Btrfs: relax the block group size limit for bitmaps
[linux-2.6-block.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
dc17ff8f 27
6352b91d
MX
28static struct kmem_cache *btrfs_ordered_extent_cache;
29
e6dcd2dc 30static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 31{
e6dcd2dc
CM
32 if (entry->file_offset + entry->len < entry->file_offset)
33 return (u64)-1;
34 return entry->file_offset + entry->len;
dc17ff8f
CM
35}
36
d352ac68
CM
37/* returns NULL if the insertion worked, or it returns the node it did find
38 * in the tree
39 */
e6dcd2dc
CM
40static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
41 struct rb_node *node)
dc17ff8f 42{
d397712b
CM
43 struct rb_node **p = &root->rb_node;
44 struct rb_node *parent = NULL;
e6dcd2dc 45 struct btrfs_ordered_extent *entry;
dc17ff8f 46
d397712b 47 while (*p) {
dc17ff8f 48 parent = *p;
e6dcd2dc 49 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 50
e6dcd2dc 51 if (file_offset < entry->file_offset)
dc17ff8f 52 p = &(*p)->rb_left;
e6dcd2dc 53 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
54 p = &(*p)->rb_right;
55 else
56 return parent;
57 }
58
59 rb_link_node(node, parent, p);
60 rb_insert_color(node, root);
61 return NULL;
62}
63
43c04fb1
JM
64static void ordered_data_tree_panic(struct inode *inode, int errno,
65 u64 offset)
66{
67 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
68 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
69 "%llu\n", (unsigned long long)offset);
70}
71
d352ac68
CM
72/*
73 * look for a given offset in the tree, and if it can't be found return the
74 * first lesser offset
75 */
e6dcd2dc
CM
76static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
77 struct rb_node **prev_ret)
dc17ff8f 78{
d397712b 79 struct rb_node *n = root->rb_node;
dc17ff8f 80 struct rb_node *prev = NULL;
e6dcd2dc
CM
81 struct rb_node *test;
82 struct btrfs_ordered_extent *entry;
83 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 84
d397712b 85 while (n) {
e6dcd2dc 86 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
87 prev = n;
88 prev_entry = entry;
dc17ff8f 89
e6dcd2dc 90 if (file_offset < entry->file_offset)
dc17ff8f 91 n = n->rb_left;
e6dcd2dc 92 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
93 n = n->rb_right;
94 else
95 return n;
96 }
97 if (!prev_ret)
98 return NULL;
99
d397712b 100 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
101 test = rb_next(prev);
102 if (!test)
103 break;
104 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
105 rb_node);
106 if (file_offset < entry_end(prev_entry))
107 break;
108
109 prev = test;
110 }
111 if (prev)
112 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
113 rb_node);
d397712b 114 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
115 test = rb_prev(prev);
116 if (!test)
117 break;
118 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
119 rb_node);
120 prev = test;
dc17ff8f
CM
121 }
122 *prev_ret = prev;
123 return NULL;
124}
125
d352ac68
CM
126/*
127 * helper to check if a given offset is inside a given entry
128 */
e6dcd2dc
CM
129static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
130{
131 if (file_offset < entry->file_offset ||
132 entry->file_offset + entry->len <= file_offset)
133 return 0;
134 return 1;
135}
136
4b46fce2
JB
137static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
138 u64 len)
139{
140 if (file_offset + len <= entry->file_offset ||
141 entry->file_offset + entry->len <= file_offset)
142 return 0;
143 return 1;
144}
145
d352ac68
CM
146/*
147 * look find the first ordered struct that has this offset, otherwise
148 * the first one less than this offset
149 */
e6dcd2dc
CM
150static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
151 u64 file_offset)
dc17ff8f 152{
e6dcd2dc 153 struct rb_root *root = &tree->tree;
c87fb6fd 154 struct rb_node *prev = NULL;
dc17ff8f 155 struct rb_node *ret;
e6dcd2dc
CM
156 struct btrfs_ordered_extent *entry;
157
158 if (tree->last) {
159 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
160 rb_node);
161 if (offset_in_entry(entry, file_offset))
162 return tree->last;
163 }
164 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 165 if (!ret)
e6dcd2dc
CM
166 ret = prev;
167 if (ret)
168 tree->last = ret;
dc17ff8f
CM
169 return ret;
170}
171
eb84ae03
CM
172/* allocate and add a new ordered_extent into the per-inode tree.
173 * file_offset is the logical offset in the file
174 *
175 * start is the disk block number of an extent already reserved in the
176 * extent allocation tree
177 *
178 * len is the length of the extent
179 *
eb84ae03
CM
180 * The tree is given a single reference on the ordered extent that was
181 * inserted.
182 */
4b46fce2
JB
183static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
184 u64 start, u64 len, u64 disk_len,
261507a0 185 int type, int dio, int compress_type)
dc17ff8f 186{
dc17ff8f 187 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
188 struct rb_node *node;
189 struct btrfs_ordered_extent *entry;
dc17ff8f 190
e6dcd2dc 191 tree = &BTRFS_I(inode)->ordered_tree;
6352b91d 192 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
dc17ff8f
CM
193 if (!entry)
194 return -ENOMEM;
195
e6dcd2dc
CM
196 entry->file_offset = file_offset;
197 entry->start = start;
198 entry->len = len;
2ab28f32
JB
199 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
200 !(type == BTRFS_ORDERED_NOCOW))
201 entry->csum_bytes_left = disk_len;
c8b97818 202 entry->disk_len = disk_len;
8b62b72b 203 entry->bytes_left = len;
5fd02043 204 entry->inode = igrab(inode);
261507a0 205 entry->compress_type = compress_type;
d899e052 206 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 207 set_bit(type, &entry->flags);
3eaa2885 208
4b46fce2
JB
209 if (dio)
210 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
211
e6dcd2dc
CM
212 /* one ref for the tree */
213 atomic_set(&entry->refs, 1);
214 init_waitqueue_head(&entry->wait);
215 INIT_LIST_HEAD(&entry->list);
3eaa2885 216 INIT_LIST_HEAD(&entry->root_extent_list);
9afab882
MX
217 INIT_LIST_HEAD(&entry->work_list);
218 init_completion(&entry->completion);
2ab28f32 219 INIT_LIST_HEAD(&entry->log_list);
dc17ff8f 220
1abe9b8a 221 trace_btrfs_ordered_extent_add(inode, entry);
222
5fd02043 223 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
224 node = tree_insert(&tree->tree, file_offset,
225 &entry->rb_node);
43c04fb1
JM
226 if (node)
227 ordered_data_tree_panic(inode, -EEXIST, file_offset);
5fd02043 228 spin_unlock_irq(&tree->lock);
d397712b 229
3eaa2885
CM
230 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
231 list_add_tail(&entry->root_extent_list,
232 &BTRFS_I(inode)->root->fs_info->ordered_extents);
233 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
234
dc17ff8f
CM
235 return 0;
236}
237
4b46fce2
JB
238int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
239 u64 start, u64 len, u64 disk_len, int type)
240{
241 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
242 disk_len, type, 0,
243 BTRFS_COMPRESS_NONE);
4b46fce2
JB
244}
245
246int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
247 u64 start, u64 len, u64 disk_len, int type)
248{
249 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
250 disk_len, type, 1,
251 BTRFS_COMPRESS_NONE);
252}
253
254int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
255 u64 start, u64 len, u64 disk_len,
256 int type, int compress_type)
257{
258 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
259 disk_len, type, 0,
260 compress_type);
4b46fce2
JB
261}
262
eb84ae03
CM
263/*
264 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
265 * when an ordered extent is finished. If the list covers more than one
266 * ordered extent, it is split across multiples.
eb84ae03 267 */
143bede5
JM
268void btrfs_add_ordered_sum(struct inode *inode,
269 struct btrfs_ordered_extent *entry,
270 struct btrfs_ordered_sum *sum)
dc17ff8f 271{
e6dcd2dc 272 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 273
e6dcd2dc 274 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 275 spin_lock_irq(&tree->lock);
e6dcd2dc 276 list_add_tail(&sum->list, &entry->list);
2ab28f32
JB
277 WARN_ON(entry->csum_bytes_left < sum->len);
278 entry->csum_bytes_left -= sum->len;
279 if (entry->csum_bytes_left == 0)
280 wake_up(&entry->wait);
5fd02043 281 spin_unlock_irq(&tree->lock);
dc17ff8f
CM
282}
283
163cf09c
CM
284/*
285 * this is used to account for finished IO across a given range
286 * of the file. The IO may span ordered extents. If
287 * a given ordered_extent is completely done, 1 is returned, otherwise
288 * 0.
289 *
290 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
291 * to make sure this function only returns 1 once for a given ordered extent.
292 *
293 * file_offset is updated to one byte past the range that is recorded as
294 * complete. This allows you to walk forward in the file.
295 */
296int btrfs_dec_test_first_ordered_pending(struct inode *inode,
297 struct btrfs_ordered_extent **cached,
5fd02043 298 u64 *file_offset, u64 io_size, int uptodate)
163cf09c
CM
299{
300 struct btrfs_ordered_inode_tree *tree;
301 struct rb_node *node;
302 struct btrfs_ordered_extent *entry = NULL;
303 int ret;
5fd02043 304 unsigned long flags;
163cf09c
CM
305 u64 dec_end;
306 u64 dec_start;
307 u64 to_dec;
308
309 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 310 spin_lock_irqsave(&tree->lock, flags);
163cf09c
CM
311 node = tree_search(tree, *file_offset);
312 if (!node) {
313 ret = 1;
314 goto out;
315 }
316
317 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
318 if (!offset_in_entry(entry, *file_offset)) {
319 ret = 1;
320 goto out;
321 }
322
323 dec_start = max(*file_offset, entry->file_offset);
324 dec_end = min(*file_offset + io_size, entry->file_offset +
325 entry->len);
326 *file_offset = dec_end;
327 if (dec_start > dec_end) {
328 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
329 (unsigned long long)dec_start,
330 (unsigned long long)dec_end);
331 }
332 to_dec = dec_end - dec_start;
333 if (to_dec > entry->bytes_left) {
334 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
335 (unsigned long long)entry->bytes_left,
336 (unsigned long long)to_dec);
337 }
338 entry->bytes_left -= to_dec;
5fd02043
JB
339 if (!uptodate)
340 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
341
163cf09c
CM
342 if (entry->bytes_left == 0)
343 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
344 else
345 ret = 1;
346out:
347 if (!ret && cached && entry) {
348 *cached = entry;
349 atomic_inc(&entry->refs);
350 }
5fd02043 351 spin_unlock_irqrestore(&tree->lock, flags);
163cf09c
CM
352 return ret == 0;
353}
354
eb84ae03
CM
355/*
356 * this is used to account for finished IO across a given range
357 * of the file. The IO should not span ordered extents. If
358 * a given ordered_extent is completely done, 1 is returned, otherwise
359 * 0.
360 *
361 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
362 * to make sure this function only returns 1 once for a given ordered extent.
363 */
e6dcd2dc 364int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 365 struct btrfs_ordered_extent **cached,
5fd02043 366 u64 file_offset, u64 io_size, int uptodate)
dc17ff8f 367{
e6dcd2dc 368 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 369 struct rb_node *node;
5a1a3df1 370 struct btrfs_ordered_extent *entry = NULL;
5fd02043 371 unsigned long flags;
e6dcd2dc
CM
372 int ret;
373
374 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043
JB
375 spin_lock_irqsave(&tree->lock, flags);
376 if (cached && *cached) {
377 entry = *cached;
378 goto have_entry;
379 }
380
e6dcd2dc 381 node = tree_search(tree, file_offset);
dc17ff8f 382 if (!node) {
e6dcd2dc
CM
383 ret = 1;
384 goto out;
dc17ff8f
CM
385 }
386
e6dcd2dc 387 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043 388have_entry:
e6dcd2dc
CM
389 if (!offset_in_entry(entry, file_offset)) {
390 ret = 1;
391 goto out;
dc17ff8f 392 }
e6dcd2dc 393
8b62b72b
CM
394 if (io_size > entry->bytes_left) {
395 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
396 (unsigned long long)entry->bytes_left,
397 (unsigned long long)io_size);
398 }
399 entry->bytes_left -= io_size;
5fd02043
JB
400 if (!uptodate)
401 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
402
8b62b72b 403 if (entry->bytes_left == 0)
e6dcd2dc 404 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
405 else
406 ret = 1;
e6dcd2dc 407out:
5a1a3df1
JB
408 if (!ret && cached && entry) {
409 *cached = entry;
410 atomic_inc(&entry->refs);
411 }
5fd02043 412 spin_unlock_irqrestore(&tree->lock, flags);
e6dcd2dc
CM
413 return ret == 0;
414}
dc17ff8f 415
2ab28f32
JB
416/* Needs to either be called under a log transaction or the log_mutex */
417void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
418{
419 struct btrfs_ordered_inode_tree *tree;
420 struct btrfs_ordered_extent *ordered;
421 struct rb_node *n;
422 int index = log->log_transid % 2;
423
424 tree = &BTRFS_I(inode)->ordered_tree;
425 spin_lock_irq(&tree->lock);
426 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
427 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
428 spin_lock(&log->log_extents_lock[index]);
429 if (list_empty(&ordered->log_list)) {
430 list_add_tail(&ordered->log_list, &log->logged_list[index]);
431 atomic_inc(&ordered->refs);
432 }
433 spin_unlock(&log->log_extents_lock[index]);
434 }
435 spin_unlock_irq(&tree->lock);
436}
437
438void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
439{
440 struct btrfs_ordered_extent *ordered;
441 int index = transid % 2;
442
443 spin_lock_irq(&log->log_extents_lock[index]);
444 while (!list_empty(&log->logged_list[index])) {
445 ordered = list_first_entry(&log->logged_list[index],
446 struct btrfs_ordered_extent,
447 log_list);
448 list_del_init(&ordered->log_list);
449 spin_unlock_irq(&log->log_extents_lock[index]);
450 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
451 &ordered->flags));
452 btrfs_put_ordered_extent(ordered);
453 spin_lock_irq(&log->log_extents_lock[index]);
454 }
455 spin_unlock_irq(&log->log_extents_lock[index]);
456}
457
458void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
459{
460 struct btrfs_ordered_extent *ordered;
461 int index = transid % 2;
462
463 spin_lock_irq(&log->log_extents_lock[index]);
464 while (!list_empty(&log->logged_list[index])) {
465 ordered = list_first_entry(&log->logged_list[index],
466 struct btrfs_ordered_extent,
467 log_list);
468 list_del_init(&ordered->log_list);
469 spin_unlock_irq(&log->log_extents_lock[index]);
470 btrfs_put_ordered_extent(ordered);
471 spin_lock_irq(&log->log_extents_lock[index]);
472 }
473 spin_unlock_irq(&log->log_extents_lock[index]);
474}
475
eb84ae03
CM
476/*
477 * used to drop a reference on an ordered extent. This will free
478 * the extent if the last reference is dropped
479 */
143bede5 480void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
e6dcd2dc 481{
ba1da2f4
CM
482 struct list_head *cur;
483 struct btrfs_ordered_sum *sum;
484
1abe9b8a 485 trace_btrfs_ordered_extent_put(entry->inode, entry);
486
ba1da2f4 487 if (atomic_dec_and_test(&entry->refs)) {
5fd02043
JB
488 if (entry->inode)
489 btrfs_add_delayed_iput(entry->inode);
d397712b 490 while (!list_empty(&entry->list)) {
ba1da2f4
CM
491 cur = entry->list.next;
492 sum = list_entry(cur, struct btrfs_ordered_sum, list);
493 list_del(&sum->list);
494 kfree(sum);
495 }
6352b91d 496 kmem_cache_free(btrfs_ordered_extent_cache, entry);
ba1da2f4 497 }
dc17ff8f 498}
cee36a03 499
eb84ae03
CM
500/*
501 * remove an ordered extent from the tree. No references are dropped
5fd02043 502 * and waiters are woken up.
eb84ae03 503 */
5fd02043
JB
504void btrfs_remove_ordered_extent(struct inode *inode,
505 struct btrfs_ordered_extent *entry)
cee36a03 506{
e6dcd2dc 507 struct btrfs_ordered_inode_tree *tree;
287a0ab9 508 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 509 struct rb_node *node;
cee36a03 510
e6dcd2dc 511 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 512 spin_lock_irq(&tree->lock);
e6dcd2dc 513 node = &entry->rb_node;
cee36a03 514 rb_erase(node, &tree->tree);
e6dcd2dc
CM
515 tree->last = NULL;
516 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
5fd02043 517 spin_unlock_irq(&tree->lock);
3eaa2885 518
287a0ab9 519 spin_lock(&root->fs_info->ordered_extent_lock);
3eaa2885 520 list_del_init(&entry->root_extent_list);
5a3f23d5 521
1abe9b8a 522 trace_btrfs_ordered_extent_remove(inode, entry);
523
5a3f23d5
CM
524 /*
525 * we have no more ordered extents for this inode and
526 * no dirty pages. We can safely remove it from the
527 * list of ordered extents
528 */
529 if (RB_EMPTY_ROOT(&tree->tree) &&
530 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
531 list_del_init(&BTRFS_I(inode)->ordered_operations);
532 }
287a0ab9 533 spin_unlock(&root->fs_info->ordered_extent_lock);
e6dcd2dc 534 wake_up(&entry->wait);
cee36a03
CM
535}
536
9afab882
MX
537static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
538{
539 struct btrfs_ordered_extent *ordered;
540
541 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
542 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
543 complete(&ordered->completion);
544}
545
d352ac68
CM
546/*
547 * wait for all the ordered extents in a root. This is done when balancing
548 * space between drives.
549 */
6bbe3a9c 550void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
3eaa2885 551{
9afab882 552 struct list_head splice, works;
3eaa2885 553 struct list_head *cur;
9afab882 554 struct btrfs_ordered_extent *ordered, *next;
3eaa2885
CM
555 struct inode *inode;
556
557 INIT_LIST_HEAD(&splice);
9afab882 558 INIT_LIST_HEAD(&works);
3eaa2885
CM
559
560 spin_lock(&root->fs_info->ordered_extent_lock);
561 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 562 while (!list_empty(&splice)) {
3eaa2885
CM
563 cur = splice.next;
564 ordered = list_entry(cur, struct btrfs_ordered_extent,
565 root_extent_list);
566 list_del_init(&ordered->root_extent_list);
567 atomic_inc(&ordered->refs);
3eaa2885
CM
568
569 /*
5b21f2ed 570 * the inode may be getting freed (in sys_unlink path).
3eaa2885 571 */
5b21f2ed
ZY
572 inode = igrab(ordered->inode);
573
3eaa2885
CM
574 spin_unlock(&root->fs_info->ordered_extent_lock);
575
5b21f2ed 576 if (inode) {
9afab882
MX
577 ordered->flush_work.func = btrfs_run_ordered_extent_work;
578 list_add_tail(&ordered->work_list, &works);
579 btrfs_queue_worker(&root->fs_info->flush_workers,
580 &ordered->flush_work);
5b21f2ed
ZY
581 } else {
582 btrfs_put_ordered_extent(ordered);
583 }
3eaa2885 584
9afab882 585 cond_resched();
3eaa2885
CM
586 spin_lock(&root->fs_info->ordered_extent_lock);
587 }
588 spin_unlock(&root->fs_info->ordered_extent_lock);
9afab882
MX
589
590 list_for_each_entry_safe(ordered, next, &works, work_list) {
591 list_del_init(&ordered->work_list);
592 wait_for_completion(&ordered->completion);
593
594 inode = ordered->inode;
595 btrfs_put_ordered_extent(ordered);
596 if (delay_iput)
597 btrfs_add_delayed_iput(inode);
598 else
599 iput(inode);
600
601 cond_resched();
602 }
3eaa2885
CM
603}
604
5a3f23d5
CM
605/*
606 * this is used during transaction commit to write all the inodes
607 * added to the ordered operation list. These files must be fully on
608 * disk before the transaction commits.
609 *
610 * we have two modes here, one is to just start the IO via filemap_flush
611 * and the other is to wait for all the io. When we wait, we have an
612 * extra check to make sure the ordered operation list really is empty
613 * before we return
614 */
25287e0a 615int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
5a3f23d5
CM
616{
617 struct btrfs_inode *btrfs_inode;
618 struct inode *inode;
619 struct list_head splice;
25287e0a
MX
620 struct list_head works;
621 struct btrfs_delalloc_work *work, *next;
622 int ret = 0;
5a3f23d5
CM
623
624 INIT_LIST_HEAD(&splice);
25287e0a 625 INIT_LIST_HEAD(&works);
5a3f23d5
CM
626
627 mutex_lock(&root->fs_info->ordered_operations_mutex);
628 spin_lock(&root->fs_info->ordered_extent_lock);
5a3f23d5 629 list_splice_init(&root->fs_info->ordered_operations, &splice);
5a3f23d5
CM
630 while (!list_empty(&splice)) {
631 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
632 ordered_operations);
5a3f23d5
CM
633 inode = &btrfs_inode->vfs_inode;
634
635 list_del_init(&btrfs_inode->ordered_operations);
636
637 /*
638 * the inode may be getting freed (in sys_unlink path).
639 */
640 inode = igrab(inode);
25287e0a
MX
641 if (!inode)
642 continue;
5b947f1b
MX
643
644 if (!wait)
645 list_add_tail(&BTRFS_I(inode)->ordered_operations,
646 &root->fs_info->ordered_operations);
5a3f23d5
CM
647 spin_unlock(&root->fs_info->ordered_extent_lock);
648
25287e0a
MX
649 work = btrfs_alloc_delalloc_work(inode, wait, 1);
650 if (!work) {
5b947f1b 651 spin_lock(&root->fs_info->ordered_extent_lock);
25287e0a
MX
652 if (list_empty(&BTRFS_I(inode)->ordered_operations))
653 list_add_tail(&btrfs_inode->ordered_operations,
654 &splice);
25287e0a
MX
655 list_splice_tail(&splice,
656 &root->fs_info->ordered_operations);
657 spin_unlock(&root->fs_info->ordered_extent_lock);
658 ret = -ENOMEM;
659 goto out;
5a3f23d5 660 }
25287e0a
MX
661 list_add_tail(&work->list, &works);
662 btrfs_queue_worker(&root->fs_info->flush_workers,
663 &work->work);
5a3f23d5
CM
664
665 cond_resched();
666 spin_lock(&root->fs_info->ordered_extent_lock);
667 }
5a3f23d5 668 spin_unlock(&root->fs_info->ordered_extent_lock);
25287e0a
MX
669out:
670 list_for_each_entry_safe(work, next, &works, list) {
671 list_del_init(&work->list);
672 btrfs_wait_and_free_delalloc_work(work);
673 }
5a3f23d5 674 mutex_unlock(&root->fs_info->ordered_operations_mutex);
25287e0a 675 return ret;
5a3f23d5
CM
676}
677
eb84ae03
CM
678/*
679 * Used to start IO or wait for a given ordered extent to finish.
680 *
681 * If wait is one, this effectively waits on page writeback for all the pages
682 * in the extent, and it waits on the io completion code to insert
683 * metadata into the btree corresponding to the extent
684 */
685void btrfs_start_ordered_extent(struct inode *inode,
686 struct btrfs_ordered_extent *entry,
687 int wait)
e6dcd2dc
CM
688{
689 u64 start = entry->file_offset;
690 u64 end = start + entry->len - 1;
e1b81e67 691
1abe9b8a 692 trace_btrfs_ordered_extent_start(inode, entry);
693
eb84ae03
CM
694 /*
695 * pages in the range can be dirty, clean or writeback. We
696 * start IO on any dirty ones so the wait doesn't stall waiting
b2570314 697 * for the flusher thread to find them
eb84ae03 698 */
4b46fce2
JB
699 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
700 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 701 if (wait) {
e6dcd2dc
CM
702 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
703 &entry->flags));
c8b97818 704 }
e6dcd2dc 705}
cee36a03 706
eb84ae03
CM
707/*
708 * Used to wait on ordered extents across a large range of bytes.
709 */
143bede5 710void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
711{
712 u64 end;
e5a2217e 713 u64 orig_end;
e6dcd2dc 714 struct btrfs_ordered_extent *ordered;
e5a2217e
CM
715
716 if (start + len < start) {
f421950f 717 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
718 } else {
719 orig_end = start + len - 1;
f421950f
CM
720 if (orig_end > INT_LIMIT(loff_t))
721 orig_end = INT_LIMIT(loff_t);
e5a2217e 722 }
551ebb2d 723
e5a2217e
CM
724 /* start IO across the range first to instantiate any delalloc
725 * extents
726 */
7ddf5a42
JB
727 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
728
729 /*
730 * So with compression we will find and lock a dirty page and clear the
731 * first one as dirty, setup an async extent, and immediately return
732 * with the entire range locked but with nobody actually marked with
733 * writeback. So we can't just filemap_write_and_wait_range() and
734 * expect it to work since it will just kick off a thread to do the
735 * actual work. So we need to call filemap_fdatawrite_range _again_
736 * since it will wait on the page lock, which won't be unlocked until
737 * after the pages have been marked as writeback and so we're good to go
738 * from there. We have to do this otherwise we'll miss the ordered
739 * extents and that results in badness. Please Josef, do not think you
740 * know better and pull this out at some point in the future, it is
741 * right and you are wrong.
742 */
743 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
744 &BTRFS_I(inode)->runtime_flags))
745 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
746
747 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 748
f421950f 749 end = orig_end;
d397712b 750 while (1) {
e6dcd2dc 751 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 752 if (!ordered)
e6dcd2dc 753 break;
e5a2217e 754 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
755 btrfs_put_ordered_extent(ordered);
756 break;
757 }
758 if (ordered->file_offset + ordered->len < start) {
759 btrfs_put_ordered_extent(ordered);
760 break;
761 }
e5a2217e 762 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
763 end = ordered->file_offset;
764 btrfs_put_ordered_extent(ordered);
e5a2217e 765 if (end == 0 || end == start)
e6dcd2dc
CM
766 break;
767 end--;
768 }
cee36a03
CM
769}
770
eb84ae03
CM
771/*
772 * find an ordered extent corresponding to file_offset. return NULL if
773 * nothing is found, otherwise take a reference on the extent and return it
774 */
e6dcd2dc
CM
775struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
776 u64 file_offset)
777{
778 struct btrfs_ordered_inode_tree *tree;
779 struct rb_node *node;
780 struct btrfs_ordered_extent *entry = NULL;
781
782 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 783 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
784 node = tree_search(tree, file_offset);
785 if (!node)
786 goto out;
787
788 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
789 if (!offset_in_entry(entry, file_offset))
790 entry = NULL;
791 if (entry)
792 atomic_inc(&entry->refs);
793out:
5fd02043 794 spin_unlock_irq(&tree->lock);
e6dcd2dc
CM
795 return entry;
796}
797
4b46fce2
JB
798/* Since the DIO code tries to lock a wide area we need to look for any ordered
799 * extents that exist in the range, rather than just the start of the range.
800 */
801struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
802 u64 file_offset,
803 u64 len)
804{
805 struct btrfs_ordered_inode_tree *tree;
806 struct rb_node *node;
807 struct btrfs_ordered_extent *entry = NULL;
808
809 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 810 spin_lock_irq(&tree->lock);
4b46fce2
JB
811 node = tree_search(tree, file_offset);
812 if (!node) {
813 node = tree_search(tree, file_offset + len);
814 if (!node)
815 goto out;
816 }
817
818 while (1) {
819 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
820 if (range_overlaps(entry, file_offset, len))
821 break;
822
823 if (entry->file_offset >= file_offset + len) {
824 entry = NULL;
825 break;
826 }
827 entry = NULL;
828 node = rb_next(node);
829 if (!node)
830 break;
831 }
832out:
833 if (entry)
834 atomic_inc(&entry->refs);
5fd02043 835 spin_unlock_irq(&tree->lock);
4b46fce2
JB
836 return entry;
837}
838
eb84ae03
CM
839/*
840 * lookup and return any extent before 'file_offset'. NULL is returned
841 * if none is found
842 */
e6dcd2dc 843struct btrfs_ordered_extent *
d397712b 844btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
845{
846 struct btrfs_ordered_inode_tree *tree;
847 struct rb_node *node;
848 struct btrfs_ordered_extent *entry = NULL;
849
850 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 851 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
852 node = tree_search(tree, file_offset);
853 if (!node)
854 goto out;
855
856 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
857 atomic_inc(&entry->refs);
858out:
5fd02043 859 spin_unlock_irq(&tree->lock);
e6dcd2dc 860 return entry;
81d7ed29 861}
dbe674a9 862
eb84ae03
CM
863/*
864 * After an extent is done, call this to conditionally update the on disk
865 * i_size. i_size is updated to cover any fully written part of the file.
866 */
c2167754 867int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
868 struct btrfs_ordered_extent *ordered)
869{
870 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
dbe674a9
CM
871 u64 disk_i_size;
872 u64 new_i_size;
c2167754 873 u64 i_size = i_size_read(inode);
dbe674a9 874 struct rb_node *node;
c2167754 875 struct rb_node *prev = NULL;
dbe674a9 876 struct btrfs_ordered_extent *test;
c2167754
YZ
877 int ret = 1;
878
879 if (ordered)
880 offset = entry_end(ordered);
a038fab0
YZ
881 else
882 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
dbe674a9 883
5fd02043 884 spin_lock_irq(&tree->lock);
dbe674a9
CM
885 disk_i_size = BTRFS_I(inode)->disk_i_size;
886
c2167754
YZ
887 /* truncate file */
888 if (disk_i_size > i_size) {
889 BTRFS_I(inode)->disk_i_size = i_size;
890 ret = 0;
891 goto out;
892 }
893
dbe674a9
CM
894 /*
895 * if the disk i_size is already at the inode->i_size, or
896 * this ordered extent is inside the disk i_size, we're done
897 */
5d1f4020
JB
898 if (disk_i_size == i_size)
899 goto out;
900
901 /*
902 * We still need to update disk_i_size if outstanding_isize is greater
903 * than disk_i_size.
904 */
905 if (offset <= disk_i_size &&
906 (!ordered || ordered->outstanding_isize <= disk_i_size))
dbe674a9 907 goto out;
dbe674a9 908
dbe674a9
CM
909 /*
910 * walk backward from this ordered extent to disk_i_size.
911 * if we find an ordered extent then we can't update disk i_size
912 * yet
913 */
c2167754
YZ
914 if (ordered) {
915 node = rb_prev(&ordered->rb_node);
916 } else {
917 prev = tree_search(tree, offset);
918 /*
919 * we insert file extents without involving ordered struct,
920 * so there should be no ordered struct cover this offset
921 */
922 if (prev) {
923 test = rb_entry(prev, struct btrfs_ordered_extent,
924 rb_node);
925 BUG_ON(offset_in_entry(test, offset));
926 }
927 node = prev;
928 }
5fd02043 929 for (; node; node = rb_prev(node)) {
dbe674a9 930 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043
JB
931
932 /* We treat this entry as if it doesnt exist */
933 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
934 continue;
dbe674a9
CM
935 if (test->file_offset + test->len <= disk_i_size)
936 break;
c2167754 937 if (test->file_offset >= i_size)
dbe674a9 938 break;
59fe4f41 939 if (entry_end(test) > disk_i_size) {
b9a8cc5b
MX
940 /*
941 * we don't update disk_i_size now, so record this
942 * undealt i_size. Or we will not know the real
943 * i_size.
944 */
945 if (test->outstanding_isize < offset)
946 test->outstanding_isize = offset;
947 if (ordered &&
948 ordered->outstanding_isize >
949 test->outstanding_isize)
950 test->outstanding_isize =
951 ordered->outstanding_isize;
dbe674a9 952 goto out;
5fd02043 953 }
dbe674a9 954 }
b9a8cc5b 955 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
956
957 /*
b9a8cc5b
MX
958 * Some ordered extents may completed before the current one, and
959 * we hold the real i_size in ->outstanding_isize.
dbe674a9 960 */
b9a8cc5b
MX
961 if (ordered && ordered->outstanding_isize > new_i_size)
962 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
dbe674a9 963 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 964 ret = 0;
dbe674a9 965out:
c2167754 966 /*
5fd02043
JB
967 * We need to do this because we can't remove ordered extents until
968 * after the i_disk_size has been updated and then the inode has been
969 * updated to reflect the change, so we need to tell anybody who finds
970 * this ordered extent that we've already done all the real work, we
971 * just haven't completed all the other work.
c2167754
YZ
972 */
973 if (ordered)
5fd02043
JB
974 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
975 spin_unlock_irq(&tree->lock);
c2167754 976 return ret;
dbe674a9 977}
ba1da2f4 978
eb84ae03
CM
979/*
980 * search the ordered extents for one corresponding to 'offset' and
981 * try to find a checksum. This is used because we allow pages to
982 * be reclaimed before their checksum is actually put into the btree
983 */
d20f7043
CM
984int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
985 u32 *sum)
ba1da2f4
CM
986{
987 struct btrfs_ordered_sum *ordered_sum;
988 struct btrfs_sector_sum *sector_sums;
989 struct btrfs_ordered_extent *ordered;
990 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
991 unsigned long num_sectors;
992 unsigned long i;
993 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 994 int ret = 1;
ba1da2f4
CM
995
996 ordered = btrfs_lookup_ordered_extent(inode, offset);
997 if (!ordered)
998 return 1;
999
5fd02043 1000 spin_lock_irq(&tree->lock);
c6e30871 1001 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
d20f7043 1002 if (disk_bytenr >= ordered_sum->bytenr) {
3edf7d33 1003 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 1004 sector_sums = ordered_sum->sums;
3edf7d33 1005 for (i = 0; i < num_sectors; i++) {
d20f7043 1006 if (sector_sums[i].bytenr == disk_bytenr) {
3edf7d33
CM
1007 *sum = sector_sums[i].sum;
1008 ret = 0;
1009 goto out;
1010 }
1011 }
ba1da2f4
CM
1012 }
1013 }
1014out:
5fd02043 1015 spin_unlock_irq(&tree->lock);
89642229 1016 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
1017 return ret;
1018}
1019
f421950f 1020
5a3f23d5
CM
1021/*
1022 * add a given inode to the list of inodes that must be fully on
1023 * disk before a transaction commit finishes.
1024 *
1025 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1026 * used to make sure renamed files are fully on disk.
1027 *
1028 * It is a noop if the inode is already fully on disk.
1029 *
1030 * If trans is not null, we'll do a friendly check for a transaction that
1031 * is already flushing things and force the IO down ourselves.
1032 */
143bede5
JM
1033void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1034 struct btrfs_root *root, struct inode *inode)
5a3f23d5
CM
1035{
1036 u64 last_mod;
1037
1038 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1039
1040 /*
1041 * if this file hasn't been changed since the last transaction
1042 * commit, we can safely return without doing anything
1043 */
1044 if (last_mod < root->fs_info->last_trans_committed)
143bede5 1045 return;
5a3f23d5 1046
5a3f23d5
CM
1047 spin_lock(&root->fs_info->ordered_extent_lock);
1048 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1049 list_add_tail(&BTRFS_I(inode)->ordered_operations,
1050 &root->fs_info->ordered_operations);
1051 }
1052 spin_unlock(&root->fs_info->ordered_extent_lock);
5a3f23d5 1053}
6352b91d
MX
1054
1055int __init ordered_data_init(void)
1056{
1057 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1058 sizeof(struct btrfs_ordered_extent), 0,
1059 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1060 NULL);
1061 if (!btrfs_ordered_extent_cache)
1062 return -ENOMEM;
25287e0a 1063
6352b91d
MX
1064 return 0;
1065}
1066
1067void ordered_data_exit(void)
1068{
1069 if (btrfs_ordered_extent_cache)
1070 kmem_cache_destroy(btrfs_ordered_extent_cache);
1071}