btrfs: fix min csum item size warnings in 32bit
[linux-block.git] / fs / btrfs / ordered-data.c
CommitLineData
dc17ff8f
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
dc17ff8f 19#include <linux/slab.h>
d6bfde87 20#include <linux/blkdev.h>
f421950f
CM
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
dc17ff8f
CM
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
e6dcd2dc 26#include "extent_io.h"
dc17ff8f 27
6352b91d
MX
28static struct kmem_cache *btrfs_ordered_extent_cache;
29
e6dcd2dc 30static u64 entry_end(struct btrfs_ordered_extent *entry)
dc17ff8f 31{
e6dcd2dc
CM
32 if (entry->file_offset + entry->len < entry->file_offset)
33 return (u64)-1;
34 return entry->file_offset + entry->len;
dc17ff8f
CM
35}
36
d352ac68
CM
37/* returns NULL if the insertion worked, or it returns the node it did find
38 * in the tree
39 */
e6dcd2dc
CM
40static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
41 struct rb_node *node)
dc17ff8f 42{
d397712b
CM
43 struct rb_node **p = &root->rb_node;
44 struct rb_node *parent = NULL;
e6dcd2dc 45 struct btrfs_ordered_extent *entry;
dc17ff8f 46
d397712b 47 while (*p) {
dc17ff8f 48 parent = *p;
e6dcd2dc 49 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
dc17ff8f 50
e6dcd2dc 51 if (file_offset < entry->file_offset)
dc17ff8f 52 p = &(*p)->rb_left;
e6dcd2dc 53 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
54 p = &(*p)->rb_right;
55 else
56 return parent;
57 }
58
59 rb_link_node(node, parent, p);
60 rb_insert_color(node, root);
61 return NULL;
62}
63
43c04fb1
JM
64static void ordered_data_tree_panic(struct inode *inode, int errno,
65 u64 offset)
66{
67 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
68 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
69 "%llu\n", (unsigned long long)offset);
70}
71
d352ac68
CM
72/*
73 * look for a given offset in the tree, and if it can't be found return the
74 * first lesser offset
75 */
e6dcd2dc
CM
76static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
77 struct rb_node **prev_ret)
dc17ff8f 78{
d397712b 79 struct rb_node *n = root->rb_node;
dc17ff8f 80 struct rb_node *prev = NULL;
e6dcd2dc
CM
81 struct rb_node *test;
82 struct btrfs_ordered_extent *entry;
83 struct btrfs_ordered_extent *prev_entry = NULL;
dc17ff8f 84
d397712b 85 while (n) {
e6dcd2dc 86 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
dc17ff8f
CM
87 prev = n;
88 prev_entry = entry;
dc17ff8f 89
e6dcd2dc 90 if (file_offset < entry->file_offset)
dc17ff8f 91 n = n->rb_left;
e6dcd2dc 92 else if (file_offset >= entry_end(entry))
dc17ff8f
CM
93 n = n->rb_right;
94 else
95 return n;
96 }
97 if (!prev_ret)
98 return NULL;
99
d397712b 100 while (prev && file_offset >= entry_end(prev_entry)) {
e6dcd2dc
CM
101 test = rb_next(prev);
102 if (!test)
103 break;
104 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
105 rb_node);
106 if (file_offset < entry_end(prev_entry))
107 break;
108
109 prev = test;
110 }
111 if (prev)
112 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
113 rb_node);
d397712b 114 while (prev && file_offset < entry_end(prev_entry)) {
e6dcd2dc
CM
115 test = rb_prev(prev);
116 if (!test)
117 break;
118 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
119 rb_node);
120 prev = test;
dc17ff8f
CM
121 }
122 *prev_ret = prev;
123 return NULL;
124}
125
d352ac68
CM
126/*
127 * helper to check if a given offset is inside a given entry
128 */
e6dcd2dc
CM
129static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
130{
131 if (file_offset < entry->file_offset ||
132 entry->file_offset + entry->len <= file_offset)
133 return 0;
134 return 1;
135}
136
4b46fce2
JB
137static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
138 u64 len)
139{
140 if (file_offset + len <= entry->file_offset ||
141 entry->file_offset + entry->len <= file_offset)
142 return 0;
143 return 1;
144}
145
d352ac68
CM
146/*
147 * look find the first ordered struct that has this offset, otherwise
148 * the first one less than this offset
149 */
e6dcd2dc
CM
150static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
151 u64 file_offset)
dc17ff8f 152{
e6dcd2dc 153 struct rb_root *root = &tree->tree;
c87fb6fd 154 struct rb_node *prev = NULL;
dc17ff8f 155 struct rb_node *ret;
e6dcd2dc
CM
156 struct btrfs_ordered_extent *entry;
157
158 if (tree->last) {
159 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
160 rb_node);
161 if (offset_in_entry(entry, file_offset))
162 return tree->last;
163 }
164 ret = __tree_search(root, file_offset, &prev);
dc17ff8f 165 if (!ret)
e6dcd2dc
CM
166 ret = prev;
167 if (ret)
168 tree->last = ret;
dc17ff8f
CM
169 return ret;
170}
171
eb84ae03
CM
172/* allocate and add a new ordered_extent into the per-inode tree.
173 * file_offset is the logical offset in the file
174 *
175 * start is the disk block number of an extent already reserved in the
176 * extent allocation tree
177 *
178 * len is the length of the extent
179 *
eb84ae03
CM
180 * The tree is given a single reference on the ordered extent that was
181 * inserted.
182 */
4b46fce2
JB
183static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
184 u64 start, u64 len, u64 disk_len,
261507a0 185 int type, int dio, int compress_type)
dc17ff8f 186{
dc17ff8f 187 struct btrfs_ordered_inode_tree *tree;
e6dcd2dc
CM
188 struct rb_node *node;
189 struct btrfs_ordered_extent *entry;
dc17ff8f 190
e6dcd2dc 191 tree = &BTRFS_I(inode)->ordered_tree;
6352b91d 192 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
dc17ff8f
CM
193 if (!entry)
194 return -ENOMEM;
195
e6dcd2dc
CM
196 entry->file_offset = file_offset;
197 entry->start = start;
198 entry->len = len;
c8b97818 199 entry->disk_len = disk_len;
8b62b72b 200 entry->bytes_left = len;
5fd02043 201 entry->inode = igrab(inode);
261507a0 202 entry->compress_type = compress_type;
d899e052 203 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
80ff3856 204 set_bit(type, &entry->flags);
3eaa2885 205
4b46fce2
JB
206 if (dio)
207 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
208
e6dcd2dc
CM
209 /* one ref for the tree */
210 atomic_set(&entry->refs, 1);
211 init_waitqueue_head(&entry->wait);
212 INIT_LIST_HEAD(&entry->list);
3eaa2885 213 INIT_LIST_HEAD(&entry->root_extent_list);
dc17ff8f 214
1abe9b8a 215 trace_btrfs_ordered_extent_add(inode, entry);
216
5fd02043 217 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
218 node = tree_insert(&tree->tree, file_offset,
219 &entry->rb_node);
43c04fb1
JM
220 if (node)
221 ordered_data_tree_panic(inode, -EEXIST, file_offset);
5fd02043 222 spin_unlock_irq(&tree->lock);
d397712b 223
3eaa2885
CM
224 spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
225 list_add_tail(&entry->root_extent_list,
226 &BTRFS_I(inode)->root->fs_info->ordered_extents);
227 spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
228
dc17ff8f
CM
229 return 0;
230}
231
4b46fce2
JB
232int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
233 u64 start, u64 len, u64 disk_len, int type)
234{
235 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
236 disk_len, type, 0,
237 BTRFS_COMPRESS_NONE);
4b46fce2
JB
238}
239
240int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
241 u64 start, u64 len, u64 disk_len, int type)
242{
243 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261507a0
LZ
244 disk_len, type, 1,
245 BTRFS_COMPRESS_NONE);
246}
247
248int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
249 u64 start, u64 len, u64 disk_len,
250 int type, int compress_type)
251{
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 disk_len, type, 0,
254 compress_type);
4b46fce2
JB
255}
256
eb84ae03
CM
257/*
258 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
3edf7d33
CM
259 * when an ordered extent is finished. If the list covers more than one
260 * ordered extent, it is split across multiples.
eb84ae03 261 */
143bede5
JM
262void btrfs_add_ordered_sum(struct inode *inode,
263 struct btrfs_ordered_extent *entry,
264 struct btrfs_ordered_sum *sum)
dc17ff8f 265{
e6dcd2dc 266 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 267
e6dcd2dc 268 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 269 spin_lock_irq(&tree->lock);
e6dcd2dc 270 list_add_tail(&sum->list, &entry->list);
5fd02043 271 spin_unlock_irq(&tree->lock);
dc17ff8f
CM
272}
273
163cf09c
CM
274/*
275 * this is used to account for finished IO across a given range
276 * of the file. The IO may span ordered extents. If
277 * a given ordered_extent is completely done, 1 is returned, otherwise
278 * 0.
279 *
280 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
281 * to make sure this function only returns 1 once for a given ordered extent.
282 *
283 * file_offset is updated to one byte past the range that is recorded as
284 * complete. This allows you to walk forward in the file.
285 */
286int btrfs_dec_test_first_ordered_pending(struct inode *inode,
287 struct btrfs_ordered_extent **cached,
5fd02043 288 u64 *file_offset, u64 io_size, int uptodate)
163cf09c
CM
289{
290 struct btrfs_ordered_inode_tree *tree;
291 struct rb_node *node;
292 struct btrfs_ordered_extent *entry = NULL;
293 int ret;
5fd02043 294 unsigned long flags;
163cf09c
CM
295 u64 dec_end;
296 u64 dec_start;
297 u64 to_dec;
298
299 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 300 spin_lock_irqsave(&tree->lock, flags);
163cf09c
CM
301 node = tree_search(tree, *file_offset);
302 if (!node) {
303 ret = 1;
304 goto out;
305 }
306
307 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
308 if (!offset_in_entry(entry, *file_offset)) {
309 ret = 1;
310 goto out;
311 }
312
313 dec_start = max(*file_offset, entry->file_offset);
314 dec_end = min(*file_offset + io_size, entry->file_offset +
315 entry->len);
316 *file_offset = dec_end;
317 if (dec_start > dec_end) {
318 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
319 (unsigned long long)dec_start,
320 (unsigned long long)dec_end);
321 }
322 to_dec = dec_end - dec_start;
323 if (to_dec > entry->bytes_left) {
324 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
325 (unsigned long long)entry->bytes_left,
326 (unsigned long long)to_dec);
327 }
328 entry->bytes_left -= to_dec;
5fd02043
JB
329 if (!uptodate)
330 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
331
163cf09c
CM
332 if (entry->bytes_left == 0)
333 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
334 else
335 ret = 1;
336out:
337 if (!ret && cached && entry) {
338 *cached = entry;
339 atomic_inc(&entry->refs);
340 }
5fd02043 341 spin_unlock_irqrestore(&tree->lock, flags);
163cf09c
CM
342 return ret == 0;
343}
344
eb84ae03
CM
345/*
346 * this is used to account for finished IO across a given range
347 * of the file. The IO should not span ordered extents. If
348 * a given ordered_extent is completely done, 1 is returned, otherwise
349 * 0.
350 *
351 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
352 * to make sure this function only returns 1 once for a given ordered extent.
353 */
e6dcd2dc 354int btrfs_dec_test_ordered_pending(struct inode *inode,
5a1a3df1 355 struct btrfs_ordered_extent **cached,
5fd02043 356 u64 file_offset, u64 io_size, int uptodate)
dc17ff8f 357{
e6dcd2dc 358 struct btrfs_ordered_inode_tree *tree;
dc17ff8f 359 struct rb_node *node;
5a1a3df1 360 struct btrfs_ordered_extent *entry = NULL;
5fd02043 361 unsigned long flags;
e6dcd2dc
CM
362 int ret;
363
364 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043
JB
365 spin_lock_irqsave(&tree->lock, flags);
366 if (cached && *cached) {
367 entry = *cached;
368 goto have_entry;
369 }
370
e6dcd2dc 371 node = tree_search(tree, file_offset);
dc17ff8f 372 if (!node) {
e6dcd2dc
CM
373 ret = 1;
374 goto out;
dc17ff8f
CM
375 }
376
e6dcd2dc 377 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043 378have_entry:
e6dcd2dc
CM
379 if (!offset_in_entry(entry, file_offset)) {
380 ret = 1;
381 goto out;
dc17ff8f 382 }
e6dcd2dc 383
8b62b72b
CM
384 if (io_size > entry->bytes_left) {
385 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
386 (unsigned long long)entry->bytes_left,
387 (unsigned long long)io_size);
388 }
389 entry->bytes_left -= io_size;
5fd02043
JB
390 if (!uptodate)
391 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
392
8b62b72b 393 if (entry->bytes_left == 0)
e6dcd2dc 394 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
8b62b72b
CM
395 else
396 ret = 1;
e6dcd2dc 397out:
5a1a3df1
JB
398 if (!ret && cached && entry) {
399 *cached = entry;
400 atomic_inc(&entry->refs);
401 }
5fd02043 402 spin_unlock_irqrestore(&tree->lock, flags);
e6dcd2dc
CM
403 return ret == 0;
404}
dc17ff8f 405
eb84ae03
CM
406/*
407 * used to drop a reference on an ordered extent. This will free
408 * the extent if the last reference is dropped
409 */
143bede5 410void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
e6dcd2dc 411{
ba1da2f4
CM
412 struct list_head *cur;
413 struct btrfs_ordered_sum *sum;
414
1abe9b8a 415 trace_btrfs_ordered_extent_put(entry->inode, entry);
416
ba1da2f4 417 if (atomic_dec_and_test(&entry->refs)) {
5fd02043
JB
418 if (entry->inode)
419 btrfs_add_delayed_iput(entry->inode);
d397712b 420 while (!list_empty(&entry->list)) {
ba1da2f4
CM
421 cur = entry->list.next;
422 sum = list_entry(cur, struct btrfs_ordered_sum, list);
423 list_del(&sum->list);
424 kfree(sum);
425 }
6352b91d 426 kmem_cache_free(btrfs_ordered_extent_cache, entry);
ba1da2f4 427 }
dc17ff8f 428}
cee36a03 429
eb84ae03
CM
430/*
431 * remove an ordered extent from the tree. No references are dropped
5fd02043 432 * and waiters are woken up.
eb84ae03 433 */
5fd02043
JB
434void btrfs_remove_ordered_extent(struct inode *inode,
435 struct btrfs_ordered_extent *entry)
cee36a03 436{
e6dcd2dc 437 struct btrfs_ordered_inode_tree *tree;
287a0ab9 438 struct btrfs_root *root = BTRFS_I(inode)->root;
cee36a03 439 struct rb_node *node;
cee36a03 440
e6dcd2dc 441 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 442 spin_lock_irq(&tree->lock);
e6dcd2dc 443 node = &entry->rb_node;
cee36a03 444 rb_erase(node, &tree->tree);
e6dcd2dc
CM
445 tree->last = NULL;
446 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
5fd02043 447 spin_unlock_irq(&tree->lock);
3eaa2885 448
287a0ab9 449 spin_lock(&root->fs_info->ordered_extent_lock);
3eaa2885 450 list_del_init(&entry->root_extent_list);
5a3f23d5 451
1abe9b8a 452 trace_btrfs_ordered_extent_remove(inode, entry);
453
5a3f23d5
CM
454 /*
455 * we have no more ordered extents for this inode and
456 * no dirty pages. We can safely remove it from the
457 * list of ordered extents
458 */
459 if (RB_EMPTY_ROOT(&tree->tree) &&
460 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
461 list_del_init(&BTRFS_I(inode)->ordered_operations);
462 }
287a0ab9 463 spin_unlock(&root->fs_info->ordered_extent_lock);
e6dcd2dc 464 wake_up(&entry->wait);
cee36a03
CM
465}
466
d352ac68
CM
467/*
468 * wait for all the ordered extents in a root. This is done when balancing
469 * space between drives.
470 */
6bbe3a9c 471void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
3eaa2885
CM
472{
473 struct list_head splice;
474 struct list_head *cur;
475 struct btrfs_ordered_extent *ordered;
476 struct inode *inode;
477
478 INIT_LIST_HEAD(&splice);
479
480 spin_lock(&root->fs_info->ordered_extent_lock);
481 list_splice_init(&root->fs_info->ordered_extents, &splice);
5b21f2ed 482 while (!list_empty(&splice)) {
3eaa2885
CM
483 cur = splice.next;
484 ordered = list_entry(cur, struct btrfs_ordered_extent,
485 root_extent_list);
486 list_del_init(&ordered->root_extent_list);
487 atomic_inc(&ordered->refs);
3eaa2885
CM
488
489 /*
5b21f2ed 490 * the inode may be getting freed (in sys_unlink path).
3eaa2885 491 */
5b21f2ed
ZY
492 inode = igrab(ordered->inode);
493
3eaa2885
CM
494 spin_unlock(&root->fs_info->ordered_extent_lock);
495
5b21f2ed
ZY
496 if (inode) {
497 btrfs_start_ordered_extent(inode, ordered, 1);
498 btrfs_put_ordered_extent(ordered);
24bbcf04
YZ
499 if (delay_iput)
500 btrfs_add_delayed_iput(inode);
501 else
502 iput(inode);
5b21f2ed
ZY
503 } else {
504 btrfs_put_ordered_extent(ordered);
505 }
3eaa2885
CM
506
507 spin_lock(&root->fs_info->ordered_extent_lock);
508 }
509 spin_unlock(&root->fs_info->ordered_extent_lock);
3eaa2885
CM
510}
511
5a3f23d5
CM
512/*
513 * this is used during transaction commit to write all the inodes
514 * added to the ordered operation list. These files must be fully on
515 * disk before the transaction commits.
516 *
517 * we have two modes here, one is to just start the IO via filemap_flush
518 * and the other is to wait for all the io. When we wait, we have an
519 * extra check to make sure the ordered operation list really is empty
520 * before we return
521 */
143bede5 522void btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
5a3f23d5
CM
523{
524 struct btrfs_inode *btrfs_inode;
525 struct inode *inode;
526 struct list_head splice;
527
528 INIT_LIST_HEAD(&splice);
529
530 mutex_lock(&root->fs_info->ordered_operations_mutex);
531 spin_lock(&root->fs_info->ordered_extent_lock);
532again:
533 list_splice_init(&root->fs_info->ordered_operations, &splice);
534
535 while (!list_empty(&splice)) {
536 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
537 ordered_operations);
538
539 inode = &btrfs_inode->vfs_inode;
540
541 list_del_init(&btrfs_inode->ordered_operations);
542
543 /*
544 * the inode may be getting freed (in sys_unlink path).
545 */
546 inode = igrab(inode);
547
548 if (!wait && inode) {
549 list_add_tail(&BTRFS_I(inode)->ordered_operations,
550 &root->fs_info->ordered_operations);
551 }
552 spin_unlock(&root->fs_info->ordered_extent_lock);
553
554 if (inode) {
555 if (wait)
556 btrfs_wait_ordered_range(inode, 0, (u64)-1);
557 else
558 filemap_flush(inode->i_mapping);
24bbcf04 559 btrfs_add_delayed_iput(inode);
5a3f23d5
CM
560 }
561
562 cond_resched();
563 spin_lock(&root->fs_info->ordered_extent_lock);
564 }
565 if (wait && !list_empty(&root->fs_info->ordered_operations))
566 goto again;
567
568 spin_unlock(&root->fs_info->ordered_extent_lock);
569 mutex_unlock(&root->fs_info->ordered_operations_mutex);
5a3f23d5
CM
570}
571
eb84ae03
CM
572/*
573 * Used to start IO or wait for a given ordered extent to finish.
574 *
575 * If wait is one, this effectively waits on page writeback for all the pages
576 * in the extent, and it waits on the io completion code to insert
577 * metadata into the btree corresponding to the extent
578 */
579void btrfs_start_ordered_extent(struct inode *inode,
580 struct btrfs_ordered_extent *entry,
581 int wait)
e6dcd2dc
CM
582{
583 u64 start = entry->file_offset;
584 u64 end = start + entry->len - 1;
e1b81e67 585
1abe9b8a 586 trace_btrfs_ordered_extent_start(inode, entry);
587
eb84ae03
CM
588 /*
589 * pages in the range can be dirty, clean or writeback. We
590 * start IO on any dirty ones so the wait doesn't stall waiting
b2570314 591 * for the flusher thread to find them
eb84ae03 592 */
4b46fce2
JB
593 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
594 filemap_fdatawrite_range(inode->i_mapping, start, end);
c8b97818 595 if (wait) {
e6dcd2dc
CM
596 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
597 &entry->flags));
c8b97818 598 }
e6dcd2dc 599}
cee36a03 600
eb84ae03
CM
601/*
602 * Used to wait on ordered extents across a large range of bytes.
603 */
143bede5 604void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
e6dcd2dc
CM
605{
606 u64 end;
e5a2217e 607 u64 orig_end;
e6dcd2dc 608 struct btrfs_ordered_extent *ordered;
8b62b72b 609 int found;
e5a2217e
CM
610
611 if (start + len < start) {
f421950f 612 orig_end = INT_LIMIT(loff_t);
e5a2217e
CM
613 } else {
614 orig_end = start + len - 1;
f421950f
CM
615 if (orig_end > INT_LIMIT(loff_t))
616 orig_end = INT_LIMIT(loff_t);
e5a2217e 617 }
551ebb2d 618
e5a2217e
CM
619 /* start IO across the range first to instantiate any delalloc
620 * extents
621 */
7ddf5a42
JB
622 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
623
624 /*
625 * So with compression we will find and lock a dirty page and clear the
626 * first one as dirty, setup an async extent, and immediately return
627 * with the entire range locked but with nobody actually marked with
628 * writeback. So we can't just filemap_write_and_wait_range() and
629 * expect it to work since it will just kick off a thread to do the
630 * actual work. So we need to call filemap_fdatawrite_range _again_
631 * since it will wait on the page lock, which won't be unlocked until
632 * after the pages have been marked as writeback and so we're good to go
633 * from there. We have to do this otherwise we'll miss the ordered
634 * extents and that results in badness. Please Josef, do not think you
635 * know better and pull this out at some point in the future, it is
636 * right and you are wrong.
637 */
638 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
639 &BTRFS_I(inode)->runtime_flags))
640 filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
641
642 filemap_fdatawait_range(inode->i_mapping, start, orig_end);
e5a2217e 643
f421950f 644 end = orig_end;
8b62b72b 645 found = 0;
d397712b 646 while (1) {
e6dcd2dc 647 ordered = btrfs_lookup_first_ordered_extent(inode, end);
d397712b 648 if (!ordered)
e6dcd2dc 649 break;
e5a2217e 650 if (ordered->file_offset > orig_end) {
e6dcd2dc
CM
651 btrfs_put_ordered_extent(ordered);
652 break;
653 }
654 if (ordered->file_offset + ordered->len < start) {
655 btrfs_put_ordered_extent(ordered);
656 break;
657 }
8b62b72b 658 found++;
e5a2217e 659 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
660 end = ordered->file_offset;
661 btrfs_put_ordered_extent(ordered);
e5a2217e 662 if (end == 0 || end == start)
e6dcd2dc
CM
663 break;
664 end--;
665 }
cee36a03
CM
666}
667
eb84ae03
CM
668/*
669 * find an ordered extent corresponding to file_offset. return NULL if
670 * nothing is found, otherwise take a reference on the extent and return it
671 */
e6dcd2dc
CM
672struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
673 u64 file_offset)
674{
675 struct btrfs_ordered_inode_tree *tree;
676 struct rb_node *node;
677 struct btrfs_ordered_extent *entry = NULL;
678
679 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 680 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
681 node = tree_search(tree, file_offset);
682 if (!node)
683 goto out;
684
685 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
686 if (!offset_in_entry(entry, file_offset))
687 entry = NULL;
688 if (entry)
689 atomic_inc(&entry->refs);
690out:
5fd02043 691 spin_unlock_irq(&tree->lock);
e6dcd2dc
CM
692 return entry;
693}
694
4b46fce2
JB
695/* Since the DIO code tries to lock a wide area we need to look for any ordered
696 * extents that exist in the range, rather than just the start of the range.
697 */
698struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
699 u64 file_offset,
700 u64 len)
701{
702 struct btrfs_ordered_inode_tree *tree;
703 struct rb_node *node;
704 struct btrfs_ordered_extent *entry = NULL;
705
706 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 707 spin_lock_irq(&tree->lock);
4b46fce2
JB
708 node = tree_search(tree, file_offset);
709 if (!node) {
710 node = tree_search(tree, file_offset + len);
711 if (!node)
712 goto out;
713 }
714
715 while (1) {
716 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
717 if (range_overlaps(entry, file_offset, len))
718 break;
719
720 if (entry->file_offset >= file_offset + len) {
721 entry = NULL;
722 break;
723 }
724 entry = NULL;
725 node = rb_next(node);
726 if (!node)
727 break;
728 }
729out:
730 if (entry)
731 atomic_inc(&entry->refs);
5fd02043 732 spin_unlock_irq(&tree->lock);
4b46fce2
JB
733 return entry;
734}
735
eb84ae03
CM
736/*
737 * lookup and return any extent before 'file_offset'. NULL is returned
738 * if none is found
739 */
e6dcd2dc 740struct btrfs_ordered_extent *
d397712b 741btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
e6dcd2dc
CM
742{
743 struct btrfs_ordered_inode_tree *tree;
744 struct rb_node *node;
745 struct btrfs_ordered_extent *entry = NULL;
746
747 tree = &BTRFS_I(inode)->ordered_tree;
5fd02043 748 spin_lock_irq(&tree->lock);
e6dcd2dc
CM
749 node = tree_search(tree, file_offset);
750 if (!node)
751 goto out;
752
753 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
754 atomic_inc(&entry->refs);
755out:
5fd02043 756 spin_unlock_irq(&tree->lock);
e6dcd2dc 757 return entry;
81d7ed29 758}
dbe674a9 759
eb84ae03
CM
760/*
761 * After an extent is done, call this to conditionally update the on disk
762 * i_size. i_size is updated to cover any fully written part of the file.
763 */
c2167754 764int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
dbe674a9
CM
765 struct btrfs_ordered_extent *ordered)
766{
767 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
dbe674a9
CM
768 u64 disk_i_size;
769 u64 new_i_size;
c2167754 770 u64 i_size = i_size_read(inode);
dbe674a9 771 struct rb_node *node;
c2167754 772 struct rb_node *prev = NULL;
dbe674a9 773 struct btrfs_ordered_extent *test;
c2167754
YZ
774 int ret = 1;
775
776 if (ordered)
777 offset = entry_end(ordered);
a038fab0
YZ
778 else
779 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
dbe674a9 780
5fd02043 781 spin_lock_irq(&tree->lock);
dbe674a9
CM
782 disk_i_size = BTRFS_I(inode)->disk_i_size;
783
c2167754
YZ
784 /* truncate file */
785 if (disk_i_size > i_size) {
786 BTRFS_I(inode)->disk_i_size = i_size;
787 ret = 0;
788 goto out;
789 }
790
dbe674a9
CM
791 /*
792 * if the disk i_size is already at the inode->i_size, or
793 * this ordered extent is inside the disk i_size, we're done
794 */
c2167754 795 if (disk_i_size == i_size || offset <= disk_i_size) {
dbe674a9
CM
796 goto out;
797 }
798
dbe674a9
CM
799 /*
800 * walk backward from this ordered extent to disk_i_size.
801 * if we find an ordered extent then we can't update disk i_size
802 * yet
803 */
c2167754
YZ
804 if (ordered) {
805 node = rb_prev(&ordered->rb_node);
806 } else {
807 prev = tree_search(tree, offset);
808 /*
809 * we insert file extents without involving ordered struct,
810 * so there should be no ordered struct cover this offset
811 */
812 if (prev) {
813 test = rb_entry(prev, struct btrfs_ordered_extent,
814 rb_node);
815 BUG_ON(offset_in_entry(test, offset));
816 }
817 node = prev;
818 }
5fd02043 819 for (; node; node = rb_prev(node)) {
dbe674a9 820 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
5fd02043
JB
821
822 /* We treat this entry as if it doesnt exist */
823 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
824 continue;
dbe674a9
CM
825 if (test->file_offset + test->len <= disk_i_size)
826 break;
c2167754 827 if (test->file_offset >= i_size)
dbe674a9 828 break;
b9a8cc5b
MX
829 if (test->file_offset >= disk_i_size) {
830 /*
831 * we don't update disk_i_size now, so record this
832 * undealt i_size. Or we will not know the real
833 * i_size.
834 */
835 if (test->outstanding_isize < offset)
836 test->outstanding_isize = offset;
837 if (ordered &&
838 ordered->outstanding_isize >
839 test->outstanding_isize)
840 test->outstanding_isize =
841 ordered->outstanding_isize;
dbe674a9 842 goto out;
5fd02043 843 }
dbe674a9 844 }
b9a8cc5b 845 new_i_size = min_t(u64, offset, i_size);
dbe674a9
CM
846
847 /*
b9a8cc5b
MX
848 * Some ordered extents may completed before the current one, and
849 * we hold the real i_size in ->outstanding_isize.
dbe674a9 850 */
b9a8cc5b
MX
851 if (ordered && ordered->outstanding_isize > new_i_size)
852 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
dbe674a9 853 BTRFS_I(inode)->disk_i_size = new_i_size;
c2167754 854 ret = 0;
dbe674a9 855out:
c2167754 856 /*
5fd02043
JB
857 * We need to do this because we can't remove ordered extents until
858 * after the i_disk_size has been updated and then the inode has been
859 * updated to reflect the change, so we need to tell anybody who finds
860 * this ordered extent that we've already done all the real work, we
861 * just haven't completed all the other work.
c2167754
YZ
862 */
863 if (ordered)
5fd02043
JB
864 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
865 spin_unlock_irq(&tree->lock);
c2167754 866 return ret;
dbe674a9 867}
ba1da2f4 868
eb84ae03
CM
869/*
870 * search the ordered extents for one corresponding to 'offset' and
871 * try to find a checksum. This is used because we allow pages to
872 * be reclaimed before their checksum is actually put into the btree
873 */
d20f7043
CM
874int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
875 u32 *sum)
ba1da2f4
CM
876{
877 struct btrfs_ordered_sum *ordered_sum;
878 struct btrfs_sector_sum *sector_sums;
879 struct btrfs_ordered_extent *ordered;
880 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
3edf7d33
CM
881 unsigned long num_sectors;
882 unsigned long i;
883 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
ba1da2f4 884 int ret = 1;
ba1da2f4
CM
885
886 ordered = btrfs_lookup_ordered_extent(inode, offset);
887 if (!ordered)
888 return 1;
889
5fd02043 890 spin_lock_irq(&tree->lock);
c6e30871 891 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
d20f7043 892 if (disk_bytenr >= ordered_sum->bytenr) {
3edf7d33 893 num_sectors = ordered_sum->len / sectorsize;
ed98b56a 894 sector_sums = ordered_sum->sums;
3edf7d33 895 for (i = 0; i < num_sectors; i++) {
d20f7043 896 if (sector_sums[i].bytenr == disk_bytenr) {
3edf7d33
CM
897 *sum = sector_sums[i].sum;
898 ret = 0;
899 goto out;
900 }
901 }
ba1da2f4
CM
902 }
903 }
904out:
5fd02043 905 spin_unlock_irq(&tree->lock);
89642229 906 btrfs_put_ordered_extent(ordered);
ba1da2f4
CM
907 return ret;
908}
909
f421950f 910
5a3f23d5
CM
911/*
912 * add a given inode to the list of inodes that must be fully on
913 * disk before a transaction commit finishes.
914 *
915 * This basically gives us the ext3 style data=ordered mode, and it is mostly
916 * used to make sure renamed files are fully on disk.
917 *
918 * It is a noop if the inode is already fully on disk.
919 *
920 * If trans is not null, we'll do a friendly check for a transaction that
921 * is already flushing things and force the IO down ourselves.
922 */
143bede5
JM
923void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
924 struct btrfs_root *root, struct inode *inode)
5a3f23d5
CM
925{
926 u64 last_mod;
927
928 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
929
930 /*
931 * if this file hasn't been changed since the last transaction
932 * commit, we can safely return without doing anything
933 */
934 if (last_mod < root->fs_info->last_trans_committed)
143bede5 935 return;
5a3f23d5
CM
936
937 /*
938 * the transaction is already committing. Just start the IO and
939 * don't bother with all of this list nonsense
940 */
941 if (trans && root->fs_info->running_transaction->blocked) {
942 btrfs_wait_ordered_range(inode, 0, (u64)-1);
143bede5 943 return;
5a3f23d5
CM
944 }
945
946 spin_lock(&root->fs_info->ordered_extent_lock);
947 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
948 list_add_tail(&BTRFS_I(inode)->ordered_operations,
949 &root->fs_info->ordered_operations);
950 }
951 spin_unlock(&root->fs_info->ordered_extent_lock);
5a3f23d5 952}
6352b91d
MX
953
954int __init ordered_data_init(void)
955{
956 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
957 sizeof(struct btrfs_ordered_extent), 0,
958 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
959 NULL);
960 if (!btrfs_ordered_extent_cache)
961 return -ENOMEM;
962 return 0;
963}
964
965void ordered_data_exit(void)
966{
967 if (btrfs_ordered_extent_cache)
968 kmem_cache_destroy(btrfs_ordered_extent_cache);
969}