Btrfs: convert printk to btrfs_ and fix BTRFS prefix
[linux-2.6-block.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
199c2a9c 27#include "disk-io.h"
dc17ff8f 28
6352b91d
MX
29static struct kmem_cache *btrfs_ordered_extent_cache;
30
e6dcd2dc 31static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 32{
e6dcd2dc
CM
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
dc17ff8f
CM
36}
37
d352ac68
CM
38/* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
e6dcd2dc
CM
41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
dc17ff8f 43{
d397712b
CM
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
e6dcd2dc 46 struct btrfs_ordered_extent *entry;
dc17ff8f 47
d397712b 48 while (*p) {
dc17ff8f 49 parent = *p;
e6dcd2dc 50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 51
e6dcd2dc 52 if (file_offset < entry->file_offset)
dc17ff8f 53 p = &(*p)->rb_left;
e6dcd2dc 54 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63}
64
43c04fb1
JM
65static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67{
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
c1c9ff7c 70 "%llu\n", offset);
43c04fb1
JM
71}
72
d352ac68
CM
73/*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
e6dcd2dc
CM
77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
dc17ff8f 79{
d397712b 80 struct rb_node *n = root->rb_node;
dc17ff8f 81 struct rb_node *prev = NULL;
e6dcd2dc
CM
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 85
d397712b 86 while (n) {
e6dcd2dc 87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
88 prev = n;
89 prev_entry = entry;
dc17ff8f 90
e6dcd2dc 91 if (file_offset < entry->file_offset)
dc17ff8f 92 n = n->rb_left;
e6dcd2dc 93 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
d397712b 101 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
d397712b 115 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
dc17ff8f
CM
122 }
123 *prev_ret = prev;
124 return NULL;
125}
126
d352ac68
CM
127/*
128 * helper to check if a given offset is inside a given entry
129 */
e6dcd2dc
CM
130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131{
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136}
137
4b46fce2
JB
138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140{
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145}
146
d352ac68
CM
147/*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
e6dcd2dc
CM
151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
dc17ff8f 153{
e6dcd2dc 154 struct rb_root *root = &tree->tree;
c87fb6fd 155 struct rb_node *prev = NULL;
dc17ff8f 156 struct rb_node *ret;
e6dcd2dc
CM
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 166 if (!ret)
e6dcd2dc
CM
167 ret = prev;
168 if (ret)
169 tree->last = ret;
dc17ff8f
CM
170 return ret;
171}
172
eb84ae03
CM
173/* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
eb84ae03
CM
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
4b46fce2
JB
184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
261507a0 186 int type, int dio, int compress_type)
dc17ff8f 187{
199c2a9c 188 struct btrfs_root *root = BTRFS_I(inode)->root;
dc17ff8f 189 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
dc17ff8f 192
e6dcd2dc 193 tree = &BTRFS_I(inode)->ordered_tree;
6352b91d 194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
dc17ff8f
CM
195 if (!entry)
196 return -ENOMEM;
197
e6dcd2dc
CM
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
2ab28f32
JB
201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 !(type == BTRFS_ORDERED_NOCOW))
203 entry->csum_bytes_left = disk_len;
c8b97818 204 entry->disk_len = disk_len;
8b62b72b 205 entry->bytes_left = len;
5fd02043 206 entry->inode = igrab(inode);
261507a0 207 entry->compress_type = compress_type;
77cef2ec 208 entry->truncated_len = (u64)-1;
d899e052 209 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 210 set_bit(type, &entry->flags);
3eaa2885 211
4b46fce2
JB
212 if (dio)
213 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214
e6dcd2dc
CM
215 /* one ref for the tree */
216 atomic_set(&entry->refs, 1);
217 init_waitqueue_head(&entry->wait);
218 INIT_LIST_HEAD(&entry->list);
3eaa2885 219 INIT_LIST_HEAD(&entry->root_extent_list);
9afab882
MX
220 INIT_LIST_HEAD(&entry->work_list);
221 init_completion(&entry->completion);
2ab28f32 222 INIT_LIST_HEAD(&entry->log_list);
dc17ff8f 223
1abe9b8a 224 trace_btrfs_ordered_extent_add(inode, entry);
225
5fd02043 226 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
227 node = tree_insert(&tree->tree, file_offset,
228 &entry->rb_node);
43c04fb1
JM
229 if (node)
230 ordered_data_tree_panic(inode, -EEXIST, file_offset);
5fd02043 231 spin_unlock_irq(&tree->lock);
d397712b 232
199c2a9c 233 spin_lock(&root->ordered_extent_lock);
3eaa2885 234 list_add_tail(&entry->root_extent_list,
199c2a9c
MX
235 &root->ordered_extents);
236 root->nr_ordered_extents++;
237 if (root->nr_ordered_extents == 1) {
238 spin_lock(&root->fs_info->ordered_root_lock);
239 BUG_ON(!list_empty(&root->ordered_root));
240 list_add_tail(&root->ordered_root,
241 &root->fs_info->ordered_roots);
242 spin_unlock(&root->fs_info->ordered_root_lock);
243 }
244 spin_unlock(&root->ordered_extent_lock);
3eaa2885 245
dc17ff8f
CM
246 return 0;
247}
248
4b46fce2
JB
249int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 u64 start, u64 len, u64 disk_len, int type)
251{
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
253 disk_len, type, 0,
254 BTRFS_COMPRESS_NONE);
4b46fce2
JB
255}
256
257int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 u64 start, u64 len, u64 disk_len, int type)
259{
260 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
261 disk_len, type, 1,
262 BTRFS_COMPRESS_NONE);
263}
264
265int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 u64 start, u64 len, u64 disk_len,
267 int type, int compress_type)
268{
269 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 disk_len, type, 0,
271 compress_type);
4b46fce2
JB
272}
273
eb84ae03
CM
274/*
275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
276 * when an ordered extent is finished. If the list covers more than one
277 * ordered extent, it is split across multiples.
eb84ae03 278 */
143bede5
JM
279void btrfs_add_ordered_sum(struct inode *inode,
280 struct btrfs_ordered_extent *entry,
281 struct btrfs_ordered_sum *sum)
dc17ff8f 282{
e6dcd2dc 283 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 284
e6dcd2dc 285 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 286 spin_lock_irq(&tree->lock);
e6dcd2dc 287 list_add_tail(&sum->list, &entry->list);
2ab28f32
JB
288 WARN_ON(entry->csum_bytes_left < sum->len);
289 entry->csum_bytes_left -= sum->len;
290 if (entry->csum_bytes_left == 0)
291 wake_up(&entry->wait);
5fd02043 292 spin_unlock_irq(&tree->lock);
dc17ff8f
CM
293}
294
163cf09c
CM
295/*
296 * this is used to account for finished IO across a given range
297 * of the file. The IO may span ordered extents. If
298 * a given ordered_extent is completely done, 1 is returned, otherwise
299 * 0.
300 *
301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
302 * to make sure this function only returns 1 once for a given ordered extent.
303 *
304 * file_offset is updated to one byte past the range that is recorded as
305 * complete. This allows you to walk forward in the file.
306 */
307int btrfs_dec_test_first_ordered_pending(struct inode *inode,
308 struct btrfs_ordered_extent **cached,
5fd02043 309 u64 *file_offset, u64 io_size, int uptodate)
163cf09c
CM
310{
311 struct btrfs_ordered_inode_tree *tree;
312 struct rb_node *node;
313 struct btrfs_ordered_extent *entry = NULL;
314 int ret;
5fd02043 315 unsigned long flags;
163cf09c
CM
316 u64 dec_end;
317 u64 dec_start;
318 u64 to_dec;
319
320 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 321 spin_lock_irqsave(&tree->lock, flags);
163cf09c
CM
322 node = tree_search(tree, *file_offset);
323 if (!node) {
324 ret = 1;
325 goto out;
326 }
327
328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329 if (!offset_in_entry(entry, *file_offset)) {
330 ret = 1;
331 goto out;
332 }
333
334 dec_start = max(*file_offset, entry->file_offset);
335 dec_end = min(*file_offset + io_size, entry->file_offset +
336 entry->len);
337 *file_offset = dec_end;
338 if (dec_start > dec_end) {
efe120a0
FH
339 btrfs_crit(BTRFS_I(inode)->root->fs_info,
340 "bad ordering dec_start %llu end %llu", dec_start, dec_end);
163cf09c
CM
341 }
342 to_dec = dec_end - dec_start;
343 if (to_dec > entry->bytes_left) {
efe120a0
FH
344 btrfs_crit(BTRFS_I(inode)->root->fs_info,
345 "bad ordered accounting left %llu size %llu",
346 entry->bytes_left, to_dec);
163cf09c
CM
347 }
348 entry->bytes_left -= to_dec;
5fd02043
JB
349 if (!uptodate)
350 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
351
163cf09c
CM
352 if (entry->bytes_left == 0)
353 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
354 else
355 ret = 1;
356out:
357 if (!ret && cached && entry) {
358 *cached = entry;
359 atomic_inc(&entry->refs);
360 }
5fd02043 361 spin_unlock_irqrestore(&tree->lock, flags);
163cf09c
CM
362 return ret == 0;
363}
364
eb84ae03
CM
365/*
366 * this is used to account for finished IO across a given range
367 * of the file. The IO should not span ordered extents. If
368 * a given ordered_extent is completely done, 1 is returned, otherwise
369 * 0.
370 *
371 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
372 * to make sure this function only returns 1 once for a given ordered extent.
373 */
e6dcd2dc 374int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 375 struct btrfs_ordered_extent **cached,
5fd02043 376 u64 file_offset, u64 io_size, int uptodate)
dc17ff8f 377{
e6dcd2dc 378 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 379 struct rb_node *node;
5a1a3df1 380 struct btrfs_ordered_extent *entry = NULL;
5fd02043 381 unsigned long flags;
e6dcd2dc
CM
382 int ret;
383
384 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043
JB
385 spin_lock_irqsave(&tree->lock, flags);
386 if (cached && *cached) {
387 entry = *cached;
388 goto have_entry;
389 }
390
e6dcd2dc 391 node = tree_search(tree, file_offset);
dc17ff8f 392 if (!node) {
e6dcd2dc
CM
393 ret = 1;
394 goto out;
dc17ff8f
CM
395 }
396
e6dcd2dc 397 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043 398have_entry:
e6dcd2dc
CM
399 if (!offset_in_entry(entry, file_offset)) {
400 ret = 1;
401 goto out;
dc17ff8f 402 }
e6dcd2dc 403
8b62b72b 404 if (io_size > entry->bytes_left) {
efe120a0
FH
405 btrfs_crit(BTRFS_I(inode)->root->fs_info,
406 "bad ordered accounting left %llu size %llu",
c1c9ff7c 407 entry->bytes_left, io_size);
8b62b72b
CM
408 }
409 entry->bytes_left -= io_size;
5fd02043
JB
410 if (!uptodate)
411 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
412
8b62b72b 413 if (entry->bytes_left == 0)
e6dcd2dc 414 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
415 else
416 ret = 1;
e6dcd2dc 417out:
5a1a3df1
JB
418 if (!ret && cached && entry) {
419 *cached = entry;
420 atomic_inc(&entry->refs);
421 }
5fd02043 422 spin_unlock_irqrestore(&tree->lock, flags);
e6dcd2dc
CM
423 return ret == 0;
424}
dc17ff8f 425
2ab28f32
JB
426/* Needs to either be called under a log transaction or the log_mutex */
427void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
428{
429 struct btrfs_ordered_inode_tree *tree;
430 struct btrfs_ordered_extent *ordered;
431 struct rb_node *n;
432 int index = log->log_transid % 2;
433
434 tree = &BTRFS_I(inode)->ordered_tree;
435 spin_lock_irq(&tree->lock);
436 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
437 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
438 spin_lock(&log->log_extents_lock[index]);
439 if (list_empty(&ordered->log_list)) {
440 list_add_tail(&ordered->log_list, &log->logged_list[index]);
441 atomic_inc(&ordered->refs);
442 }
443 spin_unlock(&log->log_extents_lock[index]);
444 }
445 spin_unlock_irq(&tree->lock);
446}
447
448void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
449{
450 struct btrfs_ordered_extent *ordered;
451 int index = transid % 2;
452
453 spin_lock_irq(&log->log_extents_lock[index]);
454 while (!list_empty(&log->logged_list[index])) {
455 ordered = list_first_entry(&log->logged_list[index],
456 struct btrfs_ordered_extent,
457 log_list);
458 list_del_init(&ordered->log_list);
459 spin_unlock_irq(&log->log_extents_lock[index]);
460 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
461 &ordered->flags));
462 btrfs_put_ordered_extent(ordered);
463 spin_lock_irq(&log->log_extents_lock[index]);
464 }
465 spin_unlock_irq(&log->log_extents_lock[index]);
466}
467
468void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
469{
470 struct btrfs_ordered_extent *ordered;
471 int index = transid % 2;
472
473 spin_lock_irq(&log->log_extents_lock[index]);
474 while (!list_empty(&log->logged_list[index])) {
475 ordered = list_first_entry(&log->logged_list[index],
476 struct btrfs_ordered_extent,
477 log_list);
478 list_del_init(&ordered->log_list);
479 spin_unlock_irq(&log->log_extents_lock[index]);
480 btrfs_put_ordered_extent(ordered);
481 spin_lock_irq(&log->log_extents_lock[index]);
482 }
483 spin_unlock_irq(&log->log_extents_lock[index]);
484}
485
eb84ae03
CM
486/*
487 * used to drop a reference on an ordered extent. This will free
488 * the extent if the last reference is dropped
489 */
143bede5 490void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
e6dcd2dc 491{
ba1da2f4
CM
492 struct list_head *cur;
493 struct btrfs_ordered_sum *sum;
494
1abe9b8a 495 trace_btrfs_ordered_extent_put(entry->inode, entry);
496
ba1da2f4 497 if (atomic_dec_and_test(&entry->refs)) {
5fd02043
JB
498 if (entry->inode)
499 btrfs_add_delayed_iput(entry->inode);
d397712b 500 while (!list_empty(&entry->list)) {
ba1da2f4
CM
501 cur = entry->list.next;
502 sum = list_entry(cur, struct btrfs_ordered_sum, list);
503 list_del(&sum->list);
504 kfree(sum);
505 }
6352b91d 506 kmem_cache_free(btrfs_ordered_extent_cache, entry);
ba1da2f4 507 }
dc17ff8f 508}
cee36a03 509
eb84ae03
CM
510/*
511 * remove an ordered extent from the tree. No references are dropped
5fd02043 512 * and waiters are woken up.
eb84ae03 513 */
5fd02043
JB
514void btrfs_remove_ordered_extent(struct inode *inode,
515 struct btrfs_ordered_extent *entry)
cee36a03 516{
e6dcd2dc 517 struct btrfs_ordered_inode_tree *tree;
287a0ab9 518 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 519 struct rb_node *node;
cee36a03 520
e6dcd2dc 521 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 522 spin_lock_irq(&tree->lock);
e6dcd2dc 523 node = &entry->rb_node;
cee36a03 524 rb_erase(node, &tree->tree);
1b8e7e45
FDBM
525 if (tree->last == node)
526 tree->last = NULL;
e6dcd2dc 527 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
5fd02043 528 spin_unlock_irq(&tree->lock);
3eaa2885 529
199c2a9c 530 spin_lock(&root->ordered_extent_lock);
3eaa2885 531 list_del_init(&entry->root_extent_list);
199c2a9c 532 root->nr_ordered_extents--;
5a3f23d5 533
1abe9b8a 534 trace_btrfs_ordered_extent_remove(inode, entry);
535
5a3f23d5
CM
536 /*
537 * we have no more ordered extents for this inode and
538 * no dirty pages. We can safely remove it from the
539 * list of ordered extents
540 */
541 if (RB_EMPTY_ROOT(&tree->tree) &&
542 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
93858769 543 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 544 list_del_init(&BTRFS_I(inode)->ordered_operations);
93858769 545 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5 546 }
199c2a9c
MX
547
548 if (!root->nr_ordered_extents) {
549 spin_lock(&root->fs_info->ordered_root_lock);
550 BUG_ON(list_empty(&root->ordered_root));
551 list_del_init(&root->ordered_root);
552 spin_unlock(&root->fs_info->ordered_root_lock);
553 }
554 spin_unlock(&root->ordered_extent_lock);
e6dcd2dc 555 wake_up(&entry->wait);
cee36a03
CM
556}
557
9afab882
MX
558static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
559{
560 struct btrfs_ordered_extent *ordered;
561
562 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
563 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
564 complete(&ordered->completion);
565}
566
d352ac68
CM
567/*
568 * wait for all the ordered extents in a root. This is done when balancing
569 * space between drives.
570 */
b0244199 571int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
3eaa2885 572{
9afab882 573 struct list_head splice, works;
9afab882 574 struct btrfs_ordered_extent *ordered, *next;
b0244199 575 int count = 0;
3eaa2885
CM
576
577 INIT_LIST_HEAD(&splice);
9afab882 578 INIT_LIST_HEAD(&works);
3eaa2885 579
db1d607d 580 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c
MX
581 spin_lock(&root->ordered_extent_lock);
582 list_splice_init(&root->ordered_extents, &splice);
b0244199 583 while (!list_empty(&splice) && nr) {
199c2a9c
MX
584 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
585 root_extent_list);
586 list_move_tail(&ordered->root_extent_list,
587 &root->ordered_extents);
199c2a9c
MX
588 atomic_inc(&ordered->refs);
589 spin_unlock(&root->ordered_extent_lock);
3eaa2885 590
199c2a9c
MX
591 ordered->flush_work.func = btrfs_run_ordered_extent_work;
592 list_add_tail(&ordered->work_list, &works);
593 btrfs_queue_worker(&root->fs_info->flush_workers,
594 &ordered->flush_work);
3eaa2885 595
9afab882 596 cond_resched();
199c2a9c 597 spin_lock(&root->ordered_extent_lock);
b0244199
MX
598 if (nr != -1)
599 nr--;
600 count++;
3eaa2885 601 }
b0244199 602 list_splice_tail(&splice, &root->ordered_extents);
199c2a9c 603 spin_unlock(&root->ordered_extent_lock);
9afab882
MX
604
605 list_for_each_entry_safe(ordered, next, &works, work_list) {
606 list_del_init(&ordered->work_list);
607 wait_for_completion(&ordered->completion);
9afab882 608 btrfs_put_ordered_extent(ordered);
9afab882
MX
609 cond_resched();
610 }
db1d607d 611 mutex_unlock(&root->fs_info->ordered_operations_mutex);
b0244199
MX
612
613 return count;
3eaa2885
CM
614}
615
b0244199 616void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
199c2a9c
MX
617{
618 struct btrfs_root *root;
619 struct list_head splice;
b0244199 620 int done;
199c2a9c
MX
621
622 INIT_LIST_HEAD(&splice);
623
624 spin_lock(&fs_info->ordered_root_lock);
625 list_splice_init(&fs_info->ordered_roots, &splice);
b0244199 626 while (!list_empty(&splice) && nr) {
199c2a9c
MX
627 root = list_first_entry(&splice, struct btrfs_root,
628 ordered_root);
629 root = btrfs_grab_fs_root(root);
630 BUG_ON(!root);
631 list_move_tail(&root->ordered_root,
632 &fs_info->ordered_roots);
633 spin_unlock(&fs_info->ordered_root_lock);
634
b0244199 635 done = btrfs_wait_ordered_extents(root, nr);
199c2a9c
MX
636 btrfs_put_fs_root(root);
637
638 spin_lock(&fs_info->ordered_root_lock);
b0244199
MX
639 if (nr != -1) {
640 nr -= done;
641 WARN_ON(nr < 0);
642 }
199c2a9c 643 }
931aa877 644 list_splice_tail(&splice, &fs_info->ordered_roots);
199c2a9c
MX
645 spin_unlock(&fs_info->ordered_root_lock);
646}
647
5a3f23d5
CM
648/*
649 * this is used during transaction commit to write all the inodes
650 * added to the ordered operation list. These files must be fully on
651 * disk before the transaction commits.
652 *
653 * we have two modes here, one is to just start the IO via filemap_flush
654 * and the other is to wait for all the io. When we wait, we have an
655 * extra check to make sure the ordered operation list really is empty
656 * before we return
657 */
569e0f35
JB
658int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
659 struct btrfs_root *root, int wait)
5a3f23d5
CM
660{
661 struct btrfs_inode *btrfs_inode;
662 struct inode *inode;
569e0f35 663 struct btrfs_transaction *cur_trans = trans->transaction;
5a3f23d5 664 struct list_head splice;
25287e0a
MX
665 struct list_head works;
666 struct btrfs_delalloc_work *work, *next;
667 int ret = 0;
5a3f23d5
CM
668
669 INIT_LIST_HEAD(&splice);
25287e0a 670 INIT_LIST_HEAD(&works);
5a3f23d5 671
9ffba8cd 672 mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
199c2a9c 673 spin_lock(&root->fs_info->ordered_root_lock);
569e0f35 674 list_splice_init(&cur_trans->ordered_operations, &splice);
5a3f23d5
CM
675 while (!list_empty(&splice)) {
676 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
677 ordered_operations);
5a3f23d5
CM
678 inode = &btrfs_inode->vfs_inode;
679
680 list_del_init(&btrfs_inode->ordered_operations);
681
682 /*
683 * the inode may be getting freed (in sys_unlink path).
684 */
685 inode = igrab(inode);
25287e0a
MX
686 if (!inode)
687 continue;
5b947f1b
MX
688
689 if (!wait)
690 list_add_tail(&BTRFS_I(inode)->ordered_operations,
569e0f35 691 &cur_trans->ordered_operations);
199c2a9c 692 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5 693
25287e0a
MX
694 work = btrfs_alloc_delalloc_work(inode, wait, 1);
695 if (!work) {
199c2a9c 696 spin_lock(&root->fs_info->ordered_root_lock);
25287e0a
MX
697 if (list_empty(&BTRFS_I(inode)->ordered_operations))
698 list_add_tail(&btrfs_inode->ordered_operations,
699 &splice);
25287e0a 700 list_splice_tail(&splice,
569e0f35 701 &cur_trans->ordered_operations);
199c2a9c 702 spin_unlock(&root->fs_info->ordered_root_lock);
25287e0a
MX
703 ret = -ENOMEM;
704 goto out;
5a3f23d5 705 }
25287e0a
MX
706 list_add_tail(&work->list, &works);
707 btrfs_queue_worker(&root->fs_info->flush_workers,
708 &work->work);
5a3f23d5
CM
709
710 cond_resched();
199c2a9c 711 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 712 }
199c2a9c 713 spin_unlock(&root->fs_info->ordered_root_lock);
25287e0a
MX
714out:
715 list_for_each_entry_safe(work, next, &works, list) {
716 list_del_init(&work->list);
717 btrfs_wait_and_free_delalloc_work(work);
718 }
9ffba8cd 719 mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
25287e0a 720 return ret;
5a3f23d5
CM
721}
722
eb84ae03
CM
723/*
724 * Used to start IO or wait for a given ordered extent to finish.
725 *
726 * If wait is one, this effectively waits on page writeback for all the pages
727 * in the extent, and it waits on the io completion code to insert
728 * metadata into the btree corresponding to the extent
729 */
730void btrfs_start_ordered_extent(struct inode *inode,
731 struct btrfs_ordered_extent *entry,
732 int wait)
e6dcd2dc
CM
733{
734 u64 start = entry->file_offset;
735 u64 end = start + entry->len - 1;
e1b81e67 736
1abe9b8a 737 trace_btrfs_ordered_extent_start(inode, entry);
738
eb84ae03
CM
739 /*
740 * pages in the range can be dirty, clean or writeback. We
741 * start IO on any dirty ones so the wait doesn't stall waiting
b2570314 742 * for the flusher thread to find them
eb84ae03 743 */
4b46fce2
JB
744 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
745 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 746 if (wait) {
e6dcd2dc
CM
747 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
748 &entry->flags));
c8b97818 749 }
e6dcd2dc 750}
cee36a03 751
eb84ae03
CM
752/*
753 * Used to wait on ordered extents across a large range of bytes.
754 */
0ef8b726 755int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc 756{
0ef8b726 757 int ret = 0;
e6dcd2dc 758 u64 end;
e5a2217e 759 u64 orig_end;
e6dcd2dc 760 struct btrfs_ordered_extent *ordered;
e5a2217e
CM
761
762 if (start + len < start) {
f421950f 763 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
764 } else {
765 orig_end = start + len - 1;
f421950f
CM
766 if (orig_end > INT_LIMIT(loff_t))
767 orig_end = INT_LIMIT(loff_t);
e5a2217e 768 }
551ebb2d 769
e5a2217e
CM
770 /* start IO across the range first to instantiate any delalloc
771 * extents
772 */
0ef8b726
JB
773 ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
774 if (ret)
775 return ret;
7ddf5a42
JB
776 /*
777 * So with compression we will find and lock a dirty page and clear the
778 * first one as dirty, setup an async extent, and immediately return
779 * with the entire range locked but with nobody actually marked with
780 * writeback. So we can't just filemap_write_and_wait_range() and
781 * expect it to work since it will just kick off a thread to do the
782 * actual work. So we need to call filemap_fdatawrite_range _again_
783 * since it will wait on the page lock, which won't be unlocked until
784 * after the pages have been marked as writeback and so we're good to go
785 * from there. We have to do this otherwise we'll miss the ordered
786 * extents and that results in badness. Please Josef, do not think you
787 * know better and pull this out at some point in the future, it is
788 * right and you are wrong.
789 */
790 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
0ef8b726
JB
791 &BTRFS_I(inode)->runtime_flags)) {
792 ret = filemap_fdatawrite_range(inode->i_mapping, start,
793 orig_end);
794 if (ret)
795 return ret;
796 }
797 ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
798 if (ret)
799 return ret;
e5a2217e 800
f421950f 801 end = orig_end;
d397712b 802 while (1) {
e6dcd2dc 803 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 804 if (!ordered)
e6dcd2dc 805 break;
e5a2217e 806 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
807 btrfs_put_ordered_extent(ordered);
808 break;
809 }
b52abf1e 810 if (ordered->file_offset + ordered->len <= start) {
e6dcd2dc
CM
811 btrfs_put_ordered_extent(ordered);
812 break;
813 }
e5a2217e 814 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc 815 end = ordered->file_offset;
0ef8b726
JB
816 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
817 ret = -EIO;
e6dcd2dc 818 btrfs_put_ordered_extent(ordered);
0ef8b726 819 if (ret || end == 0 || end == start)
e6dcd2dc
CM
820 break;
821 end--;
822 }
0ef8b726 823 return ret;
cee36a03
CM
824}
825
eb84ae03
CM
826/*
827 * find an ordered extent corresponding to file_offset. return NULL if
828 * nothing is found, otherwise take a reference on the extent and return it
829 */
e6dcd2dc
CM
830struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
831 u64 file_offset)
832{
833 struct btrfs_ordered_inode_tree *tree;
834 struct rb_node *node;
835 struct btrfs_ordered_extent *entry = NULL;
836
837 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 838 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
839 node = tree_search(tree, file_offset);
840 if (!node)
841 goto out;
842
843 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
844 if (!offset_in_entry(entry, file_offset))
845 entry = NULL;
846 if (entry)
847 atomic_inc(&entry->refs);
848out:
5fd02043 849 spin_unlock_irq(&tree->lock);
e6dcd2dc
CM
850 return entry;
851}
852
4b46fce2
JB
853/* Since the DIO code tries to lock a wide area we need to look for any ordered
854 * extents that exist in the range, rather than just the start of the range.
855 */
856struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
857 u64 file_offset,
858 u64 len)
859{
860 struct btrfs_ordered_inode_tree *tree;
861 struct rb_node *node;
862 struct btrfs_ordered_extent *entry = NULL;
863
864 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 865 spin_lock_irq(&tree->lock);
4b46fce2
JB
866 node = tree_search(tree, file_offset);
867 if (!node) {
868 node = tree_search(tree, file_offset + len);
869 if (!node)
870 goto out;
871 }
872
873 while (1) {
874 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
875 if (range_overlaps(entry, file_offset, len))
876 break;
877
878 if (entry->file_offset >= file_offset + len) {
879 entry = NULL;
880 break;
881 }
882 entry = NULL;
883 node = rb_next(node);
884 if (!node)
885 break;
886 }
887out:
888 if (entry)
889 atomic_inc(&entry->refs);
5fd02043 890 spin_unlock_irq(&tree->lock);
4b46fce2
JB
891 return entry;
892}
893
eb84ae03
CM
894/*
895 * lookup and return any extent before 'file_offset'. NULL is returned
896 * if none is found
897 */
e6dcd2dc 898struct btrfs_ordered_extent *
d397712b 899btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
900{
901 struct btrfs_ordered_inode_tree *tree;
902 struct rb_node *node;
903 struct btrfs_ordered_extent *entry = NULL;
904
905 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 906 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
907 node = tree_search(tree, file_offset);
908 if (!node)
909 goto out;
910
911 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
912 atomic_inc(&entry->refs);
913out:
5fd02043 914 spin_unlock_irq(&tree->lock);
e6dcd2dc 915 return entry;
81d7ed29 916}
dbe674a9 917
eb84ae03
CM
918/*
919 * After an extent is done, call this to conditionally update the on disk
920 * i_size. i_size is updated to cover any fully written part of the file.
921 */
c2167754 922int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
923 struct btrfs_ordered_extent *ordered)
924{
925 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
dbe674a9
CM
926 u64 disk_i_size;
927 u64 new_i_size;
c2167754 928 u64 i_size = i_size_read(inode);
dbe674a9 929 struct rb_node *node;
c2167754 930 struct rb_node *prev = NULL;
dbe674a9 931 struct btrfs_ordered_extent *test;
c2167754
YZ
932 int ret = 1;
933
77cef2ec
JB
934 spin_lock_irq(&tree->lock);
935 if (ordered) {
c2167754 936 offset = entry_end(ordered);
77cef2ec
JB
937 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
938 offset = min(offset,
939 ordered->file_offset +
940 ordered->truncated_len);
941 } else {
a038fab0 942 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
77cef2ec 943 }
dbe674a9
CM
944 disk_i_size = BTRFS_I(inode)->disk_i_size;
945
c2167754
YZ
946 /* truncate file */
947 if (disk_i_size > i_size) {
948 BTRFS_I(inode)->disk_i_size = i_size;
949 ret = 0;
950 goto out;
951 }
952
dbe674a9
CM
953 /*
954 * if the disk i_size is already at the inode->i_size, or
955 * this ordered extent is inside the disk i_size, we're done
956 */
5d1f4020
JB
957 if (disk_i_size == i_size)
958 goto out;
959
960 /*
961 * We still need to update disk_i_size if outstanding_isize is greater
962 * than disk_i_size.
963 */
964 if (offset <= disk_i_size &&
965 (!ordered || ordered->outstanding_isize <= disk_i_size))
dbe674a9 966 goto out;
dbe674a9 967
dbe674a9
CM
968 /*
969 * walk backward from this ordered extent to disk_i_size.
970 * if we find an ordered extent then we can't update disk i_size
971 * yet
972 */
c2167754
YZ
973 if (ordered) {
974 node = rb_prev(&ordered->rb_node);
975 } else {
976 prev = tree_search(tree, offset);
977 /*
978 * we insert file extents without involving ordered struct,
979 * so there should be no ordered struct cover this offset
980 */
981 if (prev) {
982 test = rb_entry(prev, struct btrfs_ordered_extent,
983 rb_node);
984 BUG_ON(offset_in_entry(test, offset));
985 }
986 node = prev;
987 }
5fd02043 988 for (; node; node = rb_prev(node)) {
dbe674a9 989 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043
JB
990
991 /* We treat this entry as if it doesnt exist */
992 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
993 continue;
dbe674a9
CM
994 if (test->file_offset + test->len <= disk_i_size)
995 break;
c2167754 996 if (test->file_offset >= i_size)
dbe674a9 997 break;
59fe4f41 998 if (entry_end(test) > disk_i_size) {
b9a8cc5b
MX
999 /*
1000 * we don't update disk_i_size now, so record this
1001 * undealt i_size. Or we will not know the real
1002 * i_size.
1003 */
1004 if (test->outstanding_isize < offset)
1005 test->outstanding_isize = offset;
1006 if (ordered &&
1007 ordered->outstanding_isize >
1008 test->outstanding_isize)
1009 test->outstanding_isize =
1010 ordered->outstanding_isize;
dbe674a9 1011 goto out;
5fd02043 1012 }
dbe674a9 1013 }
b9a8cc5b 1014 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
1015
1016 /*
b9a8cc5b
MX
1017 * Some ordered extents may completed before the current one, and
1018 * we hold the real i_size in ->outstanding_isize.
dbe674a9 1019 */
b9a8cc5b
MX
1020 if (ordered && ordered->outstanding_isize > new_i_size)
1021 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
dbe674a9 1022 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 1023 ret = 0;
dbe674a9 1024out:
c2167754 1025 /*
5fd02043
JB
1026 * We need to do this because we can't remove ordered extents until
1027 * after the i_disk_size has been updated and then the inode has been
1028 * updated to reflect the change, so we need to tell anybody who finds
1029 * this ordered extent that we've already done all the real work, we
1030 * just haven't completed all the other work.
c2167754
YZ
1031 */
1032 if (ordered)
5fd02043
JB
1033 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1034 spin_unlock_irq(&tree->lock);
c2167754 1035 return ret;
dbe674a9 1036}
ba1da2f4 1037
eb84ae03
CM
1038/*
1039 * search the ordered extents for one corresponding to 'offset' and
1040 * try to find a checksum. This is used because we allow pages to
1041 * be reclaimed before their checksum is actually put into the btree
1042 */
d20f7043 1043int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
e4100d98 1044 u32 *sum, int len)
ba1da2f4
CM
1045{
1046 struct btrfs_ordered_sum *ordered_sum;
ba1da2f4
CM
1047 struct btrfs_ordered_extent *ordered;
1048 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
1049 unsigned long num_sectors;
1050 unsigned long i;
1051 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
e4100d98 1052 int index = 0;
ba1da2f4
CM
1053
1054 ordered = btrfs_lookup_ordered_extent(inode, offset);
1055 if (!ordered)
e4100d98 1056 return 0;
ba1da2f4 1057
5fd02043 1058 spin_lock_irq(&tree->lock);
c6e30871 1059 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
e4100d98
MX
1060 if (disk_bytenr >= ordered_sum->bytenr &&
1061 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1062 i = (disk_bytenr - ordered_sum->bytenr) >>
1063 inode->i_sb->s_blocksize_bits;
e4100d98
MX
1064 num_sectors = ordered_sum->len >>
1065 inode->i_sb->s_blocksize_bits;
f51a4a18
MX
1066 num_sectors = min_t(int, len - index, num_sectors - i);
1067 memcpy(sum + index, ordered_sum->sums + i,
1068 num_sectors);
1069
1070 index += (int)num_sectors;
1071 if (index == len)
1072 goto out;
1073 disk_bytenr += num_sectors * sectorsize;
ba1da2f4
CM
1074 }
1075 }
1076out:
5fd02043 1077 spin_unlock_irq(&tree->lock);
89642229 1078 btrfs_put_ordered_extent(ordered);
e4100d98 1079 return index;
ba1da2f4
CM
1080}
1081
f421950f 1082
5a3f23d5
CM
1083/*
1084 * add a given inode to the list of inodes that must be fully on
1085 * disk before a transaction commit finishes.
1086 *
1087 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1088 * used to make sure renamed files are fully on disk.
1089 *
1090 * It is a noop if the inode is already fully on disk.
1091 *
1092 * If trans is not null, we'll do a friendly check for a transaction that
1093 * is already flushing things and force the IO down ourselves.
1094 */
143bede5
JM
1095void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root, struct inode *inode)
5a3f23d5 1097{
569e0f35 1098 struct btrfs_transaction *cur_trans = trans->transaction;
5a3f23d5
CM
1099 u64 last_mod;
1100
1101 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1102
1103 /*
1104 * if this file hasn't been changed since the last transaction
1105 * commit, we can safely return without doing anything
1106 */
5ede859b 1107 if (last_mod <= root->fs_info->last_trans_committed)
143bede5 1108 return;
5a3f23d5 1109
199c2a9c 1110 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
1111 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1112 list_add_tail(&BTRFS_I(inode)->ordered_operations,
569e0f35 1113 &cur_trans->ordered_operations);
5a3f23d5 1114 }
199c2a9c 1115 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5 1116}
6352b91d
MX
1117
1118int __init ordered_data_init(void)
1119{
1120 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1121 sizeof(struct btrfs_ordered_extent), 0,
1122 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1123 NULL);
1124 if (!btrfs_ordered_extent_cache)
1125 return -ENOMEM;
25287e0a 1126
6352b91d
MX
1127 return 0;
1128}
1129
1130void ordered_data_exit(void)
1131{
1132 if (btrfs_ordered_extent_cache)
1133 kmem_cache_destroy(btrfs_ordered_extent_cache);
1134}