
2054{
2055 int bios_to_read = 0;
53b381b3
DW
2056 struct bio_list bio_list;
2057 int ret;
53b381b3
DW
2058 int pagenr;
2059 int stripe;
2060 struct bio *bio;
2061
2062 bio_list_init(&bio_list);
2063
2064 ret = alloc_rbio_pages(rbio);
2065 if (ret)
2066 goto cleanup;
2067
b89e1b01 2068 atomic_set(&rbio->error, 0);
53b381b3
DW
2069
2070 /*
4ae10b3a
CM
2071 * read everything that hasn't failed. Thanks to the
2072 * stripe cache, it is possible that some or all of these
2073 * pages are going to be uptodate.
53b381b3 2074 */
2c8cdd6e 2075 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5588383e 2076 if (rbio->faila == stripe || rbio->failb == stripe) {
b89e1b01 2077 atomic_inc(&rbio->error);
53b381b3 2078 continue;
5588383e 2079 }
53b381b3 2080
915e2290 2081 for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) {
53b381b3
DW
2082 struct page *p;
2083
2084 /*
2085 * the rmw code may have already read this
2086 * page in
2087 */
2088 p = rbio_stripe_page(rbio, stripe, pagenr);
2089 if (PageUptodate(p))
2090 continue;
2091
2092 ret = rbio_add_io_page(rbio, &bio_list,
2093 rbio_stripe_page(rbio, stripe, pagenr),
2094 stripe, pagenr, rbio->stripe_len);
2095 if (ret < 0)
2096 goto cleanup;
2097 }
2098 }
2099
2100 bios_to_read = bio_list_size(&bio_list);
2101 if (!bios_to_read) {
2102 /*
2103 * we might have no bios to read just because the pages
2104 * were up to date, or we might have no bios to read because
2105 * the devices were gone.
2106 */
b89e1b01 2107 if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) {
53b381b3
DW
2108 __raid_recover_end_io(rbio);
2109 goto out;
2110 } else {
2111 goto cleanup;
2112 }
2113 }
2114
2115 /*
2116 * the bbio may be freed once we submit the last bio. Make sure
2117 * not to touch it after that
2118 */
b89e1b01 2119 atomic_set(&rbio->stripes_pending, bios_to_read);
53b381b3
DW
2120 while (1) {
2121 bio = bio_list_pop(&bio_list);
2122 if (!bio)
2123 break;
2124
2125 bio->bi_private = rbio;
2126 bio->bi_end_io = raid_recover_end_io;
ebcc3263 2127 bio->bi_opf = REQ_OP_READ;
53b381b3 2128
0b246afa 2129 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
53b381b3 2130
4e49ea4a 2131 submit_bio(bio);
53b381b3
DW
2132 }
2133out:
2134 return 0;
2135
2136cleanup:
b4ee1782
OS
2137 if (rbio->operation == BTRFS_RBIO_READ_REBUILD ||
2138 rbio->operation == BTRFS_RBIO_REBUILD_MISSING)
58efbc9f 2139 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
2140
2141 while ((bio = bio_list_pop(&bio_list)))
2142 bio_put(bio);
2143
53b381b3
DW
2144 return -EIO;
2145}
2146
2147/*
2148 * the main entry point for reads from the higher layers. This
2149 * is really only called when the normal read path had a failure,
2150 * so we assume the bio they send down corresponds to a failed part
2151 * of the drive.
2152 */
2ff7e61e 2153int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2154 struct btrfs_bio *bbio, u64 stripe_len,
2155 int mirror_num, int generic_io)
53b381b3
DW
2156{
2157 struct btrfs_raid_bio *rbio;
2158 int ret;
2159
abad60c6
LB
2160 if (generic_io) {
2161 ASSERT(bbio->mirror_num == mirror_num);
2162 btrfs_io_bio(bio)->mirror_num = mirror_num;
2163 }
2164
2ff7e61e 2165 rbio = alloc_rbio(fs_info, bbio, stripe_len);
af8e2d1d 2166 if (IS_ERR(rbio)) {
6e9606d2
ZL
2167 if (generic_io)
2168 btrfs_put_bbio(bbio);
53b381b3 2169 return PTR_ERR(rbio);
af8e2d1d 2170 }
53b381b3 2171
1b94b556 2172 rbio->operation = BTRFS_RBIO_READ_REBUILD;
53b381b3 2173 bio_list_add(&rbio->bio_list, bio);
4f024f37 2174 rbio->bio_list_bytes = bio->bi_iter.bi_size;
53b381b3
DW
2175
2176 rbio->faila = find_logical_bio_stripe(rbio, bio);
2177 if (rbio->faila == -1) {
0b246afa 2178 btrfs_warn(fs_info,
e46a28ca
LB
2179 "%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)",
2180 __func__, (u64)bio->bi_iter.bi_sector << 9,
2181 (u64)bio->bi_iter.bi_size, bbio->map_type);
6e9606d2
ZL
2182 if (generic_io)
2183 btrfs_put_bbio(bbio);
53b381b3
DW
2184 kfree(rbio);
2185 return -EIO;
2186 }
2187
4245215d 2188 if (generic_io) {
0b246afa 2189 btrfs_bio_counter_inc_noblocked(fs_info);
4245215d
MX
2190 rbio->generic_bio_cnt = 1;
2191 } else {
6e9606d2 2192 btrfs_get_bbio(bbio);
4245215d
MX
2193 }
2194
53b381b3 2195 /*
8810f751
LB
2196 * Loop retry:
2197 * for 'mirror == 2', reconstruct from all other stripes.
2198 * for 'mirror_num > 2', select a stripe to fail on every retry.
53b381b3 2199 */
8810f751
LB
2200 if (mirror_num > 2) {
2201 /*
2202 * 'mirror == 3' is to fail the p stripe and
2203 * reconstruct from the q stripe. 'mirror > 3' is to
2204 * fail a data stripe and reconstruct from p+q stripe.
2205 */
2206 rbio->failb = rbio->real_stripes - (mirror_num - 1);
2207 ASSERT(rbio->failb > 0);
2208 if (rbio->failb <= rbio->faila)
2209 rbio->failb--;
2210 }
53b381b3
DW
2211
2212 ret = lock_stripe_add(rbio);
2213
2214 /*
2215 * __raid56_parity_recover will end the bio with
2216 * any errors it hits. We don't want to return
2217 * its error value up the stack because our caller
2218 * will end up calling bio_endio with any nonzero
2219 * return
2220 */
2221 if (ret == 0)
2222 __raid56_parity_recover(rbio);
2223 /*
2224 * our rbio has been added to the list of
2225 * rbios that will be handled after the
2226 * currently lock owner is done
2227 */
2228 return 0;
2229
2230}
2231
2232static void rmw_work(struct btrfs_work *work)
2233{
2234 struct btrfs_raid_bio *rbio;
2235
2236 rbio = container_of(work, struct btrfs_raid_bio, work);
2237 raid56_rmw_stripe(rbio);
2238}
2239
2240static void read_rebuild_work(struct btrfs_work *work)
2241{
2242 struct btrfs_raid_bio *rbio;
2243
2244 rbio = container_of(work, struct btrfs_raid_bio, work);
2245 __raid56_parity_recover(rbio);
2246}
5a6ac9ea
MX
2247
2248/*
2249 * The following code is used to scrub/replace the parity stripe
2250 *
ae6529c3
QW
2251 * Caller must have already increased bio_counter for getting @bbio.
2252 *
5a6ac9ea
MX
2253 * Note: We need make sure all the pages that add into the scrub/replace
2254 * raid bio are correct and not be changed during the scrub/replace. That
2255 * is those pages just hold metadata or file data with checksum.
2256 */
2257
2258struct btrfs_raid_bio *
2ff7e61e 2259raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
8e5cfb55
ZL
2260 struct btrfs_bio *bbio, u64 stripe_len,
2261 struct btrfs_device *scrub_dev,
5a6ac9ea
MX
2262 unsigned long *dbitmap, int stripe_nsectors)
2263{
2264 struct btrfs_raid_bio *rbio;
2265 int i;
2266
2ff7e61e 2267 rbio = alloc_rbio(fs_info, bbio, stripe_len);
5a6ac9ea
MX
2268 if (IS_ERR(rbio))
2269 return NULL;
2270 bio_list_add(&rbio->bio_list, bio);
2271 /*
2272 * This is a special bio which is used to hold the completion handler
2273 * and make the scrub rbio is similar to the other types
2274 */
2275 ASSERT(!bio->bi_iter.bi_size);
2276 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2277
9cd3a7eb
LB
2278 /*
2279 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted
2280 * to the end position, so this search can start from the first parity
2281 * stripe.
2282 */
2283 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2284 if (bbio->stripes[i].dev == scrub_dev) {
2285 rbio->scrubp = i;
2286 break;
2287 }
2288 }
9cd3a7eb 2289 ASSERT(i < rbio->real_stripes);
5a6ac9ea
MX
2290
2291 /* Now we just support the sectorsize equals to page size */
0b246afa 2292 ASSERT(fs_info->sectorsize == PAGE_SIZE);
5a6ac9ea
MX
2293 ASSERT(rbio->stripe_npages == stripe_nsectors);
2294 bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors);
2295
ae6529c3
QW
2296 /*
2297 * We have already increased bio_counter when getting bbio, record it
2298 * so we can free it at rbio_orig_end_io().
2299 */
2300 rbio->generic_bio_cnt = 1;
2301
5a6ac9ea
MX
2302 return rbio;
2303}
2304
b4ee1782
OS
2305/* Used for both parity scrub and missing. */
2306void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page,
2307 u64 logical)
5a6ac9ea
MX
2308{
2309 int stripe_offset;
2310 int index;
2311
8e5cfb55
ZL
2312 ASSERT(logical >= rbio->bbio->raid_map[0]);
2313 ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] +
5a6ac9ea 2314 rbio->stripe_len * rbio->nr_data);
8e5cfb55 2315 stripe_offset = (int)(logical - rbio->bbio->raid_map[0]);
09cbfeaf 2316 index = stripe_offset >> PAGE_SHIFT;
5a6ac9ea
MX
2317 rbio->bio_pages[index] = page;
2318}
2319
2320/*
2321 * We just scrub the parity that we have correct data on the same horizontal,
2322 * so we needn't allocate all pages for all the stripes.
2323 */
2324static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2325{
2326 int i;
2327 int bit;
2328 int index;
2329 struct page *page;
2330
2331 for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) {
2c8cdd6e 2332 for (i = 0; i < rbio->real_stripes; i++) {
5a6ac9ea
MX
2333 index = i * rbio->stripe_npages + bit;
2334 if (rbio->stripe_pages[index])
2335 continue;
2336
2337 page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2338 if (!page)
2339 return -ENOMEM;
2340 rbio->stripe_pages[index] = page;
5a6ac9ea
MX
2341 }
2342 }
2343 return 0;
2344}
2345
5a6ac9ea
MX
2346static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
2347 int need_check)
2348{
76035976 2349 struct btrfs_bio *bbio = rbio->bbio;
1389053e
KC
2350 void **pointers = rbio->finish_pointers;
2351 unsigned long *pbitmap = rbio->finish_pbitmap;
5a6ac9ea
MX
2352 int nr_data = rbio->nr_data;
2353 int stripe;
2354 int pagenr;
2355 int p_stripe = -1;
2356 int q_stripe = -1;
2357 struct page *p_page = NULL;
2358 struct page *q_page = NULL;
2359 struct bio_list bio_list;
2360 struct bio *bio;
76035976 2361 int is_replace = 0;
5a6ac9ea
MX
2362 int ret;
2363
2364 bio_list_init(&bio_list);
2365
2c8cdd6e
MX
2366 if (rbio->real_stripes - rbio->nr_data == 1) {
2367 p_stripe = rbio->real_stripes - 1;
2368 } else if (rbio->real_stripes - rbio->nr_data == 2) {
2369 p_stripe = rbio->real_stripes - 2;
2370 q_stripe = rbio->real_stripes - 1;
5a6ac9ea
MX
2371 } else {
2372 BUG();
2373 }
2374
76035976
MX
2375 if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) {
2376 is_replace = 1;
2377 bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages);
2378 }
2379
5a6ac9ea
MX
2380 /*
2381 * Because the higher layers(scrubber) are unlikely to
2382 * use this area of the disk again soon, so don't cache
2383 * it.
2384 */
2385 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2386
2387 if (!need_check)
2388 goto writeback;
2389
2390 p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2391 if (!p_page)
2392 goto cleanup;
2393 SetPageUptodate(p_page);
2394
2395 if (q_stripe != -1) {
2396 q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2397 if (!q_page) {
2398 __free_page(p_page);
2399 goto cleanup;
2400 }
2401 SetPageUptodate(q_page);
2402 }
2403
2404 atomic_set(&rbio->error, 0);
2405
2406 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2407 struct page *p;
2408 void *parity;
2409 /* first collect one page from each data stripe */
2410 for (stripe = 0; stripe < nr_data; stripe++) {
2411 p = page_in_rbio(rbio, stripe, pagenr, 0);
2412 pointers[stripe] = kmap(p);
2413 }
2414
2415 /* then add the parity stripe */
2416 pointers[stripe++] = kmap(p_page);
2417
2418 if (q_stripe != -1) {
2419
2420 /*
2421 * raid6, add the qstripe and call the
2422 * library function to fill in our p/q
2423 */
2424 pointers[stripe++] = kmap(q_page);
2425
2c8cdd6e 2426 raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE,
5a6ac9ea
MX
2427 pointers);
2428 } else {
2429 /* raid5 */
69d24804 2430 copy_page(pointers[nr_data], pointers[0]);
09cbfeaf 2431 run_xor(pointers + 1, nr_data - 1, PAGE_SIZE);
5a6ac9ea
MX
2432 }
2433
01327610 2434 /* Check scrubbing parity and repair it */
5a6ac9ea
MX
2435 p = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2436 parity = kmap(p);
09cbfeaf 2437 if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE))
69d24804 2438 copy_page(parity, pointers[rbio->scrubp]);
5a6ac9ea
MX
2439 else
2440 /* Parity is right, needn't writeback */
2441 bitmap_clear(rbio->dbitmap, pagenr, 1);
2442 kunmap(p);
2443
3897b6f0 2444 for (stripe = 0; stripe < nr_data; stripe++)
5a6ac9ea 2445 kunmap(page_in_rbio(rbio, stripe, pagenr, 0));
3897b6f0 2446 kunmap(p_page);
5a6ac9ea
MX
2447 }
2448
2449 __free_page(p_page);
2450 if (q_page)
2451 __free_page(q_page);
2452
2453writeback:
2454 /*
2455 * time to start writing. Make bios for everything from the
2456 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2457 * everything else.
2458 */
2459 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2460 struct page *page;
2461
2462 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2463 ret = rbio_add_io_page(rbio, &bio_list,
2464 page, rbio->scrubp, pagenr, rbio->stripe_len);
2465 if (ret)
2466 goto cleanup;
2467 }
2468
76035976
MX
2469 if (!is_replace)
2470 goto submit_write;
2471
2472 for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) {
2473 struct page *page;
2474
2475 page = rbio_stripe_page(rbio, rbio->scrubp, pagenr);
2476 ret = rbio_add_io_page(rbio, &bio_list, page,
2477 bbio->tgtdev_map[rbio->scrubp],
2478 pagenr, rbio->stripe_len);
2479 if (ret)
2480 goto cleanup;
2481 }
2482
2483submit_write:
5a6ac9ea
MX
2484 nr_data = bio_list_size(&bio_list);
2485 if (!nr_data) {
2486 /* Every parity is right */
58efbc9f 2487 rbio_orig_end_io(rbio, BLK_STS_OK);
5a6ac9ea
MX
2488 return;
2489 }
2490
2491 atomic_set(&rbio->stripes_pending, nr_data);
2492
2493 while (1) {
2494 bio = bio_list_pop(&bio_list);
2495 if (!bio)
2496 break;
2497
2498 bio->bi_private = rbio;
a6111d11 2499 bio->bi_end_io = raid_write_end_io;
ebcc3263 2500 bio->bi_opf = REQ_OP_WRITE;
4e49ea4a
MC
2501
2502 submit_bio(bio);
5a6ac9ea
MX
2503 }
2504 return;
2505
2506cleanup:
58efbc9f 2507 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
2508
2509 while ((bio = bio_list_pop(&bio_list)))
2510 bio_put(bio);
5a6ac9ea
MX
2511}
2512
2513static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2514{
2515 if (stripe >= 0 && stripe < rbio->nr_data)
2516 return 1;
2517 return 0;
2518}
2519
2520/*
2521 * While we're doing the parity check and repair, we could have errors
2522 * in reading pages off the disk. This checks for errors and if we're
2523 * not able to read the page it'll trigger parity reconstruction. The
2524 * parity scrub will be finished after we've reconstructed the failed
2525 * stripes
2526 */
2527static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio)
2528{
2529 if (atomic_read(&rbio->error) > rbio->bbio->max_errors)
2530 goto cleanup;
2531
2532 if (rbio->faila >= 0 || rbio->failb >= 0) {
2533 int dfail = 0, failp = -1;
2534
2535 if (is_data_stripe(rbio, rbio->faila))
2536 dfail++;
2537 else if (is_parity_stripe(rbio->faila))
2538 failp = rbio->faila;
2539
2540 if (is_data_stripe(rbio, rbio->failb))
2541 dfail++;
2542 else if (is_parity_stripe(rbio->failb))
2543 failp = rbio->failb;
2544
2545 /*
2546 * Because we can not use a scrubbing parity to repair
2547 * the data, so the capability of the repair is declined.
2548 * (In the case of RAID5, we can not repair anything)
2549 */
2550 if (dfail > rbio->bbio->max_errors - 1)
2551 goto cleanup;
2552
2553 /*
2554 * If all data is good, only parity is correctly, just
2555 * repair the parity.
2556 */
2557 if (dfail == 0) {
2558 finish_parity_scrub(rbio, 0);
2559 return;
2560 }
2561
2562 /*
2563 * Here means we got one corrupted data stripe and one
2564 * corrupted parity on RAID6, if the corrupted parity
01327610 2565 * is scrubbing parity, luckily, use the other one to repair
5a6ac9ea
MX
2566 * the data, or we can not repair the data stripe.
2567 */
2568 if (failp != rbio->scrubp)
2569 goto cleanup;
2570
2571 __raid_recover_end_io(rbio);
2572 } else {
2573 finish_parity_scrub(rbio, 1);
2574 }
2575 return;
2576
2577cleanup:
58efbc9f 2578 rbio_orig_end_io(rbio, BLK_STS_IOERR);
5a6ac9ea
MX
2579}
2580
2581/*
2582 * end io for the read phase of the rmw cycle. All the bios here are physical
2583 * stripe bios we've read from the disk so we can recalculate the parity of the
2584 * stripe.
2585 *
2586 * This will usually kick off finish_rmw once all the bios are read in, but it
2587 * may trigger parity reconstruction if we had any errors along the way
2588 */
4246a0b6 2589static void raid56_parity_scrub_end_io(struct bio *bio)
5a6ac9ea
MX
2590{
2591 struct btrfs_raid_bio *rbio = bio->bi_private;
2592
4e4cbee9 2593 if (bio->bi_status)
5a6ac9ea
MX
2594 fail_bio_stripe(rbio, bio);
2595 else
2596 set_bio_pages_uptodate(bio);
2597
2598 bio_put(bio);
2599
2600 if (!atomic_dec_and_test(&rbio->stripes_pending))
2601 return;
2602
2603 /*
2604 * this will normally call finish_rmw to start our write
2605 * but if there are any failed stripes we'll reconstruct
2606 * from parity first
2607 */
2608 validate_rbio_for_parity_scrub(rbio);
2609}
2610
2611static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio)
2612{
2613 int bios_to_read = 0;
5a6ac9ea
MX
2614 struct bio_list bio_list;
2615 int ret;
2616 int pagenr;
2617 int stripe;
2618 struct bio *bio;
2619
785884fc
LB
2620 bio_list_init(&bio_list);
2621
5a6ac9ea
MX
2622 ret = alloc_rbio_essential_pages(rbio);
2623 if (ret)
2624 goto cleanup;
2625
5a6ac9ea
MX
2626 atomic_set(&rbio->error, 0);
2627 /*
2628 * build a list of bios to read all the missing parts of this
2629 * stripe
2630 */
2c8cdd6e 2631 for (stripe = 0; stripe < rbio->real_stripes; stripe++) {
5a6ac9ea
MX
2632 for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) {
2633 struct page *page;
2634 /*
2635 * we want to find all the pages missing from
2636 * the rbio and read them from the disk. If
2637 * page_in_rbio finds a page in the bio list
2638 * we don't need to read it off the stripe.
2639 */
2640 page = page_in_rbio(rbio, stripe, pagenr, 1);
2641 if (page)
2642 continue;
2643
2644 page = rbio_stripe_page(rbio, stripe, pagenr);
2645 /*
2646 * the bio cache may have handed us an uptodate
2647 * page. If so, be happy and use it
2648 */
2649 if (PageUptodate(page))
2650 continue;
2651
2652 ret = rbio_add_io_page(rbio, &bio_list, page,
2653 stripe, pagenr, rbio->stripe_len);
2654 if (ret)
2655 goto cleanup;
2656 }
2657 }
2658
2659 bios_to_read = bio_list_size(&bio_list);
2660 if (!bios_to_read) {
2661 /*
2662 * this can happen if others have merged with
2663 * us, it means there is nothing left to read.
2664 * But if there are missing devices it may not be
2665 * safe to do the full stripe write yet.
2666 */
2667 goto finish;
2668 }
2669
2670 /*
2671 * the bbio may be freed once we submit the last bio. Make sure
2672 * not to touch it after that
2673 */
2674 atomic_set(&rbio->stripes_pending, bios_to_read);
2675 while (1) {
2676 bio = bio_list_pop(&bio_list);
2677 if (!bio)
2678 break;
2679
2680 bio->bi_private = rbio;
2681 bio->bi_end_io = raid56_parity_scrub_end_io;
ebcc3263 2682 bio->bi_opf = REQ_OP_READ;
5a6ac9ea 2683
0b246afa 2684 btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56);
5a6ac9ea 2685
4e49ea4a 2686 submit_bio(bio);
5a6ac9ea
MX
2687 }
2688 /* the actual write will happen once the reads are done */
2689 return;
2690
2691cleanup:
58efbc9f 2692 rbio_orig_end_io(rbio, BLK_STS_IOERR);
785884fc
LB
2693
2694 while ((bio = bio_list_pop(&bio_list)))
2695 bio_put(bio);
2696
5a6ac9ea
MX
2697 return;
2698
2699finish:
2700 validate_rbio_for_parity_scrub(rbio);
2701}
2702
2703static void scrub_parity_work(struct btrfs_work *work)
2704{
2705 struct btrfs_raid_bio *rbio;
2706
2707 rbio = container_of(work, struct btrfs_raid_bio, work);
2708 raid56_parity_scrub_stripe(rbio);
2709}
2710
5a6ac9ea
MX
2711void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2712{
2713 if (!lock_stripe_add(rbio))
a81b747d 2714 start_async_work(rbio, scrub_parity_work);
5a6ac9ea 2715}
b4ee1782
OS
2716
2717/* The following code is used for dev replace of a missing RAID 5/6 device. */
2718
2719struct btrfs_raid_bio *
2ff7e61e 2720raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio,
b4ee1782
OS
2721 struct btrfs_bio *bbio, u64 length)
2722{
2723 struct btrfs_raid_bio *rbio;
2724
2ff7e61e 2725 rbio = alloc_rbio(fs_info, bbio, length);
b4ee1782
OS
2726 if (IS_ERR(rbio))
2727 return NULL;
2728
2729 rbio->operation = BTRFS_RBIO_REBUILD_MISSING;
2730 bio_list_add(&rbio->bio_list, bio);
2731 /*
2732 * This is a special bio which is used to hold the completion handler
2733 * and make the scrub rbio is similar to the other types
2734 */
2735 ASSERT(!bio->bi_iter.bi_size);
2736
2737 rbio->faila = find_logical_bio_stripe(rbio, bio);
2738 if (rbio->faila == -1) {
2739 BUG();
2740 kfree(rbio);
2741 return NULL;
2742 }
2743
ae6529c3
QW
2744 /*
2745 * When we get bbio, we have already increased bio_counter, record it
2746 * so we can free it at rbio_orig_end_io()
2747 */
2748 rbio->generic_bio_cnt = 1;
2749
b4ee1782
OS
2750 return rbio;
2751}
2752
b4ee1782
OS
2753void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio)
2754{
2755 if (!lock_stripe_add(rbio))
e66d8d5a 2756 start_async_work(rbio, read_rebuild_work);
b4ee1782 2757}