btrfs: move dir-item prototypes into dir-item.h
[linux-block.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
7999096f 6#include <crypto/hash.h>
8f18cf13 7#include <linux/kernel.h>
065631f6 8#include <linux/bio.h>
348332e0 9#include <linux/blk-cgroup.h>
f2eb0a24 10#include <linux/file.h>
39279cc3
CM
11#include <linux/fs.h>
12#include <linux/pagemap.h>
13#include <linux/highmem.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
39279cc3 17#include <linux/backing-dev.h>
39279cc3 18#include <linux/writeback.h>
39279cc3 19#include <linux/compat.h>
5103e947 20#include <linux/xattr.h>
33268eaf 21#include <linux/posix_acl.h>
d899e052 22#include <linux/falloc.h>
5a0e3ad6 23#include <linux/slab.h>
7a36ddec 24#include <linux/ratelimit.h>
55e301fd 25#include <linux/btrfs.h>
53b381b3 26#include <linux/blkdev.h>
f23b5a59 27#include <linux/posix_acl_xattr.h>
e2e40f2c 28#include <linux/uio.h>
69fe2d75 29#include <linux/magic.h>
ae5e165d 30#include <linux/iversion.h>
ed46ff3d 31#include <linux/swap.h>
f8e66081 32#include <linux/migrate.h>
b1c16ac9 33#include <linux/sched/mm.h>
f85781fb 34#include <linux/iomap.h>
92d32170 35#include <asm/unaligned.h>
14605409 36#include <linux/fsverity.h>
602cbe91 37#include "misc.h"
39279cc3
CM
38#include "ctree.h"
39#include "disk-io.h"
40#include "transaction.h"
41#include "btrfs_inode.h"
39279cc3 42#include "print-tree.h"
e6dcd2dc 43#include "ordered-data.h"
95819c05 44#include "xattr.h"
e02119d5 45#include "tree-log.h"
4a54c8c1 46#include "volumes.h"
c8b97818 47#include "compression.h"
b4ce94de 48#include "locking.h"
dc89e982 49#include "free-space-cache.h"
63541927 50#include "props.h"
31193213 51#include "qgroup.h"
86736342 52#include "delalloc-space.h"
aac0023c 53#include "block-group.h"
467dc47e 54#include "space-info.h"
d8e3fb10 55#include "zoned.h"
b945a463 56#include "subpage.h"
26c2c454 57#include "inode-item.h"
c7f13d42 58#include "fs.h"
ad1ac501 59#include "accessors.h"
a0231804 60#include "extent-tree.h"
45c40c8f 61#include "root-tree.h"
59b818e0 62#include "defrag.h"
f2b39277 63#include "dir-item.h"
39279cc3
CM
64
65struct btrfs_iget_args {
0202e83f 66 u64 ino;
39279cc3
CM
67 struct btrfs_root *root;
68};
69
f28a4928 70struct btrfs_dio_data {
f85781fb
GR
71 ssize_t submitted;
72 struct extent_changeset *data_reserved;
f5585f4f
FM
73 bool data_space_reserved;
74 bool nocow_done;
f28a4928
FM
75};
76
a3e171a0
CH
77struct btrfs_dio_private {
78 struct inode *inode;
79
80 /*
81 * Since DIO can use anonymous page, we cannot use page_offset() to
82 * grab the file offset, thus need a dedicated member for file offset.
83 */
84 u64 file_offset;
85 /* Used for bio::bi_size */
86 u32 bytes;
87
88 /*
89 * References to this structure. There is one reference per in-flight
90 * bio plus one while we're still setting up.
91 */
92 refcount_t refs;
93
a3e171a0 94 /* Array of checksums */
642c5d34
CH
95 u8 *csums;
96
97 /* This must be last */
98 struct bio bio;
a3e171a0
CH
99};
100
642c5d34
CH
101static struct bio_set btrfs_dio_bioset;
102
88d2beec
FM
103struct btrfs_rename_ctx {
104 /* Output field. Stores the index number of the old directory entry. */
105 u64 index;
106};
107
6e1d5dcc
AD
108static const struct inode_operations btrfs_dir_inode_operations;
109static const struct inode_operations btrfs_symlink_inode_operations;
6e1d5dcc
AD
110static const struct inode_operations btrfs_special_inode_operations;
111static const struct inode_operations btrfs_file_inode_operations;
7f09410b 112static const struct address_space_operations btrfs_aops;
828c0950 113static const struct file_operations btrfs_dir_file_operations;
39279cc3
CM
114
115static struct kmem_cache *btrfs_inode_cachep;
39279cc3 116
3972f260 117static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 118static int btrfs_truncate(struct inode *inode, bool skip_writeback);
6e26c442 119static noinline int cow_file_range(struct btrfs_inode *inode,
771ed689 120 struct page *locked_page,
74e9194a 121 u64 start, u64 end, int *page_started,
898793d9
NA
122 unsigned long *nr_written, int unlock,
123 u64 *done_offset);
4b67c11d
NB
124static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
125 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
126 u64 block_len, u64 orig_block_len,
127 u64 ram_bytes, int compress_type,
128 int type);
7b128766 129
f60acad3
JB
130static void __cold btrfs_print_data_csum_error(struct btrfs_inode *inode,
131 u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
132{
133 struct btrfs_root *root = inode->root;
134 const u32 csum_size = root->fs_info->csum_size;
135
136 /* Output without objectid, which is more meaningful */
137 if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID) {
138 btrfs_warn_rl(root->fs_info,
139"csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
140 root->root_key.objectid, btrfs_ino(inode),
141 logical_start,
142 CSUM_FMT_VALUE(csum_size, csum),
143 CSUM_FMT_VALUE(csum_size, csum_expected),
144 mirror_num);
145 } else {
146 btrfs_warn_rl(root->fs_info,
147"csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
148 root->root_key.objectid, btrfs_ino(inode),
149 logical_start,
150 CSUM_FMT_VALUE(csum_size, csum),
151 CSUM_FMT_VALUE(csum_size, csum_expected),
152 mirror_num);
153 }
154}
155
a14b78ad
GR
156/*
157 * btrfs_inode_lock - lock inode i_rwsem based on arguments passed
158 *
159 * ilock_flags can have the following bit set:
160 *
161 * BTRFS_ILOCK_SHARED - acquire a shared lock on the inode
162 * BTRFS_ILOCK_TRY - try to acquire the lock, if fails on first attempt
163 * return -EAGAIN
8318ba79 164 * BTRFS_ILOCK_MMAP - acquire a write lock on the i_mmap_lock
a14b78ad
GR
165 */
166int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags)
167{
168 if (ilock_flags & BTRFS_ILOCK_SHARED) {
169 if (ilock_flags & BTRFS_ILOCK_TRY) {
170 if (!inode_trylock_shared(inode))
171 return -EAGAIN;
172 else
173 return 0;
174 }
175 inode_lock_shared(inode);
176 } else {
177 if (ilock_flags & BTRFS_ILOCK_TRY) {
178 if (!inode_trylock(inode))
179 return -EAGAIN;
180 else
181 return 0;
182 }
183 inode_lock(inode);
184 }
8318ba79
JB
185 if (ilock_flags & BTRFS_ILOCK_MMAP)
186 down_write(&BTRFS_I(inode)->i_mmap_lock);
a14b78ad
GR
187 return 0;
188}
189
190/*
191 * btrfs_inode_unlock - unock inode i_rwsem
192 *
193 * ilock_flags should contain the same bits set as passed to btrfs_inode_lock()
194 * to decide whether the lock acquired is shared or exclusive.
195 */
196void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags)
197{
8318ba79
JB
198 if (ilock_flags & BTRFS_ILOCK_MMAP)
199 up_write(&BTRFS_I(inode)->i_mmap_lock);
a14b78ad
GR
200 if (ilock_flags & BTRFS_ILOCK_SHARED)
201 inode_unlock_shared(inode);
202 else
203 inode_unlock(inode);
204}
205
52427260
QW
206/*
207 * Cleanup all submitted ordered extents in specified range to handle errors
52042d8e 208 * from the btrfs_run_delalloc_range() callback.
52427260
QW
209 *
210 * NOTE: caller must ensure that when an error happens, it can not call
211 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
212 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
213 * to be released, which we want to happen only when finishing the ordered
d1051d6e 214 * extent (btrfs_finish_ordered_io()).
52427260 215 */
64e1db56 216static inline void btrfs_cleanup_ordered_extents(struct btrfs_inode *inode,
d1051d6e
NB
217 struct page *locked_page,
218 u64 offset, u64 bytes)
52427260 219{
63d71450
NA
220 unsigned long index = offset >> PAGE_SHIFT;
221 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
99826e4c 222 u64 page_start, page_end;
63d71450
NA
223 struct page *page;
224
99826e4c
NA
225 if (locked_page) {
226 page_start = page_offset(locked_page);
227 page_end = page_start + PAGE_SIZE - 1;
228 }
229
63d71450 230 while (index <= end_index) {
968f2566
QW
231 /*
232 * For locked page, we will call end_extent_writepage() on it
233 * in run_delalloc_range() for the error handling. That
234 * end_extent_writepage() function will call
235 * btrfs_mark_ordered_io_finished() to clear page Ordered and
236 * run the ordered extent accounting.
237 *
238 * Here we can't just clear the Ordered bit, or
239 * btrfs_mark_ordered_io_finished() would skip the accounting
240 * for the page range, and the ordered extent will never finish.
241 */
99826e4c 242 if (locked_page && index == (page_start >> PAGE_SHIFT)) {
968f2566
QW
243 index++;
244 continue;
245 }
64e1db56 246 page = find_get_page(inode->vfs_inode.i_mapping, index);
63d71450
NA
247 index++;
248 if (!page)
249 continue;
968f2566
QW
250
251 /*
252 * Here we just clear all Ordered bits for every page in the
711f447b 253 * range, then btrfs_mark_ordered_io_finished() will handle
968f2566
QW
254 * the ordered extent accounting for the range.
255 */
b945a463
QW
256 btrfs_page_clamp_clear_ordered(inode->root->fs_info, page,
257 offset, bytes);
63d71450
NA
258 put_page(page);
259 }
d1051d6e 260
99826e4c
NA
261 if (locked_page) {
262 /* The locked page covers the full range, nothing needs to be done */
263 if (bytes + offset <= page_start + PAGE_SIZE)
264 return;
265 /*
266 * In case this page belongs to the delalloc range being
267 * instantiated then skip it, since the first page of a range is
268 * going to be properly cleaned up by the caller of
269 * run_delalloc_range
270 */
271 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
272 bytes = offset + bytes - page_offset(locked_page) - PAGE_SIZE;
273 offset = page_offset(locked_page) + PAGE_SIZE;
274 }
d1051d6e
NB
275 }
276
711f447b 277 return btrfs_mark_ordered_io_finished(inode, NULL, offset, bytes, false);
52427260
QW
278}
279
48a3b636 280static int btrfs_dirty_inode(struct inode *inode);
7b128766 281
f34f57a3 282static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
3538d68d 283 struct btrfs_new_inode_args *args)
0279b4cd
JO
284{
285 int err;
286
3538d68d
OS
287 if (args->default_acl) {
288 err = __btrfs_set_acl(trans, args->inode, args->default_acl,
289 ACL_TYPE_DEFAULT);
290 if (err)
291 return err;
292 }
293 if (args->acl) {
294 err = __btrfs_set_acl(trans, args->inode, args->acl, ACL_TYPE_ACCESS);
295 if (err)
296 return err;
297 }
298 if (!args->default_acl && !args->acl)
299 cache_no_acl(args->inode);
300 return btrfs_xattr_security_init(trans, args->inode, args->dir,
301 &args->dentry->d_name);
0279b4cd
JO
302}
303
c8b97818
CM
304/*
305 * this does all the hard work for inserting an inline extent into
306 * the btree. The caller should have done a btrfs_drop_extents so that
307 * no overlapping inline items exist in the btree
308 */
40f76580 309static int insert_inline_extent(struct btrfs_trans_handle *trans,
8dd9872d
OS
310 struct btrfs_path *path,
311 struct btrfs_inode *inode, bool extent_inserted,
312 size_t size, size_t compressed_size,
fe3f566c 313 int compress_type,
d9496e8a
OS
314 struct page **compressed_pages,
315 bool update_i_size)
c8b97818 316{
8dd9872d 317 struct btrfs_root *root = inode->root;
c8b97818
CM
318 struct extent_buffer *leaf;
319 struct page *page = NULL;
320 char *kaddr;
321 unsigned long ptr;
322 struct btrfs_file_extent_item *ei;
c8b97818
CM
323 int ret;
324 size_t cur_size = size;
d9496e8a 325 u64 i_size;
c8b97818 326
982f1f5d
JJB
327 ASSERT((compressed_size > 0 && compressed_pages) ||
328 (compressed_size == 0 && !compressed_pages));
329
fe3f566c 330 if (compressed_size && compressed_pages)
c8b97818 331 cur_size = compressed_size;
c8b97818 332
1acae57b
FDBM
333 if (!extent_inserted) {
334 struct btrfs_key key;
335 size_t datasize;
c8b97818 336
8dd9872d
OS
337 key.objectid = btrfs_ino(inode);
338 key.offset = 0;
962a298f 339 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 340
1acae57b 341 datasize = btrfs_file_extent_calc_inline_size(cur_size);
1acae57b
FDBM
342 ret = btrfs_insert_empty_item(trans, root, path, &key,
343 datasize);
79b4f4c6 344 if (ret)
1acae57b 345 goto fail;
c8b97818
CM
346 }
347 leaf = path->nodes[0];
348 ei = btrfs_item_ptr(leaf, path->slots[0],
349 struct btrfs_file_extent_item);
350 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
351 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
352 btrfs_set_file_extent_encryption(leaf, ei, 0);
353 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
354 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
355 ptr = btrfs_file_extent_inline_start(ei);
356
261507a0 357 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
358 struct page *cpage;
359 int i = 0;
d397712b 360 while (compressed_size > 0) {
c8b97818 361 cpage = compressed_pages[i];
5b050f04 362 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 363 PAGE_SIZE);
c8b97818 364
4cb2e5e8 365 kaddr = kmap_local_page(cpage);
c8b97818 366 write_extent_buffer(leaf, kaddr, ptr, cur_size);
4cb2e5e8 367 kunmap_local(kaddr);
c8b97818
CM
368
369 i++;
370 ptr += cur_size;
371 compressed_size -= cur_size;
372 }
373 btrfs_set_file_extent_compression(leaf, ei,
261507a0 374 compress_type);
c8b97818 375 } else {
8dd9872d 376 page = find_get_page(inode->vfs_inode.i_mapping, 0);
c8b97818 377 btrfs_set_file_extent_compression(leaf, ei, 0);
4cb2e5e8 378 kaddr = kmap_local_page(page);
8dd9872d 379 write_extent_buffer(leaf, kaddr, ptr, size);
4cb2e5e8 380 kunmap_local(kaddr);
09cbfeaf 381 put_page(page);
c8b97818
CM
382 }
383 btrfs_mark_buffer_dirty(leaf);
1acae57b 384 btrfs_release_path(path);
c8b97818 385
9ddc959e
JB
386 /*
387 * We align size to sectorsize for inline extents just for simplicity
388 * sake.
389 */
8dd9872d
OS
390 ret = btrfs_inode_set_file_extent_range(inode, 0,
391 ALIGN(size, root->fs_info->sectorsize));
9ddc959e
JB
392 if (ret)
393 goto fail;
394
c2167754 395 /*
d9496e8a
OS
396 * We're an inline extent, so nobody can extend the file past i_size
397 * without locking a page we already have locked.
c2167754 398 *
d9496e8a
OS
399 * We must do any i_size and inode updates before we unlock the pages.
400 * Otherwise we could end up racing with unlink.
c2167754 401 */
d9496e8a
OS
402 i_size = i_size_read(&inode->vfs_inode);
403 if (update_i_size && size > i_size) {
404 i_size_write(&inode->vfs_inode, size);
405 i_size = size;
406 }
407 inode->disk_i_size = i_size;
8dd9872d 408
c8b97818 409fail:
79b4f4c6 410 return ret;
c8b97818
CM
411}
412
413
414/*
415 * conditionally insert an inline extent into the file. This
416 * does the checks required to make sure the data is small enough
417 * to fit as an inline extent.
418 */
8dd9872d
OS
419static noinline int cow_file_range_inline(struct btrfs_inode *inode, u64 size,
420 size_t compressed_size,
00361589 421 int compress_type,
d9496e8a
OS
422 struct page **compressed_pages,
423 bool update_i_size)
c8b97818 424{
5893dfb9 425 struct btrfs_drop_extents_args drop_args = { 0 };
a0349401 426 struct btrfs_root *root = inode->root;
0b246afa 427 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 428 struct btrfs_trans_handle *trans;
8dd9872d 429 u64 data_len = (compressed_size ?: size);
c8b97818 430 int ret;
1acae57b 431 struct btrfs_path *path;
c8b97818 432
8dd9872d
OS
433 /*
434 * We can create an inline extent if it ends at or beyond the current
435 * i_size, is no larger than a sector (decompressed), and the (possibly
436 * compressed) data fits in a leaf and the configured maximum inline
437 * size.
438 */
439 if (size < i_size_read(&inode->vfs_inode) ||
440 size > fs_info->sectorsize ||
0b246afa 441 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
8dd9872d 442 data_len > fs_info->max_inline)
c8b97818 443 return 1;
c8b97818 444
1acae57b
FDBM
445 path = btrfs_alloc_path();
446 if (!path)
447 return -ENOMEM;
448
00361589 449 trans = btrfs_join_transaction(root);
1acae57b
FDBM
450 if (IS_ERR(trans)) {
451 btrfs_free_path(path);
00361589 452 return PTR_ERR(trans);
1acae57b 453 }
a0349401 454 trans->block_rsv = &inode->block_rsv;
00361589 455
5893dfb9 456 drop_args.path = path;
8dd9872d
OS
457 drop_args.start = 0;
458 drop_args.end = fs_info->sectorsize;
5893dfb9
FM
459 drop_args.drop_cache = true;
460 drop_args.replace_extent = true;
8dd9872d 461 drop_args.extent_item_size = btrfs_file_extent_calc_inline_size(data_len);
5893dfb9 462 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
00361589 463 if (ret) {
66642832 464 btrfs_abort_transaction(trans, ret);
00361589
JB
465 goto out;
466 }
c8b97818 467
8dd9872d
OS
468 ret = insert_inline_extent(trans, path, inode, drop_args.extent_inserted,
469 size, compressed_size, compress_type,
d9496e8a 470 compressed_pages, update_i_size);
2adcac1a 471 if (ret && ret != -ENOSPC) {
66642832 472 btrfs_abort_transaction(trans, ret);
00361589 473 goto out;
2adcac1a 474 } else if (ret == -ENOSPC) {
00361589
JB
475 ret = 1;
476 goto out;
79787eaa 477 }
2adcac1a 478
8dd9872d 479 btrfs_update_inode_bytes(inode, size, drop_args.bytes_found);
9a56fcd1 480 ret = btrfs_update_inode(trans, root, inode);
2766ff61
FM
481 if (ret && ret != -ENOSPC) {
482 btrfs_abort_transaction(trans, ret);
483 goto out;
484 } else if (ret == -ENOSPC) {
485 ret = 1;
486 goto out;
487 }
488
23e3337f 489 btrfs_set_inode_full_sync(inode);
00361589 490out:
94ed938a
QW
491 /*
492 * Don't forget to free the reserved space, as for inlined extent
493 * it won't count as data extent, free them directly here.
494 * And at reserve time, it's always aligned to page size, so
495 * just free one page here.
496 */
a0349401 497 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 498 btrfs_free_path(path);
3a45bb20 499 btrfs_end_transaction(trans);
00361589 500 return ret;
c8b97818
CM
501}
502
771ed689
CM
503struct async_extent {
504 u64 start;
505 u64 ram_size;
506 u64 compressed_size;
507 struct page **pages;
508 unsigned long nr_pages;
261507a0 509 int compress_type;
771ed689
CM
510 struct list_head list;
511};
512
97db1204 513struct async_chunk {
771ed689 514 struct inode *inode;
771ed689
CM
515 struct page *locked_page;
516 u64 start;
517 u64 end;
bf9486d6 518 blk_opf_t write_flags;
771ed689 519 struct list_head extents;
ec39f769 520 struct cgroup_subsys_state *blkcg_css;
771ed689 521 struct btrfs_work work;
9e895a8f 522 struct async_cow *async_cow;
771ed689
CM
523};
524
97db1204 525struct async_cow {
97db1204
NB
526 atomic_t num_chunks;
527 struct async_chunk chunks[];
771ed689
CM
528};
529
97db1204 530static noinline int add_async_extent(struct async_chunk *cow,
771ed689
CM
531 u64 start, u64 ram_size,
532 u64 compressed_size,
533 struct page **pages,
261507a0
LZ
534 unsigned long nr_pages,
535 int compress_type)
771ed689
CM
536{
537 struct async_extent *async_extent;
538
539 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 540 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
541 async_extent->start = start;
542 async_extent->ram_size = ram_size;
543 async_extent->compressed_size = compressed_size;
544 async_extent->pages = pages;
545 async_extent->nr_pages = nr_pages;
261507a0 546 async_extent->compress_type = compress_type;
771ed689
CM
547 list_add_tail(&async_extent->list, &cow->extents);
548 return 0;
549}
550
42c16da6
QW
551/*
552 * Check if the inode needs to be submitted to compression, based on mount
553 * options, defragmentation, properties or heuristics.
554 */
808a1292
NB
555static inline int inode_need_compress(struct btrfs_inode *inode, u64 start,
556 u64 end)
f79707b0 557{
808a1292 558 struct btrfs_fs_info *fs_info = inode->root->fs_info;
f79707b0 559
e6f9d696 560 if (!btrfs_inode_can_compress(inode)) {
42c16da6
QW
561 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
562 KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
808a1292 563 btrfs_ino(inode));
42c16da6
QW
564 return 0;
565 }
0cf9b244
QW
566 /*
567 * Special check for subpage.
568 *
569 * We lock the full page then run each delalloc range in the page, thus
570 * for the following case, we will hit some subpage specific corner case:
571 *
572 * 0 32K 64K
573 * | |///////| |///////|
574 * \- A \- B
575 *
576 * In above case, both range A and range B will try to unlock the full
577 * page [0, 64K), causing the one finished later will have page
578 * unlocked already, triggering various page lock requirement BUG_ON()s.
579 *
580 * So here we add an artificial limit that subpage compression can only
581 * if the range is fully page aligned.
582 *
583 * In theory we only need to ensure the first page is fully covered, but
584 * the tailing partial page will be locked until the full compression
585 * finishes, delaying the write of other range.
586 *
587 * TODO: Make btrfs_run_delalloc_range() to lock all delalloc range
588 * first to prevent any submitted async extent to unlock the full page.
589 * By this, we can ensure for subpage case that only the last async_cow
590 * will unlock the full page.
591 */
592 if (fs_info->sectorsize < PAGE_SIZE) {
1280d2d1
FK
593 if (!PAGE_ALIGNED(start) ||
594 !PAGE_ALIGNED(end + 1))
0cf9b244
QW
595 return 0;
596 }
597
f79707b0 598 /* force compress */
0b246afa 599 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 600 return 1;
eec63c65 601 /* defrag ioctl */
808a1292 602 if (inode->defrag_compress)
eec63c65 603 return 1;
f79707b0 604 /* bad compression ratios */
808a1292 605 if (inode->flags & BTRFS_INODE_NOCOMPRESS)
f79707b0 606 return 0;
0b246afa 607 if (btrfs_test_opt(fs_info, COMPRESS) ||
808a1292
NB
608 inode->flags & BTRFS_INODE_COMPRESS ||
609 inode->prop_compress)
610 return btrfs_compress_heuristic(&inode->vfs_inode, start, end);
f79707b0
WS
611 return 0;
612}
613
6158e1ce 614static inline void inode_should_defrag(struct btrfs_inode *inode,
558732df 615 u64 start, u64 end, u64 num_bytes, u32 small_write)
26d30f85
AJ
616{
617 /* If this is a small write inside eof, kick off a defrag */
618 if (num_bytes < small_write &&
6158e1ce 619 (start > 0 || end + 1 < inode->disk_i_size))
558732df 620 btrfs_add_inode_defrag(NULL, inode, small_write);
26d30f85
AJ
621}
622
d352ac68 623/*
771ed689
CM
624 * we create compressed extents in two phases. The first
625 * phase compresses a range of pages that have already been
626 * locked (both pages and state bits are locked).
c8b97818 627 *
771ed689
CM
628 * This is done inside an ordered work queue, and the compression
629 * is spread across many cpus. The actual IO submission is step
630 * two, and the ordered work queue takes care of making sure that
631 * happens in the same order things were put onto the queue by
632 * writepages and friends.
c8b97818 633 *
771ed689
CM
634 * If this code finds it can't get good compression, it puts an
635 * entry onto the work queue to write the uncompressed bytes. This
636 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
637 * are written in the same order that the flusher thread sent them
638 * down.
d352ac68 639 */
ac3e9933 640static noinline int compress_file_range(struct async_chunk *async_chunk)
b888db2b 641{
1368c6da 642 struct inode *inode = async_chunk->inode;
0b246afa 643 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 644 u64 blocksize = fs_info->sectorsize;
1368c6da
NB
645 u64 start = async_chunk->start;
646 u64 end = async_chunk->end;
c8b97818 647 u64 actual_end;
d98da499 648 u64 i_size;
e6dcd2dc 649 int ret = 0;
c8b97818
CM
650 struct page **pages = NULL;
651 unsigned long nr_pages;
c8b97818
CM
652 unsigned long total_compressed = 0;
653 unsigned long total_in = 0;
c8b97818
CM
654 int i;
655 int will_compress;
0b246afa 656 int compress_type = fs_info->compress_type;
ac3e9933 657 int compressed_extents = 0;
4adaa611 658 int redirty = 0;
b888db2b 659
6158e1ce
NB
660 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
661 SZ_16K);
4cb5300b 662
d98da499
JB
663 /*
664 * We need to save i_size before now because it could change in between
665 * us evaluating the size and assigning it. This is because we lock and
666 * unlock the page in truncate and fallocate, and then modify the i_size
667 * later on.
668 *
669 * The barriers are to emulate READ_ONCE, remove that once i_size_read
670 * does that for us.
671 */
672 barrier();
673 i_size = i_size_read(inode);
674 barrier();
675 actual_end = min_t(u64, i_size, end + 1);
c8b97818
CM
676again:
677 will_compress = 0;
09cbfeaf 678 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
679 nr_pages = min_t(unsigned long, nr_pages,
680 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 681
f03d9301
CM
682 /*
683 * we don't want to send crud past the end of i_size through
684 * compression, that's just a waste of CPU time. So, if the
685 * end of the file is before the start of our current
686 * requested range of bytes, we bail out to the uncompressed
687 * cleanup code that can deal with all of this.
688 *
689 * It isn't really the fastest way to fix things, but this is a
690 * very uncommon corner.
691 */
692 if (actual_end <= start)
693 goto cleanup_and_bail_uncompressed;
694
c8b97818
CM
695 total_compressed = actual_end - start;
696
4bcbb332 697 /*
0cf9b244 698 * Skip compression for a small file range(<=blocksize) that
01327610 699 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
700 */
701 if (total_compressed <= blocksize &&
702 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
703 goto cleanup_and_bail_uncompressed;
704
0cf9b244
QW
705 /*
706 * For subpage case, we require full page alignment for the sector
707 * aligned range.
708 * Thus we must also check against @actual_end, not just @end.
709 */
710 if (blocksize < PAGE_SIZE) {
1280d2d1
FK
711 if (!PAGE_ALIGNED(start) ||
712 !PAGE_ALIGNED(round_up(actual_end, blocksize)))
0cf9b244
QW
713 goto cleanup_and_bail_uncompressed;
714 }
715
069eac78
DS
716 total_compressed = min_t(unsigned long, total_compressed,
717 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
718 total_in = 0;
719 ret = 0;
db94535d 720
771ed689
CM
721 /*
722 * we do compression for mount -o compress and when the
723 * inode has not been flagged as nocompress. This flag can
724 * change at any time if we discover bad compression ratios.
c8b97818 725 */
4e965576 726 if (inode_need_compress(BTRFS_I(inode), start, end)) {
c8b97818 727 WARN_ON(pages);
31e818fe 728 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
729 if (!pages) {
730 /* just bail out to the uncompressed code */
3527a018 731 nr_pages = 0;
560f7d75
LZ
732 goto cont;
733 }
c8b97818 734
eec63c65
DS
735 if (BTRFS_I(inode)->defrag_compress)
736 compress_type = BTRFS_I(inode)->defrag_compress;
737 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 738 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 739
4adaa611
CM
740 /*
741 * we need to call clear_page_dirty_for_io on each
742 * page in the range. Otherwise applications with the file
743 * mmap'd can wander in and change the page contents while
744 * we are compressing them.
745 *
746 * If the compression fails for any reason, we set the pages
747 * dirty again later on.
e9679de3
TT
748 *
749 * Note that the remaining part is redirtied, the start pointer
750 * has moved, the end is the original one.
4adaa611 751 */
e9679de3
TT
752 if (!redirty) {
753 extent_range_clear_dirty_for_io(inode, start, end);
754 redirty = 1;
755 }
f51d2b59
DS
756
757 /* Compression level is applied here and only here */
758 ret = btrfs_compress_pages(
759 compress_type | (fs_info->compress_level << 4),
261507a0 760 inode->i_mapping, start,
38c31464 761 pages,
4d3a800e 762 &nr_pages,
261507a0 763 &total_in,
e5d74902 764 &total_compressed);
c8b97818
CM
765
766 if (!ret) {
7073017a 767 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 768 struct page *page = pages[nr_pages - 1];
c8b97818
CM
769
770 /* zero the tail end of the last page, we might be
771 * sending it down to disk
772 */
d048b9c2
IW
773 if (offset)
774 memzero_page(page, offset, PAGE_SIZE - offset);
c8b97818
CM
775 will_compress = 1;
776 }
777 }
560f7d75 778cont:
7367253a
QW
779 /*
780 * Check cow_file_range() for why we don't even try to create inline
781 * extent for subpage case.
782 */
783 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
c8b97818 784 /* lets try to make an inline extent */
6018ba0a 785 if (ret || total_in < actual_end) {
c8b97818 786 /* we didn't compress the entire range, try
771ed689 787 * to make an uncompressed inline extent.
c8b97818 788 */
8dd9872d 789 ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
a0349401 790 0, BTRFS_COMPRESS_NONE,
d9496e8a 791 NULL, false);
c8b97818 792 } else {
771ed689 793 /* try making a compressed inline extent */
8dd9872d 794 ret = cow_file_range_inline(BTRFS_I(inode), actual_end,
fe3f566c 795 total_compressed,
d9496e8a
OS
796 compress_type, pages,
797 false);
c8b97818 798 }
79787eaa 799 if (ret <= 0) {
151a41bc 800 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
801 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
802 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
803 unsigned long page_error_op;
804
e6eb4314 805 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 806
771ed689 807 /*
79787eaa
JM
808 * inline extent creation worked or returned error,
809 * we don't need to create any more async work items.
810 * Unlock and free up our temp pages.
8b62f87b
JB
811 *
812 * We use DO_ACCOUNTING here because we need the
813 * delalloc_release_metadata to be done _after_ we drop
814 * our outstanding extent for clearing delalloc for this
815 * range.
771ed689 816 */
ad7ff17b
NB
817 extent_clear_unlock_delalloc(BTRFS_I(inode), start, end,
818 NULL,
74e9194a 819 clear_flags,
ba8b04c1 820 PAGE_UNLOCK |
6869b0a8 821 PAGE_START_WRITEBACK |
e6eb4314 822 page_error_op |
c2790a2e 823 PAGE_END_WRITEBACK);
cecc8d90 824
1e6e238c
QW
825 /*
826 * Ensure we only free the compressed pages if we have
827 * them allocated, as we can still reach here with
828 * inode_need_compress() == false.
829 */
830 if (pages) {
831 for (i = 0; i < nr_pages; i++) {
832 WARN_ON(pages[i]->mapping);
833 put_page(pages[i]);
834 }
835 kfree(pages);
cecc8d90 836 }
cecc8d90 837 return 0;
c8b97818
CM
838 }
839 }
840
841 if (will_compress) {
842 /*
843 * we aren't doing an inline extent round the compressed size
844 * up to a block size boundary so the allocator does sane
845 * things
846 */
fda2832f 847 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
848
849 /*
850 * one last check to make sure the compression is really a
170607eb
TT
851 * win, compare the page count read with the blocks on disk,
852 * compression must free at least one sector size
c8b97818 853 */
4c162778 854 total_in = round_up(total_in, fs_info->sectorsize);
170607eb 855 if (total_compressed + blocksize <= total_in) {
ac3e9933 856 compressed_extents++;
c8bb0c8b
AS
857
858 /*
859 * The async work queues will take care of doing actual
860 * allocation on disk for these compressed pages, and
861 * will submit them to the elevator.
862 */
b5326271 863 add_async_extent(async_chunk, start, total_in,
4d3a800e 864 total_compressed, pages, nr_pages,
c8bb0c8b
AS
865 compress_type);
866
1170862d
TT
867 if (start + total_in < end) {
868 start += total_in;
c8bb0c8b
AS
869 pages = NULL;
870 cond_resched();
871 goto again;
872 }
ac3e9933 873 return compressed_extents;
c8b97818
CM
874 }
875 }
c8bb0c8b 876 if (pages) {
c8b97818
CM
877 /*
878 * the compression code ran but failed to make things smaller,
879 * free any pages it allocated and our page pointer array
880 */
4d3a800e 881 for (i = 0; i < nr_pages; i++) {
70b99e69 882 WARN_ON(pages[i]->mapping);
09cbfeaf 883 put_page(pages[i]);
c8b97818
CM
884 }
885 kfree(pages);
886 pages = NULL;
887 total_compressed = 0;
4d3a800e 888 nr_pages = 0;
c8b97818
CM
889
890 /* flag the file so we don't compress in the future */
0b246afa 891 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 892 !(BTRFS_I(inode)->prop_compress)) {
a555f810 893 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 894 }
c8b97818 895 }
f03d9301 896cleanup_and_bail_uncompressed:
c8bb0c8b
AS
897 /*
898 * No compression, but we still need to write the pages in the file
899 * we've been given so far. redirty the locked page if it corresponds
900 * to our extent and set things up for the async work queue to run
901 * cow_file_range to do the normal delalloc dance.
902 */
1d53c9e6
CM
903 if (async_chunk->locked_page &&
904 (page_offset(async_chunk->locked_page) >= start &&
905 page_offset(async_chunk->locked_page)) <= end) {
1368c6da 906 __set_page_dirty_nobuffers(async_chunk->locked_page);
c8bb0c8b 907 /* unlocked later on in the async handlers */
1d53c9e6 908 }
c8bb0c8b
AS
909
910 if (redirty)
911 extent_range_redirty_for_io(inode, start, end);
b5326271 912 add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
c8bb0c8b 913 BTRFS_COMPRESS_NONE);
ac3e9933 914 compressed_extents++;
3b951516 915
ac3e9933 916 return compressed_extents;
771ed689 917}
771ed689 918
40ae837b
FM
919static void free_async_extent_pages(struct async_extent *async_extent)
920{
921 int i;
922
923 if (!async_extent->pages)
924 return;
925
926 for (i = 0; i < async_extent->nr_pages; i++) {
927 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 928 put_page(async_extent->pages[i]);
40ae837b
FM
929 }
930 kfree(async_extent->pages);
931 async_extent->nr_pages = 0;
932 async_extent->pages = NULL;
771ed689
CM
933}
934
2b83a0ee
QW
935static int submit_uncompressed_range(struct btrfs_inode *inode,
936 struct async_extent *async_extent,
937 struct page *locked_page)
771ed689 938{
2b83a0ee
QW
939 u64 start = async_extent->start;
940 u64 end = async_extent->start + async_extent->ram_size - 1;
941 unsigned long nr_written = 0;
942 int page_started = 0;
943 int ret;
771ed689 944
2b83a0ee
QW
945 /*
946 * Call cow_file_range() to run the delalloc range directly, since we
947 * won't go to NOCOW or async path again.
948 *
949 * Also we call cow_file_range() with @unlock_page == 0, so that we
950 * can directly submit them without interruption.
951 */
952 ret = cow_file_range(inode, locked_page, start, end, &page_started,
898793d9 953 &nr_written, 0, NULL);
2b83a0ee
QW
954 /* Inline extent inserted, page gets unlocked and everything is done */
955 if (page_started) {
956 ret = 0;
957 goto out;
958 }
959 if (ret < 0) {
71aa147b
NA
960 btrfs_cleanup_ordered_extents(inode, locked_page, start, end - start + 1);
961 if (locked_page) {
962 const u64 page_start = page_offset(locked_page);
963 const u64 page_end = page_start + PAGE_SIZE - 1;
964
965 btrfs_page_set_error(inode->root->fs_info, locked_page,
966 page_start, PAGE_SIZE);
967 set_page_writeback(locked_page);
968 end_page_writeback(locked_page);
969 end_extent_writepage(locked_page, ret, page_start, page_end);
2b83a0ee 970 unlock_page(locked_page);
71aa147b 971 }
2b83a0ee
QW
972 goto out;
973 }
771ed689 974
2b83a0ee
QW
975 ret = extent_write_locked_range(&inode->vfs_inode, start, end);
976 /* All pages will be unlocked, including @locked_page */
977out:
978 kfree(async_extent);
979 return ret;
980}
79787eaa 981
b4ccace8
QW
982static int submit_one_async_extent(struct btrfs_inode *inode,
983 struct async_chunk *async_chunk,
984 struct async_extent *async_extent,
985 u64 *alloc_hint)
771ed689 986{
b4ccace8
QW
987 struct extent_io_tree *io_tree = &inode->io_tree;
988 struct btrfs_root *root = inode->root;
989 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689 990 struct btrfs_key ins;
2b83a0ee 991 struct page *locked_page = NULL;
771ed689 992 struct extent_map *em;
f5a84ee3 993 int ret = 0;
b4ccace8
QW
994 u64 start = async_extent->start;
995 u64 end = async_extent->start + async_extent->ram_size - 1;
771ed689 996
2b83a0ee
QW
997 /*
998 * If async_chunk->locked_page is in the async_extent range, we need to
999 * handle it.
1000 */
1001 if (async_chunk->locked_page) {
1002 u64 locked_page_start = page_offset(async_chunk->locked_page);
1003 u64 locked_page_end = locked_page_start + PAGE_SIZE - 1;
3e04e7f1 1004
2b83a0ee
QW
1005 if (!(start >= locked_page_end || end <= locked_page_start))
1006 locked_page = async_chunk->locked_page;
b4ccace8 1007 }
570eb97b 1008 lock_extent(io_tree, start, end, NULL);
ce62003f 1009
2b83a0ee
QW
1010 /* We have fall back to uncompressed write */
1011 if (!async_extent->pages)
1012 return submit_uncompressed_range(inode, async_extent, locked_page);
ce62003f 1013
b4ccace8
QW
1014 ret = btrfs_reserve_extent(root, async_extent->ram_size,
1015 async_extent->compressed_size,
1016 async_extent->compressed_size,
1017 0, *alloc_hint, &ins, 1, 1);
1018 if (ret) {
1019 free_async_extent_pages(async_extent);
c2167754 1020 /*
b4ccace8
QW
1021 * Here we used to try again by going back to non-compressed
1022 * path for ENOSPC. But we can't reserve space even for
1023 * compressed size, how could it work for uncompressed size
1024 * which requires larger size? So here we directly go error
1025 * path.
c2167754 1026 */
b4ccace8
QW
1027 goto out_free;
1028 }
1029
1030 /* Here we're doing allocation and writeback of the compressed pages */
1031 em = create_io_em(inode, start,
1032 async_extent->ram_size, /* len */
1033 start, /* orig_start */
1034 ins.objectid, /* block_start */
1035 ins.offset, /* block_len */
1036 ins.offset, /* orig_block_len */
1037 async_extent->ram_size, /* ram_bytes */
1038 async_extent->compress_type,
1039 BTRFS_ORDERED_COMPRESSED);
1040 if (IS_ERR(em)) {
1041 ret = PTR_ERR(em);
1042 goto out_free_reserve;
1043 }
1044 free_extent_map(em);
771ed689 1045
cb36a9bb
OS
1046 ret = btrfs_add_ordered_extent(inode, start, /* file_offset */
1047 async_extent->ram_size, /* num_bytes */
1048 async_extent->ram_size, /* ram_bytes */
1049 ins.objectid, /* disk_bytenr */
1050 ins.offset, /* disk_num_bytes */
1051 0, /* offset */
1052 1 << BTRFS_ORDERED_COMPRESSED,
1053 async_extent->compress_type);
b4ccace8 1054 if (ret) {
4c0c8cfc 1055 btrfs_drop_extent_map_range(inode, start, end, false);
b4ccace8 1056 goto out_free_reserve;
771ed689 1057 }
b4ccace8
QW
1058 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1059
1060 /* Clear dirty, set writeback and unlock the pages. */
1061 extent_clear_unlock_delalloc(inode, start, end,
1062 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
1063 PAGE_UNLOCK | PAGE_START_WRITEBACK);
1064 if (btrfs_submit_compressed_write(inode, start, /* file_offset */
1065 async_extent->ram_size, /* num_bytes */
1066 ins.objectid, /* disk_bytenr */
1067 ins.offset, /* compressed_len */
1068 async_extent->pages, /* compressed_pages */
1069 async_extent->nr_pages,
1070 async_chunk->write_flags,
7c0c7269 1071 async_chunk->blkcg_css, true)) {
b4ccace8
QW
1072 const u64 start = async_extent->start;
1073 const u64 end = start + async_extent->ram_size - 1;
1074
1075 btrfs_writepage_endio_finish_ordered(inode, NULL, start, end, 0);
1076
1077 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
1078 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
1079 free_async_extent_pages(async_extent);
771ed689 1080 }
b4ccace8
QW
1081 *alloc_hint = ins.objectid + ins.offset;
1082 kfree(async_extent);
1083 return ret;
1084
3e04e7f1 1085out_free_reserve:
0b246afa 1086 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1087 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1088out_free:
b4ccace8 1089 extent_clear_unlock_delalloc(inode, start, end,
c2790a2e 1090 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 1091 EXTENT_DELALLOC_NEW |
151a41bc 1092 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
6869b0a8
QW
1093 PAGE_UNLOCK | PAGE_START_WRITEBACK |
1094 PAGE_END_WRITEBACK | PAGE_SET_ERROR);
40ae837b 1095 free_async_extent_pages(async_extent);
79787eaa 1096 kfree(async_extent);
b4ccace8
QW
1097 return ret;
1098}
1099
1100/*
1101 * Phase two of compressed writeback. This is the ordered portion of the code,
1102 * which only gets called in the order the work was queued. We walk all the
1103 * async extents created by compress_file_range and send them down to the disk.
1104 */
1105static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
1106{
1107 struct btrfs_inode *inode = BTRFS_I(async_chunk->inode);
1108 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1109 struct async_extent *async_extent;
1110 u64 alloc_hint = 0;
1111 int ret = 0;
1112
1113 while (!list_empty(&async_chunk->extents)) {
1114 u64 extent_start;
1115 u64 ram_size;
1116
1117 async_extent = list_entry(async_chunk->extents.next,
1118 struct async_extent, list);
1119 list_del(&async_extent->list);
1120 extent_start = async_extent->start;
1121 ram_size = async_extent->ram_size;
1122
1123 ret = submit_one_async_extent(inode, async_chunk, async_extent,
1124 &alloc_hint);
1125 btrfs_debug(fs_info,
1126"async extent submission failed root=%lld inode=%llu start=%llu len=%llu ret=%d",
1127 inode->root->root_key.objectid,
1128 btrfs_ino(inode), extent_start, ram_size, ret);
1129 }
771ed689
CM
1130}
1131
43c69849 1132static u64 get_extent_allocation_hint(struct btrfs_inode *inode, u64 start,
4b46fce2
JB
1133 u64 num_bytes)
1134{
43c69849 1135 struct extent_map_tree *em_tree = &inode->extent_tree;
4b46fce2
JB
1136 struct extent_map *em;
1137 u64 alloc_hint = 0;
1138
1139 read_lock(&em_tree->lock);
1140 em = search_extent_mapping(em_tree, start, num_bytes);
1141 if (em) {
1142 /*
1143 * if block start isn't an actual block number then find the
1144 * first block in this inode and use that as a hint. If that
1145 * block is also bogus then just don't worry about it.
1146 */
1147 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1148 free_extent_map(em);
1149 em = search_extent_mapping(em_tree, 0, 0);
1150 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
1151 alloc_hint = em->block_start;
1152 if (em)
1153 free_extent_map(em);
1154 } else {
1155 alloc_hint = em->block_start;
1156 free_extent_map(em);
1157 }
1158 }
1159 read_unlock(&em_tree->lock);
1160
1161 return alloc_hint;
1162}
1163
771ed689
CM
1164/*
1165 * when extent_io.c finds a delayed allocation range in the file,
1166 * the call backs end up in this code. The basic idea is to
1167 * allocate extents on disk for the range, and create ordered data structs
1168 * in ram to track those extents.
1169 *
1170 * locked_page is the page that writepage had locked already. We use
1171 * it to make sure we don't do extra locks or unlocks.
1172 *
1173 * *page_started is set to one if we unlock locked_page and do everything
1174 * required to start IO on it. It may be clean and already done with
1175 * IO when we return.
9ce7466f
NA
1176 *
1177 * When unlock == 1, we unlock the pages in successfully allocated regions.
1178 * When unlock == 0, we leave them locked for writing them out.
1179 *
1180 * However, we unlock all the pages except @locked_page in case of failure.
1181 *
1182 * In summary, page locking state will be as follow:
1183 *
1184 * - page_started == 1 (return value)
1185 * - All the pages are unlocked. IO is started.
1186 * - Note that this can happen only on success
1187 * - unlock == 1
1188 * - All the pages except @locked_page are unlocked in any case
1189 * - unlock == 0
1190 * - On success, all the pages are locked for writing out them
1191 * - On failure, all the pages except @locked_page are unlocked
1192 *
1193 * When a failure happens in the second or later iteration of the
1194 * while-loop, the ordered extents created in previous iterations are kept
1195 * intact. So, the caller must clean them up by calling
1196 * btrfs_cleanup_ordered_extents(). See btrfs_run_delalloc_range() for
1197 * example.
771ed689 1198 */
6e26c442 1199static noinline int cow_file_range(struct btrfs_inode *inode,
00361589 1200 struct page *locked_page,
74e9194a 1201 u64 start, u64 end, int *page_started,
898793d9
NA
1202 unsigned long *nr_written, int unlock,
1203 u64 *done_offset)
771ed689 1204{
6e26c442
NB
1205 struct btrfs_root *root = inode->root;
1206 struct btrfs_fs_info *fs_info = root->fs_info;
771ed689 1207 u64 alloc_hint = 0;
9ce7466f 1208 u64 orig_start = start;
771ed689
CM
1209 u64 num_bytes;
1210 unsigned long ram_size;
a315e68f 1211 u64 cur_alloc_size = 0;
432cd2a1 1212 u64 min_alloc_size;
0b246afa 1213 u64 blocksize = fs_info->sectorsize;
771ed689
CM
1214 struct btrfs_key ins;
1215 struct extent_map *em;
a315e68f
FM
1216 unsigned clear_bits;
1217 unsigned long page_ops;
1218 bool extent_reserved = false;
771ed689
CM
1219 int ret = 0;
1220
6e26c442 1221 if (btrfs_is_free_space_inode(inode)) {
29bce2f3
JB
1222 ret = -EINVAL;
1223 goto out_unlock;
02ecd2c2 1224 }
771ed689 1225
fda2832f 1226 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 1227 num_bytes = max(blocksize, num_bytes);
566b1760 1228 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1229
6e26c442 1230 inode_should_defrag(inode, start, end, num_bytes, SZ_64K);
4cb5300b 1231
7367253a
QW
1232 /*
1233 * Due to the page size limit, for subpage we can only trigger the
1234 * writeback for the dirty sectors of page, that means data writeback
1235 * is doing more writeback than what we want.
1236 *
1237 * This is especially unexpected for some call sites like fallocate,
1238 * where we only increase i_size after everything is done.
1239 * This means we can trigger inline extent even if we didn't want to.
1240 * So here we skip inline extent creation completely.
1241 */
1242 if (start == 0 && fs_info->sectorsize == PAGE_SIZE) {
8dd9872d
OS
1243 u64 actual_end = min_t(u64, i_size_read(&inode->vfs_inode),
1244 end + 1);
1245
771ed689 1246 /* lets try to make an inline extent */
8dd9872d 1247 ret = cow_file_range_inline(inode, actual_end, 0,
d9496e8a 1248 BTRFS_COMPRESS_NONE, NULL, false);
771ed689 1249 if (ret == 0) {
8b62f87b
JB
1250 /*
1251 * We use DO_ACCOUNTING here because we need the
1252 * delalloc_release_metadata to be run _after_ we drop
1253 * our outstanding extent for clearing delalloc for this
1254 * range.
1255 */
4750af3b
QW
1256 extent_clear_unlock_delalloc(inode, start, end,
1257 locked_page,
c2790a2e 1258 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
1259 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1260 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
6869b0a8 1261 PAGE_START_WRITEBACK | PAGE_END_WRITEBACK);
771ed689 1262 *nr_written = *nr_written +
09cbfeaf 1263 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1264 *page_started = 1;
4750af3b
QW
1265 /*
1266 * locked_page is locked by the caller of
1267 * writepage_delalloc(), not locked by
1268 * __process_pages_contig().
1269 *
1270 * We can't let __process_pages_contig() to unlock it,
1271 * as it doesn't have any subpage::writers recorded.
1272 *
1273 * Here we manually unlock the page, since the caller
1274 * can't use page_started to determine if it's an
1275 * inline extent or a compressed extent.
1276 */
1277 unlock_page(locked_page);
771ed689 1278 goto out;
79787eaa 1279 } else if (ret < 0) {
79787eaa 1280 goto out_unlock;
771ed689
CM
1281 }
1282 }
1283
6e26c442 1284 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689 1285
432cd2a1
FM
1286 /*
1287 * Relocation relies on the relocated extents to have exactly the same
1288 * size as the original extents. Normally writeback for relocation data
1289 * extents follows a NOCOW path because relocation preallocates the
1290 * extents. However, due to an operation such as scrub turning a block
1291 * group to RO mode, it may fallback to COW mode, so we must make sure
1292 * an extent allocated during COW has exactly the requested size and can
1293 * not be split into smaller extents, otherwise relocation breaks and
1294 * fails during the stage where it updates the bytenr of file extent
1295 * items.
1296 */
37f00a6d 1297 if (btrfs_is_data_reloc_root(root))
432cd2a1
FM
1298 min_alloc_size = num_bytes;
1299 else
1300 min_alloc_size = fs_info->sectorsize;
1301
3752d22f
AJ
1302 while (num_bytes > 0) {
1303 cur_alloc_size = num_bytes;
18513091 1304 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
432cd2a1 1305 min_alloc_size, 0, alloc_hint,
e570fd27 1306 &ins, 1, 1);
00361589 1307 if (ret < 0)
79787eaa 1308 goto out_unlock;
a315e68f
FM
1309 cur_alloc_size = ins.offset;
1310 extent_reserved = true;
d397712b 1311
771ed689 1312 ram_size = ins.offset;
6e26c442 1313 em = create_io_em(inode, start, ins.offset, /* len */
6f9994db
LB
1314 start, /* orig_start */
1315 ins.objectid, /* block_start */
1316 ins.offset, /* block_len */
1317 ins.offset, /* orig_block_len */
1318 ram_size, /* ram_bytes */
1319 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1320 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1321 if (IS_ERR(em)) {
1322 ret = PTR_ERR(em);
ace68bac 1323 goto out_reserve;
090a127a 1324 }
6f9994db 1325 free_extent_map(em);
e6dcd2dc 1326
cb36a9bb
OS
1327 ret = btrfs_add_ordered_extent(inode, start, ram_size, ram_size,
1328 ins.objectid, cur_alloc_size, 0,
1329 1 << BTRFS_ORDERED_REGULAR,
1330 BTRFS_COMPRESS_NONE);
ace68bac 1331 if (ret)
d9f85963 1332 goto out_drop_extent_cache;
c8b97818 1333
37f00a6d 1334 if (btrfs_is_data_reloc_root(root)) {
6e26c442 1335 ret = btrfs_reloc_clone_csums(inode, start,
17d217fe 1336 cur_alloc_size);
4dbd80fb
QW
1337 /*
1338 * Only drop cache here, and process as normal.
1339 *
1340 * We must not allow extent_clear_unlock_delalloc()
1341 * at out_unlock label to free meta of this ordered
1342 * extent, as its meta should be freed by
1343 * btrfs_finish_ordered_io().
1344 *
1345 * So we must continue until @start is increased to
1346 * skip current ordered extent.
1347 */
00361589 1348 if (ret)
4c0c8cfc
FM
1349 btrfs_drop_extent_map_range(inode, start,
1350 start + ram_size - 1,
1351 false);
17d217fe
YZ
1352 }
1353
0b246afa 1354 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1355
f57ad937
QW
1356 /*
1357 * We're not doing compressed IO, don't unlock the first page
1358 * (which the caller expects to stay locked), don't clear any
1359 * dirty bits and don't set any writeback bits
8b62b72b 1360 *
f57ad937
QW
1361 * Do set the Ordered (Private2) bit so we know this page was
1362 * properly setup for writepage.
c8b97818 1363 */
a315e68f 1364 page_ops = unlock ? PAGE_UNLOCK : 0;
f57ad937 1365 page_ops |= PAGE_SET_ORDERED;
a791e35e 1366
6e26c442 1367 extent_clear_unlock_delalloc(inode, start, start + ram_size - 1,
74e9194a 1368 locked_page,
c2790a2e 1369 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1370 page_ops);
3752d22f
AJ
1371 if (num_bytes < cur_alloc_size)
1372 num_bytes = 0;
4dbd80fb 1373 else
3752d22f 1374 num_bytes -= cur_alloc_size;
c59f8951
CM
1375 alloc_hint = ins.objectid + ins.offset;
1376 start += cur_alloc_size;
a315e68f 1377 extent_reserved = false;
4dbd80fb
QW
1378
1379 /*
1380 * btrfs_reloc_clone_csums() error, since start is increased
1381 * extent_clear_unlock_delalloc() at out_unlock label won't
1382 * free metadata of current ordered extent, we're OK to exit.
1383 */
1384 if (ret)
1385 goto out_unlock;
b888db2b 1386 }
79787eaa 1387out:
be20aa9d 1388 return ret;
b7d5b0a8 1389
d9f85963 1390out_drop_extent_cache:
4c0c8cfc 1391 btrfs_drop_extent_map_range(inode, start, start + ram_size - 1, false);
ace68bac 1392out_reserve:
0b246afa 1393 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1394 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1395out_unlock:
898793d9
NA
1396 /*
1397 * If done_offset is non-NULL and ret == -EAGAIN, we expect the
1398 * caller to write out the successfully allocated region and retry.
1399 */
1400 if (done_offset && ret == -EAGAIN) {
1401 if (orig_start < start)
1402 *done_offset = start - 1;
1403 else
1404 *done_offset = start;
1405 return ret;
1406 } else if (ret == -EAGAIN) {
1407 /* Convert to -ENOSPC since the caller cannot retry. */
1408 ret = -ENOSPC;
1409 }
1410
9ce7466f
NA
1411 /*
1412 * Now, we have three regions to clean up:
1413 *
1414 * |-------(1)----|---(2)---|-------------(3)----------|
1415 * `- orig_start `- start `- start + cur_alloc_size `- end
1416 *
1417 * We process each region below.
1418 */
1419
a7e3b975
FM
1420 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1421 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
6869b0a8 1422 page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK | PAGE_END_WRITEBACK;
9ce7466f 1423
a315e68f 1424 /*
9ce7466f
NA
1425 * For the range (1). We have already instantiated the ordered extents
1426 * for this region. They are cleaned up by
1427 * btrfs_cleanup_ordered_extents() in e.g,
1428 * btrfs_run_delalloc_range(). EXTENT_LOCKED | EXTENT_DELALLOC are
1429 * already cleared in the above loop. And, EXTENT_DELALLOC_NEW |
1430 * EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV are handled by the cleanup
1431 * function.
1432 *
1433 * However, in case of unlock == 0, we still need to unlock the pages
1434 * (except @locked_page) to ensure all the pages are unlocked.
1435 */
71aa147b
NA
1436 if (!unlock && orig_start < start) {
1437 if (!locked_page)
1438 mapping_set_error(inode->vfs_inode.i_mapping, ret);
9ce7466f
NA
1439 extent_clear_unlock_delalloc(inode, orig_start, start - 1,
1440 locked_page, 0, page_ops);
71aa147b 1441 }
9ce7466f 1442
a315e68f 1443 /*
9ce7466f
NA
1444 * For the range (2). If we reserved an extent for our delalloc range
1445 * (or a subrange) and failed to create the respective ordered extent,
1446 * then it means that when we reserved the extent we decremented the
1447 * extent's size from the data space_info's bytes_may_use counter and
1448 * incremented the space_info's bytes_reserved counter by the same
1449 * amount. We must make sure extent_clear_unlock_delalloc() does not try
1450 * to decrement again the data space_info's bytes_may_use counter,
1451 * therefore we do not pass it the flag EXTENT_CLEAR_DATA_RESV.
a315e68f
FM
1452 */
1453 if (extent_reserved) {
6e26c442 1454 extent_clear_unlock_delalloc(inode, start,
e2c8e92d 1455 start + cur_alloc_size - 1,
a315e68f
FM
1456 locked_page,
1457 clear_bits,
1458 page_ops);
1459 start += cur_alloc_size;
1460 if (start >= end)
aaafa1eb 1461 return ret;
a315e68f 1462 }
9ce7466f
NA
1463
1464 /*
1465 * For the range (3). We never touched the region. In addition to the
1466 * clear_bits above, we add EXTENT_CLEAR_DATA_RESV to release the data
1467 * space_info's bytes_may_use counter, reserved in
1468 * btrfs_check_data_free_space().
1469 */
6e26c442 1470 extent_clear_unlock_delalloc(inode, start, end, locked_page,
a315e68f
FM
1471 clear_bits | EXTENT_CLEAR_DATA_RESV,
1472 page_ops);
aaafa1eb 1473 return ret;
771ed689 1474}
c8b97818 1475
771ed689
CM
1476/*
1477 * work queue call back to started compression on a file and pages
1478 */
1479static noinline void async_cow_start(struct btrfs_work *work)
1480{
b5326271 1481 struct async_chunk *async_chunk;
ac3e9933 1482 int compressed_extents;
771ed689 1483
b5326271 1484 async_chunk = container_of(work, struct async_chunk, work);
771ed689 1485
ac3e9933
NB
1486 compressed_extents = compress_file_range(async_chunk);
1487 if (compressed_extents == 0) {
b5326271
NB
1488 btrfs_add_delayed_iput(async_chunk->inode);
1489 async_chunk->inode = NULL;
8180ef88 1490 }
771ed689
CM
1491}
1492
1493/*
1494 * work queue call back to submit previously compressed pages
1495 */
1496static noinline void async_cow_submit(struct btrfs_work *work)
1497{
c5a68aec
NB
1498 struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1499 work);
1500 struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
771ed689
CM
1501 unsigned long nr_pages;
1502
b5326271 1503 nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
09cbfeaf 1504 PAGE_SHIFT;
771ed689 1505
4546d178 1506 /*
b5326271 1507 * ->inode could be NULL if async_chunk_start has failed to compress,
4546d178
NB
1508 * in which case we don't have anything to submit, yet we need to
1509 * always adjust ->async_delalloc_pages as its paired with the init
1510 * happening in cow_file_range_async
1511 */
b5326271
NB
1512 if (async_chunk->inode)
1513 submit_compressed_extents(async_chunk);
ac98141d
JB
1514
1515 /* atomic_sub_return implies a barrier */
1516 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1517 5 * SZ_1M)
1518 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1519}
c8b97818 1520
771ed689
CM
1521static noinline void async_cow_free(struct btrfs_work *work)
1522{
b5326271 1523 struct async_chunk *async_chunk;
9e895a8f 1524 struct async_cow *async_cow;
97db1204 1525
b5326271
NB
1526 async_chunk = container_of(work, struct async_chunk, work);
1527 if (async_chunk->inode)
1528 btrfs_add_delayed_iput(async_chunk->inode);
ec39f769
CM
1529 if (async_chunk->blkcg_css)
1530 css_put(async_chunk->blkcg_css);
9e895a8f
QW
1531
1532 async_cow = async_chunk->async_cow;
1533 if (atomic_dec_and_test(&async_cow->num_chunks))
1534 kvfree(async_cow);
771ed689
CM
1535}
1536
751b6431 1537static int cow_file_range_async(struct btrfs_inode *inode,
ec39f769
CM
1538 struct writeback_control *wbc,
1539 struct page *locked_page,
771ed689 1540 u64 start, u64 end, int *page_started,
fac07d2b 1541 unsigned long *nr_written)
771ed689 1542{
751b6431 1543 struct btrfs_fs_info *fs_info = inode->root->fs_info;
ec39f769 1544 struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
97db1204
NB
1545 struct async_cow *ctx;
1546 struct async_chunk *async_chunk;
771ed689
CM
1547 unsigned long nr_pages;
1548 u64 cur_end;
97db1204
NB
1549 u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1550 int i;
1551 bool should_compress;
b1c16ac9 1552 unsigned nofs_flag;
bf9486d6 1553 const blk_opf_t write_flags = wbc_to_write_flags(wbc);
771ed689 1554
570eb97b 1555 unlock_extent(&inode->io_tree, start, end, NULL);
97db1204 1556
751b6431 1557 if (inode->flags & BTRFS_INODE_NOCOMPRESS &&
97db1204
NB
1558 !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1559 num_chunks = 1;
1560 should_compress = false;
1561 } else {
1562 should_compress = true;
1563 }
1564
b1c16ac9
NB
1565 nofs_flag = memalloc_nofs_save();
1566 ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1567 memalloc_nofs_restore(nofs_flag);
1568
97db1204
NB
1569 if (!ctx) {
1570 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1571 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1572 EXTENT_DO_ACCOUNTING;
6869b0a8
QW
1573 unsigned long page_ops = PAGE_UNLOCK | PAGE_START_WRITEBACK |
1574 PAGE_END_WRITEBACK | PAGE_SET_ERROR;
97db1204 1575
751b6431
NB
1576 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1577 clear_bits, page_ops);
97db1204
NB
1578 return -ENOMEM;
1579 }
1580
1581 async_chunk = ctx->chunks;
1582 atomic_set(&ctx->num_chunks, num_chunks);
1583
1584 for (i = 0; i < num_chunks; i++) {
1585 if (should_compress)
1586 cur_end = min(end, start + SZ_512K - 1);
1587 else
1588 cur_end = end;
771ed689 1589
bd4691a0
NB
1590 /*
1591 * igrab is called higher up in the call chain, take only the
1592 * lightweight reference for the callback lifetime
1593 */
751b6431 1594 ihold(&inode->vfs_inode);
9e895a8f 1595 async_chunk[i].async_cow = ctx;
751b6431 1596 async_chunk[i].inode = &inode->vfs_inode;
97db1204
NB
1597 async_chunk[i].start = start;
1598 async_chunk[i].end = cur_end;
97db1204
NB
1599 async_chunk[i].write_flags = write_flags;
1600 INIT_LIST_HEAD(&async_chunk[i].extents);
1601
1d53c9e6
CM
1602 /*
1603 * The locked_page comes all the way from writepage and its
1604 * the original page we were actually given. As we spread
1605 * this large delalloc region across multiple async_chunk
1606 * structs, only the first struct needs a pointer to locked_page
1607 *
1608 * This way we don't need racey decisions about who is supposed
1609 * to unlock it.
1610 */
1611 if (locked_page) {
ec39f769
CM
1612 /*
1613 * Depending on the compressibility, the pages might or
1614 * might not go through async. We want all of them to
1615 * be accounted against wbc once. Let's do it here
1616 * before the paths diverge. wbc accounting is used
1617 * only for foreign writeback detection and doesn't
1618 * need full accuracy. Just account the whole thing
1619 * against the first page.
1620 */
1621 wbc_account_cgroup_owner(wbc, locked_page,
1622 cur_end - start);
1d53c9e6
CM
1623 async_chunk[i].locked_page = locked_page;
1624 locked_page = NULL;
1625 } else {
1626 async_chunk[i].locked_page = NULL;
1627 }
1628
ec39f769
CM
1629 if (blkcg_css != blkcg_root_css) {
1630 css_get(blkcg_css);
1631 async_chunk[i].blkcg_css = blkcg_css;
1632 } else {
1633 async_chunk[i].blkcg_css = NULL;
1634 }
1635
a0cac0ec
OS
1636 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1637 async_cow_submit, async_cow_free);
771ed689 1638
97db1204 1639 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
0b246afa 1640 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1641
97db1204 1642 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
771ed689 1643
771ed689
CM
1644 *nr_written += nr_pages;
1645 start = cur_end + 1;
1646 }
1647 *page_started = 1;
1648 return 0;
be20aa9d
CM
1649}
1650
42c01100
NA
1651static noinline int run_delalloc_zoned(struct btrfs_inode *inode,
1652 struct page *locked_page, u64 start,
1653 u64 end, int *page_started,
1654 unsigned long *nr_written)
1655{
898793d9 1656 u64 done_offset = end;
42c01100 1657 int ret;
898793d9 1658 bool locked_page_done = false;
42c01100 1659
898793d9
NA
1660 while (start <= end) {
1661 ret = cow_file_range(inode, locked_page, start, end, page_started,
1662 nr_written, 0, &done_offset);
1663 if (ret && ret != -EAGAIN)
1664 return ret;
42c01100 1665
898793d9
NA
1666 if (*page_started) {
1667 ASSERT(ret == 0);
1668 return 0;
1669 }
1670
1671 if (ret == 0)
1672 done_offset = end;
1673
2ce543f4 1674 if (done_offset == start) {
d5b81ced
NA
1675 wait_on_bit_io(&inode->root->fs_info->flags,
1676 BTRFS_FS_NEED_ZONE_FINISH,
1677 TASK_UNINTERRUPTIBLE);
2ce543f4
NA
1678 continue;
1679 }
898793d9
NA
1680
1681 if (!locked_page_done) {
1682 __set_page_dirty_nobuffers(locked_page);
1683 account_page_redirty(locked_page);
1684 }
1685 locked_page_done = true;
1686 extent_write_locked_range(&inode->vfs_inode, start, done_offset);
1687
1688 start = done_offset + 1;
1689 }
42c01100 1690
42c01100
NA
1691 *page_started = 1;
1692
1693 return 0;
1694}
1695
2ff7e61e 1696static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
26ce9114 1697 u64 bytenr, u64 num_bytes, bool nowait)
17d217fe 1698{
fc28b25e 1699 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bytenr);
17d217fe 1700 struct btrfs_ordered_sum *sums;
fc28b25e 1701 int ret;
17d217fe
YZ
1702 LIST_HEAD(list);
1703
fc28b25e 1704 ret = btrfs_lookup_csums_range(csum_root, bytenr,
26ce9114
JB
1705 bytenr + num_bytes - 1, &list, 0,
1706 nowait);
17d217fe
YZ
1707 if (ret == 0 && list_empty(&list))
1708 return 0;
1709
1710 while (!list_empty(&list)) {
1711 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1712 list_del(&sums->list);
1713 kfree(sums);
1714 }
58113753
LB
1715 if (ret < 0)
1716 return ret;
17d217fe
YZ
1717 return 1;
1718}
1719
8ba96f3d 1720static int fallback_to_cow(struct btrfs_inode *inode, struct page *locked_page,
467dc47e
FM
1721 const u64 start, const u64 end,
1722 int *page_started, unsigned long *nr_written)
1723{
8ba96f3d 1724 const bool is_space_ino = btrfs_is_free_space_inode(inode);
37f00a6d 1725 const bool is_reloc_ino = btrfs_is_data_reloc_root(inode->root);
2166e5ed 1726 const u64 range_bytes = end + 1 - start;
8ba96f3d 1727 struct extent_io_tree *io_tree = &inode->io_tree;
467dc47e
FM
1728 u64 range_start = start;
1729 u64 count;
1730
1731 /*
1732 * If EXTENT_NORESERVE is set it means that when the buffered write was
1733 * made we had not enough available data space and therefore we did not
1734 * reserve data space for it, since we though we could do NOCOW for the
1735 * respective file range (either there is prealloc extent or the inode
1736 * has the NOCOW bit set).
1737 *
1738 * However when we need to fallback to COW mode (because for example the
1739 * block group for the corresponding extent was turned to RO mode by a
1740 * scrub or relocation) we need to do the following:
1741 *
1742 * 1) We increment the bytes_may_use counter of the data space info.
1743 * If COW succeeds, it allocates a new data extent and after doing
1744 * that it decrements the space info's bytes_may_use counter and
1745 * increments its bytes_reserved counter by the same amount (we do
1746 * this at btrfs_add_reserved_bytes()). So we need to increment the
1747 * bytes_may_use counter to compensate (when space is reserved at
1748 * buffered write time, the bytes_may_use counter is incremented);
1749 *
1750 * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1751 * that if the COW path fails for any reason, it decrements (through
1752 * extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1753 * data space info, which we incremented in the step above.
2166e5ed
FM
1754 *
1755 * If we need to fallback to cow and the inode corresponds to a free
6bd335b4
FM
1756 * space cache inode or an inode of the data relocation tree, we must
1757 * also increment bytes_may_use of the data space_info for the same
1758 * reason. Space caches and relocated data extents always get a prealloc
2166e5ed 1759 * extent for them, however scrub or balance may have set the block
6bd335b4
FM
1760 * group that contains that extent to RO mode and therefore force COW
1761 * when starting writeback.
467dc47e 1762 */
2166e5ed 1763 count = count_range_bits(io_tree, &range_start, end, range_bytes,
467dc47e 1764 EXTENT_NORESERVE, 0);
6bd335b4
FM
1765 if (count > 0 || is_space_ino || is_reloc_ino) {
1766 u64 bytes = count;
8ba96f3d 1767 struct btrfs_fs_info *fs_info = inode->root->fs_info;
467dc47e
FM
1768 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1769
6bd335b4
FM
1770 if (is_space_ino || is_reloc_ino)
1771 bytes = range_bytes;
1772
467dc47e 1773 spin_lock(&sinfo->lock);
2166e5ed 1774 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
467dc47e
FM
1775 spin_unlock(&sinfo->lock);
1776
2166e5ed
FM
1777 if (count > 0)
1778 clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
bd015294 1779 NULL);
467dc47e
FM
1780 }
1781
8ba96f3d 1782 return cow_file_range(inode, locked_page, start, end, page_started,
898793d9 1783 nr_written, 1, NULL);
467dc47e
FM
1784}
1785
619104ba
FM
1786struct can_nocow_file_extent_args {
1787 /* Input fields. */
1788
1789 /* Start file offset of the range we want to NOCOW. */
1790 u64 start;
1791 /* End file offset (inclusive) of the range we want to NOCOW. */
1792 u64 end;
1793 bool writeback_path;
1794 bool strict;
1795 /*
1796 * Free the path passed to can_nocow_file_extent() once it's not needed
1797 * anymore.
1798 */
1799 bool free_path;
1800
1801 /* Output fields. Only set when can_nocow_file_extent() returns 1. */
1802
1803 u64 disk_bytenr;
1804 u64 disk_num_bytes;
1805 u64 extent_offset;
1806 /* Number of bytes that can be written to in NOCOW mode. */
1807 u64 num_bytes;
1808};
1809
1810/*
1811 * Check if we can NOCOW the file extent that the path points to.
1812 * This function may return with the path released, so the caller should check
1813 * if path->nodes[0] is NULL or not if it needs to use the path afterwards.
1814 *
1815 * Returns: < 0 on error
1816 * 0 if we can not NOCOW
1817 * 1 if we can NOCOW
1818 */
1819static int can_nocow_file_extent(struct btrfs_path *path,
1820 struct btrfs_key *key,
1821 struct btrfs_inode *inode,
1822 struct can_nocow_file_extent_args *args)
1823{
1824 const bool is_freespace_inode = btrfs_is_free_space_inode(inode);
1825 struct extent_buffer *leaf = path->nodes[0];
1826 struct btrfs_root *root = inode->root;
1827 struct btrfs_file_extent_item *fi;
1828 u64 extent_end;
1829 u8 extent_type;
1830 int can_nocow = 0;
1831 int ret = 0;
26ce9114 1832 bool nowait = path->nowait;
619104ba
FM
1833
1834 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
1835 extent_type = btrfs_file_extent_type(leaf, fi);
1836
1837 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1838 goto out;
1839
1840 /* Can't access these fields unless we know it's not an inline extent. */
1841 args->disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1842 args->disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1843 args->extent_offset = btrfs_file_extent_offset(leaf, fi);
1844
1845 if (!(inode->flags & BTRFS_INODE_NODATACOW) &&
1846 extent_type == BTRFS_FILE_EXTENT_REG)
1847 goto out;
1848
1849 /*
1850 * If the extent was created before the generation where the last snapshot
1851 * for its subvolume was created, then this implies the extent is shared,
1852 * hence we must COW.
1853 */
a7bb6bd4 1854 if (!args->strict &&
619104ba
FM
1855 btrfs_file_extent_generation(leaf, fi) <=
1856 btrfs_root_last_snapshot(&root->root_item))
1857 goto out;
1858
1859 /* An explicit hole, must COW. */
1860 if (args->disk_bytenr == 0)
1861 goto out;
1862
1863 /* Compressed/encrypted/encoded extents must be COWed. */
1864 if (btrfs_file_extent_compression(leaf, fi) ||
1865 btrfs_file_extent_encryption(leaf, fi) ||
1866 btrfs_file_extent_other_encoding(leaf, fi))
1867 goto out;
1868
1869 extent_end = btrfs_file_extent_end(path);
1870
1871 /*
1872 * The following checks can be expensive, as they need to take other
1873 * locks and do btree or rbtree searches, so release the path to avoid
1874 * blocking other tasks for too long.
1875 */
1876 btrfs_release_path(path);
1877
1878 ret = btrfs_cross_ref_exist(root, btrfs_ino(inode),
1879 key->offset - args->extent_offset,
1880 args->disk_bytenr, false, path);
1881 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1882 if (ret != 0)
1883 goto out;
1884
1885 if (args->free_path) {
1886 /*
1887 * We don't need the path anymore, plus through the
1888 * csum_exist_in_range() call below we will end up allocating
1889 * another path. So free the path to avoid unnecessary extra
1890 * memory usage.
1891 */
1892 btrfs_free_path(path);
1893 path = NULL;
1894 }
1895
1896 /* If there are pending snapshots for this root, we must COW. */
1897 if (args->writeback_path && !is_freespace_inode &&
1898 atomic_read(&root->snapshot_force_cow))
1899 goto out;
1900
1901 args->disk_bytenr += args->extent_offset;
1902 args->disk_bytenr += args->start - key->offset;
1903 args->num_bytes = min(args->end + 1, extent_end) - args->start;
1904
1905 /*
1906 * Force COW if csums exist in the range. This ensures that csums for a
1907 * given extent are either valid or do not exist.
1908 */
26ce9114
JB
1909 ret = csum_exist_in_range(root->fs_info, args->disk_bytenr, args->num_bytes,
1910 nowait);
619104ba
FM
1911 WARN_ON_ONCE(ret > 0 && is_freespace_inode);
1912 if (ret != 0)
1913 goto out;
1914
1915 can_nocow = 1;
1916 out:
1917 if (args->free_path && path)
1918 btrfs_free_path(path);
1919
1920 return ret < 0 ? ret : can_nocow;
1921}
1922
d352ac68
CM
1923/*
1924 * when nowcow writeback call back. This checks for snapshots or COW copies
1925 * of the extents that exist in the file, and COWs the file as required.
1926 *
1927 * If no cow copies or snapshots exist, we write directly to the existing
1928 * blocks on disk
1929 */
968322c8 1930static noinline int run_delalloc_nocow(struct btrfs_inode *inode,
7f366cfe 1931 struct page *locked_page,
3e024846 1932 const u64 start, const u64 end,
6e65ae76 1933 int *page_started,
3e024846 1934 unsigned long *nr_written)
be20aa9d 1935{
968322c8
NB
1936 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1937 struct btrfs_root *root = inode->root;
be20aa9d 1938 struct btrfs_path *path;
3e024846
NB
1939 u64 cow_start = (u64)-1;
1940 u64 cur_offset = start;
8ecebf4d 1941 int ret;
3e024846 1942 bool check_prev = true;
968322c8 1943 u64 ino = btrfs_ino(inode);
2306e83e 1944 struct btrfs_block_group *bg;
762bf098 1945 bool nocow = false;
619104ba 1946 struct can_nocow_file_extent_args nocow_args = { 0 };
be20aa9d
CM
1947
1948 path = btrfs_alloc_path();
17ca04af 1949 if (!path) {
968322c8 1950 extent_clear_unlock_delalloc(inode, start, end, locked_page,
c2790a2e 1951 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1952 EXTENT_DO_ACCOUNTING |
1953 EXTENT_DEFRAG, PAGE_UNLOCK |
6869b0a8 1954 PAGE_START_WRITEBACK |
c2790a2e 1955 PAGE_END_WRITEBACK);
d8926bb3 1956 return -ENOMEM;
17ca04af 1957 }
82d5902d 1958
619104ba
FM
1959 nocow_args.end = end;
1960 nocow_args.writeback_path = true;
1961
80ff3856 1962 while (1) {
3e024846
NB
1963 struct btrfs_key found_key;
1964 struct btrfs_file_extent_item *fi;
1965 struct extent_buffer *leaf;
1966 u64 extent_end;
3e024846 1967 u64 ram_bytes;
619104ba 1968 u64 nocow_end;
3e024846 1969 int extent_type;
762bf098
NB
1970
1971 nocow = false;
3e024846 1972
e4c3b2dc 1973 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1974 cur_offset, 0);
d788a349 1975 if (ret < 0)
79787eaa 1976 goto error;
a6bd9cd1
NB
1977
1978 /*
1979 * If there is no extent for our range when doing the initial
1980 * search, then go back to the previous slot as it will be the
1981 * one containing the search offset
1982 */
80ff3856
YZ
1983 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1984 leaf = path->nodes[0];
1985 btrfs_item_key_to_cpu(leaf, &found_key,
1986 path->slots[0] - 1);
33345d01 1987 if (found_key.objectid == ino &&
80ff3856
YZ
1988 found_key.type == BTRFS_EXTENT_DATA_KEY)
1989 path->slots[0]--;
1990 }
3e024846 1991 check_prev = false;
80ff3856 1992next_slot:
a6bd9cd1 1993 /* Go to next leaf if we have exhausted the current one */
80ff3856
YZ
1994 leaf = path->nodes[0];
1995 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1996 ret = btrfs_next_leaf(root, path);
e8916699
LB
1997 if (ret < 0) {
1998 if (cow_start != (u64)-1)
1999 cur_offset = cow_start;
79787eaa 2000 goto error;
e8916699 2001 }
80ff3856
YZ
2002 if (ret > 0)
2003 break;
2004 leaf = path->nodes[0];
2005 }
be20aa9d 2006
80ff3856
YZ
2007 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2008
a6bd9cd1 2009 /* Didn't find anything for our INO */
1d512cb7
FM
2010 if (found_key.objectid > ino)
2011 break;
a6bd9cd1
NB
2012 /*
2013 * Keep searching until we find an EXTENT_ITEM or there are no
2014 * more extents for this inode
2015 */
1d512cb7
FM
2016 if (WARN_ON_ONCE(found_key.objectid < ino) ||
2017 found_key.type < BTRFS_EXTENT_DATA_KEY) {
2018 path->slots[0]++;
2019 goto next_slot;
2020 }
a6bd9cd1
NB
2021
2022 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1d512cb7 2023 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
2024 found_key.offset > end)
2025 break;
2026
a6bd9cd1
NB
2027 /*
2028 * If the found extent starts after requested offset, then
2029 * adjust extent_end to be right before this extent begins
2030 */
80ff3856
YZ
2031 if (found_key.offset > cur_offset) {
2032 extent_end = found_key.offset;
e9061e21 2033 extent_type = 0;
80ff3856
YZ
2034 goto out_check;
2035 }
2036
a6bd9cd1
NB
2037 /*
2038 * Found extent which begins before our range and potentially
2039 * intersect it
2040 */
80ff3856
YZ
2041 fi = btrfs_item_ptr(leaf, path->slots[0],
2042 struct btrfs_file_extent_item);
2043 extent_type = btrfs_file_extent_type(leaf, fi);
619104ba
FM
2044 /* If this is triggered then we have a memory corruption. */
2045 ASSERT(extent_type < BTRFS_NR_FILE_EXTENT_TYPES);
2046 if (WARN_ON(extent_type >= BTRFS_NR_FILE_EXTENT_TYPES)) {
2047 ret = -EUCLEAN;
2048 goto error;
2049 }
cc95bef6 2050 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
619104ba 2051 extent_end = btrfs_file_extent_end(path);
c65ca98f 2052
619104ba
FM
2053 /*
2054 * If the extent we got ends before our current offset, skip to
2055 * the next extent.
2056 */
2057 if (extent_end <= cur_offset) {
2058 path->slots[0]++;
2059 goto next_slot;
2060 }
c65ca98f 2061
619104ba
FM
2062 nocow_args.start = cur_offset;
2063 ret = can_nocow_file_extent(path, &found_key, inode, &nocow_args);
2064 if (ret < 0) {
2065 if (cow_start != (u64)-1)
2066 cur_offset = cow_start;
2067 goto error;
2068 } else if (ret == 0) {
2069 goto out_check;
2070 }
58113753 2071
619104ba 2072 ret = 0;
2306e83e
FM
2073 bg = btrfs_inc_nocow_writers(fs_info, nocow_args.disk_bytenr);
2074 if (bg)
3e024846 2075 nocow = true;
80ff3856 2076out_check:
a6bd9cd1
NB
2077 /*
2078 * If nocow is false then record the beginning of the range
2079 * that needs to be COWed
2080 */
80ff3856
YZ
2081 if (!nocow) {
2082 if (cow_start == (u64)-1)
2083 cow_start = cur_offset;
2084 cur_offset = extent_end;
2085 if (cur_offset > end)
2086 break;
c65ca98f
FM
2087 if (!path->nodes[0])
2088 continue;
80ff3856
YZ
2089 path->slots[0]++;
2090 goto next_slot;
7ea394f1
YZ
2091 }
2092
a6bd9cd1
NB
2093 /*
2094 * COW range from cow_start to found_key.offset - 1. As the key
2095 * will contain the beginning of the first extent that can be
2096 * NOCOW, following one which needs to be COW'ed
2097 */
80ff3856 2098 if (cow_start != (u64)-1) {
968322c8 2099 ret = fallback_to_cow(inode, locked_page,
8ba96f3d 2100 cow_start, found_key.offset - 1,
467dc47e 2101 page_started, nr_written);
230ed397 2102 if (ret)
79787eaa 2103 goto error;
80ff3856 2104 cow_start = (u64)-1;
7ea394f1 2105 }
80ff3856 2106
619104ba
FM
2107 nocow_end = cur_offset + nocow_args.num_bytes - 1;
2108
d899e052 2109 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
619104ba 2110 u64 orig_start = found_key.offset - nocow_args.extent_offset;
3e024846 2111 struct extent_map *em;
6f9994db 2112
619104ba 2113 em = create_io_em(inode, cur_offset, nocow_args.num_bytes,
6f9994db 2114 orig_start,
619104ba
FM
2115 nocow_args.disk_bytenr, /* block_start */
2116 nocow_args.num_bytes, /* block_len */
2117 nocow_args.disk_num_bytes, /* orig_block_len */
6f9994db
LB
2118 ram_bytes, BTRFS_COMPRESS_NONE,
2119 BTRFS_ORDERED_PREALLOC);
2120 if (IS_ERR(em)) {
6f9994db
LB
2121 ret = PTR_ERR(em);
2122 goto error;
d899e052 2123 }
6f9994db 2124 free_extent_map(em);
cb36a9bb 2125 ret = btrfs_add_ordered_extent(inode,
619104ba
FM
2126 cur_offset, nocow_args.num_bytes,
2127 nocow_args.num_bytes,
2128 nocow_args.disk_bytenr,
2129 nocow_args.num_bytes, 0,
cb36a9bb
OS
2130 1 << BTRFS_ORDERED_PREALLOC,
2131 BTRFS_COMPRESS_NONE);
762bf098 2132 if (ret) {
4c0c8cfc
FM
2133 btrfs_drop_extent_map_range(inode, cur_offset,
2134 nocow_end, false);
762bf098
NB
2135 goto error;
2136 }
d899e052 2137 } else {
968322c8 2138 ret = btrfs_add_ordered_extent(inode, cur_offset,
619104ba
FM
2139 nocow_args.num_bytes,
2140 nocow_args.num_bytes,
2141 nocow_args.disk_bytenr,
2142 nocow_args.num_bytes,
cb36a9bb
OS
2143 0,
2144 1 << BTRFS_ORDERED_NOCOW,
2145 BTRFS_COMPRESS_NONE);
762bf098
NB
2146 if (ret)
2147 goto error;
d899e052 2148 }
80ff3856 2149
2306e83e
FM
2150 if (nocow) {
2151 btrfs_dec_nocow_writers(bg);
2152 nocow = false;
2153 }
771ed689 2154
37f00a6d 2155 if (btrfs_is_data_reloc_root(root))
4dbd80fb
QW
2156 /*
2157 * Error handled later, as we must prevent
2158 * extent_clear_unlock_delalloc() in error handler
2159 * from freeing metadata of created ordered extent.
2160 */
968322c8 2161 ret = btrfs_reloc_clone_csums(inode, cur_offset,
619104ba 2162 nocow_args.num_bytes);
efa56464 2163
619104ba 2164 extent_clear_unlock_delalloc(inode, cur_offset, nocow_end,
c2790a2e 2165 locked_page, EXTENT_LOCKED |
18513091
WX
2166 EXTENT_DELALLOC |
2167 EXTENT_CLEAR_DATA_RESV,
f57ad937 2168 PAGE_UNLOCK | PAGE_SET_ORDERED);
18513091 2169
80ff3856 2170 cur_offset = extent_end;
4dbd80fb
QW
2171
2172 /*
2173 * btrfs_reloc_clone_csums() error, now we're OK to call error
2174 * handler, as metadata for created ordered extent will only
2175 * be freed by btrfs_finish_ordered_io().
2176 */
2177 if (ret)
2178 goto error;
80ff3856
YZ
2179 if (cur_offset > end)
2180 break;
be20aa9d 2181 }
b3b4aa74 2182 btrfs_release_path(path);
80ff3856 2183
506481b2 2184 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 2185 cow_start = cur_offset;
17ca04af 2186
80ff3856 2187 if (cow_start != (u64)-1) {
506481b2 2188 cur_offset = end;
968322c8
NB
2189 ret = fallback_to_cow(inode, locked_page, cow_start, end,
2190 page_started, nr_written);
d788a349 2191 if (ret)
79787eaa 2192 goto error;
80ff3856
YZ
2193 }
2194
79787eaa 2195error:
762bf098 2196 if (nocow)
2306e83e 2197 btrfs_dec_nocow_writers(bg);
762bf098 2198
17ca04af 2199 if (ret && cur_offset < end)
968322c8 2200 extent_clear_unlock_delalloc(inode, cur_offset, end,
c2790a2e 2201 locked_page, EXTENT_LOCKED |
151a41bc
JB
2202 EXTENT_DELALLOC | EXTENT_DEFRAG |
2203 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
6869b0a8 2204 PAGE_START_WRITEBACK |
c2790a2e 2205 PAGE_END_WRITEBACK);
7ea394f1 2206 btrfs_free_path(path);
79787eaa 2207 return ret;
be20aa9d
CM
2208}
2209
6e65ae76 2210static bool should_nocow(struct btrfs_inode *inode, u64 start, u64 end)
47059d93 2211{
6e65ae76
GR
2212 if (inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)) {
2213 if (inode->defrag_bytes &&
2214 test_range_bit(&inode->io_tree, start, end, EXTENT_DEFRAG,
2215 0, NULL))
2216 return false;
2217 return true;
2218 }
2219 return false;
47059d93
WS
2220}
2221
d352ac68 2222/*
5eaad97a
NB
2223 * Function to process delayed allocation (create CoW) for ranges which are
2224 * being touched for the first time.
d352ac68 2225 */
98456b9c 2226int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
5eaad97a
NB
2227 u64 start, u64 end, int *page_started, unsigned long *nr_written,
2228 struct writeback_control *wbc)
be20aa9d 2229{
be20aa9d 2230 int ret;
42c01100 2231 const bool zoned = btrfs_is_zoned(inode->root->fs_info);
a2135011 2232
2749f7ef
QW
2233 /*
2234 * The range must cover part of the @locked_page, or the returned
2235 * @page_started can confuse the caller.
2236 */
2237 ASSERT(!(end <= page_offset(locked_page) ||
2238 start >= page_offset(locked_page) + PAGE_SIZE));
2239
6e65ae76 2240 if (should_nocow(inode, start, end)) {
2adada88
JT
2241 /*
2242 * Normally on a zoned device we're only doing COW writes, but
2243 * in case of relocation on a zoned filesystem we have taken
2244 * precaution, that we're only writing sequentially. It's safe
2245 * to use run_delalloc_nocow() here, like for regular
2246 * preallocated inodes.
2247 */
9435be73 2248 ASSERT(!zoned || btrfs_is_data_reloc_root(inode->root));
98456b9c 2249 ret = run_delalloc_nocow(inode, locked_page, start, end,
6e65ae76 2250 page_started, nr_written);
e6f9d696 2251 } else if (!btrfs_inode_can_compress(inode) ||
98456b9c 2252 !inode_need_compress(inode, start, end)) {
42c01100
NA
2253 if (zoned)
2254 ret = run_delalloc_zoned(inode, locked_page, start, end,
2255 page_started, nr_written);
2256 else
2257 ret = cow_file_range(inode, locked_page, start, end,
898793d9 2258 page_started, nr_written, 1, NULL);
7ddf5a42 2259 } else {
98456b9c
NB
2260 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags);
2261 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
fac07d2b 2262 page_started, nr_written);
7ddf5a42 2263 }
7361b4ae 2264 ASSERT(ret <= 0);
52427260 2265 if (ret)
98456b9c 2266 btrfs_cleanup_ordered_extents(inode, locked_page, start,
d1051d6e 2267 end - start + 1);
b888db2b
CM
2268 return ret;
2269}
2270
abbb55f4
NB
2271void btrfs_split_delalloc_extent(struct inode *inode,
2272 struct extent_state *orig, u64 split)
9ed74f2d 2273{
f7b12a62 2274 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
dcab6a3b
JB
2275 u64 size;
2276
0ca1f7ce 2277 /* not delalloc, ignore it */
9ed74f2d 2278 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 2279 return;
9ed74f2d 2280
dcab6a3b 2281 size = orig->end - orig->start + 1;
f7b12a62 2282 if (size > fs_info->max_extent_size) {
823bb20a 2283 u32 num_extents;
dcab6a3b
JB
2284 u64 new_size;
2285
2286 /*
5c848198 2287 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 2288 * applies here, just in reverse.
dcab6a3b
JB
2289 */
2290 new_size = orig->end - split + 1;
7d7672bc 2291 num_extents = count_max_extents(fs_info, new_size);
ba117213 2292 new_size = split - orig->start;
7d7672bc
NA
2293 num_extents += count_max_extents(fs_info, new_size);
2294 if (count_max_extents(fs_info, size) >= num_extents)
dcab6a3b
JB
2295 return;
2296 }
2297
9e0baf60 2298 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 2299 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 2300 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
2301}
2302
2303/*
5c848198
NB
2304 * Handle merged delayed allocation extents so we can keep track of new extents
2305 * that are just merged onto old extents, such as when we are doing sequential
2306 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 2307 */
5c848198
NB
2308void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2309 struct extent_state *other)
9ed74f2d 2310{
f7b12a62 2311 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
dcab6a3b 2312 u64 new_size, old_size;
823bb20a 2313 u32 num_extents;
dcab6a3b 2314
9ed74f2d
JB
2315 /* not delalloc, ignore it */
2316 if (!(other->state & EXTENT_DELALLOC))
1bf85046 2317 return;
9ed74f2d 2318
8461a3de
JB
2319 if (new->start > other->start)
2320 new_size = new->end - other->start + 1;
2321 else
2322 new_size = other->end - new->start + 1;
dcab6a3b
JB
2323
2324 /* we're not bigger than the max, unreserve the space and go */
f7b12a62 2325 if (new_size <= fs_info->max_extent_size) {
dcab6a3b 2326 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 2327 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
2328 spin_unlock(&BTRFS_I(inode)->lock);
2329 return;
2330 }
2331
2332 /*
ba117213
JB
2333 * We have to add up either side to figure out how many extents were
2334 * accounted for before we merged into one big extent. If the number of
2335 * extents we accounted for is <= the amount we need for the new range
2336 * then we can return, otherwise drop. Think of it like this
2337 *
2338 * [ 4k][MAX_SIZE]
2339 *
2340 * So we've grown the extent by a MAX_SIZE extent, this would mean we
2341 * need 2 outstanding extents, on one side we have 1 and the other side
2342 * we have 1 so they are == and we can return. But in this case
2343 *
2344 * [MAX_SIZE+4k][MAX_SIZE+4k]
2345 *
2346 * Each range on their own accounts for 2 extents, but merged together
2347 * they are only 3 extents worth of accounting, so we need to drop in
2348 * this case.
dcab6a3b 2349 */
ba117213 2350 old_size = other->end - other->start + 1;
7d7672bc 2351 num_extents = count_max_extents(fs_info, old_size);
ba117213 2352 old_size = new->end - new->start + 1;
7d7672bc
NA
2353 num_extents += count_max_extents(fs_info, old_size);
2354 if (count_max_extents(fs_info, new_size) >= num_extents)
dcab6a3b
JB
2355 return;
2356
9e0baf60 2357 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 2358 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 2359 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
2360}
2361
eb73c1b7
MX
2362static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
2363 struct inode *inode)
2364{
0b246afa
JM
2365 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2366
eb73c1b7
MX
2367 spin_lock(&root->delalloc_lock);
2368 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
2369 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
2370 &root->delalloc_inodes);
2371 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2372 &BTRFS_I(inode)->runtime_flags);
2373 root->nr_delalloc_inodes++;
2374 if (root->nr_delalloc_inodes == 1) {
0b246afa 2375 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2376 BUG_ON(!list_empty(&root->delalloc_root));
2377 list_add_tail(&root->delalloc_root,
0b246afa
JM
2378 &fs_info->delalloc_roots);
2379 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2380 }
2381 }
2382 spin_unlock(&root->delalloc_lock);
2383}
2384
2b877331
NB
2385
2386void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2387 struct btrfs_inode *inode)
eb73c1b7 2388{
3ffbd68c 2389 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 2390
9e3e97f4
NB
2391 if (!list_empty(&inode->delalloc_inodes)) {
2392 list_del_init(&inode->delalloc_inodes);
eb73c1b7 2393 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2394 &inode->runtime_flags);
eb73c1b7
MX
2395 root->nr_delalloc_inodes--;
2396 if (!root->nr_delalloc_inodes) {
7c8a0d36 2397 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 2398 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2399 BUG_ON(list_empty(&root->delalloc_root));
2400 list_del_init(&root->delalloc_root);
0b246afa 2401 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
2402 }
2403 }
2b877331
NB
2404}
2405
2406static void btrfs_del_delalloc_inode(struct btrfs_root *root,
2407 struct btrfs_inode *inode)
2408{
2409 spin_lock(&root->delalloc_lock);
2410 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
2411 spin_unlock(&root->delalloc_lock);
2412}
2413
d352ac68 2414/*
e06a1fc9
NB
2415 * Properly track delayed allocation bytes in the inode and to maintain the
2416 * list of inodes that have pending delalloc work to be done.
d352ac68 2417 */
e06a1fc9 2418void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
6d92b304 2419 u32 bits)
291d673e 2420{
0b246afa
JM
2421 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2422
6d92b304 2423 if ((bits & EXTENT_DEFRAG) && !(bits & EXTENT_DELALLOC))
47059d93 2424 WARN_ON(1);
75eff68e
CM
2425 /*
2426 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2427 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2428 * bit, which is only set or cleared with irqs on
2429 */
6d92b304 2430 if (!(state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 2431 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2432 u64 len = state->end + 1 - state->start;
7d7672bc 2433 u32 num_extents = count_max_extents(fs_info, len);
70ddc553 2434 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 2435
8b62f87b
JB
2436 spin_lock(&BTRFS_I(inode)->lock);
2437 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2438 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 2439
6a3891c5 2440 /* For sanity tests */
0b246afa 2441 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2442 return;
2443
104b4e51
NB
2444 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2445 fs_info->delalloc_batch);
df0af1a5 2446 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 2447 BTRFS_I(inode)->delalloc_bytes += len;
6d92b304 2448 if (bits & EXTENT_DEFRAG)
47059d93 2449 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 2450 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
2451 &BTRFS_I(inode)->runtime_flags))
2452 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 2453 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 2454 }
a7e3b975
FM
2455
2456 if (!(state->state & EXTENT_DELALLOC_NEW) &&
6d92b304 2457 (bits & EXTENT_DELALLOC_NEW)) {
a7e3b975
FM
2458 spin_lock(&BTRFS_I(inode)->lock);
2459 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2460 state->start;
2461 spin_unlock(&BTRFS_I(inode)->lock);
2462 }
291d673e
CM
2463}
2464
d352ac68 2465/*
a36bb5f9
NB
2466 * Once a range is no longer delalloc this function ensures that proper
2467 * accounting happens.
d352ac68 2468 */
a36bb5f9 2469void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
6d92b304 2470 struct extent_state *state, u32 bits)
291d673e 2471{
a36bb5f9
NB
2472 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2473 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 2474 u64 len = state->end + 1 - state->start;
7d7672bc 2475 u32 num_extents = count_max_extents(fs_info, len);
47059d93 2476
6d92b304 2477 if ((state->state & EXTENT_DEFRAG) && (bits & EXTENT_DEFRAG)) {
4a4b964f 2478 spin_lock(&inode->lock);
6fc0ef68 2479 inode->defrag_bytes -= len;
4a4b964f
FM
2480 spin_unlock(&inode->lock);
2481 }
47059d93 2482
75eff68e
CM
2483 /*
2484 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 2485 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
2486 * bit, which is only set or cleared with irqs on
2487 */
6d92b304 2488 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
6fc0ef68 2489 struct btrfs_root *root = inode->root;
83eea1f1 2490 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 2491
8b62f87b
JB
2492 spin_lock(&inode->lock);
2493 btrfs_mod_outstanding_extents(inode, -num_extents);
2494 spin_unlock(&inode->lock);
0ca1f7ce 2495
b6d08f06
JB
2496 /*
2497 * We don't reserve metadata space for space cache inodes so we
52042d8e 2498 * don't need to call delalloc_release_metadata if there is an
b6d08f06
JB
2499 * error.
2500 */
6d92b304 2501 if (bits & EXTENT_CLEAR_META_RESV &&
0b246afa 2502 root != fs_info->tree_root)
43b18595 2503 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 2504
6a3891c5 2505 /* For sanity tests. */
0b246afa 2506 if (btrfs_is_testing(fs_info))
6a3891c5
JB
2507 return;
2508
37f00a6d 2509 if (!btrfs_is_data_reloc_root(root) &&
a315e68f 2510 do_list && !(state->state & EXTENT_NORESERVE) &&
6d92b304 2511 (bits & EXTENT_CLEAR_DATA_RESV))
9db5d510 2512 btrfs_free_reserved_data_space_noquota(fs_info, len);
9ed74f2d 2513
104b4e51
NB
2514 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2515 fs_info->delalloc_batch);
6fc0ef68
NB
2516 spin_lock(&inode->lock);
2517 inode->delalloc_bytes -= len;
2518 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 2519 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 2520 &inode->runtime_flags))
eb73c1b7 2521 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 2522 spin_unlock(&inode->lock);
291d673e 2523 }
a7e3b975
FM
2524
2525 if ((state->state & EXTENT_DELALLOC_NEW) &&
6d92b304 2526 (bits & EXTENT_DELALLOC_NEW)) {
a7e3b975
FM
2527 spin_lock(&inode->lock);
2528 ASSERT(inode->new_delalloc_bytes >= len);
2529 inode->new_delalloc_bytes -= len;
6d92b304 2530 if (bits & EXTENT_ADD_INODE_BYTES)
2766ff61 2531 inode_add_bytes(&inode->vfs_inode, len);
a7e3b975
FM
2532 spin_unlock(&inode->lock);
2533 }
291d673e
CM
2534}
2535
d352ac68
CM
2536/*
2537 * in order to insert checksums into the metadata in large chunks,
2538 * we wait until bio submission time. All the pages in the bio are
2539 * checksummed and sums are attached onto the ordered extent record.
2540 *
2541 * At IO completion time the cums attached on the ordered extent record
2542 * are inserted into the btree
2543 */
8896a08d 2544static blk_status_t btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1941b64b 2545 u64 dio_file_offset)
065631f6 2546{
e331f6b1 2547 return btrfs_csum_one_bio(BTRFS_I(inode), bio, (u64)-1, false);
4a69a410 2548}
e015640f 2549
abb99cfd
NA
2550/*
2551 * Split an extent_map at [start, start + len]
2552 *
2553 * This function is intended to be used only for extract_ordered_extent().
2554 */
2555static int split_zoned_em(struct btrfs_inode *inode, u64 start, u64 len,
2556 u64 pre, u64 post)
2557{
2558 struct extent_map_tree *em_tree = &inode->extent_tree;
2559 struct extent_map *em;
2560 struct extent_map *split_pre = NULL;
2561 struct extent_map *split_mid = NULL;
2562 struct extent_map *split_post = NULL;
2563 int ret = 0;
abb99cfd
NA
2564 unsigned long flags;
2565
2566 /* Sanity check */
2567 if (pre == 0 && post == 0)
2568 return 0;
2569
2570 split_pre = alloc_extent_map();
2571 if (pre)
2572 split_mid = alloc_extent_map();
2573 if (post)
2574 split_post = alloc_extent_map();
2575 if (!split_pre || (pre && !split_mid) || (post && !split_post)) {
2576 ret = -ENOMEM;
2577 goto out;
2578 }
2579
2580 ASSERT(pre + post < len);
2581
570eb97b 2582 lock_extent(&inode->io_tree, start, start + len - 1, NULL);
abb99cfd
NA
2583 write_lock(&em_tree->lock);
2584 em = lookup_extent_mapping(em_tree, start, len);
2585 if (!em) {
2586 ret = -EIO;
2587 goto out_unlock;
2588 }
2589
2590 ASSERT(em->len == len);
2591 ASSERT(!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags));
2592 ASSERT(em->block_start < EXTENT_MAP_LAST_BYTE);
63fb5879
NA
2593 ASSERT(test_bit(EXTENT_FLAG_PINNED, &em->flags));
2594 ASSERT(!test_bit(EXTENT_FLAG_LOGGING, &em->flags));
2595 ASSERT(!list_empty(&em->list));
abb99cfd
NA
2596
2597 flags = em->flags;
2598 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
abb99cfd
NA
2599
2600 /* First, replace the em with a new extent_map starting from * em->start */
2601 split_pre->start = em->start;
2602 split_pre->len = (pre ? pre : em->len - post);
2603 split_pre->orig_start = split_pre->start;
2604 split_pre->block_start = em->block_start;
2605 split_pre->block_len = split_pre->len;
2606 split_pre->orig_block_len = split_pre->block_len;
2607 split_pre->ram_bytes = split_pre->len;
2608 split_pre->flags = flags;
2609 split_pre->compress_type = em->compress_type;
2610 split_pre->generation = em->generation;
2611
63fb5879 2612 replace_extent_mapping(em_tree, em, split_pre, 1);
abb99cfd
NA
2613
2614 /*
2615 * Now we only have an extent_map at:
2616 * [em->start, em->start + pre] if pre != 0
2617 * [em->start, em->start + em->len - post] if pre == 0
2618 */
2619
2620 if (pre) {
2621 /* Insert the middle extent_map */
2622 split_mid->start = em->start + pre;
2623 split_mid->len = em->len - pre - post;
2624 split_mid->orig_start = split_mid->start;
2625 split_mid->block_start = em->block_start + pre;
2626 split_mid->block_len = split_mid->len;
2627 split_mid->orig_block_len = split_mid->block_len;
2628 split_mid->ram_bytes = split_mid->len;
2629 split_mid->flags = flags;
2630 split_mid->compress_type = em->compress_type;
2631 split_mid->generation = em->generation;
63fb5879 2632 add_extent_mapping(em_tree, split_mid, 1);
abb99cfd
NA
2633 }
2634
2635 if (post) {
2636 split_post->start = em->start + em->len - post;
2637 split_post->len = post;
2638 split_post->orig_start = split_post->start;
2639 split_post->block_start = em->block_start + em->len - post;
2640 split_post->block_len = split_post->len;
2641 split_post->orig_block_len = split_post->block_len;
2642 split_post->ram_bytes = split_post->len;
2643 split_post->flags = flags;
2644 split_post->compress_type = em->compress_type;
2645 split_post->generation = em->generation;
63fb5879 2646 add_extent_mapping(em_tree, split_post, 1);
abb99cfd
NA
2647 }
2648
2649 /* Once for us */
2650 free_extent_map(em);
2651 /* Once for the tree */
2652 free_extent_map(em);
2653
2654out_unlock:
2655 write_unlock(&em_tree->lock);
570eb97b 2656 unlock_extent(&inode->io_tree, start, start + len - 1, NULL);
abb99cfd
NA
2657out:
2658 free_extent_map(split_pre);
2659 free_extent_map(split_mid);
2660 free_extent_map(split_post);
2661
2662 return ret;
2663}
2664
d22002fd
NA
2665static blk_status_t extract_ordered_extent(struct btrfs_inode *inode,
2666 struct bio *bio, loff_t file_offset)
2667{
2668 struct btrfs_ordered_extent *ordered;
d22002fd 2669 u64 start = (u64)bio->bi_iter.bi_sector << SECTOR_SHIFT;
abb99cfd 2670 u64 file_len;
d22002fd
NA
2671 u64 len = bio->bi_iter.bi_size;
2672 u64 end = start + len;
2673 u64 ordered_end;
2674 u64 pre, post;
2675 int ret = 0;
2676
2677 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
2678 if (WARN_ON_ONCE(!ordered))
2679 return BLK_STS_IOERR;
2680
2681 /* No need to split */
2682 if (ordered->disk_num_bytes == len)
2683 goto out;
2684
2685 /* We cannot split once end_bio'd ordered extent */
2686 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes)) {
2687 ret = -EINVAL;
2688 goto out;
2689 }
2690
2691 /* We cannot split a compressed ordered extent */
2692 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes)) {
2693 ret = -EINVAL;
2694 goto out;
2695 }
2696
2697 ordered_end = ordered->disk_bytenr + ordered->disk_num_bytes;
2698 /* bio must be in one ordered extent */
2699 if (WARN_ON_ONCE(start < ordered->disk_bytenr || end > ordered_end)) {
2700 ret = -EINVAL;
2701 goto out;
2702 }
2703
2704 /* Checksum list should be empty */
2705 if (WARN_ON_ONCE(!list_empty(&ordered->list))) {
2706 ret = -EINVAL;
2707 goto out;
2708 }
2709
abb99cfd 2710 file_len = ordered->num_bytes;
d22002fd
NA
2711 pre = start - ordered->disk_bytenr;
2712 post = ordered_end - end;
2713
2714 ret = btrfs_split_ordered_extent(ordered, pre, post);
2715 if (ret)
2716 goto out;
abb99cfd 2717 ret = split_zoned_em(inode, file_offset, file_len, pre, post);
d22002fd
NA
2718
2719out:
d22002fd
NA
2720 btrfs_put_ordered_extent(ordered);
2721
2722 return errno_to_blk_status(ret);
2723}
2724
c93104e7 2725void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num)
44b8bd7e 2726{
0b246afa 2727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
c93104e7
CH
2728 struct btrfs_inode *bi = BTRFS_I(inode);
2729 blk_status_t ret;
0417341e 2730
d22002fd 2731 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
c93104e7
CH
2732 ret = extract_ordered_extent(bi, bio,
2733 page_offset(bio_first_bvec_all(bio)->bv_page));
917f32a2
CH
2734 if (ret) {
2735 btrfs_bio_end_io(btrfs_bio(bio), ret);
2736 return;
2737 }
d22002fd
NA
2738 }
2739
c93104e7 2740 /*
82443fd5
CH
2741 * If we need to checksum, and the I/O is not issued by fsync and
2742 * friends, that is ->sync_writers != 0, defer the submission to a
2743 * workqueue to parallelize it.
2744 *
2745 * Csum items for reloc roots have already been cloned at this point,
2746 * so they are handled as part of the no-checksum case.
c93104e7
CH
2747 */
2748 if (!(bi->flags & BTRFS_INODE_NODATASUM) &&
82443fd5
CH
2749 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
2750 !btrfs_is_data_reloc_root(bi->root)) {
ea1f0ced
CH
2751 if (!atomic_read(&bi->sync_writers) &&
2752 btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
2753 btrfs_submit_bio_start))
ad357938 2754 return;
82443fd5
CH
2755
2756 ret = btrfs_csum_one_bio(bi, bio, (u64)-1, false);
917f32a2
CH
2757 if (ret) {
2758 btrfs_bio_end_io(btrfs_bio(bio), ret);
2759 return;
2760 }
19b9bdb0 2761 }
1a722d8f 2762 btrfs_submit_bio(fs_info, bio, mirror_num);
c93104e7 2763}
19b9bdb0 2764
c93104e7
CH
2765void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
2766 int mirror_num, enum btrfs_compression_type compress_type)
2767{
2768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2769 blk_status_t ret;
61891923 2770
c93104e7
CH
2771 if (compress_type != BTRFS_COMPRESS_NONE) {
2772 /*
2773 * btrfs_submit_compressed_read will handle completing the bio
2774 * if there were any errors, so just return here.
2775 */
2776 btrfs_submit_compressed_read(inode, bio, mirror_num);
2777 return;
19b9bdb0
CM
2778 }
2779
81bd9328
CH
2780 /* Save the original iter for read repair */
2781 btrfs_bio(bio)->iter = bio->bi_iter;
2782
c93104e7
CH
2783 /*
2784 * Lookup bio sums does extra checks around whether we need to csum or
2785 * not, which is why we ignore skip_sum here.
2786 */
2787 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
4e4cbee9 2788 if (ret) {
917f32a2 2789 btrfs_bio_end_io(btrfs_bio(bio), ret);
1a722d8f 2790 return;
4246a0b6 2791 }
1a722d8f
CH
2792
2793 btrfs_submit_bio(fs_info, bio, mirror_num);
065631f6 2794}
6885f308 2795
d352ac68
CM
2796/*
2797 * given a list of ordered sums record them in the inode. This happens
2798 * at IO completion time based on sums calculated at bio submission time.
2799 */
510f85ed
NB
2800static int add_pending_csums(struct btrfs_trans_handle *trans,
2801 struct list_head *list)
e6dcd2dc 2802{
e6dcd2dc 2803 struct btrfs_ordered_sum *sum;
fc28b25e 2804 struct btrfs_root *csum_root = NULL;
ac01f26a 2805 int ret;
e6dcd2dc 2806
c6e30871 2807 list_for_each_entry(sum, list, list) {
7c2871a2 2808 trans->adding_csums = true;
fc28b25e
JB
2809 if (!csum_root)
2810 csum_root = btrfs_csum_root(trans->fs_info,
2811 sum->bytenr);
2812 ret = btrfs_csum_file_blocks(trans, csum_root, sum);
7c2871a2 2813 trans->adding_csums = false;
ac01f26a
NB
2814 if (ret)
2815 return ret;
e6dcd2dc
CM
2816 }
2817 return 0;
2818}
2819
c3347309
FM
2820static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
2821 const u64 start,
2822 const u64 len,
2823 struct extent_state **cached_state)
2824{
2825 u64 search_start = start;
2826 const u64 end = start + len - 1;
2827
2828 while (search_start < end) {
2829 const u64 search_len = end - search_start + 1;
2830 struct extent_map *em;
2831 u64 em_len;
2832 int ret = 0;
2833
2834 em = btrfs_get_extent(inode, NULL, 0, search_start, search_len);
2835 if (IS_ERR(em))
2836 return PTR_ERR(em);
2837
2838 if (em->block_start != EXTENT_MAP_HOLE)
2839 goto next;
2840
2841 em_len = em->len;
2842 if (em->start < search_start)
2843 em_len -= search_start - em->start;
2844 if (em_len > search_len)
2845 em_len = search_len;
2846
2847 ret = set_extent_bit(&inode->io_tree, search_start,
2848 search_start + em_len - 1,
994bcd1e 2849 EXTENT_DELALLOC_NEW, cached_state,
291bbb1e 2850 GFP_NOFS);
c3347309
FM
2851next:
2852 search_start = extent_map_end(em);
2853 free_extent_map(em);
2854 if (ret)
2855 return ret;
2856 }
2857 return 0;
2858}
2859
c2566f22 2860int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
e3b8a485 2861 unsigned int extra_bits,
330a5827 2862 struct extent_state **cached_state)
ea8c2819 2863{
fdb1e121 2864 WARN_ON(PAGE_ALIGNED(end));
c3347309
FM
2865
2866 if (start >= i_size_read(&inode->vfs_inode) &&
2867 !(inode->flags & BTRFS_INODE_PREALLOC)) {
2868 /*
2869 * There can't be any extents following eof in this case so just
2870 * set the delalloc new bit for the range directly.
2871 */
2872 extra_bits |= EXTENT_DELALLOC_NEW;
2873 } else {
2874 int ret;
2875
2876 ret = btrfs_find_new_delalloc_bytes(inode, start,
2877 end + 1 - start,
2878 cached_state);
2879 if (ret)
2880 return ret;
2881 }
2882
c2566f22
NB
2883 return set_extent_delalloc(&inode->io_tree, start, end, extra_bits,
2884 cached_state);
ea8c2819
CM
2885}
2886
d352ac68 2887/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2888struct btrfs_writepage_fixup {
2889 struct page *page;
f4b1363c 2890 struct inode *inode;
247e743c
CM
2891 struct btrfs_work work;
2892};
2893
b2950863 2894static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2895{
2896 struct btrfs_writepage_fixup *fixup;
2897 struct btrfs_ordered_extent *ordered;
2ac55d41 2898 struct extent_state *cached_state = NULL;
364ecf36 2899 struct extent_changeset *data_reserved = NULL;
247e743c 2900 struct page *page;
65d87f79 2901 struct btrfs_inode *inode;
247e743c
CM
2902 u64 page_start;
2903 u64 page_end;
25f3c502 2904 int ret = 0;
f4b1363c 2905 bool free_delalloc_space = true;
247e743c
CM
2906
2907 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2908 page = fixup->page;
65d87f79 2909 inode = BTRFS_I(fixup->inode);
f4b1363c
JB
2910 page_start = page_offset(page);
2911 page_end = page_offset(page) + PAGE_SIZE - 1;
2912
2913 /*
2914 * This is similar to page_mkwrite, we need to reserve the space before
2915 * we take the page lock.
2916 */
65d87f79
NB
2917 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2918 PAGE_SIZE);
4a096752 2919again:
247e743c 2920 lock_page(page);
25f3c502
CM
2921
2922 /*
2923 * Before we queued this fixup, we took a reference on the page.
2924 * page->mapping may go NULL, but it shouldn't be moved to a different
2925 * address space.
2926 */
f4b1363c
JB
2927 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2928 /*
2929 * Unfortunately this is a little tricky, either
2930 *
2931 * 1) We got here and our page had already been dealt with and
2932 * we reserved our space, thus ret == 0, so we need to just
2933 * drop our space reservation and bail. This can happen the
2934 * first time we come into the fixup worker, or could happen
2935 * while waiting for the ordered extent.
2936 * 2) Our page was already dealt with, but we happened to get an
2937 * ENOSPC above from the btrfs_delalloc_reserve_space. In
2938 * this case we obviously don't have anything to release, but
2939 * because the page was already dealt with we don't want to
2940 * mark the page with an error, so make sure we're resetting
2941 * ret to 0. This is why we have this check _before_ the ret
2942 * check, because we do not want to have a surprise ENOSPC
2943 * when the page was already properly dealt with.
2944 */
2945 if (!ret) {
65d87f79
NB
2946 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
2947 btrfs_delalloc_release_space(inode, data_reserved,
f4b1363c
JB
2948 page_start, PAGE_SIZE,
2949 true);
2950 }
2951 ret = 0;
247e743c 2952 goto out_page;
f4b1363c 2953 }
247e743c 2954
25f3c502 2955 /*
f4b1363c
JB
2956 * We can't mess with the page state unless it is locked, so now that
2957 * it is locked bail if we failed to make our space reservation.
25f3c502 2958 */
f4b1363c
JB
2959 if (ret)
2960 goto out_page;
247e743c 2961
570eb97b 2962 lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
4a096752
CM
2963
2964 /* already ordered? We're done */
f57ad937 2965 if (PageOrdered(page))
f4b1363c 2966 goto out_reserved;
4a096752 2967
65d87f79 2968 ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
4a096752 2969 if (ordered) {
570eb97b
JB
2970 unlock_extent(&inode->io_tree, page_start, page_end,
2971 &cached_state);
4a096752 2972 unlock_page(page);
c0a43603 2973 btrfs_start_ordered_extent(ordered, 1);
87826df0 2974 btrfs_put_ordered_extent(ordered);
4a096752
CM
2975 goto again;
2976 }
247e743c 2977
65d87f79 2978 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
330a5827 2979 &cached_state);
25f3c502 2980 if (ret)
53687007 2981 goto out_reserved;
f3038ee3 2982
25f3c502
CM
2983 /*
2984 * Everything went as planned, we're now the owner of a dirty page with
2985 * delayed allocation bits set and space reserved for our COW
2986 * destination.
2987 *
2988 * The page was dirty when we started, nothing should have cleaned it.
2989 */
2990 BUG_ON(!PageDirty(page));
f4b1363c 2991 free_delalloc_space = false;
53687007 2992out_reserved:
65d87f79 2993 btrfs_delalloc_release_extents(inode, PAGE_SIZE);
f4b1363c 2994 if (free_delalloc_space)
65d87f79
NB
2995 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2996 PAGE_SIZE, true);
570eb97b 2997 unlock_extent(&inode->io_tree, page_start, page_end, &cached_state);
247e743c 2998out_page:
25f3c502
CM
2999 if (ret) {
3000 /*
3001 * We hit ENOSPC or other errors. Update the mapping and page
3002 * to reflect the errors and clean the page.
3003 */
3004 mapping_set_error(page->mapping, ret);
3005 end_extent_writepage(page, ret, page_start, page_end);
3006 clear_page_dirty_for_io(page);
3007 SetPageError(page);
3008 }
e4f94347 3009 btrfs_page_clear_checked(inode->root->fs_info, page, page_start, PAGE_SIZE);
247e743c 3010 unlock_page(page);
09cbfeaf 3011 put_page(page);
b897abec 3012 kfree(fixup);
364ecf36 3013 extent_changeset_free(data_reserved);
f4b1363c
JB
3014 /*
3015 * As a precaution, do a delayed iput in case it would be the last iput
3016 * that could need flushing space. Recursing back to fixup worker would
3017 * deadlock.
3018 */
65d87f79 3019 btrfs_add_delayed_iput(&inode->vfs_inode);
247e743c
CM
3020}
3021
3022/*
3023 * There are a few paths in the higher layers of the kernel that directly
3024 * set the page dirty bit without asking the filesystem if it is a
3025 * good idea. This causes problems because we want to make sure COW
3026 * properly happens and the data=ordered rules are followed.
3027 *
c8b97818 3028 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
3029 * hasn't been properly setup for IO. We kick off an async process
3030 * to fix it up. The async helper will wait for ordered extents, set
3031 * the delalloc bit and make it safe to write the page.
3032 */
a129ffb8 3033int btrfs_writepage_cow_fixup(struct page *page)
247e743c
CM
3034{
3035 struct inode *inode = page->mapping->host;
0b246afa 3036 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 3037 struct btrfs_writepage_fixup *fixup;
247e743c 3038
f57ad937
QW
3039 /* This page has ordered extent covering it already */
3040 if (PageOrdered(page))
247e743c
CM
3041 return 0;
3042
25f3c502
CM
3043 /*
3044 * PageChecked is set below when we create a fixup worker for this page,
3045 * don't try to create another one if we're already PageChecked()
3046 *
3047 * The extent_io writepage code will redirty the page if we send back
3048 * EAGAIN.
3049 */
247e743c
CM
3050 if (PageChecked(page))
3051 return -EAGAIN;
3052
3053 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
3054 if (!fixup)
3055 return -EAGAIN;
f421950f 3056
f4b1363c
JB
3057 /*
3058 * We are already holding a reference to this inode from
3059 * write_cache_pages. We need to hold it because the space reservation
3060 * takes place outside of the page lock, and we can't trust
3061 * page->mapping outside of the page lock.
3062 */
3063 ihold(inode);
e4f94347 3064 btrfs_page_set_checked(fs_info, page, page_offset(page), PAGE_SIZE);
09cbfeaf 3065 get_page(page);
a0cac0ec 3066 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 3067 fixup->page = page;
f4b1363c 3068 fixup->inode = inode;
0b246afa 3069 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
25f3c502
CM
3070
3071 return -EAGAIN;
247e743c
CM
3072}
3073
d899e052 3074static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
c553f94d 3075 struct btrfs_inode *inode, u64 file_pos,
9729f10a 3076 struct btrfs_file_extent_item *stack_fi,
2766ff61 3077 const bool update_inode_bytes,
9729f10a 3078 u64 qgroup_reserved)
d899e052 3079{
c553f94d 3080 struct btrfs_root *root = inode->root;
2766ff61 3081 const u64 sectorsize = root->fs_info->sectorsize;
d899e052
YZ
3082 struct btrfs_path *path;
3083 struct extent_buffer *leaf;
3084 struct btrfs_key ins;
203f44c5
QW
3085 u64 disk_num_bytes = btrfs_stack_file_extent_disk_num_bytes(stack_fi);
3086 u64 disk_bytenr = btrfs_stack_file_extent_disk_bytenr(stack_fi);
cb36a9bb 3087 u64 offset = btrfs_stack_file_extent_offset(stack_fi);
203f44c5
QW
3088 u64 num_bytes = btrfs_stack_file_extent_num_bytes(stack_fi);
3089 u64 ram_bytes = btrfs_stack_file_extent_ram_bytes(stack_fi);
5893dfb9 3090 struct btrfs_drop_extents_args drop_args = { 0 };
d899e052
YZ
3091 int ret;
3092
3093 path = btrfs_alloc_path();
d8926bb3
MF
3094 if (!path)
3095 return -ENOMEM;
d899e052 3096
a1ed835e
CM
3097 /*
3098 * we may be replacing one extent in the tree with another.
3099 * The new extent is pinned in the extent map, and we don't want
3100 * to drop it from the cache until it is completely in the btree.
3101 *
3102 * So, tell btrfs_drop_extents to leave this extent in the cache.
3103 * the caller is expected to unpin it and allow it to be merged
3104 * with the others.
3105 */
5893dfb9
FM
3106 drop_args.path = path;
3107 drop_args.start = file_pos;
3108 drop_args.end = file_pos + num_bytes;
3109 drop_args.replace_extent = true;
3110 drop_args.extent_item_size = sizeof(*stack_fi);
3111 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
79787eaa
JM
3112 if (ret)
3113 goto out;
d899e052 3114
5893dfb9 3115 if (!drop_args.extent_inserted) {
c553f94d 3116 ins.objectid = btrfs_ino(inode);
1acae57b
FDBM
3117 ins.offset = file_pos;
3118 ins.type = BTRFS_EXTENT_DATA_KEY;
3119
1acae57b 3120 ret = btrfs_insert_empty_item(trans, root, path, &ins,
203f44c5 3121 sizeof(*stack_fi));
1acae57b
FDBM
3122 if (ret)
3123 goto out;
3124 }
d899e052 3125 leaf = path->nodes[0];
203f44c5
QW
3126 btrfs_set_stack_file_extent_generation(stack_fi, trans->transid);
3127 write_extent_buffer(leaf, stack_fi,
3128 btrfs_item_ptr_offset(leaf, path->slots[0]),
3129 sizeof(struct btrfs_file_extent_item));
b9473439 3130
d899e052 3131 btrfs_mark_buffer_dirty(leaf);
ce195332 3132 btrfs_release_path(path);
d899e052 3133
2766ff61
FM
3134 /*
3135 * If we dropped an inline extent here, we know the range where it is
3136 * was not marked with the EXTENT_DELALLOC_NEW bit, so we update the
1a9fd417 3137 * number of bytes only for that range containing the inline extent.
2766ff61
FM
3138 * The remaining of the range will be processed when clearning the
3139 * EXTENT_DELALLOC_BIT bit through the ordered extent completion.
3140 */
3141 if (file_pos == 0 && !IS_ALIGNED(drop_args.bytes_found, sectorsize)) {
3142 u64 inline_size = round_down(drop_args.bytes_found, sectorsize);
3143
3144 inline_size = drop_args.bytes_found - inline_size;
3145 btrfs_update_inode_bytes(inode, sectorsize, inline_size);
3146 drop_args.bytes_found -= inline_size;
3147 num_bytes -= sectorsize;
3148 }
3149
3150 if (update_inode_bytes)
3151 btrfs_update_inode_bytes(inode, num_bytes, drop_args.bytes_found);
d899e052
YZ
3152
3153 ins.objectid = disk_bytenr;
3154 ins.offset = disk_num_bytes;
3155 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 3156
c553f94d 3157 ret = btrfs_inode_set_file_extent_range(inode, file_pos, ram_bytes);
9ddc959e
JB
3158 if (ret)
3159 goto out;
3160
c553f94d 3161 ret = btrfs_alloc_reserved_file_extent(trans, root, btrfs_ino(inode),
cb36a9bb
OS
3162 file_pos - offset,
3163 qgroup_reserved, &ins);
79787eaa 3164out:
d899e052 3165 btrfs_free_path(path);
b9473439 3166
79787eaa 3167 return ret;
d899e052
YZ
3168}
3169
2ff7e61e 3170static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
3171 u64 start, u64 len)
3172{
32da5386 3173 struct btrfs_block_group *cache;
e570fd27 3174
0b246afa 3175 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
3176 ASSERT(cache);
3177
3178 spin_lock(&cache->lock);
3179 cache->delalloc_bytes -= len;
3180 spin_unlock(&cache->lock);
3181
3182 btrfs_put_block_group(cache);
3183}
3184
203f44c5 3185static int insert_ordered_extent_file_extent(struct btrfs_trans_handle *trans,
203f44c5
QW
3186 struct btrfs_ordered_extent *oe)
3187{
3188 struct btrfs_file_extent_item stack_fi;
2766ff61 3189 bool update_inode_bytes;
cb36a9bb
OS
3190 u64 num_bytes = oe->num_bytes;
3191 u64 ram_bytes = oe->ram_bytes;
203f44c5
QW
3192
3193 memset(&stack_fi, 0, sizeof(stack_fi));
3194 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_REG);
3195 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, oe->disk_bytenr);
3196 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi,
3197 oe->disk_num_bytes);
cb36a9bb 3198 btrfs_set_stack_file_extent_offset(&stack_fi, oe->offset);
c1867eb3
DS
3199 if (test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags)) {
3200 num_bytes = oe->truncated_len;
3201 ram_bytes = num_bytes;
3202 }
cb36a9bb
OS
3203 btrfs_set_stack_file_extent_num_bytes(&stack_fi, num_bytes);
3204 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, ram_bytes);
203f44c5
QW
3205 btrfs_set_stack_file_extent_compression(&stack_fi, oe->compress_type);
3206 /* Encryption and other encoding is reserved and all 0 */
3207
2766ff61
FM
3208 /*
3209 * For delalloc, when completing an ordered extent we update the inode's
3210 * bytes when clearing the range in the inode's io tree, so pass false
3211 * as the argument 'update_inode_bytes' to insert_reserved_file_extent(),
3212 * except if the ordered extent was truncated.
3213 */
3214 update_inode_bytes = test_bit(BTRFS_ORDERED_DIRECT, &oe->flags) ||
7c0c7269 3215 test_bit(BTRFS_ORDERED_ENCODED, &oe->flags) ||
2766ff61
FM
3216 test_bit(BTRFS_ORDERED_TRUNCATED, &oe->flags);
3217
3c38c877
NB
3218 return insert_reserved_file_extent(trans, BTRFS_I(oe->inode),
3219 oe->file_offset, &stack_fi,
2766ff61 3220 update_inode_bytes, oe->qgroup_rsv);
203f44c5
QW
3221}
3222
3223/*
3224 * As ordered data IO finishes, this gets called so we can finish
d352ac68
CM
3225 * an ordered extent if the range of bytes in the file it covers are
3226 * fully written.
3227 */
711f447b 3228int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 3229{
72e7e6ed
NB
3230 struct btrfs_inode *inode = BTRFS_I(ordered_extent->inode);
3231 struct btrfs_root *root = inode->root;
3232 struct btrfs_fs_info *fs_info = root->fs_info;
0ca1f7ce 3233 struct btrfs_trans_handle *trans = NULL;
72e7e6ed 3234 struct extent_io_tree *io_tree = &inode->io_tree;
2ac55d41 3235 struct extent_state *cached_state = NULL;
bffe633e 3236 u64 start, end;
261507a0 3237 int compress_type = 0;
77cef2ec 3238 int ret = 0;
bffe633e 3239 u64 logical_len = ordered_extent->num_bytes;
8d510121 3240 bool freespace_inode;
77cef2ec 3241 bool truncated = false;
49940bdd 3242 bool clear_reserved_extent = true;
2766ff61 3243 unsigned int clear_bits = EXTENT_DEFRAG;
a7e3b975 3244
bffe633e
OS
3245 start = ordered_extent->file_offset;
3246 end = start + ordered_extent->num_bytes - 1;
3247
a7e3b975
FM
3248 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3249 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
7c0c7269
OS
3250 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags) &&
3251 !test_bit(BTRFS_ORDERED_ENCODED, &ordered_extent->flags))
2766ff61 3252 clear_bits |= EXTENT_DELALLOC_NEW;
e6dcd2dc 3253
72e7e6ed 3254 freespace_inode = btrfs_is_free_space_inode(inode);
5f4403e1
IA
3255 if (!freespace_inode)
3256 btrfs_lockdep_acquire(fs_info, btrfs_ordered_extent);
0cb59c99 3257
5fd02043
JB
3258 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
3259 ret = -EIO;
3260 goto out;
3261 }
3262
be1a1d7a
NA
3263 /* A valid bdev implies a write on a sequential zone */
3264 if (ordered_extent->bdev) {
d8e3fb10 3265 btrfs_rewrite_logical_zoned(ordered_extent);
be1a1d7a
NA
3266 btrfs_zone_finish_endio(fs_info, ordered_extent->disk_bytenr,
3267 ordered_extent->disk_num_bytes);
3268 }
d8e3fb10 3269
72e7e6ed 3270 btrfs_free_io_failure_record(inode, start, end);
f612496b 3271
77cef2ec
JB
3272 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
3273 truncated = true;
3274 logical_len = ordered_extent->truncated_len;
3275 /* Truncated the entire extent, don't bother adding */
3276 if (!logical_len)
3277 goto out;
3278 }
3279
c2167754 3280 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 3281 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a 3282
72e7e6ed 3283 btrfs_inode_safe_disk_i_size_write(inode, 0);
8d510121
NB
3284 if (freespace_inode)
3285 trans = btrfs_join_transaction_spacecache(root);
6c760c07
JB
3286 else
3287 trans = btrfs_join_transaction(root);
3288 if (IS_ERR(trans)) {
3289 ret = PTR_ERR(trans);
3290 trans = NULL;
3291 goto out;
c2167754 3292 }
72e7e6ed 3293 trans->block_rsv = &inode->block_rsv;
729f7961 3294 ret = btrfs_update_inode_fallback(trans, root, inode);
6c760c07 3295 if (ret) /* -ENOMEM or corruption */
66642832 3296 btrfs_abort_transaction(trans, ret);
c2167754
YZ
3297 goto out;
3298 }
e6dcd2dc 3299
2766ff61 3300 clear_bits |= EXTENT_LOCKED;
570eb97b 3301 lock_extent(io_tree, start, end, &cached_state);
e6dcd2dc 3302
8d510121
NB
3303 if (freespace_inode)
3304 trans = btrfs_join_transaction_spacecache(root);
0cb59c99 3305 else
7a7eaa40 3306 trans = btrfs_join_transaction(root);
79787eaa
JM
3307 if (IS_ERR(trans)) {
3308 ret = PTR_ERR(trans);
3309 trans = NULL;
a7e3b975 3310 goto out;
79787eaa 3311 }
a79b7d4b 3312
72e7e6ed 3313 trans->block_rsv = &inode->block_rsv;
c2167754 3314
c8b97818 3315 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3316 compress_type = ordered_extent->compress_type;
d899e052 3317 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3318 BUG_ON(compress_type);
72e7e6ed 3319 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
3320 ordered_extent->file_offset,
3321 ordered_extent->file_offset +
77cef2ec 3322 logical_len);
343d8a30
NA
3323 btrfs_zoned_release_data_reloc_bg(fs_info, ordered_extent->disk_bytenr,
3324 ordered_extent->disk_num_bytes);
d899e052 3325 } else {
0b246afa 3326 BUG_ON(root == fs_info->tree_root);
3c38c877 3327 ret = insert_ordered_extent_file_extent(trans, ordered_extent);
49940bdd
JB
3328 if (!ret) {
3329 clear_reserved_extent = false;
2ff7e61e 3330 btrfs_release_delalloc_bytes(fs_info,
bffe633e
OS
3331 ordered_extent->disk_bytenr,
3332 ordered_extent->disk_num_bytes);
49940bdd 3333 }
d899e052 3334 }
72e7e6ed 3335 unpin_extent_cache(&inode->extent_tree, ordered_extent->file_offset,
bffe633e 3336 ordered_extent->num_bytes, trans->transid);
79787eaa 3337 if (ret < 0) {
66642832 3338 btrfs_abort_transaction(trans, ret);
a7e3b975 3339 goto out;
79787eaa 3340 }
2ac55d41 3341
510f85ed 3342 ret = add_pending_csums(trans, &ordered_extent->list);
ac01f26a
NB
3343 if (ret) {
3344 btrfs_abort_transaction(trans, ret);
3345 goto out;
3346 }
e6dcd2dc 3347
2766ff61
FM
3348 /*
3349 * If this is a new delalloc range, clear its new delalloc flag to
3350 * update the inode's number of bytes. This needs to be done first
3351 * before updating the inode item.
3352 */
3353 if ((clear_bits & EXTENT_DELALLOC_NEW) &&
3354 !test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags))
72e7e6ed 3355 clear_extent_bit(&inode->io_tree, start, end,
2766ff61 3356 EXTENT_DELALLOC_NEW | EXTENT_ADD_INODE_BYTES,
bd015294 3357 &cached_state);
2766ff61 3358
72e7e6ed 3359 btrfs_inode_safe_disk_i_size_write(inode, 0);
729f7961 3360 ret = btrfs_update_inode_fallback(trans, root, inode);
6c760c07 3361 if (ret) { /* -ENOMEM or corruption */
66642832 3362 btrfs_abort_transaction(trans, ret);
a7e3b975 3363 goto out;
1ef30be1
JB
3364 }
3365 ret = 0;
c2167754 3366out:
bd015294 3367 clear_extent_bit(&inode->io_tree, start, end, clear_bits,
313facc5 3368 &cached_state);
a7e3b975 3369
a698d075 3370 if (trans)
3a45bb20 3371 btrfs_end_transaction(trans);
0cb59c99 3372
77cef2ec 3373 if (ret || truncated) {
bffe633e 3374 u64 unwritten_start = start;
77cef2ec 3375
d61bec08
JB
3376 /*
3377 * If we failed to finish this ordered extent for any reason we
3378 * need to make sure BTRFS_ORDERED_IOERR is set on the ordered
3379 * extent, and mark the inode with the error if it wasn't
3380 * already set. Any error during writeback would have already
3381 * set the mapping error, so we need to set it if we're the ones
3382 * marking this ordered extent as failed.
3383 */
3384 if (ret && !test_and_set_bit(BTRFS_ORDERED_IOERR,
3385 &ordered_extent->flags))
3386 mapping_set_error(ordered_extent->inode->i_mapping, -EIO);
3387
77cef2ec 3388 if (truncated)
bffe633e
OS
3389 unwritten_start += logical_len;
3390 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
77cef2ec 3391
4c0c8cfc
FM
3392 /* Drop extent maps for the part of the extent we didn't write. */
3393 btrfs_drop_extent_map_range(inode, unwritten_start, end, false);
5fd02043 3394
0bec9ef5
JB
3395 /*
3396 * If the ordered extent had an IOERR or something else went
3397 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3398 * back to the allocator. We only free the extent in the
3399 * truncated case if we didn't write out the extent at all.
49940bdd
JB
3400 *
3401 * If we made it past insert_reserved_file_extent before we
3402 * errored out then we don't need to do this as the accounting
3403 * has already been done.
0bec9ef5 3404 */
77cef2ec 3405 if ((ret || !logical_len) &&
49940bdd 3406 clear_reserved_extent &&
77cef2ec 3407 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
4eaaec24
NB
3408 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
3409 /*
3410 * Discard the range before returning it back to the
3411 * free space pool
3412 */
46b27f50 3413 if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
4eaaec24 3414 btrfs_discard_extent(fs_info,
bffe633e
OS
3415 ordered_extent->disk_bytenr,
3416 ordered_extent->disk_num_bytes,
3417 NULL);
2ff7e61e 3418 btrfs_free_reserved_extent(fs_info,
bffe633e
OS
3419 ordered_extent->disk_bytenr,
3420 ordered_extent->disk_num_bytes, 1);
4eaaec24 3421 }
0bec9ef5
JB
3422 }
3423
5fd02043 3424 /*
8bad3c02
LB
3425 * This needs to be done to make sure anybody waiting knows we are done
3426 * updating everything for this ordered extent.
5fd02043 3427 */
72e7e6ed 3428 btrfs_remove_ordered_extent(inode, ordered_extent);
5fd02043 3429
e6dcd2dc
CM
3430 /* once for us */
3431 btrfs_put_ordered_extent(ordered_extent);
3432 /* once for the tree */
3433 btrfs_put_ordered_extent(ordered_extent);
3434
5fd02043
JB
3435 return ret;
3436}
3437
38a39ac7
QW
3438void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3439 struct page *page, u64 start,
25c1252a 3440 u64 end, bool uptodate)
211f90e6 3441{
38a39ac7 3442 trace_btrfs_writepage_end_io_hook(inode, start, end, uptodate);
1abe9b8a 3443
711f447b 3444 btrfs_mark_ordered_io_finished(inode, page, start, end + 1 - start, uptodate);
211f90e6
CM
3445}
3446
ae643a74
QW
3447/*
3448 * Verify the checksum for a single sector without any extra action that depend
3449 * on the type of I/O.
3450 */
3451int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3452 u32 pgoff, u8 *csum, const u8 * const csum_expected)
3453{
3454 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3455 char *kaddr;
3456
3457 ASSERT(pgoff + fs_info->sectorsize <= PAGE_SIZE);
3458
3459 shash->tfm = fs_info->csum_shash;
3460
3461 kaddr = kmap_local_page(page) + pgoff;
3462 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
3463 kunmap_local(kaddr);
3464
3465 if (memcmp(csum, csum_expected, fs_info->csum_size))
3466 return -EIO;
3467 return 0;
211f90e6
CM
3468}
3469
f119553f
JB
3470static u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums, u64 offset)
3471{
3472 u64 offset_in_sectors = offset >> fs_info->sectorsize_bits;
3473
3474 return csums + offset_in_sectors * fs_info->csum_size;
3475}
3476
265d4ac0
QW
3477/*
3478 * check_data_csum - verify checksum of one sector of uncompressed data
7ffd27e3 3479 * @inode: inode
7959bd44 3480 * @bbio: btrfs_bio which contains the csum
7ffd27e3 3481 * @bio_offset: offset to the beginning of the bio (in bytes)
265d4ac0
QW
3482 * @page: page where is the data to be verified
3483 * @pgoff: offset inside the page
3484 *
3485 * The length of such check is always one sector size.
ae643a74
QW
3486 *
3487 * When csum mismatch is detected, we will also report the error and fill the
3488 * corrupted range with zero. (Thus it needs the extra parameters)
265d4ac0 3489 */
7959bd44
CH
3490int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3491 u32 bio_offset, struct page *page, u32 pgoff)
dc380aea 3492{
d5178578 3493 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
265d4ac0 3494 u32 len = fs_info->sectorsize;
d5178578
JT
3495 u8 *csum_expected;
3496 u8 csum[BTRFS_CSUM_SIZE];
dc380aea 3497
265d4ac0
QW
3498 ASSERT(pgoff + len <= PAGE_SIZE);
3499
a89ce08c 3500 csum_expected = btrfs_csum_ptr(fs_info, bbio->csum, bio_offset);
d5178578 3501
ae643a74 3502 if (btrfs_check_sector_csum(fs_info, page, pgoff, csum, csum_expected))
dc380aea 3503 goto zeroit;
dc380aea 3504 return 0;
ae643a74 3505
dc380aea 3506zeroit:
7959bd44
CH
3507 btrfs_print_data_csum_error(BTRFS_I(inode),
3508 bbio->file_offset + bio_offset,
3509 csum, csum_expected, bbio->mirror_num);
c3a3b19b
QW
3510 if (bbio->device)
3511 btrfs_dev_stat_inc_and_print(bbio->device,
814723e0 3512 BTRFS_DEV_STAT_CORRUPTION_ERRS);
b06660b5 3513 memzero_page(page, pgoff, len);
dc380aea
MX
3514 return -EIO;
3515}
3516
d352ac68 3517/*
7ffd27e3 3518 * When reads are done, we need to check csums to verify the data is correct.
4a54c8c1
JS
3519 * if there's a match, we allow the bio to finish. If not, the code in
3520 * extent_io.c will try to find good copies for us.
7ffd27e3
QW
3521 *
3522 * @bio_offset: offset to the beginning of the bio (in bytes)
3523 * @start: file offset of the range start
3524 * @end: file offset of the range end (inclusive)
08508fea
QW
3525 *
3526 * Return a bitmap where bit set means a csum mismatch, and bit not set means
3527 * csum match.
d352ac68 3528 */
c3a3b19b
QW
3529unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3530 u32 bio_offset, struct page *page,
3531 u64 start, u64 end)
07157aac 3532{
07157aac 3533 struct inode *inode = page->mapping->host;
e4f94347 3534 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d1310b2e 3535 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3536 struct btrfs_root *root = BTRFS_I(inode)->root;
f44cf410
QW
3537 const u32 sectorsize = root->fs_info->sectorsize;
3538 u32 pg_off;
08508fea 3539 unsigned int result = 0;
d1310b2e 3540
3670e645 3541 /*
e4f94347
QW
3542 * This only happens for NODATASUM or compressed read.
3543 * Normally this should be covered by above check for compressed read
3544 * or the next check for NODATASUM. Just do a quicker exit here.
3670e645 3545 */
c3a3b19b 3546 if (bbio->csum == NULL)
dc380aea 3547 return 0;
17d217fe 3548
6cbff00f 3549 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
42437a63
JB
3550 return 0;
3551
056c8311 3552 if (unlikely(test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state)))
b6cda9bc 3553 return 0;
d20f7043 3554
f44cf410
QW
3555 ASSERT(page_offset(page) <= start &&
3556 end <= page_offset(page) + PAGE_SIZE - 1);
3557 for (pg_off = offset_in_page(start);
3558 pg_off < offset_in_page(end);
3559 pg_off += sectorsize, bio_offset += sectorsize) {
e3c62324 3560 u64 file_offset = pg_off + page_offset(page);
f44cf410
QW
3561 int ret;
3562
37f00a6d 3563 if (btrfs_is_data_reloc_root(root) &&
e3c62324
QW
3564 test_range_bit(io_tree, file_offset,
3565 file_offset + sectorsize - 1,
3566 EXTENT_NODATASUM, 1, NULL)) {
3567 /* Skip the range without csum for data reloc inode */
3568 clear_extent_bits(io_tree, file_offset,
3569 file_offset + sectorsize - 1,
3570 EXTENT_NODATASUM);
3571 continue;
3572 }
7959bd44 3573 ret = btrfs_check_data_csum(inode, bbio, bio_offset, page, pg_off);
08508fea
QW
3574 if (ret < 0) {
3575 const int nr_bit = (pg_off - offset_in_page(start)) >>
3576 root->fs_info->sectorsize_bits;
3577
3578 result |= (1U << nr_bit);
3579 }
f44cf410 3580 }
08508fea 3581 return result;
07157aac 3582}
b888db2b 3583
c1c3fac2
NB
3584/*
3585 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3586 *
3587 * @inode: The inode we want to perform iput on
3588 *
3589 * This function uses the generic vfs_inode::i_count to track whether we should
3590 * just decrement it (in case it's > 1) or if this is the last iput then link
3591 * the inode to the delayed iput machinery. Delayed iputs are processed at
3592 * transaction commit time/superblock commit/cleaner kthread.
3593 */
24bbcf04
YZ
3594void btrfs_add_delayed_iput(struct inode *inode)
3595{
0b246afa 3596 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3597 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3598
3599 if (atomic_add_unless(&inode->i_count, -1, 1))
3600 return;
3601
034f784d 3602 atomic_inc(&fs_info->nr_delayed_iputs);
24bbcf04 3603 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3604 ASSERT(list_empty(&binode->delayed_iput));
3605 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04 3606 spin_unlock(&fs_info->delayed_iput_lock);
fd340d0f
JB
3607 if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
3608 wake_up_process(fs_info->cleaner_kthread);
24bbcf04
YZ
3609}
3610
63611e73
JB
3611static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
3612 struct btrfs_inode *inode)
3613{
3614 list_del_init(&inode->delayed_iput);
3615 spin_unlock(&fs_info->delayed_iput_lock);
3616 iput(&inode->vfs_inode);
3617 if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
3618 wake_up(&fs_info->delayed_iputs_wait);
3619 spin_lock(&fs_info->delayed_iput_lock);
3620}
3621
3622static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
3623 struct btrfs_inode *inode)
3624{
3625 if (!list_empty(&inode->delayed_iput)) {
3626 spin_lock(&fs_info->delayed_iput_lock);
3627 if (!list_empty(&inode->delayed_iput))
3628 run_delayed_iput_locked(fs_info, inode);
3629 spin_unlock(&fs_info->delayed_iput_lock);
3630 }
3631}
3632
2ff7e61e 3633void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3634{
24bbcf04 3635
24bbcf04 3636 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3637 while (!list_empty(&fs_info->delayed_iputs)) {
3638 struct btrfs_inode *inode;
3639
3640 inode = list_first_entry(&fs_info->delayed_iputs,
3641 struct btrfs_inode, delayed_iput);
63611e73 3642 run_delayed_iput_locked(fs_info, inode);
71795ee5 3643 cond_resched_lock(&fs_info->delayed_iput_lock);
24bbcf04 3644 }
8089fe62 3645 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3646}
3647
e43eec81 3648/*
2639631d
NB
3649 * Wait for flushing all delayed iputs
3650 *
3651 * @fs_info: the filesystem
034f784d
JB
3652 *
3653 * This will wait on any delayed iputs that are currently running with KILLABLE
3654 * set. Once they are all done running we will return, unless we are killed in
3655 * which case we return EINTR. This helps in user operations like fallocate etc
3656 * that might get blocked on the iputs.
2639631d
NB
3657 *
3658 * Return EINTR if we were killed, 0 if nothing's pending
034f784d
JB
3659 */
3660int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
3661{
3662 int ret = wait_event_killable(fs_info->delayed_iputs_wait,
3663 atomic_read(&fs_info->nr_delayed_iputs) == 0);
3664 if (ret)
3665 return -EINTR;
3666 return 0;
3667}
3668
7b128766 3669/*
f7e9e8fc
OS
3670 * This creates an orphan entry for the given inode in case something goes wrong
3671 * in the middle of an unlink.
7b128766 3672 */
73f2e545 3673int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3674 struct btrfs_inode *inode)
7b128766 3675{
d68fc57b 3676 int ret;
7b128766 3677
27919067
OS
3678 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3679 if (ret && ret != -EEXIST) {
3680 btrfs_abort_transaction(trans, ret);
3681 return ret;
d68fc57b
YZ
3682 }
3683
d68fc57b 3684 return 0;
7b128766
JB
3685}
3686
3687/*
f7e9e8fc
OS
3688 * We have done the delete so we can go ahead and remove the orphan item for
3689 * this particular inode.
7b128766 3690 */
48a3b636 3691static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3692 struct btrfs_inode *inode)
7b128766 3693{
27919067 3694 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3695}
3696
3697/*
3698 * this cleans up any orphans that may be left on the list from the last use
3699 * of this root.
3700 */
66b4ffd1 3701int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3702{
0b246afa 3703 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3704 struct btrfs_path *path;
3705 struct extent_buffer *leaf;
7b128766
JB
3706 struct btrfs_key key, found_key;
3707 struct btrfs_trans_handle *trans;
3708 struct inode *inode;
8f6d7f4f 3709 u64 last_objectid = 0;
f7e9e8fc 3710 int ret = 0, nr_unlink = 0;
7b128766 3711
54230013 3712 if (test_and_set_bit(BTRFS_ROOT_ORPHAN_CLEANUP, &root->state))
66b4ffd1 3713 return 0;
c71bf099
YZ
3714
3715 path = btrfs_alloc_path();
66b4ffd1
JB
3716 if (!path) {
3717 ret = -ENOMEM;
3718 goto out;
3719 }
e4058b54 3720 path->reada = READA_BACK;
7b128766
JB
3721
3722 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3723 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3724 key.offset = (u64)-1;
3725
7b128766
JB
3726 while (1) {
3727 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3728 if (ret < 0)
3729 goto out;
7b128766
JB
3730
3731 /*
3732 * if ret == 0 means we found what we were searching for, which
25985edc 3733 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3734 * find the key and see if we have stuff that matches
3735 */
3736 if (ret > 0) {
66b4ffd1 3737 ret = 0;
7b128766
JB
3738 if (path->slots[0] == 0)
3739 break;
3740 path->slots[0]--;
3741 }
3742
3743 /* pull out the item */
3744 leaf = path->nodes[0];
7b128766
JB
3745 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3746
3747 /* make sure the item matches what we want */
3748 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3749 break;
962a298f 3750 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3751 break;
3752
3753 /* release the path since we're done with it */
b3b4aa74 3754 btrfs_release_path(path);
7b128766
JB
3755
3756 /*
3757 * this is where we are basically btrfs_lookup, without the
3758 * crossing root thing. we store the inode number in the
3759 * offset of the orphan item.
3760 */
8f6d7f4f
JB
3761
3762 if (found_key.offset == last_objectid) {
0b246afa
JM
3763 btrfs_err(fs_info,
3764 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3765 ret = -EINVAL;
3766 goto out;
3767 }
3768
3769 last_objectid = found_key.offset;
3770
5d4f98a2
YZ
3771 found_key.objectid = found_key.offset;
3772 found_key.type = BTRFS_INODE_ITEM_KEY;
3773 found_key.offset = 0;
0202e83f 3774 inode = btrfs_iget(fs_info->sb, last_objectid, root);
8c6ffba0 3775 ret = PTR_ERR_OR_ZERO(inode);
67710892 3776 if (ret && ret != -ENOENT)
66b4ffd1 3777 goto out;
7b128766 3778
0b246afa 3779 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0 3780 struct btrfs_root *dead_root;
f8e9e0b0
AJ
3781 int is_dead_root = 0;
3782
3783 /*
0c0218e9 3784 * This is an orphan in the tree root. Currently these
f8e9e0b0 3785 * could come from 2 sources:
0c0218e9 3786 * a) a root (snapshot/subvolume) deletion in progress
f8e9e0b0 3787 * b) a free space cache inode
0c0218e9
FM
3788 * We need to distinguish those two, as the orphan item
3789 * for a root must not get deleted before the deletion
3790 * of the snapshot/subvolume's tree completes.
3791 *
3792 * btrfs_find_orphan_roots() ran before us, which has
3793 * found all deleted roots and loaded them into
fc7cbcd4 3794 * fs_info->fs_roots_radix. So here we can find if an
0c0218e9 3795 * orphan item corresponds to a deleted root by looking
fc7cbcd4 3796 * up the root from that radix tree.
f8e9e0b0 3797 */
a619b3c7 3798
fc7cbcd4
DS
3799 spin_lock(&fs_info->fs_roots_radix_lock);
3800 dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3801 (unsigned long)found_key.objectid);
a619b3c7
RK
3802 if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3803 is_dead_root = 1;
fc7cbcd4 3804 spin_unlock(&fs_info->fs_roots_radix_lock);
a619b3c7 3805
f8e9e0b0
AJ
3806 if (is_dead_root) {
3807 /* prevent this orphan from being found again */
3808 key.offset = found_key.objectid - 1;
3809 continue;
3810 }
f7e9e8fc 3811
f8e9e0b0 3812 }
f7e9e8fc 3813
7b128766 3814 /*
f7e9e8fc 3815 * If we have an inode with links, there are a couple of
70524253
BB
3816 * possibilities:
3817 *
3818 * 1. We were halfway through creating fsverity metadata for the
3819 * file. In that case, the orphan item represents incomplete
3820 * fsverity metadata which must be cleaned up with
3821 * btrfs_drop_verity_items and deleting the orphan item.
3822
3823 * 2. Old kernels (before v3.12) used to create an
f7e9e8fc
OS
3824 * orphan item for truncate indicating that there were possibly
3825 * extent items past i_size that needed to be deleted. In v3.12,
3826 * truncate was changed to update i_size in sync with the extent
3827 * items, but the (useless) orphan item was still created. Since
3828 * v4.18, we don't create the orphan item for truncate at all.
3829 *
3830 * So, this item could mean that we need to do a truncate, but
3831 * only if this filesystem was last used on a pre-v3.12 kernel
3832 * and was not cleanly unmounted. The odds of that are quite
3833 * slim, and it's a pain to do the truncate now, so just delete
3834 * the orphan item.
3835 *
3836 * It's also possible that this orphan item was supposed to be
3837 * deleted but wasn't. The inode number may have been reused,
3838 * but either way, we can delete the orphan item.
7b128766 3839 */
f7e9e8fc 3840 if (ret == -ENOENT || inode->i_nlink) {
70524253
BB
3841 if (!ret) {
3842 ret = btrfs_drop_verity_items(BTRFS_I(inode));
f7e9e8fc 3843 iput(inode);
70524253
BB
3844 if (ret)
3845 goto out;
3846 }
a8c9e576 3847 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3848 if (IS_ERR(trans)) {
3849 ret = PTR_ERR(trans);
3850 goto out;
3851 }
0b246afa
JM
3852 btrfs_debug(fs_info, "auto deleting %Lu",
3853 found_key.objectid);
a8c9e576
JB
3854 ret = btrfs_del_orphan_item(trans, root,
3855 found_key.objectid);
3a45bb20 3856 btrfs_end_transaction(trans);
4ef31a45
JB
3857 if (ret)
3858 goto out;
7b128766
JB
3859 continue;
3860 }
3861
f7e9e8fc 3862 nr_unlink++;
7b128766
JB
3863
3864 /* this will do delete_inode and everything for us */
3865 iput(inode);
3866 }
3254c876
MX
3867 /* release the path since we're done with it */
3868 btrfs_release_path(path);
3869
a575ceeb 3870 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3871 trans = btrfs_join_transaction(root);
66b4ffd1 3872 if (!IS_ERR(trans))
3a45bb20 3873 btrfs_end_transaction(trans);
d68fc57b 3874 }
7b128766
JB
3875
3876 if (nr_unlink)
0b246afa 3877 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3878
3879out:
3880 if (ret)
0b246afa 3881 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3882 btrfs_free_path(path);
3883 return ret;
7b128766
JB
3884}
3885
46a53cca
CM
3886/*
3887 * very simple check to peek ahead in the leaf looking for xattrs. If we
3888 * don't find any xattrs, we know there can't be any acls.
3889 *
3890 * slot is the slot the inode is in, objectid is the objectid of the inode
3891 */
3892static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3893 int slot, u64 objectid,
3894 int *first_xattr_slot)
46a53cca
CM
3895{
3896 u32 nritems = btrfs_header_nritems(leaf);
3897 struct btrfs_key found_key;
f23b5a59
JB
3898 static u64 xattr_access = 0;
3899 static u64 xattr_default = 0;
46a53cca
CM
3900 int scanned = 0;
3901
f23b5a59 3902 if (!xattr_access) {
97d79299
AG
3903 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3904 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3905 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3906 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3907 }
3908
46a53cca 3909 slot++;
63541927 3910 *first_xattr_slot = -1;
46a53cca
CM
3911 while (slot < nritems) {
3912 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3913
3914 /* we found a different objectid, there must not be acls */
3915 if (found_key.objectid != objectid)
3916 return 0;
3917
3918 /* we found an xattr, assume we've got an acl */
f23b5a59 3919 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3920 if (*first_xattr_slot == -1)
3921 *first_xattr_slot = slot;
f23b5a59
JB
3922 if (found_key.offset == xattr_access ||
3923 found_key.offset == xattr_default)
3924 return 1;
3925 }
46a53cca
CM
3926
3927 /*
3928 * we found a key greater than an xattr key, there can't
3929 * be any acls later on
3930 */
3931 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3932 return 0;
3933
3934 slot++;
3935 scanned++;
3936
3937 /*
3938 * it goes inode, inode backrefs, xattrs, extents,
3939 * so if there are a ton of hard links to an inode there can
3940 * be a lot of backrefs. Don't waste time searching too hard,
3941 * this is just an optimization
3942 */
3943 if (scanned >= 8)
3944 break;
3945 }
3946 /* we hit the end of the leaf before we found an xattr or
3947 * something larger than an xattr. We have to assume the inode
3948 * has acls
3949 */
63541927
FDBM
3950 if (*first_xattr_slot == -1)
3951 *first_xattr_slot = slot;
46a53cca
CM
3952 return 1;
3953}
3954
d352ac68
CM
3955/*
3956 * read an inode from the btree into the in-memory inode
3957 */
4222ea71
FM
3958static int btrfs_read_locked_inode(struct inode *inode,
3959 struct btrfs_path *in_path)
39279cc3 3960{
0b246afa 3961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3962 struct btrfs_path *path = in_path;
5f39d397 3963 struct extent_buffer *leaf;
39279cc3
CM
3964 struct btrfs_inode_item *inode_item;
3965 struct btrfs_root *root = BTRFS_I(inode)->root;
3966 struct btrfs_key location;
67de1176 3967 unsigned long ptr;
46a53cca 3968 int maybe_acls;
618e21d5 3969 u32 rdev;
39279cc3 3970 int ret;
2f7e33d4 3971 bool filled = false;
63541927 3972 int first_xattr_slot;
2f7e33d4
MX
3973
3974 ret = btrfs_fill_inode(inode, &rdev);
3975 if (!ret)
3976 filled = true;
39279cc3 3977
4222ea71
FM
3978 if (!path) {
3979 path = btrfs_alloc_path();
3980 if (!path)
3981 return -ENOMEM;
3982 }
1748f843 3983
39279cc3 3984 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3985
39279cc3 3986 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3987 if (ret) {
4222ea71
FM
3988 if (path != in_path)
3989 btrfs_free_path(path);
f5b3a417 3990 return ret;
67710892 3991 }
39279cc3 3992
5f39d397 3993 leaf = path->nodes[0];
2f7e33d4
MX
3994
3995 if (filled)
67de1176 3996 goto cache_index;
2f7e33d4 3997
5f39d397
CM
3998 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3999 struct btrfs_inode_item);
5f39d397 4000 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 4001 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
4002 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
4003 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 4004 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
41a2ee75
JB
4005 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
4006 round_up(i_size_read(inode), fs_info->sectorsize));
5f39d397 4007
a937b979
DS
4008 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
4009 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 4010
a937b979
DS
4011 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
4012 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 4013
a937b979
DS
4014 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
4015 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 4016
9cc97d64 4017 BTRFS_I(inode)->i_otime.tv_sec =
4018 btrfs_timespec_sec(leaf, &inode_item->otime);
4019 BTRFS_I(inode)->i_otime.tv_nsec =
4020 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 4021
a76a3cd4 4022 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 4023 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
4024 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
4025
c7f88c4e
JL
4026 inode_set_iversion_queried(inode,
4027 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
4028 inode->i_generation = BTRFS_I(inode)->generation;
4029 inode->i_rdev = 0;
4030 rdev = btrfs_inode_rdev(leaf, inode_item);
4031
4032 BTRFS_I(inode)->index_cnt = (u64)-1;
77eea05e
BB
4033 btrfs_inode_split_flags(btrfs_inode_flags(leaf, inode_item),
4034 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags);
6e17d30b
YD
4035
4036cache_index:
5dc562c5
JB
4037 /*
4038 * If we were modified in the current generation and evicted from memory
4039 * and then re-read we need to do a full sync since we don't have any
4040 * idea about which extents were modified before we were evicted from
4041 * cache.
6e17d30b
YD
4042 *
4043 * This is required for both inode re-read from disk and delayed inode
088aea3b 4044 * in delayed_nodes_tree.
5dc562c5 4045 */
0b246afa 4046 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
4047 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4048 &BTRFS_I(inode)->runtime_flags);
4049
bde6c242
FM
4050 /*
4051 * We don't persist the id of the transaction where an unlink operation
4052 * against the inode was last made. So here we assume the inode might
4053 * have been evicted, and therefore the exact value of last_unlink_trans
4054 * lost, and set it to last_trans to avoid metadata inconsistencies
4055 * between the inode and its parent if the inode is fsync'ed and the log
4056 * replayed. For example, in the scenario:
4057 *
4058 * touch mydir/foo
4059 * ln mydir/foo mydir/bar
4060 * sync
4061 * unlink mydir/bar
4062 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
4063 * xfs_io -c fsync mydir/foo
4064 * <power failure>
4065 * mount fs, triggers fsync log replay
4066 *
4067 * We must make sure that when we fsync our inode foo we also log its
4068 * parent inode, otherwise after log replay the parent still has the
4069 * dentry with the "bar" name but our inode foo has a link count of 1
4070 * and doesn't have an inode ref with the name "bar" anymore.
4071 *
4072 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 4073 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
4074 * transaction commits on fsync if our inode is a directory, or if our
4075 * inode is not a directory, logging its parent unnecessarily.
4076 */
4077 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
4078
3ebac17c
FM
4079 /*
4080 * Same logic as for last_unlink_trans. We don't persist the generation
4081 * of the last transaction where this inode was used for a reflink
4082 * operation, so after eviction and reloading the inode we must be
4083 * pessimistic and assume the last transaction that modified the inode.
4084 */
4085 BTRFS_I(inode)->last_reflink_trans = BTRFS_I(inode)->last_trans;
4086
67de1176
MX
4087 path->slots[0]++;
4088 if (inode->i_nlink != 1 ||
4089 path->slots[0] >= btrfs_header_nritems(leaf))
4090 goto cache_acl;
4091
4092 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 4093 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
4094 goto cache_acl;
4095
4096 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4097 if (location.type == BTRFS_INODE_REF_KEY) {
4098 struct btrfs_inode_ref *ref;
4099
4100 ref = (struct btrfs_inode_ref *)ptr;
4101 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
4102 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
4103 struct btrfs_inode_extref *extref;
4104
4105 extref = (struct btrfs_inode_extref *)ptr;
4106 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
4107 extref);
4108 }
2f7e33d4 4109cache_acl:
46a53cca
CM
4110 /*
4111 * try to precache a NULL acl entry for files that don't have
4112 * any xattrs or acls
4113 */
33345d01 4114 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 4115 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
4116 if (first_xattr_slot != -1) {
4117 path->slots[0] = first_xattr_slot;
4118 ret = btrfs_load_inode_props(inode, path);
4119 if (ret)
0b246afa 4120 btrfs_err(fs_info,
351fd353 4121 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 4122 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
4123 root->root_key.objectid, ret);
4124 }
4222ea71
FM
4125 if (path != in_path)
4126 btrfs_free_path(path);
63541927 4127
72c04902
AV
4128 if (!maybe_acls)
4129 cache_no_acl(inode);
46a53cca 4130
39279cc3 4131 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
4132 case S_IFREG:
4133 inode->i_mapping->a_ops = &btrfs_aops;
4134 inode->i_fop = &btrfs_file_operations;
4135 inode->i_op = &btrfs_file_inode_operations;
4136 break;
4137 case S_IFDIR:
4138 inode->i_fop = &btrfs_dir_file_operations;
67ade058 4139 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
4140 break;
4141 case S_IFLNK:
4142 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 4143 inode_nohighmem(inode);
4779cc04 4144 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 4145 break;
618e21d5 4146 default:
0279b4cd 4147 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
4148 init_special_inode(inode, inode->i_mode, rdev);
4149 break;
39279cc3 4150 }
6cbff00f 4151
7b6a221e 4152 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 4153 return 0;
39279cc3
CM
4154}
4155
d352ac68
CM
4156/*
4157 * given a leaf and an inode, copy the inode fields into the leaf
4158 */
e02119d5
CM
4159static void fill_inode_item(struct btrfs_trans_handle *trans,
4160 struct extent_buffer *leaf,
5f39d397 4161 struct btrfs_inode_item *item,
39279cc3
CM
4162 struct inode *inode)
4163{
51fab693 4164 struct btrfs_map_token token;
77eea05e 4165 u64 flags;
51fab693 4166
c82f823c 4167 btrfs_init_map_token(&token, leaf);
5f39d397 4168
cc4c13d5
DS
4169 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4170 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4171 btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
4172 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4173 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4174
4175 btrfs_set_token_timespec_sec(&token, &item->atime,
4176 inode->i_atime.tv_sec);
4177 btrfs_set_token_timespec_nsec(&token, &item->atime,
4178 inode->i_atime.tv_nsec);
4179
4180 btrfs_set_token_timespec_sec(&token, &item->mtime,
4181 inode->i_mtime.tv_sec);
4182 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4183 inode->i_mtime.tv_nsec);
4184
4185 btrfs_set_token_timespec_sec(&token, &item->ctime,
4186 inode->i_ctime.tv_sec);
4187 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4188 inode->i_ctime.tv_nsec);
4189
4190 btrfs_set_token_timespec_sec(&token, &item->otime,
4191 BTRFS_I(inode)->i_otime.tv_sec);
4192 btrfs_set_token_timespec_nsec(&token, &item->otime,
4193 BTRFS_I(inode)->i_otime.tv_nsec);
4194
4195 btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
4196 btrfs_set_token_inode_generation(&token, item,
4197 BTRFS_I(inode)->generation);
4198 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4199 btrfs_set_token_inode_transid(&token, item, trans->transid);
4200 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
77eea05e
BB
4201 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4202 BTRFS_I(inode)->ro_flags);
4203 btrfs_set_token_inode_flags(&token, item, flags);
cc4c13d5 4204 btrfs_set_token_inode_block_group(&token, item, 0);
39279cc3
CM
4205}
4206
d352ac68
CM
4207/*
4208 * copy everything in the in-memory inode into the btree.
4209 */
2115133f 4210static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
dfeb9e7c
NB
4211 struct btrfs_root *root,
4212 struct btrfs_inode *inode)
39279cc3
CM
4213{
4214 struct btrfs_inode_item *inode_item;
4215 struct btrfs_path *path;
5f39d397 4216 struct extent_buffer *leaf;
39279cc3
CM
4217 int ret;
4218
4219 path = btrfs_alloc_path();
16cdcec7
MX
4220 if (!path)
4221 return -ENOMEM;
4222
dfeb9e7c 4223 ret = btrfs_lookup_inode(trans, root, path, &inode->location, 1);
39279cc3
CM
4224 if (ret) {
4225 if (ret > 0)
4226 ret = -ENOENT;
4227 goto failed;
4228 }
4229
5f39d397
CM
4230 leaf = path->nodes[0];
4231 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 4232 struct btrfs_inode_item);
39279cc3 4233
dfeb9e7c 4234 fill_inode_item(trans, leaf, inode_item, &inode->vfs_inode);
5f39d397 4235 btrfs_mark_buffer_dirty(leaf);
dfeb9e7c 4236 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
4237 ret = 0;
4238failed:
39279cc3
CM
4239 btrfs_free_path(path);
4240 return ret;
4241}
4242
2115133f
CM
4243/*
4244 * copy everything in the in-memory inode into the btree.
4245 */
4246noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
9a56fcd1
NB
4247 struct btrfs_root *root,
4248 struct btrfs_inode *inode)
2115133f 4249{
0b246afa 4250 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4251 int ret;
4252
4253 /*
4254 * If the inode is a free space inode, we can deadlock during commit
4255 * if we put it into the delayed code.
4256 *
4257 * The data relocation inode should also be directly updated
4258 * without delay
4259 */
9a56fcd1 4260 if (!btrfs_is_free_space_inode(inode)
37f00a6d 4261 && !btrfs_is_data_reloc_root(root)
0b246afa 4262 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4263 btrfs_update_root_times(trans, root);
4264
9a56fcd1 4265 ret = btrfs_delayed_update_inode(trans, root, inode);
2115133f 4266 if (!ret)
9a56fcd1 4267 btrfs_set_inode_last_trans(trans, inode);
2115133f
CM
4268 return ret;
4269 }
4270
9a56fcd1 4271 return btrfs_update_inode_item(trans, root, inode);
2115133f
CM
4272}
4273
729f7961
NB
4274int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4275 struct btrfs_root *root, struct btrfs_inode *inode)
2115133f
CM
4276{
4277 int ret;
4278
729f7961 4279 ret = btrfs_update_inode(trans, root, inode);
2115133f 4280 if (ret == -ENOSPC)
729f7961 4281 return btrfs_update_inode_item(trans, root, inode);
2115133f
CM
4282 return ret;
4283}
4284
d352ac68
CM
4285/*
4286 * unlink helper that gets used here in inode.c and in the tree logging
4287 * recovery code. It remove a link in a directory with a given name, and
4288 * also drops the back refs in the inode to the directory
4289 */
92986796 4290static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4ec5934e
NB
4291 struct btrfs_inode *dir,
4292 struct btrfs_inode *inode,
6db75318 4293 const struct fscrypt_str *name,
88d2beec 4294 struct btrfs_rename_ctx *rename_ctx)
39279cc3 4295{
4467af88 4296 struct btrfs_root *root = dir->root;
0b246afa 4297 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4298 struct btrfs_path *path;
39279cc3 4299 int ret = 0;
39279cc3 4300 struct btrfs_dir_item *di;
aec7477b 4301 u64 index;
33345d01
LZ
4302 u64 ino = btrfs_ino(inode);
4303 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4304
4305 path = btrfs_alloc_path();
54aa1f4d
CM
4306 if (!path) {
4307 ret = -ENOMEM;
554233a6 4308 goto out;
54aa1f4d
CM
4309 }
4310
e43eec81 4311 di = btrfs_lookup_dir_item(trans, root, path, dir_ino, name, -1);
3cf5068f
LB
4312 if (IS_ERR_OR_NULL(di)) {
4313 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
4314 goto err;
4315 }
39279cc3 4316 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4317 if (ret)
4318 goto err;
b3b4aa74 4319 btrfs_release_path(path);
39279cc3 4320
67de1176
MX
4321 /*
4322 * If we don't have dir index, we have to get it by looking up
4323 * the inode ref, since we get the inode ref, remove it directly,
4324 * it is unnecessary to do delayed deletion.
4325 *
4326 * But if we have dir index, needn't search inode ref to get it.
4327 * Since the inode ref is close to the inode item, it is better
4328 * that we delay to delete it, and just do this deletion when
4329 * we update the inode item.
4330 */
4ec5934e 4331 if (inode->dir_index) {
67de1176
MX
4332 ret = btrfs_delayed_delete_inode_ref(inode);
4333 if (!ret) {
4ec5934e 4334 index = inode->dir_index;
67de1176
MX
4335 goto skip_backref;
4336 }
4337 }
4338
e43eec81 4339 ret = btrfs_del_inode_ref(trans, root, name, ino, dir_ino, &index);
aec7477b 4340 if (ret) {
0b246afa 4341 btrfs_info(fs_info,
c2cf52eb 4342 "failed to delete reference to %.*s, inode %llu parent %llu",
e43eec81 4343 name->len, name->name, ino, dir_ino);
66642832 4344 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4345 goto err;
4346 }
67de1176 4347skip_backref:
88d2beec
FM
4348 if (rename_ctx)
4349 rename_ctx->index = index;
4350
9add2945 4351 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 4352 if (ret) {
66642832 4353 btrfs_abort_transaction(trans, ret);
39279cc3 4354 goto err;
79787eaa 4355 }
39279cc3 4356
259c4b96
FM
4357 /*
4358 * If we are in a rename context, we don't need to update anything in the
4359 * log. That will be done later during the rename by btrfs_log_new_name().
143823cf 4360 * Besides that, doing it here would only cause extra unnecessary btree
259c4b96
FM
4361 * operations on the log tree, increasing latency for applications.
4362 */
4363 if (!rename_ctx) {
e43eec81
STD
4364 btrfs_del_inode_ref_in_log(trans, root, name, inode, dir_ino);
4365 btrfs_del_dir_entries_in_log(trans, root, name, dir, index);
259c4b96 4366 }
63611e73
JB
4367
4368 /*
4369 * If we have a pending delayed iput we could end up with the final iput
4370 * being run in btrfs-cleaner context. If we have enough of these built
4371 * up we can end up burning a lot of time in btrfs-cleaner without any
4372 * way to throttle the unlinks. Since we're currently holding a ref on
4373 * the inode we can run the delayed iput here without any issues as the
4374 * final iput won't be done until after we drop the ref we're currently
4375 * holding.
4376 */
4377 btrfs_run_delayed_iput(fs_info, inode);
39279cc3
CM
4378err:
4379 btrfs_free_path(path);
e02119d5
CM
4380 if (ret)
4381 goto out;
4382
e43eec81 4383 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name->len * 2);
4ec5934e
NB
4384 inode_inc_iversion(&inode->vfs_inode);
4385 inode_inc_iversion(&dir->vfs_inode);
c1867eb3
DS
4386 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4387 dir->vfs_inode.i_mtime = inode->vfs_inode.i_ctime;
4388 dir->vfs_inode.i_ctime = inode->vfs_inode.i_ctime;
9a56fcd1 4389 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4390out:
39279cc3
CM
4391 return ret;
4392}
4393
92986796 4394int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4ec5934e 4395 struct btrfs_inode *dir, struct btrfs_inode *inode,
6db75318 4396 const struct fscrypt_str *name)
92986796
AV
4397{
4398 int ret;
e43eec81
STD
4399
4400 ret = __btrfs_unlink_inode(trans, dir, inode, name, NULL);
92986796 4401 if (!ret) {
4ec5934e 4402 drop_nlink(&inode->vfs_inode);
4467af88 4403 ret = btrfs_update_inode(trans, inode->root, inode);
92986796
AV
4404 }
4405 return ret;
4406}
39279cc3 4407
a22285a6
YZ
4408/*
4409 * helper to start transaction for unlink and rmdir.
4410 *
d52be818
JB
4411 * unlink and rmdir are special in btrfs, they do not always free space, so
4412 * if we cannot make our reservations the normal way try and see if there is
4413 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4414 * allow the unlink to occur.
a22285a6 4415 */
d52be818 4416static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4417{
a22285a6 4418 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4419
e70bea5f
JB
4420 /*
4421 * 1 for the possible orphan item
4422 * 1 for the dir item
4423 * 1 for the dir index
4424 * 1 for the inode ref
e70bea5f 4425 * 1 for the inode
bca4ad7c 4426 * 1 for the parent inode
e70bea5f 4427 */
bca4ad7c 4428 return btrfs_start_transaction_fallback_global_rsv(root, 6);
a22285a6
YZ
4429}
4430
4431static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4432{
a22285a6 4433 struct btrfs_trans_handle *trans;
2b0143b5 4434 struct inode *inode = d_inode(dentry);
a22285a6 4435 int ret;
ab3c5c18 4436 struct fscrypt_name fname;
ab3c5c18
STD
4437
4438 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4439 if (ret)
4440 return ret;
ab3c5c18
STD
4441
4442 /* This needs to handle no-key deletions later on */
a22285a6 4443
d52be818 4444 trans = __unlink_start_trans(dir);
ab3c5c18
STD
4445 if (IS_ERR(trans)) {
4446 ret = PTR_ERR(trans);
4447 goto fscrypt_free;
4448 }
5f39d397 4449
4ec5934e
NB
4450 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4451 0);
12fcfd22 4452
e43eec81 4453 ret = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
6db75318 4454 &fname.disk_name);
b532402e 4455 if (ret)
ab3c5c18 4456 goto end_trans;
7b128766 4457
a22285a6 4458 if (inode->i_nlink == 0) {
73f2e545 4459 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e 4460 if (ret)
ab3c5c18 4461 goto end_trans;
a22285a6 4462 }
7b128766 4463
ab3c5c18 4464end_trans:
3a45bb20 4465 btrfs_end_transaction(trans);
4467af88 4466 btrfs_btree_balance_dirty(BTRFS_I(dir)->root->fs_info);
ab3c5c18
STD
4467fscrypt_free:
4468 fscrypt_free_filename(&fname);
39279cc3
CM
4469 return ret;
4470}
4471
f60a2364 4472static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
045d3967 4473 struct inode *dir, struct dentry *dentry)
4df27c4d 4474{
401b3b19 4475 struct btrfs_root *root = BTRFS_I(dir)->root;
045d3967 4476 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
4df27c4d
YZ
4477 struct btrfs_path *path;
4478 struct extent_buffer *leaf;
4479 struct btrfs_dir_item *di;
4480 struct btrfs_key key;
4481 u64 index;
4482 int ret;
045d3967 4483 u64 objectid;
4a0cc7ca 4484 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
ab3c5c18
STD
4485 struct fscrypt_name fname;
4486
4487 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4488 if (ret)
4489 return ret;
ab3c5c18
STD
4490
4491 /* This needs to handle no-key deletions later on */
4df27c4d 4492
045d3967
JB
4493 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
4494 objectid = inode->root->root_key.objectid;
4495 } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
4496 objectid = inode->location.objectid;
4497 } else {
4498 WARN_ON(1);
ab3c5c18 4499 fscrypt_free_filename(&fname);
045d3967
JB
4500 return -EINVAL;
4501 }
4502
4df27c4d 4503 path = btrfs_alloc_path();
ab3c5c18
STD
4504 if (!path) {
4505 ret = -ENOMEM;
4506 goto out;
4507 }
4df27c4d 4508
6db75318
STD
4509 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4510 &fname.disk_name, -1);
79787eaa 4511 if (IS_ERR_OR_NULL(di)) {
3cf5068f 4512 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
4513 goto out;
4514 }
4df27c4d
YZ
4515
4516 leaf = path->nodes[0];
4517 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4518 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4519 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4520 if (ret) {
66642832 4521 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4522 goto out;
4523 }
b3b4aa74 4524 btrfs_release_path(path);
4df27c4d 4525
d49d3287
JB
4526 /*
4527 * This is a placeholder inode for a subvolume we didn't have a
4528 * reference to at the time of the snapshot creation. In the meantime
4529 * we could have renamed the real subvol link into our snapshot, so
1a9fd417 4530 * depending on btrfs_del_root_ref to return -ENOENT here is incorrect.
d49d3287
JB
4531 * Instead simply lookup the dir_index_item for this entry so we can
4532 * remove it. Otherwise we know we have a ref to the root and we can
4533 * call btrfs_del_root_ref, and it _shouldn't_ fail.
4534 */
4535 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
6db75318 4536 di = btrfs_search_dir_index_item(root, path, dir_ino, &fname.disk_name);
79787eaa
JM
4537 if (IS_ERR_OR_NULL(di)) {
4538 if (!di)
4539 ret = -ENOENT;
4540 else
4541 ret = PTR_ERR(di);
66642832 4542 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4543 goto out;
4544 }
4df27c4d
YZ
4545
4546 leaf = path->nodes[0];
4547 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d 4548 index = key.offset;
d49d3287
JB
4549 btrfs_release_path(path);
4550 } else {
4551 ret = btrfs_del_root_ref(trans, objectid,
4552 root->root_key.objectid, dir_ino,
6db75318 4553 &index, &fname.disk_name);
d49d3287
JB
4554 if (ret) {
4555 btrfs_abort_transaction(trans, ret);
4556 goto out;
4557 }
4df27c4d
YZ
4558 }
4559
9add2945 4560 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 4561 if (ret) {
66642832 4562 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4563 goto out;
4564 }
4df27c4d 4565
6db75318 4566 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - fname.disk_name.len * 2);
0c4d2d95 4567 inode_inc_iversion(dir);
c1867eb3
DS
4568 dir->i_mtime = current_time(dir);
4569 dir->i_ctime = dir->i_mtime;
729f7961 4570 ret = btrfs_update_inode_fallback(trans, root, BTRFS_I(dir));
79787eaa 4571 if (ret)
66642832 4572 btrfs_abort_transaction(trans, ret);
79787eaa 4573out:
71d7aed0 4574 btrfs_free_path(path);
ab3c5c18 4575 fscrypt_free_filename(&fname);
79787eaa 4576 return ret;
4df27c4d
YZ
4577}
4578
ec42f167
MT
4579/*
4580 * Helper to check if the subvolume references other subvolumes or if it's
4581 * default.
4582 */
f60a2364 4583static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4584{
4585 struct btrfs_fs_info *fs_info = root->fs_info;
4586 struct btrfs_path *path;
4587 struct btrfs_dir_item *di;
4588 struct btrfs_key key;
6db75318 4589 struct fscrypt_str name = FSTR_INIT("default", 7);
ec42f167
MT
4590 u64 dir_id;
4591 int ret;
4592
4593 path = btrfs_alloc_path();
4594 if (!path)
4595 return -ENOMEM;
4596
4597 /* Make sure this root isn't set as the default subvol */
4598 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4599 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
e43eec81 4600 dir_id, &name, 0);
ec42f167
MT
4601 if (di && !IS_ERR(di)) {
4602 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4603 if (key.objectid == root->root_key.objectid) {
4604 ret = -EPERM;
4605 btrfs_err(fs_info,
4606 "deleting default subvolume %llu is not allowed",
4607 key.objectid);
4608 goto out;
4609 }
4610 btrfs_release_path(path);
4611 }
4612
4613 key.objectid = root->root_key.objectid;
4614 key.type = BTRFS_ROOT_REF_KEY;
4615 key.offset = (u64)-1;
4616
4617 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4618 if (ret < 0)
4619 goto out;
4620 BUG_ON(ret == 0);
4621
4622 ret = 0;
4623 if (path->slots[0] > 0) {
4624 path->slots[0]--;
4625 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4626 if (key.objectid == root->root_key.objectid &&
4627 key.type == BTRFS_ROOT_REF_KEY)
4628 ret = -ENOTEMPTY;
4629 }
4630out:
4631 btrfs_free_path(path);
4632 return ret;
4633}
4634
20a68004
NB
4635/* Delete all dentries for inodes belonging to the root */
4636static void btrfs_prune_dentries(struct btrfs_root *root)
4637{
4638 struct btrfs_fs_info *fs_info = root->fs_info;
4639 struct rb_node *node;
4640 struct rb_node *prev;
4641 struct btrfs_inode *entry;
4642 struct inode *inode;
4643 u64 objectid = 0;
4644
84961539 4645 if (!BTRFS_FS_ERROR(fs_info))
20a68004
NB
4646 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4647
4648 spin_lock(&root->inode_lock);
4649again:
4650 node = root->inode_tree.rb_node;
4651 prev = NULL;
4652 while (node) {
4653 prev = node;
4654 entry = rb_entry(node, struct btrfs_inode, rb_node);
4655
37508515 4656 if (objectid < btrfs_ino(entry))
20a68004 4657 node = node->rb_left;
37508515 4658 else if (objectid > btrfs_ino(entry))
20a68004
NB
4659 node = node->rb_right;
4660 else
4661 break;
4662 }
4663 if (!node) {
4664 while (prev) {
4665 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4666 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4667 node = prev;
4668 break;
4669 }
4670 prev = rb_next(prev);
4671 }
4672 }
4673 while (node) {
4674 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4675 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4676 inode = igrab(&entry->vfs_inode);
4677 if (inode) {
4678 spin_unlock(&root->inode_lock);
4679 if (atomic_read(&inode->i_count) > 1)
4680 d_prune_aliases(inode);
4681 /*
4682 * btrfs_drop_inode will have it removed from the inode
4683 * cache when its usage count hits zero.
4684 */
4685 iput(inode);
4686 cond_resched();
4687 spin_lock(&root->inode_lock);
4688 goto again;
4689 }
4690
4691 if (cond_resched_lock(&root->inode_lock))
4692 goto again;
4693
4694 node = rb_next(node);
4695 }
4696 spin_unlock(&root->inode_lock);
4697}
4698
f60a2364
MT
4699int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4700{
4701 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4702 struct btrfs_root *root = BTRFS_I(dir)->root;
4703 struct inode *inode = d_inode(dentry);
4704 struct btrfs_root *dest = BTRFS_I(inode)->root;
4705 struct btrfs_trans_handle *trans;
4706 struct btrfs_block_rsv block_rsv;
4707 u64 root_flags;
f60a2364 4708 int ret;
f60a2364
MT
4709
4710 /*
4711 * Don't allow to delete a subvolume with send in progress. This is
4712 * inside the inode lock so the error handling that has to drop the bit
4713 * again is not run concurrently.
4714 */
4715 spin_lock(&dest->root_item_lock);
a7176f74 4716 if (dest->send_in_progress) {
f60a2364
MT
4717 spin_unlock(&dest->root_item_lock);
4718 btrfs_warn(fs_info,
4719 "attempt to delete subvolume %llu during send",
4720 dest->root_key.objectid);
4721 return -EPERM;
4722 }
60021bd7
KH
4723 if (atomic_read(&dest->nr_swapfiles)) {
4724 spin_unlock(&dest->root_item_lock);
4725 btrfs_warn(fs_info,
4726 "attempt to delete subvolume %llu with active swapfile",
4727 root->root_key.objectid);
4728 return -EPERM;
4729 }
a7176f74
LF
4730 root_flags = btrfs_root_flags(&dest->root_item);
4731 btrfs_set_root_flags(&dest->root_item,
4732 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4733 spin_unlock(&dest->root_item_lock);
f60a2364
MT
4734
4735 down_write(&fs_info->subvol_sem);
4736
ee0d904f
NB
4737 ret = may_destroy_subvol(dest);
4738 if (ret)
f60a2364
MT
4739 goto out_up_write;
4740
4741 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4742 /*
4743 * One for dir inode,
4744 * two for dir entries,
4745 * two for root ref/backref.
4746 */
ee0d904f
NB
4747 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
4748 if (ret)
f60a2364
MT
4749 goto out_up_write;
4750
4751 trans = btrfs_start_transaction(root, 0);
4752 if (IS_ERR(trans)) {
ee0d904f 4753 ret = PTR_ERR(trans);
f60a2364
MT
4754 goto out_release;
4755 }
4756 trans->block_rsv = &block_rsv;
4757 trans->bytes_reserved = block_rsv.size;
4758
4759 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4760
045d3967 4761 ret = btrfs_unlink_subvol(trans, dir, dentry);
f60a2364 4762 if (ret) {
f60a2364
MT
4763 btrfs_abort_transaction(trans, ret);
4764 goto out_end_trans;
4765 }
4766
2731f518
JB
4767 ret = btrfs_record_root_in_trans(trans, dest);
4768 if (ret) {
4769 btrfs_abort_transaction(trans, ret);
4770 goto out_end_trans;
4771 }
f60a2364
MT
4772
4773 memset(&dest->root_item.drop_progress, 0,
4774 sizeof(dest->root_item.drop_progress));
c8422684 4775 btrfs_set_root_drop_level(&dest->root_item, 0);
f60a2364
MT
4776 btrfs_set_root_refs(&dest->root_item, 0);
4777
4778 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4779 ret = btrfs_insert_orphan_item(trans,
4780 fs_info->tree_root,
4781 dest->root_key.objectid);
4782 if (ret) {
4783 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4784 goto out_end_trans;
4785 }
4786 }
4787
d1957791 4788 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4789 BTRFS_UUID_KEY_SUBVOL,
4790 dest->root_key.objectid);
4791 if (ret && ret != -ENOENT) {
4792 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4793 goto out_end_trans;
4794 }
4795 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4796 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4797 dest->root_item.received_uuid,
4798 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4799 dest->root_key.objectid);
4800 if (ret && ret != -ENOENT) {
4801 btrfs_abort_transaction(trans, ret);
f60a2364
MT
4802 goto out_end_trans;
4803 }
4804 }
4805
082b6c97
QW
4806 free_anon_bdev(dest->anon_dev);
4807 dest->anon_dev = 0;
f60a2364
MT
4808out_end_trans:
4809 trans->block_rsv = NULL;
4810 trans->bytes_reserved = 0;
4811 ret = btrfs_end_transaction(trans);
f60a2364
MT
4812 inode->i_flags |= S_DEAD;
4813out_release:
e85fde51 4814 btrfs_subvolume_release_metadata(root, &block_rsv);
f60a2364
MT
4815out_up_write:
4816 up_write(&fs_info->subvol_sem);
ee0d904f 4817 if (ret) {
f60a2364
MT
4818 spin_lock(&dest->root_item_lock);
4819 root_flags = btrfs_root_flags(&dest->root_item);
4820 btrfs_set_root_flags(&dest->root_item,
4821 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4822 spin_unlock(&dest->root_item_lock);
4823 } else {
4824 d_invalidate(dentry);
20a68004 4825 btrfs_prune_dentries(dest);
f60a2364 4826 ASSERT(dest->send_in_progress == 0);
f60a2364
MT
4827 }
4828
ee0d904f 4829 return ret;
f60a2364
MT
4830}
4831
39279cc3
CM
4832static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4833{
2b0143b5 4834 struct inode *inode = d_inode(dentry);
813febdb 4835 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1832a6d5 4836 int err = 0;
39279cc3 4837 struct btrfs_trans_handle *trans;
44f714da 4838 u64 last_unlink_trans;
ab3c5c18 4839 struct fscrypt_name fname;
39279cc3 4840
b3ae244e 4841 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4842 return -ENOTEMPTY;
813febdb
JB
4843 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) {
4844 if (unlikely(btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))) {
4845 btrfs_err(fs_info,
4846 "extent tree v2 doesn't support snapshot deletion yet");
4847 return -EOPNOTSUPP;
4848 }
a79a464d 4849 return btrfs_delete_subvolume(dir, dentry);
813febdb 4850 }
134d4512 4851
ab3c5c18
STD
4852 err = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
4853 if (err)
4854 return err;
ab3c5c18
STD
4855
4856 /* This needs to handle no-key deletions later on */
4857
d52be818 4858 trans = __unlink_start_trans(dir);
ab3c5c18
STD
4859 if (IS_ERR(trans)) {
4860 err = PTR_ERR(trans);
4861 goto out_notrans;
4862 }
5df6a9f6 4863
4a0cc7ca 4864 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 4865 err = btrfs_unlink_subvol(trans, dir, dentry);
4df27c4d
YZ
4866 goto out;
4867 }
4868
73f2e545 4869 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4870 if (err)
4df27c4d 4871 goto out;
7b128766 4872
44f714da
FM
4873 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4874
39279cc3 4875 /* now the directory is empty */
e43eec81 4876 err = btrfs_unlink_inode(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
6db75318 4877 &fname.disk_name);
44f714da 4878 if (!err) {
6ef06d27 4879 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4880 /*
4881 * Propagate the last_unlink_trans value of the deleted dir to
4882 * its parent directory. This is to prevent an unrecoverable
4883 * log tree in the case we do something like this:
4884 * 1) create dir foo
4885 * 2) create snapshot under dir foo
4886 * 3) delete the snapshot
4887 * 4) rmdir foo
4888 * 5) mkdir foo
4889 * 6) fsync foo or some file inside foo
4890 */
4891 if (last_unlink_trans >= trans->transid)
4892 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4893 }
4df27c4d 4894out:
3a45bb20 4895 btrfs_end_transaction(trans);
ab3c5c18 4896out_notrans:
813febdb 4897 btrfs_btree_balance_dirty(fs_info);
ab3c5c18 4898 fscrypt_free_filename(&fname);
3954401f 4899
39279cc3
CM
4900 return err;
4901}
4902
39279cc3 4903/*
9703fefe 4904 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4905 * @inode - inode that we're zeroing
4906 * @from - the offset to start zeroing
4907 * @len - the length to zero, 0 to zero the entire range respective to the
4908 * offset
4909 * @front - zero up to the offset instead of from the offset on
4910 *
9703fefe 4911 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4912 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4913 */
217f42eb
NB
4914int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
4915 int front)
39279cc3 4916{
217f42eb
NB
4917 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4918 struct address_space *mapping = inode->vfs_inode.i_mapping;
4919 struct extent_io_tree *io_tree = &inode->io_tree;
e6dcd2dc 4920 struct btrfs_ordered_extent *ordered;
2ac55d41 4921 struct extent_state *cached_state = NULL;
364ecf36 4922 struct extent_changeset *data_reserved = NULL;
6d4572a9 4923 bool only_release_metadata = false;
0b246afa 4924 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4925 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4926 unsigned offset = from & (blocksize - 1);
39279cc3 4927 struct page *page;
3b16a4e3 4928 gfp_t mask = btrfs_alloc_write_mask(mapping);
6d4572a9 4929 size_t write_bytes = blocksize;
39279cc3 4930 int ret = 0;
9703fefe
CR
4931 u64 block_start;
4932 u64 block_end;
39279cc3 4933
b03ebd99
NB
4934 if (IS_ALIGNED(offset, blocksize) &&
4935 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4936 goto out;
9703fefe 4937
8b62f87b
JB
4938 block_start = round_down(from, blocksize);
4939 block_end = block_start + blocksize - 1;
4940
217f42eb 4941 ret = btrfs_check_data_free_space(inode, &data_reserved, block_start,
1daedb1d 4942 blocksize, false);
6d4572a9 4943 if (ret < 0) {
80f9d241 4944 if (btrfs_check_nocow_lock(inode, block_start, &write_bytes, false) > 0) {
6d4572a9
QW
4945 /* For nocow case, no need to reserve data space */
4946 only_release_metadata = true;
4947 } else {
4948 goto out;
4949 }
4950 }
d4135134 4951 ret = btrfs_delalloc_reserve_metadata(inode, blocksize, blocksize, false);
6d4572a9
QW
4952 if (ret < 0) {
4953 if (!only_release_metadata)
217f42eb
NB
4954 btrfs_free_reserved_data_space(inode, data_reserved,
4955 block_start, blocksize);
6d4572a9
QW
4956 goto out;
4957 }
211c17f5 4958again:
3b16a4e3 4959 page = find_or_create_page(mapping, index, mask);
5d5e103a 4960 if (!page) {
217f42eb
NB
4961 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4962 blocksize, true);
4963 btrfs_delalloc_release_extents(inode, blocksize);
ac6a2b36 4964 ret = -ENOMEM;
39279cc3 4965 goto out;
5d5e103a 4966 }
32443de3
QW
4967 ret = set_page_extent_mapped(page);
4968 if (ret < 0)
4969 goto out_unlock;
e6dcd2dc 4970
39279cc3 4971 if (!PageUptodate(page)) {
fb12489b 4972 ret = btrfs_read_folio(NULL, page_folio(page));
39279cc3 4973 lock_page(page);
211c17f5
CM
4974 if (page->mapping != mapping) {
4975 unlock_page(page);
09cbfeaf 4976 put_page(page);
211c17f5
CM
4977 goto again;
4978 }
39279cc3
CM
4979 if (!PageUptodate(page)) {
4980 ret = -EIO;
89642229 4981 goto out_unlock;
39279cc3
CM
4982 }
4983 }
211c17f5 4984 wait_on_page_writeback(page);
e6dcd2dc 4985
570eb97b 4986 lock_extent(io_tree, block_start, block_end, &cached_state);
e6dcd2dc 4987
217f42eb 4988 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4989 if (ordered) {
570eb97b 4990 unlock_extent(io_tree, block_start, block_end, &cached_state);
e6dcd2dc 4991 unlock_page(page);
09cbfeaf 4992 put_page(page);
c0a43603 4993 btrfs_start_ordered_extent(ordered, 1);
e6dcd2dc
CM
4994 btrfs_put_ordered_extent(ordered);
4995 goto again;
4996 }
4997
217f42eb 4998 clear_extent_bit(&inode->io_tree, block_start, block_end,
e182163d 4999 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
bd015294 5000 &cached_state);
5d5e103a 5001
217f42eb 5002 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
330a5827 5003 &cached_state);
9ed74f2d 5004 if (ret) {
570eb97b 5005 unlock_extent(io_tree, block_start, block_end, &cached_state);
9ed74f2d
JB
5006 goto out_unlock;
5007 }
5008
9703fefe 5009 if (offset != blocksize) {
2aaa6655 5010 if (!len)
9703fefe 5011 len = blocksize - offset;
2aaa6655 5012 if (front)
d048b9c2
IW
5013 memzero_page(page, (block_start - page_offset(page)),
5014 offset);
2aaa6655 5015 else
d048b9c2
IW
5016 memzero_page(page, (block_start - page_offset(page)) + offset,
5017 len);
e6dcd2dc 5018 }
e4f94347
QW
5019 btrfs_page_clear_checked(fs_info, page, block_start,
5020 block_end + 1 - block_start);
6c9ac8be 5021 btrfs_page_set_dirty(fs_info, page, block_start, block_end + 1 - block_start);
570eb97b 5022 unlock_extent(io_tree, block_start, block_end, &cached_state);
39279cc3 5023
6d4572a9 5024 if (only_release_metadata)
217f42eb 5025 set_extent_bit(&inode->io_tree, block_start, block_end,
291bbb1e 5026 EXTENT_NORESERVE, NULL, GFP_NOFS);
6d4572a9 5027
89642229 5028out_unlock:
6d4572a9
QW
5029 if (ret) {
5030 if (only_release_metadata)
217f42eb 5031 btrfs_delalloc_release_metadata(inode, blocksize, true);
6d4572a9 5032 else
217f42eb 5033 btrfs_delalloc_release_space(inode, data_reserved,
6d4572a9
QW
5034 block_start, blocksize, true);
5035 }
217f42eb 5036 btrfs_delalloc_release_extents(inode, blocksize);
39279cc3 5037 unlock_page(page);
09cbfeaf 5038 put_page(page);
39279cc3 5039out:
6d4572a9 5040 if (only_release_metadata)
217f42eb 5041 btrfs_check_nocow_unlock(inode);
364ecf36 5042 extent_changeset_free(data_reserved);
39279cc3
CM
5043 return ret;
5044}
5045
a4ba6cc0 5046static int maybe_insert_hole(struct btrfs_root *root, struct btrfs_inode *inode,
16e7549f
JB
5047 u64 offset, u64 len)
5048{
a4ba6cc0 5049 struct btrfs_fs_info *fs_info = root->fs_info;
16e7549f 5050 struct btrfs_trans_handle *trans;
5893dfb9 5051 struct btrfs_drop_extents_args drop_args = { 0 };
16e7549f
JB
5052 int ret;
5053
5054 /*
cceaa89f
FM
5055 * If NO_HOLES is enabled, we don't need to do anything.
5056 * Later, up in the call chain, either btrfs_set_inode_last_sub_trans()
5057 * or btrfs_update_inode() will be called, which guarantee that the next
5058 * fsync will know this inode was changed and needs to be logged.
16e7549f 5059 */
cceaa89f 5060 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f 5061 return 0;
16e7549f
JB
5062
5063 /*
5064 * 1 - for the one we're dropping
5065 * 1 - for the one we're adding
5066 * 1 - for updating the inode.
5067 */
5068 trans = btrfs_start_transaction(root, 3);
5069 if (IS_ERR(trans))
5070 return PTR_ERR(trans);
5071
5893dfb9
FM
5072 drop_args.start = offset;
5073 drop_args.end = offset + len;
5074 drop_args.drop_cache = true;
5075
a4ba6cc0 5076 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
16e7549f 5077 if (ret) {
66642832 5078 btrfs_abort_transaction(trans, ret);
3a45bb20 5079 btrfs_end_transaction(trans);
16e7549f
JB
5080 return ret;
5081 }
5082
d1f68ba0 5083 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset, len);
2766ff61 5084 if (ret) {
66642832 5085 btrfs_abort_transaction(trans, ret);
2766ff61 5086 } else {
a4ba6cc0
NB
5087 btrfs_update_inode_bytes(inode, 0, drop_args.bytes_found);
5088 btrfs_update_inode(trans, root, inode);
2766ff61 5089 }
3a45bb20 5090 btrfs_end_transaction(trans);
16e7549f
JB
5091 return ret;
5092}
5093
695a0d0d
JB
5094/*
5095 * This function puts in dummy file extents for the area we're creating a hole
5096 * for. So if we are truncating this file to a larger size we need to insert
5097 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
5098 * the range between oldsize and size
5099 */
b06359a3 5100int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size)
39279cc3 5101{
b06359a3
NB
5102 struct btrfs_root *root = inode->root;
5103 struct btrfs_fs_info *fs_info = root->fs_info;
5104 struct extent_io_tree *io_tree = &inode->io_tree;
a22285a6 5105 struct extent_map *em = NULL;
2ac55d41 5106 struct extent_state *cached_state = NULL;
0b246afa
JM
5107 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
5108 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
5109 u64 last_byte;
5110 u64 cur_offset;
5111 u64 hole_size;
9ed74f2d 5112 int err = 0;
39279cc3 5113
a71754fc 5114 /*
9703fefe
CR
5115 * If our size started in the middle of a block we need to zero out the
5116 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
5117 * expose stale data.
5118 */
b06359a3 5119 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
5120 if (err)
5121 return err;
5122
9036c102
YZ
5123 if (size <= hole_start)
5124 return 0;
5125
b06359a3
NB
5126 btrfs_lock_and_flush_ordered_range(inode, hole_start, block_end - 1,
5127 &cached_state);
9036c102
YZ
5128 cur_offset = hole_start;
5129 while (1) {
b06359a3 5130 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
39b07b5d 5131 block_end - cur_offset);
79787eaa
JM
5132 if (IS_ERR(em)) {
5133 err = PTR_ERR(em);
f2767956 5134 em = NULL;
79787eaa
JM
5135 break;
5136 }
9036c102 5137 last_byte = min(extent_map_end(em), block_end);
0b246afa 5138 last_byte = ALIGN(last_byte, fs_info->sectorsize);
9ddc959e
JB
5139 hole_size = last_byte - cur_offset;
5140
8082510e 5141 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5142 struct extent_map *hole_em;
9ed74f2d 5143
b06359a3
NB
5144 err = maybe_insert_hole(root, inode, cur_offset,
5145 hole_size);
16e7549f 5146 if (err)
3893e33b 5147 break;
9ddc959e 5148
b06359a3 5149 err = btrfs_inode_set_file_extent_range(inode,
9ddc959e
JB
5150 cur_offset, hole_size);
5151 if (err)
5152 break;
5153
5dc562c5
JB
5154 hole_em = alloc_extent_map();
5155 if (!hole_em) {
a1ba4c08
FM
5156 btrfs_drop_extent_map_range(inode, cur_offset,
5157 cur_offset + hole_size - 1,
5158 false);
23e3337f 5159 btrfs_set_inode_full_sync(inode);
5dc562c5
JB
5160 goto next;
5161 }
5162 hole_em->start = cur_offset;
5163 hole_em->len = hole_size;
5164 hole_em->orig_start = cur_offset;
8082510e 5165
5dc562c5
JB
5166 hole_em->block_start = EXTENT_MAP_HOLE;
5167 hole_em->block_len = 0;
b4939680 5168 hole_em->orig_block_len = 0;
cc95bef6 5169 hole_em->ram_bytes = hole_size;
5dc562c5 5170 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5171 hole_em->generation = fs_info->generation;
8082510e 5172
a1ba4c08 5173 err = btrfs_replace_extent_map_range(inode, hole_em, true);
5dc562c5 5174 free_extent_map(hole_em);
9ddc959e 5175 } else {
b06359a3 5176 err = btrfs_inode_set_file_extent_range(inode,
9ddc959e
JB
5177 cur_offset, hole_size);
5178 if (err)
5179 break;
9036c102 5180 }
16e7549f 5181next:
9036c102 5182 free_extent_map(em);
a22285a6 5183 em = NULL;
9036c102 5184 cur_offset = last_byte;
8082510e 5185 if (cur_offset >= block_end)
9036c102
YZ
5186 break;
5187 }
a22285a6 5188 free_extent_map(em);
570eb97b 5189 unlock_extent(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5190 return err;
5191}
39279cc3 5192
3972f260 5193static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5194{
f4a2f4c5
MX
5195 struct btrfs_root *root = BTRFS_I(inode)->root;
5196 struct btrfs_trans_handle *trans;
a41ad394 5197 loff_t oldsize = i_size_read(inode);
3972f260
ES
5198 loff_t newsize = attr->ia_size;
5199 int mask = attr->ia_valid;
8082510e
YZ
5200 int ret;
5201
3972f260
ES
5202 /*
5203 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5204 * special case where we need to update the times despite not having
5205 * these flags set. For all other operations the VFS set these flags
5206 * explicitly if it wants a timestamp update.
5207 */
dff6efc3
CH
5208 if (newsize != oldsize) {
5209 inode_inc_iversion(inode);
c1867eb3
DS
5210 if (!(mask & (ATTR_CTIME | ATTR_MTIME))) {
5211 inode->i_mtime = current_time(inode);
5212 inode->i_ctime = inode->i_mtime;
5213 }
dff6efc3 5214 }
3972f260 5215
a41ad394 5216 if (newsize > oldsize) {
9ea24bbe 5217 /*
ea14b57f 5218 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5219 * This is to ensure the snapshot captures a fully consistent
5220 * state of this file - if the snapshot captures this expanding
5221 * truncation, it must capture all writes that happened before
5222 * this truncation.
5223 */
dcc3eb96 5224 btrfs_drew_write_lock(&root->snapshot_lock);
b06359a3 5225 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, newsize);
9ea24bbe 5226 if (ret) {
dcc3eb96 5227 btrfs_drew_write_unlock(&root->snapshot_lock);
8082510e 5228 return ret;
9ea24bbe 5229 }
8082510e 5230
f4a2f4c5 5231 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5232 if (IS_ERR(trans)) {
dcc3eb96 5233 btrfs_drew_write_unlock(&root->snapshot_lock);
f4a2f4c5 5234 return PTR_ERR(trans);
9ea24bbe 5235 }
f4a2f4c5
MX
5236
5237 i_size_write(inode, newsize);
76aea537 5238 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
27772b68 5239 pagecache_isize_extended(inode, oldsize, newsize);
9a56fcd1 5240 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
dcc3eb96 5241 btrfs_drew_write_unlock(&root->snapshot_lock);
3a45bb20 5242 btrfs_end_transaction(trans);
a41ad394 5243 } else {
24c0a722
NA
5244 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5245
5246 if (btrfs_is_zoned(fs_info)) {
5247 ret = btrfs_wait_ordered_range(inode,
5248 ALIGN(newsize, fs_info->sectorsize),
5249 (u64)-1);
5250 if (ret)
5251 return ret;
5252 }
8082510e 5253
a41ad394
JB
5254 /*
5255 * We're truncating a file that used to have good data down to
1fd4033d
NB
5256 * zero. Make sure any new writes to the file get on disk
5257 * on close.
a41ad394
JB
5258 */
5259 if (newsize == 0)
1fd4033d 5260 set_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
72ac3c0d 5261 &BTRFS_I(inode)->runtime_flags);
8082510e 5262
a41ad394 5263 truncate_setsize(inode, newsize);
2e60a51e 5264
2e60a51e 5265 inode_dio_wait(inode);
2e60a51e 5266
213e8c55 5267 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5268 if (ret && inode->i_nlink) {
5269 int err;
5270
5271 /*
f7e9e8fc
OS
5272 * Truncate failed, so fix up the in-memory size. We
5273 * adjusted disk_i_size down as we removed extents, so
5274 * wait for disk_i_size to be stable and then update the
5275 * in-memory size to match.
7f4f6e0a 5276 */
f7e9e8fc 5277 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5278 if (err)
f7e9e8fc
OS
5279 return err;
5280 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5281 }
8082510e
YZ
5282 }
5283
a41ad394 5284 return ret;
8082510e
YZ
5285}
5286
549c7297
CB
5287static int btrfs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5288 struct iattr *attr)
9036c102 5289{
2b0143b5 5290 struct inode *inode = d_inode(dentry);
b83cc969 5291 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5292 int err;
39279cc3 5293
b83cc969
LZ
5294 if (btrfs_root_readonly(root))
5295 return -EROFS;
5296
d4d09464 5297 err = setattr_prepare(mnt_userns, dentry, attr);
9036c102
YZ
5298 if (err)
5299 return err;
2bf5a725 5300
5a3f23d5 5301 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5302 err = btrfs_setsize(inode, attr);
8082510e
YZ
5303 if (err)
5304 return err;
39279cc3 5305 }
9036c102 5306
1025774c 5307 if (attr->ia_valid) {
d4d09464 5308 setattr_copy(mnt_userns, inode, attr);
0c4d2d95 5309 inode_inc_iversion(inode);
22c44fe6 5310 err = btrfs_dirty_inode(inode);
1025774c 5311
22c44fe6 5312 if (!err && attr->ia_valid & ATTR_MODE)
d4d09464 5313 err = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
1025774c 5314 }
33268eaf 5315
39279cc3
CM
5316 return err;
5317}
61295eb8 5318
131e404a 5319/*
895586eb
MWO
5320 * While truncating the inode pages during eviction, we get the VFS
5321 * calling btrfs_invalidate_folio() against each folio of the inode. This
5322 * is slow because the calls to btrfs_invalidate_folio() result in a
570eb97b 5323 * huge amount of calls to lock_extent() and clear_extent_bit(),
895586eb
MWO
5324 * which keep merging and splitting extent_state structures over and over,
5325 * wasting lots of time.
131e404a 5326 *
895586eb
MWO
5327 * Therefore if the inode is being evicted, let btrfs_invalidate_folio()
5328 * skip all those expensive operations on a per folio basis and do only
5329 * the ordered io finishing, while we release here the extent_map and
5330 * extent_state structures, without the excessive merging and splitting.
131e404a
FDBM
5331 */
5332static void evict_inode_truncate_pages(struct inode *inode)
5333{
5334 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
131e404a
FDBM
5335 struct rb_node *node;
5336
5337 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5338 truncate_inode_pages_final(&inode->i_data);
131e404a 5339
9c9d1b4f 5340 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
131e404a 5341
6ca07097
FM
5342 /*
5343 * Keep looping until we have no more ranges in the io tree.
ba206a02
MWO
5344 * We can have ongoing bios started by readahead that have
5345 * their endio callback (extent_io.c:end_bio_extent_readpage)
9c6429d9
FM
5346 * still in progress (unlocked the pages in the bio but did not yet
5347 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5348 * ranges can still be locked and eviction started because before
5349 * submitting those bios, which are executed by a separate task (work
5350 * queue kthread), inode references (inode->i_count) were not taken
5351 * (which would be dropped in the end io callback of each bio).
5352 * Therefore here we effectively end up waiting for those bios and
5353 * anyone else holding locked ranges without having bumped the inode's
5354 * reference count - if we don't do it, when they access the inode's
5355 * io_tree to unlock a range it may be too late, leading to an
5356 * use-after-free issue.
5357 */
131e404a
FDBM
5358 spin_lock(&io_tree->lock);
5359 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5360 struct extent_state *state;
5361 struct extent_state *cached_state = NULL;
6ca07097
FM
5362 u64 start;
5363 u64 end;
421f0922 5364 unsigned state_flags;
131e404a
FDBM
5365
5366 node = rb_first(&io_tree->state);
5367 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5368 start = state->start;
5369 end = state->end;
421f0922 5370 state_flags = state->state;
131e404a
FDBM
5371 spin_unlock(&io_tree->lock);
5372
570eb97b 5373 lock_extent(io_tree, start, end, &cached_state);
b9d0b389
QW
5374
5375 /*
5376 * If still has DELALLOC flag, the extent didn't reach disk,
5377 * and its reserved space won't be freed by delayed_ref.
5378 * So we need to free its reserved space here.
895586eb 5379 * (Refer to comment in btrfs_invalidate_folio, case 2)
b9d0b389
QW
5380 *
5381 * Note, end is the bytenr of last byte, so we need + 1 here.
5382 */
421f0922 5383 if (state_flags & EXTENT_DELALLOC)
8b8a979f
NB
5384 btrfs_qgroup_free_data(BTRFS_I(inode), NULL, start,
5385 end - start + 1);
b9d0b389 5386
6ca07097 5387 clear_extent_bit(io_tree, start, end,
bd015294 5388 EXTENT_CLEAR_ALL_BITS | EXTENT_DO_ACCOUNTING,
e182163d 5389 &cached_state);
131e404a 5390
7064dd5c 5391 cond_resched();
131e404a
FDBM
5392 spin_lock(&io_tree->lock);
5393 }
5394 spin_unlock(&io_tree->lock);
5395}
5396
4b9d7b59 5397static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5398 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5399{
5400 struct btrfs_fs_info *fs_info = root->fs_info;
d3984c90 5401 struct btrfs_trans_handle *trans;
2bd36e7b 5402 u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
d3984c90 5403 int ret;
4b9d7b59 5404
d3984c90
JB
5405 /*
5406 * Eviction should be taking place at some place safe because of our
5407 * delayed iputs. However the normal flushing code will run delayed
5408 * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5409 *
5410 * We reserve the delayed_refs_extra here again because we can't use
5411 * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5412 * above. We reserve our extra bit here because we generate a ton of
5413 * delayed refs activity by truncating.
5414 *
ee6adbfd
JB
5415 * BTRFS_RESERVE_FLUSH_EVICT will steal from the global_rsv if it can,
5416 * if we fail to make this reservation we can re-try without the
5417 * delayed_refs_extra so we can make some forward progress.
d3984c90 5418 */
9270501c 5419 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size + delayed_refs_extra,
d3984c90
JB
5420 BTRFS_RESERVE_FLUSH_EVICT);
5421 if (ret) {
9270501c 5422 ret = btrfs_block_rsv_refill(fs_info, rsv, rsv->size,
ee6adbfd
JB
5423 BTRFS_RESERVE_FLUSH_EVICT);
5424 if (ret) {
d3984c90
JB
5425 btrfs_warn(fs_info,
5426 "could not allocate space for delete; will truncate on mount");
5427 return ERR_PTR(-ENOSPC);
5428 }
5429 delayed_refs_extra = 0;
5430 }
4b9d7b59 5431
d3984c90
JB
5432 trans = btrfs_join_transaction(root);
5433 if (IS_ERR(trans))
5434 return trans;
5435
5436 if (delayed_refs_extra) {
5437 trans->block_rsv = &fs_info->trans_block_rsv;
5438 trans->bytes_reserved = delayed_refs_extra;
5439 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5440 delayed_refs_extra, 1);
4b9d7b59 5441 }
d3984c90 5442 return trans;
4b9d7b59
OS
5443}
5444
bd555975 5445void btrfs_evict_inode(struct inode *inode)
39279cc3 5446{
0b246afa 5447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5448 struct btrfs_trans_handle *trans;
5449 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5450 struct btrfs_block_rsv *rsv;
39279cc3
CM
5451 int ret;
5452
1abe9b8a 5453 trace_btrfs_inode_evict(inode);
5454
3d48d981 5455 if (!root) {
14605409 5456 fsverity_cleanup_inode(inode);
e8f1bc14 5457 clear_inode(inode);
3d48d981
NB
5458 return;
5459 }
5460
131e404a
FDBM
5461 evict_inode_truncate_pages(inode);
5462
69e9c6c6
SB
5463 if (inode->i_nlink &&
5464 ((btrfs_root_refs(&root->root_item) != 0 &&
5465 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5466 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5467 goto no_delete;
5468
27919067 5469 if (is_bad_inode(inode))
39279cc3 5470 goto no_delete;
5f39d397 5471
7ab7956e 5472 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5473
7b40b695 5474 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5475 goto no_delete;
c71bf099 5476
76dda93c 5477 if (inode->i_nlink > 0) {
69e9c6c6
SB
5478 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5479 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5480 goto no_delete;
5481 }
5482
2adc75d6
JB
5483 /*
5484 * This makes sure the inode item in tree is uptodate and the space for
5485 * the inode update is released.
5486 */
aa79021f 5487 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5488 if (ret)
0e8c36a9 5489 goto no_delete;
0e8c36a9 5490
2adc75d6
JB
5491 /*
5492 * This drops any pending insert or delete operations we have for this
5493 * inode. We could have a delayed dir index deletion queued up, but
5494 * we're removing the inode completely so that'll be taken care of in
5495 * the truncate.
5496 */
5497 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
5498
2ff7e61e 5499 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5500 if (!rsv)
4289a667 5501 goto no_delete;
2bd36e7b 5502 rsv->size = btrfs_calc_metadata_size(fs_info, 1);
710d5921 5503 rsv->failfast = true;
4289a667 5504
6ef06d27 5505 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5506
8082510e 5507 while (1) {
d9ac19c3 5508 struct btrfs_truncate_control control = {
71d18b53 5509 .inode = BTRFS_I(inode),
487e81d2 5510 .ino = btrfs_ino(BTRFS_I(inode)),
d9ac19c3
JB
5511 .new_size = 0,
5512 .min_type = 0,
5513 };
5514
ad80cf50 5515 trans = evict_refill_and_join(root, rsv);
27919067
OS
5516 if (IS_ERR(trans))
5517 goto free_rsv;
7b128766 5518
4289a667
JB
5519 trans->block_rsv = rsv;
5520
71d18b53 5521 ret = btrfs_truncate_inode_items(trans, root, &control);
27919067
OS
5522 trans->block_rsv = &fs_info->trans_block_rsv;
5523 btrfs_end_transaction(trans);
5524 btrfs_btree_balance_dirty(fs_info);
5525 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5526 goto free_rsv;
5527 else if (!ret)
8082510e 5528 break;
8082510e 5529 }
5f39d397 5530
4ef31a45 5531 /*
27919067
OS
5532 * Errors here aren't a big deal, it just means we leave orphan items in
5533 * the tree. They will be cleaned up on the next mount. If the inode
5534 * number gets reused, cleanup deletes the orphan item without doing
5535 * anything, and unlink reuses the existing orphan item.
5536 *
5537 * If it turns out that we are dropping too many of these, we might want
5538 * to add a mechanism for retrying these after a commit.
4ef31a45 5539 */
ad80cf50 5540 trans = evict_refill_and_join(root, rsv);
27919067
OS
5541 if (!IS_ERR(trans)) {
5542 trans->block_rsv = rsv;
5543 btrfs_orphan_del(trans, BTRFS_I(inode));
5544 trans->block_rsv = &fs_info->trans_block_rsv;
5545 btrfs_end_transaction(trans);
5546 }
54aa1f4d 5547
27919067
OS
5548free_rsv:
5549 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5550no_delete:
27919067
OS
5551 /*
5552 * If we didn't successfully delete, the orphan item will still be in
5553 * the tree and we'll retry on the next mount. Again, we might also want
5554 * to retry these periodically in the future.
5555 */
f48d1cf5 5556 btrfs_remove_delayed_node(BTRFS_I(inode));
14605409 5557 fsverity_cleanup_inode(inode);
dbd5768f 5558 clear_inode(inode);
39279cc3
CM
5559}
5560
5561/*
6bf9e4bd
QW
5562 * Return the key found in the dir entry in the location pointer, fill @type
5563 * with BTRFS_FT_*, and return 0.
5564 *
005d6712
SY
5565 * If no dir entries were found, returns -ENOENT.
5566 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5567 */
5568static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
6bf9e4bd 5569 struct btrfs_key *location, u8 *type)
39279cc3 5570{
39279cc3
CM
5571 struct btrfs_dir_item *di;
5572 struct btrfs_path *path;
5573 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5574 int ret = 0;
ab3c5c18 5575 struct fscrypt_name fname;
39279cc3
CM
5576
5577 path = btrfs_alloc_path();
d8926bb3
MF
5578 if (!path)
5579 return -ENOMEM;
3954401f 5580
ab3c5c18
STD
5581 ret = fscrypt_setup_filename(dir, &dentry->d_name, 1, &fname);
5582 if (ret)
5583 goto out;
5584
ab3c5c18
STD
5585 /* This needs to handle no-key deletions later on */
5586
f85b7379 5587 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
6db75318 5588 &fname.disk_name, 0);
3cf5068f
LB
5589 if (IS_ERR_OR_NULL(di)) {
5590 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5591 goto out;
5592 }
d397712b 5593
5f39d397 5594 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5595 if (location->type != BTRFS_INODE_ITEM_KEY &&
5596 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5597 ret = -EUCLEAN;
56a0e706
LB
5598 btrfs_warn(root->fs_info,
5599"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
6db75318 5600 __func__, fname.disk_name.name, btrfs_ino(BTRFS_I(dir)),
56a0e706 5601 location->objectid, location->type, location->offset);
56a0e706 5602 }
6bf9e4bd 5603 if (!ret)
94a48aef 5604 *type = btrfs_dir_ftype(path->nodes[0], di);
39279cc3 5605out:
ab3c5c18 5606 fscrypt_free_filename(&fname);
39279cc3
CM
5607 btrfs_free_path(path);
5608 return ret;
5609}
5610
5611/*
5612 * when we hit a tree root in a directory, the btrfs part of the inode
5613 * needs to be changed to reflect the root directory of the tree root. This
5614 * is kind of like crossing a mount point.
5615 */
2ff7e61e 5616static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5617 struct inode *dir,
5618 struct dentry *dentry,
5619 struct btrfs_key *location,
5620 struct btrfs_root **sub_root)
39279cc3 5621{
4df27c4d
YZ
5622 struct btrfs_path *path;
5623 struct btrfs_root *new_root;
5624 struct btrfs_root_ref *ref;
5625 struct extent_buffer *leaf;
1d4c08e0 5626 struct btrfs_key key;
4df27c4d
YZ
5627 int ret;
5628 int err = 0;
ab3c5c18 5629 struct fscrypt_name fname;
ab3c5c18
STD
5630
5631 ret = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
5632 if (ret)
5633 return ret;
5634
4df27c4d
YZ
5635 path = btrfs_alloc_path();
5636 if (!path) {
5637 err = -ENOMEM;
5638 goto out;
5639 }
39279cc3 5640
4df27c4d 5641 err = -ENOENT;
1d4c08e0
DS
5642 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5643 key.type = BTRFS_ROOT_REF_KEY;
5644 key.offset = location->objectid;
5645
0b246afa 5646 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5647 if (ret) {
5648 if (ret < 0)
5649 err = ret;
5650 goto out;
5651 }
39279cc3 5652
4df27c4d
YZ
5653 leaf = path->nodes[0];
5654 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5655 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
6db75318 5656 btrfs_root_ref_name_len(leaf, ref) != fname.disk_name.len)
4df27c4d 5657 goto out;
39279cc3 5658
6db75318
STD
5659 ret = memcmp_extent_buffer(leaf, fname.disk_name.name,
5660 (unsigned long)(ref + 1), fname.disk_name.len);
4df27c4d
YZ
5661 if (ret)
5662 goto out;
5663
b3b4aa74 5664 btrfs_release_path(path);
4df27c4d 5665
56e9357a 5666 new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
4df27c4d
YZ
5667 if (IS_ERR(new_root)) {
5668 err = PTR_ERR(new_root);
5669 goto out;
5670 }
5671
4df27c4d
YZ
5672 *sub_root = new_root;
5673 location->objectid = btrfs_root_dirid(&new_root->root_item);
5674 location->type = BTRFS_INODE_ITEM_KEY;
5675 location->offset = 0;
5676 err = 0;
5677out:
5678 btrfs_free_path(path);
ab3c5c18 5679 fscrypt_free_filename(&fname);
4df27c4d 5680 return err;
39279cc3
CM
5681}
5682
5d4f98a2
YZ
5683static void inode_tree_add(struct inode *inode)
5684{
5685 struct btrfs_root *root = BTRFS_I(inode)->root;
5686 struct btrfs_inode *entry;
03e860bd
FNP
5687 struct rb_node **p;
5688 struct rb_node *parent;
cef21937 5689 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5690 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5691
1d3382cb 5692 if (inode_unhashed(inode))
76dda93c 5693 return;
e1409cef 5694 parent = NULL;
5d4f98a2 5695 spin_lock(&root->inode_lock);
e1409cef 5696 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5697 while (*p) {
5698 parent = *p;
5699 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5700
37508515 5701 if (ino < btrfs_ino(entry))
03e860bd 5702 p = &parent->rb_left;
37508515 5703 else if (ino > btrfs_ino(entry))
03e860bd 5704 p = &parent->rb_right;
5d4f98a2
YZ
5705 else {
5706 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5707 (I_WILL_FREE | I_FREEING)));
cef21937 5708 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5709 RB_CLEAR_NODE(parent);
5710 spin_unlock(&root->inode_lock);
cef21937 5711 return;
5d4f98a2
YZ
5712 }
5713 }
cef21937
FDBM
5714 rb_link_node(new, parent, p);
5715 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5716 spin_unlock(&root->inode_lock);
5717}
5718
b79b7249 5719static void inode_tree_del(struct btrfs_inode *inode)
5d4f98a2 5720{
b79b7249 5721 struct btrfs_root *root = inode->root;
76dda93c 5722 int empty = 0;
5d4f98a2 5723
03e860bd 5724 spin_lock(&root->inode_lock);
b79b7249
NB
5725 if (!RB_EMPTY_NODE(&inode->rb_node)) {
5726 rb_erase(&inode->rb_node, &root->inode_tree);
5727 RB_CLEAR_NODE(&inode->rb_node);
76dda93c 5728 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5729 }
03e860bd 5730 spin_unlock(&root->inode_lock);
76dda93c 5731
69e9c6c6 5732 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5733 spin_lock(&root->inode_lock);
5734 empty = RB_EMPTY_ROOT(&root->inode_tree);
5735 spin_unlock(&root->inode_lock);
5736 if (empty)
5737 btrfs_add_dead_root(root);
5738 }
5739}
5740
5d4f98a2 5741
e02119d5
CM
5742static int btrfs_init_locked_inode(struct inode *inode, void *p)
5743{
5744 struct btrfs_iget_args *args = p;
0202e83f
DS
5745
5746 inode->i_ino = args->ino;
5747 BTRFS_I(inode)->location.objectid = args->ino;
5748 BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5749 BTRFS_I(inode)->location.offset = 0;
5c8fd99f
JB
5750 BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5751 BUG_ON(args->root && !BTRFS_I(inode)->root);
9b9b8854
JB
5752
5753 if (args->root && args->root == args->root->fs_info->tree_root &&
5754 args->ino != BTRFS_BTREE_INODE_OBJECTID)
5755 set_bit(BTRFS_INODE_FREE_SPACE_INODE,
5756 &BTRFS_I(inode)->runtime_flags);
39279cc3
CM
5757 return 0;
5758}
5759
5760static int btrfs_find_actor(struct inode *inode, void *opaque)
5761{
5762 struct btrfs_iget_args *args = opaque;
0202e83f
DS
5763
5764 return args->ino == BTRFS_I(inode)->location.objectid &&
d397712b 5765 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5766}
5767
0202e83f 5768static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5d4f98a2 5769 struct btrfs_root *root)
39279cc3
CM
5770{
5771 struct inode *inode;
5772 struct btrfs_iget_args args;
0202e83f 5773 unsigned long hashval = btrfs_inode_hash(ino, root);
778ba82b 5774
0202e83f 5775 args.ino = ino;
39279cc3
CM
5776 args.root = root;
5777
778ba82b 5778 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5779 btrfs_init_locked_inode,
5780 (void *)&args);
5781 return inode;
5782}
5783
4c66e0d4 5784/*
0202e83f 5785 * Get an inode object given its inode number and corresponding root.
4c66e0d4
DS
5786 * Path can be preallocated to prevent recursing back to iget through
5787 * allocator. NULL is also valid but may require an additional allocation
5788 * later.
1a54ef8c 5789 */
0202e83f 5790struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
4c66e0d4 5791 struct btrfs_root *root, struct btrfs_path *path)
1a54ef8c
BR
5792{
5793 struct inode *inode;
5794
0202e83f 5795 inode = btrfs_iget_locked(s, ino, root);
1a54ef8c 5796 if (!inode)
5d4f98a2 5797 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5798
5799 if (inode->i_state & I_NEW) {
67710892
FM
5800 int ret;
5801
4222ea71 5802 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5803 if (!ret) {
1748f843
MF
5804 inode_tree_add(inode);
5805 unlock_new_inode(inode);
1748f843 5806 } else {
f5b3a417
AV
5807 iget_failed(inode);
5808 /*
5809 * ret > 0 can come from btrfs_search_slot called by
5810 * btrfs_read_locked_inode, this means the inode item
5811 * was not found.
5812 */
5813 if (ret > 0)
5814 ret = -ENOENT;
5815 inode = ERR_PTR(ret);
1748f843
MF
5816 }
5817 }
5818
1a54ef8c
BR
5819 return inode;
5820}
5821
0202e83f 5822struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
4222ea71 5823{
0202e83f 5824 return btrfs_iget_path(s, ino, root, NULL);
4222ea71
FM
5825}
5826
4df27c4d
YZ
5827static struct inode *new_simple_dir(struct super_block *s,
5828 struct btrfs_key *key,
5829 struct btrfs_root *root)
5830{
5831 struct inode *inode = new_inode(s);
5832
5833 if (!inode)
5834 return ERR_PTR(-ENOMEM);
5835
5c8fd99f 5836 BTRFS_I(inode)->root = btrfs_grab_root(root);
4df27c4d 5837 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5838 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5839
5840 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
6bb6b514
OS
5841 /*
5842 * We only need lookup, the rest is read-only and there's no inode
5843 * associated with the dentry
5844 */
5845 inode->i_op = &simple_dir_inode_operations;
1fdf4194 5846 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5847 inode->i_fop = &simple_dir_operations;
5848 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5849 inode->i_mtime = current_time(inode);
9cc97d64 5850 inode->i_atime = inode->i_mtime;
5851 inode->i_ctime = inode->i_mtime;
d3c6be6f 5852 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5853
5854 return inode;
5855}
5856
a55e65b8
DS
5857static_assert(BTRFS_FT_UNKNOWN == FT_UNKNOWN);
5858static_assert(BTRFS_FT_REG_FILE == FT_REG_FILE);
5859static_assert(BTRFS_FT_DIR == FT_DIR);
5860static_assert(BTRFS_FT_CHRDEV == FT_CHRDEV);
5861static_assert(BTRFS_FT_BLKDEV == FT_BLKDEV);
5862static_assert(BTRFS_FT_FIFO == FT_FIFO);
5863static_assert(BTRFS_FT_SOCK == FT_SOCK);
5864static_assert(BTRFS_FT_SYMLINK == FT_SYMLINK);
5865
6bf9e4bd
QW
5866static inline u8 btrfs_inode_type(struct inode *inode)
5867{
6bf9e4bd
QW
5868 return fs_umode_to_ftype(inode->i_mode);
5869}
5870
3de4586c 5871struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5872{
0b246afa 5873 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5874 struct inode *inode;
4df27c4d 5875 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5876 struct btrfs_root *sub_root = root;
5877 struct btrfs_key location;
6bf9e4bd 5878 u8 di_type = 0;
b4aff1f8 5879 int ret = 0;
39279cc3
CM
5880
5881 if (dentry->d_name.len > BTRFS_NAME_LEN)
5882 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5883
6bf9e4bd 5884 ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
39279cc3
CM
5885 if (ret < 0)
5886 return ERR_PTR(ret);
5f39d397 5887
4df27c4d 5888 if (location.type == BTRFS_INODE_ITEM_KEY) {
0202e83f 5889 inode = btrfs_iget(dir->i_sb, location.objectid, root);
6bf9e4bd
QW
5890 if (IS_ERR(inode))
5891 return inode;
5892
5893 /* Do extra check against inode mode with di_type */
5894 if (btrfs_inode_type(inode) != di_type) {
5895 btrfs_crit(fs_info,
5896"inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5897 inode->i_mode, btrfs_inode_type(inode),
5898 di_type);
5899 iput(inode);
5900 return ERR_PTR(-EUCLEAN);
5901 }
4df27c4d
YZ
5902 return inode;
5903 }
5904
2ff7e61e 5905 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5906 &location, &sub_root);
5907 if (ret < 0) {
5908 if (ret != -ENOENT)
5909 inode = ERR_PTR(ret);
5910 else
fc8b235f 5911 inode = new_simple_dir(dir->i_sb, &location, root);
4df27c4d 5912 } else {
0202e83f 5913 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
00246528 5914 btrfs_put_root(sub_root);
76dda93c 5915
fc8b235f
NB
5916 if (IS_ERR(inode))
5917 return inode;
5918
0b246afa 5919 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5920 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5921 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5922 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5923 if (ret) {
5924 iput(inode);
66b4ffd1 5925 inode = ERR_PTR(ret);
01cd3367 5926 }
c71bf099
YZ
5927 }
5928
3de4586c
CM
5929 return inode;
5930}
5931
fe15ce44 5932static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5933{
5934 struct btrfs_root *root;
2b0143b5 5935 struct inode *inode = d_inode(dentry);
76dda93c 5936
848cce0d 5937 if (!inode && !IS_ROOT(dentry))
2b0143b5 5938 inode = d_inode(dentry->d_parent);
76dda93c 5939
848cce0d
LZ
5940 if (inode) {
5941 root = BTRFS_I(inode)->root;
efefb143
YZ
5942 if (btrfs_root_refs(&root->root_item) == 0)
5943 return 1;
848cce0d 5944
4a0cc7ca 5945 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5946 return 1;
efefb143 5947 }
76dda93c
YZ
5948 return 0;
5949}
5950
3de4586c 5951static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5952 unsigned int flags)
3de4586c 5953{
3837d208 5954 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5955
3837d208
AV
5956 if (inode == ERR_PTR(-ENOENT))
5957 inode = NULL;
41d28bca 5958 return d_splice_alias(inode, dentry);
39279cc3
CM
5959}
5960
23b5ec74
JB
5961/*
5962 * All this infrastructure exists because dir_emit can fault, and we are holding
5963 * the tree lock when doing readdir. For now just allocate a buffer and copy
5964 * our information into that, and then dir_emit from the buffer. This is
5965 * similar to what NFS does, only we don't keep the buffer around in pagecache
5966 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5967 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5968 * tree lock.
5969 */
5970static int btrfs_opendir(struct inode *inode, struct file *file)
5971{
5972 struct btrfs_file_private *private;
5973
5974 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5975 if (!private)
5976 return -ENOMEM;
5977 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5978 if (!private->filldir_buf) {
5979 kfree(private);
5980 return -ENOMEM;
5981 }
5982 file->private_data = private;
5983 return 0;
5984}
5985
5986struct dir_entry {
5987 u64 ino;
5988 u64 offset;
5989 unsigned type;
5990 int name_len;
5991};
5992
5993static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5994{
5995 while (entries--) {
5996 struct dir_entry *entry = addr;
5997 char *name = (char *)(entry + 1);
5998
92d32170
DS
5999 ctx->pos = get_unaligned(&entry->offset);
6000 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
6001 get_unaligned(&entry->ino),
6002 get_unaligned(&entry->type)))
23b5ec74 6003 return 1;
92d32170
DS
6004 addr += sizeof(struct dir_entry) +
6005 get_unaligned(&entry->name_len);
23b5ec74
JB
6006 ctx->pos++;
6007 }
6008 return 0;
6009}
6010
9cdda8d3 6011static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 6012{
9cdda8d3 6013 struct inode *inode = file_inode(file);
39279cc3 6014 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 6015 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
6016 struct btrfs_dir_item *di;
6017 struct btrfs_key key;
5f39d397 6018 struct btrfs_key found_key;
39279cc3 6019 struct btrfs_path *path;
23b5ec74 6020 void *addr;
16cdcec7
MX
6021 struct list_head ins_list;
6022 struct list_head del_list;
39279cc3 6023 int ret;
5f39d397
CM
6024 char *name_ptr;
6025 int name_len;
23b5ec74
JB
6026 int entries = 0;
6027 int total_len = 0;
02dbfc99 6028 bool put = false;
c2951f32 6029 struct btrfs_key location;
5f39d397 6030
9cdda8d3
AV
6031 if (!dir_emit_dots(file, ctx))
6032 return 0;
6033
49593bfa 6034 path = btrfs_alloc_path();
16cdcec7
MX
6035 if (!path)
6036 return -ENOMEM;
ff5714cc 6037
23b5ec74 6038 addr = private->filldir_buf;
e4058b54 6039 path->reada = READA_FORWARD;
49593bfa 6040
c2951f32
JM
6041 INIT_LIST_HEAD(&ins_list);
6042 INIT_LIST_HEAD(&del_list);
6043 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 6044
23b5ec74 6045again:
c2951f32 6046 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 6047 key.offset = ctx->pos;
4a0cc7ca 6048 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 6049
a8ce68fd 6050 btrfs_for_each_slot(root, &key, &found_key, path, ret) {
23b5ec74 6051 struct dir_entry *entry;
a8ce68fd 6052 struct extent_buffer *leaf = path->nodes[0];
94a48aef 6053 u8 ftype;
5f39d397
CM
6054
6055 if (found_key.objectid != key.objectid)
39279cc3 6056 break;
c2951f32 6057 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 6058 break;
9cdda8d3 6059 if (found_key.offset < ctx->pos)
a8ce68fd 6060 continue;
c2951f32 6061 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
a8ce68fd
GN
6062 continue;
6063 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
c2951f32 6064 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
6065 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6066 PAGE_SIZE) {
6067 btrfs_release_path(path);
6068 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6069 if (ret)
6070 goto nopos;
6071 addr = private->filldir_buf;
6072 entries = 0;
6073 total_len = 0;
6074 goto again;
c2951f32 6075 }
23b5ec74 6076
94a48aef 6077 ftype = btrfs_dir_flags_to_ftype(btrfs_dir_flags(leaf, di));
23b5ec74 6078 entry = addr;
23b5ec74 6079 name_ptr = (char *)(entry + 1);
94a48aef
OS
6080 read_extent_buffer(leaf, name_ptr,
6081 (unsigned long)(di + 1), name_len);
6082 put_unaligned(name_len, &entry->name_len);
6083 put_unaligned(fs_ftype_to_dtype(ftype), &entry->type);
c2951f32 6084 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
6085 put_unaligned(location.objectid, &entry->ino);
6086 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
6087 entries++;
6088 addr += sizeof(struct dir_entry) + name_len;
6089 total_len += sizeof(struct dir_entry) + name_len;
39279cc3 6090 }
a8ce68fd
GN
6091 /* Catch error encountered during iteration */
6092 if (ret < 0)
6093 goto err;
6094
23b5ec74
JB
6095 btrfs_release_path(path);
6096
6097 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6098 if (ret)
6099 goto nopos;
49593bfa 6100
d2fbb2b5 6101 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6102 if (ret)
bc4ef759
DS
6103 goto nopos;
6104
db62efbb
ZB
6105 /*
6106 * Stop new entries from being returned after we return the last
6107 * entry.
6108 *
6109 * New directory entries are assigned a strictly increasing
6110 * offset. This means that new entries created during readdir
6111 * are *guaranteed* to be seen in the future by that readdir.
6112 * This has broken buggy programs which operate on names as
6113 * they're returned by readdir. Until we re-use freed offsets
6114 * we have this hack to stop new entries from being returned
6115 * under the assumption that they'll never reach this huge
6116 * offset.
6117 *
6118 * This is being careful not to overflow 32bit loff_t unless the
6119 * last entry requires it because doing so has broken 32bit apps
6120 * in the past.
6121 */
c2951f32
JM
6122 if (ctx->pos >= INT_MAX)
6123 ctx->pos = LLONG_MAX;
6124 else
6125 ctx->pos = INT_MAX;
39279cc3
CM
6126nopos:
6127 ret = 0;
6128err:
02dbfc99
OS
6129 if (put)
6130 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6131 btrfs_free_path(path);
39279cc3
CM
6132 return ret;
6133}
6134
39279cc3 6135/*
54aa1f4d 6136 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6137 * inode changes. But, it is most likely to find the inode in cache.
6138 * FIXME, needs more benchmarking...there are no reasons other than performance
6139 * to keep or drop this code.
6140 */
48a3b636 6141static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6142{
2ff7e61e 6143 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6144 struct btrfs_root *root = BTRFS_I(inode)->root;
6145 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6146 int ret;
6147
72ac3c0d 6148 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6149 return 0;
39279cc3 6150
7a7eaa40 6151 trans = btrfs_join_transaction(root);
22c44fe6
JB
6152 if (IS_ERR(trans))
6153 return PTR_ERR(trans);
8929ecfa 6154
9a56fcd1 6155 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
4d14c5cd 6156 if (ret && (ret == -ENOSPC || ret == -EDQUOT)) {
94b60442 6157 /* whoops, lets try again with the full transaction */
3a45bb20 6158 btrfs_end_transaction(trans);
94b60442 6159 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6160 if (IS_ERR(trans))
6161 return PTR_ERR(trans);
8929ecfa 6162
9a56fcd1 6163 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
94b60442 6164 }
3a45bb20 6165 btrfs_end_transaction(trans);
16cdcec7 6166 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6167 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6168
6169 return ret;
6170}
6171
6172/*
6173 * This is a copy of file_update_time. We need this so we can return error on
6174 * ENOSPC for updating the inode in the case of file write and mmap writes.
6175 */
95582b00 6176static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 6177 int flags)
22c44fe6 6178{
2bc55652 6179 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6180 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6181
6182 if (btrfs_root_readonly(root))
6183 return -EROFS;
6184
e41f941a 6185 if (flags & S_VERSION)
3a8c7231 6186 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6187 if (flags & S_CTIME)
6188 inode->i_ctime = *now;
6189 if (flags & S_MTIME)
6190 inode->i_mtime = *now;
6191 if (flags & S_ATIME)
6192 inode->i_atime = *now;
3a8c7231 6193 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6194}
6195
d352ac68
CM
6196/*
6197 * find the highest existing sequence number in a directory
6198 * and then set the in-memory index_cnt variable to reflect
6199 * free sequence numbers
6200 */
4c570655 6201static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6202{
4c570655 6203 struct btrfs_root *root = inode->root;
aec7477b
JB
6204 struct btrfs_key key, found_key;
6205 struct btrfs_path *path;
6206 struct extent_buffer *leaf;
6207 int ret;
6208
4c570655 6209 key.objectid = btrfs_ino(inode);
962a298f 6210 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6211 key.offset = (u64)-1;
6212
6213 path = btrfs_alloc_path();
6214 if (!path)
6215 return -ENOMEM;
6216
6217 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6218 if (ret < 0)
6219 goto out;
6220 /* FIXME: we should be able to handle this */
6221 if (ret == 0)
6222 goto out;
6223 ret = 0;
6224
aec7477b 6225 if (path->slots[0] == 0) {
528ee697 6226 inode->index_cnt = BTRFS_DIR_START_INDEX;
aec7477b
JB
6227 goto out;
6228 }
6229
6230 path->slots[0]--;
6231
6232 leaf = path->nodes[0];
6233 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6234
4c570655 6235 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6236 found_key.type != BTRFS_DIR_INDEX_KEY) {
528ee697 6237 inode->index_cnt = BTRFS_DIR_START_INDEX;
aec7477b
JB
6238 goto out;
6239 }
6240
4c570655 6241 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6242out:
6243 btrfs_free_path(path);
6244 return ret;
6245}
6246
d352ac68
CM
6247/*
6248 * helper to find a free sequence number in a given directory. This current
6249 * code is very simple, later versions will do smarter things in the btree
6250 */
877574e2 6251int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6252{
6253 int ret = 0;
6254
877574e2
NB
6255 if (dir->index_cnt == (u64)-1) {
6256 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6257 if (ret) {
6258 ret = btrfs_set_inode_index_count(dir);
6259 if (ret)
6260 return ret;
6261 }
aec7477b
JB
6262 }
6263
877574e2
NB
6264 *index = dir->index_cnt;
6265 dir->index_cnt++;
aec7477b
JB
6266
6267 return ret;
6268}
6269
b0d5d10f
CM
6270static int btrfs_insert_inode_locked(struct inode *inode)
6271{
6272 struct btrfs_iget_args args;
0202e83f
DS
6273
6274 args.ino = BTRFS_I(inode)->location.objectid;
b0d5d10f
CM
6275 args.root = BTRFS_I(inode)->root;
6276
6277 return insert_inode_locked4(inode,
6278 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6279 btrfs_find_actor, &args);
6280}
6281
3538d68d
OS
6282int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
6283 unsigned int *trans_num_items)
6284{
6285 struct inode *dir = args->dir;
6286 struct inode *inode = args->inode;
6287 int ret;
6288
ab3c5c18
STD
6289 if (!args->orphan) {
6290 ret = fscrypt_setup_filename(dir, &args->dentry->d_name, 0,
6291 &args->fname);
6292 if (ret)
6293 return ret;
ab3c5c18
STD
6294 }
6295
3538d68d 6296 ret = posix_acl_create(dir, &inode->i_mode, &args->default_acl, &args->acl);
ab3c5c18
STD
6297 if (ret) {
6298 fscrypt_free_filename(&args->fname);
3538d68d 6299 return ret;
ab3c5c18 6300 }
3538d68d
OS
6301
6302 /* 1 to add inode item */
6303 *trans_num_items = 1;
6304 /* 1 to add compression property */
6305 if (BTRFS_I(dir)->prop_compress)
6306 (*trans_num_items)++;
6307 /* 1 to add default ACL xattr */
6308 if (args->default_acl)
6309 (*trans_num_items)++;
6310 /* 1 to add access ACL xattr */
6311 if (args->acl)
6312 (*trans_num_items)++;
6313#ifdef CONFIG_SECURITY
6314 /* 1 to add LSM xattr */
6315 if (dir->i_security)
6316 (*trans_num_items)++;
6317#endif
6318 if (args->orphan) {
6319 /* 1 to add orphan item */
6320 (*trans_num_items)++;
6321 } else {
6322 /*
3538d68d
OS
6323 * 1 to add dir item
6324 * 1 to add dir index
6325 * 1 to update parent inode item
97bdf1a9
FM
6326 *
6327 * No need for 1 unit for the inode ref item because it is
6328 * inserted in a batch together with the inode item at
6329 * btrfs_create_new_inode().
3538d68d 6330 */
97bdf1a9 6331 *trans_num_items += 3;
3538d68d
OS
6332 }
6333 return 0;
6334}
6335
6336void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args)
6337{
6338 posix_acl_release(args->acl);
6339 posix_acl_release(args->default_acl);
ab3c5c18 6340 fscrypt_free_filename(&args->fname);
3538d68d
OS
6341}
6342
19aee8de
AJ
6343/*
6344 * Inherit flags from the parent inode.
6345 *
6346 * Currently only the compression flags and the cow flags are inherited.
6347 */
6348static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6349{
6350 unsigned int flags;
6351
19aee8de
AJ
6352 flags = BTRFS_I(dir)->flags;
6353
6354 if (flags & BTRFS_INODE_NOCOMPRESS) {
6355 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6356 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6357 } else if (flags & BTRFS_INODE_COMPRESS) {
6358 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6359 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6360 }
6361
6362 if (flags & BTRFS_INODE_NODATACOW) {
6363 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6364 if (S_ISREG(inode->i_mode))
6365 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6366 }
6367
7b6a221e 6368 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6369}
6370
3538d68d 6371int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
caae78e0 6372 struct btrfs_new_inode_args *args)
39279cc3 6373{
caae78e0 6374 struct inode *dir = args->dir;
3538d68d 6375 struct inode *inode = args->inode;
6db75318 6376 const struct fscrypt_str *name = args->orphan ? NULL : &args->fname.disk_name;
caae78e0 6377 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
3538d68d 6378 struct btrfs_root *root;
5f39d397 6379 struct btrfs_inode_item *inode_item;
39279cc3 6380 struct btrfs_key *location;
5f39d397 6381 struct btrfs_path *path;
6437d458 6382 u64 objectid;
9c58309d
CM
6383 struct btrfs_inode_ref *ref;
6384 struct btrfs_key key[2];
6385 u32 sizes[2];
b7ef5f3a 6386 struct btrfs_item_batch batch;
9c58309d 6387 unsigned long ptr;
39279cc3 6388 int ret;
39279cc3 6389
5f39d397 6390 path = btrfs_alloc_path();
d8926bb3 6391 if (!path)
a1fd0c35 6392 return -ENOMEM;
39279cc3 6393
3538d68d
OS
6394 if (!args->subvol)
6395 BTRFS_I(inode)->root = btrfs_grab_root(BTRFS_I(dir)->root);
6396 root = BTRFS_I(inode)->root;
6397
6437d458 6398 ret = btrfs_get_free_objectid(root, &objectid);
caae78e0
OS
6399 if (ret)
6400 goto out;
581bb050
LZ
6401 inode->i_ino = objectid;
6402
caae78e0
OS
6403 if (args->orphan) {
6404 /*
6405 * O_TMPFILE, set link count to 0, so that after this point, we
6406 * fill in an inode item with the correct link count.
6407 */
6408 set_nlink(inode, 0);
6409 } else {
1abe9b8a 6410 trace_btrfs_inode_request(dir);
6411
caae78e0
OS
6412 ret = btrfs_set_inode_index(BTRFS_I(dir), &BTRFS_I(inode)->dir_index);
6413 if (ret)
6414 goto out;
aec7477b 6415 }
49024388
FM
6416 /* index_cnt is ignored for everything but a dir. */
6417 BTRFS_I(inode)->index_cnt = BTRFS_DIR_START_INDEX;
e02119d5 6418 BTRFS_I(inode)->generation = trans->transid;
76195853 6419 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6420
caae78e0
OS
6421 /*
6422 * Subvolumes don't inherit flags from their parent directory.
6423 * Originally this was probably by accident, but we probably can't
6424 * change it now without compatibility issues.
6425 */
6426 if (!args->subvol)
6427 btrfs_inherit_iflags(inode, dir);
305eaac0 6428
a1fd0c35 6429 if (S_ISREG(inode->i_mode)) {
305eaac0
OS
6430 if (btrfs_test_opt(fs_info, NODATASUM))
6431 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6432 if (btrfs_test_opt(fs_info, NODATACOW))
6433 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6434 BTRFS_INODE_NODATASUM;
6435 }
6436
caae78e0
OS
6437 location = &BTRFS_I(inode)->location;
6438 location->objectid = objectid;
6439 location->offset = 0;
6440 location->type = BTRFS_INODE_ITEM_KEY;
6441
6442 ret = btrfs_insert_inode_locked(inode);
6443 if (ret < 0) {
6444 if (!args->orphan)
6445 BTRFS_I(dir)->index_cnt--;
6446 goto out;
6447 }
6448
5dc562c5
JB
6449 /*
6450 * We could have gotten an inode number from somebody who was fsynced
6451 * and then removed in this same transaction, so let's just set full
6452 * sync since it will be a full sync anyway and this will blow away the
6453 * old info in the log.
6454 */
23e3337f 6455 btrfs_set_inode_full_sync(BTRFS_I(inode));
5dc562c5 6456
9c58309d 6457 key[0].objectid = objectid;
962a298f 6458 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6459 key[0].offset = 0;
6460
9c58309d 6461 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5 6462
caae78e0 6463 if (!args->orphan) {
ef3b9af5
FM
6464 /*
6465 * Start new inodes with an inode_ref. This is slightly more
6466 * efficient for small numbers of hard links since they will
6467 * be packed into one item. Extended refs will kick in if we
6468 * add more hard links than can fit in the ref item.
6469 */
6470 key[1].objectid = objectid;
962a298f 6471 key[1].type = BTRFS_INODE_REF_KEY;
caae78e0 6472 if (args->subvol) {
23c24ef8 6473 key[1].offset = objectid;
caae78e0
OS
6474 sizes[1] = 2 + sizeof(*ref);
6475 } else {
6476 key[1].offset = btrfs_ino(BTRFS_I(dir));
e43eec81 6477 sizes[1] = name->len + sizeof(*ref);
caae78e0 6478 }
ef3b9af5 6479 }
9c58309d 6480
b7ef5f3a
FM
6481 batch.keys = &key[0];
6482 batch.data_sizes = &sizes[0];
caae78e0
OS
6483 batch.total_data_size = sizes[0] + (args->orphan ? 0 : sizes[1]);
6484 batch.nr = args->orphan ? 1 : 2;
b7ef5f3a 6485 ret = btrfs_insert_empty_items(trans, root, path, &batch);
caae78e0
OS
6486 if (ret != 0) {
6487 btrfs_abort_transaction(trans, ret);
6488 goto discard;
6489 }
5f39d397 6490
c2050a45 6491 inode->i_mtime = current_time(inode);
9cc97d64 6492 inode->i_atime = inode->i_mtime;
6493 inode->i_ctime = inode->i_mtime;
d3c6be6f 6494 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6495
caae78e0
OS
6496 /*
6497 * We're going to fill the inode item now, so at this point the inode
6498 * must be fully initialized.
6499 */
6500
5f39d397
CM
6501 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6502 struct btrfs_inode_item);
b159fa28 6503 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6504 sizeof(*inode_item));
e02119d5 6505 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6506
caae78e0 6507 if (!args->orphan) {
ef3b9af5
FM
6508 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6509 struct btrfs_inode_ref);
ef3b9af5 6510 ptr = (unsigned long)(ref + 1);
caae78e0
OS
6511 if (args->subvol) {
6512 btrfs_set_inode_ref_name_len(path->nodes[0], ref, 2);
6513 btrfs_set_inode_ref_index(path->nodes[0], ref, 0);
6514 write_extent_buffer(path->nodes[0], "..", ptr, 2);
6515 } else {
e43eec81
STD
6516 btrfs_set_inode_ref_name_len(path->nodes[0], ref,
6517 name->len);
caae78e0
OS
6518 btrfs_set_inode_ref_index(path->nodes[0], ref,
6519 BTRFS_I(inode)->dir_index);
e43eec81
STD
6520 write_extent_buffer(path->nodes[0], name->name, ptr,
6521 name->len);
caae78e0 6522 }
ef3b9af5 6523 }
9c58309d 6524
5f39d397 6525 btrfs_mark_buffer_dirty(path->nodes[0]);
814e7718
FM
6526 /*
6527 * We don't need the path anymore, plus inheriting properties, adding
6528 * ACLs, security xattrs, orphan item or adding the link, will result in
6529 * allocating yet another path. So just free our path.
6530 */
6531 btrfs_free_path(path);
6532 path = NULL;
5f39d397 6533
6c3636eb
STD
6534 if (args->subvol) {
6535 struct inode *parent;
6536
6537 /*
6538 * Subvolumes inherit properties from their parent subvolume,
6539 * not the directory they were created in.
6540 */
6541 parent = btrfs_iget(fs_info->sb, BTRFS_FIRST_FREE_OBJECTID,
6542 BTRFS_I(dir)->root);
6543 if (IS_ERR(parent)) {
6544 ret = PTR_ERR(parent);
6545 } else {
6546 ret = btrfs_inode_inherit_props(trans, inode, parent);
6547 iput(parent);
6548 }
6549 } else {
6550 ret = btrfs_inode_inherit_props(trans, inode, dir);
6551 }
6552 if (ret) {
6553 btrfs_err(fs_info,
6554 "error inheriting props for ino %llu (root %llu): %d",
6555 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid,
6556 ret);
6557 }
6558
6559 /*
6560 * Subvolumes don't inherit ACLs or get passed to the LSM. This is
6561 * probably a bug.
6562 */
6563 if (!args->subvol) {
6564 ret = btrfs_init_inode_security(trans, args);
6565 if (ret) {
6566 btrfs_abort_transaction(trans, ret);
6567 goto discard;
6568 }
6569 }
6570
5d4f98a2 6571 inode_tree_add(inode);
1abe9b8a 6572
6573 trace_btrfs_inode_new(inode);
d9094414 6574 btrfs_set_inode_last_trans(trans, BTRFS_I(inode));
1abe9b8a 6575
8ea05e3a
AB
6576 btrfs_update_root_times(trans, root);
6577
caae78e0
OS
6578 if (args->orphan) {
6579 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
6580 } else {
6581 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
e43eec81 6582 0, BTRFS_I(inode)->dir_index);
caae78e0
OS
6583 }
6584 if (ret) {
6585 btrfs_abort_transaction(trans, ret);
6586 goto discard;
6587 }
63541927 6588
814e7718 6589 return 0;
b0d5d10f 6590
caae78e0 6591discard:
a1fd0c35
OS
6592 /*
6593 * discard_new_inode() calls iput(), but the caller owns the reference
6594 * to the inode.
6595 */
6596 ihold(inode);
32955c54 6597 discard_new_inode(inode);
caae78e0 6598out:
5f39d397 6599 btrfs_free_path(path);
a1fd0c35 6600 return ret;
39279cc3
CM
6601}
6602
d352ac68
CM
6603/*
6604 * utility function to add 'inode' into 'parent_inode' with
6605 * a give name and a given sequence number.
6606 * if 'add_backref' is true, also insert a backref from the
6607 * inode to the parent directory.
6608 */
e02119d5 6609int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6610 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6db75318 6611 const struct fscrypt_str *name, int add_backref, u64 index)
39279cc3 6612{
4df27c4d 6613 int ret = 0;
39279cc3 6614 struct btrfs_key key;
db0a669f
NB
6615 struct btrfs_root *root = parent_inode->root;
6616 u64 ino = btrfs_ino(inode);
6617 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6618
33345d01 6619 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6620 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6621 } else {
33345d01 6622 key.objectid = ino;
962a298f 6623 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6624 key.offset = 0;
6625 }
6626
33345d01 6627 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6628 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa 6629 root->root_key.objectid, parent_ino,
e43eec81 6630 index, name);
4df27c4d 6631 } else if (add_backref) {
e43eec81
STD
6632 ret = btrfs_insert_inode_ref(trans, root, name,
6633 ino, parent_ino, index);
4df27c4d 6634 }
39279cc3 6635
79787eaa
JM
6636 /* Nothing to clean up yet */
6637 if (ret)
6638 return ret;
4df27c4d 6639
e43eec81 6640 ret = btrfs_insert_dir_item(trans, name, parent_inode, &key,
db0a669f 6641 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6642 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6643 goto fail_dir_item;
6644 else if (ret) {
66642832 6645 btrfs_abort_transaction(trans, ret);
79787eaa 6646 return ret;
39279cc3 6647 }
79787eaa 6648
db0a669f 6649 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
e43eec81 6650 name->len * 2);
db0a669f 6651 inode_inc_iversion(&parent_inode->vfs_inode);
5338e43a
FM
6652 /*
6653 * If we are replaying a log tree, we do not want to update the mtime
6654 * and ctime of the parent directory with the current time, since the
6655 * log replay procedure is responsible for setting them to their correct
6656 * values (the ones it had when the fsync was done).
6657 */
6658 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6659 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6660
6661 parent_inode->vfs_inode.i_mtime = now;
6662 parent_inode->vfs_inode.i_ctime = now;
6663 }
9a56fcd1 6664 ret = btrfs_update_inode(trans, root, parent_inode);
79787eaa 6665 if (ret)
66642832 6666 btrfs_abort_transaction(trans, ret);
39279cc3 6667 return ret;
fe66a05a
CM
6668
6669fail_dir_item:
6670 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6671 u64 local_index;
6672 int err;
3ee1c553 6673 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa 6674 root->root_key.objectid, parent_ino,
e43eec81 6675 &local_index, name);
1690dd41
JT
6676 if (err)
6677 btrfs_abort_transaction(trans, err);
fe66a05a
CM
6678 } else if (add_backref) {
6679 u64 local_index;
6680 int err;
6681
e43eec81
STD
6682 err = btrfs_del_inode_ref(trans, root, name, ino, parent_ino,
6683 &local_index);
1690dd41
JT
6684 if (err)
6685 btrfs_abort_transaction(trans, err);
fe66a05a 6686 }
1690dd41
JT
6687
6688 /* Return the original error code */
fe66a05a 6689 return ret;
39279cc3
CM
6690}
6691
5f465bf1
OS
6692static int btrfs_create_common(struct inode *dir, struct dentry *dentry,
6693 struct inode *inode)
618e21d5 6694{
2ff7e61e 6695 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5 6696 struct btrfs_root *root = BTRFS_I(dir)->root;
3538d68d
OS
6697 struct btrfs_new_inode_args new_inode_args = {
6698 .dir = dir,
6699 .dentry = dentry,
6700 .inode = inode,
6701 };
6702 unsigned int trans_num_items;
5f465bf1 6703 struct btrfs_trans_handle *trans;
618e21d5 6704 int err;
618e21d5 6705
3538d68d 6706 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
caae78e0
OS
6707 if (err)
6708 goto out_inode;
3538d68d
OS
6709
6710 trans = btrfs_start_transaction(root, trans_num_items);
a1fd0c35 6711 if (IS_ERR(trans)) {
3538d68d
OS
6712 err = PTR_ERR(trans);
6713 goto out_new_inode_args;
a1fd0c35 6714 }
1832a6d5 6715
caae78e0
OS
6716 err = btrfs_create_new_inode(trans, &new_inode_args);
6717 if (!err)
6718 d_instantiate_new(dentry, inode);
b0d5d10f 6719
3a45bb20 6720 btrfs_end_transaction(trans);
5f465bf1 6721 btrfs_btree_balance_dirty(fs_info);
3538d68d
OS
6722out_new_inode_args:
6723 btrfs_new_inode_args_destroy(&new_inode_args);
caae78e0
OS
6724out_inode:
6725 if (err)
6726 iput(inode);
618e21d5
JB
6727 return err;
6728}
6729
5f465bf1
OS
6730static int btrfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
6731 struct dentry *dentry, umode_t mode, dev_t rdev)
6732{
6733 struct inode *inode;
6734
6735 inode = new_inode(dir->i_sb);
6736 if (!inode)
6737 return -ENOMEM;
6738 inode_init_owner(mnt_userns, inode, dir, mode);
6739 inode->i_op = &btrfs_special_inode_operations;
6740 init_special_inode(inode, inode->i_mode, rdev);
6741 return btrfs_create_common(dir, dentry, inode);
6742}
6743
549c7297
CB
6744static int btrfs_create(struct user_namespace *mnt_userns, struct inode *dir,
6745 struct dentry *dentry, umode_t mode, bool excl)
39279cc3 6746{
a1fd0c35 6747 struct inode *inode;
39279cc3 6748
a1fd0c35
OS
6749 inode = new_inode(dir->i_sb);
6750 if (!inode)
6751 return -ENOMEM;
6752 inode_init_owner(mnt_userns, inode, dir, mode);
6753 inode->i_fop = &btrfs_file_operations;
6754 inode->i_op = &btrfs_file_inode_operations;
6755 inode->i_mapping->a_ops = &btrfs_aops;
5f465bf1 6756 return btrfs_create_common(dir, dentry, inode);
39279cc3
CM
6757}
6758
6759static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6760 struct dentry *dentry)
6761{
271dba45 6762 struct btrfs_trans_handle *trans = NULL;
39279cc3 6763 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6764 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6765 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
ab3c5c18 6766 struct fscrypt_name fname;
00e4e6b3 6767 u64 index;
39279cc3
CM
6768 int err;
6769 int drop_inode = 0;
6770
4a8be425 6771 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6772 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6773 return -EXDEV;
4a8be425 6774
f186373f 6775 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6776 return -EMLINK;
4a8be425 6777
ab3c5c18
STD
6778 err = fscrypt_setup_filename(dir, &dentry->d_name, 0, &fname);
6779 if (err)
6780 goto fail;
6781
877574e2 6782 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6783 if (err)
6784 goto fail;
6785
a22285a6 6786 /*
7e6b6465 6787 * 2 items for inode and inode ref
a22285a6 6788 * 2 items for dir items
7e6b6465 6789 * 1 item for parent inode
399b0bbf 6790 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6791 */
399b0bbf 6792 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6793 if (IS_ERR(trans)) {
6794 err = PTR_ERR(trans);
271dba45 6795 trans = NULL;
a22285a6
YZ
6796 goto fail;
6797 }
5f39d397 6798
67de1176
MX
6799 /* There are several dir indexes for this inode, clear the cache. */
6800 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6801 inc_nlink(inode);
0c4d2d95 6802 inode_inc_iversion(inode);
c2050a45 6803 inode->i_ctime = current_time(inode);
7de9c6ee 6804 ihold(inode);
e9976151 6805 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6806
81512e89 6807 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6db75318 6808 &fname.disk_name, 1, index);
5f39d397 6809
a5719521 6810 if (err) {
54aa1f4d 6811 drop_inode = 1;
a5719521 6812 } else {
10d9f309 6813 struct dentry *parent = dentry->d_parent;
d4682ba0 6814
9a56fcd1 6815 err = btrfs_update_inode(trans, root, BTRFS_I(inode));
79787eaa
JM
6816 if (err)
6817 goto fail;
ef3b9af5
FM
6818 if (inode->i_nlink == 1) {
6819 /*
6820 * If new hard link count is 1, it's a file created
6821 * with open(2) O_TMPFILE flag.
6822 */
3d6ae7bb 6823 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6824 if (err)
6825 goto fail;
6826 }
08c422c2 6827 d_instantiate(dentry, inode);
88d2beec 6828 btrfs_log_new_name(trans, old_dentry, NULL, 0, parent);
a5719521 6829 }
39279cc3 6830
1832a6d5 6831fail:
ab3c5c18 6832 fscrypt_free_filename(&fname);
271dba45 6833 if (trans)
3a45bb20 6834 btrfs_end_transaction(trans);
39279cc3
CM
6835 if (drop_inode) {
6836 inode_dec_link_count(inode);
6837 iput(inode);
6838 }
2ff7e61e 6839 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6840 return err;
6841}
6842
549c7297
CB
6843static int btrfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
6844 struct dentry *dentry, umode_t mode)
39279cc3 6845{
a1fd0c35 6846 struct inode *inode;
39279cc3 6847
a1fd0c35
OS
6848 inode = new_inode(dir->i_sb);
6849 if (!inode)
6850 return -ENOMEM;
6851 inode_init_owner(mnt_userns, inode, dir, S_IFDIR | mode);
6852 inode->i_op = &btrfs_dir_inode_operations;
6853 inode->i_fop = &btrfs_dir_file_operations;
5f465bf1 6854 return btrfs_create_common(dir, dentry, inode);
39279cc3
CM
6855}
6856
c8b97818 6857static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6858 struct page *page,
c8b97818
CM
6859 size_t pg_offset, u64 extent_offset,
6860 struct btrfs_file_extent_item *item)
6861{
6862 int ret;
6863 struct extent_buffer *leaf = path->nodes[0];
6864 char *tmp;
6865 size_t max_size;
6866 unsigned long inline_size;
6867 unsigned long ptr;
261507a0 6868 int compress_type;
c8b97818
CM
6869
6870 WARN_ON(pg_offset != 0);
261507a0 6871 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818 6872 max_size = btrfs_file_extent_ram_bytes(leaf, item);
437bd07e 6873 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
c8b97818 6874 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6875 if (!tmp)
6876 return -ENOMEM;
c8b97818
CM
6877 ptr = btrfs_file_extent_inline_start(item);
6878
6879 read_extent_buffer(leaf, tmp, ptr, inline_size);
6880
09cbfeaf 6881 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6882 ret = btrfs_decompress(compress_type, tmp, page,
6883 extent_offset, inline_size, max_size);
e1699d2d
ZB
6884
6885 /*
6886 * decompression code contains a memset to fill in any space between the end
6887 * of the uncompressed data and the end of max_size in case the decompressed
6888 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6889 * the end of an inline extent and the beginning of the next block, so we
6890 * cover that region here.
6891 */
6892
d048b9c2
IW
6893 if (max_size + pg_offset < PAGE_SIZE)
6894 memzero_page(page, pg_offset + max_size,
6895 PAGE_SIZE - max_size - pg_offset);
c8b97818 6896 kfree(tmp);
166ae5a4 6897 return ret;
c8b97818
CM
6898}
6899
43dd529a
DS
6900/*
6901 * Lookup the first extent overlapping a range in a file.
6902 *
39b07b5d
OS
6903 * @inode: file to search in
6904 * @page: page to read extent data into if the extent is inline
6905 * @pg_offset: offset into @page to copy to
6906 * @start: file offset
6907 * @len: length of range starting at @start
6908 *
43dd529a
DS
6909 * Return the first &struct extent_map which overlaps the given range, reading
6910 * it from the B-tree and caching it if necessary. Note that there may be more
6911 * extents which overlap the given range after the returned extent_map.
d352ac68 6912 *
39b07b5d
OS
6913 * If @page is not NULL and the extent is inline, this also reads the extent
6914 * data directly into the page and marks the extent up to date in the io_tree.
6915 *
6916 * Return: ERR_PTR on error, non-NULL extent_map on success.
d352ac68 6917 */
fc4f21b1 6918struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
39b07b5d
OS
6919 struct page *page, size_t pg_offset,
6920 u64 start, u64 len)
a52d9a80 6921{
3ffbd68c 6922 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1028d1c4 6923 int ret = 0;
a52d9a80
CM
6924 u64 extent_start = 0;
6925 u64 extent_end = 0;
fc4f21b1 6926 u64 objectid = btrfs_ino(inode);
7e74e235 6927 int extent_type = -1;
f421950f 6928 struct btrfs_path *path = NULL;
fc4f21b1 6929 struct btrfs_root *root = inode->root;
a52d9a80 6930 struct btrfs_file_extent_item *item;
5f39d397
CM
6931 struct extent_buffer *leaf;
6932 struct btrfs_key found_key;
a52d9a80 6933 struct extent_map *em = NULL;
fc4f21b1 6934 struct extent_map_tree *em_tree = &inode->extent_tree;
a52d9a80 6935
890871be 6936 read_lock(&em_tree->lock);
d1310b2e 6937 em = lookup_extent_mapping(em_tree, start, len);
890871be 6938 read_unlock(&em_tree->lock);
d1310b2e 6939
a52d9a80 6940 if (em) {
e1c4b745
CM
6941 if (em->start > start || em->start + em->len <= start)
6942 free_extent_map(em);
6943 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6944 free_extent_map(em);
6945 else
6946 goto out;
a52d9a80 6947 }
172ddd60 6948 em = alloc_extent_map();
a52d9a80 6949 if (!em) {
1028d1c4 6950 ret = -ENOMEM;
d1310b2e 6951 goto out;
a52d9a80 6952 }
d1310b2e 6953 em->start = EXTENT_MAP_HOLE;
445a6944 6954 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6955 em->len = (u64)-1;
c8b97818 6956 em->block_len = (u64)-1;
f421950f 6957
bee6ec82 6958 path = btrfs_alloc_path();
f421950f 6959 if (!path) {
1028d1c4 6960 ret = -ENOMEM;
bee6ec82 6961 goto out;
f421950f
CM
6962 }
6963
bee6ec82
LB
6964 /* Chances are we'll be called again, so go ahead and do readahead */
6965 path->reada = READA_FORWARD;
4d7240f0
JB
6966
6967 /*
6968 * The same explanation in load_free_space_cache applies here as well,
6969 * we only read when we're loading the free space cache, and at that
6970 * point the commit_root has everything we need.
6971 */
6972 if (btrfs_is_free_space_inode(inode)) {
6973 path->search_commit_root = 1;
6974 path->skip_locking = 1;
6975 }
51899412 6976
5c9a702e 6977 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80 6978 if (ret < 0) {
a52d9a80 6979 goto out;
b8eeab7f 6980 } else if (ret > 0) {
a52d9a80
CM
6981 if (path->slots[0] == 0)
6982 goto not_found;
6983 path->slots[0]--;
1028d1c4 6984 ret = 0;
a52d9a80
CM
6985 }
6986
5f39d397
CM
6987 leaf = path->nodes[0];
6988 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6989 struct btrfs_file_extent_item);
5f39d397 6990 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5f39d397 6991 if (found_key.objectid != objectid ||
694c12ed 6992 found_key.type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6993 /*
6994 * If we backup past the first extent we want to move forward
6995 * and see if there is an extent in front of us, otherwise we'll
6996 * say there is a hole for our whole search range which can
6997 * cause problems.
6998 */
6999 extent_end = start;
7000 goto next;
a52d9a80
CM
7001 }
7002
694c12ed 7003 extent_type = btrfs_file_extent_type(leaf, item);
5f39d397 7004 extent_start = found_key.offset;
a5eeb3d1 7005 extent_end = btrfs_file_extent_end(path);
694c12ed
NB
7006 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7007 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6bf9e4bd
QW
7008 /* Only regular file could have regular/prealloc extent */
7009 if (!S_ISREG(inode->vfs_inode.i_mode)) {
1028d1c4 7010 ret = -EUCLEAN;
6bf9e4bd
QW
7011 btrfs_crit(fs_info,
7012 "regular/prealloc extent found for non-regular inode %llu",
7013 btrfs_ino(inode));
7014 goto out;
7015 }
09ed2f16
LB
7016 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7017 extent_start);
694c12ed 7018 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
09ed2f16
LB
7019 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7020 path->slots[0],
7021 extent_start);
9036c102 7022 }
25a50341 7023next:
9036c102
YZ
7024 if (start >= extent_end) {
7025 path->slots[0]++;
7026 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7027 ret = btrfs_next_leaf(root, path);
1028d1c4 7028 if (ret < 0)
9036c102 7029 goto out;
1028d1c4 7030 else if (ret > 0)
9036c102 7031 goto not_found;
1028d1c4 7032
9036c102 7033 leaf = path->nodes[0];
a52d9a80 7034 }
9036c102
YZ
7035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7036 if (found_key.objectid != objectid ||
7037 found_key.type != BTRFS_EXTENT_DATA_KEY)
7038 goto not_found;
7039 if (start + len <= found_key.offset)
7040 goto not_found;
e2eca69d
WS
7041 if (start > found_key.offset)
7042 goto next;
02a033df
NB
7043
7044 /* New extent overlaps with existing one */
9036c102 7045 em->start = start;
70c8a91c 7046 em->orig_start = start;
9036c102 7047 em->len = found_key.offset - start;
02a033df
NB
7048 em->block_start = EXTENT_MAP_HOLE;
7049 goto insert;
9036c102
YZ
7050 }
7051
39b07b5d 7052 btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
7ffbb598 7053
694c12ed
NB
7054 if (extent_type == BTRFS_FILE_EXTENT_REG ||
7055 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 7056 goto insert;
694c12ed 7057 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7058 unsigned long ptr;
a52d9a80 7059 char *map;
3326d1b0
CM
7060 size_t size;
7061 size_t extent_offset;
7062 size_t copy_size;
a52d9a80 7063
39b07b5d 7064 if (!page)
689f9346 7065 goto out;
5f39d397 7066
e41ca589 7067 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 7068 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7069 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7070 size - extent_offset);
3326d1b0 7071 em->start = extent_start + extent_offset;
0b246afa 7072 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7073 em->orig_block_len = em->len;
70c8a91c 7074 em->orig_start = em->start;
689f9346 7075 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9 7076
bf46f52d 7077 if (!PageUptodate(page)) {
261507a0
LZ
7078 if (btrfs_file_extent_compression(leaf, item) !=
7079 BTRFS_COMPRESS_NONE) {
e40da0e5 7080 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7081 extent_offset, item);
1028d1c4 7082 if (ret)
166ae5a4 7083 goto out;
c8b97818 7084 } else {
58c1a35c 7085 map = kmap_local_page(page);
c8b97818
CM
7086 read_extent_buffer(leaf, map + pg_offset, ptr,
7087 copy_size);
09cbfeaf 7088 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7089 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7090 PAGE_SIZE - pg_offset -
93c82d57
CM
7091 copy_size);
7092 }
58c1a35c 7093 kunmap_local(map);
c8b97818 7094 }
179e29e4 7095 flush_dcache_page(page);
a52d9a80 7096 }
a52d9a80 7097 goto insert;
a52d9a80
CM
7098 }
7099not_found:
7100 em->start = start;
70c8a91c 7101 em->orig_start = start;
d1310b2e 7102 em->len = len;
5f39d397 7103 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7104insert:
1028d1c4 7105 ret = 0;
b3b4aa74 7106 btrfs_release_path(path);
d1310b2e 7107 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7108 btrfs_err(fs_info,
5d163e0e
JM
7109 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7110 em->start, em->len, start, len);
1028d1c4 7111 ret = -EIO;
a52d9a80
CM
7112 goto out;
7113 }
d1310b2e 7114
890871be 7115 write_lock(&em_tree->lock);
1028d1c4 7116 ret = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 7117 write_unlock(&em_tree->lock);
a52d9a80 7118out:
c6414280 7119 btrfs_free_path(path);
1abe9b8a 7120
fc4f21b1 7121 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7122
1028d1c4 7123 if (ret) {
a52d9a80 7124 free_extent_map(em);
1028d1c4 7125 return ERR_PTR(ret);
a52d9a80
CM
7126 }
7127 return em;
7128}
7129
64f54188 7130static struct extent_map *btrfs_create_dio_extent(struct btrfs_inode *inode,
5f9a8a51
FM
7131 const u64 start,
7132 const u64 len,
7133 const u64 orig_start,
7134 const u64 block_start,
7135 const u64 block_len,
7136 const u64 orig_block_len,
7137 const u64 ram_bytes,
7138 const int type)
7139{
7140 struct extent_map *em = NULL;
7141 int ret;
7142
5f9a8a51 7143 if (type != BTRFS_ORDERED_NOCOW) {
64f54188
NB
7144 em = create_io_em(inode, start, len, orig_start, block_start,
7145 block_len, orig_block_len, ram_bytes,
6f9994db
LB
7146 BTRFS_COMPRESS_NONE, /* compress_type */
7147 type);
5f9a8a51
FM
7148 if (IS_ERR(em))
7149 goto out;
7150 }
cb36a9bb
OS
7151 ret = btrfs_add_ordered_extent(inode, start, len, len, block_start,
7152 block_len, 0,
7153 (1 << type) |
7154 (1 << BTRFS_ORDERED_DIRECT),
7155 BTRFS_COMPRESS_NONE);
5f9a8a51
FM
7156 if (ret) {
7157 if (em) {
7158 free_extent_map(em);
4c0c8cfc
FM
7159 btrfs_drop_extent_map_range(inode, start,
7160 start + len - 1, false);
5f9a8a51
FM
7161 }
7162 em = ERR_PTR(ret);
7163 }
7164 out:
5f9a8a51
FM
7165
7166 return em;
7167}
7168
9fc6f911 7169static struct extent_map *btrfs_new_extent_direct(struct btrfs_inode *inode,
4b46fce2
JB
7170 u64 start, u64 len)
7171{
9fc6f911
NB
7172 struct btrfs_root *root = inode->root;
7173 struct btrfs_fs_info *fs_info = root->fs_info;
70c8a91c 7174 struct extent_map *em;
4b46fce2
JB
7175 struct btrfs_key ins;
7176 u64 alloc_hint;
7177 int ret;
4b46fce2 7178
9fc6f911 7179 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7180 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7181 0, alloc_hint, &ins, 1, 1);
00361589
JB
7182 if (ret)
7183 return ERR_PTR(ret);
4b46fce2 7184
9fc6f911 7185 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
5f9a8a51 7186 ins.objectid, ins.offset, ins.offset,
6288d6ea 7187 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7188 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7189 if (IS_ERR(em))
9fc6f911
NB
7190 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset,
7191 1);
de0ee0ed 7192
4b46fce2
JB
7193 return em;
7194}
7195
f4639636 7196static bool btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
05947ae1
AJ
7197{
7198 struct btrfs_block_group *block_group;
f4639636 7199 bool readonly = false;
05947ae1
AJ
7200
7201 block_group = btrfs_lookup_block_group(fs_info, bytenr);
7202 if (!block_group || block_group->ro)
f4639636 7203 readonly = true;
05947ae1
AJ
7204 if (block_group)
7205 btrfs_put_block_group(block_group);
7206 return readonly;
7207}
7208
46bfbb5c 7209/*
e4ecaf90
QW
7210 * Check if we can do nocow write into the range [@offset, @offset + @len)
7211 *
7212 * @offset: File offset
7213 * @len: The length to write, will be updated to the nocow writeable
7214 * range
7215 * @orig_start: (optional) Return the original file offset of the file extent
7216 * @orig_len: (optional) Return the original on-disk length of the file extent
7217 * @ram_bytes: (optional) Return the ram_bytes of the file extent
a84d5d42
BB
7218 * @strict: if true, omit optimizations that might force us into unnecessary
7219 * cow. e.g., don't trust generation number.
e4ecaf90 7220 *
e4ecaf90
QW
7221 * Return:
7222 * >0 and update @len if we can do nocow write
7223 * 0 if we can't do nocow write
7224 * <0 if error happened
7225 *
7226 * NOTE: This only checks the file extents, caller is responsible to wait for
7227 * any ordered extents.
46bfbb5c 7228 */
00361589 7229noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440 7230 u64 *orig_start, u64 *orig_block_len,
26ce9114 7231 u64 *ram_bytes, bool nowait, bool strict)
46bfbb5c 7232{
2ff7e61e 7233 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
619104ba 7234 struct can_nocow_file_extent_args nocow_args = { 0 };
46bfbb5c
CM
7235 struct btrfs_path *path;
7236 int ret;
7237 struct extent_buffer *leaf;
7238 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7239 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7240 struct btrfs_file_extent_item *fi;
7241 struct btrfs_key key;
46bfbb5c 7242 int found_type;
e77751aa 7243
46bfbb5c
CM
7244 path = btrfs_alloc_path();
7245 if (!path)
7246 return -ENOMEM;
26ce9114 7247 path->nowait = nowait;
46bfbb5c 7248
f85b7379
DS
7249 ret = btrfs_lookup_file_extent(NULL, root, path,
7250 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7251 if (ret < 0)
7252 goto out;
7253
46bfbb5c 7254 if (ret == 1) {
619104ba 7255 if (path->slots[0] == 0) {
46bfbb5c
CM
7256 /* can't find the item, must cow */
7257 ret = 0;
7258 goto out;
7259 }
619104ba 7260 path->slots[0]--;
46bfbb5c
CM
7261 }
7262 ret = 0;
7263 leaf = path->nodes[0];
619104ba 7264 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4a0cc7ca 7265 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7266 key.type != BTRFS_EXTENT_DATA_KEY) {
7267 /* not our file or wrong item type, must cow */
7268 goto out;
7269 }
7270
7271 if (key.offset > offset) {
7272 /* Wrong offset, must cow */
7273 goto out;
7274 }
7275
619104ba 7276 if (btrfs_file_extent_end(path) <= offset)
7ee9e440
JB
7277 goto out;
7278
619104ba
FM
7279 fi = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
7280 found_type = btrfs_file_extent_type(leaf, fi);
7281 if (ram_bytes)
7282 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
e77751aa 7283
619104ba
FM
7284 nocow_args.start = offset;
7285 nocow_args.end = offset + *len - 1;
7286 nocow_args.strict = strict;
7287 nocow_args.free_path = true;
7ee9e440 7288
619104ba
FM
7289 ret = can_nocow_file_extent(path, &key, BTRFS_I(inode), &nocow_args);
7290 /* can_nocow_file_extent() has freed the path. */
7291 path = NULL;
7ee9e440 7292
619104ba
FM
7293 if (ret != 1) {
7294 /* Treat errors as not being able to NOCOW. */
7295 ret = 0;
78d4295b 7296 goto out;
7ee9e440 7297 }
eb384b55 7298
619104ba
FM
7299 ret = 0;
7300 if (btrfs_extent_readonly(fs_info, nocow_args.disk_bytenr))
46bfbb5c 7301 goto out;
7b2b7085 7302
619104ba
FM
7303 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7304 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7b2b7085
MX
7305 u64 range_end;
7306
619104ba 7307 range_end = round_up(offset + nocow_args.num_bytes,
da17066c 7308 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7309 ret = test_range_bit(io_tree, offset, range_end,
7310 EXTENT_DELALLOC, 0, NULL);
7311 if (ret) {
7312 ret = -EAGAIN;
7313 goto out;
7314 }
7315 }
7316
619104ba
FM
7317 if (orig_start)
7318 *orig_start = key.offset - nocow_args.extent_offset;
7319 if (orig_block_len)
7320 *orig_block_len = nocow_args.disk_num_bytes;
00361589 7321
619104ba 7322 *len = nocow_args.num_bytes;
46bfbb5c
CM
7323 ret = 1;
7324out:
7325 btrfs_free_path(path);
7326 return ret;
7327}
7328
eb838e73 7329static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
59094403
FM
7330 struct extent_state **cached_state,
7331 unsigned int iomap_flags)
eb838e73 7332{
59094403
FM
7333 const bool writing = (iomap_flags & IOMAP_WRITE);
7334 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
7335 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
eb838e73
JB
7336 struct btrfs_ordered_extent *ordered;
7337 int ret = 0;
7338
7339 while (1) {
59094403 7340 if (nowait) {
83ae4133
JB
7341 if (!try_lock_extent(io_tree, lockstart, lockend,
7342 cached_state))
59094403
FM
7343 return -EAGAIN;
7344 } else {
570eb97b 7345 lock_extent(io_tree, lockstart, lockend, cached_state);
59094403 7346 }
eb838e73
JB
7347 /*
7348 * We're concerned with the entire range that we're going to be
01327610 7349 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7350 * extents in this range.
7351 */
a776c6fa 7352 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7353 lockend - lockstart + 1);
7354
7355 /*
7356 * We need to make sure there are no buffered pages in this
7357 * range either, we could have raced between the invalidate in
7358 * generic_file_direct_write and locking the extent. The
7359 * invalidate needs to happen so that reads after a write do not
7360 * get stale data.
7361 */
fc4adbff 7362 if (!ordered &&
051c98eb
DS
7363 (!writing || !filemap_range_has_page(inode->i_mapping,
7364 lockstart, lockend)))
eb838e73
JB
7365 break;
7366
570eb97b 7367 unlock_extent(io_tree, lockstart, lockend, cached_state);
eb838e73
JB
7368
7369 if (ordered) {
59094403
FM
7370 if (nowait) {
7371 btrfs_put_ordered_extent(ordered);
7372 ret = -EAGAIN;
7373 break;
7374 }
ade77029
FM
7375 /*
7376 * If we are doing a DIO read and the ordered extent we
7377 * found is for a buffered write, we can not wait for it
7378 * to complete and retry, because if we do so we can
7379 * deadlock with concurrent buffered writes on page
7380 * locks. This happens only if our DIO read covers more
7381 * than one extent map, if at this point has already
7382 * created an ordered extent for a previous extent map
7383 * and locked its range in the inode's io tree, and a
7384 * concurrent write against that previous extent map's
7385 * range and this range started (we unlock the ranges
7386 * in the io tree only when the bios complete and
7387 * buffered writes always lock pages before attempting
7388 * to lock range in the io tree).
7389 */
7390 if (writing ||
7391 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
c0a43603 7392 btrfs_start_ordered_extent(ordered, 1);
ade77029 7393 else
59094403 7394 ret = nowait ? -EAGAIN : -ENOTBLK;
eb838e73
JB
7395 btrfs_put_ordered_extent(ordered);
7396 } else {
eb838e73 7397 /*
b850ae14
FM
7398 * We could trigger writeback for this range (and wait
7399 * for it to complete) and then invalidate the pages for
7400 * this range (through invalidate_inode_pages2_range()),
7401 * but that can lead us to a deadlock with a concurrent
ba206a02 7402 * call to readahead (a buffered read or a defrag call
b850ae14
FM
7403 * triggered a readahead) on a page lock due to an
7404 * ordered dio extent we created before but did not have
7405 * yet a corresponding bio submitted (whence it can not
ba206a02 7406 * complete), which makes readahead wait for that
b850ae14
FM
7407 * ordered extent to complete while holding a lock on
7408 * that page.
eb838e73 7409 */
59094403 7410 ret = nowait ? -EAGAIN : -ENOTBLK;
eb838e73
JB
7411 }
7412
ade77029
FM
7413 if (ret)
7414 break;
7415
eb838e73
JB
7416 cond_resched();
7417 }
7418
7419 return ret;
7420}
7421
6f9994db 7422/* The callers of this must take lock_extent() */
4b67c11d
NB
7423static struct extent_map *create_io_em(struct btrfs_inode *inode, u64 start,
7424 u64 len, u64 orig_start, u64 block_start,
6f9994db
LB
7425 u64 block_len, u64 orig_block_len,
7426 u64 ram_bytes, int compress_type,
7427 int type)
69ffb543 7428{
69ffb543 7429 struct extent_map *em;
69ffb543
JB
7430 int ret;
7431
6f9994db
LB
7432 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7433 type == BTRFS_ORDERED_COMPRESSED ||
7434 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7435 type == BTRFS_ORDERED_REGULAR);
6f9994db 7436
69ffb543
JB
7437 em = alloc_extent_map();
7438 if (!em)
7439 return ERR_PTR(-ENOMEM);
7440
7441 em->start = start;
7442 em->orig_start = orig_start;
7443 em->len = len;
7444 em->block_len = block_len;
7445 em->block_start = block_start;
b4939680 7446 em->orig_block_len = orig_block_len;
cc95bef6 7447 em->ram_bytes = ram_bytes;
70c8a91c 7448 em->generation = -1;
69ffb543 7449 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7450 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7451 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7452 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7453 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7454 em->compress_type = compress_type;
7455 }
69ffb543 7456
a1ba4c08 7457 ret = btrfs_replace_extent_map_range(inode, em, true);
69ffb543
JB
7458 if (ret) {
7459 free_extent_map(em);
7460 return ERR_PTR(ret);
7461 }
7462
6f9994db 7463 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7464 return em;
7465}
7466
1c8d0175 7467
c5794e51 7468static int btrfs_get_blocks_direct_write(struct extent_map **map,
c5794e51
NB
7469 struct inode *inode,
7470 struct btrfs_dio_data *dio_data,
d7a8ab4e
FM
7471 u64 start, u64 len,
7472 unsigned int iomap_flags)
c5794e51 7473{
d4135134 7474 const bool nowait = (iomap_flags & IOMAP_NOWAIT);
c5794e51
NB
7475 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7476 struct extent_map *em = *map;
f0bfa76a
FM
7477 int type;
7478 u64 block_start, orig_start, orig_block_len, ram_bytes;
2306e83e 7479 struct btrfs_block_group *bg;
f0bfa76a
FM
7480 bool can_nocow = false;
7481 bool space_reserved = false;
6d82ad13 7482 u64 prev_len;
c5794e51
NB
7483 int ret = 0;
7484
7485 /*
7486 * We don't allocate a new extent in the following cases
7487 *
7488 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7489 * existing extent.
7490 * 2) The extent is marked as PREALLOC. We're good to go here and can
7491 * just use the extent.
7492 *
7493 */
7494 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7495 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7496 em->block_start != EXTENT_MAP_HOLE)) {
c5794e51
NB
7497 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7498 type = BTRFS_ORDERED_PREALLOC;
7499 else
7500 type = BTRFS_ORDERED_NOCOW;
7501 len = min(len, em->len - (start - em->start));
7502 block_start = em->block_start + (start - em->start);
7503
7504 if (can_nocow_extent(inode, start, &len, &orig_start,
26ce9114 7505 &orig_block_len, &ram_bytes, false, false) == 1) {
2306e83e
FM
7506 bg = btrfs_inc_nocow_writers(fs_info, block_start);
7507 if (bg)
7508 can_nocow = true;
7509 }
f0bfa76a 7510 }
c5794e51 7511
6d82ad13 7512 prev_len = len;
f0bfa76a
FM
7513 if (can_nocow) {
7514 struct extent_map *em2;
7515
7516 /* We can NOCOW, so only need to reserve metadata space. */
d4135134
FM
7517 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7518 nowait);
f0bfa76a
FM
7519 if (ret < 0) {
7520 /* Our caller expects us to free the input extent map. */
7521 free_extent_map(em);
7522 *map = NULL;
2306e83e 7523 btrfs_dec_nocow_writers(bg);
d4135134
FM
7524 if (nowait && (ret == -ENOSPC || ret == -EDQUOT))
7525 ret = -EAGAIN;
f0bfa76a
FM
7526 goto out;
7527 }
7528 space_reserved = true;
7529
7530 em2 = btrfs_create_dio_extent(BTRFS_I(inode), start, len,
7531 orig_start, block_start,
7532 len, orig_block_len,
7533 ram_bytes, type);
2306e83e 7534 btrfs_dec_nocow_writers(bg);
f0bfa76a
FM
7535 if (type == BTRFS_ORDERED_PREALLOC) {
7536 free_extent_map(em);
c1867eb3
DS
7537 *map = em2;
7538 em = em2;
f0bfa76a 7539 }
c5794e51 7540
f0bfa76a
FM
7541 if (IS_ERR(em2)) {
7542 ret = PTR_ERR(em2);
7543 goto out;
c5794e51 7544 }
f5585f4f
FM
7545
7546 dio_data->nocow_done = true;
f0bfa76a 7547 } else {
f0bfa76a
FM
7548 /* Our caller expects us to free the input extent map. */
7549 free_extent_map(em);
7550 *map = NULL;
7551
d4135134 7552 if (nowait)
d7a8ab4e
FM
7553 return -EAGAIN;
7554
f5585f4f
FM
7555 /*
7556 * If we could not allocate data space before locking the file
7557 * range and we can't do a NOCOW write, then we have to fail.
7558 */
7559 if (!dio_data->data_space_reserved)
7560 return -ENOSPC;
7561
7562 /*
7563 * We have to COW and we have already reserved data space before,
7564 * so now we reserve only metadata.
7565 */
7566 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len, len,
7567 false);
f0bfa76a
FM
7568 if (ret < 0)
7569 goto out;
7570 space_reserved = true;
7571
7572 em = btrfs_new_extent_direct(BTRFS_I(inode), start, len);
7573 if (IS_ERR(em)) {
7574 ret = PTR_ERR(em);
7575 goto out;
7576 }
7577 *map = em;
7578 len = min(len, em->len - (start - em->start));
7579 if (len < prev_len)
f5585f4f
FM
7580 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7581 prev_len - len, true);
c5794e51
NB
7582 }
7583
f0bfa76a
FM
7584 /*
7585 * We have created our ordered extent, so we can now release our reservation
7586 * for an outstanding extent.
7587 */
6d82ad13 7588 btrfs_delalloc_release_extents(BTRFS_I(inode), prev_len);
c5794e51 7589
c5794e51
NB
7590 /*
7591 * Need to update the i_size under the extent lock so buffered
7592 * readers will get the updated i_size when we unlock.
7593 */
f85781fb 7594 if (start + len > i_size_read(inode))
c5794e51 7595 i_size_write(inode, start + len);
c5794e51 7596out:
f0bfa76a
FM
7597 if (ret && space_reserved) {
7598 btrfs_delalloc_release_extents(BTRFS_I(inode), len);
f5585f4f 7599 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, true);
f0bfa76a 7600 }
c5794e51
NB
7601 return ret;
7602}
7603
f85781fb
GR
7604static int btrfs_dio_iomap_begin(struct inode *inode, loff_t start,
7605 loff_t length, unsigned int flags, struct iomap *iomap,
7606 struct iomap *srcmap)
4b46fce2 7607{
491a6d01 7608 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
0b246afa 7609 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7610 struct extent_map *em;
eb838e73 7611 struct extent_state *cached_state = NULL;
491a6d01 7612 struct btrfs_dio_data *dio_data = iter->private;
eb838e73 7613 u64 lockstart, lockend;
f85781fb 7614 const bool write = !!(flags & IOMAP_WRITE);
0934856d 7615 int ret = 0;
f85781fb 7616 u64 len = length;
f5585f4f 7617 const u64 data_alloc_len = length;
f85781fb 7618 bool unlock_extents = false;
eb838e73 7619
79d3d1d1
JB
7620 /*
7621 * We could potentially fault if we have a buffer > PAGE_SIZE, and if
7622 * we're NOWAIT we may submit a bio for a partial range and return
7623 * EIOCBQUEUED, which would result in an errant short read.
7624 *
7625 * The best way to handle this would be to allow for partial completions
7626 * of iocb's, so we could submit the partial bio, return and fault in
7627 * the rest of the pages, and then submit the io for the rest of the
7628 * range. However we don't have that currently, so simply return
7629 * -EAGAIN at this point so that the normal path is used.
7630 */
7631 if (!write && (flags & IOMAP_NOWAIT) && length > PAGE_SIZE)
7632 return -EAGAIN;
7633
ee5b46a3
CH
7634 /*
7635 * Cap the size of reads to that usually seen in buffered I/O as we need
7636 * to allocate a contiguous array for the checksums.
7637 */
f85781fb 7638 if (!write)
ee5b46a3 7639 len = min_t(u64, len, fs_info->sectorsize * BTRFS_MAX_BIO_SECTORS);
eb838e73 7640
c329861d
JB
7641 lockstart = start;
7642 lockend = start + len - 1;
7643
f85781fb 7644 /*
b023e675
FM
7645 * iomap_dio_rw() only does filemap_write_and_wait_range(), which isn't
7646 * enough if we've written compressed pages to this area, so we need to
7647 * flush the dirty pages again to make absolutely sure that any
7648 * outstanding dirty pages are on disk - the first flush only starts
7649 * compression on the data, while keeping the pages locked, so by the
7650 * time the second flush returns we know bios for the compressed pages
7651 * were submitted and finished, and the pages no longer under writeback.
7652 *
7653 * If we have a NOWAIT request and we have any pages in the range that
7654 * are locked, likely due to compression still in progress, we don't want
7655 * to block on page locks. We also don't want to block on pages marked as
7656 * dirty or under writeback (same as for the non-compression case).
7657 * iomap_dio_rw() did the same check, but after that and before we got
7658 * here, mmap'ed writes may have happened or buffered reads started
7659 * (readpage() and readahead(), which lock pages), as we haven't locked
7660 * the file range yet.
f85781fb
GR
7661 */
7662 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7663 &BTRFS_I(inode)->runtime_flags)) {
b023e675
FM
7664 if (flags & IOMAP_NOWAIT) {
7665 if (filemap_range_needs_writeback(inode->i_mapping,
7666 lockstart, lockend))
7667 return -EAGAIN;
7668 } else {
7669 ret = filemap_fdatawrite_range(inode->i_mapping, start,
7670 start + length - 1);
7671 if (ret)
7672 return ret;
7673 }
f85781fb
GR
7674 }
7675
491a6d01 7676 memset(dio_data, 0, sizeof(*dio_data));
f85781fb 7677
f5585f4f
FM
7678 /*
7679 * We always try to allocate data space and must do it before locking
7680 * the file range, to avoid deadlocks with concurrent writes to the same
7681 * range if the range has several extents and the writes don't expand the
7682 * current i_size (the inode lock is taken in shared mode). If we fail to
7683 * allocate data space here we continue and later, after locking the
7684 * file range, we fail with ENOSPC only if we figure out we can not do a
7685 * NOCOW write.
7686 */
7687 if (write && !(flags & IOMAP_NOWAIT)) {
7688 ret = btrfs_check_data_free_space(BTRFS_I(inode),
7689 &dio_data->data_reserved,
1daedb1d 7690 start, data_alloc_len, false);
f5585f4f
FM
7691 if (!ret)
7692 dio_data->data_space_reserved = true;
7693 else if (ret && !(BTRFS_I(inode)->flags &
7694 (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
7695 goto err;
7696 }
e1cbbfa5 7697
eb838e73
JB
7698 /*
7699 * If this errors out it's because we couldn't invalidate pagecache for
59094403
FM
7700 * this range and we need to fallback to buffered IO, or we are doing a
7701 * NOWAIT read/write and we need to block.
eb838e73 7702 */
59094403
FM
7703 ret = lock_extent_direct(inode, lockstart, lockend, &cached_state, flags);
7704 if (ret < 0)
9c9464cc 7705 goto err;
eb838e73 7706
39b07b5d 7707 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
eb838e73
JB
7708 if (IS_ERR(em)) {
7709 ret = PTR_ERR(em);
7710 goto unlock_err;
7711 }
4b46fce2
JB
7712
7713 /*
7714 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7715 * io. INLINE is special, and we could probably kludge it in here, but
7716 * it's still buffered so for safety lets just fall back to the generic
7717 * buffered path.
7718 *
7719 * For COMPRESSED we _have_ to read the entire extent in so we can
7720 * decompress it, so there will be buffering required no matter what we
7721 * do, so go ahead and fallback to buffered.
7722 *
01327610 7723 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7724 * to buffered IO. Don't blame me, this is the price we pay for using
7725 * the generic code.
7726 */
7727 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7728 em->block_start == EXTENT_MAP_INLINE) {
7729 free_extent_map(em);
a4527e18
FM
7730 /*
7731 * If we are in a NOWAIT context, return -EAGAIN in order to
7732 * fallback to buffered IO. This is not only because we can
7733 * block with buffered IO (no support for NOWAIT semantics at
7734 * the moment) but also to avoid returning short reads to user
7735 * space - this happens if we were able to read some data from
7736 * previous non-compressed extents and then when we fallback to
7737 * buffered IO, at btrfs_file_read_iter() by calling
7738 * filemap_read(), we fail to fault in pages for the read buffer,
7739 * in which case filemap_read() returns a short read (the number
7740 * of bytes previously read is > 0, so it does not return -EFAULT).
7741 */
7742 ret = (flags & IOMAP_NOWAIT) ? -EAGAIN : -ENOTBLK;
eb838e73 7743 goto unlock_err;
4b46fce2
JB
7744 }
7745
f85781fb 7746 len = min(len, em->len - (start - em->start));
ca93e44b
FM
7747
7748 /*
7749 * If we have a NOWAIT request and the range contains multiple extents
7750 * (or a mix of extents and holes), then we return -EAGAIN to make the
7751 * caller fallback to a context where it can do a blocking (without
7752 * NOWAIT) request. This way we avoid doing partial IO and returning
7753 * success to the caller, which is not optimal for writes and for reads
7754 * it can result in unexpected behaviour for an application.
7755 *
7756 * When doing a read, because we use IOMAP_DIO_PARTIAL when calling
7757 * iomap_dio_rw(), we can end up returning less data then what the caller
7758 * asked for, resulting in an unexpected, and incorrect, short read.
7759 * That is, the caller asked to read N bytes and we return less than that,
7760 * which is wrong unless we are crossing EOF. This happens if we get a
7761 * page fault error when trying to fault in pages for the buffer that is
7762 * associated to the struct iov_iter passed to iomap_dio_rw(), and we
7763 * have previously submitted bios for other extents in the range, in
7764 * which case iomap_dio_rw() may return us EIOCBQUEUED if not all of
7765 * those bios have completed by the time we get the page fault error,
7766 * which we return back to our caller - we should only return EIOCBQUEUED
7767 * after we have submitted bios for all the extents in the range.
7768 */
7769 if ((flags & IOMAP_NOWAIT) && len < length) {
7770 free_extent_map(em);
7771 ret = -EAGAIN;
7772 goto unlock_err;
7773 }
7774
f85781fb
GR
7775 if (write) {
7776 ret = btrfs_get_blocks_direct_write(&em, inode, dio_data,
d7a8ab4e 7777 start, len, flags);
c5794e51
NB
7778 if (ret < 0)
7779 goto unlock_err;
f85781fb
GR
7780 unlock_extents = true;
7781 /* Recalc len in case the new em is smaller than requested */
7782 len = min(len, em->len - (start - em->start));
f5585f4f
FM
7783 if (dio_data->data_space_reserved) {
7784 u64 release_offset;
7785 u64 release_len = 0;
7786
7787 if (dio_data->nocow_done) {
7788 release_offset = start;
7789 release_len = data_alloc_len;
7790 } else if (len < data_alloc_len) {
7791 release_offset = start + len;
7792 release_len = data_alloc_len - len;
7793 }
7794
7795 if (release_len > 0)
7796 btrfs_free_reserved_data_space(BTRFS_I(inode),
7797 dio_data->data_reserved,
7798 release_offset,
7799 release_len);
7800 }
c5794e51 7801 } else {
1c8d0175
NB
7802 /*
7803 * We need to unlock only the end area that we aren't using.
7804 * The rest is going to be unlocked by the endio routine.
7805 */
f85781fb
GR
7806 lockstart = start + len;
7807 if (lockstart < lockend)
7808 unlock_extents = true;
7809 }
7810
7811 if (unlock_extents)
570eb97b
JB
7812 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7813 &cached_state);
f85781fb
GR
7814 else
7815 free_extent_state(cached_state);
7816
7817 /*
7818 * Translate extent map information to iomap.
7819 * We trim the extents (and move the addr) even though iomap code does
7820 * that, since we have locked only the parts we are performing I/O in.
7821 */
7822 if ((em->block_start == EXTENT_MAP_HOLE) ||
7823 (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) && !write)) {
7824 iomap->addr = IOMAP_NULL_ADDR;
7825 iomap->type = IOMAP_HOLE;
7826 } else {
7827 iomap->addr = em->block_start + (start - em->start);
7828 iomap->type = IOMAP_MAPPED;
a43a67a2 7829 }
f85781fb 7830 iomap->offset = start;
d24fa5c1 7831 iomap->bdev = fs_info->fs_devices->latest_dev->bdev;
f85781fb 7832 iomap->length = len;
a43a67a2 7833
e380adfc 7834 if (write && btrfs_use_zone_append(BTRFS_I(inode), em->block_start))
544d24f9
NA
7835 iomap->flags |= IOMAP_F_ZONE_APPEND;
7836
4b46fce2
JB
7837 free_extent_map(em);
7838
7839 return 0;
eb838e73
JB
7840
7841unlock_err:
570eb97b
JB
7842 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7843 &cached_state);
9c9464cc 7844err:
f5585f4f
FM
7845 if (dio_data->data_space_reserved) {
7846 btrfs_free_reserved_data_space(BTRFS_I(inode),
7847 dio_data->data_reserved,
7848 start, data_alloc_len);
7849 extent_changeset_free(dio_data->data_reserved);
7850 }
7851
f85781fb
GR
7852 return ret;
7853}
7854
7855static int btrfs_dio_iomap_end(struct inode *inode, loff_t pos, loff_t length,
7856 ssize_t written, unsigned int flags, struct iomap *iomap)
7857{
491a6d01
CH
7858 struct iomap_iter *iter = container_of(iomap, struct iomap_iter, iomap);
7859 struct btrfs_dio_data *dio_data = iter->private;
f85781fb
GR
7860 size_t submitted = dio_data->submitted;
7861 const bool write = !!(flags & IOMAP_WRITE);
491a6d01 7862 int ret = 0;
f85781fb
GR
7863
7864 if (!write && (iomap->type == IOMAP_HOLE)) {
7865 /* If reading from a hole, unlock and return */
570eb97b
JB
7866 unlock_extent(&BTRFS_I(inode)->io_tree, pos, pos + length - 1,
7867 NULL);
491a6d01 7868 return 0;
f85781fb
GR
7869 }
7870
7871 if (submitted < length) {
7872 pos += submitted;
7873 length -= submitted;
7874 if (write)
711f447b
CH
7875 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
7876 pos, length, false);
f85781fb
GR
7877 else
7878 unlock_extent(&BTRFS_I(inode)->io_tree, pos,
570eb97b 7879 pos + length - 1, NULL);
f85781fb
GR
7880 ret = -ENOTBLK;
7881 }
7882
f0bfa76a 7883 if (write)
f85781fb 7884 extent_changeset_free(dio_data->data_reserved);
8b110e39
MX
7885 return ret;
7886}
7887
769b4f24 7888static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
8b110e39 7889{
769b4f24
OS
7890 /*
7891 * This implies a barrier so that stores to dio_bio->bi_status before
7892 * this and loads of dio_bio->bi_status after this are fully ordered.
7893 */
7894 if (!refcount_dec_and_test(&dip->refs))
7895 return;
8b110e39 7896
642c5d34 7897 if (btrfs_op(&dip->bio) == BTRFS_MAP_WRITE) {
711f447b
CH
7898 btrfs_mark_ordered_io_finished(BTRFS_I(dip->inode), NULL,
7899 dip->file_offset, dip->bytes,
7900 !dip->bio.bi_status);
769b4f24
OS
7901 } else {
7902 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
47926ab5 7903 dip->file_offset,
570eb97b 7904 dip->file_offset + dip->bytes - 1, NULL);
8b110e39
MX
7905 }
7906
642c5d34
CH
7907 kfree(dip->csums);
7908 bio_endio(&dip->bio);
8b110e39
MX
7909}
7910
ad357938 7911static void submit_dio_repair_bio(struct inode *inode, struct bio *bio,
cb3a12d9
DS
7912 int mirror_num,
7913 enum btrfs_compression_type compress_type)
8b110e39 7914{
917f32a2 7915 struct btrfs_dio_private *dip = btrfs_bio(bio)->private;
2ff7e61e 7916 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39 7917
37226b21 7918 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7919
77d5d689 7920 refcount_inc(&dip->refs);
1a722d8f 7921 btrfs_submit_bio(fs_info, bio, mirror_num);
8b110e39
MX
7922}
7923
f4f39fc5 7924static blk_status_t btrfs_check_read_dio_bio(struct btrfs_dio_private *dip,
c3a3b19b 7925 struct btrfs_bio *bbio,
fd9d6670 7926 const bool uptodate)
4b46fce2 7927{
f4f39fc5 7928 struct inode *inode = dip->inode;
fd9d6670 7929 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
fd9d6670 7930 const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
58efbc9f 7931 blk_status_t err = BLK_STS_OK;
1e87770c
CH
7932 struct bvec_iter iter;
7933 struct bio_vec bv;
7934 u32 offset;
7935
7936 btrfs_bio_for_each_sector(fs_info, bv, bbio, iter, offset) {
7937 u64 start = bbio->file_offset + offset;
7938
7939 if (uptodate &&
7959bd44
CH
7940 (!csum || !btrfs_check_data_csum(inode, bbio, offset, bv.bv_page,
7941 bv.bv_offset))) {
0d0a762c
JB
7942 btrfs_clean_io_failure(BTRFS_I(inode), start,
7943 bv.bv_page, bv.bv_offset);
1e87770c
CH
7944 } else {
7945 int ret;
4b46fce2 7946
7aa51232
CH
7947 ret = btrfs_repair_one_sector(inode, bbio, offset,
7948 bv.bv_page, bv.bv_offset,
1e87770c
CH
7949 submit_dio_repair_bio);
7950 if (ret)
7951 err = errno_to_blk_status(ret);
2dabb324 7952 }
2c30c71b 7953 }
c1dc0896 7954
c1dc0896 7955 return err;
14543774
FM
7956}
7957
8896a08d 7958static blk_status_t btrfs_submit_bio_start_direct_io(struct inode *inode,
1941b64b
QW
7959 struct bio *bio,
7960 u64 dio_file_offset)
eaf25d93 7961{
e331f6b1 7962 return btrfs_csum_one_bio(BTRFS_I(inode), bio, dio_file_offset, false);
eaf25d93
CM
7963}
7964
917f32a2 7965static void btrfs_end_dio_bio(struct btrfs_bio *bbio)
e65e1535 7966{
917f32a2
CH
7967 struct btrfs_dio_private *dip = bbio->private;
7968 struct bio *bio = &bbio->bio;
4e4cbee9 7969 blk_status_t err = bio->bi_status;
e65e1535 7970
8b110e39
MX
7971 if (err)
7972 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 7973 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379 7974 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
1201b58b 7975 bio->bi_opf, bio->bi_iter.bi_sector,
8b110e39
MX
7976 bio->bi_iter.bi_size, err);
7977
f4f39fc5 7978 if (bio_op(bio) == REQ_OP_READ)
0fdf977d 7979 err = btrfs_check_read_dio_bio(dip, bbio, !err);
e65e1535 7980
769b4f24 7981 if (err)
642c5d34 7982 dip->bio.bi_status = err;
e65e1535 7983
0fdf977d 7984 btrfs_record_physical_zoned(dip->inode, bbio->file_offset, bio);
544d24f9 7985
e65e1535 7986 bio_put(bio);
769b4f24 7987 btrfs_dio_private_put(dip);
c1dc0896
MX
7988}
7989
37899117
CH
7990static void btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7991 u64 file_offset, int async_submit)
e65e1535 7992{
0b246afa 7993 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
917f32a2 7994 struct btrfs_dio_private *dip = btrfs_bio(bio)->private;
4e4cbee9 7995 blk_status_t ret;
e65e1535 7996
81bd9328
CH
7997 /* Save the original iter for read repair */
7998 if (btrfs_op(bio) == BTRFS_MAP_READ)
7999 btrfs_bio(bio)->iter = bio->bi_iter;
e65e1535 8000
e6961cac 8001 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8002 goto map;
8003
d7b9416f 8004 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
c93104e7 8005 /* Check btrfs_submit_data_write_bio() for async submit rules */
ea1f0ced
CH
8006 if (async_submit && !atomic_read(&BTRFS_I(inode)->sync_writers) &&
8007 btrfs_wq_submit_bio(inode, bio, 0, file_offset,
8008 btrfs_submit_bio_start_direct_io))
37899117 8009 return;
ea1f0ced 8010
1ae39938
JB
8011 /*
8012 * If we aren't doing async submit, calculate the csum of the
8013 * bio now.
8014 */
e331f6b1 8015 ret = btrfs_csum_one_bio(BTRFS_I(inode), bio, file_offset, false);
37899117 8016 if (ret) {
917f32a2 8017 btrfs_bio_end_io(btrfs_bio(bio), ret);
37899117
CH
8018 return;
8019 }
23ea8e5a 8020 } else {
a89ce08c
CH
8021 btrfs_bio(bio)->csum = btrfs_csum_ptr(fs_info, dip->csums,
8022 file_offset - dip->file_offset);
c2db1073 8023 }
1ae39938 8024map:
1a722d8f 8025 btrfs_submit_bio(fs_info, bio, 0);
e65e1535
MX
8026}
8027
3e08773c 8028static void btrfs_submit_direct(const struct iomap_iter *iter,
f85781fb 8029 struct bio *dio_bio, loff_t file_offset)
c36cac28 8030{
642c5d34
CH
8031 struct btrfs_dio_private *dip =
8032 container_of(dio_bio, struct btrfs_dio_private, bio);
a6d3d495 8033 struct inode *inode = iter->inode;
cfe94440 8034 const bool write = (btrfs_op(dio_bio) == BTRFS_MAP_WRITE);
0b246afa 8035 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
769b4f24
OS
8036 const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
8037 BTRFS_BLOCK_GROUP_RAID56_MASK);
e65e1535 8038 struct bio *bio;
c36cac28 8039 u64 start_sector;
1ae39938 8040 int async_submit = 0;
725130ba 8041 u64 submit_len;
42b5d73b
NA
8042 u64 clone_offset = 0;
8043 u64 clone_len;
42034313 8044 u64 logical;
5f4dc8fc 8045 int ret;
58efbc9f 8046 blk_status_t status;
89b798ad 8047 struct btrfs_io_geometry geom;
491a6d01 8048 struct btrfs_dio_data *dio_data = iter->private;
42034313 8049 struct extent_map *em = NULL;
e65e1535 8050
642c5d34
CH
8051 dip->inode = inode;
8052 dip->file_offset = file_offset;
8053 dip->bytes = dio_bio->bi_iter.bi_size;
8054 refcount_set(&dip->refs, 1);
8055 dip->csums = NULL;
8056
8057 if (!write && !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
8058 unsigned int nr_sectors =
8059 (dio_bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
facc8a22 8060
85879573
OS
8061 /*
8062 * Load the csums up front to reduce csum tree searches and
8063 * contention when submitting bios.
8064 */
642c5d34
CH
8065 status = BLK_STS_RESOURCE;
8066 dip->csums = kcalloc(nr_sectors, fs_info->csum_size, GFP_NOFS);
063b1f21 8067 if (!dip->csums)
642c5d34
CH
8068 goto out_err;
8069
6275193e 8070 status = btrfs_lookup_bio_sums(inode, dio_bio, dip->csums);
85879573
OS
8071 if (status != BLK_STS_OK)
8072 goto out_err;
02f57c7a
JB
8073 }
8074
769b4f24
OS
8075 start_sector = dio_bio->bi_iter.bi_sector;
8076 submit_len = dio_bio->bi_iter.bi_size;
53b381b3 8077
3c91ee69 8078 do {
42034313
MR
8079 logical = start_sector << 9;
8080 em = btrfs_get_chunk_map(fs_info, logical, submit_len);
8081 if (IS_ERR(em)) {
8082 status = errno_to_blk_status(PTR_ERR(em));
8083 em = NULL;
8084 goto out_err_em;
8085 }
8086 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(dio_bio),
43c0d1a5 8087 logical, &geom);
769b4f24
OS
8088 if (ret) {
8089 status = errno_to_blk_status(ret);
42034313 8090 goto out_err_em;
769b4f24 8091 }
769b4f24 8092
42b5d73b
NA
8093 clone_len = min(submit_len, geom.len);
8094 ASSERT(clone_len <= UINT_MAX);
02f57c7a 8095
725130ba
LB
8096 /*
8097 * This will never fail as it's passing GPF_NOFS and
8098 * the allocation is backed by btrfs_bioset.
8099 */
917f32a2
CH
8100 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len,
8101 btrfs_end_dio_bio, dip);
00d82525 8102 btrfs_bio(bio)->file_offset = file_offset;
725130ba 8103
544d24f9
NA
8104 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
8105 status = extract_ordered_extent(BTRFS_I(inode), bio,
8106 file_offset);
8107 if (status) {
8108 bio_put(bio);
8109 goto out_err;
8110 }
8111 }
8112
725130ba
LB
8113 ASSERT(submit_len >= clone_len);
8114 submit_len -= clone_len;
e65e1535 8115
725130ba
LB
8116 /*
8117 * Increase the count before we submit the bio so we know
8118 * the end IO handler won't happen before we increase the
8119 * count. Otherwise, the dip might get freed before we're
8120 * done setting it up.
769b4f24
OS
8121 *
8122 * We transfer the initial reference to the last bio, so we
8123 * don't need to increment the reference count for the last one.
725130ba 8124 */
769b4f24
OS
8125 if (submit_len > 0) {
8126 refcount_inc(&dip->refs);
8127 /*
8128 * If we are submitting more than one bio, submit them
8129 * all asynchronously. The exception is RAID 5 or 6, as
8130 * asynchronous checksums make it difficult to collect
8131 * full stripe writes.
8132 */
8133 if (!raid56)
8134 async_submit = 1;
8135 }
e65e1535 8136
37899117 8137 btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
e65e1535 8138
f85781fb 8139 dio_data->submitted += clone_len;
725130ba
LB
8140 clone_offset += clone_len;
8141 start_sector += clone_len >> 9;
8142 file_offset += clone_len;
42034313
MR
8143
8144 free_extent_map(em);
3c91ee69 8145 } while (submit_len > 0);
3e08773c 8146 return;
e65e1535 8147
42034313
MR
8148out_err_em:
8149 free_extent_map(em);
e65e1535 8150out_err:
642c5d34 8151 dio_bio->bi_status = status;
769b4f24 8152 btrfs_dio_private_put(dip);
4b46fce2
JB
8153}
8154
36e8c622 8155static const struct iomap_ops btrfs_dio_iomap_ops = {
f85781fb
GR
8156 .iomap_begin = btrfs_dio_iomap_begin,
8157 .iomap_end = btrfs_dio_iomap_end,
8158};
8159
36e8c622 8160static const struct iomap_dio_ops btrfs_dio_ops = {
f85781fb 8161 .submit_io = btrfs_submit_direct,
642c5d34 8162 .bio_set = &btrfs_dio_bioset,
f85781fb
GR
8163};
8164
8184620a 8165ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, size_t done_before)
36e8c622 8166{
491a6d01
CH
8167 struct btrfs_dio_data data;
8168
36e8c622 8169 return iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8184620a
FM
8170 IOMAP_DIO_PARTIAL, &data, done_before);
8171}
8172
8173struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
8174 size_t done_before)
8175{
8176 struct btrfs_dio_data data;
8177
8178 return __iomap_dio_rw(iocb, iter, &btrfs_dio_iomap_ops, &btrfs_dio_ops,
8179 IOMAP_DIO_PARTIAL, &data, done_before);
36e8c622
CH
8180}
8181
1506fcc8 8182static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 8183 u64 start, u64 len)
1506fcc8 8184{
05dadc09
TI
8185 int ret;
8186
45dd052e 8187 ret = fiemap_prep(inode, fieinfo, start, &len, 0);
05dadc09
TI
8188 if (ret)
8189 return ret;
8190
33a86cfa
FM
8191 /*
8192 * fiemap_prep() called filemap_write_and_wait() for the whole possible
8193 * file range (0 to LLONG_MAX), but that is not enough if we have
8194 * compression enabled. The first filemap_fdatawrite_range() only kicks
8195 * in the compression of data (in an async thread) and will return
8196 * before the compression is done and writeback is started. A second
8197 * filemap_fdatawrite_range() is needed to wait for the compression to
ac3c0d36
FM
8198 * complete and writeback to start. We also need to wait for ordered
8199 * extents to complete, because our fiemap implementation uses mainly
8200 * file extent items to list the extents, searching for extent maps
8201 * only for file ranges with holes or prealloc extents to figure out
8202 * if we have delalloc in those ranges.
33a86cfa
FM
8203 */
8204 if (fieinfo->fi_flags & FIEMAP_FLAG_SYNC) {
ac3c0d36 8205 ret = btrfs_wait_ordered_range(inode, 0, LLONG_MAX);
33a86cfa
FM
8206 if (ret)
8207 return ret;
8208 }
8209
facee0a0 8210 return extent_fiemap(BTRFS_I(inode), fieinfo, start, len);
1506fcc8
YS
8211}
8212
48a3b636
ES
8213static int btrfs_writepages(struct address_space *mapping,
8214 struct writeback_control *wbc)
b293f02e 8215{
8ae225a8 8216 return extent_writepages(mapping, wbc);
b293f02e
CM
8217}
8218
ba206a02 8219static void btrfs_readahead(struct readahead_control *rac)
3ab2fb5a 8220{
ba206a02 8221 extent_readahead(rac);
3ab2fb5a 8222}
2a3ff0ad 8223
7c11d0ae 8224/*
f913cff3 8225 * For release_folio() and invalidate_folio() we have a race window where
895586eb 8226 * folio_end_writeback() is called but the subpage spinlock is not yet released.
7c11d0ae
QW
8227 * If we continue to release/invalidate the page, we could cause use-after-free
8228 * for subpage spinlock. So this function is to spin and wait for subpage
8229 * spinlock.
8230 */
8231static void wait_subpage_spinlock(struct page *page)
8232{
8233 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
8234 struct btrfs_subpage *subpage;
8235
fbca46eb 8236 if (!btrfs_is_subpage(fs_info, page))
7c11d0ae
QW
8237 return;
8238
8239 ASSERT(PagePrivate(page) && page->private);
8240 subpage = (struct btrfs_subpage *)page->private;
8241
8242 /*
8243 * This may look insane as we just acquire the spinlock and release it,
8244 * without doing anything. But we just want to make sure no one is
8245 * still holding the subpage spinlock.
8246 * And since the page is not dirty nor writeback, and we have page
8247 * locked, the only possible way to hold a spinlock is from the endio
8248 * function to clear page writeback.
8249 *
8250 * Here we just acquire the spinlock so that all existing callers
8251 * should exit and we're safe to release/invalidate the page.
8252 */
8253 spin_lock_irq(&subpage->lock);
8254 spin_unlock_irq(&subpage->lock);
8255}
8256
f913cff3 8257static bool __btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
9ebefb18 8258{
f913cff3 8259 int ret = try_release_extent_mapping(&folio->page, gfp_flags);
7c11d0ae
QW
8260
8261 if (ret == 1) {
f913cff3
MWO
8262 wait_subpage_spinlock(&folio->page);
8263 clear_page_extent_mapped(&folio->page);
7c11d0ae 8264 }
a52d9a80 8265 return ret;
39279cc3
CM
8266}
8267
f913cff3 8268static bool btrfs_release_folio(struct folio *folio, gfp_t gfp_flags)
e6dcd2dc 8269{
f913cff3
MWO
8270 if (folio_test_writeback(folio) || folio_test_dirty(folio))
8271 return false;
8272 return __btrfs_release_folio(folio, gfp_flags);
e6dcd2dc
CM
8273}
8274
f8e66081 8275#ifdef CONFIG_MIGRATION
e7a60a17
MWO
8276static int btrfs_migrate_folio(struct address_space *mapping,
8277 struct folio *dst, struct folio *src,
f8e66081
RG
8278 enum migrate_mode mode)
8279{
e7a60a17 8280 int ret = filemap_migrate_folio(mapping, dst, src, mode);
f8e66081 8281
f8e66081
RG
8282 if (ret != MIGRATEPAGE_SUCCESS)
8283 return ret;
8284
e7a60a17
MWO
8285 if (folio_test_ordered(src)) {
8286 folio_clear_ordered(src);
8287 folio_set_ordered(dst);
f8e66081
RG
8288 }
8289
f8e66081
RG
8290 return MIGRATEPAGE_SUCCESS;
8291}
e7a60a17
MWO
8292#else
8293#define btrfs_migrate_folio NULL
f8e66081
RG
8294#endif
8295
895586eb
MWO
8296static void btrfs_invalidate_folio(struct folio *folio, size_t offset,
8297 size_t length)
39279cc3 8298{
895586eb 8299 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
b945a463 8300 struct btrfs_fs_info *fs_info = inode->root->fs_info;
53ac7ead 8301 struct extent_io_tree *tree = &inode->io_tree;
2ac55d41 8302 struct extent_state *cached_state = NULL;
895586eb
MWO
8303 u64 page_start = folio_pos(folio);
8304 u64 page_end = page_start + folio_size(folio) - 1;
3b835840 8305 u64 cur;
53ac7ead 8306 int inode_evicting = inode->vfs_inode.i_state & I_FREEING;
39279cc3 8307
8b62b72b 8308 /*
895586eb
MWO
8309 * We have folio locked so no new ordered extent can be created on this
8310 * page, nor bio can be submitted for this folio.
8b62b72b 8311 *
895586eb
MWO
8312 * But already submitted bio can still be finished on this folio.
8313 * Furthermore, endio function won't skip folio which has Ordered
f57ad937 8314 * (Private2) already cleared, so it's possible for endio and
895586eb
MWO
8315 * invalidate_folio to do the same ordered extent accounting twice
8316 * on one folio.
266a2586
QW
8317 *
8318 * So here we wait for any submitted bios to finish, so that we won't
895586eb 8319 * do double ordered extent accounting on the same folio.
8b62b72b 8320 */
895586eb
MWO
8321 folio_wait_writeback(folio);
8322 wait_subpage_spinlock(&folio->page);
8b62b72b 8323
bcd77455
QW
8324 /*
8325 * For subpage case, we have call sites like
8326 * btrfs_punch_hole_lock_range() which passes range not aligned to
8327 * sectorsize.
895586eb
MWO
8328 * If the range doesn't cover the full folio, we don't need to and
8329 * shouldn't clear page extent mapped, as folio->private can still
bcd77455
QW
8330 * record subpage dirty bits for other part of the range.
8331 *
895586eb
MWO
8332 * For cases that invalidate the full folio even the range doesn't
8333 * cover the full folio, like invalidating the last folio, we're
bcd77455
QW
8334 * still safe to wait for ordered extent to finish.
8335 */
5a60542c 8336 if (!(offset == 0 && length == folio_size(folio))) {
f913cff3 8337 btrfs_release_folio(folio, GFP_NOFS);
e6dcd2dc
CM
8338 return;
8339 }
131e404a
FDBM
8340
8341 if (!inode_evicting)
570eb97b 8342 lock_extent(tree, page_start, page_end, &cached_state);
951c80f8 8343
3b835840
QW
8344 cur = page_start;
8345 while (cur < page_end) {
8346 struct btrfs_ordered_extent *ordered;
3b835840 8347 u64 range_end;
b945a463 8348 u32 range_len;
bd015294 8349 u32 extra_flags = 0;
3b835840
QW
8350
8351 ordered = btrfs_lookup_first_ordered_range(inode, cur,
8352 page_end + 1 - cur);
8353 if (!ordered) {
8354 range_end = page_end;
8355 /*
8356 * No ordered extent covering this range, we are safe
8357 * to delete all extent states in the range.
8358 */
bd015294 8359 extra_flags = EXTENT_CLEAR_ALL_BITS;
3b835840
QW
8360 goto next;
8361 }
8362 if (ordered->file_offset > cur) {
8363 /*
8364 * There is a range between [cur, oe->file_offset) not
8365 * covered by any ordered extent.
8366 * We are safe to delete all extent states, and handle
8367 * the ordered extent in the next iteration.
8368 */
8369 range_end = ordered->file_offset - 1;
bd015294 8370 extra_flags = EXTENT_CLEAR_ALL_BITS;
3b835840
QW
8371 goto next;
8372 }
8373
8374 range_end = min(ordered->file_offset + ordered->num_bytes - 1,
8375 page_end);
b945a463
QW
8376 ASSERT(range_end + 1 - cur < U32_MAX);
8377 range_len = range_end + 1 - cur;
895586eb 8378 if (!btrfs_page_test_ordered(fs_info, &folio->page, cur, range_len)) {
3b835840 8379 /*
f57ad937
QW
8380 * If Ordered (Private2) is cleared, it means endio has
8381 * already been executed for the range.
3b835840
QW
8382 * We can't delete the extent states as
8383 * btrfs_finish_ordered_io() may still use some of them.
8384 */
3b835840
QW
8385 goto next;
8386 }
895586eb 8387 btrfs_page_clear_ordered(fs_info, &folio->page, cur, range_len);
3b835840 8388
eb84ae03 8389 /*
2766ff61
FM
8390 * IO on this page will never be started, so we need to account
8391 * for any ordered extents now. Don't clear EXTENT_DELALLOC_NEW
8392 * here, must leave that up for the ordered extent completion.
3b835840
QW
8393 *
8394 * This will also unlock the range for incoming
8395 * btrfs_finish_ordered_io().
eb84ae03 8396 */
131e404a 8397 if (!inode_evicting)
3b835840 8398 clear_extent_bit(tree, cur, range_end,
2766ff61 8399 EXTENT_DELALLOC |
131e404a 8400 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
bd015294 8401 EXTENT_DEFRAG, &cached_state);
3b835840
QW
8402
8403 spin_lock_irq(&inode->ordered_tree.lock);
8404 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8405 ordered->truncated_len = min(ordered->truncated_len,
8406 cur - ordered->file_offset);
8407 spin_unlock_irq(&inode->ordered_tree.lock);
8408
bd015294
JB
8409 /*
8410 * If the ordered extent has finished, we're safe to delete all
8411 * the extent states of the range, otherwise
8412 * btrfs_finish_ordered_io() will get executed by endio for
8413 * other pages, so we can't delete extent states.
8414 */
3b835840 8415 if (btrfs_dec_test_ordered_pending(inode, &ordered,
f41b6ba9 8416 cur, range_end + 1 - cur)) {
3b835840
QW
8417 btrfs_finish_ordered_io(ordered);
8418 /*
8419 * The ordered extent has finished, now we're again
8420 * safe to delete all extent states of the range.
8421 */
bd015294 8422 extra_flags = EXTENT_CLEAR_ALL_BITS;
3b835840
QW
8423 }
8424next:
8425 if (ordered)
8426 btrfs_put_ordered_extent(ordered);
8b62b72b 8427 /*
3b835840
QW
8428 * Qgroup reserved space handler
8429 * Sector(s) here will be either:
266a2586 8430 *
3b835840
QW
8431 * 1) Already written to disk or bio already finished
8432 * Then its QGROUP_RESERVED bit in io_tree is already cleared.
8433 * Qgroup will be handled by its qgroup_record then.
8434 * btrfs_qgroup_free_data() call will do nothing here.
8435 *
8436 * 2) Not written to disk yet
8437 * Then btrfs_qgroup_free_data() call will clear the
8438 * QGROUP_RESERVED bit of its io_tree, and free the qgroup
8439 * reserved data space.
8440 * Since the IO will never happen for this page.
8b62b72b 8441 */
3b835840 8442 btrfs_qgroup_free_data(inode, NULL, cur, range_end + 1 - cur);
131e404a 8443 if (!inode_evicting) {
3b835840
QW
8444 clear_extent_bit(tree, cur, range_end, EXTENT_LOCKED |
8445 EXTENT_DELALLOC | EXTENT_UPTODATE |
bd015294
JB
8446 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG |
8447 extra_flags, &cached_state);
131e404a 8448 }
3b835840 8449 cur = range_end + 1;
131e404a 8450 }
b9d0b389 8451 /*
3b835840 8452 * We have iterated through all ordered extents of the page, the page
f57ad937
QW
8453 * should not have Ordered (Private2) anymore, or the above iteration
8454 * did something wrong.
b9d0b389 8455 */
895586eb
MWO
8456 ASSERT(!folio_test_ordered(folio));
8457 btrfs_page_clear_checked(fs_info, &folio->page, folio_pos(folio), folio_size(folio));
3b835840 8458 if (!inode_evicting)
f913cff3 8459 __btrfs_release_folio(folio, GFP_NOFS);
895586eb 8460 clear_page_extent_mapped(&folio->page);
39279cc3
CM
8461}
8462
9ebefb18
CM
8463/*
8464 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8465 * called from a page fault handler when a page is first dirtied. Hence we must
8466 * be careful to check for EOF conditions here. We set the page up correctly
8467 * for a written page which means we get ENOSPC checking when writing into
8468 * holes and correct delalloc and unwritten extent mapping on filesystems that
8469 * support these features.
8470 *
8471 * We are not allowed to take the i_mutex here so we have to play games to
8472 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8473 * truncate_setsize() writes the inode size before removing pages, once we have
8474 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8475 * beyond EOF, then the page is guaranteed safe against truncation until we
8476 * unlock the page.
8477 */
a528a241 8478vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8479{
c2ec175c 8480 struct page *page = vmf->page;
11bac800 8481 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8482 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8483 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8484 struct btrfs_ordered_extent *ordered;
2ac55d41 8485 struct extent_state *cached_state = NULL;
364ecf36 8486 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 8487 unsigned long zero_start;
9ebefb18 8488 loff_t size;
a528a241
SJ
8489 vm_fault_t ret;
8490 int ret2;
9998eb70 8491 int reserved = 0;
d0b7da88 8492 u64 reserved_space;
a52d9a80 8493 u64 page_start;
e6dcd2dc 8494 u64 page_end;
d0b7da88
CR
8495 u64 end;
8496
09cbfeaf 8497 reserved_space = PAGE_SIZE;
9ebefb18 8498
b2b5ef5c 8499 sb_start_pagefault(inode->i_sb);
df480633 8500 page_start = page_offset(page);
09cbfeaf 8501 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8502 end = page_end;
df480633 8503
d0b7da88
CR
8504 /*
8505 * Reserving delalloc space after obtaining the page lock can lead to
8506 * deadlock. For example, if a dirty page is locked by this function
8507 * and the call to btrfs_delalloc_reserve_space() ends up triggering
f3e90c1c 8508 * dirty page write out, then the btrfs_writepages() function could
d0b7da88
CR
8509 * end up waiting indefinitely to get a lock on the page currently
8510 * being processed by btrfs_page_mkwrite() function.
8511 */
e5b7231e
NB
8512 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
8513 page_start, reserved_space);
a528a241
SJ
8514 if (!ret2) {
8515 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8516 reserved = 1;
8517 }
a528a241
SJ
8518 if (ret2) {
8519 ret = vmf_error(ret2);
9998eb70
CM
8520 if (reserved)
8521 goto out;
8522 goto out_noreserve;
56a76f82 8523 }
1832a6d5 8524
56a76f82 8525 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8526again:
8318ba79 8527 down_read(&BTRFS_I(inode)->i_mmap_lock);
9ebefb18 8528 lock_page(page);
9ebefb18 8529 size = i_size_read(inode);
a52d9a80 8530
9ebefb18 8531 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8532 (page_start >= size)) {
9ebefb18
CM
8533 /* page got truncated out from underneath us */
8534 goto out_unlock;
8535 }
e6dcd2dc
CM
8536 wait_on_page_writeback(page);
8537
570eb97b 8538 lock_extent(io_tree, page_start, page_end, &cached_state);
32443de3
QW
8539 ret2 = set_page_extent_mapped(page);
8540 if (ret2 < 0) {
8541 ret = vmf_error(ret2);
570eb97b 8542 unlock_extent(io_tree, page_start, page_end, &cached_state);
32443de3
QW
8543 goto out_unlock;
8544 }
e6dcd2dc 8545
eb84ae03
CM
8546 /*
8547 * we can't set the delalloc bits if there are pending ordered
8548 * extents. Drop our locks and wait for them to finish
8549 */
a776c6fa
NB
8550 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8551 PAGE_SIZE);
e6dcd2dc 8552 if (ordered) {
570eb97b 8553 unlock_extent(io_tree, page_start, page_end, &cached_state);
e6dcd2dc 8554 unlock_page(page);
8318ba79 8555 up_read(&BTRFS_I(inode)->i_mmap_lock);
c0a43603 8556 btrfs_start_ordered_extent(ordered, 1);
e6dcd2dc
CM
8557 btrfs_put_ordered_extent(ordered);
8558 goto again;
8559 }
8560
09cbfeaf 8561 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8562 reserved_space = round_up(size - page_start,
0b246afa 8563 fs_info->sectorsize);
09cbfeaf 8564 if (reserved_space < PAGE_SIZE) {
d0b7da88 8565 end = page_start + reserved_space - 1;
86d52921
NB
8566 btrfs_delalloc_release_space(BTRFS_I(inode),
8567 data_reserved, page_start,
8568 PAGE_SIZE - reserved_space, true);
d0b7da88
CR
8569 }
8570 }
8571
fbf19087 8572 /*
5416034f
LB
8573 * page_mkwrite gets called when the page is firstly dirtied after it's
8574 * faulted in, but write(2) could also dirty a page and set delalloc
8575 * bits, thus in this case for space account reason, we still need to
8576 * clear any delalloc bits within this page range since we have to
8577 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8578 */
d0b7da88 8579 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
e182163d 8580 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
bd015294 8581 EXTENT_DEFRAG, &cached_state);
fbf19087 8582
c2566f22 8583 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
330a5827 8584 &cached_state);
a528a241 8585 if (ret2) {
570eb97b 8586 unlock_extent(io_tree, page_start, page_end, &cached_state);
9ed74f2d
JB
8587 ret = VM_FAULT_SIGBUS;
8588 goto out_unlock;
8589 }
9ebefb18
CM
8590
8591 /* page is wholly or partially inside EOF */
09cbfeaf 8592 if (page_start + PAGE_SIZE > size)
7073017a 8593 zero_start = offset_in_page(size);
9ebefb18 8594 else
09cbfeaf 8595 zero_start = PAGE_SIZE;
9ebefb18 8596
21a8935e 8597 if (zero_start != PAGE_SIZE)
d048b9c2 8598 memzero_page(page, zero_start, PAGE_SIZE - zero_start);
21a8935e 8599
e4f94347 8600 btrfs_page_clear_checked(fs_info, page, page_start, PAGE_SIZE);
2d8ec40e
QW
8601 btrfs_page_set_dirty(fs_info, page, page_start, end + 1 - page_start);
8602 btrfs_page_set_uptodate(fs_info, page, page_start, end + 1 - page_start);
5a3f23d5 8603
bc0939fc 8604 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
257c62e1 8605
570eb97b 8606 unlock_extent(io_tree, page_start, page_end, &cached_state);
8318ba79 8607 up_read(&BTRFS_I(inode)->i_mmap_lock);
9ebefb18 8608
76de60ed
YY
8609 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8610 sb_end_pagefault(inode->i_sb);
8611 extent_changeset_free(data_reserved);
8612 return VM_FAULT_LOCKED;
717beb96
CM
8613
8614out_unlock:
9ebefb18 8615 unlock_page(page);
8318ba79 8616 up_read(&BTRFS_I(inode)->i_mmap_lock);
1832a6d5 8617out:
8702ba93 8618 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
86d52921 8619 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
43b18595 8620 reserved_space, (ret != 0));
9998eb70 8621out_noreserve:
b2b5ef5c 8622 sb_end_pagefault(inode->i_sb);
364ecf36 8623 extent_changeset_free(data_reserved);
9ebefb18
CM
8624 return ret;
8625}
8626
213e8c55 8627static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8628{
d9ac19c3 8629 struct btrfs_truncate_control control = {
71d18b53 8630 .inode = BTRFS_I(inode),
487e81d2 8631 .ino = btrfs_ino(BTRFS_I(inode)),
d9ac19c3 8632 .min_type = BTRFS_EXTENT_DATA_KEY,
655807b8 8633 .clear_extent_range = true,
d9ac19c3 8634 };
0b246afa 8635 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8636 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8637 struct btrfs_block_rsv *rsv;
ad7e1a74 8638 int ret;
39279cc3 8639 struct btrfs_trans_handle *trans;
0b246afa 8640 u64 mask = fs_info->sectorsize - 1;
2bd36e7b 8641 u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
39279cc3 8642
213e8c55
FM
8643 if (!skip_writeback) {
8644 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8645 (u64)-1);
8646 if (ret)
8647 return ret;
8648 }
39279cc3 8649
fcb80c2a 8650 /*
f7e9e8fc
OS
8651 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8652 * things going on here:
fcb80c2a 8653 *
f7e9e8fc 8654 * 1) We need to reserve space to update our inode.
fcb80c2a 8655 *
f7e9e8fc 8656 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8657 * be free'd up by the truncate operation, but also have some slack
8658 * space reserved in case it uses space during the truncate (thank you
8659 * very much snapshotting).
8660 *
f7e9e8fc 8661 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8662 * space doing the truncate, and we have no earthly idea how much space
01327610 8663 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8664 * doesn't end up using space reserved for updating the inode. We also
8665 * need to be able to stop the transaction and start a new one, which
8666 * means we need to be able to update the inode several times, and we
8667 * have no idea of knowing how many times that will be, so we can't just
8668 * reserve 1 item for the entirety of the operation, so that has to be
8669 * done separately as well.
fcb80c2a
JB
8670 *
8671 * So that leaves us with
8672 *
f7e9e8fc 8673 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8674 * transaction reservation.
f7e9e8fc 8675 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8676 * updating the inode.
8677 */
2ff7e61e 8678 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8679 if (!rsv)
8680 return -ENOMEM;
4a338542 8681 rsv->size = min_size;
710d5921 8682 rsv->failfast = true;
f0cd846e 8683
907cbceb 8684 /*
07127184 8685 * 1 for the truncate slack space
907cbceb
JB
8686 * 1 for updating the inode.
8687 */
f3fe820c 8688 trans = btrfs_start_transaction(root, 2);
fcb80c2a 8689 if (IS_ERR(trans)) {
ad7e1a74 8690 ret = PTR_ERR(trans);
fcb80c2a
JB
8691 goto out;
8692 }
f0cd846e 8693
907cbceb 8694 /* Migrate the slack space for the truncate to our reserve */
0b246afa 8695 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 8696 min_size, false);
fcb80c2a 8697 BUG_ON(ret);
f0cd846e 8698
ca7e70f5 8699 trans->block_rsv = rsv;
907cbceb 8700
8082510e 8701 while (1) {
9a4a1429
JB
8702 struct extent_state *cached_state = NULL;
8703 const u64 new_size = inode->i_size;
8704 const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
8705
d9ac19c3 8706 control.new_size = new_size;
570eb97b 8707 lock_extent(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
9a4a1429
JB
8708 &cached_state);
8709 /*
8710 * We want to drop from the next block forward in case this new
8711 * size is not block aligned since we will be keeping the last
8712 * block of the extent just the way it is.
8713 */
4c0c8cfc
FM
8714 btrfs_drop_extent_map_range(BTRFS_I(inode),
8715 ALIGN(new_size, fs_info->sectorsize),
8716 (u64)-1, false);
9a4a1429 8717
71d18b53 8718 ret = btrfs_truncate_inode_items(trans, root, &control);
c2ddb612 8719
462b728e 8720 inode_sub_bytes(inode, control.sub_bytes);
c2ddb612
JB
8721 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), control.last_size);
8722
570eb97b
JB
8723 unlock_extent(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
8724 &cached_state);
9a4a1429 8725
ddfae63c 8726 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 8727 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 8728 break;
39279cc3 8729
9a56fcd1 8730 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
ad7e1a74 8731 if (ret)
3893e33b 8732 break;
ca7e70f5 8733
3a45bb20 8734 btrfs_end_transaction(trans);
2ff7e61e 8735 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
8736
8737 trans = btrfs_start_transaction(root, 2);
8738 if (IS_ERR(trans)) {
ad7e1a74 8739 ret = PTR_ERR(trans);
ca7e70f5
JB
8740 trans = NULL;
8741 break;
8742 }
8743
63f018be 8744 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
0b246afa 8745 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 8746 rsv, min_size, false);
ca7e70f5
JB
8747 BUG_ON(ret); /* shouldn't happen */
8748 trans->block_rsv = rsv;
8082510e
YZ
8749 }
8750
ddfae63c
JB
8751 /*
8752 * We can't call btrfs_truncate_block inside a trans handle as we could
54f03ab1
JB
8753 * deadlock with freeze, if we got BTRFS_NEED_TRUNCATE_BLOCK then we
8754 * know we've truncated everything except the last little bit, and can
8755 * do btrfs_truncate_block and then update the disk_i_size.
ddfae63c 8756 */
54f03ab1 8757 if (ret == BTRFS_NEED_TRUNCATE_BLOCK) {
ddfae63c
JB
8758 btrfs_end_transaction(trans);
8759 btrfs_btree_balance_dirty(fs_info);
8760
217f42eb 8761 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
ddfae63c
JB
8762 if (ret)
8763 goto out;
8764 trans = btrfs_start_transaction(root, 1);
8765 if (IS_ERR(trans)) {
8766 ret = PTR_ERR(trans);
8767 goto out;
8768 }
76aea537 8769 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
ddfae63c
JB
8770 }
8771
917c16b2 8772 if (trans) {
ad7e1a74
OS
8773 int ret2;
8774
0b246afa 8775 trans->block_rsv = &fs_info->trans_block_rsv;
9a56fcd1 8776 ret2 = btrfs_update_inode(trans, root, BTRFS_I(inode));
ad7e1a74
OS
8777 if (ret2 && !ret)
8778 ret = ret2;
7b128766 8779
ad7e1a74
OS
8780 ret2 = btrfs_end_transaction(trans);
8781 if (ret2 && !ret)
8782 ret = ret2;
2ff7e61e 8783 btrfs_btree_balance_dirty(fs_info);
917c16b2 8784 }
fcb80c2a 8785out:
2ff7e61e 8786 btrfs_free_block_rsv(fs_info, rsv);
0d7d3165
FM
8787 /*
8788 * So if we truncate and then write and fsync we normally would just
8789 * write the extents that changed, which is a problem if we need to
8790 * first truncate that entire inode. So set this flag so we write out
8791 * all of the extents in the inode to the sync log so we're completely
8792 * safe.
8793 *
8794 * If no extents were dropped or trimmed we don't need to force the next
8795 * fsync to truncate all the inode's items from the log and re-log them
8796 * all. This means the truncate operation did not change the file size,
8797 * or changed it to a smaller size but there was only an implicit hole
8798 * between the old i_size and the new i_size, and there were no prealloc
8799 * extents beyond i_size to drop.
8800 */
d9ac19c3 8801 if (control.extents_found > 0)
23e3337f 8802 btrfs_set_inode_full_sync(BTRFS_I(inode));
fcb80c2a 8803
ad7e1a74 8804 return ret;
39279cc3
CM
8805}
8806
a1fd0c35
OS
8807struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
8808 struct inode *dir)
8809{
8810 struct inode *inode;
8811
8812 inode = new_inode(dir->i_sb);
8813 if (inode) {
8814 /*
8815 * Subvolumes don't inherit the sgid bit or the parent's gid if
8816 * the parent's sgid bit is set. This is probably a bug.
8817 */
8818 inode_init_owner(mnt_userns, inode, NULL,
8819 S_IFDIR | (~current_umask() & S_IRWXUGO));
8820 inode->i_op = &btrfs_dir_inode_operations;
8821 inode->i_fop = &btrfs_dir_file_operations;
8822 }
8823 return inode;
8824}
8825
39279cc3
CM
8826struct inode *btrfs_alloc_inode(struct super_block *sb)
8827{
69fe2d75 8828 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 8829 struct btrfs_inode *ei;
2ead6ae7 8830 struct inode *inode;
39279cc3 8831
fd60b288 8832 ei = alloc_inode_sb(sb, btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
8833 if (!ei)
8834 return NULL;
2ead6ae7
YZ
8835
8836 ei->root = NULL;
2ead6ae7 8837 ei->generation = 0;
15ee9bc7 8838 ei->last_trans = 0;
257c62e1 8839 ei->last_sub_trans = 0;
e02119d5 8840 ei->logged_trans = 0;
2ead6ae7 8841 ei->delalloc_bytes = 0;
a7e3b975 8842 ei->new_delalloc_bytes = 0;
47059d93 8843 ei->defrag_bytes = 0;
2ead6ae7
YZ
8844 ei->disk_i_size = 0;
8845 ei->flags = 0;
77eea05e 8846 ei->ro_flags = 0;
7709cde3 8847 ei->csum_bytes = 0;
2ead6ae7 8848 ei->index_cnt = (u64)-1;
67de1176 8849 ei->dir_index = 0;
2ead6ae7 8850 ei->last_unlink_trans = 0;
3ebac17c 8851 ei->last_reflink_trans = 0;
46d8bc34 8852 ei->last_log_commit = 0;
2ead6ae7 8853
9e0baf60 8854 spin_lock_init(&ei->lock);
87c11705 8855 spin_lock_init(&ei->io_failure_lock);
9e0baf60 8856 ei->outstanding_extents = 0;
69fe2d75
JB
8857 if (sb->s_magic != BTRFS_TEST_MAGIC)
8858 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8859 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 8860 ei->runtime_flags = 0;
b52aa8c9 8861 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 8862 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8863
16cdcec7
MX
8864 ei->delayed_node = NULL;
8865
9cc97d64 8866 ei->i_otime.tv_sec = 0;
8867 ei->i_otime.tv_nsec = 0;
8868
2ead6ae7 8869 inode = &ei->vfs_inode;
a8067e02 8870 extent_map_tree_init(&ei->extent_tree);
43eb5f29 8871 extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
41a2ee75 8872 extent_io_tree_init(fs_info, &ei->file_extent_tree,
efb0645b 8873 IO_TREE_INODE_FILE_EXTENT, NULL);
87c11705 8874 ei->io_failure_tree = RB_ROOT;
b812ce28 8875 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8876 mutex_init(&ei->log_mutex);
e6dcd2dc 8877 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8878 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 8879 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 8880 RB_CLEAR_NODE(&ei->rb_node);
8318ba79 8881 init_rwsem(&ei->i_mmap_lock);
2ead6ae7
YZ
8882
8883 return inode;
39279cc3
CM
8884}
8885
aaedb55b
JB
8886#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8887void btrfs_test_destroy_inode(struct inode *inode)
8888{
4c0c8cfc 8889 btrfs_drop_extent_map_range(BTRFS_I(inode), 0, (u64)-1, false);
aaedb55b
JB
8890 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8891}
8892#endif
8893
26602cab 8894void btrfs_free_inode(struct inode *inode)
fa0d7e3d 8895{
fa0d7e3d
NP
8896 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8897}
8898
633cc816 8899void btrfs_destroy_inode(struct inode *vfs_inode)
39279cc3 8900{
e6dcd2dc 8901 struct btrfs_ordered_extent *ordered;
633cc816
NB
8902 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
8903 struct btrfs_root *root = inode->root;
5f4403e1 8904 bool freespace_inode;
5a3f23d5 8905
633cc816
NB
8906 WARN_ON(!hlist_empty(&vfs_inode->i_dentry));
8907 WARN_ON(vfs_inode->i_data.nrpages);
8908 WARN_ON(inode->block_rsv.reserved);
8909 WARN_ON(inode->block_rsv.size);
8910 WARN_ON(inode->outstanding_extents);
dc287224
FM
8911 if (!S_ISDIR(vfs_inode->i_mode)) {
8912 WARN_ON(inode->delalloc_bytes);
8913 WARN_ON(inode->new_delalloc_bytes);
8914 }
633cc816
NB
8915 WARN_ON(inode->csum_bytes);
8916 WARN_ON(inode->defrag_bytes);
39279cc3 8917
a6dbd429
JB
8918 /*
8919 * This can happen where we create an inode, but somebody else also
8920 * created the same inode and we need to destroy the one we already
8921 * created.
8922 */
8923 if (!root)
26602cab 8924 return;
a6dbd429 8925
5f4403e1
IA
8926 /*
8927 * If this is a free space inode do not take the ordered extents lockdep
8928 * map.
8929 */
8930 freespace_inode = btrfs_is_free_space_inode(inode);
8931
d397712b 8932 while (1) {
633cc816 8933 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
e6dcd2dc
CM
8934 if (!ordered)
8935 break;
8936 else {
633cc816 8937 btrfs_err(root->fs_info,
5d163e0e 8938 "found ordered extent %llu %llu on inode cleanup",
bffe633e 8939 ordered->file_offset, ordered->num_bytes);
5f4403e1
IA
8940
8941 if (!freespace_inode)
8942 btrfs_lockdep_acquire(root->fs_info, btrfs_ordered_extent);
8943
71fe0a55 8944 btrfs_remove_ordered_extent(inode, ordered);
e6dcd2dc
CM
8945 btrfs_put_ordered_extent(ordered);
8946 btrfs_put_ordered_extent(ordered);
8947 }
8948 }
633cc816
NB
8949 btrfs_qgroup_check_reserved_leak(inode);
8950 inode_tree_del(inode);
4c0c8cfc 8951 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
633cc816
NB
8952 btrfs_inode_clear_file_extent_range(inode, 0, (u64)-1);
8953 btrfs_put_root(inode->root);
39279cc3
CM
8954}
8955
45321ac5 8956int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8957{
8958 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8959
6379ef9f
NA
8960 if (root == NULL)
8961 return 1;
8962
fa6ac876 8963 /* the snap/subvol tree is on deleting */
69e9c6c6 8964 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8965 return 1;
76dda93c 8966 else
45321ac5 8967 return generic_drop_inode(inode);
76dda93c
YZ
8968}
8969
0ee0fda0 8970static void init_once(void *foo)
39279cc3 8971{
0d031dc4 8972 struct btrfs_inode *ei = foo;
39279cc3
CM
8973
8974 inode_init_once(&ei->vfs_inode);
8975}
8976
e67c718b 8977void __cold btrfs_destroy_cachep(void)
39279cc3 8978{
8c0a8537
KS
8979 /*
8980 * Make sure all delayed rcu free inodes are flushed before we
8981 * destroy cache.
8982 */
8983 rcu_barrier();
642c5d34 8984 bioset_exit(&btrfs_dio_bioset);
5598e900 8985 kmem_cache_destroy(btrfs_inode_cachep);
39279cc3
CM
8986}
8987
f5c29bd9 8988int __init btrfs_init_cachep(void)
39279cc3 8989{
837e1972 8990 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 8991 sizeof(struct btrfs_inode), 0,
5d097056
VD
8992 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8993 init_once);
39279cc3
CM
8994 if (!btrfs_inode_cachep)
8995 goto fail;
9601e3f6 8996
642c5d34
CH
8997 if (bioset_init(&btrfs_dio_bioset, BIO_POOL_SIZE,
8998 offsetof(struct btrfs_dio_private, bio),
8999 BIOSET_NEED_BVECS))
9000 goto fail;
9001
39279cc3
CM
9002 return 0;
9003fail:
9004 btrfs_destroy_cachep();
9005 return -ENOMEM;
9006}
9007
549c7297
CB
9008static int btrfs_getattr(struct user_namespace *mnt_userns,
9009 const struct path *path, struct kstat *stat,
a528d35e 9010 u32 request_mask, unsigned int flags)
39279cc3 9011{
df0af1a5 9012 u64 delalloc_bytes;
2766ff61 9013 u64 inode_bytes;
a528d35e 9014 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9015 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34 9016 u32 bi_flags = BTRFS_I(inode)->flags;
14605409 9017 u32 bi_ro_flags = BTRFS_I(inode)->ro_flags;
04a87e34
YS
9018
9019 stat->result_mask |= STATX_BTIME;
9020 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9021 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9022 if (bi_flags & BTRFS_INODE_APPEND)
9023 stat->attributes |= STATX_ATTR_APPEND;
9024 if (bi_flags & BTRFS_INODE_COMPRESS)
9025 stat->attributes |= STATX_ATTR_COMPRESSED;
9026 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9027 stat->attributes |= STATX_ATTR_IMMUTABLE;
9028 if (bi_flags & BTRFS_INODE_NODUMP)
9029 stat->attributes |= STATX_ATTR_NODUMP;
14605409
BB
9030 if (bi_ro_flags & BTRFS_INODE_RO_VERITY)
9031 stat->attributes |= STATX_ATTR_VERITY;
04a87e34
YS
9032
9033 stat->attributes_mask |= (STATX_ATTR_APPEND |
9034 STATX_ATTR_COMPRESSED |
9035 STATX_ATTR_IMMUTABLE |
9036 STATX_ATTR_NODUMP);
fadc0d8b 9037
c020d2ea 9038 generic_fillattr(mnt_userns, inode, stat);
0ee5dc67 9039 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9040
9041 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9042 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
2766ff61 9043 inode_bytes = inode_get_bytes(inode);
df0af1a5 9044 spin_unlock(&BTRFS_I(inode)->lock);
2766ff61 9045 stat->blocks = (ALIGN(inode_bytes, blocksize) +
df0af1a5 9046 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9047 return 0;
9048}
9049
cdd1fedf
DF
9050static int btrfs_rename_exchange(struct inode *old_dir,
9051 struct dentry *old_dentry,
9052 struct inode *new_dir,
9053 struct dentry *new_dentry)
9054{
0b246afa 9055 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf 9056 struct btrfs_trans_handle *trans;
c1621871 9057 unsigned int trans_num_items;
cdd1fedf
DF
9058 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9059 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9060 struct inode *new_inode = new_dentry->d_inode;
9061 struct inode *old_inode = old_dentry->d_inode;
95582b00 9062 struct timespec64 ctime = current_time(old_inode);
88d2beec
FM
9063 struct btrfs_rename_ctx old_rename_ctx;
9064 struct btrfs_rename_ctx new_rename_ctx;
4a0cc7ca
NB
9065 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9066 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9067 u64 old_idx = 0;
9068 u64 new_idx = 0;
cdd1fedf 9069 int ret;
75b463d2 9070 int ret2;
dc09ef35 9071 bool need_abort = false;
ab3c5c18 9072 struct fscrypt_name old_fname, new_fname;
6db75318 9073 struct fscrypt_str *old_name, *new_name;
cdd1fedf 9074
3f79f6f6
N
9075 /*
9076 * For non-subvolumes allow exchange only within one subvolume, in the
9077 * same inode namespace. Two subvolumes (represented as directory) can
9078 * be exchanged as they're a logical link and have a fixed inode number.
9079 */
9080 if (root != dest &&
9081 (old_ino != BTRFS_FIRST_FREE_OBJECTID ||
9082 new_ino != BTRFS_FIRST_FREE_OBJECTID))
cdd1fedf
DF
9083 return -EXDEV;
9084
ab3c5c18
STD
9085 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9086 if (ret)
9087 return ret;
9088
9089 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9090 if (ret) {
9091 fscrypt_free_filename(&old_fname);
9092 return ret;
9093 }
9094
6db75318
STD
9095 old_name = &old_fname.disk_name;
9096 new_name = &new_fname.disk_name;
ab3c5c18 9097
cdd1fedf 9098 /* close the race window with snapshot create/destroy ioctl */
943eb3bf
JB
9099 if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
9100 new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9101 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9102
9103 /*
c1621871
OS
9104 * For each inode:
9105 * 1 to remove old dir item
9106 * 1 to remove old dir index
9107 * 1 to add new dir item
9108 * 1 to add new dir index
9109 * 1 to update parent inode
9110 *
9111 * If the parents are the same, we only need to account for one
cdd1fedf 9112 */
c1621871
OS
9113 trans_num_items = (old_dir == new_dir ? 9 : 10);
9114 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9115 /*
9116 * 1 to remove old root ref
9117 * 1 to remove old root backref
9118 * 1 to add new root ref
9119 * 1 to add new root backref
9120 */
9121 trans_num_items += 4;
9122 } else {
9123 /*
9124 * 1 to update inode item
9125 * 1 to remove old inode ref
9126 * 1 to add new inode ref
9127 */
9128 trans_num_items += 3;
9129 }
9130 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9131 trans_num_items += 4;
9132 else
9133 trans_num_items += 3;
9134 trans = btrfs_start_transaction(root, trans_num_items);
cdd1fedf
DF
9135 if (IS_ERR(trans)) {
9136 ret = PTR_ERR(trans);
9137 goto out_notrans;
9138 }
9139
00aa8e87
JB
9140 if (dest != root) {
9141 ret = btrfs_record_root_in_trans(trans, dest);
9142 if (ret)
9143 goto out_fail;
9144 }
3e174099 9145
cdd1fedf
DF
9146 /*
9147 * We need to find a free sequence number both in the source and
9148 * in the destination directory for the exchange.
9149 */
877574e2 9150 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9151 if (ret)
9152 goto out_fail;
877574e2 9153 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9154 if (ret)
9155 goto out_fail;
9156
9157 BTRFS_I(old_inode)->dir_index = 0ULL;
9158 BTRFS_I(new_inode)->dir_index = 0ULL;
9159
9160 /* Reference for the source. */
9161 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9162 /* force full log commit if subvolume involved. */
90787766 9163 btrfs_set_log_full_commit(trans);
cdd1fedf 9164 } else {
6db75318 9165 ret = btrfs_insert_inode_ref(trans, dest, new_name, old_ino,
f85b7379
DS
9166 btrfs_ino(BTRFS_I(new_dir)),
9167 old_idx);
cdd1fedf
DF
9168 if (ret)
9169 goto out_fail;
dc09ef35 9170 need_abort = true;
cdd1fedf
DF
9171 }
9172
9173 /* And now for the dest. */
9174 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9175 /* force full log commit if subvolume involved. */
90787766 9176 btrfs_set_log_full_commit(trans);
cdd1fedf 9177 } else {
6db75318 9178 ret = btrfs_insert_inode_ref(trans, root, old_name, new_ino,
f85b7379
DS
9179 btrfs_ino(BTRFS_I(old_dir)),
9180 new_idx);
dc09ef35
JB
9181 if (ret) {
9182 if (need_abort)
9183 btrfs_abort_transaction(trans, ret);
cdd1fedf 9184 goto out_fail;
dc09ef35 9185 }
cdd1fedf
DF
9186 }
9187
9188 /* Update inode version and ctime/mtime. */
9189 inode_inc_iversion(old_dir);
9190 inode_inc_iversion(new_dir);
9191 inode_inc_iversion(old_inode);
9192 inode_inc_iversion(new_inode);
c1867eb3
DS
9193 old_dir->i_mtime = ctime;
9194 old_dir->i_ctime = ctime;
9195 new_dir->i_mtime = ctime;
9196 new_dir->i_ctime = ctime;
cdd1fedf
DF
9197 old_inode->i_ctime = ctime;
9198 new_inode->i_ctime = ctime;
9199
9200 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9201 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9202 BTRFS_I(old_inode), 1);
9203 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9204 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9205 }
9206
9207 /* src is a subvolume */
9208 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 9209 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
cdd1fedf 9210 } else { /* src is an inode */
4467af88 9211 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
4ec5934e 9212 BTRFS_I(old_dentry->d_inode),
6db75318 9213 old_name, &old_rename_ctx);
cdd1fedf 9214 if (!ret)
9a56fcd1 9215 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
cdd1fedf
DF
9216 }
9217 if (ret) {
66642832 9218 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9219 goto out_fail;
9220 }
9221
9222 /* dest is a subvolume */
9223 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
045d3967 9224 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
cdd1fedf 9225 } else { /* dest is an inode */
4467af88 9226 ret = __btrfs_unlink_inode(trans, BTRFS_I(new_dir),
4ec5934e 9227 BTRFS_I(new_dentry->d_inode),
6db75318 9228 new_name, &new_rename_ctx);
cdd1fedf 9229 if (!ret)
9a56fcd1 9230 ret = btrfs_update_inode(trans, dest, BTRFS_I(new_inode));
cdd1fedf
DF
9231 }
9232 if (ret) {
66642832 9233 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9234 goto out_fail;
9235 }
9236
db0a669f 9237 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
6db75318 9238 new_name, 0, old_idx);
cdd1fedf 9239 if (ret) {
66642832 9240 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9241 goto out_fail;
9242 }
9243
db0a669f 9244 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
6db75318 9245 old_name, 0, new_idx);
cdd1fedf 9246 if (ret) {
66642832 9247 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9248 goto out_fail;
9249 }
9250
9251 if (old_inode->i_nlink == 1)
9252 BTRFS_I(old_inode)->dir_index = old_idx;
9253 if (new_inode->i_nlink == 1)
9254 BTRFS_I(new_inode)->dir_index = new_idx;
9255
259c4b96
FM
9256 /*
9257 * Now pin the logs of the roots. We do it to ensure that no other task
9258 * can sync the logs while we are in progress with the rename, because
9259 * that could result in an inconsistency in case any of the inodes that
9260 * are part of this rename operation were logged before.
9261 */
9262 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9263 btrfs_pin_log_trans(root);
9264 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
9265 btrfs_pin_log_trans(dest);
9266
9267 /* Do the log updates for all inodes. */
9268 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
d5f5bd54 9269 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
88d2beec 9270 old_rename_ctx.index, new_dentry->d_parent);
259c4b96 9271 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
d5f5bd54 9272 btrfs_log_new_name(trans, new_dentry, BTRFS_I(new_dir),
88d2beec 9273 new_rename_ctx.index, old_dentry->d_parent);
259c4b96
FM
9274
9275 /* Now unpin the logs. */
9276 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
9277 btrfs_end_log_trans(root);
9278 if (new_ino != BTRFS_FIRST_FREE_OBJECTID)
cdd1fedf 9279 btrfs_end_log_trans(dest);
cdd1fedf 9280out_fail:
75b463d2
FM
9281 ret2 = btrfs_end_transaction(trans);
9282 ret = ret ? ret : ret2;
cdd1fedf 9283out_notrans:
943eb3bf
JB
9284 if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
9285 old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9286 up_read(&fs_info->subvol_sem);
cdd1fedf 9287
ab3c5c18
STD
9288 fscrypt_free_filename(&new_fname);
9289 fscrypt_free_filename(&old_fname);
cdd1fedf
DF
9290 return ret;
9291}
9292
a1fd0c35
OS
9293static struct inode *new_whiteout_inode(struct user_namespace *mnt_userns,
9294 struct inode *dir)
9295{
9296 struct inode *inode;
9297
9298 inode = new_inode(dir->i_sb);
9299 if (inode) {
9300 inode_init_owner(mnt_userns, inode, dir,
9301 S_IFCHR | WHITEOUT_MODE);
9302 inode->i_op = &btrfs_special_inode_operations;
9303 init_special_inode(inode, inode->i_mode, WHITEOUT_DEV);
9304 }
9305 return inode;
9306}
9307
ca07274c
CB
9308static int btrfs_rename(struct user_namespace *mnt_userns,
9309 struct inode *old_dir, struct dentry *old_dentry,
9310 struct inode *new_dir, struct dentry *new_dentry,
9311 unsigned int flags)
39279cc3 9312{
0b246afa 9313 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
3538d68d
OS
9314 struct btrfs_new_inode_args whiteout_args = {
9315 .dir = old_dir,
9316 .dentry = old_dentry,
9317 };
39279cc3 9318 struct btrfs_trans_handle *trans;
5062af35 9319 unsigned int trans_num_items;
39279cc3 9320 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9321 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9322 struct inode *new_inode = d_inode(new_dentry);
9323 struct inode *old_inode = d_inode(old_dentry);
88d2beec 9324 struct btrfs_rename_ctx rename_ctx;
00e4e6b3 9325 u64 index = 0;
39279cc3 9326 int ret;
75b463d2 9327 int ret2;
4a0cc7ca 9328 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
ab3c5c18 9329 struct fscrypt_name old_fname, new_fname;
39279cc3 9330
4a0cc7ca 9331 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9332 return -EPERM;
9333
4df27c4d 9334 /* we only allow rename subvolume link between subvolumes */
33345d01 9335 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9336 return -EXDEV;
9337
33345d01 9338 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9339 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9340 return -ENOTEMPTY;
5f39d397 9341
4df27c4d
YZ
9342 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9343 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9344 return -ENOTEMPTY;
9c52057c 9345
ab3c5c18
STD
9346 ret = fscrypt_setup_filename(old_dir, &old_dentry->d_name, 0, &old_fname);
9347 if (ret)
9348 return ret;
9349
9350 ret = fscrypt_setup_filename(new_dir, &new_dentry->d_name, 0, &new_fname);
9351 if (ret) {
9352 fscrypt_free_filename(&old_fname);
9353 return ret;
9354 }
9355
9c52057c 9356 /* check for collisions, even if the name isn't there */
6db75318 9357 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, &new_fname.disk_name);
9c52057c
CM
9358 if (ret) {
9359 if (ret == -EEXIST) {
9360 /* we shouldn't get
9361 * eexist without a new_inode */
fae7f21c 9362 if (WARN_ON(!new_inode)) {
ab3c5c18 9363 goto out_fscrypt_names;
9c52057c
CM
9364 }
9365 } else {
9366 /* maybe -EOVERFLOW */
ab3c5c18 9367 goto out_fscrypt_names;
9c52057c
CM
9368 }
9369 }
9370 ret = 0;
9371
5a3f23d5 9372 /*
8d875f95
CM
9373 * we're using rename to replace one file with another. Start IO on it
9374 * now so we don't add too much work to the end of the transaction
5a3f23d5 9375 */
8d875f95 9376 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9377 filemap_flush(old_inode->i_mapping);
9378
a1fd0c35 9379 if (flags & RENAME_WHITEOUT) {
3538d68d
OS
9380 whiteout_args.inode = new_whiteout_inode(mnt_userns, old_dir);
9381 if (!whiteout_args.inode)
a1fd0c35 9382 return -ENOMEM;
3538d68d
OS
9383 ret = btrfs_new_inode_prepare(&whiteout_args, &trans_num_items);
9384 if (ret)
9385 goto out_whiteout_inode;
9386 } else {
9387 /* 1 to update the old parent inode. */
9388 trans_num_items = 1;
a1fd0c35
OS
9389 }
9390
c1621871
OS
9391 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9392 /* Close the race window with snapshot create/destroy ioctl */
0b246afa 9393 down_read(&fs_info->subvol_sem);
c1621871
OS
9394 /*
9395 * 1 to remove old root ref
9396 * 1 to remove old root backref
9397 * 1 to add new root ref
9398 * 1 to add new root backref
9399 */
3538d68d 9400 trans_num_items += 4;
c1621871
OS
9401 } else {
9402 /*
9403 * 1 to update inode
9404 * 1 to remove old inode ref
9405 * 1 to add new inode ref
9406 */
3538d68d 9407 trans_num_items += 3;
c1621871 9408 }
a22285a6 9409 /*
c1621871
OS
9410 * 1 to remove old dir item
9411 * 1 to remove old dir index
c1621871
OS
9412 * 1 to add new dir item
9413 * 1 to add new dir index
a22285a6 9414 */
3538d68d
OS
9415 trans_num_items += 4;
9416 /* 1 to update new parent inode if it's not the same as the old parent */
c1621871
OS
9417 if (new_dir != old_dir)
9418 trans_num_items++;
9419 if (new_inode) {
9420 /*
9421 * 1 to update inode
9422 * 1 to remove inode ref
9423 * 1 to remove dir item
9424 * 1 to remove dir index
9425 * 1 to possibly add orphan item
9426 */
9427 trans_num_items += 5;
9428 }
5062af35 9429 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9430 if (IS_ERR(trans)) {
cdd1fedf
DF
9431 ret = PTR_ERR(trans);
9432 goto out_notrans;
9433 }
76dda93c 9434
b0fec6fd
JB
9435 if (dest != root) {
9436 ret = btrfs_record_root_in_trans(trans, dest);
9437 if (ret)
9438 goto out_fail;
9439 }
5f39d397 9440
877574e2 9441 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9442 if (ret)
9443 goto out_fail;
5a3f23d5 9444
67de1176 9445 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9446 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9447 /* force full log commit if subvolume involved. */
90787766 9448 btrfs_set_log_full_commit(trans);
4df27c4d 9449 } else {
6db75318
STD
9450 ret = btrfs_insert_inode_ref(trans, dest, &new_fname.disk_name,
9451 old_ino, btrfs_ino(BTRFS_I(new_dir)),
9452 index);
a5719521
YZ
9453 if (ret)
9454 goto out_fail;
4df27c4d 9455 }
5a3f23d5 9456
0c4d2d95
JB
9457 inode_inc_iversion(old_dir);
9458 inode_inc_iversion(new_dir);
9459 inode_inc_iversion(old_inode);
c1867eb3
DS
9460 old_dir->i_mtime = current_time(old_dir);
9461 old_dir->i_ctime = old_dir->i_mtime;
9462 new_dir->i_mtime = old_dir->i_mtime;
9463 new_dir->i_ctime = old_dir->i_mtime;
9464 old_inode->i_ctime = old_dir->i_mtime;
5f39d397 9465
12fcfd22 9466 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9467 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9468 BTRFS_I(old_inode), 1);
12fcfd22 9469
33345d01 9470 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
045d3967 9471 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
4df27c4d 9472 } else {
4467af88 9473 ret = __btrfs_unlink_inode(trans, BTRFS_I(old_dir),
e43eec81 9474 BTRFS_I(d_inode(old_dentry)),
6db75318 9475 &old_fname.disk_name, &rename_ctx);
92986796 9476 if (!ret)
9a56fcd1 9477 ret = btrfs_update_inode(trans, root, BTRFS_I(old_inode));
4df27c4d 9478 }
79787eaa 9479 if (ret) {
66642832 9480 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9481 goto out_fail;
9482 }
39279cc3
CM
9483
9484 if (new_inode) {
0c4d2d95 9485 inode_inc_iversion(new_inode);
c2050a45 9486 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9487 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d 9488 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
045d3967 9489 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
4df27c4d
YZ
9490 BUG_ON(new_inode->i_nlink == 0);
9491 } else {
4467af88 9492 ret = btrfs_unlink_inode(trans, BTRFS_I(new_dir),
4ec5934e 9493 BTRFS_I(d_inode(new_dentry)),
6db75318 9494 &new_fname.disk_name);
4df27c4d 9495 }
4ef31a45 9496 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9497 ret = btrfs_orphan_add(trans,
9498 BTRFS_I(d_inode(new_dentry)));
79787eaa 9499 if (ret) {
66642832 9500 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9501 goto out_fail;
9502 }
39279cc3 9503 }
aec7477b 9504
db0a669f 9505 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
6db75318 9506 &new_fname.disk_name, 0, index);
79787eaa 9507 if (ret) {
66642832 9508 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9509 goto out_fail;
9510 }
39279cc3 9511
67de1176
MX
9512 if (old_inode->i_nlink == 1)
9513 BTRFS_I(old_inode)->dir_index = index;
9514
259c4b96 9515 if (old_ino != BTRFS_FIRST_FREE_OBJECTID)
d5f5bd54 9516 btrfs_log_new_name(trans, old_dentry, BTRFS_I(old_dir),
88d2beec 9517 rename_ctx.index, new_dentry->d_parent);
cdd1fedf
DF
9518
9519 if (flags & RENAME_WHITEOUT) {
caae78e0 9520 ret = btrfs_create_new_inode(trans, &whiteout_args);
cdd1fedf 9521 if (ret) {
66642832 9522 btrfs_abort_transaction(trans, ret);
cdd1fedf 9523 goto out_fail;
caae78e0
OS
9524 } else {
9525 unlock_new_inode(whiteout_args.inode);
9526 iput(whiteout_args.inode);
9527 whiteout_args.inode = NULL;
cdd1fedf 9528 }
4df27c4d 9529 }
39279cc3 9530out_fail:
75b463d2
FM
9531 ret2 = btrfs_end_transaction(trans);
9532 ret = ret ? ret : ret2;
b44c59a8 9533out_notrans:
33345d01 9534 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9535 up_read(&fs_info->subvol_sem);
a1fd0c35 9536 if (flags & RENAME_WHITEOUT)
3538d68d
OS
9537 btrfs_new_inode_args_destroy(&whiteout_args);
9538out_whiteout_inode:
9539 if (flags & RENAME_WHITEOUT)
9540 iput(whiteout_args.inode);
ab3c5c18
STD
9541out_fscrypt_names:
9542 fscrypt_free_filename(&old_fname);
9543 fscrypt_free_filename(&new_fname);
39279cc3
CM
9544 return ret;
9545}
9546
549c7297
CB
9547static int btrfs_rename2(struct user_namespace *mnt_userns, struct inode *old_dir,
9548 struct dentry *old_dentry, struct inode *new_dir,
9549 struct dentry *new_dentry, unsigned int flags)
80ace85c 9550{
ca6dee6b
FM
9551 int ret;
9552
cdd1fedf 9553 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9554 return -EINVAL;
9555
cdd1fedf 9556 if (flags & RENAME_EXCHANGE)
ca6dee6b
FM
9557 ret = btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9558 new_dentry);
9559 else
9560 ret = btrfs_rename(mnt_userns, old_dir, old_dentry, new_dir,
9561 new_dentry, flags);
cdd1fedf 9562
ca6dee6b
FM
9563 btrfs_btree_balance_dirty(BTRFS_I(new_dir)->root->fs_info);
9564
9565 return ret;
80ace85c
MS
9566}
9567
3a2f8c07
NB
9568struct btrfs_delalloc_work {
9569 struct inode *inode;
9570 struct completion completion;
9571 struct list_head list;
9572 struct btrfs_work work;
9573};
9574
8ccf6f19
MX
9575static void btrfs_run_delalloc_work(struct btrfs_work *work)
9576{
9577 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9578 struct inode *inode;
8ccf6f19
MX
9579
9580 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9581 work);
9f23e289 9582 inode = delalloc_work->inode;
30424601
DS
9583 filemap_flush(inode->i_mapping);
9584 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9585 &BTRFS_I(inode)->runtime_flags))
9f23e289 9586 filemap_flush(inode->i_mapping);
8ccf6f19 9587
076da91c 9588 iput(inode);
8ccf6f19
MX
9589 complete(&delalloc_work->completion);
9590}
9591
3a2f8c07 9592static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9593{
9594 struct btrfs_delalloc_work *work;
9595
100d5702 9596 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9597 if (!work)
9598 return NULL;
9599
9600 init_completion(&work->completion);
9601 INIT_LIST_HEAD(&work->list);
9602 work->inode = inode;
a0cac0ec 9603 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9604
9605 return work;
9606}
9607
d352ac68
CM
9608/*
9609 * some fairly slow code that needs optimization. This walks the list
9610 * of all the inodes with pending delalloc and forces them to disk.
9611 */
e076ab2a
JB
9612static int start_delalloc_inodes(struct btrfs_root *root,
9613 struct writeback_control *wbc, bool snapshot,
3d45f221 9614 bool in_reclaim_context)
ea8c2819 9615{
ea8c2819 9616 struct btrfs_inode *binode;
5b21f2ed 9617 struct inode *inode;
8ccf6f19
MX
9618 struct btrfs_delalloc_work *work, *next;
9619 struct list_head works;
1eafa6c7 9620 struct list_head splice;
8ccf6f19 9621 int ret = 0;
e076ab2a 9622 bool full_flush = wbc->nr_to_write == LONG_MAX;
ea8c2819 9623
8ccf6f19 9624 INIT_LIST_HEAD(&works);
1eafa6c7 9625 INIT_LIST_HEAD(&splice);
63607cc8 9626
573bfb72 9627 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9628 spin_lock(&root->delalloc_lock);
9629 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9630 while (!list_empty(&splice)) {
9631 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9632 delalloc_inodes);
1eafa6c7 9633
eb73c1b7
MX
9634 list_move_tail(&binode->delalloc_inodes,
9635 &root->delalloc_inodes);
3d45f221
FM
9636
9637 if (in_reclaim_context &&
9638 test_bit(BTRFS_INODE_NO_DELALLOC_FLUSH, &binode->runtime_flags))
9639 continue;
9640
5b21f2ed 9641 inode = igrab(&binode->vfs_inode);
df0af1a5 9642 if (!inode) {
eb73c1b7 9643 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9644 continue;
df0af1a5 9645 }
eb73c1b7 9646 spin_unlock(&root->delalloc_lock);
1eafa6c7 9647
3cd24c69
EL
9648 if (snapshot)
9649 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9650 &binode->runtime_flags);
e076ab2a
JB
9651 if (full_flush) {
9652 work = btrfs_alloc_delalloc_work(inode);
9653 if (!work) {
9654 iput(inode);
9655 ret = -ENOMEM;
9656 goto out;
9657 }
9658 list_add_tail(&work->list, &works);
9659 btrfs_queue_work(root->fs_info->flush_workers,
9660 &work->work);
9661 } else {
b3776305 9662 ret = filemap_fdatawrite_wbc(inode->i_mapping, wbc);
e076ab2a
JB
9663 btrfs_add_delayed_iput(inode);
9664 if (ret || wbc->nr_to_write <= 0)
b4912139
JB
9665 goto out;
9666 }
5b21f2ed 9667 cond_resched();
eb73c1b7 9668 spin_lock(&root->delalloc_lock);
ea8c2819 9669 }
eb73c1b7 9670 spin_unlock(&root->delalloc_lock);
8c8bee1d 9671
a1ecaabb 9672out:
eb73c1b7
MX
9673 list_for_each_entry_safe(work, next, &works, list) {
9674 list_del_init(&work->list);
40012f96
NB
9675 wait_for_completion(&work->completion);
9676 kfree(work);
eb73c1b7
MX
9677 }
9678
81f1d390 9679 if (!list_empty(&splice)) {
eb73c1b7
MX
9680 spin_lock(&root->delalloc_lock);
9681 list_splice_tail(&splice, &root->delalloc_inodes);
9682 spin_unlock(&root->delalloc_lock);
9683 }
573bfb72 9684 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9685 return ret;
9686}
1eafa6c7 9687
f9baa501 9688int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context)
eb73c1b7 9689{
e076ab2a
JB
9690 struct writeback_control wbc = {
9691 .nr_to_write = LONG_MAX,
9692 .sync_mode = WB_SYNC_NONE,
9693 .range_start = 0,
9694 .range_end = LLONG_MAX,
9695 };
0b246afa 9696 struct btrfs_fs_info *fs_info = root->fs_info;
1eafa6c7 9697
84961539 9698 if (BTRFS_FS_ERROR(fs_info))
eb73c1b7
MX
9699 return -EROFS;
9700
f9baa501 9701 return start_delalloc_inodes(root, &wbc, true, in_reclaim_context);
eb73c1b7
MX
9702}
9703
9db4dc24 9704int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3d45f221 9705 bool in_reclaim_context)
eb73c1b7 9706{
e076ab2a 9707 struct writeback_control wbc = {
9db4dc24 9708 .nr_to_write = nr,
e076ab2a
JB
9709 .sync_mode = WB_SYNC_NONE,
9710 .range_start = 0,
9711 .range_end = LLONG_MAX,
9712 };
eb73c1b7
MX
9713 struct btrfs_root *root;
9714 struct list_head splice;
9715 int ret;
9716
84961539 9717 if (BTRFS_FS_ERROR(fs_info))
eb73c1b7
MX
9718 return -EROFS;
9719
9720 INIT_LIST_HEAD(&splice);
9721
573bfb72 9722 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9723 spin_lock(&fs_info->delalloc_root_lock);
9724 list_splice_init(&fs_info->delalloc_roots, &splice);
d7830b71 9725 while (!list_empty(&splice)) {
e076ab2a
JB
9726 /*
9727 * Reset nr_to_write here so we know that we're doing a full
9728 * flush.
9729 */
9db4dc24 9730 if (nr == LONG_MAX)
e076ab2a
JB
9731 wbc.nr_to_write = LONG_MAX;
9732
eb73c1b7
MX
9733 root = list_first_entry(&splice, struct btrfs_root,
9734 delalloc_root);
00246528 9735 root = btrfs_grab_root(root);
eb73c1b7
MX
9736 BUG_ON(!root);
9737 list_move_tail(&root->delalloc_root,
9738 &fs_info->delalloc_roots);
9739 spin_unlock(&fs_info->delalloc_root_lock);
9740
e076ab2a 9741 ret = start_delalloc_inodes(root, &wbc, false, in_reclaim_context);
00246528 9742 btrfs_put_root(root);
e076ab2a 9743 if (ret < 0 || wbc.nr_to_write <= 0)
eb73c1b7 9744 goto out;
eb73c1b7 9745 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9746 }
eb73c1b7 9747 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9748
6c255e67 9749 ret = 0;
eb73c1b7 9750out:
81f1d390 9751 if (!list_empty(&splice)) {
eb73c1b7
MX
9752 spin_lock(&fs_info->delalloc_root_lock);
9753 list_splice_tail(&splice, &fs_info->delalloc_roots);
9754 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9755 }
573bfb72 9756 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9757 return ret;
ea8c2819
CM
9758}
9759
549c7297
CB
9760static int btrfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
9761 struct dentry *dentry, const char *symname)
39279cc3 9762{
0b246afa 9763 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
9764 struct btrfs_trans_handle *trans;
9765 struct btrfs_root *root = BTRFS_I(dir)->root;
9766 struct btrfs_path *path;
9767 struct btrfs_key key;
a1fd0c35 9768 struct inode *inode;
3538d68d
OS
9769 struct btrfs_new_inode_args new_inode_args = {
9770 .dir = dir,
9771 .dentry = dentry,
9772 };
9773 unsigned int trans_num_items;
39279cc3 9774 int err;
39279cc3
CM
9775 int name_len;
9776 int datasize;
5f39d397 9777 unsigned long ptr;
39279cc3 9778 struct btrfs_file_extent_item *ei;
5f39d397 9779 struct extent_buffer *leaf;
39279cc3 9780
f06becc4 9781 name_len = strlen(symname);
0b246afa 9782 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 9783 return -ENAMETOOLONG;
1832a6d5 9784
a1fd0c35
OS
9785 inode = new_inode(dir->i_sb);
9786 if (!inode)
9787 return -ENOMEM;
9788 inode_init_owner(mnt_userns, inode, dir, S_IFLNK | S_IRWXUGO);
9789 inode->i_op = &btrfs_symlink_inode_operations;
9790 inode_nohighmem(inode);
9791 inode->i_mapping->a_ops = &btrfs_aops;
caae78e0
OS
9792 btrfs_i_size_write(BTRFS_I(inode), name_len);
9793 inode_set_bytes(inode, name_len);
a1fd0c35 9794
3538d68d
OS
9795 new_inode_args.inode = inode;
9796 err = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
caae78e0
OS
9797 if (err)
9798 goto out_inode;
3538d68d
OS
9799 /* 1 additional item for the inline extent */
9800 trans_num_items++;
9801
9802 trans = btrfs_start_transaction(root, trans_num_items);
a1fd0c35 9803 if (IS_ERR(trans)) {
3538d68d
OS
9804 err = PTR_ERR(trans);
9805 goto out_new_inode_args;
a1fd0c35 9806 }
1832a6d5 9807
caae78e0 9808 err = btrfs_create_new_inode(trans, &new_inode_args);
b0d5d10f 9809 if (err)
caae78e0 9810 goto out;
ad19db71 9811
39279cc3 9812 path = btrfs_alloc_path();
d8926bb3
MF
9813 if (!path) {
9814 err = -ENOMEM;
caae78e0
OS
9815 btrfs_abort_transaction(trans, err);
9816 discard_new_inode(inode);
9817 inode = NULL;
9818 goto out;
d8926bb3 9819 }
4a0cc7ca 9820 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 9821 key.offset = 0;
962a298f 9822 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9823 datasize = btrfs_file_extent_calc_inline_size(name_len);
9824 err = btrfs_insert_empty_item(trans, root, path, &key,
9825 datasize);
54aa1f4d 9826 if (err) {
caae78e0 9827 btrfs_abort_transaction(trans, err);
b0839166 9828 btrfs_free_path(path);
caae78e0
OS
9829 discard_new_inode(inode);
9830 inode = NULL;
9831 goto out;
54aa1f4d 9832 }
5f39d397
CM
9833 leaf = path->nodes[0];
9834 ei = btrfs_item_ptr(leaf, path->slots[0],
9835 struct btrfs_file_extent_item);
9836 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9837 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9838 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9839 btrfs_set_file_extent_encryption(leaf, ei, 0);
9840 btrfs_set_file_extent_compression(leaf, ei, 0);
9841 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9842 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9843
39279cc3 9844 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9845 write_extent_buffer(leaf, symname, ptr, name_len);
9846 btrfs_mark_buffer_dirty(leaf);
39279cc3 9847 btrfs_free_path(path);
5f39d397 9848
1e2e547a 9849 d_instantiate_new(dentry, inode);
caae78e0
OS
9850 err = 0;
9851out:
3a45bb20 9852 btrfs_end_transaction(trans);
2ff7e61e 9853 btrfs_btree_balance_dirty(fs_info);
3538d68d
OS
9854out_new_inode_args:
9855 btrfs_new_inode_args_destroy(&new_inode_args);
caae78e0
OS
9856out_inode:
9857 if (err)
9858 iput(inode);
39279cc3
CM
9859 return err;
9860}
16432985 9861
8fccebfa
FM
9862static struct btrfs_trans_handle *insert_prealloc_file_extent(
9863 struct btrfs_trans_handle *trans_in,
90dffd0c
NB
9864 struct btrfs_inode *inode,
9865 struct btrfs_key *ins,
203f44c5
QW
9866 u64 file_offset)
9867{
9868 struct btrfs_file_extent_item stack_fi;
bf385648 9869 struct btrfs_replace_extent_info extent_info;
8fccebfa
FM
9870 struct btrfs_trans_handle *trans = trans_in;
9871 struct btrfs_path *path;
203f44c5
QW
9872 u64 start = ins->objectid;
9873 u64 len = ins->offset;
fbf48bb0 9874 int qgroup_released;
9729f10a 9875 int ret;
203f44c5
QW
9876
9877 memset(&stack_fi, 0, sizeof(stack_fi));
9878
9879 btrfs_set_stack_file_extent_type(&stack_fi, BTRFS_FILE_EXTENT_PREALLOC);
9880 btrfs_set_stack_file_extent_disk_bytenr(&stack_fi, start);
9881 btrfs_set_stack_file_extent_disk_num_bytes(&stack_fi, len);
9882 btrfs_set_stack_file_extent_num_bytes(&stack_fi, len);
9883 btrfs_set_stack_file_extent_ram_bytes(&stack_fi, len);
9884 btrfs_set_stack_file_extent_compression(&stack_fi, BTRFS_COMPRESS_NONE);
9885 /* Encryption and other encoding is reserved and all 0 */
9886
fbf48bb0
QW
9887 qgroup_released = btrfs_qgroup_release_data(inode, file_offset, len);
9888 if (qgroup_released < 0)
9889 return ERR_PTR(qgroup_released);
8fccebfa
FM
9890
9891 if (trans) {
90dffd0c 9892 ret = insert_reserved_file_extent(trans, inode,
2766ff61 9893 file_offset, &stack_fi,
fbf48bb0 9894 true, qgroup_released);
8fccebfa 9895 if (ret)
a3ee79bd 9896 goto free_qgroup;
8fccebfa
FM
9897 return trans;
9898 }
9899
9900 extent_info.disk_offset = start;
9901 extent_info.disk_len = len;
9902 extent_info.data_offset = 0;
9903 extent_info.data_len = len;
9904 extent_info.file_offset = file_offset;
9905 extent_info.extent_buf = (char *)&stack_fi;
8fccebfa 9906 extent_info.is_new_extent = true;
983d8209 9907 extent_info.update_times = true;
fbf48bb0 9908 extent_info.qgroup_reserved = qgroup_released;
8fccebfa
FM
9909 extent_info.insertions = 0;
9910
9911 path = btrfs_alloc_path();
a3ee79bd
QW
9912 if (!path) {
9913 ret = -ENOMEM;
9914 goto free_qgroup;
9915 }
8fccebfa 9916
bfc78479 9917 ret = btrfs_replace_file_extents(inode, path, file_offset,
8fccebfa
FM
9918 file_offset + len - 1, &extent_info,
9919 &trans);
9920 btrfs_free_path(path);
9921 if (ret)
a3ee79bd 9922 goto free_qgroup;
8fccebfa 9923 return trans;
a3ee79bd
QW
9924
9925free_qgroup:
9926 /*
9927 * We have released qgroup data range at the beginning of the function,
9928 * and normally qgroup_released bytes will be freed when committing
9929 * transaction.
9930 * But if we error out early, we have to free what we have released
9931 * or we leak qgroup data reservation.
9932 */
9933 btrfs_qgroup_free_refroot(inode->root->fs_info,
9934 inode->root->root_key.objectid, qgroup_released,
9935 BTRFS_QGROUP_RSV_DATA);
9936 return ERR_PTR(ret);
203f44c5 9937}
8fccebfa 9938
0af3d00b
JB
9939static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9940 u64 start, u64 num_bytes, u64 min_size,
9941 loff_t actual_len, u64 *alloc_hint,
9942 struct btrfs_trans_handle *trans)
d899e052 9943{
0b246afa 9944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5 9945 struct extent_map *em;
d899e052
YZ
9946 struct btrfs_root *root = BTRFS_I(inode)->root;
9947 struct btrfs_key ins;
d899e052 9948 u64 cur_offset = start;
b778cf96 9949 u64 clear_offset = start;
55a61d1d 9950 u64 i_size;
154ea289 9951 u64 cur_bytes;
0b670dc4 9952 u64 last_alloc = (u64)-1;
d899e052 9953 int ret = 0;
0af3d00b 9954 bool own_trans = true;
18513091 9955 u64 end = start + num_bytes - 1;
d899e052 9956
0af3d00b
JB
9957 if (trans)
9958 own_trans = false;
d899e052 9959 while (num_bytes > 0) {
ee22184b 9960 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 9961 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9962 /*
9963 * If we are severely fragmented we could end up with really
9964 * small allocations, so if the allocator is returning small
9965 * chunks lets make its job easier by only searching for those
9966 * sized chunks.
9967 */
9968 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
9969 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9970 min_size, 0, *alloc_hint, &ins, 1, 0);
8fccebfa 9971 if (ret)
a22285a6 9972 break;
b778cf96
JB
9973
9974 /*
9975 * We've reserved this space, and thus converted it from
9976 * ->bytes_may_use to ->bytes_reserved. Any error that happens
9977 * from here on out we will only need to clear our reservation
9978 * for the remaining unreserved area, so advance our
9979 * clear_offset by our extent size.
9980 */
9981 clear_offset += ins.offset;
5a303d5d 9982
0b670dc4 9983 last_alloc = ins.offset;
90dffd0c
NB
9984 trans = insert_prealloc_file_extent(trans, BTRFS_I(inode),
9985 &ins, cur_offset);
1afc708d
FM
9986 /*
9987 * Now that we inserted the prealloc extent we can finally
9988 * decrement the number of reservations in the block group.
9989 * If we did it before, we could race with relocation and have
9990 * relocation miss the reserved extent, making it fail later.
9991 */
9992 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
8fccebfa
FM
9993 if (IS_ERR(trans)) {
9994 ret = PTR_ERR(trans);
2ff7e61e 9995 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 9996 ins.offset, 0);
79787eaa
JM
9997 break;
9998 }
31193213 9999
5dc562c5
JB
10000 em = alloc_extent_map();
10001 if (!em) {
a1ba4c08
FM
10002 btrfs_drop_extent_map_range(BTRFS_I(inode), cur_offset,
10003 cur_offset + ins.offset - 1, false);
23e3337f 10004 btrfs_set_inode_full_sync(BTRFS_I(inode));
5dc562c5
JB
10005 goto next;
10006 }
10007
10008 em->start = cur_offset;
10009 em->orig_start = cur_offset;
10010 em->len = ins.offset;
10011 em->block_start = ins.objectid;
10012 em->block_len = ins.offset;
b4939680 10013 em->orig_block_len = ins.offset;
cc95bef6 10014 em->ram_bytes = ins.offset;
5dc562c5
JB
10015 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10016 em->generation = trans->transid;
10017
a1ba4c08 10018 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, true);
5dc562c5
JB
10019 free_extent_map(em);
10020next:
d899e052
YZ
10021 num_bytes -= ins.offset;
10022 cur_offset += ins.offset;
efa56464 10023 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10024
0c4d2d95 10025 inode_inc_iversion(inode);
c2050a45 10026 inode->i_ctime = current_time(inode);
6cbff00f 10027 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10028 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10029 (actual_len > inode->i_size) &&
10030 (cur_offset > inode->i_size)) {
d1ea6a61 10031 if (cur_offset > actual_len)
55a61d1d 10032 i_size = actual_len;
d1ea6a61 10033 else
55a61d1d
JB
10034 i_size = cur_offset;
10035 i_size_write(inode, i_size);
76aea537 10036 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
5a303d5d
YZ
10037 }
10038
9a56fcd1 10039 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
79787eaa
JM
10040
10041 if (ret) {
66642832 10042 btrfs_abort_transaction(trans, ret);
79787eaa 10043 if (own_trans)
3a45bb20 10044 btrfs_end_transaction(trans);
79787eaa
JM
10045 break;
10046 }
d899e052 10047
8fccebfa 10048 if (own_trans) {
3a45bb20 10049 btrfs_end_transaction(trans);
8fccebfa
FM
10050 trans = NULL;
10051 }
5a303d5d 10052 }
b778cf96 10053 if (clear_offset < end)
25ce28ca 10054 btrfs_free_reserved_data_space(BTRFS_I(inode), NULL, clear_offset,
b778cf96 10055 end - clear_offset + 1);
d899e052
YZ
10056 return ret;
10057}
10058
0af3d00b
JB
10059int btrfs_prealloc_file_range(struct inode *inode, int mode,
10060 u64 start, u64 num_bytes, u64 min_size,
10061 loff_t actual_len, u64 *alloc_hint)
10062{
10063 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10064 min_size, actual_len, alloc_hint,
10065 NULL);
10066}
10067
10068int btrfs_prealloc_file_range_trans(struct inode *inode,
10069 struct btrfs_trans_handle *trans, int mode,
10070 u64 start, u64 num_bytes, u64 min_size,
10071 loff_t actual_len, u64 *alloc_hint)
10072{
10073 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10074 min_size, actual_len, alloc_hint, trans);
10075}
10076
549c7297
CB
10077static int btrfs_permission(struct user_namespace *mnt_userns,
10078 struct inode *inode, int mask)
fdebe2bd 10079{
b83cc969 10080 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10081 umode_t mode = inode->i_mode;
b83cc969 10082
cb6db4e5
JM
10083 if (mask & MAY_WRITE &&
10084 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10085 if (btrfs_root_readonly(root))
10086 return -EROFS;
10087 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10088 return -EACCES;
10089 }
3bc71ba0 10090 return generic_permission(mnt_userns, inode, mask);
fdebe2bd 10091}
39279cc3 10092
549c7297 10093static int btrfs_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
863f144f 10094 struct file *file, umode_t mode)
ef3b9af5 10095{
2ff7e61e 10096 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10097 struct btrfs_trans_handle *trans;
10098 struct btrfs_root *root = BTRFS_I(dir)->root;
a1fd0c35 10099 struct inode *inode;
3538d68d
OS
10100 struct btrfs_new_inode_args new_inode_args = {
10101 .dir = dir,
863f144f 10102 .dentry = file->f_path.dentry,
3538d68d
OS
10103 .orphan = true,
10104 };
10105 unsigned int trans_num_items;
a1fd0c35
OS
10106 int ret;
10107
10108 inode = new_inode(dir->i_sb);
10109 if (!inode)
10110 return -ENOMEM;
10111 inode_init_owner(mnt_userns, inode, dir, mode);
10112 inode->i_fop = &btrfs_file_operations;
10113 inode->i_op = &btrfs_file_inode_operations;
10114 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5 10115
3538d68d
OS
10116 new_inode_args.inode = inode;
10117 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
caae78e0
OS
10118 if (ret)
10119 goto out_inode;
3538d68d
OS
10120
10121 trans = btrfs_start_transaction(root, trans_num_items);
a1fd0c35 10122 if (IS_ERR(trans)) {
3538d68d
OS
10123 ret = PTR_ERR(trans);
10124 goto out_new_inode_args;
a1fd0c35 10125 }
ef3b9af5 10126
caae78e0 10127 ret = btrfs_create_new_inode(trans, &new_inode_args);
ef3b9af5 10128
5762b5c9 10129 /*
3538d68d
OS
10130 * We set number of links to 0 in btrfs_create_new_inode(), and here we
10131 * set it to 1 because d_tmpfile() will issue a warning if the count is
10132 * 0, through:
5762b5c9
FM
10133 *
10134 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10135 */
10136 set_nlink(inode, 1);
caae78e0
OS
10137
10138 if (!ret) {
863f144f 10139 d_tmpfile(file, inode);
caae78e0
OS
10140 unlock_new_inode(inode);
10141 mark_inode_dirty(inode);
10142 }
10143
3a45bb20 10144 btrfs_end_transaction(trans);
2ff7e61e 10145 btrfs_btree_balance_dirty(fs_info);
3538d68d
OS
10146out_new_inode_args:
10147 btrfs_new_inode_args_destroy(&new_inode_args);
caae78e0
OS
10148out_inode:
10149 if (ret)
10150 iput(inode);
863f144f 10151 return finish_open_simple(file, ret);
ef3b9af5
FM
10152}
10153
d2a91064 10154void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end)
c6100a4b 10155{
d2a91064 10156 struct btrfs_fs_info *fs_info = inode->root->fs_info;
c6100a4b
JB
10157 unsigned long index = start >> PAGE_SHIFT;
10158 unsigned long end_index = end >> PAGE_SHIFT;
10159 struct page *page;
d2a91064 10160 u32 len;
c6100a4b 10161
d2a91064
QW
10162 ASSERT(end + 1 - start <= U32_MAX);
10163 len = end + 1 - start;
c6100a4b 10164 while (index <= end_index) {
d2a91064 10165 page = find_get_page(inode->vfs_inode.i_mapping, index);
c6100a4b 10166 ASSERT(page); /* Pages should be in the extent_io_tree */
d2a91064
QW
10167
10168 btrfs_page_set_writeback(fs_info, page, start, len);
c6100a4b
JB
10169 put_page(page);
10170 index++;
10171 }
10172}
10173
3ea4dc5b
OS
10174int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
10175 int compress_type)
1881fba8
OS
10176{
10177 switch (compress_type) {
10178 case BTRFS_COMPRESS_NONE:
10179 return BTRFS_ENCODED_IO_COMPRESSION_NONE;
10180 case BTRFS_COMPRESS_ZLIB:
10181 return BTRFS_ENCODED_IO_COMPRESSION_ZLIB;
10182 case BTRFS_COMPRESS_LZO:
10183 /*
10184 * The LZO format depends on the sector size. 64K is the maximum
10185 * sector size that we support.
10186 */
10187 if (fs_info->sectorsize < SZ_4K || fs_info->sectorsize > SZ_64K)
10188 return -EINVAL;
10189 return BTRFS_ENCODED_IO_COMPRESSION_LZO_4K +
10190 (fs_info->sectorsize_bits - 12);
10191 case BTRFS_COMPRESS_ZSTD:
10192 return BTRFS_ENCODED_IO_COMPRESSION_ZSTD;
10193 default:
10194 return -EUCLEAN;
10195 }
10196}
10197
10198static ssize_t btrfs_encoded_read_inline(
10199 struct kiocb *iocb,
10200 struct iov_iter *iter, u64 start,
10201 u64 lockend,
10202 struct extent_state **cached_state,
10203 u64 extent_start, size_t count,
10204 struct btrfs_ioctl_encoded_io_args *encoded,
10205 bool *unlocked)
10206{
10207 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10208 struct btrfs_root *root = inode->root;
10209 struct btrfs_fs_info *fs_info = root->fs_info;
10210 struct extent_io_tree *io_tree = &inode->io_tree;
10211 struct btrfs_path *path;
10212 struct extent_buffer *leaf;
10213 struct btrfs_file_extent_item *item;
10214 u64 ram_bytes;
10215 unsigned long ptr;
10216 void *tmp;
10217 ssize_t ret;
10218
10219 path = btrfs_alloc_path();
10220 if (!path) {
10221 ret = -ENOMEM;
10222 goto out;
10223 }
10224 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
10225 extent_start, 0);
10226 if (ret) {
10227 if (ret > 0) {
10228 /* The extent item disappeared? */
10229 ret = -EIO;
10230 }
10231 goto out;
10232 }
10233 leaf = path->nodes[0];
10234 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
10235
10236 ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
10237 ptr = btrfs_file_extent_inline_start(item);
10238
10239 encoded->len = min_t(u64, extent_start + ram_bytes,
10240 inode->vfs_inode.i_size) - iocb->ki_pos;
10241 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10242 btrfs_file_extent_compression(leaf, item));
10243 if (ret < 0)
10244 goto out;
10245 encoded->compression = ret;
10246 if (encoded->compression) {
10247 size_t inline_size;
10248
10249 inline_size = btrfs_file_extent_inline_item_len(leaf,
10250 path->slots[0]);
10251 if (inline_size > count) {
10252 ret = -ENOBUFS;
10253 goto out;
10254 }
10255 count = inline_size;
10256 encoded->unencoded_len = ram_bytes;
10257 encoded->unencoded_offset = iocb->ki_pos - extent_start;
10258 } else {
10259 count = min_t(u64, count, encoded->len);
10260 encoded->len = count;
10261 encoded->unencoded_len = count;
10262 ptr += iocb->ki_pos - extent_start;
10263 }
10264
10265 tmp = kmalloc(count, GFP_NOFS);
10266 if (!tmp) {
10267 ret = -ENOMEM;
10268 goto out;
10269 }
10270 read_extent_buffer(leaf, tmp, ptr, count);
10271 btrfs_release_path(path);
570eb97b 10272 unlock_extent(io_tree, start, lockend, cached_state);
1881fba8
OS
10273 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10274 *unlocked = true;
10275
10276 ret = copy_to_iter(tmp, count, iter);
10277 if (ret != count)
10278 ret = -EFAULT;
10279 kfree(tmp);
10280out:
10281 btrfs_free_path(path);
10282 return ret;
10283}
10284
10285struct btrfs_encoded_read_private {
10286 struct btrfs_inode *inode;
10287 u64 file_offset;
10288 wait_queue_head_t wait;
10289 atomic_t pending;
10290 blk_status_t status;
10291 bool skip_csum;
10292};
10293
10294static blk_status_t submit_encoded_read_bio(struct btrfs_inode *inode,
10295 struct bio *bio, int mirror_num)
10296{
917f32a2 10297 struct btrfs_encoded_read_private *priv = btrfs_bio(bio)->private;
1881fba8
OS
10298 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10299 blk_status_t ret;
10300
10301 if (!priv->skip_csum) {
10302 ret = btrfs_lookup_bio_sums(&inode->vfs_inode, bio, NULL);
10303 if (ret)
10304 return ret;
10305 }
10306
1881fba8 10307 atomic_inc(&priv->pending);
1a722d8f
CH
10308 btrfs_submit_bio(fs_info, bio, mirror_num);
10309 return BLK_STS_OK;
1881fba8
OS
10310}
10311
10312static blk_status_t btrfs_encoded_read_verify_csum(struct btrfs_bio *bbio)
10313{
10314 const bool uptodate = (bbio->bio.bi_status == BLK_STS_OK);
917f32a2 10315 struct btrfs_encoded_read_private *priv = bbio->private;
1881fba8
OS
10316 struct btrfs_inode *inode = priv->inode;
10317 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10318 u32 sectorsize = fs_info->sectorsize;
10319 struct bio_vec *bvec;
10320 struct bvec_iter_all iter_all;
1881fba8
OS
10321 u32 bio_offset = 0;
10322
10323 if (priv->skip_csum || !uptodate)
10324 return bbio->bio.bi_status;
10325
10326 bio_for_each_segment_all(bvec, &bbio->bio, iter_all) {
10327 unsigned int i, nr_sectors, pgoff;
10328
10329 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
10330 pgoff = bvec->bv_offset;
10331 for (i = 0; i < nr_sectors; i++) {
10332 ASSERT(pgoff < PAGE_SIZE);
7959bd44
CH
10333 if (btrfs_check_data_csum(&inode->vfs_inode, bbio, bio_offset,
10334 bvec->bv_page, pgoff))
1881fba8 10335 return BLK_STS_IOERR;
1881fba8
OS
10336 bio_offset += sectorsize;
10337 pgoff += sectorsize;
10338 }
10339 }
10340 return BLK_STS_OK;
10341}
10342
917f32a2 10343static void btrfs_encoded_read_endio(struct btrfs_bio *bbio)
1881fba8 10344{
917f32a2 10345 struct btrfs_encoded_read_private *priv = bbio->private;
1881fba8
OS
10346 blk_status_t status;
10347
10348 status = btrfs_encoded_read_verify_csum(bbio);
10349 if (status) {
10350 /*
10351 * The memory barrier implied by the atomic_dec_return() here
10352 * pairs with the memory barrier implied by the
10353 * atomic_dec_return() or io_wait_event() in
10354 * btrfs_encoded_read_regular_fill_pages() to ensure that this
10355 * write is observed before the load of status in
10356 * btrfs_encoded_read_regular_fill_pages().
10357 */
10358 WRITE_ONCE(priv->status, status);
10359 }
10360 if (!atomic_dec_return(&priv->pending))
10361 wake_up(&priv->wait);
10362 btrfs_bio_free_csum(bbio);
917f32a2 10363 bio_put(&bbio->bio);
1881fba8
OS
10364}
10365
3ea4dc5b
OS
10366int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
10367 u64 file_offset, u64 disk_bytenr,
10368 u64 disk_io_size, struct page **pages)
1881fba8
OS
10369{
10370 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10371 struct btrfs_encoded_read_private priv = {
10372 .inode = inode,
10373 .file_offset = file_offset,
10374 .pending = ATOMIC_INIT(1),
10375 .skip_csum = (inode->flags & BTRFS_INODE_NODATASUM),
10376 };
10377 unsigned long i = 0;
10378 u64 cur = 0;
10379 int ret;
10380
10381 init_waitqueue_head(&priv.wait);
10382 /*
10383 * Submit bios for the extent, splitting due to bio or stripe limits as
10384 * necessary.
10385 */
10386 while (cur < disk_io_size) {
10387 struct extent_map *em;
10388 struct btrfs_io_geometry geom;
10389 struct bio *bio = NULL;
10390 u64 remaining;
10391
10392 em = btrfs_get_chunk_map(fs_info, disk_bytenr + cur,
10393 disk_io_size - cur);
10394 if (IS_ERR(em)) {
10395 ret = PTR_ERR(em);
10396 } else {
10397 ret = btrfs_get_io_geometry(fs_info, em, BTRFS_MAP_READ,
10398 disk_bytenr + cur, &geom);
10399 free_extent_map(em);
10400 }
10401 if (ret) {
10402 WRITE_ONCE(priv.status, errno_to_blk_status(ret));
10403 break;
10404 }
10405 remaining = min(geom.len, disk_io_size - cur);
10406 while (bio || remaining) {
10407 size_t bytes = min_t(u64, remaining, PAGE_SIZE);
10408
10409 if (!bio) {
917f32a2
CH
10410 bio = btrfs_bio_alloc(BIO_MAX_VECS, REQ_OP_READ,
10411 btrfs_encoded_read_endio,
10412 &priv);
1881fba8
OS
10413 bio->bi_iter.bi_sector =
10414 (disk_bytenr + cur) >> SECTOR_SHIFT;
1881fba8
OS
10415 }
10416
10417 if (!bytes ||
10418 bio_add_page(bio, pages[i], bytes, 0) < bytes) {
10419 blk_status_t status;
10420
10421 status = submit_encoded_read_bio(inode, bio, 0);
10422 if (status) {
10423 WRITE_ONCE(priv.status, status);
10424 bio_put(bio);
10425 goto out;
10426 }
10427 bio = NULL;
10428 continue;
10429 }
10430
10431 i++;
10432 cur += bytes;
10433 remaining -= bytes;
10434 }
10435 }
10436
10437out:
10438 if (atomic_dec_return(&priv.pending))
10439 io_wait_event(priv.wait, !atomic_read(&priv.pending));
10440 /* See btrfs_encoded_read_endio() for ordering. */
10441 return blk_status_to_errno(READ_ONCE(priv.status));
10442}
10443
10444static ssize_t btrfs_encoded_read_regular(struct kiocb *iocb,
10445 struct iov_iter *iter,
10446 u64 start, u64 lockend,
10447 struct extent_state **cached_state,
10448 u64 disk_bytenr, u64 disk_io_size,
10449 size_t count, bool compressed,
10450 bool *unlocked)
10451{
10452 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10453 struct extent_io_tree *io_tree = &inode->io_tree;
10454 struct page **pages;
10455 unsigned long nr_pages, i;
10456 u64 cur;
10457 size_t page_offset;
10458 ssize_t ret;
10459
10460 nr_pages = DIV_ROUND_UP(disk_io_size, PAGE_SIZE);
10461 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
10462 if (!pages)
10463 return -ENOMEM;
dd137dd1
STD
10464 ret = btrfs_alloc_page_array(nr_pages, pages);
10465 if (ret) {
10466 ret = -ENOMEM;
10467 goto out;
1881fba8 10468 }
1881fba8
OS
10469
10470 ret = btrfs_encoded_read_regular_fill_pages(inode, start, disk_bytenr,
10471 disk_io_size, pages);
10472 if (ret)
10473 goto out;
10474
570eb97b 10475 unlock_extent(io_tree, start, lockend, cached_state);
1881fba8
OS
10476 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10477 *unlocked = true;
10478
10479 if (compressed) {
10480 i = 0;
10481 page_offset = 0;
10482 } else {
10483 i = (iocb->ki_pos - start) >> PAGE_SHIFT;
10484 page_offset = (iocb->ki_pos - start) & (PAGE_SIZE - 1);
10485 }
10486 cur = 0;
10487 while (cur < count) {
10488 size_t bytes = min_t(size_t, count - cur,
10489 PAGE_SIZE - page_offset);
10490
10491 if (copy_page_to_iter(pages[i], page_offset, bytes,
10492 iter) != bytes) {
10493 ret = -EFAULT;
10494 goto out;
10495 }
10496 i++;
10497 cur += bytes;
10498 page_offset = 0;
10499 }
10500 ret = count;
10501out:
10502 for (i = 0; i < nr_pages; i++) {
10503 if (pages[i])
10504 __free_page(pages[i]);
10505 }
10506 kfree(pages);
10507 return ret;
10508}
10509
10510ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
10511 struct btrfs_ioctl_encoded_io_args *encoded)
10512{
10513 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10514 struct btrfs_fs_info *fs_info = inode->root->fs_info;
10515 struct extent_io_tree *io_tree = &inode->io_tree;
10516 ssize_t ret;
10517 size_t count = iov_iter_count(iter);
10518 u64 start, lockend, disk_bytenr, disk_io_size;
10519 struct extent_state *cached_state = NULL;
10520 struct extent_map *em;
10521 bool unlocked = false;
10522
10523 file_accessed(iocb->ki_filp);
10524
10525 btrfs_inode_lock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10526
10527 if (iocb->ki_pos >= inode->vfs_inode.i_size) {
10528 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10529 return 0;
10530 }
10531 start = ALIGN_DOWN(iocb->ki_pos, fs_info->sectorsize);
10532 /*
10533 * We don't know how long the extent containing iocb->ki_pos is, but if
10534 * it's compressed we know that it won't be longer than this.
10535 */
10536 lockend = start + BTRFS_MAX_UNCOMPRESSED - 1;
10537
10538 for (;;) {
10539 struct btrfs_ordered_extent *ordered;
10540
10541 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start,
10542 lockend - start + 1);
10543 if (ret)
10544 goto out_unlock_inode;
570eb97b 10545 lock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10546 ordered = btrfs_lookup_ordered_range(inode, start,
10547 lockend - start + 1);
10548 if (!ordered)
10549 break;
10550 btrfs_put_ordered_extent(ordered);
570eb97b 10551 unlock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10552 cond_resched();
10553 }
10554
10555 em = btrfs_get_extent(inode, NULL, 0, start, lockend - start + 1);
10556 if (IS_ERR(em)) {
10557 ret = PTR_ERR(em);
10558 goto out_unlock_extent;
10559 }
10560
10561 if (em->block_start == EXTENT_MAP_INLINE) {
10562 u64 extent_start = em->start;
10563
10564 /*
10565 * For inline extents we get everything we need out of the
10566 * extent item.
10567 */
10568 free_extent_map(em);
10569 em = NULL;
10570 ret = btrfs_encoded_read_inline(iocb, iter, start, lockend,
10571 &cached_state, extent_start,
10572 count, encoded, &unlocked);
10573 goto out;
10574 }
10575
10576 /*
10577 * We only want to return up to EOF even if the extent extends beyond
10578 * that.
10579 */
10580 encoded->len = min_t(u64, extent_map_end(em),
10581 inode->vfs_inode.i_size) - iocb->ki_pos;
10582 if (em->block_start == EXTENT_MAP_HOLE ||
10583 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
10584 disk_bytenr = EXTENT_MAP_HOLE;
10585 count = min_t(u64, count, encoded->len);
10586 encoded->len = count;
10587 encoded->unencoded_len = count;
10588 } else if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10589 disk_bytenr = em->block_start;
10590 /*
10591 * Bail if the buffer isn't large enough to return the whole
10592 * compressed extent.
10593 */
10594 if (em->block_len > count) {
10595 ret = -ENOBUFS;
10596 goto out_em;
10597 }
c1867eb3
DS
10598 disk_io_size = em->block_len;
10599 count = em->block_len;
1881fba8
OS
10600 encoded->unencoded_len = em->ram_bytes;
10601 encoded->unencoded_offset = iocb->ki_pos - em->orig_start;
10602 ret = btrfs_encoded_io_compression_from_extent(fs_info,
10603 em->compress_type);
10604 if (ret < 0)
10605 goto out_em;
10606 encoded->compression = ret;
10607 } else {
10608 disk_bytenr = em->block_start + (start - em->start);
10609 if (encoded->len > count)
10610 encoded->len = count;
10611 /*
10612 * Don't read beyond what we locked. This also limits the page
10613 * allocations that we'll do.
10614 */
10615 disk_io_size = min(lockend + 1, iocb->ki_pos + encoded->len) - start;
10616 count = start + disk_io_size - iocb->ki_pos;
10617 encoded->len = count;
10618 encoded->unencoded_len = count;
10619 disk_io_size = ALIGN(disk_io_size, fs_info->sectorsize);
10620 }
10621 free_extent_map(em);
10622 em = NULL;
10623
10624 if (disk_bytenr == EXTENT_MAP_HOLE) {
570eb97b 10625 unlock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10626 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10627 unlocked = true;
10628 ret = iov_iter_zero(count, iter);
10629 if (ret != count)
10630 ret = -EFAULT;
10631 } else {
10632 ret = btrfs_encoded_read_regular(iocb, iter, start, lockend,
10633 &cached_state, disk_bytenr,
10634 disk_io_size, count,
10635 encoded->compression,
10636 &unlocked);
10637 }
10638
10639out:
10640 if (ret >= 0)
10641 iocb->ki_pos += encoded->len;
10642out_em:
10643 free_extent_map(em);
10644out_unlock_extent:
10645 if (!unlocked)
570eb97b 10646 unlock_extent(io_tree, start, lockend, &cached_state);
1881fba8
OS
10647out_unlock_inode:
10648 if (!unlocked)
10649 btrfs_inode_unlock(&inode->vfs_inode, BTRFS_ILOCK_SHARED);
10650 return ret;
10651}
10652
7c0c7269
OS
10653ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
10654 const struct btrfs_ioctl_encoded_io_args *encoded)
10655{
10656 struct btrfs_inode *inode = BTRFS_I(file_inode(iocb->ki_filp));
10657 struct btrfs_root *root = inode->root;
10658 struct btrfs_fs_info *fs_info = root->fs_info;
10659 struct extent_io_tree *io_tree = &inode->io_tree;
10660 struct extent_changeset *data_reserved = NULL;
10661 struct extent_state *cached_state = NULL;
10662 int compression;
10663 size_t orig_count;
10664 u64 start, end;
10665 u64 num_bytes, ram_bytes, disk_num_bytes;
10666 unsigned long nr_pages, i;
10667 struct page **pages;
10668 struct btrfs_key ins;
10669 bool extent_reserved = false;
10670 struct extent_map *em;
10671 ssize_t ret;
10672
10673 switch (encoded->compression) {
10674 case BTRFS_ENCODED_IO_COMPRESSION_ZLIB:
10675 compression = BTRFS_COMPRESS_ZLIB;
10676 break;
10677 case BTRFS_ENCODED_IO_COMPRESSION_ZSTD:
10678 compression = BTRFS_COMPRESS_ZSTD;
10679 break;
10680 case BTRFS_ENCODED_IO_COMPRESSION_LZO_4K:
10681 case BTRFS_ENCODED_IO_COMPRESSION_LZO_8K:
10682 case BTRFS_ENCODED_IO_COMPRESSION_LZO_16K:
10683 case BTRFS_ENCODED_IO_COMPRESSION_LZO_32K:
10684 case BTRFS_ENCODED_IO_COMPRESSION_LZO_64K:
10685 /* The sector size must match for LZO. */
10686 if (encoded->compression -
10687 BTRFS_ENCODED_IO_COMPRESSION_LZO_4K + 12 !=
10688 fs_info->sectorsize_bits)
10689 return -EINVAL;
10690 compression = BTRFS_COMPRESS_LZO;
10691 break;
10692 default:
10693 return -EINVAL;
10694 }
10695 if (encoded->encryption != BTRFS_ENCODED_IO_ENCRYPTION_NONE)
10696 return -EINVAL;
10697
10698 orig_count = iov_iter_count(from);
10699
10700 /* The extent size must be sane. */
10701 if (encoded->unencoded_len > BTRFS_MAX_UNCOMPRESSED ||
10702 orig_count > BTRFS_MAX_COMPRESSED || orig_count == 0)
10703 return -EINVAL;
10704
10705 /*
10706 * The compressed data must be smaller than the decompressed data.
10707 *
10708 * It's of course possible for data to compress to larger or the same
10709 * size, but the buffered I/O path falls back to no compression for such
10710 * data, and we don't want to break any assumptions by creating these
10711 * extents.
10712 *
10713 * Note that this is less strict than the current check we have that the
10714 * compressed data must be at least one sector smaller than the
10715 * decompressed data. We only want to enforce the weaker requirement
10716 * from old kernels that it is at least one byte smaller.
10717 */
10718 if (orig_count >= encoded->unencoded_len)
10719 return -EINVAL;
10720
10721 /* The extent must start on a sector boundary. */
10722 start = iocb->ki_pos;
10723 if (!IS_ALIGNED(start, fs_info->sectorsize))
10724 return -EINVAL;
10725
10726 /*
10727 * The extent must end on a sector boundary. However, we allow a write
10728 * which ends at or extends i_size to have an unaligned length; we round
10729 * up the extent size and set i_size to the unaligned end.
10730 */
10731 if (start + encoded->len < inode->vfs_inode.i_size &&
10732 !IS_ALIGNED(start + encoded->len, fs_info->sectorsize))
10733 return -EINVAL;
10734
10735 /* Finally, the offset in the unencoded data must be sector-aligned. */
10736 if (!IS_ALIGNED(encoded->unencoded_offset, fs_info->sectorsize))
10737 return -EINVAL;
10738
10739 num_bytes = ALIGN(encoded->len, fs_info->sectorsize);
10740 ram_bytes = ALIGN(encoded->unencoded_len, fs_info->sectorsize);
10741 end = start + num_bytes - 1;
10742
10743 /*
10744 * If the extent cannot be inline, the compressed data on disk must be
10745 * sector-aligned. For convenience, we extend it with zeroes if it
10746 * isn't.
10747 */
10748 disk_num_bytes = ALIGN(orig_count, fs_info->sectorsize);
10749 nr_pages = DIV_ROUND_UP(disk_num_bytes, PAGE_SIZE);
10750 pages = kvcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL_ACCOUNT);
10751 if (!pages)
10752 return -ENOMEM;
10753 for (i = 0; i < nr_pages; i++) {
10754 size_t bytes = min_t(size_t, PAGE_SIZE, iov_iter_count(from));
10755 char *kaddr;
10756
10757 pages[i] = alloc_page(GFP_KERNEL_ACCOUNT);
10758 if (!pages[i]) {
10759 ret = -ENOMEM;
10760 goto out_pages;
10761 }
70826b6b 10762 kaddr = kmap_local_page(pages[i]);
7c0c7269 10763 if (copy_from_iter(kaddr, bytes, from) != bytes) {
70826b6b 10764 kunmap_local(kaddr);
7c0c7269
OS
10765 ret = -EFAULT;
10766 goto out_pages;
10767 }
10768 if (bytes < PAGE_SIZE)
10769 memset(kaddr + bytes, 0, PAGE_SIZE - bytes);
70826b6b 10770 kunmap_local(kaddr);
7c0c7269
OS
10771 }
10772
10773 for (;;) {
10774 struct btrfs_ordered_extent *ordered;
10775
10776 ret = btrfs_wait_ordered_range(&inode->vfs_inode, start, num_bytes);
10777 if (ret)
10778 goto out_pages;
10779 ret = invalidate_inode_pages2_range(inode->vfs_inode.i_mapping,
10780 start >> PAGE_SHIFT,
10781 end >> PAGE_SHIFT);
10782 if (ret)
10783 goto out_pages;
570eb97b 10784 lock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10785 ordered = btrfs_lookup_ordered_range(inode, start, num_bytes);
10786 if (!ordered &&
10787 !filemap_range_has_page(inode->vfs_inode.i_mapping, start, end))
10788 break;
10789 if (ordered)
10790 btrfs_put_ordered_extent(ordered);
570eb97b 10791 unlock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10792 cond_resched();
10793 }
10794
10795 /*
10796 * We don't use the higher-level delalloc space functions because our
10797 * num_bytes and disk_num_bytes are different.
10798 */
10799 ret = btrfs_alloc_data_chunk_ondemand(inode, disk_num_bytes);
10800 if (ret)
10801 goto out_unlock;
10802 ret = btrfs_qgroup_reserve_data(inode, &data_reserved, start, num_bytes);
10803 if (ret)
10804 goto out_free_data_space;
d4135134
FM
10805 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes, disk_num_bytes,
10806 false);
7c0c7269
OS
10807 if (ret)
10808 goto out_qgroup_free_data;
10809
10810 /* Try an inline extent first. */
10811 if (start == 0 && encoded->unencoded_len == encoded->len &&
10812 encoded->unencoded_offset == 0) {
10813 ret = cow_file_range_inline(inode, encoded->len, orig_count,
10814 compression, pages, true);
10815 if (ret <= 0) {
10816 if (ret == 0)
10817 ret = orig_count;
10818 goto out_delalloc_release;
10819 }
10820 }
10821
10822 ret = btrfs_reserve_extent(root, disk_num_bytes, disk_num_bytes,
10823 disk_num_bytes, 0, 0, &ins, 1, 1);
10824 if (ret)
10825 goto out_delalloc_release;
10826 extent_reserved = true;
10827
10828 em = create_io_em(inode, start, num_bytes,
10829 start - encoded->unencoded_offset, ins.objectid,
10830 ins.offset, ins.offset, ram_bytes, compression,
10831 BTRFS_ORDERED_COMPRESSED);
10832 if (IS_ERR(em)) {
10833 ret = PTR_ERR(em);
10834 goto out_free_reserved;
10835 }
10836 free_extent_map(em);
10837
10838 ret = btrfs_add_ordered_extent(inode, start, num_bytes, ram_bytes,
10839 ins.objectid, ins.offset,
10840 encoded->unencoded_offset,
10841 (1 << BTRFS_ORDERED_ENCODED) |
10842 (1 << BTRFS_ORDERED_COMPRESSED),
10843 compression);
10844 if (ret) {
4c0c8cfc 10845 btrfs_drop_extent_map_range(inode, start, end, false);
7c0c7269
OS
10846 goto out_free_reserved;
10847 }
10848 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10849
10850 if (start + encoded->len > inode->vfs_inode.i_size)
10851 i_size_write(&inode->vfs_inode, start + encoded->len);
10852
570eb97b 10853 unlock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10854
10855 btrfs_delalloc_release_extents(inode, num_bytes);
10856
10857 if (btrfs_submit_compressed_write(inode, start, num_bytes, ins.objectid,
10858 ins.offset, pages, nr_pages, 0, NULL,
10859 false)) {
10860 btrfs_writepage_endio_finish_ordered(inode, pages[0], start, end, 0);
10861 ret = -EIO;
10862 goto out_pages;
10863 }
10864 ret = orig_count;
10865 goto out;
10866
10867out_free_reserved:
10868 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
10869 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
10870out_delalloc_release:
10871 btrfs_delalloc_release_extents(inode, num_bytes);
10872 btrfs_delalloc_release_metadata(inode, disk_num_bytes, ret < 0);
10873out_qgroup_free_data:
10874 if (ret < 0)
10875 btrfs_qgroup_free_data(inode, data_reserved, start, num_bytes);
10876out_free_data_space:
10877 /*
10878 * If btrfs_reserve_extent() succeeded, then we already decremented
10879 * bytes_may_use.
10880 */
10881 if (!extent_reserved)
10882 btrfs_free_reserved_data_space_noquota(fs_info, disk_num_bytes);
10883out_unlock:
570eb97b 10884 unlock_extent(io_tree, start, end, &cached_state);
7c0c7269
OS
10885out_pages:
10886 for (i = 0; i < nr_pages; i++) {
10887 if (pages[i])
10888 __free_page(pages[i]);
10889 }
10890 kvfree(pages);
10891out:
10892 if (ret >= 0)
10893 iocb->ki_pos += encoded->len;
10894 return ret;
10895}
10896
ed46ff3d
OS
10897#ifdef CONFIG_SWAP
10898/*
10899 * Add an entry indicating a block group or device which is pinned by a
10900 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10901 * negative errno on failure.
10902 */
10903static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10904 bool is_block_group)
10905{
10906 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10907 struct btrfs_swapfile_pin *sp, *entry;
10908 struct rb_node **p;
10909 struct rb_node *parent = NULL;
10910
10911 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10912 if (!sp)
10913 return -ENOMEM;
10914 sp->ptr = ptr;
10915 sp->inode = inode;
10916 sp->is_block_group = is_block_group;
195a49ea 10917 sp->bg_extent_count = 1;
ed46ff3d
OS
10918
10919 spin_lock(&fs_info->swapfile_pins_lock);
10920 p = &fs_info->swapfile_pins.rb_node;
10921 while (*p) {
10922 parent = *p;
10923 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10924 if (sp->ptr < entry->ptr ||
10925 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10926 p = &(*p)->rb_left;
10927 } else if (sp->ptr > entry->ptr ||
10928 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10929 p = &(*p)->rb_right;
10930 } else {
195a49ea
FM
10931 if (is_block_group)
10932 entry->bg_extent_count++;
ed46ff3d
OS
10933 spin_unlock(&fs_info->swapfile_pins_lock);
10934 kfree(sp);
10935 return 1;
10936 }
10937 }
10938 rb_link_node(&sp->node, parent, p);
10939 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10940 spin_unlock(&fs_info->swapfile_pins_lock);
10941 return 0;
10942}
10943
10944/* Free all of the entries pinned by this swapfile. */
10945static void btrfs_free_swapfile_pins(struct inode *inode)
10946{
10947 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10948 struct btrfs_swapfile_pin *sp;
10949 struct rb_node *node, *next;
10950
10951 spin_lock(&fs_info->swapfile_pins_lock);
10952 node = rb_first(&fs_info->swapfile_pins);
10953 while (node) {
10954 next = rb_next(node);
10955 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10956 if (sp->inode == inode) {
10957 rb_erase(&sp->node, &fs_info->swapfile_pins);
195a49ea
FM
10958 if (sp->is_block_group) {
10959 btrfs_dec_block_group_swap_extents(sp->ptr,
10960 sp->bg_extent_count);
ed46ff3d 10961 btrfs_put_block_group(sp->ptr);
195a49ea 10962 }
ed46ff3d
OS
10963 kfree(sp);
10964 }
10965 node = next;
10966 }
10967 spin_unlock(&fs_info->swapfile_pins_lock);
10968}
10969
10970struct btrfs_swap_info {
10971 u64 start;
10972 u64 block_start;
10973 u64 block_len;
10974 u64 lowest_ppage;
10975 u64 highest_ppage;
10976 unsigned long nr_pages;
10977 int nr_extents;
10978};
10979
10980static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10981 struct btrfs_swap_info *bsi)
10982{
10983 unsigned long nr_pages;
c2f82263 10984 unsigned long max_pages;
ed46ff3d
OS
10985 u64 first_ppage, first_ppage_reported, next_ppage;
10986 int ret;
10987
c2f82263
FM
10988 /*
10989 * Our swapfile may have had its size extended after the swap header was
10990 * written. In that case activating the swapfile should not go beyond
10991 * the max size set in the swap header.
10992 */
10993 if (bsi->nr_pages >= sis->max)
10994 return 0;
10995
10996 max_pages = sis->max - bsi->nr_pages;
ed46ff3d
OS
10997 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10998 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10999 PAGE_SIZE) >> PAGE_SHIFT;
11000
11001 if (first_ppage >= next_ppage)
11002 return 0;
11003 nr_pages = next_ppage - first_ppage;
c2f82263 11004 nr_pages = min(nr_pages, max_pages);
ed46ff3d
OS
11005
11006 first_ppage_reported = first_ppage;
11007 if (bsi->start == 0)
11008 first_ppage_reported++;
11009 if (bsi->lowest_ppage > first_ppage_reported)
11010 bsi->lowest_ppage = first_ppage_reported;
11011 if (bsi->highest_ppage < (next_ppage - 1))
11012 bsi->highest_ppage = next_ppage - 1;
11013
11014 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
11015 if (ret < 0)
11016 return ret;
11017 bsi->nr_extents += ret;
11018 bsi->nr_pages += nr_pages;
11019 return 0;
11020}
11021
11022static void btrfs_swap_deactivate(struct file *file)
11023{
11024 struct inode *inode = file_inode(file);
11025
11026 btrfs_free_swapfile_pins(inode);
11027 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
11028}
11029
11030static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11031 sector_t *span)
11032{
11033 struct inode *inode = file_inode(file);
dd0734f2
FM
11034 struct btrfs_root *root = BTRFS_I(inode)->root;
11035 struct btrfs_fs_info *fs_info = root->fs_info;
ed46ff3d
OS
11036 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
11037 struct extent_state *cached_state = NULL;
11038 struct extent_map *em = NULL;
11039 struct btrfs_device *device = NULL;
11040 struct btrfs_swap_info bsi = {
11041 .lowest_ppage = (sector_t)-1ULL,
11042 };
11043 int ret = 0;
11044 u64 isize;
11045 u64 start;
11046
11047 /*
11048 * If the swap file was just created, make sure delalloc is done. If the
11049 * file changes again after this, the user is doing something stupid and
11050 * we don't really care.
11051 */
11052 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
11053 if (ret)
11054 return ret;
11055
11056 /*
11057 * The inode is locked, so these flags won't change after we check them.
11058 */
11059 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
11060 btrfs_warn(fs_info, "swapfile must not be compressed");
11061 return -EINVAL;
11062 }
11063 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
11064 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
11065 return -EINVAL;
11066 }
11067 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
11068 btrfs_warn(fs_info, "swapfile must not be checksummed");
11069 return -EINVAL;
11070 }
11071
11072 /*
11073 * Balance or device remove/replace/resize can move stuff around from
c3e1f96c
GR
11074 * under us. The exclop protection makes sure they aren't running/won't
11075 * run concurrently while we are mapping the swap extents, and
11076 * fs_info->swapfile_pins prevents them from running while the swap
11077 * file is active and moving the extents. Note that this also prevents
11078 * a concurrent device add which isn't actually necessary, but it's not
ed46ff3d
OS
11079 * really worth the trouble to allow it.
11080 */
c3e1f96c 11081 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_SWAP_ACTIVATE)) {
ed46ff3d
OS
11082 btrfs_warn(fs_info,
11083 "cannot activate swapfile while exclusive operation is running");
11084 return -EBUSY;
11085 }
dd0734f2
FM
11086
11087 /*
11088 * Prevent snapshot creation while we are activating the swap file.
11089 * We do not want to race with snapshot creation. If snapshot creation
11090 * already started before we bumped nr_swapfiles from 0 to 1 and
11091 * completes before the first write into the swap file after it is
11092 * activated, than that write would fallback to COW.
11093 */
11094 if (!btrfs_drew_try_write_lock(&root->snapshot_lock)) {
11095 btrfs_exclop_finish(fs_info);
11096 btrfs_warn(fs_info,
11097 "cannot activate swapfile because snapshot creation is in progress");
11098 return -EINVAL;
11099 }
ed46ff3d
OS
11100 /*
11101 * Snapshots can create extents which require COW even if NODATACOW is
11102 * set. We use this counter to prevent snapshots. We must increment it
11103 * before walking the extents because we don't want a concurrent
11104 * snapshot to run after we've already checked the extents.
60021bd7
KH
11105 *
11106 * It is possible that subvolume is marked for deletion but still not
11107 * removed yet. To prevent this race, we check the root status before
11108 * activating the swapfile.
ed46ff3d 11109 */
60021bd7
KH
11110 spin_lock(&root->root_item_lock);
11111 if (btrfs_root_dead(root)) {
11112 spin_unlock(&root->root_item_lock);
11113
11114 btrfs_exclop_finish(fs_info);
11115 btrfs_warn(fs_info,
11116 "cannot activate swapfile because subvolume %llu is being deleted",
11117 root->root_key.objectid);
11118 return -EPERM;
11119 }
dd0734f2 11120 atomic_inc(&root->nr_swapfiles);
60021bd7 11121 spin_unlock(&root->root_item_lock);
ed46ff3d
OS
11122
11123 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
11124
570eb97b 11125 lock_extent(io_tree, 0, isize - 1, &cached_state);
ed46ff3d
OS
11126 start = 0;
11127 while (start < isize) {
11128 u64 logical_block_start, physical_block_start;
32da5386 11129 struct btrfs_block_group *bg;
ed46ff3d
OS
11130 u64 len = isize - start;
11131
39b07b5d 11132 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
ed46ff3d
OS
11133 if (IS_ERR(em)) {
11134 ret = PTR_ERR(em);
11135 goto out;
11136 }
11137
11138 if (em->block_start == EXTENT_MAP_HOLE) {
11139 btrfs_warn(fs_info, "swapfile must not have holes");
11140 ret = -EINVAL;
11141 goto out;
11142 }
11143 if (em->block_start == EXTENT_MAP_INLINE) {
11144 /*
11145 * It's unlikely we'll ever actually find ourselves
11146 * here, as a file small enough to fit inline won't be
11147 * big enough to store more than the swap header, but in
11148 * case something changes in the future, let's catch it
11149 * here rather than later.
11150 */
11151 btrfs_warn(fs_info, "swapfile must not be inline");
11152 ret = -EINVAL;
11153 goto out;
11154 }
11155 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
11156 btrfs_warn(fs_info, "swapfile must not be compressed");
11157 ret = -EINVAL;
11158 goto out;
11159 }
11160
11161 logical_block_start = em->block_start + (start - em->start);
11162 len = min(len, em->len - (start - em->start));
11163 free_extent_map(em);
11164 em = NULL;
11165
26ce9114 11166 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL, false, true);
ed46ff3d
OS
11167 if (ret < 0) {
11168 goto out;
11169 } else if (ret) {
11170 ret = 0;
11171 } else {
11172 btrfs_warn(fs_info,
11173 "swapfile must not be copy-on-write");
11174 ret = -EINVAL;
11175 goto out;
11176 }
11177
11178 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
11179 if (IS_ERR(em)) {
11180 ret = PTR_ERR(em);
11181 goto out;
11182 }
11183
11184 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
11185 btrfs_warn(fs_info,
11186 "swapfile must have single data profile");
11187 ret = -EINVAL;
11188 goto out;
11189 }
11190
11191 if (device == NULL) {
11192 device = em->map_lookup->stripes[0].dev;
11193 ret = btrfs_add_swapfile_pin(inode, device, false);
11194 if (ret == 1)
11195 ret = 0;
11196 else if (ret)
11197 goto out;
11198 } else if (device != em->map_lookup->stripes[0].dev) {
11199 btrfs_warn(fs_info, "swapfile must be on one device");
11200 ret = -EINVAL;
11201 goto out;
11202 }
11203
11204 physical_block_start = (em->map_lookup->stripes[0].physical +
11205 (logical_block_start - em->start));
11206 len = min(len, em->len - (logical_block_start - em->start));
11207 free_extent_map(em);
11208 em = NULL;
11209
11210 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
11211 if (!bg) {
11212 btrfs_warn(fs_info,
11213 "could not find block group containing swapfile");
11214 ret = -EINVAL;
11215 goto out;
11216 }
11217
195a49ea
FM
11218 if (!btrfs_inc_block_group_swap_extents(bg)) {
11219 btrfs_warn(fs_info,
11220 "block group for swapfile at %llu is read-only%s",
11221 bg->start,
11222 atomic_read(&fs_info->scrubs_running) ?
11223 " (scrub running)" : "");
11224 btrfs_put_block_group(bg);
11225 ret = -EINVAL;
11226 goto out;
11227 }
11228
ed46ff3d
OS
11229 ret = btrfs_add_swapfile_pin(inode, bg, true);
11230 if (ret) {
11231 btrfs_put_block_group(bg);
11232 if (ret == 1)
11233 ret = 0;
11234 else
11235 goto out;
11236 }
11237
11238 if (bsi.block_len &&
11239 bsi.block_start + bsi.block_len == physical_block_start) {
11240 bsi.block_len += len;
11241 } else {
11242 if (bsi.block_len) {
11243 ret = btrfs_add_swap_extent(sis, &bsi);
11244 if (ret)
11245 goto out;
11246 }
11247 bsi.start = start;
11248 bsi.block_start = physical_block_start;
11249 bsi.block_len = len;
11250 }
11251
11252 start += len;
11253 }
11254
11255 if (bsi.block_len)
11256 ret = btrfs_add_swap_extent(sis, &bsi);
11257
11258out:
11259 if (!IS_ERR_OR_NULL(em))
11260 free_extent_map(em);
11261
570eb97b 11262 unlock_extent(io_tree, 0, isize - 1, &cached_state);
ed46ff3d
OS
11263
11264 if (ret)
11265 btrfs_swap_deactivate(file);
11266
dd0734f2
FM
11267 btrfs_drew_write_unlock(&root->snapshot_lock);
11268
c3e1f96c 11269 btrfs_exclop_finish(fs_info);
ed46ff3d
OS
11270
11271 if (ret)
11272 return ret;
11273
11274 if (device)
11275 sis->bdev = device->bdev;
11276 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
11277 sis->max = bsi.nr_pages;
11278 sis->pages = bsi.nr_pages - 1;
11279 sis->highest_bit = bsi.nr_pages - 1;
11280 return bsi.nr_extents;
11281}
11282#else
11283static void btrfs_swap_deactivate(struct file *file)
11284{
11285}
11286
11287static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
11288 sector_t *span)
11289{
11290 return -EOPNOTSUPP;
11291}
11292#endif
11293
2766ff61
FM
11294/*
11295 * Update the number of bytes used in the VFS' inode. When we replace extents in
11296 * a range (clone, dedupe, fallocate's zero range), we must update the number of
11297 * bytes used by the inode in an atomic manner, so that concurrent stat(2) calls
11298 * always get a correct value.
11299 */
11300void btrfs_update_inode_bytes(struct btrfs_inode *inode,
11301 const u64 add_bytes,
11302 const u64 del_bytes)
11303{
11304 if (add_bytes == del_bytes)
11305 return;
11306
11307 spin_lock(&inode->lock);
11308 if (del_bytes > 0)
11309 inode_sub_bytes(&inode->vfs_inode, del_bytes);
11310 if (add_bytes > 0)
11311 inode_add_bytes(&inode->vfs_inode, add_bytes);
11312 spin_unlock(&inode->lock);
11313}
11314
43dd529a 11315/*
63c34cb4
FM
11316 * Verify that there are no ordered extents for a given file range.
11317 *
11318 * @inode: The target inode.
11319 * @start: Start offset of the file range, should be sector size aligned.
11320 * @end: End offset (inclusive) of the file range, its value +1 should be
11321 * sector size aligned.
11322 *
11323 * This should typically be used for cases where we locked an inode's VFS lock in
11324 * exclusive mode, we have also locked the inode's i_mmap_lock in exclusive mode,
11325 * we have flushed all delalloc in the range, we have waited for all ordered
11326 * extents in the range to complete and finally we have locked the file range in
11327 * the inode's io_tree.
11328 */
11329void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end)
11330{
11331 struct btrfs_root *root = inode->root;
11332 struct btrfs_ordered_extent *ordered;
11333
11334 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
11335 return;
11336
11337 ordered = btrfs_lookup_first_ordered_range(inode, start, end + 1 - start);
11338 if (ordered) {
11339 btrfs_err(root->fs_info,
11340"found unexpected ordered extent in file range [%llu, %llu] for inode %llu root %llu (ordered range [%llu, %llu])",
11341 start, end, btrfs_ino(inode), root->root_key.objectid,
11342 ordered->file_offset,
11343 ordered->file_offset + ordered->num_bytes - 1);
11344 btrfs_put_ordered_extent(ordered);
11345 }
11346
11347 ASSERT(ordered == NULL);
11348}
11349
6e1d5dcc 11350static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 11351 .getattr = btrfs_getattr,
39279cc3
CM
11352 .lookup = btrfs_lookup,
11353 .create = btrfs_create,
11354 .unlink = btrfs_unlink,
11355 .link = btrfs_link,
11356 .mkdir = btrfs_mkdir,
11357 .rmdir = btrfs_rmdir,
2773bf00 11358 .rename = btrfs_rename2,
39279cc3
CM
11359 .symlink = btrfs_symlink,
11360 .setattr = btrfs_setattr,
618e21d5 11361 .mknod = btrfs_mknod,
5103e947 11362 .listxattr = btrfs_listxattr,
fdebe2bd 11363 .permission = btrfs_permission,
4e34e719 11364 .get_acl = btrfs_get_acl,
996a710d 11365 .set_acl = btrfs_set_acl,
93fd63c2 11366 .update_time = btrfs_update_time,
ef3b9af5 11367 .tmpfile = btrfs_tmpfile,
97fc2977
MS
11368 .fileattr_get = btrfs_fileattr_get,
11369 .fileattr_set = btrfs_fileattr_set,
39279cc3 11370};
76dda93c 11371
828c0950 11372static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
11373 .llseek = generic_file_llseek,
11374 .read = generic_read_dir,
02dbfc99 11375 .iterate_shared = btrfs_real_readdir,
23b5ec74 11376 .open = btrfs_opendir,
34287aa3 11377 .unlocked_ioctl = btrfs_ioctl,
39279cc3 11378#ifdef CONFIG_COMPAT
4c63c245 11379 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 11380#endif
6bf13c0c 11381 .release = btrfs_release_file,
e02119d5 11382 .fsync = btrfs_sync_file,
39279cc3
CM
11383};
11384
35054394
CM
11385/*
11386 * btrfs doesn't support the bmap operation because swapfiles
11387 * use bmap to make a mapping of extents in the file. They assume
11388 * these extents won't change over the life of the file and they
11389 * use the bmap result to do IO directly to the drive.
11390 *
11391 * the btrfs bmap call would return logical addresses that aren't
11392 * suitable for IO and they also will change frequently as COW
11393 * operations happen. So, swapfile + btrfs == corruption.
11394 *
11395 * For now we're avoiding this by dropping bmap.
11396 */
7f09410b 11397static const struct address_space_operations btrfs_aops = {
fb12489b 11398 .read_folio = btrfs_read_folio,
b293f02e 11399 .writepages = btrfs_writepages,
ba206a02 11400 .readahead = btrfs_readahead,
f85781fb 11401 .direct_IO = noop_direct_IO,
895586eb 11402 .invalidate_folio = btrfs_invalidate_folio,
f913cff3 11403 .release_folio = btrfs_release_folio,
e7a60a17 11404 .migrate_folio = btrfs_migrate_folio,
187c82cb 11405 .dirty_folio = filemap_dirty_folio,
465fdd97 11406 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
11407 .swap_activate = btrfs_swap_activate,
11408 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
11409};
11410
6e1d5dcc 11411static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
11412 .getattr = btrfs_getattr,
11413 .setattr = btrfs_setattr,
5103e947 11414 .listxattr = btrfs_listxattr,
fdebe2bd 11415 .permission = btrfs_permission,
1506fcc8 11416 .fiemap = btrfs_fiemap,
4e34e719 11417 .get_acl = btrfs_get_acl,
996a710d 11418 .set_acl = btrfs_set_acl,
e41f941a 11419 .update_time = btrfs_update_time,
97fc2977
MS
11420 .fileattr_get = btrfs_fileattr_get,
11421 .fileattr_set = btrfs_fileattr_set,
39279cc3 11422};
6e1d5dcc 11423static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
11424 .getattr = btrfs_getattr,
11425 .setattr = btrfs_setattr,
fdebe2bd 11426 .permission = btrfs_permission,
33268eaf 11427 .listxattr = btrfs_listxattr,
4e34e719 11428 .get_acl = btrfs_get_acl,
996a710d 11429 .set_acl = btrfs_set_acl,
e41f941a 11430 .update_time = btrfs_update_time,
618e21d5 11431};
6e1d5dcc 11432static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 11433 .get_link = page_get_link,
f209561a 11434 .getattr = btrfs_getattr,
22c44fe6 11435 .setattr = btrfs_setattr,
fdebe2bd 11436 .permission = btrfs_permission,
0279b4cd 11437 .listxattr = btrfs_listxattr,
e41f941a 11438 .update_time = btrfs_update_time,
39279cc3 11439};
76dda93c 11440
82d339d9 11441const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
11442 .d_delete = btrfs_dentry_delete,
11443};