Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
39279cc3
CM
45#include "ctree.h"
46#include "disk-io.h"
47#include "transaction.h"
48#include "btrfs_inode.h"
39279cc3 49#include "print-tree.h"
e6dcd2dc 50#include "ordered-data.h"
95819c05 51#include "xattr.h"
e02119d5 52#include "tree-log.h"
4a54c8c1 53#include "volumes.h"
c8b97818 54#include "compression.h"
b4ce94de 55#include "locking.h"
dc89e982 56#include "free-space-cache.h"
581bb050 57#include "inode-map.h"
38c227d8 58#include "backref.h"
f23b5a59 59#include "hash.h"
63541927 60#include "props.h"
31193213 61#include "qgroup.h"
dda3245e 62#include "dedupe.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
f28a4928
FM
69struct btrfs_dio_data {
70 u64 outstanding_extents;
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
dda3245e
WX
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
111static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
115 int type);
7b128766 116
52427260
QW
117static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
120
121/*
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
124 *
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
133 */
134static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 const u64 offset,
136 const u64 bytes)
137{
138 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
139 bytes - PAGE_SIZE, false);
140}
141
48a3b636 142static int btrfs_dirty_inode(struct inode *inode);
7b128766 143
6a3891c5
JB
144#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
145void btrfs_test_inode_set_ops(struct inode *inode)
146{
147 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
148}
149#endif
150
f34f57a3 151static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
152 struct inode *inode, struct inode *dir,
153 const struct qstr *qstr)
0279b4cd
JO
154{
155 int err;
156
f34f57a3 157 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 158 if (!err)
2a7dba39 159 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
160 return err;
161}
162
c8b97818
CM
163/*
164 * this does all the hard work for inserting an inline extent into
165 * the btree. The caller should have done a btrfs_drop_extents so that
166 * no overlapping inline items exist in the btree
167 */
40f76580 168static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 169 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
170 struct btrfs_root *root, struct inode *inode,
171 u64 start, size_t size, size_t compressed_size,
fe3f566c 172 int compress_type,
c8b97818
CM
173 struct page **compressed_pages)
174{
c8b97818
CM
175 struct extent_buffer *leaf;
176 struct page *page = NULL;
177 char *kaddr;
178 unsigned long ptr;
179 struct btrfs_file_extent_item *ei;
c8b97818
CM
180 int ret;
181 size_t cur_size = size;
c8b97818 182 unsigned long offset;
c8b97818 183
fe3f566c 184 if (compressed_size && compressed_pages)
c8b97818 185 cur_size = compressed_size;
c8b97818 186
1acae57b 187 inode_add_bytes(inode, size);
c8b97818 188
1acae57b
FDBM
189 if (!extent_inserted) {
190 struct btrfs_key key;
191 size_t datasize;
c8b97818 192
4a0cc7ca 193 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 194 key.offset = start;
962a298f 195 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 196
1acae57b
FDBM
197 datasize = btrfs_file_extent_calc_inline_size(cur_size);
198 path->leave_spinning = 1;
199 ret = btrfs_insert_empty_item(trans, root, path, &key,
200 datasize);
79b4f4c6 201 if (ret)
1acae57b 202 goto fail;
c8b97818
CM
203 }
204 leaf = path->nodes[0];
205 ei = btrfs_item_ptr(leaf, path->slots[0],
206 struct btrfs_file_extent_item);
207 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
208 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
209 btrfs_set_file_extent_encryption(leaf, ei, 0);
210 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
211 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
212 ptr = btrfs_file_extent_inline_start(ei);
213
261507a0 214 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
215 struct page *cpage;
216 int i = 0;
d397712b 217 while (compressed_size > 0) {
c8b97818 218 cpage = compressed_pages[i];
5b050f04 219 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 220 PAGE_SIZE);
c8b97818 221
7ac687d9 222 kaddr = kmap_atomic(cpage);
c8b97818 223 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 224 kunmap_atomic(kaddr);
c8b97818
CM
225
226 i++;
227 ptr += cur_size;
228 compressed_size -= cur_size;
229 }
230 btrfs_set_file_extent_compression(leaf, ei,
261507a0 231 compress_type);
c8b97818
CM
232 } else {
233 page = find_get_page(inode->i_mapping,
09cbfeaf 234 start >> PAGE_SHIFT);
c8b97818 235 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 236 kaddr = kmap_atomic(page);
09cbfeaf 237 offset = start & (PAGE_SIZE - 1);
c8b97818 238 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 239 kunmap_atomic(kaddr);
09cbfeaf 240 put_page(page);
c8b97818
CM
241 }
242 btrfs_mark_buffer_dirty(leaf);
1acae57b 243 btrfs_release_path(path);
c8b97818 244
c2167754
YZ
245 /*
246 * we're an inline extent, so nobody can
247 * extend the file past i_size without locking
248 * a page we already have locked.
249 *
250 * We must do any isize and inode updates
251 * before we unlock the pages. Otherwise we
252 * could end up racing with unlink.
253 */
c8b97818 254 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 255 ret = btrfs_update_inode(trans, root, inode);
c2167754 256
c8b97818 257fail:
79b4f4c6 258 return ret;
c8b97818
CM
259}
260
261
262/*
263 * conditionally insert an inline extent into the file. This
264 * does the checks required to make sure the data is small enough
265 * to fit as an inline extent.
266 */
00361589
JB
267static noinline int cow_file_range_inline(struct btrfs_root *root,
268 struct inode *inode, u64 start,
269 u64 end, size_t compressed_size,
270 int compress_type,
271 struct page **compressed_pages)
c8b97818 272{
0b246afa 273 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 274 struct btrfs_trans_handle *trans;
c8b97818
CM
275 u64 isize = i_size_read(inode);
276 u64 actual_end = min(end + 1, isize);
277 u64 inline_len = actual_end - start;
0b246afa 278 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
279 u64 data_len = inline_len;
280 int ret;
1acae57b
FDBM
281 struct btrfs_path *path;
282 int extent_inserted = 0;
283 u32 extent_item_size;
c8b97818
CM
284
285 if (compressed_size)
286 data_len = compressed_size;
287
288 if (start > 0 ||
0b246afa
JM
289 actual_end > fs_info->sectorsize ||
290 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 291 (!compressed_size &&
0b246afa 292 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 293 end + 1 < isize ||
0b246afa 294 data_len > fs_info->max_inline) {
c8b97818
CM
295 return 1;
296 }
297
1acae57b
FDBM
298 path = btrfs_alloc_path();
299 if (!path)
300 return -ENOMEM;
301
00361589 302 trans = btrfs_join_transaction(root);
1acae57b
FDBM
303 if (IS_ERR(trans)) {
304 btrfs_free_path(path);
00361589 305 return PTR_ERR(trans);
1acae57b 306 }
0b246afa 307 trans->block_rsv = &fs_info->delalloc_block_rsv;
00361589 308
1acae57b
FDBM
309 if (compressed_size && compressed_pages)
310 extent_item_size = btrfs_file_extent_calc_inline_size(
311 compressed_size);
312 else
313 extent_item_size = btrfs_file_extent_calc_inline_size(
314 inline_len);
315
316 ret = __btrfs_drop_extents(trans, root, inode, path,
317 start, aligned_end, NULL,
318 1, 1, extent_item_size, &extent_inserted);
00361589 319 if (ret) {
66642832 320 btrfs_abort_transaction(trans, ret);
00361589
JB
321 goto out;
322 }
c8b97818
CM
323
324 if (isize > actual_end)
325 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
326 ret = insert_inline_extent(trans, path, extent_inserted,
327 root, inode, start,
c8b97818 328 inline_len, compressed_size,
fe3f566c 329 compress_type, compressed_pages);
2adcac1a 330 if (ret && ret != -ENOSPC) {
66642832 331 btrfs_abort_transaction(trans, ret);
00361589 332 goto out;
2adcac1a 333 } else if (ret == -ENOSPC) {
00361589
JB
334 ret = 1;
335 goto out;
79787eaa 336 }
2adcac1a 337
bdc20e67 338 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
691fa059 339 btrfs_delalloc_release_metadata(BTRFS_I(inode), end + 1 - start);
dcdbc059 340 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 341out:
94ed938a
QW
342 /*
343 * Don't forget to free the reserved space, as for inlined extent
344 * it won't count as data extent, free them directly here.
345 * And at reserve time, it's always aligned to page size, so
346 * just free one page here.
347 */
bc42bda2 348 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 349 btrfs_free_path(path);
3a45bb20 350 btrfs_end_transaction(trans);
00361589 351 return ret;
c8b97818
CM
352}
353
771ed689
CM
354struct async_extent {
355 u64 start;
356 u64 ram_size;
357 u64 compressed_size;
358 struct page **pages;
359 unsigned long nr_pages;
261507a0 360 int compress_type;
771ed689
CM
361 struct list_head list;
362};
363
364struct async_cow {
365 struct inode *inode;
366 struct btrfs_root *root;
367 struct page *locked_page;
368 u64 start;
369 u64 end;
370 struct list_head extents;
371 struct btrfs_work work;
372};
373
374static noinline int add_async_extent(struct async_cow *cow,
375 u64 start, u64 ram_size,
376 u64 compressed_size,
377 struct page **pages,
261507a0
LZ
378 unsigned long nr_pages,
379 int compress_type)
771ed689
CM
380{
381 struct async_extent *async_extent;
382
383 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 384 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
385 async_extent->start = start;
386 async_extent->ram_size = ram_size;
387 async_extent->compressed_size = compressed_size;
388 async_extent->pages = pages;
389 async_extent->nr_pages = nr_pages;
261507a0 390 async_extent->compress_type = compress_type;
771ed689
CM
391 list_add_tail(&async_extent->list, &cow->extents);
392 return 0;
393}
394
c2fcdcdf 395static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 396{
0b246afa 397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
398
399 /* force compress */
0b246afa 400 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 401 return 1;
eec63c65
DS
402 /* defrag ioctl */
403 if (BTRFS_I(inode)->defrag_compress)
404 return 1;
f79707b0
WS
405 /* bad compression ratios */
406 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
407 return 0;
0b246afa 408 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 409 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 410 BTRFS_I(inode)->prop_compress)
c2fcdcdf 411 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
412 return 0;
413}
414
6158e1ce 415static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
416 u64 start, u64 end, u64 num_bytes, u64 small_write)
417{
418 /* If this is a small write inside eof, kick off a defrag */
419 if (num_bytes < small_write &&
6158e1ce 420 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
421 btrfs_add_inode_defrag(NULL, inode);
422}
423
d352ac68 424/*
771ed689
CM
425 * we create compressed extents in two phases. The first
426 * phase compresses a range of pages that have already been
427 * locked (both pages and state bits are locked).
c8b97818 428 *
771ed689
CM
429 * This is done inside an ordered work queue, and the compression
430 * is spread across many cpus. The actual IO submission is step
431 * two, and the ordered work queue takes care of making sure that
432 * happens in the same order things were put onto the queue by
433 * writepages and friends.
c8b97818 434 *
771ed689
CM
435 * If this code finds it can't get good compression, it puts an
436 * entry onto the work queue to write the uncompressed bytes. This
437 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
438 * are written in the same order that the flusher thread sent them
439 * down.
d352ac68 440 */
c44f649e 441static noinline void compress_file_range(struct inode *inode,
771ed689
CM
442 struct page *locked_page,
443 u64 start, u64 end,
444 struct async_cow *async_cow,
445 int *num_added)
b888db2b 446{
0b246afa 447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 448 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 449 u64 num_bytes;
0b246afa 450 u64 blocksize = fs_info->sectorsize;
c8b97818 451 u64 actual_end;
42dc7bab 452 u64 isize = i_size_read(inode);
e6dcd2dc 453 int ret = 0;
c8b97818
CM
454 struct page **pages = NULL;
455 unsigned long nr_pages;
c8b97818
CM
456 unsigned long total_compressed = 0;
457 unsigned long total_in = 0;
c8b97818
CM
458 int i;
459 int will_compress;
0b246afa 460 int compress_type = fs_info->compress_type;
4adaa611 461 int redirty = 0;
b888db2b 462
6158e1ce
NB
463 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
464 SZ_16K);
4cb5300b 465
42dc7bab 466 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
467again:
468 will_compress = 0;
09cbfeaf 469 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
470 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
471 nr_pages = min_t(unsigned long, nr_pages,
472 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 473
f03d9301
CM
474 /*
475 * we don't want to send crud past the end of i_size through
476 * compression, that's just a waste of CPU time. So, if the
477 * end of the file is before the start of our current
478 * requested range of bytes, we bail out to the uncompressed
479 * cleanup code that can deal with all of this.
480 *
481 * It isn't really the fastest way to fix things, but this is a
482 * very uncommon corner.
483 */
484 if (actual_end <= start)
485 goto cleanup_and_bail_uncompressed;
486
c8b97818
CM
487 total_compressed = actual_end - start;
488
4bcbb332
SW
489 /*
490 * skip compression for a small file range(<=blocksize) that
01327610 491 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
492 */
493 if (total_compressed <= blocksize &&
494 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
495 goto cleanup_and_bail_uncompressed;
496
069eac78
DS
497 total_compressed = min_t(unsigned long, total_compressed,
498 BTRFS_MAX_UNCOMPRESSED);
fda2832f 499 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 500 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
501 total_in = 0;
502 ret = 0;
db94535d 503
771ed689
CM
504 /*
505 * we do compression for mount -o compress and when the
506 * inode has not been flagged as nocompress. This flag can
507 * change at any time if we discover bad compression ratios.
c8b97818 508 */
c2fcdcdf 509 if (inode_need_compress(inode, start, end)) {
c8b97818 510 WARN_ON(pages);
31e818fe 511 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
512 if (!pages) {
513 /* just bail out to the uncompressed code */
514 goto cont;
515 }
c8b97818 516
eec63c65
DS
517 if (BTRFS_I(inode)->defrag_compress)
518 compress_type = BTRFS_I(inode)->defrag_compress;
519 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 520 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 521
4adaa611
CM
522 /*
523 * we need to call clear_page_dirty_for_io on each
524 * page in the range. Otherwise applications with the file
525 * mmap'd can wander in and change the page contents while
526 * we are compressing them.
527 *
528 * If the compression fails for any reason, we set the pages
529 * dirty again later on.
530 */
531 extent_range_clear_dirty_for_io(inode, start, end);
532 redirty = 1;
261507a0
LZ
533 ret = btrfs_compress_pages(compress_type,
534 inode->i_mapping, start,
38c31464 535 pages,
4d3a800e 536 &nr_pages,
261507a0 537 &total_in,
e5d74902 538 &total_compressed);
c8b97818
CM
539
540 if (!ret) {
541 unsigned long offset = total_compressed &
09cbfeaf 542 (PAGE_SIZE - 1);
4d3a800e 543 struct page *page = pages[nr_pages - 1];
c8b97818
CM
544 char *kaddr;
545
546 /* zero the tail end of the last page, we might be
547 * sending it down to disk
548 */
549 if (offset) {
7ac687d9 550 kaddr = kmap_atomic(page);
c8b97818 551 memset(kaddr + offset, 0,
09cbfeaf 552 PAGE_SIZE - offset);
7ac687d9 553 kunmap_atomic(kaddr);
c8b97818
CM
554 }
555 will_compress = 1;
556 }
557 }
560f7d75 558cont:
c8b97818
CM
559 if (start == 0) {
560 /* lets try to make an inline extent */
771ed689 561 if (ret || total_in < (actual_end - start)) {
c8b97818 562 /* we didn't compress the entire range, try
771ed689 563 * to make an uncompressed inline extent.
c8b97818 564 */
00361589 565 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 566 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 567 } else {
771ed689 568 /* try making a compressed inline extent */
00361589 569 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
570 total_compressed,
571 compress_type, pages);
c8b97818 572 }
79787eaa 573 if (ret <= 0) {
151a41bc 574 unsigned long clear_flags = EXTENT_DELALLOC |
a7e3b975 575 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG;
e6eb4314
FM
576 unsigned long page_error_op;
577
151a41bc 578 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 579 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 580
771ed689 581 /*
79787eaa
JM
582 * inline extent creation worked or returned error,
583 * we don't need to create any more async work items.
584 * Unlock and free up our temp pages.
771ed689 585 */
ba8b04c1
QW
586 extent_clear_unlock_delalloc(inode, start, end, end,
587 NULL, clear_flags,
588 PAGE_UNLOCK |
c2790a2e
JB
589 PAGE_CLEAR_DIRTY |
590 PAGE_SET_WRITEBACK |
e6eb4314 591 page_error_op |
c2790a2e 592 PAGE_END_WRITEBACK);
1c81ba23
FM
593 if (ret == 0)
594 btrfs_free_reserved_data_space_noquota(inode,
595 start,
596 end - start + 1);
c8b97818
CM
597 goto free_pages_out;
598 }
599 }
600
601 if (will_compress) {
602 /*
603 * we aren't doing an inline extent round the compressed size
604 * up to a block size boundary so the allocator does sane
605 * things
606 */
fda2832f 607 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
608
609 /*
610 * one last check to make sure the compression is really a
170607eb
TT
611 * win, compare the page count read with the blocks on disk,
612 * compression must free at least one sector size
c8b97818 613 */
09cbfeaf 614 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 615 if (total_compressed + blocksize <= total_in) {
c8b97818 616 num_bytes = total_in;
c8bb0c8b
AS
617 *num_added += 1;
618
619 /*
620 * The async work queues will take care of doing actual
621 * allocation on disk for these compressed pages, and
622 * will submit them to the elevator.
623 */
624 add_async_extent(async_cow, start, num_bytes,
4d3a800e 625 total_compressed, pages, nr_pages,
c8bb0c8b
AS
626 compress_type);
627
628 if (start + num_bytes < end) {
629 start += num_bytes;
630 pages = NULL;
631 cond_resched();
632 goto again;
633 }
634 return;
c8b97818
CM
635 }
636 }
c8bb0c8b 637 if (pages) {
c8b97818
CM
638 /*
639 * the compression code ran but failed to make things smaller,
640 * free any pages it allocated and our page pointer array
641 */
4d3a800e 642 for (i = 0; i < nr_pages; i++) {
70b99e69 643 WARN_ON(pages[i]->mapping);
09cbfeaf 644 put_page(pages[i]);
c8b97818
CM
645 }
646 kfree(pages);
647 pages = NULL;
648 total_compressed = 0;
4d3a800e 649 nr_pages = 0;
c8b97818
CM
650
651 /* flag the file so we don't compress in the future */
0b246afa 652 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 653 !(BTRFS_I(inode)->prop_compress)) {
a555f810 654 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 655 }
c8b97818 656 }
f03d9301 657cleanup_and_bail_uncompressed:
c8bb0c8b
AS
658 /*
659 * No compression, but we still need to write the pages in the file
660 * we've been given so far. redirty the locked page if it corresponds
661 * to our extent and set things up for the async work queue to run
662 * cow_file_range to do the normal delalloc dance.
663 */
664 if (page_offset(locked_page) >= start &&
665 page_offset(locked_page) <= end)
666 __set_page_dirty_nobuffers(locked_page);
667 /* unlocked later on in the async handlers */
668
669 if (redirty)
670 extent_range_redirty_for_io(inode, start, end);
671 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
672 BTRFS_COMPRESS_NONE);
673 *num_added += 1;
3b951516 674
c44f649e 675 return;
771ed689
CM
676
677free_pages_out:
4d3a800e 678 for (i = 0; i < nr_pages; i++) {
771ed689 679 WARN_ON(pages[i]->mapping);
09cbfeaf 680 put_page(pages[i]);
771ed689 681 }
d397712b 682 kfree(pages);
771ed689 683}
771ed689 684
40ae837b
FM
685static void free_async_extent_pages(struct async_extent *async_extent)
686{
687 int i;
688
689 if (!async_extent->pages)
690 return;
691
692 for (i = 0; i < async_extent->nr_pages; i++) {
693 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 694 put_page(async_extent->pages[i]);
40ae837b
FM
695 }
696 kfree(async_extent->pages);
697 async_extent->nr_pages = 0;
698 async_extent->pages = NULL;
771ed689
CM
699}
700
701/*
702 * phase two of compressed writeback. This is the ordered portion
703 * of the code, which only gets called in the order the work was
704 * queued. We walk all the async extents created by compress_file_range
705 * and send them down to the disk.
706 */
dec8f175 707static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
708 struct async_cow *async_cow)
709{
0b246afa 710 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
711 struct async_extent *async_extent;
712 u64 alloc_hint = 0;
771ed689
CM
713 struct btrfs_key ins;
714 struct extent_map *em;
715 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 716 struct extent_io_tree *io_tree;
f5a84ee3 717 int ret = 0;
771ed689 718
3e04e7f1 719again:
d397712b 720 while (!list_empty(&async_cow->extents)) {
771ed689
CM
721 async_extent = list_entry(async_cow->extents.next,
722 struct async_extent, list);
723 list_del(&async_extent->list);
c8b97818 724
771ed689
CM
725 io_tree = &BTRFS_I(inode)->io_tree;
726
f5a84ee3 727retry:
771ed689
CM
728 /* did the compression code fall back to uncompressed IO? */
729 if (!async_extent->pages) {
730 int page_started = 0;
731 unsigned long nr_written = 0;
732
733 lock_extent(io_tree, async_extent->start,
2ac55d41 734 async_extent->start +
d0082371 735 async_extent->ram_size - 1);
771ed689
CM
736
737 /* allocate blocks */
f5a84ee3
JB
738 ret = cow_file_range(inode, async_cow->locked_page,
739 async_extent->start,
740 async_extent->start +
741 async_extent->ram_size - 1,
dda3245e
WX
742 async_extent->start +
743 async_extent->ram_size - 1,
744 &page_started, &nr_written, 0,
745 NULL);
771ed689 746
79787eaa
JM
747 /* JDM XXX */
748
771ed689
CM
749 /*
750 * if page_started, cow_file_range inserted an
751 * inline extent and took care of all the unlocking
752 * and IO for us. Otherwise, we need to submit
753 * all those pages down to the drive.
754 */
f5a84ee3 755 if (!page_started && !ret)
771ed689
CM
756 extent_write_locked_range(io_tree,
757 inode, async_extent->start,
d397712b 758 async_extent->start +
771ed689
CM
759 async_extent->ram_size - 1,
760 btrfs_get_extent,
761 WB_SYNC_ALL);
3e04e7f1
JB
762 else if (ret)
763 unlock_page(async_cow->locked_page);
771ed689
CM
764 kfree(async_extent);
765 cond_resched();
766 continue;
767 }
768
769 lock_extent(io_tree, async_extent->start,
d0082371 770 async_extent->start + async_extent->ram_size - 1);
771ed689 771
18513091 772 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
773 async_extent->compressed_size,
774 async_extent->compressed_size,
e570fd27 775 0, alloc_hint, &ins, 1, 1);
f5a84ee3 776 if (ret) {
40ae837b 777 free_async_extent_pages(async_extent);
3e04e7f1 778
fdf8e2ea
JB
779 if (ret == -ENOSPC) {
780 unlock_extent(io_tree, async_extent->start,
781 async_extent->start +
782 async_extent->ram_size - 1);
ce62003f
LB
783
784 /*
785 * we need to redirty the pages if we decide to
786 * fallback to uncompressed IO, otherwise we
787 * will not submit these pages down to lower
788 * layers.
789 */
790 extent_range_redirty_for_io(inode,
791 async_extent->start,
792 async_extent->start +
793 async_extent->ram_size - 1);
794
79787eaa 795 goto retry;
fdf8e2ea 796 }
3e04e7f1 797 goto out_free;
f5a84ee3 798 }
c2167754
YZ
799 /*
800 * here we're doing allocation and writeback of the
801 * compressed pages
802 */
6f9994db
LB
803 em = create_io_em(inode, async_extent->start,
804 async_extent->ram_size, /* len */
805 async_extent->start, /* orig_start */
806 ins.objectid, /* block_start */
807 ins.offset, /* block_len */
808 ins.offset, /* orig_block_len */
809 async_extent->ram_size, /* ram_bytes */
810 async_extent->compress_type,
811 BTRFS_ORDERED_COMPRESSED);
812 if (IS_ERR(em))
813 /* ret value is not necessary due to void function */
3e04e7f1 814 goto out_free_reserve;
6f9994db 815 free_extent_map(em);
3e04e7f1 816
261507a0
LZ
817 ret = btrfs_add_ordered_extent_compress(inode,
818 async_extent->start,
819 ins.objectid,
820 async_extent->ram_size,
821 ins.offset,
822 BTRFS_ORDERED_COMPRESSED,
823 async_extent->compress_type);
d9f85963 824 if (ret) {
dcdbc059
NB
825 btrfs_drop_extent_cache(BTRFS_I(inode),
826 async_extent->start,
d9f85963
FM
827 async_extent->start +
828 async_extent->ram_size - 1, 0);
3e04e7f1 829 goto out_free_reserve;
d9f85963 830 }
0b246afa 831 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 832
771ed689
CM
833 /*
834 * clear dirty, set writeback and unlock the pages.
835 */
c2790a2e 836 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
837 async_extent->start +
838 async_extent->ram_size - 1,
a791e35e
CM
839 async_extent->start +
840 async_extent->ram_size - 1,
151a41bc
JB
841 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
842 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 843 PAGE_SET_WRITEBACK);
4e4cbee9 844 if (btrfs_submit_compressed_write(inode,
d397712b
CM
845 async_extent->start,
846 async_extent->ram_size,
847 ins.objectid,
848 ins.offset, async_extent->pages,
4e4cbee9 849 async_extent->nr_pages)) {
fce2a4e6
FM
850 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
851 struct page *p = async_extent->pages[0];
852 const u64 start = async_extent->start;
853 const u64 end = start + async_extent->ram_size - 1;
854
855 p->mapping = inode->i_mapping;
856 tree->ops->writepage_end_io_hook(p, start, end,
857 NULL, 0);
858 p->mapping = NULL;
ba8b04c1
QW
859 extent_clear_unlock_delalloc(inode, start, end, end,
860 NULL, 0,
fce2a4e6
FM
861 PAGE_END_WRITEBACK |
862 PAGE_SET_ERROR);
40ae837b 863 free_async_extent_pages(async_extent);
fce2a4e6 864 }
771ed689
CM
865 alloc_hint = ins.objectid + ins.offset;
866 kfree(async_extent);
867 cond_resched();
868 }
dec8f175 869 return;
3e04e7f1 870out_free_reserve:
0b246afa 871 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 872 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 873out_free:
c2790a2e 874 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
875 async_extent->start +
876 async_extent->ram_size - 1,
3e04e7f1
JB
877 async_extent->start +
878 async_extent->ram_size - 1,
c2790a2e 879 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 880 EXTENT_DELALLOC_NEW |
151a41bc
JB
881 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
882 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
883 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
884 PAGE_SET_ERROR);
40ae837b 885 free_async_extent_pages(async_extent);
79787eaa 886 kfree(async_extent);
3e04e7f1 887 goto again;
771ed689
CM
888}
889
4b46fce2
JB
890static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
891 u64 num_bytes)
892{
893 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
894 struct extent_map *em;
895 u64 alloc_hint = 0;
896
897 read_lock(&em_tree->lock);
898 em = search_extent_mapping(em_tree, start, num_bytes);
899 if (em) {
900 /*
901 * if block start isn't an actual block number then find the
902 * first block in this inode and use that as a hint. If that
903 * block is also bogus then just don't worry about it.
904 */
905 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
906 free_extent_map(em);
907 em = search_extent_mapping(em_tree, 0, 0);
908 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
909 alloc_hint = em->block_start;
910 if (em)
911 free_extent_map(em);
912 } else {
913 alloc_hint = em->block_start;
914 free_extent_map(em);
915 }
916 }
917 read_unlock(&em_tree->lock);
918
919 return alloc_hint;
920}
921
771ed689
CM
922/*
923 * when extent_io.c finds a delayed allocation range in the file,
924 * the call backs end up in this code. The basic idea is to
925 * allocate extents on disk for the range, and create ordered data structs
926 * in ram to track those extents.
927 *
928 * locked_page is the page that writepage had locked already. We use
929 * it to make sure we don't do extra locks or unlocks.
930 *
931 * *page_started is set to one if we unlock locked_page and do everything
932 * required to start IO on it. It may be clean and already done with
933 * IO when we return.
934 */
00361589
JB
935static noinline int cow_file_range(struct inode *inode,
936 struct page *locked_page,
dda3245e
WX
937 u64 start, u64 end, u64 delalloc_end,
938 int *page_started, unsigned long *nr_written,
939 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 940{
0b246afa 941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 942 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
943 u64 alloc_hint = 0;
944 u64 num_bytes;
945 unsigned long ram_size;
946 u64 disk_num_bytes;
a315e68f 947 u64 cur_alloc_size = 0;
0b246afa 948 u64 blocksize = fs_info->sectorsize;
771ed689
CM
949 struct btrfs_key ins;
950 struct extent_map *em;
a315e68f
FM
951 unsigned clear_bits;
952 unsigned long page_ops;
953 bool extent_reserved = false;
771ed689
CM
954 int ret = 0;
955
70ddc553 956 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 957 WARN_ON_ONCE(1);
29bce2f3
JB
958 ret = -EINVAL;
959 goto out_unlock;
02ecd2c2 960 }
771ed689 961
fda2832f 962 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
963 num_bytes = max(blocksize, num_bytes);
964 disk_num_bytes = num_bytes;
771ed689 965
6158e1ce 966 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 967
771ed689
CM
968 if (start == 0) {
969 /* lets try to make an inline extent */
f74670f7
AJ
970 ret = cow_file_range_inline(root, inode, start, end, 0,
971 BTRFS_COMPRESS_NONE, NULL);
771ed689 972 if (ret == 0) {
ba8b04c1
QW
973 extent_clear_unlock_delalloc(inode, start, end,
974 delalloc_end, NULL,
c2790a2e 975 EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 976 EXTENT_DELALLOC_NEW |
151a41bc 977 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
978 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
979 PAGE_END_WRITEBACK);
18513091
WX
980 btrfs_free_reserved_data_space_noquota(inode, start,
981 end - start + 1);
771ed689 982 *nr_written = *nr_written +
09cbfeaf 983 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 984 *page_started = 1;
771ed689 985 goto out;
79787eaa 986 } else if (ret < 0) {
79787eaa 987 goto out_unlock;
771ed689
CM
988 }
989 }
990
991 BUG_ON(disk_num_bytes >
0b246afa 992 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 993
4b46fce2 994 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
995 btrfs_drop_extent_cache(BTRFS_I(inode), start,
996 start + num_bytes - 1, 0);
771ed689 997
d397712b 998 while (disk_num_bytes > 0) {
287a0ab9 999 cur_alloc_size = disk_num_bytes;
18513091 1000 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1001 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1002 &ins, 1, 1);
00361589 1003 if (ret < 0)
79787eaa 1004 goto out_unlock;
a315e68f
FM
1005 cur_alloc_size = ins.offset;
1006 extent_reserved = true;
d397712b 1007
771ed689 1008 ram_size = ins.offset;
6f9994db
LB
1009 em = create_io_em(inode, start, ins.offset, /* len */
1010 start, /* orig_start */
1011 ins.objectid, /* block_start */
1012 ins.offset, /* block_len */
1013 ins.offset, /* orig_block_len */
1014 ram_size, /* ram_bytes */
1015 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1016 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1017 if (IS_ERR(em))
ace68bac 1018 goto out_reserve;
6f9994db 1019 free_extent_map(em);
e6dcd2dc 1020
e6dcd2dc 1021 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1022 ram_size, cur_alloc_size, 0);
ace68bac 1023 if (ret)
d9f85963 1024 goto out_drop_extent_cache;
c8b97818 1025
17d217fe
YZ
1026 if (root->root_key.objectid ==
1027 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1028 ret = btrfs_reloc_clone_csums(inode, start,
1029 cur_alloc_size);
4dbd80fb
QW
1030 /*
1031 * Only drop cache here, and process as normal.
1032 *
1033 * We must not allow extent_clear_unlock_delalloc()
1034 * at out_unlock label to free meta of this ordered
1035 * extent, as its meta should be freed by
1036 * btrfs_finish_ordered_io().
1037 *
1038 * So we must continue until @start is increased to
1039 * skip current ordered extent.
1040 */
00361589 1041 if (ret)
4dbd80fb
QW
1042 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1043 start + ram_size - 1, 0);
17d217fe
YZ
1044 }
1045
0b246afa 1046 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1047
c8b97818
CM
1048 /* we're not doing compressed IO, don't unlock the first
1049 * page (which the caller expects to stay locked), don't
1050 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1051 *
1052 * Do set the Private2 bit so we know this page was properly
1053 * setup for writepage
c8b97818 1054 */
a315e68f
FM
1055 page_ops = unlock ? PAGE_UNLOCK : 0;
1056 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1057
c2790a2e 1058 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1059 start + ram_size - 1,
1060 delalloc_end, locked_page,
c2790a2e 1061 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1062 page_ops);
4dbd80fb
QW
1063 if (disk_num_bytes < cur_alloc_size)
1064 disk_num_bytes = 0;
1065 else
1066 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1067 num_bytes -= cur_alloc_size;
1068 alloc_hint = ins.objectid + ins.offset;
1069 start += cur_alloc_size;
a315e68f 1070 extent_reserved = false;
4dbd80fb
QW
1071
1072 /*
1073 * btrfs_reloc_clone_csums() error, since start is increased
1074 * extent_clear_unlock_delalloc() at out_unlock label won't
1075 * free metadata of current ordered extent, we're OK to exit.
1076 */
1077 if (ret)
1078 goto out_unlock;
b888db2b 1079 }
79787eaa 1080out:
be20aa9d 1081 return ret;
b7d5b0a8 1082
d9f85963 1083out_drop_extent_cache:
dcdbc059 1084 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1085out_reserve:
0b246afa 1086 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1087 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1088out_unlock:
a7e3b975
FM
1089 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1090 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1091 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1092 PAGE_END_WRITEBACK;
1093 /*
1094 * If we reserved an extent for our delalloc range (or a subrange) and
1095 * failed to create the respective ordered extent, then it means that
1096 * when we reserved the extent we decremented the extent's size from
1097 * the data space_info's bytes_may_use counter and incremented the
1098 * space_info's bytes_reserved counter by the same amount. We must make
1099 * sure extent_clear_unlock_delalloc() does not try to decrement again
1100 * the data space_info's bytes_may_use counter, therefore we do not pass
1101 * it the flag EXTENT_CLEAR_DATA_RESV.
1102 */
1103 if (extent_reserved) {
1104 extent_clear_unlock_delalloc(inode, start,
1105 start + cur_alloc_size,
1106 start + cur_alloc_size,
1107 locked_page,
1108 clear_bits,
1109 page_ops);
1110 start += cur_alloc_size;
1111 if (start >= end)
1112 goto out;
1113 }
ba8b04c1
QW
1114 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1115 locked_page,
a315e68f
FM
1116 clear_bits | EXTENT_CLEAR_DATA_RESV,
1117 page_ops);
79787eaa 1118 goto out;
771ed689 1119}
c8b97818 1120
771ed689
CM
1121/*
1122 * work queue call back to started compression on a file and pages
1123 */
1124static noinline void async_cow_start(struct btrfs_work *work)
1125{
1126 struct async_cow *async_cow;
1127 int num_added = 0;
1128 async_cow = container_of(work, struct async_cow, work);
1129
1130 compress_file_range(async_cow->inode, async_cow->locked_page,
1131 async_cow->start, async_cow->end, async_cow,
1132 &num_added);
8180ef88 1133 if (num_added == 0) {
cb77fcd8 1134 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1135 async_cow->inode = NULL;
8180ef88 1136 }
771ed689
CM
1137}
1138
1139/*
1140 * work queue call back to submit previously compressed pages
1141 */
1142static noinline void async_cow_submit(struct btrfs_work *work)
1143{
0b246afa 1144 struct btrfs_fs_info *fs_info;
771ed689
CM
1145 struct async_cow *async_cow;
1146 struct btrfs_root *root;
1147 unsigned long nr_pages;
1148
1149 async_cow = container_of(work, struct async_cow, work);
1150
1151 root = async_cow->root;
0b246afa 1152 fs_info = root->fs_info;
09cbfeaf
KS
1153 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1154 PAGE_SHIFT;
771ed689 1155
ee863954
DS
1156 /*
1157 * atomic_sub_return implies a barrier for waitqueue_active
1158 */
0b246afa 1159 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1160 5 * SZ_1M &&
0b246afa
JM
1161 waitqueue_active(&fs_info->async_submit_wait))
1162 wake_up(&fs_info->async_submit_wait);
771ed689 1163
d397712b 1164 if (async_cow->inode)
771ed689 1165 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1166}
c8b97818 1167
771ed689
CM
1168static noinline void async_cow_free(struct btrfs_work *work)
1169{
1170 struct async_cow *async_cow;
1171 async_cow = container_of(work, struct async_cow, work);
8180ef88 1172 if (async_cow->inode)
cb77fcd8 1173 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1174 kfree(async_cow);
1175}
1176
1177static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1178 u64 start, u64 end, int *page_started,
1179 unsigned long *nr_written)
1180{
0b246afa 1181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1182 struct async_cow *async_cow;
1183 struct btrfs_root *root = BTRFS_I(inode)->root;
1184 unsigned long nr_pages;
1185 u64 cur_end;
771ed689 1186
a3429ab7
CM
1187 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1188 1, 0, NULL, GFP_NOFS);
d397712b 1189 while (start < end) {
771ed689 1190 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1191 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1192 async_cow->inode = igrab(inode);
771ed689
CM
1193 async_cow->root = root;
1194 async_cow->locked_page = locked_page;
1195 async_cow->start = start;
1196
f79707b0 1197 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1198 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1199 cur_end = end;
1200 else
ee22184b 1201 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1202
1203 async_cow->end = cur_end;
1204 INIT_LIST_HEAD(&async_cow->extents);
1205
9e0af237
LB
1206 btrfs_init_work(&async_cow->work,
1207 btrfs_delalloc_helper,
1208 async_cow_start, async_cow_submit,
1209 async_cow_free);
771ed689 1210
09cbfeaf
KS
1211 nr_pages = (cur_end - start + PAGE_SIZE) >>
1212 PAGE_SHIFT;
0b246afa 1213 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1214
0b246afa 1215 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1216
0b246afa
JM
1217 while (atomic_read(&fs_info->async_submit_draining) &&
1218 atomic_read(&fs_info->async_delalloc_pages)) {
1219 wait_event(fs_info->async_submit_wait,
1220 (atomic_read(&fs_info->async_delalloc_pages) ==
1221 0));
771ed689
CM
1222 }
1223
1224 *nr_written += nr_pages;
1225 start = cur_end + 1;
1226 }
1227 *page_started = 1;
1228 return 0;
be20aa9d
CM
1229}
1230
2ff7e61e 1231static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1232 u64 bytenr, u64 num_bytes)
1233{
1234 int ret;
1235 struct btrfs_ordered_sum *sums;
1236 LIST_HEAD(list);
1237
0b246afa 1238 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1239 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1240 if (ret == 0 && list_empty(&list))
1241 return 0;
1242
1243 while (!list_empty(&list)) {
1244 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1245 list_del(&sums->list);
1246 kfree(sums);
1247 }
1248 return 1;
1249}
1250
d352ac68
CM
1251/*
1252 * when nowcow writeback call back. This checks for snapshots or COW copies
1253 * of the extents that exist in the file, and COWs the file as required.
1254 *
1255 * If no cow copies or snapshots exist, we write directly to the existing
1256 * blocks on disk
1257 */
7f366cfe
CM
1258static noinline int run_delalloc_nocow(struct inode *inode,
1259 struct page *locked_page,
771ed689
CM
1260 u64 start, u64 end, int *page_started, int force,
1261 unsigned long *nr_written)
be20aa9d 1262{
0b246afa 1263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1264 struct btrfs_root *root = BTRFS_I(inode)->root;
1265 struct extent_buffer *leaf;
be20aa9d 1266 struct btrfs_path *path;
80ff3856 1267 struct btrfs_file_extent_item *fi;
be20aa9d 1268 struct btrfs_key found_key;
6f9994db 1269 struct extent_map *em;
80ff3856
YZ
1270 u64 cow_start;
1271 u64 cur_offset;
1272 u64 extent_end;
5d4f98a2 1273 u64 extent_offset;
80ff3856
YZ
1274 u64 disk_bytenr;
1275 u64 num_bytes;
b4939680 1276 u64 disk_num_bytes;
cc95bef6 1277 u64 ram_bytes;
80ff3856 1278 int extent_type;
79787eaa 1279 int ret, err;
d899e052 1280 int type;
80ff3856
YZ
1281 int nocow;
1282 int check_prev = 1;
82d5902d 1283 bool nolock;
4a0cc7ca 1284 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1285
1286 path = btrfs_alloc_path();
17ca04af 1287 if (!path) {
ba8b04c1
QW
1288 extent_clear_unlock_delalloc(inode, start, end, end,
1289 locked_page,
c2790a2e 1290 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1291 EXTENT_DO_ACCOUNTING |
1292 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1293 PAGE_CLEAR_DIRTY |
1294 PAGE_SET_WRITEBACK |
1295 PAGE_END_WRITEBACK);
d8926bb3 1296 return -ENOMEM;
17ca04af 1297 }
82d5902d 1298
70ddc553 1299 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1300
80ff3856
YZ
1301 cow_start = (u64)-1;
1302 cur_offset = start;
1303 while (1) {
e4c3b2dc 1304 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1305 cur_offset, 0);
d788a349 1306 if (ret < 0)
79787eaa 1307 goto error;
80ff3856
YZ
1308 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1309 leaf = path->nodes[0];
1310 btrfs_item_key_to_cpu(leaf, &found_key,
1311 path->slots[0] - 1);
33345d01 1312 if (found_key.objectid == ino &&
80ff3856
YZ
1313 found_key.type == BTRFS_EXTENT_DATA_KEY)
1314 path->slots[0]--;
1315 }
1316 check_prev = 0;
1317next_slot:
1318 leaf = path->nodes[0];
1319 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1320 ret = btrfs_next_leaf(root, path);
d788a349 1321 if (ret < 0)
79787eaa 1322 goto error;
80ff3856
YZ
1323 if (ret > 0)
1324 break;
1325 leaf = path->nodes[0];
1326 }
be20aa9d 1327
80ff3856
YZ
1328 nocow = 0;
1329 disk_bytenr = 0;
17d217fe 1330 num_bytes = 0;
80ff3856
YZ
1331 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1332
1d512cb7
FM
1333 if (found_key.objectid > ino)
1334 break;
1335 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1336 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1337 path->slots[0]++;
1338 goto next_slot;
1339 }
1340 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1341 found_key.offset > end)
1342 break;
1343
1344 if (found_key.offset > cur_offset) {
1345 extent_end = found_key.offset;
e9061e21 1346 extent_type = 0;
80ff3856
YZ
1347 goto out_check;
1348 }
1349
1350 fi = btrfs_item_ptr(leaf, path->slots[0],
1351 struct btrfs_file_extent_item);
1352 extent_type = btrfs_file_extent_type(leaf, fi);
1353
cc95bef6 1354 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1355 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1356 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1357 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1358 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1359 extent_end = found_key.offset +
1360 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1361 disk_num_bytes =
1362 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1363 if (extent_end <= start) {
1364 path->slots[0]++;
1365 goto next_slot;
1366 }
17d217fe
YZ
1367 if (disk_bytenr == 0)
1368 goto out_check;
80ff3856
YZ
1369 if (btrfs_file_extent_compression(leaf, fi) ||
1370 btrfs_file_extent_encryption(leaf, fi) ||
1371 btrfs_file_extent_other_encoding(leaf, fi))
1372 goto out_check;
d899e052
YZ
1373 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1374 goto out_check;
2ff7e61e 1375 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1376 goto out_check;
e4c3b2dc 1377 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1378 found_key.offset -
1379 extent_offset, disk_bytenr))
17d217fe 1380 goto out_check;
5d4f98a2 1381 disk_bytenr += extent_offset;
17d217fe
YZ
1382 disk_bytenr += cur_offset - found_key.offset;
1383 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1384 /*
1385 * if there are pending snapshots for this root,
1386 * we fall into common COW way.
1387 */
1388 if (!nolock) {
ea14b57f 1389 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1390 if (!err)
1391 goto out_check;
1392 }
17d217fe
YZ
1393 /*
1394 * force cow if csum exists in the range.
1395 * this ensure that csum for a given extent are
1396 * either valid or do not exist.
1397 */
2ff7e61e 1398 if (csum_exist_in_range(fs_info, disk_bytenr,
91e1f56a
RK
1399 num_bytes)) {
1400 if (!nolock)
ea14b57f 1401 btrfs_end_write_no_snapshotting(root);
17d217fe 1402 goto out_check;
91e1f56a
RK
1403 }
1404 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1405 if (!nolock)
ea14b57f 1406 btrfs_end_write_no_snapshotting(root);
f78c436c 1407 goto out_check;
91e1f56a 1408 }
80ff3856
YZ
1409 nocow = 1;
1410 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1411 extent_end = found_key.offset +
514ac8ad
CM
1412 btrfs_file_extent_inline_len(leaf,
1413 path->slots[0], fi);
da17066c 1414 extent_end = ALIGN(extent_end,
0b246afa 1415 fs_info->sectorsize);
80ff3856
YZ
1416 } else {
1417 BUG_ON(1);
1418 }
1419out_check:
1420 if (extent_end <= start) {
1421 path->slots[0]++;
e9894fd3 1422 if (!nolock && nocow)
ea14b57f 1423 btrfs_end_write_no_snapshotting(root);
f78c436c 1424 if (nocow)
0b246afa 1425 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1426 goto next_slot;
1427 }
1428 if (!nocow) {
1429 if (cow_start == (u64)-1)
1430 cow_start = cur_offset;
1431 cur_offset = extent_end;
1432 if (cur_offset > end)
1433 break;
1434 path->slots[0]++;
1435 goto next_slot;
7ea394f1
YZ
1436 }
1437
b3b4aa74 1438 btrfs_release_path(path);
80ff3856 1439 if (cow_start != (u64)-1) {
00361589
JB
1440 ret = cow_file_range(inode, locked_page,
1441 cow_start, found_key.offset - 1,
dda3245e
WX
1442 end, page_started, nr_written, 1,
1443 NULL);
e9894fd3
WS
1444 if (ret) {
1445 if (!nolock && nocow)
ea14b57f 1446 btrfs_end_write_no_snapshotting(root);
f78c436c 1447 if (nocow)
0b246afa 1448 btrfs_dec_nocow_writers(fs_info,
f78c436c 1449 disk_bytenr);
79787eaa 1450 goto error;
e9894fd3 1451 }
80ff3856 1452 cow_start = (u64)-1;
7ea394f1 1453 }
80ff3856 1454
d899e052 1455 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1456 u64 orig_start = found_key.offset - extent_offset;
1457
1458 em = create_io_em(inode, cur_offset, num_bytes,
1459 orig_start,
1460 disk_bytenr, /* block_start */
1461 num_bytes, /* block_len */
1462 disk_num_bytes, /* orig_block_len */
1463 ram_bytes, BTRFS_COMPRESS_NONE,
1464 BTRFS_ORDERED_PREALLOC);
1465 if (IS_ERR(em)) {
1466 if (!nolock && nocow)
ea14b57f 1467 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1468 if (nocow)
1469 btrfs_dec_nocow_writers(fs_info,
1470 disk_bytenr);
1471 ret = PTR_ERR(em);
1472 goto error;
d899e052 1473 }
6f9994db
LB
1474 free_extent_map(em);
1475 }
1476
1477 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1478 type = BTRFS_ORDERED_PREALLOC;
1479 } else {
1480 type = BTRFS_ORDERED_NOCOW;
1481 }
80ff3856
YZ
1482
1483 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1484 num_bytes, num_bytes, type);
f78c436c 1485 if (nocow)
0b246afa 1486 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1487 BUG_ON(ret); /* -ENOMEM */
771ed689 1488
efa56464 1489 if (root->root_key.objectid ==
4dbd80fb
QW
1490 BTRFS_DATA_RELOC_TREE_OBJECTID)
1491 /*
1492 * Error handled later, as we must prevent
1493 * extent_clear_unlock_delalloc() in error handler
1494 * from freeing metadata of created ordered extent.
1495 */
efa56464
YZ
1496 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1497 num_bytes);
efa56464 1498
c2790a2e 1499 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1500 cur_offset + num_bytes - 1, end,
c2790a2e 1501 locked_page, EXTENT_LOCKED |
18513091
WX
1502 EXTENT_DELALLOC |
1503 EXTENT_CLEAR_DATA_RESV,
1504 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1505
e9894fd3 1506 if (!nolock && nocow)
ea14b57f 1507 btrfs_end_write_no_snapshotting(root);
80ff3856 1508 cur_offset = extent_end;
4dbd80fb
QW
1509
1510 /*
1511 * btrfs_reloc_clone_csums() error, now we're OK to call error
1512 * handler, as metadata for created ordered extent will only
1513 * be freed by btrfs_finish_ordered_io().
1514 */
1515 if (ret)
1516 goto error;
80ff3856
YZ
1517 if (cur_offset > end)
1518 break;
be20aa9d 1519 }
b3b4aa74 1520 btrfs_release_path(path);
80ff3856 1521
17ca04af 1522 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1523 cow_start = cur_offset;
17ca04af
JB
1524 cur_offset = end;
1525 }
1526
80ff3856 1527 if (cow_start != (u64)-1) {
dda3245e
WX
1528 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1529 page_started, nr_written, 1, NULL);
d788a349 1530 if (ret)
79787eaa 1531 goto error;
80ff3856
YZ
1532 }
1533
79787eaa 1534error:
17ca04af 1535 if (ret && cur_offset < end)
ba8b04c1 1536 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1537 locked_page, EXTENT_LOCKED |
151a41bc
JB
1538 EXTENT_DELALLOC | EXTENT_DEFRAG |
1539 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1540 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1541 PAGE_SET_WRITEBACK |
1542 PAGE_END_WRITEBACK);
7ea394f1 1543 btrfs_free_path(path);
79787eaa 1544 return ret;
be20aa9d
CM
1545}
1546
47059d93
WS
1547static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1548{
1549
1550 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1551 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1552 return 0;
1553
1554 /*
1555 * @defrag_bytes is a hint value, no spinlock held here,
1556 * if is not zero, it means the file is defragging.
1557 * Force cow if given extent needs to be defragged.
1558 */
1559 if (BTRFS_I(inode)->defrag_bytes &&
1560 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1561 EXTENT_DEFRAG, 0, NULL))
1562 return 1;
1563
1564 return 0;
1565}
1566
d352ac68
CM
1567/*
1568 * extent_io.c call back to do delayed allocation processing
1569 */
c6100a4b 1570static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689
CM
1571 u64 start, u64 end, int *page_started,
1572 unsigned long *nr_written)
be20aa9d 1573{
c6100a4b 1574 struct inode *inode = private_data;
be20aa9d 1575 int ret;
47059d93 1576 int force_cow = need_force_cow(inode, start, end);
a2135011 1577
47059d93 1578 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1579 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1580 page_started, 1, nr_written);
47059d93 1581 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1582 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1583 page_started, 0, nr_written);
c2fcdcdf 1584 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1585 ret = cow_file_range(inode, locked_page, start, end, end,
1586 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1587 } else {
1588 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1589 &BTRFS_I(inode)->runtime_flags);
771ed689 1590 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1591 page_started, nr_written);
7ddf5a42 1592 }
52427260
QW
1593 if (ret)
1594 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1595 return ret;
1596}
1597
c6100a4b 1598static void btrfs_split_extent_hook(void *private_data,
1bf85046 1599 struct extent_state *orig, u64 split)
9ed74f2d 1600{
c6100a4b 1601 struct inode *inode = private_data;
dcab6a3b
JB
1602 u64 size;
1603
0ca1f7ce 1604 /* not delalloc, ignore it */
9ed74f2d 1605 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1606 return;
9ed74f2d 1607
dcab6a3b
JB
1608 size = orig->end - orig->start + 1;
1609 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1610 u32 num_extents;
dcab6a3b
JB
1611 u64 new_size;
1612
1613 /*
ba117213
JB
1614 * See the explanation in btrfs_merge_extent_hook, the same
1615 * applies here, just in reverse.
dcab6a3b
JB
1616 */
1617 new_size = orig->end - split + 1;
823bb20a 1618 num_extents = count_max_extents(new_size);
ba117213 1619 new_size = split - orig->start;
823bb20a
DS
1620 num_extents += count_max_extents(new_size);
1621 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1622 return;
1623 }
1624
9e0baf60
JB
1625 spin_lock(&BTRFS_I(inode)->lock);
1626 BTRFS_I(inode)->outstanding_extents++;
1627 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1628}
1629
1630/*
1631 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1632 * extents so we can keep track of new extents that are just merged onto old
1633 * extents, such as when we are doing sequential writes, so we can properly
1634 * account for the metadata space we'll need.
1635 */
c6100a4b 1636static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1637 struct extent_state *new,
1638 struct extent_state *other)
9ed74f2d 1639{
c6100a4b 1640 struct inode *inode = private_data;
dcab6a3b 1641 u64 new_size, old_size;
823bb20a 1642 u32 num_extents;
dcab6a3b 1643
9ed74f2d
JB
1644 /* not delalloc, ignore it */
1645 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1646 return;
9ed74f2d 1647
8461a3de
JB
1648 if (new->start > other->start)
1649 new_size = new->end - other->start + 1;
1650 else
1651 new_size = other->end - new->start + 1;
dcab6a3b
JB
1652
1653 /* we're not bigger than the max, unreserve the space and go */
1654 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1655 spin_lock(&BTRFS_I(inode)->lock);
1656 BTRFS_I(inode)->outstanding_extents--;
1657 spin_unlock(&BTRFS_I(inode)->lock);
1658 return;
1659 }
1660
1661 /*
ba117213
JB
1662 * We have to add up either side to figure out how many extents were
1663 * accounted for before we merged into one big extent. If the number of
1664 * extents we accounted for is <= the amount we need for the new range
1665 * then we can return, otherwise drop. Think of it like this
1666 *
1667 * [ 4k][MAX_SIZE]
1668 *
1669 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1670 * need 2 outstanding extents, on one side we have 1 and the other side
1671 * we have 1 so they are == and we can return. But in this case
1672 *
1673 * [MAX_SIZE+4k][MAX_SIZE+4k]
1674 *
1675 * Each range on their own accounts for 2 extents, but merged together
1676 * they are only 3 extents worth of accounting, so we need to drop in
1677 * this case.
dcab6a3b 1678 */
ba117213 1679 old_size = other->end - other->start + 1;
823bb20a 1680 num_extents = count_max_extents(old_size);
ba117213 1681 old_size = new->end - new->start + 1;
823bb20a
DS
1682 num_extents += count_max_extents(old_size);
1683 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1684 return;
1685
9e0baf60
JB
1686 spin_lock(&BTRFS_I(inode)->lock);
1687 BTRFS_I(inode)->outstanding_extents--;
1688 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1689}
1690
eb73c1b7
MX
1691static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1692 struct inode *inode)
1693{
0b246afa
JM
1694 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1695
eb73c1b7
MX
1696 spin_lock(&root->delalloc_lock);
1697 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1698 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1699 &root->delalloc_inodes);
1700 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 &BTRFS_I(inode)->runtime_flags);
1702 root->nr_delalloc_inodes++;
1703 if (root->nr_delalloc_inodes == 1) {
0b246afa 1704 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1705 BUG_ON(!list_empty(&root->delalloc_root));
1706 list_add_tail(&root->delalloc_root,
0b246afa
JM
1707 &fs_info->delalloc_roots);
1708 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1709 }
1710 }
1711 spin_unlock(&root->delalloc_lock);
1712}
1713
1714static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1715 struct btrfs_inode *inode)
eb73c1b7 1716{
9e3e97f4 1717 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1718
eb73c1b7 1719 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1720 if (!list_empty(&inode->delalloc_inodes)) {
1721 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1722 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1723 &inode->runtime_flags);
eb73c1b7
MX
1724 root->nr_delalloc_inodes--;
1725 if (!root->nr_delalloc_inodes) {
0b246afa 1726 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1727 BUG_ON(list_empty(&root->delalloc_root));
1728 list_del_init(&root->delalloc_root);
0b246afa 1729 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1730 }
1731 }
1732 spin_unlock(&root->delalloc_lock);
1733}
1734
d352ac68
CM
1735/*
1736 * extent_io.c set_bit_hook, used to track delayed allocation
1737 * bytes in this file, and to maintain the list of inodes that
1738 * have pending delalloc work to be done.
1739 */
c6100a4b 1740static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1741 struct extent_state *state, unsigned *bits)
291d673e 1742{
c6100a4b 1743 struct inode *inode = private_data;
9ed74f2d 1744
0b246afa
JM
1745 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1746
47059d93
WS
1747 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1748 WARN_ON(1);
75eff68e
CM
1749 /*
1750 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1751 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1752 * bit, which is only set or cleared with irqs on
1753 */
0ca1f7ce 1754 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1755 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1756 u64 len = state->end + 1 - state->start;
70ddc553 1757 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1758
9e0baf60 1759 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1760 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1761 } else {
1762 spin_lock(&BTRFS_I(inode)->lock);
1763 BTRFS_I(inode)->outstanding_extents++;
1764 spin_unlock(&BTRFS_I(inode)->lock);
1765 }
287a0ab9 1766
6a3891c5 1767 /* For sanity tests */
0b246afa 1768 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1769 return;
1770
104b4e51
NB
1771 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1772 fs_info->delalloc_batch);
df0af1a5 1773 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1774 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1775 if (*bits & EXTENT_DEFRAG)
1776 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1777 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1778 &BTRFS_I(inode)->runtime_flags))
1779 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1780 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1781 }
a7e3b975
FM
1782
1783 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1784 (*bits & EXTENT_DELALLOC_NEW)) {
1785 spin_lock(&BTRFS_I(inode)->lock);
1786 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1787 state->start;
1788 spin_unlock(&BTRFS_I(inode)->lock);
1789 }
291d673e
CM
1790}
1791
d352ac68
CM
1792/*
1793 * extent_io.c clear_bit_hook, see set_bit_hook for why
1794 */
c6100a4b 1795static void btrfs_clear_bit_hook(void *private_data,
41074888 1796 struct extent_state *state,
9ee49a04 1797 unsigned *bits)
291d673e 1798{
c6100a4b 1799 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1800 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1801 u64 len = state->end + 1 - state->start;
823bb20a 1802 u32 num_extents = count_max_extents(len);
47059d93 1803
4a4b964f
FM
1804 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1805 spin_lock(&inode->lock);
6fc0ef68 1806 inode->defrag_bytes -= len;
4a4b964f
FM
1807 spin_unlock(&inode->lock);
1808 }
47059d93 1809
75eff68e
CM
1810 /*
1811 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1812 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1813 * bit, which is only set or cleared with irqs on
1814 */
0ca1f7ce 1815 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1816 struct btrfs_root *root = inode->root;
83eea1f1 1817 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1818
9e0baf60 1819 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1820 *bits &= ~EXTENT_FIRST_DELALLOC;
a315e68f 1821 } else if (!(*bits & EXTENT_CLEAR_META_RESV)) {
6fc0ef68
NB
1822 spin_lock(&inode->lock);
1823 inode->outstanding_extents -= num_extents;
1824 spin_unlock(&inode->lock);
9e0baf60 1825 }
0ca1f7ce 1826
b6d08f06
JB
1827 /*
1828 * We don't reserve metadata space for space cache inodes so we
1829 * don't need to call dellalloc_release_metadata if there is an
1830 * error.
1831 */
a315e68f 1832 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1833 root != fs_info->tree_root)
0ca1f7ce
YZ
1834 btrfs_delalloc_release_metadata(inode, len);
1835
6a3891c5 1836 /* For sanity tests. */
0b246afa 1837 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1838 return;
1839
a315e68f
FM
1840 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1841 do_list && !(state->state & EXTENT_NORESERVE) &&
1842 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1843 btrfs_free_reserved_data_space_noquota(
1844 &inode->vfs_inode,
51773bec 1845 state->start, len);
9ed74f2d 1846
104b4e51
NB
1847 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1848 fs_info->delalloc_batch);
6fc0ef68
NB
1849 spin_lock(&inode->lock);
1850 inode->delalloc_bytes -= len;
1851 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1852 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1853 &inode->runtime_flags))
eb73c1b7 1854 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1855 spin_unlock(&inode->lock);
291d673e 1856 }
a7e3b975
FM
1857
1858 if ((state->state & EXTENT_DELALLOC_NEW) &&
1859 (*bits & EXTENT_DELALLOC_NEW)) {
1860 spin_lock(&inode->lock);
1861 ASSERT(inode->new_delalloc_bytes >= len);
1862 inode->new_delalloc_bytes -= len;
1863 spin_unlock(&inode->lock);
1864 }
291d673e
CM
1865}
1866
d352ac68
CM
1867/*
1868 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1869 * we don't create bios that span stripes or chunks
6f034ece
LB
1870 *
1871 * return 1 if page cannot be merged to bio
1872 * return 0 if page can be merged to bio
1873 * return error otherwise
d352ac68 1874 */
81a75f67 1875int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1876 size_t size, struct bio *bio,
1877 unsigned long bio_flags)
239b14b3 1878{
0b246afa
JM
1879 struct inode *inode = page->mapping->host;
1880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1881 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1882 u64 length = 0;
1883 u64 map_length;
239b14b3
CM
1884 int ret;
1885
771ed689
CM
1886 if (bio_flags & EXTENT_BIO_COMPRESSED)
1887 return 0;
1888
4f024f37 1889 length = bio->bi_iter.bi_size;
239b14b3 1890 map_length = length;
0b246afa
JM
1891 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1892 NULL, 0);
6f034ece
LB
1893 if (ret < 0)
1894 return ret;
d397712b 1895 if (map_length < length + size)
239b14b3 1896 return 1;
3444a972 1897 return 0;
239b14b3
CM
1898}
1899
d352ac68
CM
1900/*
1901 * in order to insert checksums into the metadata in large chunks,
1902 * we wait until bio submission time. All the pages in the bio are
1903 * checksummed and sums are attached onto the ordered extent record.
1904 *
1905 * At IO completion time the cums attached on the ordered extent record
1906 * are inserted into the btree
1907 */
8c27cb35 1908static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 1909 int mirror_num, unsigned long bio_flags,
eaf25d93 1910 u64 bio_offset)
065631f6 1911{
c6100a4b 1912 struct inode *inode = private_data;
4e4cbee9 1913 blk_status_t ret = 0;
e015640f 1914
2ff7e61e 1915 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1916 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1917 return 0;
1918}
e015640f 1919
4a69a410
CM
1920/*
1921 * in order to insert checksums into the metadata in large chunks,
1922 * we wait until bio submission time. All the pages in the bio are
1923 * checksummed and sums are attached onto the ordered extent record.
1924 *
1925 * At IO completion time the cums attached on the ordered extent record
1926 * are inserted into the btree
1927 */
8c27cb35 1928static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
1929 int mirror_num, unsigned long bio_flags,
1930 u64 bio_offset)
4a69a410 1931{
c6100a4b 1932 struct inode *inode = private_data;
2ff7e61e 1933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1934 blk_status_t ret;
61891923 1935
2ff7e61e 1936 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1937 if (ret) {
4e4cbee9 1938 bio->bi_status = ret;
4246a0b6
CH
1939 bio_endio(bio);
1940 }
61891923 1941 return ret;
44b8bd7e
CM
1942}
1943
d352ac68 1944/*
cad321ad
CM
1945 * extent_io.c submission hook. This does the right thing for csum calculation
1946 * on write, or reading the csums from the tree before a read
d352ac68 1947 */
8c27cb35 1948static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1949 int mirror_num, unsigned long bio_flags,
1950 u64 bio_offset)
44b8bd7e 1951{
c6100a4b 1952 struct inode *inode = private_data;
0b246afa 1953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1954 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1955 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1956 blk_status_t ret = 0;
19b9bdb0 1957 int skip_sum;
b812ce28 1958 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1959
6cbff00f 1960 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1961
70ddc553 1962 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1963 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1964
37226b21 1965 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1966 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1967 if (ret)
61891923 1968 goto out;
5fd02043 1969
d20f7043 1970 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1971 ret = btrfs_submit_compressed_read(inode, bio,
1972 mirror_num,
1973 bio_flags);
1974 goto out;
c2db1073 1975 } else if (!skip_sum) {
2ff7e61e 1976 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1977 if (ret)
61891923 1978 goto out;
c2db1073 1979 }
4d1b5fb4 1980 goto mapit;
b812ce28 1981 } else if (async && !skip_sum) {
17d217fe
YZ
1982 /* csum items have already been cloned */
1983 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1984 goto mapit;
19b9bdb0 1985 /* we're doing a write, do the async checksumming */
c6100a4b
JB
1986 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1987 bio_offset, inode,
0b246afa
JM
1988 __btrfs_submit_bio_start,
1989 __btrfs_submit_bio_done);
61891923 1990 goto out;
b812ce28 1991 } else if (!skip_sum) {
2ff7e61e 1992 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
1993 if (ret)
1994 goto out;
19b9bdb0
CM
1995 }
1996
0b86a832 1997mapit:
2ff7e61e 1998 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
1999
2000out:
4e4cbee9
CH
2001 if (ret) {
2002 bio->bi_status = ret;
4246a0b6
CH
2003 bio_endio(bio);
2004 }
61891923 2005 return ret;
065631f6 2006}
6885f308 2007
d352ac68
CM
2008/*
2009 * given a list of ordered sums record them in the inode. This happens
2010 * at IO completion time based on sums calculated at bio submission time.
2011 */
ba1da2f4 2012static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2013 struct inode *inode, struct list_head *list)
e6dcd2dc 2014{
e6dcd2dc
CM
2015 struct btrfs_ordered_sum *sum;
2016
c6e30871 2017 list_for_each_entry(sum, list, list) {
39847c4d 2018 trans->adding_csums = 1;
d20f7043
CM
2019 btrfs_csum_file_blocks(trans,
2020 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 2021 trans->adding_csums = 0;
e6dcd2dc
CM
2022 }
2023 return 0;
2024}
2025
2ac55d41 2026int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
ba8b04c1 2027 struct extent_state **cached_state, int dedupe)
ea8c2819 2028{
09cbfeaf 2029 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2030 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 2031 cached_state);
ea8c2819
CM
2032}
2033
d352ac68 2034/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2035struct btrfs_writepage_fixup {
2036 struct page *page;
2037 struct btrfs_work work;
2038};
2039
b2950863 2040static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2041{
2042 struct btrfs_writepage_fixup *fixup;
2043 struct btrfs_ordered_extent *ordered;
2ac55d41 2044 struct extent_state *cached_state = NULL;
364ecf36 2045 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2046 struct page *page;
2047 struct inode *inode;
2048 u64 page_start;
2049 u64 page_end;
87826df0 2050 int ret;
247e743c
CM
2051
2052 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2053 page = fixup->page;
4a096752 2054again:
247e743c
CM
2055 lock_page(page);
2056 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2057 ClearPageChecked(page);
2058 goto out_page;
2059 }
2060
2061 inode = page->mapping->host;
2062 page_start = page_offset(page);
09cbfeaf 2063 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2064
ff13db41 2065 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2066 &cached_state);
4a096752
CM
2067
2068 /* already ordered? We're done */
8b62b72b 2069 if (PagePrivate2(page))
247e743c 2070 goto out;
4a096752 2071
a776c6fa 2072 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2073 PAGE_SIZE);
4a096752 2074 if (ordered) {
2ac55d41
JB
2075 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2076 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2077 unlock_page(page);
2078 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2079 btrfs_put_ordered_extent(ordered);
4a096752
CM
2080 goto again;
2081 }
247e743c 2082
364ecf36 2083 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2084 PAGE_SIZE);
87826df0
JM
2085 if (ret) {
2086 mapping_set_error(page->mapping, ret);
2087 end_extent_writepage(page, ret, page_start, page_end);
2088 ClearPageChecked(page);
2089 goto out;
2090 }
2091
ba8b04c1
QW
2092 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2093 0);
247e743c 2094 ClearPageChecked(page);
87826df0 2095 set_page_dirty(page);
247e743c 2096out:
2ac55d41
JB
2097 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2098 &cached_state, GFP_NOFS);
247e743c
CM
2099out_page:
2100 unlock_page(page);
09cbfeaf 2101 put_page(page);
b897abec 2102 kfree(fixup);
364ecf36 2103 extent_changeset_free(data_reserved);
247e743c
CM
2104}
2105
2106/*
2107 * There are a few paths in the higher layers of the kernel that directly
2108 * set the page dirty bit without asking the filesystem if it is a
2109 * good idea. This causes problems because we want to make sure COW
2110 * properly happens and the data=ordered rules are followed.
2111 *
c8b97818 2112 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2113 * hasn't been properly setup for IO. We kick off an async process
2114 * to fix it up. The async helper will wait for ordered extents, set
2115 * the delalloc bit and make it safe to write the page.
2116 */
b2950863 2117static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2118{
2119 struct inode *inode = page->mapping->host;
0b246afa 2120 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2121 struct btrfs_writepage_fixup *fixup;
247e743c 2122
8b62b72b
CM
2123 /* this page is properly in the ordered list */
2124 if (TestClearPagePrivate2(page))
247e743c
CM
2125 return 0;
2126
2127 if (PageChecked(page))
2128 return -EAGAIN;
2129
2130 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2131 if (!fixup)
2132 return -EAGAIN;
f421950f 2133
247e743c 2134 SetPageChecked(page);
09cbfeaf 2135 get_page(page);
9e0af237
LB
2136 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2137 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2138 fixup->page = page;
0b246afa 2139 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2140 return -EBUSY;
247e743c
CM
2141}
2142
d899e052
YZ
2143static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2144 struct inode *inode, u64 file_pos,
2145 u64 disk_bytenr, u64 disk_num_bytes,
2146 u64 num_bytes, u64 ram_bytes,
2147 u8 compression, u8 encryption,
2148 u16 other_encoding, int extent_type)
2149{
2150 struct btrfs_root *root = BTRFS_I(inode)->root;
2151 struct btrfs_file_extent_item *fi;
2152 struct btrfs_path *path;
2153 struct extent_buffer *leaf;
2154 struct btrfs_key ins;
a12b877b 2155 u64 qg_released;
1acae57b 2156 int extent_inserted = 0;
d899e052
YZ
2157 int ret;
2158
2159 path = btrfs_alloc_path();
d8926bb3
MF
2160 if (!path)
2161 return -ENOMEM;
d899e052 2162
a1ed835e
CM
2163 /*
2164 * we may be replacing one extent in the tree with another.
2165 * The new extent is pinned in the extent map, and we don't want
2166 * to drop it from the cache until it is completely in the btree.
2167 *
2168 * So, tell btrfs_drop_extents to leave this extent in the cache.
2169 * the caller is expected to unpin it and allow it to be merged
2170 * with the others.
2171 */
1acae57b
FDBM
2172 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2173 file_pos + num_bytes, NULL, 0,
2174 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2175 if (ret)
2176 goto out;
d899e052 2177
1acae57b 2178 if (!extent_inserted) {
4a0cc7ca 2179 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2180 ins.offset = file_pos;
2181 ins.type = BTRFS_EXTENT_DATA_KEY;
2182
2183 path->leave_spinning = 1;
2184 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2185 sizeof(*fi));
2186 if (ret)
2187 goto out;
2188 }
d899e052
YZ
2189 leaf = path->nodes[0];
2190 fi = btrfs_item_ptr(leaf, path->slots[0],
2191 struct btrfs_file_extent_item);
2192 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2193 btrfs_set_file_extent_type(leaf, fi, extent_type);
2194 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2195 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2196 btrfs_set_file_extent_offset(leaf, fi, 0);
2197 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2198 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2199 btrfs_set_file_extent_compression(leaf, fi, compression);
2200 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2201 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2202
d899e052 2203 btrfs_mark_buffer_dirty(leaf);
ce195332 2204 btrfs_release_path(path);
d899e052
YZ
2205
2206 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2207
2208 ins.objectid = disk_bytenr;
2209 ins.offset = disk_num_bytes;
2210 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2211
297d750b 2212 /*
5846a3c2
QW
2213 * Release the reserved range from inode dirty range map, as it is
2214 * already moved into delayed_ref_head
297d750b 2215 */
a12b877b
QW
2216 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2217 if (ret < 0)
2218 goto out;
2219 qg_released = ret;
2220 ret = btrfs_alloc_reserved_file_extent(trans, root->root_key.objectid,
2221 btrfs_ino(BTRFS_I(inode)), file_pos, qg_released, &ins);
79787eaa 2222out:
d899e052 2223 btrfs_free_path(path);
b9473439 2224
79787eaa 2225 return ret;
d899e052
YZ
2226}
2227
38c227d8
LB
2228/* snapshot-aware defrag */
2229struct sa_defrag_extent_backref {
2230 struct rb_node node;
2231 struct old_sa_defrag_extent *old;
2232 u64 root_id;
2233 u64 inum;
2234 u64 file_pos;
2235 u64 extent_offset;
2236 u64 num_bytes;
2237 u64 generation;
2238};
2239
2240struct old_sa_defrag_extent {
2241 struct list_head list;
2242 struct new_sa_defrag_extent *new;
2243
2244 u64 extent_offset;
2245 u64 bytenr;
2246 u64 offset;
2247 u64 len;
2248 int count;
2249};
2250
2251struct new_sa_defrag_extent {
2252 struct rb_root root;
2253 struct list_head head;
2254 struct btrfs_path *path;
2255 struct inode *inode;
2256 u64 file_pos;
2257 u64 len;
2258 u64 bytenr;
2259 u64 disk_len;
2260 u8 compress_type;
2261};
2262
2263static int backref_comp(struct sa_defrag_extent_backref *b1,
2264 struct sa_defrag_extent_backref *b2)
2265{
2266 if (b1->root_id < b2->root_id)
2267 return -1;
2268 else if (b1->root_id > b2->root_id)
2269 return 1;
2270
2271 if (b1->inum < b2->inum)
2272 return -1;
2273 else if (b1->inum > b2->inum)
2274 return 1;
2275
2276 if (b1->file_pos < b2->file_pos)
2277 return -1;
2278 else if (b1->file_pos > b2->file_pos)
2279 return 1;
2280
2281 /*
2282 * [------------------------------] ===> (a range of space)
2283 * |<--->| |<---->| =============> (fs/file tree A)
2284 * |<---------------------------->| ===> (fs/file tree B)
2285 *
2286 * A range of space can refer to two file extents in one tree while
2287 * refer to only one file extent in another tree.
2288 *
2289 * So we may process a disk offset more than one time(two extents in A)
2290 * and locate at the same extent(one extent in B), then insert two same
2291 * backrefs(both refer to the extent in B).
2292 */
2293 return 0;
2294}
2295
2296static void backref_insert(struct rb_root *root,
2297 struct sa_defrag_extent_backref *backref)
2298{
2299 struct rb_node **p = &root->rb_node;
2300 struct rb_node *parent = NULL;
2301 struct sa_defrag_extent_backref *entry;
2302 int ret;
2303
2304 while (*p) {
2305 parent = *p;
2306 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2307
2308 ret = backref_comp(backref, entry);
2309 if (ret < 0)
2310 p = &(*p)->rb_left;
2311 else
2312 p = &(*p)->rb_right;
2313 }
2314
2315 rb_link_node(&backref->node, parent, p);
2316 rb_insert_color(&backref->node, root);
2317}
2318
2319/*
2320 * Note the backref might has changed, and in this case we just return 0.
2321 */
2322static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2323 void *ctx)
2324{
2325 struct btrfs_file_extent_item *extent;
38c227d8
LB
2326 struct old_sa_defrag_extent *old = ctx;
2327 struct new_sa_defrag_extent *new = old->new;
2328 struct btrfs_path *path = new->path;
2329 struct btrfs_key key;
2330 struct btrfs_root *root;
2331 struct sa_defrag_extent_backref *backref;
2332 struct extent_buffer *leaf;
2333 struct inode *inode = new->inode;
0b246afa 2334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2335 int slot;
2336 int ret;
2337 u64 extent_offset;
2338 u64 num_bytes;
2339
2340 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2341 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2342 return 0;
2343
2344 key.objectid = root_id;
2345 key.type = BTRFS_ROOT_ITEM_KEY;
2346 key.offset = (u64)-1;
2347
38c227d8
LB
2348 root = btrfs_read_fs_root_no_name(fs_info, &key);
2349 if (IS_ERR(root)) {
2350 if (PTR_ERR(root) == -ENOENT)
2351 return 0;
2352 WARN_ON(1);
ab8d0fc4 2353 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2354 inum, offset, root_id);
2355 return PTR_ERR(root);
2356 }
2357
2358 key.objectid = inum;
2359 key.type = BTRFS_EXTENT_DATA_KEY;
2360 if (offset > (u64)-1 << 32)
2361 key.offset = 0;
2362 else
2363 key.offset = offset;
2364
2365 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2366 if (WARN_ON(ret < 0))
38c227d8 2367 return ret;
50f1319c 2368 ret = 0;
38c227d8
LB
2369
2370 while (1) {
2371 cond_resched();
2372
2373 leaf = path->nodes[0];
2374 slot = path->slots[0];
2375
2376 if (slot >= btrfs_header_nritems(leaf)) {
2377 ret = btrfs_next_leaf(root, path);
2378 if (ret < 0) {
2379 goto out;
2380 } else if (ret > 0) {
2381 ret = 0;
2382 goto out;
2383 }
2384 continue;
2385 }
2386
2387 path->slots[0]++;
2388
2389 btrfs_item_key_to_cpu(leaf, &key, slot);
2390
2391 if (key.objectid > inum)
2392 goto out;
2393
2394 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2395 continue;
2396
2397 extent = btrfs_item_ptr(leaf, slot,
2398 struct btrfs_file_extent_item);
2399
2400 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2401 continue;
2402
e68afa49
LB
2403 /*
2404 * 'offset' refers to the exact key.offset,
2405 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2406 * (key.offset - extent_offset).
2407 */
2408 if (key.offset != offset)
38c227d8
LB
2409 continue;
2410
e68afa49 2411 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2412 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2413
38c227d8
LB
2414 if (extent_offset >= old->extent_offset + old->offset +
2415 old->len || extent_offset + num_bytes <=
2416 old->extent_offset + old->offset)
2417 continue;
38c227d8
LB
2418 break;
2419 }
2420
2421 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2422 if (!backref) {
2423 ret = -ENOENT;
2424 goto out;
2425 }
2426
2427 backref->root_id = root_id;
2428 backref->inum = inum;
e68afa49 2429 backref->file_pos = offset;
38c227d8
LB
2430 backref->num_bytes = num_bytes;
2431 backref->extent_offset = extent_offset;
2432 backref->generation = btrfs_file_extent_generation(leaf, extent);
2433 backref->old = old;
2434 backref_insert(&new->root, backref);
2435 old->count++;
2436out:
2437 btrfs_release_path(path);
2438 WARN_ON(ret);
2439 return ret;
2440}
2441
2442static noinline bool record_extent_backrefs(struct btrfs_path *path,
2443 struct new_sa_defrag_extent *new)
2444{
0b246afa 2445 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2446 struct old_sa_defrag_extent *old, *tmp;
2447 int ret;
2448
2449 new->path = path;
2450
2451 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2452 ret = iterate_inodes_from_logical(old->bytenr +
2453 old->extent_offset, fs_info,
38c227d8
LB
2454 path, record_one_backref,
2455 old);
4724b106
JB
2456 if (ret < 0 && ret != -ENOENT)
2457 return false;
38c227d8
LB
2458
2459 /* no backref to be processed for this extent */
2460 if (!old->count) {
2461 list_del(&old->list);
2462 kfree(old);
2463 }
2464 }
2465
2466 if (list_empty(&new->head))
2467 return false;
2468
2469 return true;
2470}
2471
2472static int relink_is_mergable(struct extent_buffer *leaf,
2473 struct btrfs_file_extent_item *fi,
116e0024 2474 struct new_sa_defrag_extent *new)
38c227d8 2475{
116e0024 2476 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2477 return 0;
2478
2479 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2480 return 0;
2481
116e0024
LB
2482 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2483 return 0;
2484
2485 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2486 btrfs_file_extent_other_encoding(leaf, fi))
2487 return 0;
2488
2489 return 1;
2490}
2491
2492/*
2493 * Note the backref might has changed, and in this case we just return 0.
2494 */
2495static noinline int relink_extent_backref(struct btrfs_path *path,
2496 struct sa_defrag_extent_backref *prev,
2497 struct sa_defrag_extent_backref *backref)
2498{
2499 struct btrfs_file_extent_item *extent;
2500 struct btrfs_file_extent_item *item;
2501 struct btrfs_ordered_extent *ordered;
2502 struct btrfs_trans_handle *trans;
38c227d8
LB
2503 struct btrfs_root *root;
2504 struct btrfs_key key;
2505 struct extent_buffer *leaf;
2506 struct old_sa_defrag_extent *old = backref->old;
2507 struct new_sa_defrag_extent *new = old->new;
0b246afa 2508 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2509 struct inode *inode;
2510 struct extent_state *cached = NULL;
2511 int ret = 0;
2512 u64 start;
2513 u64 len;
2514 u64 lock_start;
2515 u64 lock_end;
2516 bool merge = false;
2517 int index;
2518
2519 if (prev && prev->root_id == backref->root_id &&
2520 prev->inum == backref->inum &&
2521 prev->file_pos + prev->num_bytes == backref->file_pos)
2522 merge = true;
2523
2524 /* step 1: get root */
2525 key.objectid = backref->root_id;
2526 key.type = BTRFS_ROOT_ITEM_KEY;
2527 key.offset = (u64)-1;
2528
38c227d8
LB
2529 index = srcu_read_lock(&fs_info->subvol_srcu);
2530
2531 root = btrfs_read_fs_root_no_name(fs_info, &key);
2532 if (IS_ERR(root)) {
2533 srcu_read_unlock(&fs_info->subvol_srcu, index);
2534 if (PTR_ERR(root) == -ENOENT)
2535 return 0;
2536 return PTR_ERR(root);
2537 }
38c227d8 2538
bcbba5e6
WS
2539 if (btrfs_root_readonly(root)) {
2540 srcu_read_unlock(&fs_info->subvol_srcu, index);
2541 return 0;
2542 }
2543
38c227d8
LB
2544 /* step 2: get inode */
2545 key.objectid = backref->inum;
2546 key.type = BTRFS_INODE_ITEM_KEY;
2547 key.offset = 0;
2548
2549 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2550 if (IS_ERR(inode)) {
2551 srcu_read_unlock(&fs_info->subvol_srcu, index);
2552 return 0;
2553 }
2554
2555 srcu_read_unlock(&fs_info->subvol_srcu, index);
2556
2557 /* step 3: relink backref */
2558 lock_start = backref->file_pos;
2559 lock_end = backref->file_pos + backref->num_bytes - 1;
2560 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2561 &cached);
38c227d8
LB
2562
2563 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2564 if (ordered) {
2565 btrfs_put_ordered_extent(ordered);
2566 goto out_unlock;
2567 }
2568
2569 trans = btrfs_join_transaction(root);
2570 if (IS_ERR(trans)) {
2571 ret = PTR_ERR(trans);
2572 goto out_unlock;
2573 }
2574
2575 key.objectid = backref->inum;
2576 key.type = BTRFS_EXTENT_DATA_KEY;
2577 key.offset = backref->file_pos;
2578
2579 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2580 if (ret < 0) {
2581 goto out_free_path;
2582 } else if (ret > 0) {
2583 ret = 0;
2584 goto out_free_path;
2585 }
2586
2587 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2588 struct btrfs_file_extent_item);
2589
2590 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2591 backref->generation)
2592 goto out_free_path;
2593
2594 btrfs_release_path(path);
2595
2596 start = backref->file_pos;
2597 if (backref->extent_offset < old->extent_offset + old->offset)
2598 start += old->extent_offset + old->offset -
2599 backref->extent_offset;
2600
2601 len = min(backref->extent_offset + backref->num_bytes,
2602 old->extent_offset + old->offset + old->len);
2603 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2604
2605 ret = btrfs_drop_extents(trans, root, inode, start,
2606 start + len, 1);
2607 if (ret)
2608 goto out_free_path;
2609again:
4a0cc7ca 2610 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2611 key.type = BTRFS_EXTENT_DATA_KEY;
2612 key.offset = start;
2613
a09a0a70 2614 path->leave_spinning = 1;
38c227d8
LB
2615 if (merge) {
2616 struct btrfs_file_extent_item *fi;
2617 u64 extent_len;
2618 struct btrfs_key found_key;
2619
3c9665df 2620 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2621 if (ret < 0)
2622 goto out_free_path;
2623
2624 path->slots[0]--;
2625 leaf = path->nodes[0];
2626 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2627
2628 fi = btrfs_item_ptr(leaf, path->slots[0],
2629 struct btrfs_file_extent_item);
2630 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2631
116e0024
LB
2632 if (extent_len + found_key.offset == start &&
2633 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2634 btrfs_set_file_extent_num_bytes(leaf, fi,
2635 extent_len + len);
2636 btrfs_mark_buffer_dirty(leaf);
2637 inode_add_bytes(inode, len);
2638
2639 ret = 1;
2640 goto out_free_path;
2641 } else {
2642 merge = false;
2643 btrfs_release_path(path);
2644 goto again;
2645 }
2646 }
2647
2648 ret = btrfs_insert_empty_item(trans, root, path, &key,
2649 sizeof(*extent));
2650 if (ret) {
66642832 2651 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2652 goto out_free_path;
2653 }
2654
2655 leaf = path->nodes[0];
2656 item = btrfs_item_ptr(leaf, path->slots[0],
2657 struct btrfs_file_extent_item);
2658 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2659 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2660 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2661 btrfs_set_file_extent_num_bytes(leaf, item, len);
2662 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2663 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2664 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2665 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2666 btrfs_set_file_extent_encryption(leaf, item, 0);
2667 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2668
2669 btrfs_mark_buffer_dirty(leaf);
2670 inode_add_bytes(inode, len);
a09a0a70 2671 btrfs_release_path(path);
38c227d8 2672
2ff7e61e 2673 ret = btrfs_inc_extent_ref(trans, fs_info, new->bytenr,
38c227d8
LB
2674 new->disk_len, 0,
2675 backref->root_id, backref->inum,
b06c4bf5 2676 new->file_pos); /* start - extent_offset */
38c227d8 2677 if (ret) {
66642832 2678 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2679 goto out_free_path;
2680 }
2681
2682 ret = 1;
2683out_free_path:
2684 btrfs_release_path(path);
a09a0a70 2685 path->leave_spinning = 0;
3a45bb20 2686 btrfs_end_transaction(trans);
38c227d8
LB
2687out_unlock:
2688 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2689 &cached, GFP_NOFS);
2690 iput(inode);
2691 return ret;
2692}
2693
6f519564
LB
2694static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2695{
2696 struct old_sa_defrag_extent *old, *tmp;
2697
2698 if (!new)
2699 return;
2700
2701 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2702 kfree(old);
2703 }
2704 kfree(new);
2705}
2706
38c227d8
LB
2707static void relink_file_extents(struct new_sa_defrag_extent *new)
2708{
0b246afa 2709 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2710 struct btrfs_path *path;
38c227d8
LB
2711 struct sa_defrag_extent_backref *backref;
2712 struct sa_defrag_extent_backref *prev = NULL;
2713 struct inode *inode;
2714 struct btrfs_root *root;
2715 struct rb_node *node;
2716 int ret;
2717
2718 inode = new->inode;
2719 root = BTRFS_I(inode)->root;
2720
2721 path = btrfs_alloc_path();
2722 if (!path)
2723 return;
2724
2725 if (!record_extent_backrefs(path, new)) {
2726 btrfs_free_path(path);
2727 goto out;
2728 }
2729 btrfs_release_path(path);
2730
2731 while (1) {
2732 node = rb_first(&new->root);
2733 if (!node)
2734 break;
2735 rb_erase(node, &new->root);
2736
2737 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2738
2739 ret = relink_extent_backref(path, prev, backref);
2740 WARN_ON(ret < 0);
2741
2742 kfree(prev);
2743
2744 if (ret == 1)
2745 prev = backref;
2746 else
2747 prev = NULL;
2748 cond_resched();
2749 }
2750 kfree(prev);
2751
2752 btrfs_free_path(path);
38c227d8 2753out:
6f519564
LB
2754 free_sa_defrag_extent(new);
2755
0b246afa
JM
2756 atomic_dec(&fs_info->defrag_running);
2757 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2758}
2759
2760static struct new_sa_defrag_extent *
2761record_old_file_extents(struct inode *inode,
2762 struct btrfs_ordered_extent *ordered)
2763{
0b246afa 2764 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2765 struct btrfs_root *root = BTRFS_I(inode)->root;
2766 struct btrfs_path *path;
2767 struct btrfs_key key;
6f519564 2768 struct old_sa_defrag_extent *old;
38c227d8
LB
2769 struct new_sa_defrag_extent *new;
2770 int ret;
2771
2772 new = kmalloc(sizeof(*new), GFP_NOFS);
2773 if (!new)
2774 return NULL;
2775
2776 new->inode = inode;
2777 new->file_pos = ordered->file_offset;
2778 new->len = ordered->len;
2779 new->bytenr = ordered->start;
2780 new->disk_len = ordered->disk_len;
2781 new->compress_type = ordered->compress_type;
2782 new->root = RB_ROOT;
2783 INIT_LIST_HEAD(&new->head);
2784
2785 path = btrfs_alloc_path();
2786 if (!path)
2787 goto out_kfree;
2788
4a0cc7ca 2789 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2790 key.type = BTRFS_EXTENT_DATA_KEY;
2791 key.offset = new->file_pos;
2792
2793 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2794 if (ret < 0)
2795 goto out_free_path;
2796 if (ret > 0 && path->slots[0] > 0)
2797 path->slots[0]--;
2798
2799 /* find out all the old extents for the file range */
2800 while (1) {
2801 struct btrfs_file_extent_item *extent;
2802 struct extent_buffer *l;
2803 int slot;
2804 u64 num_bytes;
2805 u64 offset;
2806 u64 end;
2807 u64 disk_bytenr;
2808 u64 extent_offset;
2809
2810 l = path->nodes[0];
2811 slot = path->slots[0];
2812
2813 if (slot >= btrfs_header_nritems(l)) {
2814 ret = btrfs_next_leaf(root, path);
2815 if (ret < 0)
6f519564 2816 goto out_free_path;
38c227d8
LB
2817 else if (ret > 0)
2818 break;
2819 continue;
2820 }
2821
2822 btrfs_item_key_to_cpu(l, &key, slot);
2823
4a0cc7ca 2824 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2825 break;
2826 if (key.type != BTRFS_EXTENT_DATA_KEY)
2827 break;
2828 if (key.offset >= new->file_pos + new->len)
2829 break;
2830
2831 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2832
2833 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2834 if (key.offset + num_bytes < new->file_pos)
2835 goto next;
2836
2837 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2838 if (!disk_bytenr)
2839 goto next;
2840
2841 extent_offset = btrfs_file_extent_offset(l, extent);
2842
2843 old = kmalloc(sizeof(*old), GFP_NOFS);
2844 if (!old)
6f519564 2845 goto out_free_path;
38c227d8
LB
2846
2847 offset = max(new->file_pos, key.offset);
2848 end = min(new->file_pos + new->len, key.offset + num_bytes);
2849
2850 old->bytenr = disk_bytenr;
2851 old->extent_offset = extent_offset;
2852 old->offset = offset - key.offset;
2853 old->len = end - offset;
2854 old->new = new;
2855 old->count = 0;
2856 list_add_tail(&old->list, &new->head);
2857next:
2858 path->slots[0]++;
2859 cond_resched();
2860 }
2861
2862 btrfs_free_path(path);
0b246afa 2863 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2864
2865 return new;
2866
38c227d8
LB
2867out_free_path:
2868 btrfs_free_path(path);
2869out_kfree:
6f519564 2870 free_sa_defrag_extent(new);
38c227d8
LB
2871 return NULL;
2872}
2873
2ff7e61e 2874static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2875 u64 start, u64 len)
2876{
2877 struct btrfs_block_group_cache *cache;
2878
0b246afa 2879 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2880 ASSERT(cache);
2881
2882 spin_lock(&cache->lock);
2883 cache->delalloc_bytes -= len;
2884 spin_unlock(&cache->lock);
2885
2886 btrfs_put_block_group(cache);
2887}
2888
d352ac68
CM
2889/* as ordered data IO finishes, this gets called so we can finish
2890 * an ordered extent if the range of bytes in the file it covers are
2891 * fully written.
2892 */
5fd02043 2893static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2894{
5fd02043 2895 struct inode *inode = ordered_extent->inode;
0b246afa 2896 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2897 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2898 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2899 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2900 struct extent_state *cached_state = NULL;
38c227d8 2901 struct new_sa_defrag_extent *new = NULL;
261507a0 2902 int compress_type = 0;
77cef2ec
JB
2903 int ret = 0;
2904 u64 logical_len = ordered_extent->len;
82d5902d 2905 bool nolock;
77cef2ec 2906 bool truncated = false;
a7e3b975
FM
2907 bool range_locked = false;
2908 bool clear_new_delalloc_bytes = false;
2909
2910 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2911 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2912 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2913 clear_new_delalloc_bytes = true;
e6dcd2dc 2914
70ddc553 2915 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2916
5fd02043
JB
2917 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2918 ret = -EIO;
2919 goto out;
2920 }
2921
7ab7956e
NB
2922 btrfs_free_io_failure_record(BTRFS_I(inode),
2923 ordered_extent->file_offset,
2924 ordered_extent->file_offset +
2925 ordered_extent->len - 1);
f612496b 2926
77cef2ec
JB
2927 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2928 truncated = true;
2929 logical_len = ordered_extent->truncated_len;
2930 /* Truncated the entire extent, don't bother adding */
2931 if (!logical_len)
2932 goto out;
2933 }
2934
c2167754 2935 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2936 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2937
2938 /*
2939 * For mwrite(mmap + memset to write) case, we still reserve
2940 * space for NOCOW range.
2941 * As NOCOW won't cause a new delayed ref, just free the space
2942 */
bc42bda2 2943 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2944 ordered_extent->len);
6c760c07
JB
2945 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2946 if (nolock)
2947 trans = btrfs_join_transaction_nolock(root);
2948 else
2949 trans = btrfs_join_transaction(root);
2950 if (IS_ERR(trans)) {
2951 ret = PTR_ERR(trans);
2952 trans = NULL;
2953 goto out;
c2167754 2954 }
0b246afa 2955 trans->block_rsv = &fs_info->delalloc_block_rsv;
6c760c07
JB
2956 ret = btrfs_update_inode_fallback(trans, root, inode);
2957 if (ret) /* -ENOMEM or corruption */
66642832 2958 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2959 goto out;
2960 }
e6dcd2dc 2961
a7e3b975 2962 range_locked = true;
2ac55d41
JB
2963 lock_extent_bits(io_tree, ordered_extent->file_offset,
2964 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2965 &cached_state);
e6dcd2dc 2966
38c227d8
LB
2967 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2968 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 2969 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
2970 if (ret) {
2971 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2972 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2973 /* the inode is shared */
2974 new = record_old_file_extents(inode, ordered_extent);
2975
2976 clear_extent_bit(io_tree, ordered_extent->file_offset,
2977 ordered_extent->file_offset + ordered_extent->len - 1,
2978 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2979 }
2980
0cb59c99 2981 if (nolock)
7a7eaa40 2982 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2983 else
7a7eaa40 2984 trans = btrfs_join_transaction(root);
79787eaa
JM
2985 if (IS_ERR(trans)) {
2986 ret = PTR_ERR(trans);
2987 trans = NULL;
a7e3b975 2988 goto out;
79787eaa 2989 }
a79b7d4b 2990
0b246afa 2991 trans->block_rsv = &fs_info->delalloc_block_rsv;
c2167754 2992
c8b97818 2993 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2994 compress_type = ordered_extent->compress_type;
d899e052 2995 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2996 BUG_ON(compress_type);
7a6d7067 2997 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
2998 ordered_extent->file_offset,
2999 ordered_extent->file_offset +
77cef2ec 3000 logical_len);
d899e052 3001 } else {
0b246afa 3002 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3003 ret = insert_reserved_file_extent(trans, inode,
3004 ordered_extent->file_offset,
3005 ordered_extent->start,
3006 ordered_extent->disk_len,
77cef2ec 3007 logical_len, logical_len,
261507a0 3008 compress_type, 0, 0,
d899e052 3009 BTRFS_FILE_EXTENT_REG);
e570fd27 3010 if (!ret)
2ff7e61e 3011 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3012 ordered_extent->start,
3013 ordered_extent->disk_len);
d899e052 3014 }
5dc562c5
JB
3015 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3016 ordered_extent->file_offset, ordered_extent->len,
3017 trans->transid);
79787eaa 3018 if (ret < 0) {
66642832 3019 btrfs_abort_transaction(trans, ret);
a7e3b975 3020 goto out;
79787eaa 3021 }
2ac55d41 3022
df9f628e 3023 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 3024
6c760c07
JB
3025 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3026 ret = btrfs_update_inode_fallback(trans, root, inode);
3027 if (ret) { /* -ENOMEM or corruption */
66642832 3028 btrfs_abort_transaction(trans, ret);
a7e3b975 3029 goto out;
1ef30be1
JB
3030 }
3031 ret = 0;
c2167754 3032out:
a7e3b975
FM
3033 if (range_locked || clear_new_delalloc_bytes) {
3034 unsigned int clear_bits = 0;
3035
3036 if (range_locked)
3037 clear_bits |= EXTENT_LOCKED;
3038 if (clear_new_delalloc_bytes)
3039 clear_bits |= EXTENT_DELALLOC_NEW;
3040 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3041 ordered_extent->file_offset,
3042 ordered_extent->file_offset +
3043 ordered_extent->len - 1,
3044 clear_bits,
3045 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3046 0, &cached_state, GFP_NOFS);
3047 }
3048
0b246afa 3049 if (root != fs_info->tree_root)
691fa059
NB
3050 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3051 ordered_extent->len);
a698d075 3052 if (trans)
3a45bb20 3053 btrfs_end_transaction(trans);
0cb59c99 3054
77cef2ec
JB
3055 if (ret || truncated) {
3056 u64 start, end;
3057
3058 if (truncated)
3059 start = ordered_extent->file_offset + logical_len;
3060 else
3061 start = ordered_extent->file_offset;
3062 end = ordered_extent->file_offset + ordered_extent->len - 1;
3063 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3064
3065 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3066 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3067
0bec9ef5
JB
3068 /*
3069 * If the ordered extent had an IOERR or something else went
3070 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3071 * back to the allocator. We only free the extent in the
3072 * truncated case if we didn't write out the extent at all.
0bec9ef5 3073 */
77cef2ec
JB
3074 if ((ret || !logical_len) &&
3075 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3076 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3077 btrfs_free_reserved_extent(fs_info,
3078 ordered_extent->start,
e570fd27 3079 ordered_extent->disk_len, 1);
0bec9ef5
JB
3080 }
3081
3082
5fd02043 3083 /*
8bad3c02
LB
3084 * This needs to be done to make sure anybody waiting knows we are done
3085 * updating everything for this ordered extent.
5fd02043
JB
3086 */
3087 btrfs_remove_ordered_extent(inode, ordered_extent);
3088
38c227d8 3089 /* for snapshot-aware defrag */
6f519564
LB
3090 if (new) {
3091 if (ret) {
3092 free_sa_defrag_extent(new);
0b246afa 3093 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3094 } else {
3095 relink_file_extents(new);
3096 }
3097 }
38c227d8 3098
e6dcd2dc
CM
3099 /* once for us */
3100 btrfs_put_ordered_extent(ordered_extent);
3101 /* once for the tree */
3102 btrfs_put_ordered_extent(ordered_extent);
3103
5fd02043
JB
3104 return ret;
3105}
3106
3107static void finish_ordered_fn(struct btrfs_work *work)
3108{
3109 struct btrfs_ordered_extent *ordered_extent;
3110 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3111 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3112}
3113
c3988d63 3114static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3115 struct extent_state *state, int uptodate)
3116{
5fd02043 3117 struct inode *inode = page->mapping->host;
0b246afa 3118 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3119 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3120 struct btrfs_workqueue *wq;
3121 btrfs_work_func_t func;
5fd02043 3122
1abe9b8a 3123 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3124
8b62b72b 3125 ClearPagePrivate2(page);
5fd02043
JB
3126 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3127 end - start + 1, uptodate))
c3988d63 3128 return;
5fd02043 3129
70ddc553 3130 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3131 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3132 func = btrfs_freespace_write_helper;
3133 } else {
0b246afa 3134 wq = fs_info->endio_write_workers;
9e0af237
LB
3135 func = btrfs_endio_write_helper;
3136 }
5fd02043 3137
9e0af237
LB
3138 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3139 NULL);
3140 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3141}
3142
dc380aea
MX
3143static int __readpage_endio_check(struct inode *inode,
3144 struct btrfs_io_bio *io_bio,
3145 int icsum, struct page *page,
3146 int pgoff, u64 start, size_t len)
3147{
3148 char *kaddr;
3149 u32 csum_expected;
3150 u32 csum = ~(u32)0;
dc380aea
MX
3151
3152 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3153
3154 kaddr = kmap_atomic(page);
3155 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3156 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3157 if (csum != csum_expected)
3158 goto zeroit;
3159
3160 kunmap_atomic(kaddr);
3161 return 0;
3162zeroit:
0970a22e 3163 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3164 io_bio->mirror_num);
dc380aea
MX
3165 memset(kaddr + pgoff, 1, len);
3166 flush_dcache_page(page);
3167 kunmap_atomic(kaddr);
dc380aea
MX
3168 return -EIO;
3169}
3170
d352ac68
CM
3171/*
3172 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3173 * if there's a match, we allow the bio to finish. If not, the code in
3174 * extent_io.c will try to find good copies for us.
d352ac68 3175 */
facc8a22
MX
3176static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3177 u64 phy_offset, struct page *page,
3178 u64 start, u64 end, int mirror)
07157aac 3179{
4eee4fa4 3180 size_t offset = start - page_offset(page);
07157aac 3181 struct inode *inode = page->mapping->host;
d1310b2e 3182 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3183 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3184
d20f7043
CM
3185 if (PageChecked(page)) {
3186 ClearPageChecked(page);
dc380aea 3187 return 0;
d20f7043 3188 }
6cbff00f
CH
3189
3190 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3191 return 0;
17d217fe
YZ
3192
3193 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3194 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3195 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3196 return 0;
17d217fe 3197 }
d20f7043 3198
facc8a22 3199 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3200 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3201 start, (size_t)(end - start + 1));
07157aac 3202}
b888db2b 3203
24bbcf04
YZ
3204void btrfs_add_delayed_iput(struct inode *inode)
3205{
0b246afa 3206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3207 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3208
3209 if (atomic_add_unless(&inode->i_count, -1, 1))
3210 return;
3211
24bbcf04 3212 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3213 if (binode->delayed_iput_count == 0) {
3214 ASSERT(list_empty(&binode->delayed_iput));
3215 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3216 } else {
3217 binode->delayed_iput_count++;
3218 }
24bbcf04
YZ
3219 spin_unlock(&fs_info->delayed_iput_lock);
3220}
3221
2ff7e61e 3222void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3223{
24bbcf04 3224
24bbcf04 3225 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3226 while (!list_empty(&fs_info->delayed_iputs)) {
3227 struct btrfs_inode *inode;
3228
3229 inode = list_first_entry(&fs_info->delayed_iputs,
3230 struct btrfs_inode, delayed_iput);
3231 if (inode->delayed_iput_count) {
3232 inode->delayed_iput_count--;
3233 list_move_tail(&inode->delayed_iput,
3234 &fs_info->delayed_iputs);
3235 } else {
3236 list_del_init(&inode->delayed_iput);
3237 }
3238 spin_unlock(&fs_info->delayed_iput_lock);
3239 iput(&inode->vfs_inode);
3240 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3241 }
8089fe62 3242 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3243}
3244
d68fc57b 3245/*
42b2aa86 3246 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3247 * files in the subvolume, it removes orphan item and frees block_rsv
3248 * structure.
3249 */
3250void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3251 struct btrfs_root *root)
3252{
0b246afa 3253 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3254 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3255 int ret;
3256
8a35d95f 3257 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3258 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3259 return;
3260
90290e19 3261 spin_lock(&root->orphan_lock);
8a35d95f 3262 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3263 spin_unlock(&root->orphan_lock);
3264 return;
3265 }
3266
3267 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3268 spin_unlock(&root->orphan_lock);
3269 return;
3270 }
3271
3272 block_rsv = root->orphan_block_rsv;
3273 root->orphan_block_rsv = NULL;
3274 spin_unlock(&root->orphan_lock);
3275
27cdeb70 3276 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3277 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3278 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3279 root->root_key.objectid);
4ef31a45 3280 if (ret)
66642832 3281 btrfs_abort_transaction(trans, ret);
4ef31a45 3282 else
27cdeb70
MX
3283 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3284 &root->state);
d68fc57b
YZ
3285 }
3286
90290e19
JB
3287 if (block_rsv) {
3288 WARN_ON(block_rsv->size > 0);
2ff7e61e 3289 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3290 }
3291}
3292
7b128766
JB
3293/*
3294 * This creates an orphan entry for the given inode in case something goes
3295 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3296 *
3297 * NOTE: caller of this function should reserve 5 units of metadata for
3298 * this function.
7b128766 3299 */
73f2e545
NB
3300int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3301 struct btrfs_inode *inode)
7b128766 3302{
73f2e545
NB
3303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3304 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3305 struct btrfs_block_rsv *block_rsv = NULL;
3306 int reserve = 0;
3307 int insert = 0;
3308 int ret;
7b128766 3309
d68fc57b 3310 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3311 block_rsv = btrfs_alloc_block_rsv(fs_info,
3312 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3313 if (!block_rsv)
3314 return -ENOMEM;
d68fc57b 3315 }
7b128766 3316
d68fc57b
YZ
3317 spin_lock(&root->orphan_lock);
3318 if (!root->orphan_block_rsv) {
3319 root->orphan_block_rsv = block_rsv;
3320 } else if (block_rsv) {
2ff7e61e 3321 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3322 block_rsv = NULL;
7b128766 3323 }
7b128766 3324
8a35d95f 3325 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3326 &inode->runtime_flags)) {
d68fc57b
YZ
3327#if 0
3328 /*
3329 * For proper ENOSPC handling, we should do orphan
3330 * cleanup when mounting. But this introduces backward
3331 * compatibility issue.
3332 */
3333 if (!xchg(&root->orphan_item_inserted, 1))
3334 insert = 2;
3335 else
3336 insert = 1;
3337#endif
3338 insert = 1;
321f0e70 3339 atomic_inc(&root->orphan_inodes);
7b128766
JB
3340 }
3341
72ac3c0d 3342 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3343 &inode->runtime_flags))
d68fc57b 3344 reserve = 1;
d68fc57b 3345 spin_unlock(&root->orphan_lock);
7b128766 3346
d68fc57b
YZ
3347 /* grab metadata reservation from transaction handle */
3348 if (reserve) {
3349 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3350 ASSERT(!ret);
3351 if (ret) {
3352 atomic_dec(&root->orphan_inodes);
3353 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3354 &inode->runtime_flags);
3b6571c1
JB
3355 if (insert)
3356 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3357 &inode->runtime_flags);
3b6571c1
JB
3358 return ret;
3359 }
d68fc57b 3360 }
7b128766 3361
d68fc57b
YZ
3362 /* insert an orphan item to track this unlinked/truncated file */
3363 if (insert >= 1) {
73f2e545 3364 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3365 if (ret) {
703c88e0 3366 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3367 if (reserve) {
3368 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3369 &inode->runtime_flags);
4ef31a45
JB
3370 btrfs_orphan_release_metadata(inode);
3371 }
3372 if (ret != -EEXIST) {
e8e7cff6 3373 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3374 &inode->runtime_flags);
66642832 3375 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3376 return ret;
3377 }
79787eaa
JM
3378 }
3379 ret = 0;
d68fc57b
YZ
3380 }
3381
3382 /* insert an orphan item to track subvolume contains orphan files */
3383 if (insert >= 2) {
0b246afa 3384 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3385 root->root_key.objectid);
79787eaa 3386 if (ret && ret != -EEXIST) {
66642832 3387 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3388 return ret;
3389 }
d68fc57b
YZ
3390 }
3391 return 0;
7b128766
JB
3392}
3393
3394/*
3395 * We have done the truncate/delete so we can go ahead and remove the orphan
3396 * item for this particular inode.
3397 */
48a3b636 3398static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3399 struct btrfs_inode *inode)
7b128766 3400{
3d6ae7bb 3401 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3402 int delete_item = 0;
3403 int release_rsv = 0;
7b128766
JB
3404 int ret = 0;
3405
d68fc57b 3406 spin_lock(&root->orphan_lock);
8a35d95f 3407 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3408 &inode->runtime_flags))
d68fc57b 3409 delete_item = 1;
7b128766 3410
72ac3c0d 3411 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3412 &inode->runtime_flags))
d68fc57b 3413 release_rsv = 1;
d68fc57b 3414 spin_unlock(&root->orphan_lock);
7b128766 3415
703c88e0 3416 if (delete_item) {
8a35d95f 3417 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3418 if (trans)
3419 ret = btrfs_del_orphan_item(trans, root,
3d6ae7bb 3420 btrfs_ino(inode));
8a35d95f 3421 }
7b128766 3422
703c88e0
FDBM
3423 if (release_rsv)
3424 btrfs_orphan_release_metadata(inode);
3425
4ef31a45 3426 return ret;
7b128766
JB
3427}
3428
3429/*
3430 * this cleans up any orphans that may be left on the list from the last use
3431 * of this root.
3432 */
66b4ffd1 3433int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3434{
0b246afa 3435 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3436 struct btrfs_path *path;
3437 struct extent_buffer *leaf;
7b128766
JB
3438 struct btrfs_key key, found_key;
3439 struct btrfs_trans_handle *trans;
3440 struct inode *inode;
8f6d7f4f 3441 u64 last_objectid = 0;
7b128766
JB
3442 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3443
d68fc57b 3444 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3445 return 0;
c71bf099
YZ
3446
3447 path = btrfs_alloc_path();
66b4ffd1
JB
3448 if (!path) {
3449 ret = -ENOMEM;
3450 goto out;
3451 }
e4058b54 3452 path->reada = READA_BACK;
7b128766
JB
3453
3454 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3455 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3456 key.offset = (u64)-1;
3457
7b128766
JB
3458 while (1) {
3459 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3460 if (ret < 0)
3461 goto out;
7b128766
JB
3462
3463 /*
3464 * if ret == 0 means we found what we were searching for, which
25985edc 3465 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3466 * find the key and see if we have stuff that matches
3467 */
3468 if (ret > 0) {
66b4ffd1 3469 ret = 0;
7b128766
JB
3470 if (path->slots[0] == 0)
3471 break;
3472 path->slots[0]--;
3473 }
3474
3475 /* pull out the item */
3476 leaf = path->nodes[0];
7b128766
JB
3477 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3478
3479 /* make sure the item matches what we want */
3480 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3481 break;
962a298f 3482 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3483 break;
3484
3485 /* release the path since we're done with it */
b3b4aa74 3486 btrfs_release_path(path);
7b128766
JB
3487
3488 /*
3489 * this is where we are basically btrfs_lookup, without the
3490 * crossing root thing. we store the inode number in the
3491 * offset of the orphan item.
3492 */
8f6d7f4f
JB
3493
3494 if (found_key.offset == last_objectid) {
0b246afa
JM
3495 btrfs_err(fs_info,
3496 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3497 ret = -EINVAL;
3498 goto out;
3499 }
3500
3501 last_objectid = found_key.offset;
3502
5d4f98a2
YZ
3503 found_key.objectid = found_key.offset;
3504 found_key.type = BTRFS_INODE_ITEM_KEY;
3505 found_key.offset = 0;
0b246afa 3506 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3507 ret = PTR_ERR_OR_ZERO(inode);
67710892 3508 if (ret && ret != -ENOENT)
66b4ffd1 3509 goto out;
7b128766 3510
0b246afa 3511 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3512 struct btrfs_root *dead_root;
3513 struct btrfs_fs_info *fs_info = root->fs_info;
3514 int is_dead_root = 0;
3515
3516 /*
3517 * this is an orphan in the tree root. Currently these
3518 * could come from 2 sources:
3519 * a) a snapshot deletion in progress
3520 * b) a free space cache inode
3521 * We need to distinguish those two, as the snapshot
3522 * orphan must not get deleted.
3523 * find_dead_roots already ran before us, so if this
3524 * is a snapshot deletion, we should find the root
3525 * in the dead_roots list
3526 */
3527 spin_lock(&fs_info->trans_lock);
3528 list_for_each_entry(dead_root, &fs_info->dead_roots,
3529 root_list) {
3530 if (dead_root->root_key.objectid ==
3531 found_key.objectid) {
3532 is_dead_root = 1;
3533 break;
3534 }
3535 }
3536 spin_unlock(&fs_info->trans_lock);
3537 if (is_dead_root) {
3538 /* prevent this orphan from being found again */
3539 key.offset = found_key.objectid - 1;
3540 continue;
3541 }
3542 }
7b128766 3543 /*
a8c9e576
JB
3544 * Inode is already gone but the orphan item is still there,
3545 * kill the orphan item.
7b128766 3546 */
67710892 3547 if (ret == -ENOENT) {
a8c9e576 3548 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3549 if (IS_ERR(trans)) {
3550 ret = PTR_ERR(trans);
3551 goto out;
3552 }
0b246afa
JM
3553 btrfs_debug(fs_info, "auto deleting %Lu",
3554 found_key.objectid);
a8c9e576
JB
3555 ret = btrfs_del_orphan_item(trans, root,
3556 found_key.objectid);
3a45bb20 3557 btrfs_end_transaction(trans);
4ef31a45
JB
3558 if (ret)
3559 goto out;
7b128766
JB
3560 continue;
3561 }
3562
a8c9e576
JB
3563 /*
3564 * add this inode to the orphan list so btrfs_orphan_del does
3565 * the proper thing when we hit it
3566 */
8a35d95f
JB
3567 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3568 &BTRFS_I(inode)->runtime_flags);
925396ec 3569 atomic_inc(&root->orphan_inodes);
a8c9e576 3570
7b128766
JB
3571 /* if we have links, this was a truncate, lets do that */
3572 if (inode->i_nlink) {
fae7f21c 3573 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3574 iput(inode);
3575 continue;
3576 }
7b128766 3577 nr_truncate++;
f3fe820c
JB
3578
3579 /* 1 for the orphan item deletion. */
3580 trans = btrfs_start_transaction(root, 1);
3581 if (IS_ERR(trans)) {
c69b26b0 3582 iput(inode);
f3fe820c
JB
3583 ret = PTR_ERR(trans);
3584 goto out;
3585 }
73f2e545 3586 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3587 btrfs_end_transaction(trans);
c69b26b0
JB
3588 if (ret) {
3589 iput(inode);
f3fe820c 3590 goto out;
c69b26b0 3591 }
f3fe820c 3592
66b4ffd1 3593 ret = btrfs_truncate(inode);
4a7d0f68 3594 if (ret)
3d6ae7bb 3595 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3596 } else {
3597 nr_unlink++;
3598 }
3599
3600 /* this will do delete_inode and everything for us */
3601 iput(inode);
66b4ffd1
JB
3602 if (ret)
3603 goto out;
7b128766 3604 }
3254c876
MX
3605 /* release the path since we're done with it */
3606 btrfs_release_path(path);
3607
d68fc57b
YZ
3608 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3609
3610 if (root->orphan_block_rsv)
2ff7e61e 3611 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3612 (u64)-1);
3613
27cdeb70
MX
3614 if (root->orphan_block_rsv ||
3615 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3616 trans = btrfs_join_transaction(root);
66b4ffd1 3617 if (!IS_ERR(trans))
3a45bb20 3618 btrfs_end_transaction(trans);
d68fc57b 3619 }
7b128766
JB
3620
3621 if (nr_unlink)
0b246afa 3622 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3623 if (nr_truncate)
0b246afa 3624 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3625
3626out:
3627 if (ret)
0b246afa 3628 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3629 btrfs_free_path(path);
3630 return ret;
7b128766
JB
3631}
3632
46a53cca
CM
3633/*
3634 * very simple check to peek ahead in the leaf looking for xattrs. If we
3635 * don't find any xattrs, we know there can't be any acls.
3636 *
3637 * slot is the slot the inode is in, objectid is the objectid of the inode
3638 */
3639static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3640 int slot, u64 objectid,
3641 int *first_xattr_slot)
46a53cca
CM
3642{
3643 u32 nritems = btrfs_header_nritems(leaf);
3644 struct btrfs_key found_key;
f23b5a59
JB
3645 static u64 xattr_access = 0;
3646 static u64 xattr_default = 0;
46a53cca
CM
3647 int scanned = 0;
3648
f23b5a59 3649 if (!xattr_access) {
97d79299
AG
3650 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3651 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3652 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3653 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3654 }
3655
46a53cca 3656 slot++;
63541927 3657 *first_xattr_slot = -1;
46a53cca
CM
3658 while (slot < nritems) {
3659 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3660
3661 /* we found a different objectid, there must not be acls */
3662 if (found_key.objectid != objectid)
3663 return 0;
3664
3665 /* we found an xattr, assume we've got an acl */
f23b5a59 3666 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3667 if (*first_xattr_slot == -1)
3668 *first_xattr_slot = slot;
f23b5a59
JB
3669 if (found_key.offset == xattr_access ||
3670 found_key.offset == xattr_default)
3671 return 1;
3672 }
46a53cca
CM
3673
3674 /*
3675 * we found a key greater than an xattr key, there can't
3676 * be any acls later on
3677 */
3678 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3679 return 0;
3680
3681 slot++;
3682 scanned++;
3683
3684 /*
3685 * it goes inode, inode backrefs, xattrs, extents,
3686 * so if there are a ton of hard links to an inode there can
3687 * be a lot of backrefs. Don't waste time searching too hard,
3688 * this is just an optimization
3689 */
3690 if (scanned >= 8)
3691 break;
3692 }
3693 /* we hit the end of the leaf before we found an xattr or
3694 * something larger than an xattr. We have to assume the inode
3695 * has acls
3696 */
63541927
FDBM
3697 if (*first_xattr_slot == -1)
3698 *first_xattr_slot = slot;
46a53cca
CM
3699 return 1;
3700}
3701
d352ac68
CM
3702/*
3703 * read an inode from the btree into the in-memory inode
3704 */
67710892 3705static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3706{
0b246afa 3707 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3708 struct btrfs_path *path;
5f39d397 3709 struct extent_buffer *leaf;
39279cc3
CM
3710 struct btrfs_inode_item *inode_item;
3711 struct btrfs_root *root = BTRFS_I(inode)->root;
3712 struct btrfs_key location;
67de1176 3713 unsigned long ptr;
46a53cca 3714 int maybe_acls;
618e21d5 3715 u32 rdev;
39279cc3 3716 int ret;
2f7e33d4 3717 bool filled = false;
63541927 3718 int first_xattr_slot;
2f7e33d4
MX
3719
3720 ret = btrfs_fill_inode(inode, &rdev);
3721 if (!ret)
3722 filled = true;
39279cc3
CM
3723
3724 path = btrfs_alloc_path();
67710892
FM
3725 if (!path) {
3726 ret = -ENOMEM;
1748f843 3727 goto make_bad;
67710892 3728 }
1748f843 3729
39279cc3 3730 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3731
39279cc3 3732 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3733 if (ret) {
3734 if (ret > 0)
3735 ret = -ENOENT;
39279cc3 3736 goto make_bad;
67710892 3737 }
39279cc3 3738
5f39d397 3739 leaf = path->nodes[0];
2f7e33d4
MX
3740
3741 if (filled)
67de1176 3742 goto cache_index;
2f7e33d4 3743
5f39d397
CM
3744 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3745 struct btrfs_inode_item);
5f39d397 3746 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3747 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3748 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3749 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3750 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3751
a937b979
DS
3752 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3753 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3754
a937b979
DS
3755 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3756 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3757
a937b979
DS
3758 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3759 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3760
9cc97d64 3761 BTRFS_I(inode)->i_otime.tv_sec =
3762 btrfs_timespec_sec(leaf, &inode_item->otime);
3763 BTRFS_I(inode)->i_otime.tv_nsec =
3764 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3765
a76a3cd4 3766 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3767 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3768 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3769
6e17d30b
YD
3770 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3771 inode->i_generation = BTRFS_I(inode)->generation;
3772 inode->i_rdev = 0;
3773 rdev = btrfs_inode_rdev(leaf, inode_item);
3774
3775 BTRFS_I(inode)->index_cnt = (u64)-1;
3776 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3777
3778cache_index:
5dc562c5
JB
3779 /*
3780 * If we were modified in the current generation and evicted from memory
3781 * and then re-read we need to do a full sync since we don't have any
3782 * idea about which extents were modified before we were evicted from
3783 * cache.
6e17d30b
YD
3784 *
3785 * This is required for both inode re-read from disk and delayed inode
3786 * in delayed_nodes_tree.
5dc562c5 3787 */
0b246afa 3788 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3789 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3790 &BTRFS_I(inode)->runtime_flags);
3791
bde6c242
FM
3792 /*
3793 * We don't persist the id of the transaction where an unlink operation
3794 * against the inode was last made. So here we assume the inode might
3795 * have been evicted, and therefore the exact value of last_unlink_trans
3796 * lost, and set it to last_trans to avoid metadata inconsistencies
3797 * between the inode and its parent if the inode is fsync'ed and the log
3798 * replayed. For example, in the scenario:
3799 *
3800 * touch mydir/foo
3801 * ln mydir/foo mydir/bar
3802 * sync
3803 * unlink mydir/bar
3804 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3805 * xfs_io -c fsync mydir/foo
3806 * <power failure>
3807 * mount fs, triggers fsync log replay
3808 *
3809 * We must make sure that when we fsync our inode foo we also log its
3810 * parent inode, otherwise after log replay the parent still has the
3811 * dentry with the "bar" name but our inode foo has a link count of 1
3812 * and doesn't have an inode ref with the name "bar" anymore.
3813 *
3814 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3815 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3816 * transaction commits on fsync if our inode is a directory, or if our
3817 * inode is not a directory, logging its parent unnecessarily.
3818 */
3819 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3820
67de1176
MX
3821 path->slots[0]++;
3822 if (inode->i_nlink != 1 ||
3823 path->slots[0] >= btrfs_header_nritems(leaf))
3824 goto cache_acl;
3825
3826 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3827 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3828 goto cache_acl;
3829
3830 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3831 if (location.type == BTRFS_INODE_REF_KEY) {
3832 struct btrfs_inode_ref *ref;
3833
3834 ref = (struct btrfs_inode_ref *)ptr;
3835 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3836 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3837 struct btrfs_inode_extref *extref;
3838
3839 extref = (struct btrfs_inode_extref *)ptr;
3840 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3841 extref);
3842 }
2f7e33d4 3843cache_acl:
46a53cca
CM
3844 /*
3845 * try to precache a NULL acl entry for files that don't have
3846 * any xattrs or acls
3847 */
33345d01 3848 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3849 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3850 if (first_xattr_slot != -1) {
3851 path->slots[0] = first_xattr_slot;
3852 ret = btrfs_load_inode_props(inode, path);
3853 if (ret)
0b246afa 3854 btrfs_err(fs_info,
351fd353 3855 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3856 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3857 root->root_key.objectid, ret);
3858 }
3859 btrfs_free_path(path);
3860
72c04902
AV
3861 if (!maybe_acls)
3862 cache_no_acl(inode);
46a53cca 3863
39279cc3 3864 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3865 case S_IFREG:
3866 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3867 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3868 inode->i_fop = &btrfs_file_operations;
3869 inode->i_op = &btrfs_file_inode_operations;
3870 break;
3871 case S_IFDIR:
3872 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3873 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3874 break;
3875 case S_IFLNK:
3876 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3877 inode_nohighmem(inode);
39279cc3
CM
3878 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3879 break;
618e21d5 3880 default:
0279b4cd 3881 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3882 init_special_inode(inode, inode->i_mode, rdev);
3883 break;
39279cc3 3884 }
6cbff00f
CH
3885
3886 btrfs_update_iflags(inode);
67710892 3887 return 0;
39279cc3
CM
3888
3889make_bad:
39279cc3 3890 btrfs_free_path(path);
39279cc3 3891 make_bad_inode(inode);
67710892 3892 return ret;
39279cc3
CM
3893}
3894
d352ac68
CM
3895/*
3896 * given a leaf and an inode, copy the inode fields into the leaf
3897 */
e02119d5
CM
3898static void fill_inode_item(struct btrfs_trans_handle *trans,
3899 struct extent_buffer *leaf,
5f39d397 3900 struct btrfs_inode_item *item,
39279cc3
CM
3901 struct inode *inode)
3902{
51fab693
LB
3903 struct btrfs_map_token token;
3904
3905 btrfs_init_map_token(&token);
5f39d397 3906
51fab693
LB
3907 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3908 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3909 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3910 &token);
3911 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3912 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3913
a937b979 3914 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3915 inode->i_atime.tv_sec, &token);
a937b979 3916 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3917 inode->i_atime.tv_nsec, &token);
5f39d397 3918
a937b979 3919 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3920 inode->i_mtime.tv_sec, &token);
a937b979 3921 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3922 inode->i_mtime.tv_nsec, &token);
5f39d397 3923
a937b979 3924 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3925 inode->i_ctime.tv_sec, &token);
a937b979 3926 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3927 inode->i_ctime.tv_nsec, &token);
5f39d397 3928
9cc97d64 3929 btrfs_set_token_timespec_sec(leaf, &item->otime,
3930 BTRFS_I(inode)->i_otime.tv_sec, &token);
3931 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3932 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3933
51fab693
LB
3934 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3935 &token);
3936 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3937 &token);
3938 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3939 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3940 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3941 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3942 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3943}
3944
d352ac68
CM
3945/*
3946 * copy everything in the in-memory inode into the btree.
3947 */
2115133f 3948static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3949 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3950{
3951 struct btrfs_inode_item *inode_item;
3952 struct btrfs_path *path;
5f39d397 3953 struct extent_buffer *leaf;
39279cc3
CM
3954 int ret;
3955
3956 path = btrfs_alloc_path();
16cdcec7
MX
3957 if (!path)
3958 return -ENOMEM;
3959
b9473439 3960 path->leave_spinning = 1;
16cdcec7
MX
3961 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3962 1);
39279cc3
CM
3963 if (ret) {
3964 if (ret > 0)
3965 ret = -ENOENT;
3966 goto failed;
3967 }
3968
5f39d397
CM
3969 leaf = path->nodes[0];
3970 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3971 struct btrfs_inode_item);
39279cc3 3972
e02119d5 3973 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3974 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3975 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3976 ret = 0;
3977failed:
39279cc3
CM
3978 btrfs_free_path(path);
3979 return ret;
3980}
3981
2115133f
CM
3982/*
3983 * copy everything in the in-memory inode into the btree.
3984 */
3985noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3986 struct btrfs_root *root, struct inode *inode)
3987{
0b246afa 3988 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3989 int ret;
3990
3991 /*
3992 * If the inode is a free space inode, we can deadlock during commit
3993 * if we put it into the delayed code.
3994 *
3995 * The data relocation inode should also be directly updated
3996 * without delay
3997 */
70ddc553 3998 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3999 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4000 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4001 btrfs_update_root_times(trans, root);
4002
2115133f
CM
4003 ret = btrfs_delayed_update_inode(trans, root, inode);
4004 if (!ret)
4005 btrfs_set_inode_last_trans(trans, inode);
4006 return ret;
4007 }
4008
4009 return btrfs_update_inode_item(trans, root, inode);
4010}
4011
be6aef60
JB
4012noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4013 struct btrfs_root *root,
4014 struct inode *inode)
2115133f
CM
4015{
4016 int ret;
4017
4018 ret = btrfs_update_inode(trans, root, inode);
4019 if (ret == -ENOSPC)
4020 return btrfs_update_inode_item(trans, root, inode);
4021 return ret;
4022}
4023
d352ac68
CM
4024/*
4025 * unlink helper that gets used here in inode.c and in the tree logging
4026 * recovery code. It remove a link in a directory with a given name, and
4027 * also drops the back refs in the inode to the directory
4028 */
92986796
AV
4029static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4030 struct btrfs_root *root,
4ec5934e
NB
4031 struct btrfs_inode *dir,
4032 struct btrfs_inode *inode,
92986796 4033 const char *name, int name_len)
39279cc3 4034{
0b246afa 4035 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4036 struct btrfs_path *path;
39279cc3 4037 int ret = 0;
5f39d397 4038 struct extent_buffer *leaf;
39279cc3 4039 struct btrfs_dir_item *di;
5f39d397 4040 struct btrfs_key key;
aec7477b 4041 u64 index;
33345d01
LZ
4042 u64 ino = btrfs_ino(inode);
4043 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4044
4045 path = btrfs_alloc_path();
54aa1f4d
CM
4046 if (!path) {
4047 ret = -ENOMEM;
554233a6 4048 goto out;
54aa1f4d
CM
4049 }
4050
b9473439 4051 path->leave_spinning = 1;
33345d01 4052 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4053 name, name_len, -1);
4054 if (IS_ERR(di)) {
4055 ret = PTR_ERR(di);
4056 goto err;
4057 }
4058 if (!di) {
4059 ret = -ENOENT;
4060 goto err;
4061 }
5f39d397
CM
4062 leaf = path->nodes[0];
4063 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4064 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4065 if (ret)
4066 goto err;
b3b4aa74 4067 btrfs_release_path(path);
39279cc3 4068
67de1176
MX
4069 /*
4070 * If we don't have dir index, we have to get it by looking up
4071 * the inode ref, since we get the inode ref, remove it directly,
4072 * it is unnecessary to do delayed deletion.
4073 *
4074 * But if we have dir index, needn't search inode ref to get it.
4075 * Since the inode ref is close to the inode item, it is better
4076 * that we delay to delete it, and just do this deletion when
4077 * we update the inode item.
4078 */
4ec5934e 4079 if (inode->dir_index) {
67de1176
MX
4080 ret = btrfs_delayed_delete_inode_ref(inode);
4081 if (!ret) {
4ec5934e 4082 index = inode->dir_index;
67de1176
MX
4083 goto skip_backref;
4084 }
4085 }
4086
33345d01
LZ
4087 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4088 dir_ino, &index);
aec7477b 4089 if (ret) {
0b246afa 4090 btrfs_info(fs_info,
c2cf52eb 4091 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4092 name_len, name, ino, dir_ino);
66642832 4093 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4094 goto err;
4095 }
67de1176 4096skip_backref:
2ff7e61e 4097 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4098 if (ret) {
66642832 4099 btrfs_abort_transaction(trans, ret);
39279cc3 4100 goto err;
79787eaa 4101 }
39279cc3 4102
4ec5934e
NB
4103 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4104 dir_ino);
79787eaa 4105 if (ret != 0 && ret != -ENOENT) {
66642832 4106 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4107 goto err;
4108 }
e02119d5 4109
4ec5934e
NB
4110 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4111 index);
6418c961
CM
4112 if (ret == -ENOENT)
4113 ret = 0;
d4e3991b 4114 else if (ret)
66642832 4115 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4116err:
4117 btrfs_free_path(path);
e02119d5
CM
4118 if (ret)
4119 goto out;
4120
6ef06d27 4121 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4122 inode_inc_iversion(&inode->vfs_inode);
4123 inode_inc_iversion(&dir->vfs_inode);
4124 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4125 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4126 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4127out:
39279cc3
CM
4128 return ret;
4129}
4130
92986796
AV
4131int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4132 struct btrfs_root *root,
4ec5934e 4133 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4134 const char *name, int name_len)
4135{
4136 int ret;
4137 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4138 if (!ret) {
4ec5934e
NB
4139 drop_nlink(&inode->vfs_inode);
4140 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4141 }
4142 return ret;
4143}
39279cc3 4144
a22285a6
YZ
4145/*
4146 * helper to start transaction for unlink and rmdir.
4147 *
d52be818
JB
4148 * unlink and rmdir are special in btrfs, they do not always free space, so
4149 * if we cannot make our reservations the normal way try and see if there is
4150 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4151 * allow the unlink to occur.
a22285a6 4152 */
d52be818 4153static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4154{
a22285a6 4155 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4156
e70bea5f
JB
4157 /*
4158 * 1 for the possible orphan item
4159 * 1 for the dir item
4160 * 1 for the dir index
4161 * 1 for the inode ref
e70bea5f
JB
4162 * 1 for the inode
4163 */
8eab77ff 4164 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4165}
4166
4167static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4168{
4169 struct btrfs_root *root = BTRFS_I(dir)->root;
4170 struct btrfs_trans_handle *trans;
2b0143b5 4171 struct inode *inode = d_inode(dentry);
a22285a6 4172 int ret;
a22285a6 4173
d52be818 4174 trans = __unlink_start_trans(dir);
a22285a6
YZ
4175 if (IS_ERR(trans))
4176 return PTR_ERR(trans);
5f39d397 4177
4ec5934e
NB
4178 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4179 0);
12fcfd22 4180
4ec5934e
NB
4181 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4182 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4183 dentry->d_name.len);
b532402e
TI
4184 if (ret)
4185 goto out;
7b128766 4186
a22285a6 4187 if (inode->i_nlink == 0) {
73f2e545 4188 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4189 if (ret)
4190 goto out;
a22285a6 4191 }
7b128766 4192
b532402e 4193out:
3a45bb20 4194 btrfs_end_transaction(trans);
2ff7e61e 4195 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4196 return ret;
4197}
4198
4df27c4d
YZ
4199int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4200 struct btrfs_root *root,
4201 struct inode *dir, u64 objectid,
4202 const char *name, int name_len)
4203{
0b246afa 4204 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4205 struct btrfs_path *path;
4206 struct extent_buffer *leaf;
4207 struct btrfs_dir_item *di;
4208 struct btrfs_key key;
4209 u64 index;
4210 int ret;
4a0cc7ca 4211 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4212
4213 path = btrfs_alloc_path();
4214 if (!path)
4215 return -ENOMEM;
4216
33345d01 4217 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4218 name, name_len, -1);
79787eaa
JM
4219 if (IS_ERR_OR_NULL(di)) {
4220 if (!di)
4221 ret = -ENOENT;
4222 else
4223 ret = PTR_ERR(di);
4224 goto out;
4225 }
4df27c4d
YZ
4226
4227 leaf = path->nodes[0];
4228 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4229 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4230 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4231 if (ret) {
66642832 4232 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4233 goto out;
4234 }
b3b4aa74 4235 btrfs_release_path(path);
4df27c4d 4236
0b246afa
JM
4237 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4238 root->root_key.objectid, dir_ino,
4239 &index, name, name_len);
4df27c4d 4240 if (ret < 0) {
79787eaa 4241 if (ret != -ENOENT) {
66642832 4242 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4243 goto out;
4244 }
33345d01 4245 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4246 name, name_len);
79787eaa
JM
4247 if (IS_ERR_OR_NULL(di)) {
4248 if (!di)
4249 ret = -ENOENT;
4250 else
4251 ret = PTR_ERR(di);
66642832 4252 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4253 goto out;
4254 }
4df27c4d
YZ
4255
4256 leaf = path->nodes[0];
4257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4258 btrfs_release_path(path);
4df27c4d
YZ
4259 index = key.offset;
4260 }
945d8962 4261 btrfs_release_path(path);
4df27c4d 4262
e67bbbb9 4263 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4264 if (ret) {
66642832 4265 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4266 goto out;
4267 }
4df27c4d 4268
6ef06d27 4269 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4270 inode_inc_iversion(dir);
c2050a45 4271 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4272 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4273 if (ret)
66642832 4274 btrfs_abort_transaction(trans, ret);
79787eaa 4275out:
71d7aed0 4276 btrfs_free_path(path);
79787eaa 4277 return ret;
4df27c4d
YZ
4278}
4279
39279cc3
CM
4280static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4281{
2b0143b5 4282 struct inode *inode = d_inode(dentry);
1832a6d5 4283 int err = 0;
39279cc3 4284 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4285 struct btrfs_trans_handle *trans;
44f714da 4286 u64 last_unlink_trans;
39279cc3 4287
b3ae244e 4288 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4289 return -ENOTEMPTY;
4a0cc7ca 4290 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4291 return -EPERM;
134d4512 4292
d52be818 4293 trans = __unlink_start_trans(dir);
a22285a6 4294 if (IS_ERR(trans))
5df6a9f6 4295 return PTR_ERR(trans);
5df6a9f6 4296
4a0cc7ca 4297 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4298 err = btrfs_unlink_subvol(trans, root, dir,
4299 BTRFS_I(inode)->location.objectid,
4300 dentry->d_name.name,
4301 dentry->d_name.len);
4302 goto out;
4303 }
4304
73f2e545 4305 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4306 if (err)
4df27c4d 4307 goto out;
7b128766 4308
44f714da
FM
4309 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4310
39279cc3 4311 /* now the directory is empty */
4ec5934e
NB
4312 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4313 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4314 dentry->d_name.len);
44f714da 4315 if (!err) {
6ef06d27 4316 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4317 /*
4318 * Propagate the last_unlink_trans value of the deleted dir to
4319 * its parent directory. This is to prevent an unrecoverable
4320 * log tree in the case we do something like this:
4321 * 1) create dir foo
4322 * 2) create snapshot under dir foo
4323 * 3) delete the snapshot
4324 * 4) rmdir foo
4325 * 5) mkdir foo
4326 * 6) fsync foo or some file inside foo
4327 */
4328 if (last_unlink_trans >= trans->transid)
4329 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4330 }
4df27c4d 4331out:
3a45bb20 4332 btrfs_end_transaction(trans);
2ff7e61e 4333 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4334
39279cc3
CM
4335 return err;
4336}
4337
28f75a0e
CM
4338static int truncate_space_check(struct btrfs_trans_handle *trans,
4339 struct btrfs_root *root,
4340 u64 bytes_deleted)
4341{
0b246afa 4342 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4343 int ret;
4344
dc95f7bf
JB
4345 /*
4346 * This is only used to apply pressure to the enospc system, we don't
4347 * intend to use this reservation at all.
4348 */
2ff7e61e 4349 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4350 bytes_deleted *= fs_info->nodesize;
4351 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4352 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4353 if (!ret) {
0b246afa 4354 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4355 trans->transid,
4356 bytes_deleted, 1);
28f75a0e 4357 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4358 }
28f75a0e
CM
4359 return ret;
4360
4361}
4362
0305cd5f
FM
4363static int truncate_inline_extent(struct inode *inode,
4364 struct btrfs_path *path,
4365 struct btrfs_key *found_key,
4366 const u64 item_end,
4367 const u64 new_size)
4368{
4369 struct extent_buffer *leaf = path->nodes[0];
4370 int slot = path->slots[0];
4371 struct btrfs_file_extent_item *fi;
4372 u32 size = (u32)(new_size - found_key->offset);
4373 struct btrfs_root *root = BTRFS_I(inode)->root;
4374
4375 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4376
4377 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4378 loff_t offset = new_size;
09cbfeaf 4379 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4380
4381 /*
4382 * Zero out the remaining of the last page of our inline extent,
4383 * instead of directly truncating our inline extent here - that
4384 * would be much more complex (decompressing all the data, then
4385 * compressing the truncated data, which might be bigger than
4386 * the size of the inline extent, resize the extent, etc).
4387 * We release the path because to get the page we might need to
4388 * read the extent item from disk (data not in the page cache).
4389 */
4390 btrfs_release_path(path);
9703fefe
CR
4391 return btrfs_truncate_block(inode, offset, page_end - offset,
4392 0);
0305cd5f
FM
4393 }
4394
4395 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4396 size = btrfs_file_extent_calc_inline_size(size);
2ff7e61e 4397 btrfs_truncate_item(root->fs_info, path, size, 1);
0305cd5f
FM
4398
4399 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4400 inode_sub_bytes(inode, item_end + 1 - new_size);
4401
4402 return 0;
4403}
4404
39279cc3
CM
4405/*
4406 * this can truncate away extent items, csum items and directory items.
4407 * It starts at a high offset and removes keys until it can't find
d352ac68 4408 * any higher than new_size
39279cc3
CM
4409 *
4410 * csum items that cross the new i_size are truncated to the new size
4411 * as well.
7b128766
JB
4412 *
4413 * min_type is the minimum key type to truncate down to. If set to 0, this
4414 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4415 */
8082510e
YZ
4416int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4417 struct btrfs_root *root,
4418 struct inode *inode,
4419 u64 new_size, u32 min_type)
39279cc3 4420{
0b246afa 4421 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4422 struct btrfs_path *path;
5f39d397 4423 struct extent_buffer *leaf;
39279cc3 4424 struct btrfs_file_extent_item *fi;
8082510e
YZ
4425 struct btrfs_key key;
4426 struct btrfs_key found_key;
39279cc3 4427 u64 extent_start = 0;
db94535d 4428 u64 extent_num_bytes = 0;
5d4f98a2 4429 u64 extent_offset = 0;
39279cc3 4430 u64 item_end = 0;
c1aa4575 4431 u64 last_size = new_size;
8082510e 4432 u32 found_type = (u8)-1;
39279cc3
CM
4433 int found_extent;
4434 int del_item;
85e21bac
CM
4435 int pending_del_nr = 0;
4436 int pending_del_slot = 0;
179e29e4 4437 int extent_type = -1;
8082510e
YZ
4438 int ret;
4439 int err = 0;
4a0cc7ca 4440 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4441 u64 bytes_deleted = 0;
1262133b
JB
4442 bool be_nice = 0;
4443 bool should_throttle = 0;
28f75a0e 4444 bool should_end = 0;
8082510e
YZ
4445
4446 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4447
28ed1345
CM
4448 /*
4449 * for non-free space inodes and ref cows, we want to back off from
4450 * time to time
4451 */
70ddc553 4452 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345
CM
4453 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4454 be_nice = 1;
4455
0eb0e19c
MF
4456 path = btrfs_alloc_path();
4457 if (!path)
4458 return -ENOMEM;
e4058b54 4459 path->reada = READA_BACK;
0eb0e19c 4460
5dc562c5
JB
4461 /*
4462 * We want to drop from the next block forward in case this new size is
4463 * not block aligned since we will be keeping the last block of the
4464 * extent just the way it is.
4465 */
27cdeb70 4466 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4467 root == fs_info->tree_root)
dcdbc059 4468 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4469 fs_info->sectorsize),
da17066c 4470 (u64)-1, 0);
8082510e 4471
16cdcec7
MX
4472 /*
4473 * This function is also used to drop the items in the log tree before
4474 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4475 * it is used to drop the loged items. So we shouldn't kill the delayed
4476 * items.
4477 */
4478 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4479 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4480
33345d01 4481 key.objectid = ino;
39279cc3 4482 key.offset = (u64)-1;
5f39d397
CM
4483 key.type = (u8)-1;
4484
85e21bac 4485search_again:
28ed1345
CM
4486 /*
4487 * with a 16K leaf size and 128MB extents, you can actually queue
4488 * up a huge file in a single leaf. Most of the time that
4489 * bytes_deleted is > 0, it will be huge by the time we get here
4490 */
ee22184b 4491 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4492 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4493 err = -EAGAIN;
4494 goto error;
4495 }
4496 }
4497
4498
b9473439 4499 path->leave_spinning = 1;
85e21bac 4500 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4501 if (ret < 0) {
4502 err = ret;
4503 goto out;
4504 }
d397712b 4505
85e21bac 4506 if (ret > 0) {
e02119d5
CM
4507 /* there are no items in the tree for us to truncate, we're
4508 * done
4509 */
8082510e
YZ
4510 if (path->slots[0] == 0)
4511 goto out;
85e21bac
CM
4512 path->slots[0]--;
4513 }
4514
d397712b 4515 while (1) {
39279cc3 4516 fi = NULL;
5f39d397
CM
4517 leaf = path->nodes[0];
4518 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4519 found_type = found_key.type;
39279cc3 4520
33345d01 4521 if (found_key.objectid != ino)
39279cc3 4522 break;
5f39d397 4523
85e21bac 4524 if (found_type < min_type)
39279cc3
CM
4525 break;
4526
5f39d397 4527 item_end = found_key.offset;
39279cc3 4528 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4529 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4530 struct btrfs_file_extent_item);
179e29e4
CM
4531 extent_type = btrfs_file_extent_type(leaf, fi);
4532 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4533 item_end +=
db94535d 4534 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4535
4536 trace_btrfs_truncate_show_fi_regular(
4537 BTRFS_I(inode), leaf, fi,
4538 found_key.offset);
179e29e4 4539 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4540 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4541 path->slots[0], fi);
09ed2f16
LB
4542
4543 trace_btrfs_truncate_show_fi_inline(
4544 BTRFS_I(inode), leaf, fi, path->slots[0],
4545 found_key.offset);
39279cc3 4546 }
008630c1 4547 item_end--;
39279cc3 4548 }
8082510e
YZ
4549 if (found_type > min_type) {
4550 del_item = 1;
4551 } else {
76b42abb 4552 if (item_end < new_size)
b888db2b 4553 break;
8082510e
YZ
4554 if (found_key.offset >= new_size)
4555 del_item = 1;
4556 else
4557 del_item = 0;
39279cc3 4558 }
39279cc3 4559 found_extent = 0;
39279cc3 4560 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4561 if (found_type != BTRFS_EXTENT_DATA_KEY)
4562 goto delete;
4563
7f4f6e0a
JB
4564 if (del_item)
4565 last_size = found_key.offset;
4566 else
4567 last_size = new_size;
4568
179e29e4 4569 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4570 u64 num_dec;
db94535d 4571 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4572 if (!del_item) {
db94535d
CM
4573 u64 orig_num_bytes =
4574 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4575 extent_num_bytes = ALIGN(new_size -
4576 found_key.offset,
0b246afa 4577 fs_info->sectorsize);
db94535d
CM
4578 btrfs_set_file_extent_num_bytes(leaf, fi,
4579 extent_num_bytes);
4580 num_dec = (orig_num_bytes -
9069218d 4581 extent_num_bytes);
27cdeb70
MX
4582 if (test_bit(BTRFS_ROOT_REF_COWS,
4583 &root->state) &&
4584 extent_start != 0)
a76a3cd4 4585 inode_sub_bytes(inode, num_dec);
5f39d397 4586 btrfs_mark_buffer_dirty(leaf);
39279cc3 4587 } else {
db94535d
CM
4588 extent_num_bytes =
4589 btrfs_file_extent_disk_num_bytes(leaf,
4590 fi);
5d4f98a2
YZ
4591 extent_offset = found_key.offset -
4592 btrfs_file_extent_offset(leaf, fi);
4593
39279cc3 4594 /* FIXME blocksize != 4096 */
9069218d 4595 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4596 if (extent_start != 0) {
4597 found_extent = 1;
27cdeb70
MX
4598 if (test_bit(BTRFS_ROOT_REF_COWS,
4599 &root->state))
a76a3cd4 4600 inode_sub_bytes(inode, num_dec);
e02119d5 4601 }
39279cc3 4602 }
9069218d 4603 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4604 /*
4605 * we can't truncate inline items that have had
4606 * special encodings
4607 */
4608 if (!del_item &&
c8b97818
CM
4609 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4610 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4611
4612 /*
0305cd5f
FM
4613 * Need to release path in order to truncate a
4614 * compressed extent. So delete any accumulated
4615 * extent items so far.
514ac8ad 4616 */
0305cd5f
FM
4617 if (btrfs_file_extent_compression(leaf, fi) !=
4618 BTRFS_COMPRESS_NONE && pending_del_nr) {
4619 err = btrfs_del_items(trans, root, path,
4620 pending_del_slot,
4621 pending_del_nr);
4622 if (err) {
4623 btrfs_abort_transaction(trans,
0305cd5f
FM
4624 err);
4625 goto error;
4626 }
4627 pending_del_nr = 0;
4628 }
4629
4630 err = truncate_inline_extent(inode, path,
4631 &found_key,
4632 item_end,
4633 new_size);
4634 if (err) {
66642832 4635 btrfs_abort_transaction(trans, err);
0305cd5f
FM
4636 goto error;
4637 }
27cdeb70
MX
4638 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4639 &root->state)) {
0305cd5f 4640 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4641 }
39279cc3 4642 }
179e29e4 4643delete:
39279cc3 4644 if (del_item) {
85e21bac
CM
4645 if (!pending_del_nr) {
4646 /* no pending yet, add ourselves */
4647 pending_del_slot = path->slots[0];
4648 pending_del_nr = 1;
4649 } else if (pending_del_nr &&
4650 path->slots[0] + 1 == pending_del_slot) {
4651 /* hop on the pending chunk */
4652 pending_del_nr++;
4653 pending_del_slot = path->slots[0];
4654 } else {
d397712b 4655 BUG();
85e21bac 4656 }
39279cc3
CM
4657 } else {
4658 break;
4659 }
28f75a0e
CM
4660 should_throttle = 0;
4661
27cdeb70
MX
4662 if (found_extent &&
4663 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4664 root == fs_info->tree_root)) {
b9473439 4665 btrfs_set_path_blocking(path);
28ed1345 4666 bytes_deleted += extent_num_bytes;
2ff7e61e 4667 ret = btrfs_free_extent(trans, fs_info, extent_start,
5d4f98a2
YZ
4668 extent_num_bytes, 0,
4669 btrfs_header_owner(leaf),
b06c4bf5 4670 ino, extent_offset);
39279cc3 4671 BUG_ON(ret);
2ff7e61e
JM
4672 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4673 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4674 trans->delayed_ref_updates * 2,
4675 trans->transid, 0);
28f75a0e
CM
4676 if (be_nice) {
4677 if (truncate_space_check(trans, root,
4678 extent_num_bytes)) {
4679 should_end = 1;
4680 }
4681 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4682 fs_info))
28f75a0e 4683 should_throttle = 1;
28f75a0e 4684 }
39279cc3 4685 }
85e21bac 4686
8082510e
YZ
4687 if (found_type == BTRFS_INODE_ITEM_KEY)
4688 break;
4689
4690 if (path->slots[0] == 0 ||
1262133b 4691 path->slots[0] != pending_del_slot ||
28f75a0e 4692 should_throttle || should_end) {
8082510e
YZ
4693 if (pending_del_nr) {
4694 ret = btrfs_del_items(trans, root, path,
4695 pending_del_slot,
4696 pending_del_nr);
79787eaa 4697 if (ret) {
66642832 4698 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4699 goto error;
4700 }
8082510e
YZ
4701 pending_del_nr = 0;
4702 }
b3b4aa74 4703 btrfs_release_path(path);
28f75a0e 4704 if (should_throttle) {
1262133b
JB
4705 unsigned long updates = trans->delayed_ref_updates;
4706 if (updates) {
4707 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4708 ret = btrfs_run_delayed_refs(trans,
4709 fs_info,
4710 updates * 2);
1262133b
JB
4711 if (ret && !err)
4712 err = ret;
4713 }
4714 }
28f75a0e
CM
4715 /*
4716 * if we failed to refill our space rsv, bail out
4717 * and let the transaction restart
4718 */
4719 if (should_end) {
4720 err = -EAGAIN;
4721 goto error;
4722 }
85e21bac 4723 goto search_again;
8082510e
YZ
4724 } else {
4725 path->slots[0]--;
85e21bac 4726 }
39279cc3 4727 }
8082510e 4728out:
85e21bac
CM
4729 if (pending_del_nr) {
4730 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4731 pending_del_nr);
79787eaa 4732 if (ret)
66642832 4733 btrfs_abort_transaction(trans, ret);
85e21bac 4734 }
79787eaa 4735error:
76b42abb
FM
4736 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4737 ASSERT(last_size >= new_size);
4738 if (!err && last_size > new_size)
4739 last_size = new_size;
7f4f6e0a 4740 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4741 }
28ed1345 4742
39279cc3 4743 btrfs_free_path(path);
28ed1345 4744
ee22184b 4745 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4746 unsigned long updates = trans->delayed_ref_updates;
4747 if (updates) {
4748 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4749 ret = btrfs_run_delayed_refs(trans, fs_info,
4750 updates * 2);
28ed1345
CM
4751 if (ret && !err)
4752 err = ret;
4753 }
4754 }
8082510e 4755 return err;
39279cc3
CM
4756}
4757
4758/*
9703fefe 4759 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4760 * @inode - inode that we're zeroing
4761 * @from - the offset to start zeroing
4762 * @len - the length to zero, 0 to zero the entire range respective to the
4763 * offset
4764 * @front - zero up to the offset instead of from the offset on
4765 *
9703fefe 4766 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4767 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4768 */
9703fefe 4769int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4770 int front)
39279cc3 4771{
0b246afa 4772 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4773 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4774 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4775 struct btrfs_ordered_extent *ordered;
2ac55d41 4776 struct extent_state *cached_state = NULL;
364ecf36 4777 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4778 char *kaddr;
0b246afa 4779 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4780 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4781 unsigned offset = from & (blocksize - 1);
39279cc3 4782 struct page *page;
3b16a4e3 4783 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4784 int ret = 0;
9703fefe
CR
4785 u64 block_start;
4786 u64 block_end;
39279cc3 4787
2aaa6655
JB
4788 if ((offset & (blocksize - 1)) == 0 &&
4789 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4790 goto out;
9703fefe 4791
364ecf36 4792 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
9703fefe 4793 round_down(from, blocksize), blocksize);
5d5e103a
JB
4794 if (ret)
4795 goto out;
39279cc3 4796
211c17f5 4797again:
3b16a4e3 4798 page = find_or_create_page(mapping, index, mask);
5d5e103a 4799 if (!page) {
bc42bda2 4800 btrfs_delalloc_release_space(inode, data_reserved,
9703fefe
CR
4801 round_down(from, blocksize),
4802 blocksize);
ac6a2b36 4803 ret = -ENOMEM;
39279cc3 4804 goto out;
5d5e103a 4805 }
e6dcd2dc 4806
9703fefe
CR
4807 block_start = round_down(from, blocksize);
4808 block_end = block_start + blocksize - 1;
e6dcd2dc 4809
39279cc3 4810 if (!PageUptodate(page)) {
9ebefb18 4811 ret = btrfs_readpage(NULL, page);
39279cc3 4812 lock_page(page);
211c17f5
CM
4813 if (page->mapping != mapping) {
4814 unlock_page(page);
09cbfeaf 4815 put_page(page);
211c17f5
CM
4816 goto again;
4817 }
39279cc3
CM
4818 if (!PageUptodate(page)) {
4819 ret = -EIO;
89642229 4820 goto out_unlock;
39279cc3
CM
4821 }
4822 }
211c17f5 4823 wait_on_page_writeback(page);
e6dcd2dc 4824
9703fefe 4825 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4826 set_page_extent_mapped(page);
4827
9703fefe 4828 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4829 if (ordered) {
9703fefe 4830 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4831 &cached_state, GFP_NOFS);
e6dcd2dc 4832 unlock_page(page);
09cbfeaf 4833 put_page(page);
eb84ae03 4834 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4835 btrfs_put_ordered_extent(ordered);
4836 goto again;
4837 }
4838
9703fefe 4839 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4840 EXTENT_DIRTY | EXTENT_DELALLOC |
4841 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4842 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4843
9703fefe 4844 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
ba8b04c1 4845 &cached_state, 0);
9ed74f2d 4846 if (ret) {
9703fefe 4847 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4848 &cached_state, GFP_NOFS);
9ed74f2d
JB
4849 goto out_unlock;
4850 }
4851
9703fefe 4852 if (offset != blocksize) {
2aaa6655 4853 if (!len)
9703fefe 4854 len = blocksize - offset;
e6dcd2dc 4855 kaddr = kmap(page);
2aaa6655 4856 if (front)
9703fefe
CR
4857 memset(kaddr + (block_start - page_offset(page)),
4858 0, offset);
2aaa6655 4859 else
9703fefe
CR
4860 memset(kaddr + (block_start - page_offset(page)) + offset,
4861 0, len);
e6dcd2dc
CM
4862 flush_dcache_page(page);
4863 kunmap(page);
4864 }
247e743c 4865 ClearPageChecked(page);
e6dcd2dc 4866 set_page_dirty(page);
9703fefe 4867 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4868 GFP_NOFS);
39279cc3 4869
89642229 4870out_unlock:
5d5e103a 4871 if (ret)
bc42bda2 4872 btrfs_delalloc_release_space(inode, data_reserved, block_start,
9703fefe 4873 blocksize);
39279cc3 4874 unlock_page(page);
09cbfeaf 4875 put_page(page);
39279cc3 4876out:
364ecf36 4877 extent_changeset_free(data_reserved);
39279cc3
CM
4878 return ret;
4879}
4880
16e7549f
JB
4881static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4882 u64 offset, u64 len)
4883{
0b246afa 4884 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4885 struct btrfs_trans_handle *trans;
4886 int ret;
4887
4888 /*
4889 * Still need to make sure the inode looks like it's been updated so
4890 * that any holes get logged if we fsync.
4891 */
0b246afa
JM
4892 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4893 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4894 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4895 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4896 return 0;
4897 }
4898
4899 /*
4900 * 1 - for the one we're dropping
4901 * 1 - for the one we're adding
4902 * 1 - for updating the inode.
4903 */
4904 trans = btrfs_start_transaction(root, 3);
4905 if (IS_ERR(trans))
4906 return PTR_ERR(trans);
4907
4908 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4909 if (ret) {
66642832 4910 btrfs_abort_transaction(trans, ret);
3a45bb20 4911 btrfs_end_transaction(trans);
16e7549f
JB
4912 return ret;
4913 }
4914
f85b7379
DS
4915 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4916 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4917 if (ret)
66642832 4918 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4919 else
4920 btrfs_update_inode(trans, root, inode);
3a45bb20 4921 btrfs_end_transaction(trans);
16e7549f
JB
4922 return ret;
4923}
4924
695a0d0d
JB
4925/*
4926 * This function puts in dummy file extents for the area we're creating a hole
4927 * for. So if we are truncating this file to a larger size we need to insert
4928 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4929 * the range between oldsize and size
4930 */
a41ad394 4931int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4932{
0b246afa 4933 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4934 struct btrfs_root *root = BTRFS_I(inode)->root;
4935 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4936 struct extent_map *em = NULL;
2ac55d41 4937 struct extent_state *cached_state = NULL;
5dc562c5 4938 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4939 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4940 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4941 u64 last_byte;
4942 u64 cur_offset;
4943 u64 hole_size;
9ed74f2d 4944 int err = 0;
39279cc3 4945
a71754fc 4946 /*
9703fefe
CR
4947 * If our size started in the middle of a block we need to zero out the
4948 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4949 * expose stale data.
4950 */
9703fefe 4951 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4952 if (err)
4953 return err;
4954
9036c102
YZ
4955 if (size <= hole_start)
4956 return 0;
4957
9036c102
YZ
4958 while (1) {
4959 struct btrfs_ordered_extent *ordered;
fa7c1494 4960
ff13db41 4961 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4962 &cached_state);
a776c6fa 4963 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4964 block_end - hole_start);
9036c102
YZ
4965 if (!ordered)
4966 break;
2ac55d41
JB
4967 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4968 &cached_state, GFP_NOFS);
fa7c1494 4969 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4970 btrfs_put_ordered_extent(ordered);
4971 }
39279cc3 4972
9036c102
YZ
4973 cur_offset = hole_start;
4974 while (1) {
fc4f21b1 4975 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4976 block_end - cur_offset, 0);
79787eaa
JM
4977 if (IS_ERR(em)) {
4978 err = PTR_ERR(em);
f2767956 4979 em = NULL;
79787eaa
JM
4980 break;
4981 }
9036c102 4982 last_byte = min(extent_map_end(em), block_end);
0b246afa 4983 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4984 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4985 struct extent_map *hole_em;
9036c102 4986 hole_size = last_byte - cur_offset;
9ed74f2d 4987
16e7549f
JB
4988 err = maybe_insert_hole(root, inode, cur_offset,
4989 hole_size);
4990 if (err)
3893e33b 4991 break;
dcdbc059 4992 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4993 cur_offset + hole_size - 1, 0);
4994 hole_em = alloc_extent_map();
4995 if (!hole_em) {
4996 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4997 &BTRFS_I(inode)->runtime_flags);
4998 goto next;
4999 }
5000 hole_em->start = cur_offset;
5001 hole_em->len = hole_size;
5002 hole_em->orig_start = cur_offset;
8082510e 5003
5dc562c5
JB
5004 hole_em->block_start = EXTENT_MAP_HOLE;
5005 hole_em->block_len = 0;
b4939680 5006 hole_em->orig_block_len = 0;
cc95bef6 5007 hole_em->ram_bytes = hole_size;
0b246afa 5008 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5009 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5010 hole_em->generation = fs_info->generation;
8082510e 5011
5dc562c5
JB
5012 while (1) {
5013 write_lock(&em_tree->lock);
09a2a8f9 5014 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5015 write_unlock(&em_tree->lock);
5016 if (err != -EEXIST)
5017 break;
dcdbc059
NB
5018 btrfs_drop_extent_cache(BTRFS_I(inode),
5019 cur_offset,
5dc562c5
JB
5020 cur_offset +
5021 hole_size - 1, 0);
5022 }
5023 free_extent_map(hole_em);
9036c102 5024 }
16e7549f 5025next:
9036c102 5026 free_extent_map(em);
a22285a6 5027 em = NULL;
9036c102 5028 cur_offset = last_byte;
8082510e 5029 if (cur_offset >= block_end)
9036c102
YZ
5030 break;
5031 }
a22285a6 5032 free_extent_map(em);
2ac55d41
JB
5033 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
5034 GFP_NOFS);
9036c102
YZ
5035 return err;
5036}
39279cc3 5037
3972f260 5038static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5039{
f4a2f4c5
MX
5040 struct btrfs_root *root = BTRFS_I(inode)->root;
5041 struct btrfs_trans_handle *trans;
a41ad394 5042 loff_t oldsize = i_size_read(inode);
3972f260
ES
5043 loff_t newsize = attr->ia_size;
5044 int mask = attr->ia_valid;
8082510e
YZ
5045 int ret;
5046
3972f260
ES
5047 /*
5048 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5049 * special case where we need to update the times despite not having
5050 * these flags set. For all other operations the VFS set these flags
5051 * explicitly if it wants a timestamp update.
5052 */
dff6efc3
CH
5053 if (newsize != oldsize) {
5054 inode_inc_iversion(inode);
5055 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5056 inode->i_ctime = inode->i_mtime =
c2050a45 5057 current_time(inode);
dff6efc3 5058 }
3972f260 5059
a41ad394 5060 if (newsize > oldsize) {
9ea24bbe 5061 /*
ea14b57f 5062 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5063 * This is to ensure the snapshot captures a fully consistent
5064 * state of this file - if the snapshot captures this expanding
5065 * truncation, it must capture all writes that happened before
5066 * this truncation.
5067 */
0bc19f90 5068 btrfs_wait_for_snapshot_creation(root);
a41ad394 5069 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5070 if (ret) {
ea14b57f 5071 btrfs_end_write_no_snapshotting(root);
8082510e 5072 return ret;
9ea24bbe 5073 }
8082510e 5074
f4a2f4c5 5075 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5076 if (IS_ERR(trans)) {
ea14b57f 5077 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5078 return PTR_ERR(trans);
9ea24bbe 5079 }
f4a2f4c5
MX
5080
5081 i_size_write(inode, newsize);
5082 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5083 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5084 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5085 btrfs_end_write_no_snapshotting(root);
3a45bb20 5086 btrfs_end_transaction(trans);
a41ad394 5087 } else {
8082510e 5088
a41ad394
JB
5089 /*
5090 * We're truncating a file that used to have good data down to
5091 * zero. Make sure it gets into the ordered flush list so that
5092 * any new writes get down to disk quickly.
5093 */
5094 if (newsize == 0)
72ac3c0d
JB
5095 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5096 &BTRFS_I(inode)->runtime_flags);
8082510e 5097
f3fe820c
JB
5098 /*
5099 * 1 for the orphan item we're going to add
5100 * 1 for the orphan item deletion.
5101 */
5102 trans = btrfs_start_transaction(root, 2);
5103 if (IS_ERR(trans))
5104 return PTR_ERR(trans);
5105
5106 /*
5107 * We need to do this in case we fail at _any_ point during the
5108 * actual truncate. Once we do the truncate_setsize we could
5109 * invalidate pages which forces any outstanding ordered io to
5110 * be instantly completed which will give us extents that need
5111 * to be truncated. If we fail to get an orphan inode down we
5112 * could have left over extents that were never meant to live,
01327610 5113 * so we need to guarantee from this point on that everything
f3fe820c
JB
5114 * will be consistent.
5115 */
73f2e545 5116 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5117 btrfs_end_transaction(trans);
f3fe820c
JB
5118 if (ret)
5119 return ret;
5120
a41ad394
JB
5121 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5122 truncate_setsize(inode, newsize);
2e60a51e
MX
5123
5124 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5125 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5126 inode_dio_wait(inode);
0b581701 5127 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5128
a41ad394 5129 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5130 if (ret && inode->i_nlink) {
5131 int err;
5132
19fd2df5
LB
5133 /* To get a stable disk_i_size */
5134 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5135 if (err) {
3d6ae7bb 5136 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5137 return err;
5138 }
5139
7f4f6e0a
JB
5140 /*
5141 * failed to truncate, disk_i_size is only adjusted down
5142 * as we remove extents, so it should represent the true
5143 * size of the inode, so reset the in memory size and
5144 * delete our orphan entry.
5145 */
5146 trans = btrfs_join_transaction(root);
5147 if (IS_ERR(trans)) {
3d6ae7bb 5148 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5149 return ret;
5150 }
5151 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5152 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5153 if (err)
66642832 5154 btrfs_abort_transaction(trans, err);
3a45bb20 5155 btrfs_end_transaction(trans);
7f4f6e0a 5156 }
8082510e
YZ
5157 }
5158
a41ad394 5159 return ret;
8082510e
YZ
5160}
5161
9036c102
YZ
5162static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5163{
2b0143b5 5164 struct inode *inode = d_inode(dentry);
b83cc969 5165 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5166 int err;
39279cc3 5167
b83cc969
LZ
5168 if (btrfs_root_readonly(root))
5169 return -EROFS;
5170
31051c85 5171 err = setattr_prepare(dentry, attr);
9036c102
YZ
5172 if (err)
5173 return err;
2bf5a725 5174
5a3f23d5 5175 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5176 err = btrfs_setsize(inode, attr);
8082510e
YZ
5177 if (err)
5178 return err;
39279cc3 5179 }
9036c102 5180
1025774c
CH
5181 if (attr->ia_valid) {
5182 setattr_copy(inode, attr);
0c4d2d95 5183 inode_inc_iversion(inode);
22c44fe6 5184 err = btrfs_dirty_inode(inode);
1025774c 5185
22c44fe6 5186 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5187 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5188 }
33268eaf 5189
39279cc3
CM
5190 return err;
5191}
61295eb8 5192
131e404a
FDBM
5193/*
5194 * While truncating the inode pages during eviction, we get the VFS calling
5195 * btrfs_invalidatepage() against each page of the inode. This is slow because
5196 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5197 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5198 * extent_state structures over and over, wasting lots of time.
5199 *
5200 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5201 * those expensive operations on a per page basis and do only the ordered io
5202 * finishing, while we release here the extent_map and extent_state structures,
5203 * without the excessive merging and splitting.
5204 */
5205static void evict_inode_truncate_pages(struct inode *inode)
5206{
5207 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5208 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5209 struct rb_node *node;
5210
5211 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5212 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5213
5214 write_lock(&map_tree->lock);
5215 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5216 struct extent_map *em;
5217
5218 node = rb_first(&map_tree->map);
5219 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5220 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5221 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5222 remove_extent_mapping(map_tree, em);
5223 free_extent_map(em);
7064dd5c
FM
5224 if (need_resched()) {
5225 write_unlock(&map_tree->lock);
5226 cond_resched();
5227 write_lock(&map_tree->lock);
5228 }
131e404a
FDBM
5229 }
5230 write_unlock(&map_tree->lock);
5231
6ca07097
FM
5232 /*
5233 * Keep looping until we have no more ranges in the io tree.
5234 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5235 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5236 * still in progress (unlocked the pages in the bio but did not yet
5237 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5238 * ranges can still be locked and eviction started because before
5239 * submitting those bios, which are executed by a separate task (work
5240 * queue kthread), inode references (inode->i_count) were not taken
5241 * (which would be dropped in the end io callback of each bio).
5242 * Therefore here we effectively end up waiting for those bios and
5243 * anyone else holding locked ranges without having bumped the inode's
5244 * reference count - if we don't do it, when they access the inode's
5245 * io_tree to unlock a range it may be too late, leading to an
5246 * use-after-free issue.
5247 */
131e404a
FDBM
5248 spin_lock(&io_tree->lock);
5249 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5250 struct extent_state *state;
5251 struct extent_state *cached_state = NULL;
6ca07097
FM
5252 u64 start;
5253 u64 end;
131e404a
FDBM
5254
5255 node = rb_first(&io_tree->state);
5256 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5257 start = state->start;
5258 end = state->end;
131e404a
FDBM
5259 spin_unlock(&io_tree->lock);
5260
ff13db41 5261 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5262
5263 /*
5264 * If still has DELALLOC flag, the extent didn't reach disk,
5265 * and its reserved space won't be freed by delayed_ref.
5266 * So we need to free its reserved space here.
5267 * (Refer to comment in btrfs_invalidatepage, case 2)
5268 *
5269 * Note, end is the bytenr of last byte, so we need + 1 here.
5270 */
5271 if (state->state & EXTENT_DELALLOC)
bc42bda2 5272 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5273
6ca07097 5274 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5275 EXTENT_LOCKED | EXTENT_DIRTY |
5276 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5277 EXTENT_DEFRAG, 1, 1,
5278 &cached_state, GFP_NOFS);
131e404a 5279
7064dd5c 5280 cond_resched();
131e404a
FDBM
5281 spin_lock(&io_tree->lock);
5282 }
5283 spin_unlock(&io_tree->lock);
5284}
5285
bd555975 5286void btrfs_evict_inode(struct inode *inode)
39279cc3 5287{
0b246afa 5288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5289 struct btrfs_trans_handle *trans;
5290 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5291 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5292 int steal_from_global = 0;
3d48d981 5293 u64 min_size;
39279cc3
CM
5294 int ret;
5295
1abe9b8a 5296 trace_btrfs_inode_evict(inode);
5297
3d48d981
NB
5298 if (!root) {
5299 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5300 return;
5301 }
5302
0b246afa 5303 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5304
131e404a
FDBM
5305 evict_inode_truncate_pages(inode);
5306
69e9c6c6
SB
5307 if (inode->i_nlink &&
5308 ((btrfs_root_refs(&root->root_item) != 0 &&
5309 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5310 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5311 goto no_delete;
5312
39279cc3 5313 if (is_bad_inode(inode)) {
3d6ae7bb 5314 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5315 goto no_delete;
5316 }
bd555975 5317 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5318 if (!special_file(inode->i_mode))
5319 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5320
7ab7956e 5321 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5322
0b246afa 5323 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5324 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5325 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5326 goto no_delete;
5327 }
5328
76dda93c 5329 if (inode->i_nlink > 0) {
69e9c6c6
SB
5330 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5331 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5332 goto no_delete;
5333 }
5334
aa79021f 5335 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5336 if (ret) {
3d6ae7bb 5337 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5338 goto no_delete;
5339 }
5340
2ff7e61e 5341 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5342 if (!rsv) {
3d6ae7bb 5343 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5344 goto no_delete;
5345 }
4a338542 5346 rsv->size = min_size;
ca7e70f5 5347 rsv->failfast = 1;
0b246afa 5348 global_rsv = &fs_info->global_block_rsv;
4289a667 5349
6ef06d27 5350 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5351
4289a667 5352 /*
8407aa46
MX
5353 * This is a bit simpler than btrfs_truncate since we've already
5354 * reserved our space for our orphan item in the unlink, so we just
5355 * need to reserve some slack space in case we add bytes and update
5356 * inode item when doing the truncate.
4289a667 5357 */
8082510e 5358 while (1) {
08e007d2
MX
5359 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5360 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5361
5362 /*
5363 * Try and steal from the global reserve since we will
5364 * likely not use this space anyway, we want to try as
5365 * hard as possible to get this to work.
5366 */
5367 if (ret)
3bce876f
JB
5368 steal_from_global++;
5369 else
5370 steal_from_global = 0;
5371 ret = 0;
d68fc57b 5372
3bce876f
JB
5373 /*
5374 * steal_from_global == 0: we reserved stuff, hooray!
5375 * steal_from_global == 1: we didn't reserve stuff, boo!
5376 * steal_from_global == 2: we've committed, still not a lot of
5377 * room but maybe we'll have room in the global reserve this
5378 * time.
5379 * steal_from_global == 3: abandon all hope!
5380 */
5381 if (steal_from_global > 2) {
0b246afa
JM
5382 btrfs_warn(fs_info,
5383 "Could not get space for a delete, will truncate on mount %d",
5384 ret);
3d6ae7bb 5385 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5386 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5387 goto no_delete;
d68fc57b 5388 }
7b128766 5389
0e8c36a9 5390 trans = btrfs_join_transaction(root);
4289a667 5391 if (IS_ERR(trans)) {
3d6ae7bb 5392 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5393 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5394 goto no_delete;
d68fc57b 5395 }
7b128766 5396
3bce876f 5397 /*
01327610 5398 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5399 * sure there is room to do it, if not we need to commit and try
5400 * again.
5401 */
5402 if (steal_from_global) {
2ff7e61e 5403 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5404 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5405 min_size, 0);
3bce876f
JB
5406 else
5407 ret = -ENOSPC;
5408 }
5409
5410 /*
5411 * Couldn't steal from the global reserve, we have too much
5412 * pending stuff built up, commit the transaction and try it
5413 * again.
5414 */
5415 if (ret) {
3a45bb20 5416 ret = btrfs_commit_transaction(trans);
3bce876f 5417 if (ret) {
3d6ae7bb 5418 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5419 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5420 goto no_delete;
5421 }
5422 continue;
5423 } else {
5424 steal_from_global = 0;
5425 }
5426
4289a667
JB
5427 trans->block_rsv = rsv;
5428
d68fc57b 5429 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5430 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5431 break;
85e21bac 5432
0b246afa 5433 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5434 btrfs_end_transaction(trans);
8082510e 5435 trans = NULL;
2ff7e61e 5436 btrfs_btree_balance_dirty(fs_info);
8082510e 5437 }
5f39d397 5438
2ff7e61e 5439 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5440
4ef31a45
JB
5441 /*
5442 * Errors here aren't a big deal, it just means we leave orphan items
5443 * in the tree. They will be cleaned up on the next mount.
5444 */
8082510e 5445 if (ret == 0) {
4289a667 5446 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5447 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5448 } else {
3d6ae7bb 5449 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5450 }
54aa1f4d 5451
0b246afa
JM
5452 trans->block_rsv = &fs_info->trans_block_rsv;
5453 if (!(root == fs_info->tree_root ||
581bb050 5454 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5455 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5456
3a45bb20 5457 btrfs_end_transaction(trans);
2ff7e61e 5458 btrfs_btree_balance_dirty(fs_info);
39279cc3 5459no_delete:
f48d1cf5 5460 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5461 clear_inode(inode);
39279cc3
CM
5462}
5463
5464/*
5465 * this returns the key found in the dir entry in the location pointer.
5466 * If no dir entries were found, location->objectid is 0.
5467 */
5468static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5469 struct btrfs_key *location)
5470{
5471 const char *name = dentry->d_name.name;
5472 int namelen = dentry->d_name.len;
5473 struct btrfs_dir_item *di;
5474 struct btrfs_path *path;
5475 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5476 int ret = 0;
39279cc3
CM
5477
5478 path = btrfs_alloc_path();
d8926bb3
MF
5479 if (!path)
5480 return -ENOMEM;
3954401f 5481
f85b7379
DS
5482 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5483 name, namelen, 0);
0d9f7f3e
Y
5484 if (IS_ERR(di))
5485 ret = PTR_ERR(di);
d397712b 5486
c704005d 5487 if (IS_ERR_OR_NULL(di))
3954401f 5488 goto out_err;
d397712b 5489
5f39d397 5490 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5491out:
39279cc3
CM
5492 btrfs_free_path(path);
5493 return ret;
3954401f
CM
5494out_err:
5495 location->objectid = 0;
5496 goto out;
39279cc3
CM
5497}
5498
5499/*
5500 * when we hit a tree root in a directory, the btrfs part of the inode
5501 * needs to be changed to reflect the root directory of the tree root. This
5502 * is kind of like crossing a mount point.
5503 */
2ff7e61e 5504static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5505 struct inode *dir,
5506 struct dentry *dentry,
5507 struct btrfs_key *location,
5508 struct btrfs_root **sub_root)
39279cc3 5509{
4df27c4d
YZ
5510 struct btrfs_path *path;
5511 struct btrfs_root *new_root;
5512 struct btrfs_root_ref *ref;
5513 struct extent_buffer *leaf;
1d4c08e0 5514 struct btrfs_key key;
4df27c4d
YZ
5515 int ret;
5516 int err = 0;
39279cc3 5517
4df27c4d
YZ
5518 path = btrfs_alloc_path();
5519 if (!path) {
5520 err = -ENOMEM;
5521 goto out;
5522 }
39279cc3 5523
4df27c4d 5524 err = -ENOENT;
1d4c08e0
DS
5525 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5526 key.type = BTRFS_ROOT_REF_KEY;
5527 key.offset = location->objectid;
5528
0b246afa 5529 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5530 if (ret) {
5531 if (ret < 0)
5532 err = ret;
5533 goto out;
5534 }
39279cc3 5535
4df27c4d
YZ
5536 leaf = path->nodes[0];
5537 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5538 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5539 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5540 goto out;
39279cc3 5541
4df27c4d
YZ
5542 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5543 (unsigned long)(ref + 1),
5544 dentry->d_name.len);
5545 if (ret)
5546 goto out;
5547
b3b4aa74 5548 btrfs_release_path(path);
4df27c4d 5549
0b246afa 5550 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5551 if (IS_ERR(new_root)) {
5552 err = PTR_ERR(new_root);
5553 goto out;
5554 }
5555
4df27c4d
YZ
5556 *sub_root = new_root;
5557 location->objectid = btrfs_root_dirid(&new_root->root_item);
5558 location->type = BTRFS_INODE_ITEM_KEY;
5559 location->offset = 0;
5560 err = 0;
5561out:
5562 btrfs_free_path(path);
5563 return err;
39279cc3
CM
5564}
5565
5d4f98a2
YZ
5566static void inode_tree_add(struct inode *inode)
5567{
5568 struct btrfs_root *root = BTRFS_I(inode)->root;
5569 struct btrfs_inode *entry;
03e860bd
FNP
5570 struct rb_node **p;
5571 struct rb_node *parent;
cef21937 5572 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5573 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5574
1d3382cb 5575 if (inode_unhashed(inode))
76dda93c 5576 return;
e1409cef 5577 parent = NULL;
5d4f98a2 5578 spin_lock(&root->inode_lock);
e1409cef 5579 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5580 while (*p) {
5581 parent = *p;
5582 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5583
4a0cc7ca 5584 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5585 p = &parent->rb_left;
4a0cc7ca 5586 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5587 p = &parent->rb_right;
5d4f98a2
YZ
5588 else {
5589 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5590 (I_WILL_FREE | I_FREEING)));
cef21937 5591 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5592 RB_CLEAR_NODE(parent);
5593 spin_unlock(&root->inode_lock);
cef21937 5594 return;
5d4f98a2
YZ
5595 }
5596 }
cef21937
FDBM
5597 rb_link_node(new, parent, p);
5598 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5599 spin_unlock(&root->inode_lock);
5600}
5601
5602static void inode_tree_del(struct inode *inode)
5603{
0b246afa 5604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5605 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5606 int empty = 0;
5d4f98a2 5607
03e860bd 5608 spin_lock(&root->inode_lock);
5d4f98a2 5609 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5610 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5611 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5612 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5613 }
03e860bd 5614 spin_unlock(&root->inode_lock);
76dda93c 5615
69e9c6c6 5616 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5617 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5618 spin_lock(&root->inode_lock);
5619 empty = RB_EMPTY_ROOT(&root->inode_tree);
5620 spin_unlock(&root->inode_lock);
5621 if (empty)
5622 btrfs_add_dead_root(root);
5623 }
5624}
5625
143bede5 5626void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5627{
0b246afa 5628 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5629 struct rb_node *node;
5630 struct rb_node *prev;
5631 struct btrfs_inode *entry;
5632 struct inode *inode;
5633 u64 objectid = 0;
5634
0b246afa 5635 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5636 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5637
5638 spin_lock(&root->inode_lock);
5639again:
5640 node = root->inode_tree.rb_node;
5641 prev = NULL;
5642 while (node) {
5643 prev = node;
5644 entry = rb_entry(node, struct btrfs_inode, rb_node);
5645
4a0cc7ca 5646 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5647 node = node->rb_left;
4a0cc7ca 5648 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5649 node = node->rb_right;
5650 else
5651 break;
5652 }
5653 if (!node) {
5654 while (prev) {
5655 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5656 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5657 node = prev;
5658 break;
5659 }
5660 prev = rb_next(prev);
5661 }
5662 }
5663 while (node) {
5664 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5665 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5666 inode = igrab(&entry->vfs_inode);
5667 if (inode) {
5668 spin_unlock(&root->inode_lock);
5669 if (atomic_read(&inode->i_count) > 1)
5670 d_prune_aliases(inode);
5671 /*
45321ac5 5672 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5673 * the inode cache when its usage count
5674 * hits zero.
5675 */
5676 iput(inode);
5677 cond_resched();
5678 spin_lock(&root->inode_lock);
5679 goto again;
5680 }
5681
5682 if (cond_resched_lock(&root->inode_lock))
5683 goto again;
5684
5685 node = rb_next(node);
5686 }
5687 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5688}
5689
e02119d5
CM
5690static int btrfs_init_locked_inode(struct inode *inode, void *p)
5691{
5692 struct btrfs_iget_args *args = p;
90d3e592
CM
5693 inode->i_ino = args->location->objectid;
5694 memcpy(&BTRFS_I(inode)->location, args->location,
5695 sizeof(*args->location));
e02119d5 5696 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5697 return 0;
5698}
5699
5700static int btrfs_find_actor(struct inode *inode, void *opaque)
5701{
5702 struct btrfs_iget_args *args = opaque;
90d3e592 5703 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5704 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5705}
5706
5d4f98a2 5707static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5708 struct btrfs_key *location,
5d4f98a2 5709 struct btrfs_root *root)
39279cc3
CM
5710{
5711 struct inode *inode;
5712 struct btrfs_iget_args args;
90d3e592 5713 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5714
90d3e592 5715 args.location = location;
39279cc3
CM
5716 args.root = root;
5717
778ba82b 5718 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5719 btrfs_init_locked_inode,
5720 (void *)&args);
5721 return inode;
5722}
5723
1a54ef8c
BR
5724/* Get an inode object given its location and corresponding root.
5725 * Returns in *is_new if the inode was read from disk
5726 */
5727struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5728 struct btrfs_root *root, int *new)
1a54ef8c
BR
5729{
5730 struct inode *inode;
5731
90d3e592 5732 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5733 if (!inode)
5d4f98a2 5734 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5735
5736 if (inode->i_state & I_NEW) {
67710892
FM
5737 int ret;
5738
5739 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5740 if (!is_bad_inode(inode)) {
5741 inode_tree_add(inode);
5742 unlock_new_inode(inode);
5743 if (new)
5744 *new = 1;
5745 } else {
e0b6d65b
ST
5746 unlock_new_inode(inode);
5747 iput(inode);
67710892
FM
5748 ASSERT(ret < 0);
5749 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5750 }
5751 }
5752
1a54ef8c
BR
5753 return inode;
5754}
5755
4df27c4d
YZ
5756static struct inode *new_simple_dir(struct super_block *s,
5757 struct btrfs_key *key,
5758 struct btrfs_root *root)
5759{
5760 struct inode *inode = new_inode(s);
5761
5762 if (!inode)
5763 return ERR_PTR(-ENOMEM);
5764
4df27c4d
YZ
5765 BTRFS_I(inode)->root = root;
5766 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5767 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5768
5769 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5770 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5771 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5772 inode->i_fop = &simple_dir_operations;
5773 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5774 inode->i_mtime = current_time(inode);
9cc97d64 5775 inode->i_atime = inode->i_mtime;
5776 inode->i_ctime = inode->i_mtime;
5777 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5778
5779 return inode;
5780}
5781
3de4586c 5782struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5783{
0b246afa 5784 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5785 struct inode *inode;
4df27c4d 5786 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5787 struct btrfs_root *sub_root = root;
5788 struct btrfs_key location;
76dda93c 5789 int index;
b4aff1f8 5790 int ret = 0;
39279cc3
CM
5791
5792 if (dentry->d_name.len > BTRFS_NAME_LEN)
5793 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5794
39e3c955 5795 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5796 if (ret < 0)
5797 return ERR_PTR(ret);
5f39d397 5798
4df27c4d 5799 if (location.objectid == 0)
5662344b 5800 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5801
5802 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5803 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5804 return inode;
5805 }
5806
5807 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5808
0b246afa 5809 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5810 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5811 &location, &sub_root);
5812 if (ret < 0) {
5813 if (ret != -ENOENT)
5814 inode = ERR_PTR(ret);
5815 else
5816 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5817 } else {
73f73415 5818 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5819 }
0b246afa 5820 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5821
34d19bad 5822 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5823 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5824 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5825 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5826 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5827 if (ret) {
5828 iput(inode);
66b4ffd1 5829 inode = ERR_PTR(ret);
01cd3367 5830 }
c71bf099
YZ
5831 }
5832
3de4586c
CM
5833 return inode;
5834}
5835
fe15ce44 5836static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5837{
5838 struct btrfs_root *root;
2b0143b5 5839 struct inode *inode = d_inode(dentry);
76dda93c 5840
848cce0d 5841 if (!inode && !IS_ROOT(dentry))
2b0143b5 5842 inode = d_inode(dentry->d_parent);
76dda93c 5843
848cce0d
LZ
5844 if (inode) {
5845 root = BTRFS_I(inode)->root;
efefb143
YZ
5846 if (btrfs_root_refs(&root->root_item) == 0)
5847 return 1;
848cce0d 5848
4a0cc7ca 5849 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5850 return 1;
efefb143 5851 }
76dda93c
YZ
5852 return 0;
5853}
5854
b4aff1f8
JB
5855static void btrfs_dentry_release(struct dentry *dentry)
5856{
944a4515 5857 kfree(dentry->d_fsdata);
b4aff1f8
JB
5858}
5859
3de4586c 5860static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5861 unsigned int flags)
3de4586c 5862{
5662344b 5863 struct inode *inode;
a66e7cc6 5864
5662344b
TI
5865 inode = btrfs_lookup_dentry(dir, dentry);
5866 if (IS_ERR(inode)) {
5867 if (PTR_ERR(inode) == -ENOENT)
5868 inode = NULL;
5869 else
5870 return ERR_CAST(inode);
5871 }
5872
41d28bca 5873 return d_splice_alias(inode, dentry);
39279cc3
CM
5874}
5875
16cdcec7 5876unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5877 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5878};
5879
23b5ec74
JB
5880/*
5881 * All this infrastructure exists because dir_emit can fault, and we are holding
5882 * the tree lock when doing readdir. For now just allocate a buffer and copy
5883 * our information into that, and then dir_emit from the buffer. This is
5884 * similar to what NFS does, only we don't keep the buffer around in pagecache
5885 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5886 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5887 * tree lock.
5888 */
5889static int btrfs_opendir(struct inode *inode, struct file *file)
5890{
5891 struct btrfs_file_private *private;
5892
5893 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5894 if (!private)
5895 return -ENOMEM;
5896 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5897 if (!private->filldir_buf) {
5898 kfree(private);
5899 return -ENOMEM;
5900 }
5901 file->private_data = private;
5902 return 0;
5903}
5904
5905struct dir_entry {
5906 u64 ino;
5907 u64 offset;
5908 unsigned type;
5909 int name_len;
5910};
5911
5912static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5913{
5914 while (entries--) {
5915 struct dir_entry *entry = addr;
5916 char *name = (char *)(entry + 1);
5917
5918 ctx->pos = entry->offset;
5919 if (!dir_emit(ctx, name, entry->name_len, entry->ino,
5920 entry->type))
5921 return 1;
5922 addr += sizeof(struct dir_entry) + entry->name_len;
5923 ctx->pos++;
5924 }
5925 return 0;
5926}
5927
9cdda8d3 5928static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5929{
9cdda8d3 5930 struct inode *inode = file_inode(file);
2ff7e61e 5931 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 5932 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5933 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5934 struct btrfs_dir_item *di;
5935 struct btrfs_key key;
5f39d397 5936 struct btrfs_key found_key;
39279cc3 5937 struct btrfs_path *path;
23b5ec74 5938 void *addr;
16cdcec7
MX
5939 struct list_head ins_list;
5940 struct list_head del_list;
39279cc3 5941 int ret;
5f39d397 5942 struct extent_buffer *leaf;
39279cc3 5943 int slot;
5f39d397
CM
5944 char *name_ptr;
5945 int name_len;
23b5ec74
JB
5946 int entries = 0;
5947 int total_len = 0;
02dbfc99 5948 bool put = false;
c2951f32 5949 struct btrfs_key location;
5f39d397 5950
9cdda8d3
AV
5951 if (!dir_emit_dots(file, ctx))
5952 return 0;
5953
49593bfa 5954 path = btrfs_alloc_path();
16cdcec7
MX
5955 if (!path)
5956 return -ENOMEM;
ff5714cc 5957
23b5ec74 5958 addr = private->filldir_buf;
e4058b54 5959 path->reada = READA_FORWARD;
49593bfa 5960
c2951f32
JM
5961 INIT_LIST_HEAD(&ins_list);
5962 INIT_LIST_HEAD(&del_list);
5963 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5964
23b5ec74 5965again:
c2951f32 5966 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5967 key.offset = ctx->pos;
4a0cc7ca 5968 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5969
39279cc3
CM
5970 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5971 if (ret < 0)
5972 goto err;
49593bfa
DW
5973
5974 while (1) {
23b5ec74
JB
5975 struct dir_entry *entry;
5976
5f39d397 5977 leaf = path->nodes[0];
39279cc3 5978 slot = path->slots[0];
b9e03af0
LZ
5979 if (slot >= btrfs_header_nritems(leaf)) {
5980 ret = btrfs_next_leaf(root, path);
5981 if (ret < 0)
5982 goto err;
5983 else if (ret > 0)
5984 break;
5985 continue;
39279cc3 5986 }
3de4586c 5987
5f39d397
CM
5988 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5989
5990 if (found_key.objectid != key.objectid)
39279cc3 5991 break;
c2951f32 5992 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5993 break;
9cdda8d3 5994 if (found_key.offset < ctx->pos)
b9e03af0 5995 goto next;
c2951f32 5996 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5997 goto next;
39279cc3 5998 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
e79a3327 5999 if (verify_dir_item(fs_info, leaf, slot, di))
c2951f32 6000 goto next;
22a94d44 6001
c2951f32 6002 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
6003 if ((total_len + sizeof(struct dir_entry) + name_len) >=
6004 PAGE_SIZE) {
6005 btrfs_release_path(path);
6006 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6007 if (ret)
6008 goto nopos;
6009 addr = private->filldir_buf;
6010 entries = 0;
6011 total_len = 0;
6012 goto again;
c2951f32 6013 }
23b5ec74
JB
6014
6015 entry = addr;
6016 entry->name_len = name_len;
6017 name_ptr = (char *)(entry + 1);
c2951f32
JM
6018 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6019 name_len);
23b5ec74 6020 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
c2951f32 6021 btrfs_dir_item_key_to_cpu(leaf, di, &location);
23b5ec74
JB
6022 entry->ino = location.objectid;
6023 entry->offset = found_key.offset;
6024 entries++;
6025 addr += sizeof(struct dir_entry) + name_len;
6026 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
6027next:
6028 path->slots[0]++;
39279cc3 6029 }
23b5ec74
JB
6030 btrfs_release_path(path);
6031
6032 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6033 if (ret)
6034 goto nopos;
49593bfa 6035
d2fbb2b5 6036 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6037 if (ret)
bc4ef759
DS
6038 goto nopos;
6039
db62efbb
ZB
6040 /*
6041 * Stop new entries from being returned after we return the last
6042 * entry.
6043 *
6044 * New directory entries are assigned a strictly increasing
6045 * offset. This means that new entries created during readdir
6046 * are *guaranteed* to be seen in the future by that readdir.
6047 * This has broken buggy programs which operate on names as
6048 * they're returned by readdir. Until we re-use freed offsets
6049 * we have this hack to stop new entries from being returned
6050 * under the assumption that they'll never reach this huge
6051 * offset.
6052 *
6053 * This is being careful not to overflow 32bit loff_t unless the
6054 * last entry requires it because doing so has broken 32bit apps
6055 * in the past.
6056 */
c2951f32
JM
6057 if (ctx->pos >= INT_MAX)
6058 ctx->pos = LLONG_MAX;
6059 else
6060 ctx->pos = INT_MAX;
39279cc3
CM
6061nopos:
6062 ret = 0;
6063err:
02dbfc99
OS
6064 if (put)
6065 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6066 btrfs_free_path(path);
39279cc3
CM
6067 return ret;
6068}
6069
a9185b41 6070int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6071{
6072 struct btrfs_root *root = BTRFS_I(inode)->root;
6073 struct btrfs_trans_handle *trans;
6074 int ret = 0;
0af3d00b 6075 bool nolock = false;
39279cc3 6076
72ac3c0d 6077 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6078 return 0;
6079
70ddc553
NB
6080 if (btrfs_fs_closing(root->fs_info) &&
6081 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6082 nolock = true;
0af3d00b 6083
a9185b41 6084 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6085 if (nolock)
7a7eaa40 6086 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6087 else
7a7eaa40 6088 trans = btrfs_join_transaction(root);
3612b495
TI
6089 if (IS_ERR(trans))
6090 return PTR_ERR(trans);
3a45bb20 6091 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6092 }
6093 return ret;
6094}
6095
6096/*
54aa1f4d 6097 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6098 * inode changes. But, it is most likely to find the inode in cache.
6099 * FIXME, needs more benchmarking...there are no reasons other than performance
6100 * to keep or drop this code.
6101 */
48a3b636 6102static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6103{
2ff7e61e 6104 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6105 struct btrfs_root *root = BTRFS_I(inode)->root;
6106 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6107 int ret;
6108
72ac3c0d 6109 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6110 return 0;
39279cc3 6111
7a7eaa40 6112 trans = btrfs_join_transaction(root);
22c44fe6
JB
6113 if (IS_ERR(trans))
6114 return PTR_ERR(trans);
8929ecfa
YZ
6115
6116 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6117 if (ret && ret == -ENOSPC) {
6118 /* whoops, lets try again with the full transaction */
3a45bb20 6119 btrfs_end_transaction(trans);
94b60442 6120 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6121 if (IS_ERR(trans))
6122 return PTR_ERR(trans);
8929ecfa 6123
94b60442 6124 ret = btrfs_update_inode(trans, root, inode);
94b60442 6125 }
3a45bb20 6126 btrfs_end_transaction(trans);
16cdcec7 6127 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6128 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6129
6130 return ret;
6131}
6132
6133/*
6134 * This is a copy of file_update_time. We need this so we can return error on
6135 * ENOSPC for updating the inode in the case of file write and mmap writes.
6136 */
e41f941a
JB
6137static int btrfs_update_time(struct inode *inode, struct timespec *now,
6138 int flags)
22c44fe6 6139{
2bc55652
AB
6140 struct btrfs_root *root = BTRFS_I(inode)->root;
6141
6142 if (btrfs_root_readonly(root))
6143 return -EROFS;
6144
e41f941a 6145 if (flags & S_VERSION)
22c44fe6 6146 inode_inc_iversion(inode);
e41f941a
JB
6147 if (flags & S_CTIME)
6148 inode->i_ctime = *now;
6149 if (flags & S_MTIME)
6150 inode->i_mtime = *now;
6151 if (flags & S_ATIME)
6152 inode->i_atime = *now;
6153 return btrfs_dirty_inode(inode);
39279cc3
CM
6154}
6155
d352ac68
CM
6156/*
6157 * find the highest existing sequence number in a directory
6158 * and then set the in-memory index_cnt variable to reflect
6159 * free sequence numbers
6160 */
4c570655 6161static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6162{
4c570655 6163 struct btrfs_root *root = inode->root;
aec7477b
JB
6164 struct btrfs_key key, found_key;
6165 struct btrfs_path *path;
6166 struct extent_buffer *leaf;
6167 int ret;
6168
4c570655 6169 key.objectid = btrfs_ino(inode);
962a298f 6170 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6171 key.offset = (u64)-1;
6172
6173 path = btrfs_alloc_path();
6174 if (!path)
6175 return -ENOMEM;
6176
6177 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6178 if (ret < 0)
6179 goto out;
6180 /* FIXME: we should be able to handle this */
6181 if (ret == 0)
6182 goto out;
6183 ret = 0;
6184
6185 /*
6186 * MAGIC NUMBER EXPLANATION:
6187 * since we search a directory based on f_pos we have to start at 2
6188 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6189 * else has to start at 2
6190 */
6191 if (path->slots[0] == 0) {
4c570655 6192 inode->index_cnt = 2;
aec7477b
JB
6193 goto out;
6194 }
6195
6196 path->slots[0]--;
6197
6198 leaf = path->nodes[0];
6199 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6200
4c570655 6201 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6202 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6203 inode->index_cnt = 2;
aec7477b
JB
6204 goto out;
6205 }
6206
4c570655 6207 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6208out:
6209 btrfs_free_path(path);
6210 return ret;
6211}
6212
d352ac68
CM
6213/*
6214 * helper to find a free sequence number in a given directory. This current
6215 * code is very simple, later versions will do smarter things in the btree
6216 */
877574e2 6217int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6218{
6219 int ret = 0;
6220
877574e2
NB
6221 if (dir->index_cnt == (u64)-1) {
6222 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6223 if (ret) {
6224 ret = btrfs_set_inode_index_count(dir);
6225 if (ret)
6226 return ret;
6227 }
aec7477b
JB
6228 }
6229
877574e2
NB
6230 *index = dir->index_cnt;
6231 dir->index_cnt++;
aec7477b
JB
6232
6233 return ret;
6234}
6235
b0d5d10f
CM
6236static int btrfs_insert_inode_locked(struct inode *inode)
6237{
6238 struct btrfs_iget_args args;
6239 args.location = &BTRFS_I(inode)->location;
6240 args.root = BTRFS_I(inode)->root;
6241
6242 return insert_inode_locked4(inode,
6243 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6244 btrfs_find_actor, &args);
6245}
6246
19aee8de
AJ
6247/*
6248 * Inherit flags from the parent inode.
6249 *
6250 * Currently only the compression flags and the cow flags are inherited.
6251 */
6252static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6253{
6254 unsigned int flags;
6255
6256 if (!dir)
6257 return;
6258
6259 flags = BTRFS_I(dir)->flags;
6260
6261 if (flags & BTRFS_INODE_NOCOMPRESS) {
6262 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6263 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6264 } else if (flags & BTRFS_INODE_COMPRESS) {
6265 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6266 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6267 }
6268
6269 if (flags & BTRFS_INODE_NODATACOW) {
6270 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6271 if (S_ISREG(inode->i_mode))
6272 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6273 }
6274
6275 btrfs_update_iflags(inode);
6276}
6277
39279cc3
CM
6278static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6279 struct btrfs_root *root,
aec7477b 6280 struct inode *dir,
9c58309d 6281 const char *name, int name_len,
175a4eb7
AV
6282 u64 ref_objectid, u64 objectid,
6283 umode_t mode, u64 *index)
39279cc3 6284{
0b246afa 6285 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6286 struct inode *inode;
5f39d397 6287 struct btrfs_inode_item *inode_item;
39279cc3 6288 struct btrfs_key *location;
5f39d397 6289 struct btrfs_path *path;
9c58309d
CM
6290 struct btrfs_inode_ref *ref;
6291 struct btrfs_key key[2];
6292 u32 sizes[2];
ef3b9af5 6293 int nitems = name ? 2 : 1;
9c58309d 6294 unsigned long ptr;
39279cc3 6295 int ret;
39279cc3 6296
5f39d397 6297 path = btrfs_alloc_path();
d8926bb3
MF
6298 if (!path)
6299 return ERR_PTR(-ENOMEM);
5f39d397 6300
0b246afa 6301 inode = new_inode(fs_info->sb);
8fb27640
YS
6302 if (!inode) {
6303 btrfs_free_path(path);
39279cc3 6304 return ERR_PTR(-ENOMEM);
8fb27640 6305 }
39279cc3 6306
5762b5c9
FM
6307 /*
6308 * O_TMPFILE, set link count to 0, so that after this point,
6309 * we fill in an inode item with the correct link count.
6310 */
6311 if (!name)
6312 set_nlink(inode, 0);
6313
581bb050
LZ
6314 /*
6315 * we have to initialize this early, so we can reclaim the inode
6316 * number if we fail afterwards in this function.
6317 */
6318 inode->i_ino = objectid;
6319
ef3b9af5 6320 if (dir && name) {
1abe9b8a 6321 trace_btrfs_inode_request(dir);
6322
877574e2 6323 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6324 if (ret) {
8fb27640 6325 btrfs_free_path(path);
09771430 6326 iput(inode);
aec7477b 6327 return ERR_PTR(ret);
09771430 6328 }
ef3b9af5
FM
6329 } else if (dir) {
6330 *index = 0;
aec7477b
JB
6331 }
6332 /*
6333 * index_cnt is ignored for everything but a dir,
6334 * btrfs_get_inode_index_count has an explanation for the magic
6335 * number
6336 */
6337 BTRFS_I(inode)->index_cnt = 2;
67de1176 6338 BTRFS_I(inode)->dir_index = *index;
39279cc3 6339 BTRFS_I(inode)->root = root;
e02119d5 6340 BTRFS_I(inode)->generation = trans->transid;
76195853 6341 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6342
5dc562c5
JB
6343 /*
6344 * We could have gotten an inode number from somebody who was fsynced
6345 * and then removed in this same transaction, so let's just set full
6346 * sync since it will be a full sync anyway and this will blow away the
6347 * old info in the log.
6348 */
6349 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6350
9c58309d 6351 key[0].objectid = objectid;
962a298f 6352 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6353 key[0].offset = 0;
6354
9c58309d 6355 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6356
6357 if (name) {
6358 /*
6359 * Start new inodes with an inode_ref. This is slightly more
6360 * efficient for small numbers of hard links since they will
6361 * be packed into one item. Extended refs will kick in if we
6362 * add more hard links than can fit in the ref item.
6363 */
6364 key[1].objectid = objectid;
962a298f 6365 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6366 key[1].offset = ref_objectid;
6367
6368 sizes[1] = name_len + sizeof(*ref);
6369 }
9c58309d 6370
b0d5d10f
CM
6371 location = &BTRFS_I(inode)->location;
6372 location->objectid = objectid;
6373 location->offset = 0;
962a298f 6374 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6375
6376 ret = btrfs_insert_inode_locked(inode);
6377 if (ret < 0)
6378 goto fail;
6379
b9473439 6380 path->leave_spinning = 1;
ef3b9af5 6381 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6382 if (ret != 0)
b0d5d10f 6383 goto fail_unlock;
5f39d397 6384
ecc11fab 6385 inode_init_owner(inode, dir, mode);
a76a3cd4 6386 inode_set_bytes(inode, 0);
9cc97d64 6387
c2050a45 6388 inode->i_mtime = current_time(inode);
9cc97d64 6389 inode->i_atime = inode->i_mtime;
6390 inode->i_ctime = inode->i_mtime;
6391 BTRFS_I(inode)->i_otime = inode->i_mtime;
6392
5f39d397
CM
6393 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6394 struct btrfs_inode_item);
b159fa28 6395 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6396 sizeof(*inode_item));
e02119d5 6397 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6398
ef3b9af5
FM
6399 if (name) {
6400 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6401 struct btrfs_inode_ref);
6402 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6403 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6404 ptr = (unsigned long)(ref + 1);
6405 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6406 }
9c58309d 6407
5f39d397
CM
6408 btrfs_mark_buffer_dirty(path->nodes[0]);
6409 btrfs_free_path(path);
6410
6cbff00f
CH
6411 btrfs_inherit_iflags(inode, dir);
6412
569254b0 6413 if (S_ISREG(mode)) {
0b246afa 6414 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6415 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6416 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6417 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6418 BTRFS_INODE_NODATASUM;
94272164
CM
6419 }
6420
5d4f98a2 6421 inode_tree_add(inode);
1abe9b8a 6422
6423 trace_btrfs_inode_new(inode);
1973f0fa 6424 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6425
8ea05e3a
AB
6426 btrfs_update_root_times(trans, root);
6427
63541927
FDBM
6428 ret = btrfs_inode_inherit_props(trans, inode, dir);
6429 if (ret)
0b246afa 6430 btrfs_err(fs_info,
63541927 6431 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6432 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6433
39279cc3 6434 return inode;
b0d5d10f
CM
6435
6436fail_unlock:
6437 unlock_new_inode(inode);
5f39d397 6438fail:
ef3b9af5 6439 if (dir && name)
aec7477b 6440 BTRFS_I(dir)->index_cnt--;
5f39d397 6441 btrfs_free_path(path);
09771430 6442 iput(inode);
5f39d397 6443 return ERR_PTR(ret);
39279cc3
CM
6444}
6445
6446static inline u8 btrfs_inode_type(struct inode *inode)
6447{
6448 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6449}
6450
d352ac68
CM
6451/*
6452 * utility function to add 'inode' into 'parent_inode' with
6453 * a give name and a given sequence number.
6454 * if 'add_backref' is true, also insert a backref from the
6455 * inode to the parent directory.
6456 */
e02119d5 6457int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6458 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6459 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6460{
db0a669f 6461 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6462 int ret = 0;
39279cc3 6463 struct btrfs_key key;
db0a669f
NB
6464 struct btrfs_root *root = parent_inode->root;
6465 u64 ino = btrfs_ino(inode);
6466 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6467
33345d01 6468 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6469 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6470 } else {
33345d01 6471 key.objectid = ino;
962a298f 6472 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6473 key.offset = 0;
6474 }
6475
33345d01 6476 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6477 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6478 root->root_key.objectid, parent_ino,
6479 index, name, name_len);
4df27c4d 6480 } else if (add_backref) {
33345d01
LZ
6481 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6482 parent_ino, index);
4df27c4d 6483 }
39279cc3 6484
79787eaa
JM
6485 /* Nothing to clean up yet */
6486 if (ret)
6487 return ret;
4df27c4d 6488
79787eaa
JM
6489 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6490 parent_inode, &key,
db0a669f 6491 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6492 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6493 goto fail_dir_item;
6494 else if (ret) {
66642832 6495 btrfs_abort_transaction(trans, ret);
79787eaa 6496 return ret;
39279cc3 6497 }
79787eaa 6498
db0a669f 6499 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6500 name_len * 2);
db0a669f
NB
6501 inode_inc_iversion(&parent_inode->vfs_inode);
6502 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6503 current_time(&parent_inode->vfs_inode);
6504 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6505 if (ret)
66642832 6506 btrfs_abort_transaction(trans, ret);
39279cc3 6507 return ret;
fe66a05a
CM
6508
6509fail_dir_item:
6510 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6511 u64 local_index;
6512 int err;
0b246afa
JM
6513 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6514 root->root_key.objectid, parent_ino,
6515 &local_index, name, name_len);
fe66a05a
CM
6516
6517 } else if (add_backref) {
6518 u64 local_index;
6519 int err;
6520
6521 err = btrfs_del_inode_ref(trans, root, name, name_len,
6522 ino, parent_ino, &local_index);
6523 }
6524 return ret;
39279cc3
CM
6525}
6526
6527static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6528 struct btrfs_inode *dir, struct dentry *dentry,
6529 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6530{
a1b075d2
JB
6531 int err = btrfs_add_link(trans, dir, inode,
6532 dentry->d_name.name, dentry->d_name.len,
6533 backref, index);
39279cc3
CM
6534 if (err > 0)
6535 err = -EEXIST;
6536 return err;
6537}
6538
618e21d5 6539static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6540 umode_t mode, dev_t rdev)
618e21d5 6541{
2ff7e61e 6542 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6543 struct btrfs_trans_handle *trans;
6544 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6545 struct inode *inode = NULL;
618e21d5
JB
6546 int err;
6547 int drop_inode = 0;
6548 u64 objectid;
00e4e6b3 6549 u64 index = 0;
618e21d5 6550
9ed74f2d
JB
6551 /*
6552 * 2 for inode item and ref
6553 * 2 for dir items
6554 * 1 for xattr if selinux is on
6555 */
a22285a6
YZ
6556 trans = btrfs_start_transaction(root, 5);
6557 if (IS_ERR(trans))
6558 return PTR_ERR(trans);
1832a6d5 6559
581bb050
LZ
6560 err = btrfs_find_free_ino(root, &objectid);
6561 if (err)
6562 goto out_unlock;
6563
aec7477b 6564 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6565 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6566 mode, &index);
7cf96da3
TI
6567 if (IS_ERR(inode)) {
6568 err = PTR_ERR(inode);
618e21d5 6569 goto out_unlock;
7cf96da3 6570 }
618e21d5 6571
ad19db71
CS
6572 /*
6573 * If the active LSM wants to access the inode during
6574 * d_instantiate it needs these. Smack checks to see
6575 * if the filesystem supports xattrs by looking at the
6576 * ops vector.
6577 */
ad19db71 6578 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6579 init_special_inode(inode, inode->i_mode, rdev);
6580
6581 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6582 if (err)
b0d5d10f
CM
6583 goto out_unlock_inode;
6584
cef415af
NB
6585 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6586 0, index);
b0d5d10f
CM
6587 if (err) {
6588 goto out_unlock_inode;
6589 } else {
1b4ab1bb 6590 btrfs_update_inode(trans, root, inode);
b0d5d10f 6591 unlock_new_inode(inode);
08c422c2 6592 d_instantiate(dentry, inode);
618e21d5 6593 }
b0d5d10f 6594
618e21d5 6595out_unlock:
3a45bb20 6596 btrfs_end_transaction(trans);
2ff7e61e
JM
6597 btrfs_balance_delayed_items(fs_info);
6598 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6599 if (drop_inode) {
6600 inode_dec_link_count(inode);
6601 iput(inode);
6602 }
618e21d5 6603 return err;
b0d5d10f
CM
6604
6605out_unlock_inode:
6606 drop_inode = 1;
6607 unlock_new_inode(inode);
6608 goto out_unlock;
6609
618e21d5
JB
6610}
6611
39279cc3 6612static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6613 umode_t mode, bool excl)
39279cc3 6614{
2ff7e61e 6615 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6616 struct btrfs_trans_handle *trans;
6617 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6618 struct inode *inode = NULL;
43baa579 6619 int drop_inode_on_err = 0;
a22285a6 6620 int err;
39279cc3 6621 u64 objectid;
00e4e6b3 6622 u64 index = 0;
39279cc3 6623
9ed74f2d
JB
6624 /*
6625 * 2 for inode item and ref
6626 * 2 for dir items
6627 * 1 for xattr if selinux is on
6628 */
a22285a6
YZ
6629 trans = btrfs_start_transaction(root, 5);
6630 if (IS_ERR(trans))
6631 return PTR_ERR(trans);
9ed74f2d 6632
581bb050
LZ
6633 err = btrfs_find_free_ino(root, &objectid);
6634 if (err)
6635 goto out_unlock;
6636
aec7477b 6637 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6638 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6639 mode, &index);
7cf96da3
TI
6640 if (IS_ERR(inode)) {
6641 err = PTR_ERR(inode);
39279cc3 6642 goto out_unlock;
7cf96da3 6643 }
43baa579 6644 drop_inode_on_err = 1;
ad19db71
CS
6645 /*
6646 * If the active LSM wants to access the inode during
6647 * d_instantiate it needs these. Smack checks to see
6648 * if the filesystem supports xattrs by looking at the
6649 * ops vector.
6650 */
6651 inode->i_fop = &btrfs_file_operations;
6652 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6653 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6654
6655 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6656 if (err)
6657 goto out_unlock_inode;
6658
6659 err = btrfs_update_inode(trans, root, inode);
6660 if (err)
6661 goto out_unlock_inode;
ad19db71 6662
cef415af
NB
6663 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6664 0, index);
39279cc3 6665 if (err)
b0d5d10f 6666 goto out_unlock_inode;
43baa579 6667
43baa579 6668 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6669 unlock_new_inode(inode);
43baa579
FB
6670 d_instantiate(dentry, inode);
6671
39279cc3 6672out_unlock:
3a45bb20 6673 btrfs_end_transaction(trans);
43baa579 6674 if (err && drop_inode_on_err) {
39279cc3
CM
6675 inode_dec_link_count(inode);
6676 iput(inode);
6677 }
2ff7e61e
JM
6678 btrfs_balance_delayed_items(fs_info);
6679 btrfs_btree_balance_dirty(fs_info);
39279cc3 6680 return err;
b0d5d10f
CM
6681
6682out_unlock_inode:
6683 unlock_new_inode(inode);
6684 goto out_unlock;
6685
39279cc3
CM
6686}
6687
6688static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6689 struct dentry *dentry)
6690{
271dba45 6691 struct btrfs_trans_handle *trans = NULL;
39279cc3 6692 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6693 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6694 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6695 u64 index;
39279cc3
CM
6696 int err;
6697 int drop_inode = 0;
6698
4a8be425
TH
6699 /* do not allow sys_link's with other subvols of the same device */
6700 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6701 return -EXDEV;
4a8be425 6702
f186373f 6703 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6704 return -EMLINK;
4a8be425 6705
877574e2 6706 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6707 if (err)
6708 goto fail;
6709
a22285a6 6710 /*
7e6b6465 6711 * 2 items for inode and inode ref
a22285a6 6712 * 2 items for dir items
7e6b6465 6713 * 1 item for parent inode
a22285a6 6714 */
7e6b6465 6715 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6716 if (IS_ERR(trans)) {
6717 err = PTR_ERR(trans);
271dba45 6718 trans = NULL;
a22285a6
YZ
6719 goto fail;
6720 }
5f39d397 6721
67de1176
MX
6722 /* There are several dir indexes for this inode, clear the cache. */
6723 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6724 inc_nlink(inode);
0c4d2d95 6725 inode_inc_iversion(inode);
c2050a45 6726 inode->i_ctime = current_time(inode);
7de9c6ee 6727 ihold(inode);
e9976151 6728 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6729
cef415af
NB
6730 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6731 1, index);
5f39d397 6732
a5719521 6733 if (err) {
54aa1f4d 6734 drop_inode = 1;
a5719521 6735 } else {
10d9f309 6736 struct dentry *parent = dentry->d_parent;
a5719521 6737 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6738 if (err)
6739 goto fail;
ef3b9af5
FM
6740 if (inode->i_nlink == 1) {
6741 /*
6742 * If new hard link count is 1, it's a file created
6743 * with open(2) O_TMPFILE flag.
6744 */
3d6ae7bb 6745 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6746 if (err)
6747 goto fail;
6748 }
08c422c2 6749 d_instantiate(dentry, inode);
9ca5fbfb 6750 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6751 }
39279cc3 6752
2ff7e61e 6753 btrfs_balance_delayed_items(fs_info);
1832a6d5 6754fail:
271dba45 6755 if (trans)
3a45bb20 6756 btrfs_end_transaction(trans);
39279cc3
CM
6757 if (drop_inode) {
6758 inode_dec_link_count(inode);
6759 iput(inode);
6760 }
2ff7e61e 6761 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6762 return err;
6763}
6764
18bb1db3 6765static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6766{
2ff7e61e 6767 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6768 struct inode *inode = NULL;
39279cc3
CM
6769 struct btrfs_trans_handle *trans;
6770 struct btrfs_root *root = BTRFS_I(dir)->root;
6771 int err = 0;
6772 int drop_on_err = 0;
b9d86667 6773 u64 objectid = 0;
00e4e6b3 6774 u64 index = 0;
39279cc3 6775
9ed74f2d
JB
6776 /*
6777 * 2 items for inode and ref
6778 * 2 items for dir items
6779 * 1 for xattr if selinux is on
6780 */
a22285a6
YZ
6781 trans = btrfs_start_transaction(root, 5);
6782 if (IS_ERR(trans))
6783 return PTR_ERR(trans);
39279cc3 6784
581bb050
LZ
6785 err = btrfs_find_free_ino(root, &objectid);
6786 if (err)
6787 goto out_fail;
6788
aec7477b 6789 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6790 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6791 S_IFDIR | mode, &index);
39279cc3
CM
6792 if (IS_ERR(inode)) {
6793 err = PTR_ERR(inode);
6794 goto out_fail;
6795 }
5f39d397 6796
39279cc3 6797 drop_on_err = 1;
b0d5d10f
CM
6798 /* these must be set before we unlock the inode */
6799 inode->i_op = &btrfs_dir_inode_operations;
6800 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6801
2a7dba39 6802 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6803 if (err)
b0d5d10f 6804 goto out_fail_inode;
39279cc3 6805
6ef06d27 6806 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6807 err = btrfs_update_inode(trans, root, inode);
6808 if (err)
b0d5d10f 6809 goto out_fail_inode;
5f39d397 6810
db0a669f
NB
6811 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6812 dentry->d_name.name,
6813 dentry->d_name.len, 0, index);
39279cc3 6814 if (err)
b0d5d10f 6815 goto out_fail_inode;
5f39d397 6816
39279cc3 6817 d_instantiate(dentry, inode);
b0d5d10f
CM
6818 /*
6819 * mkdir is special. We're unlocking after we call d_instantiate
6820 * to avoid a race with nfsd calling d_instantiate.
6821 */
6822 unlock_new_inode(inode);
39279cc3 6823 drop_on_err = 0;
39279cc3
CM
6824
6825out_fail:
3a45bb20 6826 btrfs_end_transaction(trans);
c7cfb8a5
WS
6827 if (drop_on_err) {
6828 inode_dec_link_count(inode);
39279cc3 6829 iput(inode);
c7cfb8a5 6830 }
2ff7e61e
JM
6831 btrfs_balance_delayed_items(fs_info);
6832 btrfs_btree_balance_dirty(fs_info);
39279cc3 6833 return err;
b0d5d10f
CM
6834
6835out_fail_inode:
6836 unlock_new_inode(inode);
6837 goto out_fail;
39279cc3
CM
6838}
6839
e6c4efd8
QW
6840/* Find next extent map of a given extent map, caller needs to ensure locks */
6841static struct extent_map *next_extent_map(struct extent_map *em)
6842{
6843 struct rb_node *next;
6844
6845 next = rb_next(&em->rb_node);
6846 if (!next)
6847 return NULL;
6848 return container_of(next, struct extent_map, rb_node);
6849}
6850
6851static struct extent_map *prev_extent_map(struct extent_map *em)
6852{
6853 struct rb_node *prev;
6854
6855 prev = rb_prev(&em->rb_node);
6856 if (!prev)
6857 return NULL;
6858 return container_of(prev, struct extent_map, rb_node);
6859}
6860
d352ac68 6861/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6862 * the existing extent is the nearest extent to map_start,
d352ac68 6863 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6864 * the best fitted new extent into the tree.
d352ac68 6865 */
3b951516
CM
6866static int merge_extent_mapping(struct extent_map_tree *em_tree,
6867 struct extent_map *existing,
e6dcd2dc 6868 struct extent_map *em,
51f395ad 6869 u64 map_start)
3b951516 6870{
e6c4efd8
QW
6871 struct extent_map *prev;
6872 struct extent_map *next;
6873 u64 start;
6874 u64 end;
3b951516 6875 u64 start_diff;
3b951516 6876
e6dcd2dc 6877 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6878
6879 if (existing->start > map_start) {
6880 next = existing;
6881 prev = prev_extent_map(next);
6882 } else {
6883 prev = existing;
6884 next = next_extent_map(prev);
6885 }
6886
6887 start = prev ? extent_map_end(prev) : em->start;
6888 start = max_t(u64, start, em->start);
6889 end = next ? next->start : extent_map_end(em);
6890 end = min_t(u64, end, extent_map_end(em));
6891 start_diff = start - em->start;
6892 em->start = start;
6893 em->len = end - start;
c8b97818
CM
6894 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6895 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6896 em->block_start += start_diff;
c8b97818
CM
6897 em->block_len -= start_diff;
6898 }
09a2a8f9 6899 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6900}
6901
c8b97818 6902static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6903 struct page *page,
c8b97818
CM
6904 size_t pg_offset, u64 extent_offset,
6905 struct btrfs_file_extent_item *item)
6906{
6907 int ret;
6908 struct extent_buffer *leaf = path->nodes[0];
6909 char *tmp;
6910 size_t max_size;
6911 unsigned long inline_size;
6912 unsigned long ptr;
261507a0 6913 int compress_type;
c8b97818
CM
6914
6915 WARN_ON(pg_offset != 0);
261507a0 6916 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6917 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6918 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6919 btrfs_item_nr(path->slots[0]));
c8b97818 6920 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6921 if (!tmp)
6922 return -ENOMEM;
c8b97818
CM
6923 ptr = btrfs_file_extent_inline_start(item);
6924
6925 read_extent_buffer(leaf, tmp, ptr, inline_size);
6926
09cbfeaf 6927 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6928 ret = btrfs_decompress(compress_type, tmp, page,
6929 extent_offset, inline_size, max_size);
e1699d2d
ZB
6930
6931 /*
6932 * decompression code contains a memset to fill in any space between the end
6933 * of the uncompressed data and the end of max_size in case the decompressed
6934 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6935 * the end of an inline extent and the beginning of the next block, so we
6936 * cover that region here.
6937 */
6938
6939 if (max_size + pg_offset < PAGE_SIZE) {
6940 char *map = kmap(page);
6941 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6942 kunmap(page);
6943 }
c8b97818 6944 kfree(tmp);
166ae5a4 6945 return ret;
c8b97818
CM
6946}
6947
d352ac68
CM
6948/*
6949 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6950 * the ugly parts come from merging extents from the disk with the in-ram
6951 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6952 * where the in-ram extents might be locked pending data=ordered completion.
6953 *
6954 * This also copies inline extents directly into the page.
6955 */
fc4f21b1
NB
6956struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6957 struct page *page,
6958 size_t pg_offset, u64 start, u64 len,
6959 int create)
a52d9a80 6960{
fc4f21b1 6961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6962 int ret;
6963 int err = 0;
a52d9a80
CM
6964 u64 extent_start = 0;
6965 u64 extent_end = 0;
fc4f21b1 6966 u64 objectid = btrfs_ino(inode);
a52d9a80 6967 u32 found_type;
f421950f 6968 struct btrfs_path *path = NULL;
fc4f21b1 6969 struct btrfs_root *root = inode->root;
a52d9a80 6970 struct btrfs_file_extent_item *item;
5f39d397
CM
6971 struct extent_buffer *leaf;
6972 struct btrfs_key found_key;
a52d9a80 6973 struct extent_map *em = NULL;
fc4f21b1
NB
6974 struct extent_map_tree *em_tree = &inode->extent_tree;
6975 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6976 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6977 const bool new_inline = !page || create;
a52d9a80 6978
a52d9a80 6979again:
890871be 6980 read_lock(&em_tree->lock);
d1310b2e 6981 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6982 if (em)
0b246afa 6983 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6984 read_unlock(&em_tree->lock);
d1310b2e 6985
a52d9a80 6986 if (em) {
e1c4b745
CM
6987 if (em->start > start || em->start + em->len <= start)
6988 free_extent_map(em);
6989 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6990 free_extent_map(em);
6991 else
6992 goto out;
a52d9a80 6993 }
172ddd60 6994 em = alloc_extent_map();
a52d9a80 6995 if (!em) {
d1310b2e
CM
6996 err = -ENOMEM;
6997 goto out;
a52d9a80 6998 }
0b246afa 6999 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 7000 em->start = EXTENT_MAP_HOLE;
445a6944 7001 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 7002 em->len = (u64)-1;
c8b97818 7003 em->block_len = (u64)-1;
f421950f
CM
7004
7005 if (!path) {
7006 path = btrfs_alloc_path();
026fd317
JB
7007 if (!path) {
7008 err = -ENOMEM;
7009 goto out;
7010 }
7011 /*
7012 * Chances are we'll be called again, so go ahead and do
7013 * readahead
7014 */
e4058b54 7015 path->reada = READA_FORWARD;
f421950f
CM
7016 }
7017
179e29e4
CM
7018 ret = btrfs_lookup_file_extent(trans, root, path,
7019 objectid, start, trans != NULL);
a52d9a80
CM
7020 if (ret < 0) {
7021 err = ret;
7022 goto out;
7023 }
7024
7025 if (ret != 0) {
7026 if (path->slots[0] == 0)
7027 goto not_found;
7028 path->slots[0]--;
7029 }
7030
5f39d397
CM
7031 leaf = path->nodes[0];
7032 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 7033 struct btrfs_file_extent_item);
a52d9a80 7034 /* are we inside the extent that was found? */
5f39d397 7035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 7036 found_type = found_key.type;
5f39d397 7037 if (found_key.objectid != objectid ||
a52d9a80 7038 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
7039 /*
7040 * If we backup past the first extent we want to move forward
7041 * and see if there is an extent in front of us, otherwise we'll
7042 * say there is a hole for our whole search range which can
7043 * cause problems.
7044 */
7045 extent_end = start;
7046 goto next;
a52d9a80
CM
7047 }
7048
5f39d397
CM
7049 found_type = btrfs_file_extent_type(leaf, item);
7050 extent_start = found_key.offset;
d899e052
YZ
7051 if (found_type == BTRFS_FILE_EXTENT_REG ||
7052 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 7053 extent_end = extent_start +
db94535d 7054 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
7055
7056 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7057 extent_start);
9036c102
YZ
7058 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7059 size_t size;
514ac8ad 7060 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 7061 extent_end = ALIGN(extent_start + size,
0b246afa 7062 fs_info->sectorsize);
09ed2f16
LB
7063
7064 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7065 path->slots[0],
7066 extent_start);
9036c102 7067 }
25a50341 7068next:
9036c102
YZ
7069 if (start >= extent_end) {
7070 path->slots[0]++;
7071 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7072 ret = btrfs_next_leaf(root, path);
7073 if (ret < 0) {
7074 err = ret;
7075 goto out;
a52d9a80 7076 }
9036c102
YZ
7077 if (ret > 0)
7078 goto not_found;
7079 leaf = path->nodes[0];
a52d9a80 7080 }
9036c102
YZ
7081 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7082 if (found_key.objectid != objectid ||
7083 found_key.type != BTRFS_EXTENT_DATA_KEY)
7084 goto not_found;
7085 if (start + len <= found_key.offset)
7086 goto not_found;
e2eca69d
WS
7087 if (start > found_key.offset)
7088 goto next;
9036c102 7089 em->start = start;
70c8a91c 7090 em->orig_start = start;
9036c102
YZ
7091 em->len = found_key.offset - start;
7092 goto not_found_em;
7093 }
7094
fc4f21b1 7095 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7096 new_inline, em);
7ffbb598 7097
d899e052
YZ
7098 if (found_type == BTRFS_FILE_EXTENT_REG ||
7099 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7100 goto insert;
7101 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7102 unsigned long ptr;
a52d9a80 7103 char *map;
3326d1b0
CM
7104 size_t size;
7105 size_t extent_offset;
7106 size_t copy_size;
a52d9a80 7107
7ffbb598 7108 if (new_inline)
689f9346 7109 goto out;
5f39d397 7110
514ac8ad 7111 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7112 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7113 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7114 size - extent_offset);
3326d1b0 7115 em->start = extent_start + extent_offset;
0b246afa 7116 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7117 em->orig_block_len = em->len;
70c8a91c 7118 em->orig_start = em->start;
689f9346 7119 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 7120 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
7121 if (btrfs_file_extent_compression(leaf, item) !=
7122 BTRFS_COMPRESS_NONE) {
e40da0e5 7123 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7124 extent_offset, item);
166ae5a4
ZB
7125 if (ret) {
7126 err = ret;
7127 goto out;
7128 }
c8b97818
CM
7129 } else {
7130 map = kmap(page);
7131 read_extent_buffer(leaf, map + pg_offset, ptr,
7132 copy_size);
09cbfeaf 7133 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7134 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7135 PAGE_SIZE - pg_offset -
93c82d57
CM
7136 copy_size);
7137 }
c8b97818
CM
7138 kunmap(page);
7139 }
179e29e4
CM
7140 flush_dcache_page(page);
7141 } else if (create && PageUptodate(page)) {
6bf7e080 7142 BUG();
179e29e4
CM
7143 if (!trans) {
7144 kunmap(page);
7145 free_extent_map(em);
7146 em = NULL;
ff5714cc 7147
b3b4aa74 7148 btrfs_release_path(path);
7a7eaa40 7149 trans = btrfs_join_transaction(root);
ff5714cc 7150
3612b495
TI
7151 if (IS_ERR(trans))
7152 return ERR_CAST(trans);
179e29e4
CM
7153 goto again;
7154 }
c8b97818 7155 map = kmap(page);
70dec807 7156 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 7157 copy_size);
c8b97818 7158 kunmap(page);
179e29e4 7159 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7160 }
d1310b2e 7161 set_extent_uptodate(io_tree, em->start,
507903b8 7162 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7163 goto insert;
a52d9a80
CM
7164 }
7165not_found:
7166 em->start = start;
70c8a91c 7167 em->orig_start = start;
d1310b2e 7168 em->len = len;
a52d9a80 7169not_found_em:
5f39d397 7170 em->block_start = EXTENT_MAP_HOLE;
9036c102 7171 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7172insert:
b3b4aa74 7173 btrfs_release_path(path);
d1310b2e 7174 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7175 btrfs_err(fs_info,
5d163e0e
JM
7176 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7177 em->start, em->len, start, len);
a52d9a80
CM
7178 err = -EIO;
7179 goto out;
7180 }
d1310b2e
CM
7181
7182 err = 0;
890871be 7183 write_lock(&em_tree->lock);
09a2a8f9 7184 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7185 /* it is possible that someone inserted the extent into the tree
7186 * while we had the lock dropped. It is also possible that
7187 * an overlapping map exists in the tree
7188 */
a52d9a80 7189 if (ret == -EEXIST) {
3b951516 7190 struct extent_map *existing;
e6dcd2dc
CM
7191
7192 ret = 0;
7193
e6c4efd8
QW
7194 existing = search_extent_mapping(em_tree, start, len);
7195 /*
7196 * existing will always be non-NULL, since there must be
7197 * extent causing the -EEXIST.
7198 */
8dff9c85 7199 if (existing->start == em->start &&
8e2bd3b7 7200 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
7201 em->block_start == existing->block_start) {
7202 /*
8e2bd3b7
OS
7203 * The existing extent map already encompasses the
7204 * entire extent map we tried to add.
8dff9c85
CM
7205 */
7206 free_extent_map(em);
7207 em = existing;
7208 err = 0;
7209
7210 } else if (start >= extent_map_end(existing) ||
32be3a1a 7211 start <= existing->start) {
e6c4efd8
QW
7212 /*
7213 * The existing extent map is the one nearest to
7214 * the [start, start + len) range which overlaps
7215 */
7216 err = merge_extent_mapping(em_tree, existing,
7217 em, start);
e1c4b745 7218 free_extent_map(existing);
e6c4efd8 7219 if (err) {
3b951516
CM
7220 free_extent_map(em);
7221 em = NULL;
7222 }
7223 } else {
7224 free_extent_map(em);
7225 em = existing;
e6dcd2dc 7226 err = 0;
a52d9a80 7227 }
a52d9a80 7228 }
890871be 7229 write_unlock(&em_tree->lock);
a52d9a80 7230out:
1abe9b8a 7231
fc4f21b1 7232 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7233
527afb44 7234 btrfs_free_path(path);
a52d9a80 7235 if (trans) {
3a45bb20 7236 ret = btrfs_end_transaction(trans);
d397712b 7237 if (!err)
a52d9a80
CM
7238 err = ret;
7239 }
a52d9a80
CM
7240 if (err) {
7241 free_extent_map(em);
a52d9a80
CM
7242 return ERR_PTR(err);
7243 }
79787eaa 7244 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7245 return em;
7246}
7247
fc4f21b1
NB
7248struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7249 struct page *page,
7250 size_t pg_offset, u64 start, u64 len,
7251 int create)
ec29ed5b
CM
7252{
7253 struct extent_map *em;
7254 struct extent_map *hole_em = NULL;
7255 u64 range_start = start;
7256 u64 end;
7257 u64 found;
7258 u64 found_end;
7259 int err = 0;
7260
7261 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7262 if (IS_ERR(em))
7263 return em;
9986277e
DC
7264 /*
7265 * If our em maps to:
7266 * - a hole or
7267 * - a pre-alloc extent,
7268 * there might actually be delalloc bytes behind it.
7269 */
7270 if (em->block_start != EXTENT_MAP_HOLE &&
7271 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7272 return em;
7273 else
7274 hole_em = em;
ec29ed5b
CM
7275
7276 /* check to see if we've wrapped (len == -1 or similar) */
7277 end = start + len;
7278 if (end < start)
7279 end = (u64)-1;
7280 else
7281 end -= 1;
7282
7283 em = NULL;
7284
7285 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7286 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7287 end, len, EXTENT_DELALLOC, 1);
7288 found_end = range_start + found;
7289 if (found_end < range_start)
7290 found_end = (u64)-1;
7291
7292 /*
7293 * we didn't find anything useful, return
7294 * the original results from get_extent()
7295 */
7296 if (range_start > end || found_end <= start) {
7297 em = hole_em;
7298 hole_em = NULL;
7299 goto out;
7300 }
7301
7302 /* adjust the range_start to make sure it doesn't
7303 * go backwards from the start they passed in
7304 */
67871254 7305 range_start = max(start, range_start);
ec29ed5b
CM
7306 found = found_end - range_start;
7307
7308 if (found > 0) {
7309 u64 hole_start = start;
7310 u64 hole_len = len;
7311
172ddd60 7312 em = alloc_extent_map();
ec29ed5b
CM
7313 if (!em) {
7314 err = -ENOMEM;
7315 goto out;
7316 }
7317 /*
7318 * when btrfs_get_extent can't find anything it
7319 * returns one huge hole
7320 *
7321 * make sure what it found really fits our range, and
7322 * adjust to make sure it is based on the start from
7323 * the caller
7324 */
7325 if (hole_em) {
7326 u64 calc_end = extent_map_end(hole_em);
7327
7328 if (calc_end <= start || (hole_em->start > end)) {
7329 free_extent_map(hole_em);
7330 hole_em = NULL;
7331 } else {
7332 hole_start = max(hole_em->start, start);
7333 hole_len = calc_end - hole_start;
7334 }
7335 }
7336 em->bdev = NULL;
7337 if (hole_em && range_start > hole_start) {
7338 /* our hole starts before our delalloc, so we
7339 * have to return just the parts of the hole
7340 * that go until the delalloc starts
7341 */
7342 em->len = min(hole_len,
7343 range_start - hole_start);
7344 em->start = hole_start;
7345 em->orig_start = hole_start;
7346 /*
7347 * don't adjust block start at all,
7348 * it is fixed at EXTENT_MAP_HOLE
7349 */
7350 em->block_start = hole_em->block_start;
7351 em->block_len = hole_len;
f9e4fb53
LB
7352 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7353 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7354 } else {
7355 em->start = range_start;
7356 em->len = found;
7357 em->orig_start = range_start;
7358 em->block_start = EXTENT_MAP_DELALLOC;
7359 em->block_len = found;
7360 }
7361 } else if (hole_em) {
7362 return hole_em;
7363 }
7364out:
7365
7366 free_extent_map(hole_em);
7367 if (err) {
7368 free_extent_map(em);
7369 return ERR_PTR(err);
7370 }
7371 return em;
7372}
7373
5f9a8a51
FM
7374static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7375 const u64 start,
7376 const u64 len,
7377 const u64 orig_start,
7378 const u64 block_start,
7379 const u64 block_len,
7380 const u64 orig_block_len,
7381 const u64 ram_bytes,
7382 const int type)
7383{
7384 struct extent_map *em = NULL;
7385 int ret;
7386
5f9a8a51 7387 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7388 em = create_io_em(inode, start, len, orig_start,
7389 block_start, block_len, orig_block_len,
7390 ram_bytes,
7391 BTRFS_COMPRESS_NONE, /* compress_type */
7392 type);
5f9a8a51
FM
7393 if (IS_ERR(em))
7394 goto out;
7395 }
7396 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7397 len, block_len, type);
7398 if (ret) {
7399 if (em) {
7400 free_extent_map(em);
dcdbc059 7401 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7402 start + len - 1, 0);
7403 }
7404 em = ERR_PTR(ret);
7405 }
7406 out:
5f9a8a51
FM
7407
7408 return em;
7409}
7410
4b46fce2
JB
7411static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7412 u64 start, u64 len)
7413{
0b246afa 7414 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7415 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7416 struct extent_map *em;
4b46fce2
JB
7417 struct btrfs_key ins;
7418 u64 alloc_hint;
7419 int ret;
4b46fce2 7420
4b46fce2 7421 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7422 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7423 0, alloc_hint, &ins, 1, 1);
00361589
JB
7424 if (ret)
7425 return ERR_PTR(ret);
4b46fce2 7426
5f9a8a51
FM
7427 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7428 ins.objectid, ins.offset, ins.offset,
6288d6ea 7429 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7430 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7431 if (IS_ERR(em))
2ff7e61e
JM
7432 btrfs_free_reserved_extent(fs_info, ins.objectid,
7433 ins.offset, 1);
de0ee0ed 7434
4b46fce2
JB
7435 return em;
7436}
7437
46bfbb5c
CM
7438/*
7439 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7440 * block must be cow'd
7441 */
00361589 7442noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7443 u64 *orig_start, u64 *orig_block_len,
7444 u64 *ram_bytes)
46bfbb5c 7445{
2ff7e61e 7446 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7447 struct btrfs_path *path;
7448 int ret;
7449 struct extent_buffer *leaf;
7450 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7451 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7452 struct btrfs_file_extent_item *fi;
7453 struct btrfs_key key;
7454 u64 disk_bytenr;
7455 u64 backref_offset;
7456 u64 extent_end;
7457 u64 num_bytes;
7458 int slot;
7459 int found_type;
7ee9e440 7460 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7461
46bfbb5c
CM
7462 path = btrfs_alloc_path();
7463 if (!path)
7464 return -ENOMEM;
7465
f85b7379
DS
7466 ret = btrfs_lookup_file_extent(NULL, root, path,
7467 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7468 if (ret < 0)
7469 goto out;
7470
7471 slot = path->slots[0];
7472 if (ret == 1) {
7473 if (slot == 0) {
7474 /* can't find the item, must cow */
7475 ret = 0;
7476 goto out;
7477 }
7478 slot--;
7479 }
7480 ret = 0;
7481 leaf = path->nodes[0];
7482 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7483 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7484 key.type != BTRFS_EXTENT_DATA_KEY) {
7485 /* not our file or wrong item type, must cow */
7486 goto out;
7487 }
7488
7489 if (key.offset > offset) {
7490 /* Wrong offset, must cow */
7491 goto out;
7492 }
7493
7494 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7495 found_type = btrfs_file_extent_type(leaf, fi);
7496 if (found_type != BTRFS_FILE_EXTENT_REG &&
7497 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7498 /* not a regular extent, must cow */
7499 goto out;
7500 }
7ee9e440
JB
7501
7502 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7503 goto out;
7504
e77751aa
MX
7505 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7506 if (extent_end <= offset)
7507 goto out;
7508
46bfbb5c 7509 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7510 if (disk_bytenr == 0)
7511 goto out;
7512
7513 if (btrfs_file_extent_compression(leaf, fi) ||
7514 btrfs_file_extent_encryption(leaf, fi) ||
7515 btrfs_file_extent_other_encoding(leaf, fi))
7516 goto out;
7517
46bfbb5c
CM
7518 backref_offset = btrfs_file_extent_offset(leaf, fi);
7519
7ee9e440
JB
7520 if (orig_start) {
7521 *orig_start = key.offset - backref_offset;
7522 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7523 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7524 }
eb384b55 7525
2ff7e61e 7526 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7527 goto out;
7b2b7085
MX
7528
7529 num_bytes = min(offset + *len, extent_end) - offset;
7530 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7531 u64 range_end;
7532
da17066c
JM
7533 range_end = round_up(offset + num_bytes,
7534 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7535 ret = test_range_bit(io_tree, offset, range_end,
7536 EXTENT_DELALLOC, 0, NULL);
7537 if (ret) {
7538 ret = -EAGAIN;
7539 goto out;
7540 }
7541 }
7542
1bda19eb 7543 btrfs_release_path(path);
46bfbb5c
CM
7544
7545 /*
7546 * look for other files referencing this extent, if we
7547 * find any we must cow
7548 */
00361589 7549
e4c3b2dc 7550 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7551 key.offset - backref_offset, disk_bytenr);
00361589
JB
7552 if (ret) {
7553 ret = 0;
7554 goto out;
7555 }
46bfbb5c
CM
7556
7557 /*
7558 * adjust disk_bytenr and num_bytes to cover just the bytes
7559 * in this extent we are about to write. If there
7560 * are any csums in that range we have to cow in order
7561 * to keep the csums correct
7562 */
7563 disk_bytenr += backref_offset;
7564 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7565 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7566 goto out;
46bfbb5c
CM
7567 /*
7568 * all of the above have passed, it is safe to overwrite this extent
7569 * without cow
7570 */
eb384b55 7571 *len = num_bytes;
46bfbb5c
CM
7572 ret = 1;
7573out:
7574 btrfs_free_path(path);
7575 return ret;
7576}
7577
fc4adbff
AG
7578bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7579{
7580 struct radix_tree_root *root = &inode->i_mapping->page_tree;
e03733da 7581 bool found = false;
fc4adbff
AG
7582 void **pagep = NULL;
7583 struct page *page = NULL;
cc2b702c
DS
7584 unsigned long start_idx;
7585 unsigned long end_idx;
fc4adbff 7586
09cbfeaf 7587 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7588
7589 /*
7590 * end is the last byte in the last page. end == start is legal
7591 */
09cbfeaf 7592 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7593
7594 rcu_read_lock();
7595
7596 /* Most of the code in this while loop is lifted from
7597 * find_get_page. It's been modified to begin searching from a
7598 * page and return just the first page found in that range. If the
7599 * found idx is less than or equal to the end idx then we know that
7600 * a page exists. If no pages are found or if those pages are
7601 * outside of the range then we're fine (yay!) */
7602 while (page == NULL &&
7603 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7604 page = radix_tree_deref_slot(pagep);
7605 if (unlikely(!page))
7606 break;
7607
7608 if (radix_tree_exception(page)) {
809f9016
FM
7609 if (radix_tree_deref_retry(page)) {
7610 page = NULL;
fc4adbff 7611 continue;
809f9016 7612 }
fc4adbff
AG
7613 /*
7614 * Otherwise, shmem/tmpfs must be storing a swap entry
7615 * here as an exceptional entry: so return it without
7616 * attempting to raise page count.
7617 */
6fdef6d4 7618 page = NULL;
fc4adbff
AG
7619 break; /* TODO: Is this relevant for this use case? */
7620 }
7621
91405151
FM
7622 if (!page_cache_get_speculative(page)) {
7623 page = NULL;
fc4adbff 7624 continue;
91405151 7625 }
fc4adbff
AG
7626
7627 /*
7628 * Has the page moved?
7629 * This is part of the lockless pagecache protocol. See
7630 * include/linux/pagemap.h for details.
7631 */
7632 if (unlikely(page != *pagep)) {
09cbfeaf 7633 put_page(page);
fc4adbff
AG
7634 page = NULL;
7635 }
7636 }
7637
7638 if (page) {
7639 if (page->index <= end_idx)
7640 found = true;
09cbfeaf 7641 put_page(page);
fc4adbff
AG
7642 }
7643
7644 rcu_read_unlock();
7645 return found;
7646}
7647
eb838e73
JB
7648static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7649 struct extent_state **cached_state, int writing)
7650{
7651 struct btrfs_ordered_extent *ordered;
7652 int ret = 0;
7653
7654 while (1) {
7655 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7656 cached_state);
eb838e73
JB
7657 /*
7658 * We're concerned with the entire range that we're going to be
01327610 7659 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7660 * extents in this range.
7661 */
a776c6fa 7662 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7663 lockend - lockstart + 1);
7664
7665 /*
7666 * We need to make sure there are no buffered pages in this
7667 * range either, we could have raced between the invalidate in
7668 * generic_file_direct_write and locking the extent. The
7669 * invalidate needs to happen so that reads after a write do not
7670 * get stale data.
7671 */
fc4adbff
AG
7672 if (!ordered &&
7673 (!writing ||
7674 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7675 break;
7676
7677 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7678 cached_state, GFP_NOFS);
7679
7680 if (ordered) {
ade77029
FM
7681 /*
7682 * If we are doing a DIO read and the ordered extent we
7683 * found is for a buffered write, we can not wait for it
7684 * to complete and retry, because if we do so we can
7685 * deadlock with concurrent buffered writes on page
7686 * locks. This happens only if our DIO read covers more
7687 * than one extent map, if at this point has already
7688 * created an ordered extent for a previous extent map
7689 * and locked its range in the inode's io tree, and a
7690 * concurrent write against that previous extent map's
7691 * range and this range started (we unlock the ranges
7692 * in the io tree only when the bios complete and
7693 * buffered writes always lock pages before attempting
7694 * to lock range in the io tree).
7695 */
7696 if (writing ||
7697 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7698 btrfs_start_ordered_extent(inode, ordered, 1);
7699 else
7700 ret = -ENOTBLK;
eb838e73
JB
7701 btrfs_put_ordered_extent(ordered);
7702 } else {
eb838e73 7703 /*
b850ae14
FM
7704 * We could trigger writeback for this range (and wait
7705 * for it to complete) and then invalidate the pages for
7706 * this range (through invalidate_inode_pages2_range()),
7707 * but that can lead us to a deadlock with a concurrent
7708 * call to readpages() (a buffered read or a defrag call
7709 * triggered a readahead) on a page lock due to an
7710 * ordered dio extent we created before but did not have
7711 * yet a corresponding bio submitted (whence it can not
7712 * complete), which makes readpages() wait for that
7713 * ordered extent to complete while holding a lock on
7714 * that page.
eb838e73 7715 */
b850ae14 7716 ret = -ENOTBLK;
eb838e73
JB
7717 }
7718
ade77029
FM
7719 if (ret)
7720 break;
7721
eb838e73
JB
7722 cond_resched();
7723 }
7724
7725 return ret;
7726}
7727
6f9994db
LB
7728/* The callers of this must take lock_extent() */
7729static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7730 u64 orig_start, u64 block_start,
7731 u64 block_len, u64 orig_block_len,
7732 u64 ram_bytes, int compress_type,
7733 int type)
69ffb543
JB
7734{
7735 struct extent_map_tree *em_tree;
7736 struct extent_map *em;
7737 struct btrfs_root *root = BTRFS_I(inode)->root;
7738 int ret;
7739
6f9994db
LB
7740 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7741 type == BTRFS_ORDERED_COMPRESSED ||
7742 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7743 type == BTRFS_ORDERED_REGULAR);
6f9994db 7744
69ffb543
JB
7745 em_tree = &BTRFS_I(inode)->extent_tree;
7746 em = alloc_extent_map();
7747 if (!em)
7748 return ERR_PTR(-ENOMEM);
7749
7750 em->start = start;
7751 em->orig_start = orig_start;
7752 em->len = len;
7753 em->block_len = block_len;
7754 em->block_start = block_start;
7755 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7756 em->orig_block_len = orig_block_len;
cc95bef6 7757 em->ram_bytes = ram_bytes;
70c8a91c 7758 em->generation = -1;
69ffb543 7759 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7760 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7761 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7762 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7763 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7764 em->compress_type = compress_type;
7765 }
69ffb543
JB
7766
7767 do {
dcdbc059 7768 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7769 em->start + em->len - 1, 0);
7770 write_lock(&em_tree->lock);
09a2a8f9 7771 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7772 write_unlock(&em_tree->lock);
6f9994db
LB
7773 /*
7774 * The caller has taken lock_extent(), who could race with us
7775 * to add em?
7776 */
69ffb543
JB
7777 } while (ret == -EEXIST);
7778
7779 if (ret) {
7780 free_extent_map(em);
7781 return ERR_PTR(ret);
7782 }
7783
6f9994db 7784 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7785 return em;
7786}
7787
9c9464cc
FM
7788static void adjust_dio_outstanding_extents(struct inode *inode,
7789 struct btrfs_dio_data *dio_data,
7790 const u64 len)
7791{
823bb20a 7792 unsigned num_extents = count_max_extents(len);
9c9464cc 7793
9c9464cc
FM
7794 /*
7795 * If we have an outstanding_extents count still set then we're
7796 * within our reservation, otherwise we need to adjust our inode
7797 * counter appropriately.
7798 */
c2931667 7799 if (dio_data->outstanding_extents >= num_extents) {
9c9464cc
FM
7800 dio_data->outstanding_extents -= num_extents;
7801 } else {
c2931667
LB
7802 /*
7803 * If dio write length has been split due to no large enough
7804 * contiguous space, we need to compensate our inode counter
7805 * appropriately.
7806 */
7807 u64 num_needed = num_extents - dio_data->outstanding_extents;
7808
9c9464cc 7809 spin_lock(&BTRFS_I(inode)->lock);
c2931667 7810 BTRFS_I(inode)->outstanding_extents += num_needed;
9c9464cc
FM
7811 spin_unlock(&BTRFS_I(inode)->lock);
7812 }
7813}
7814
4b46fce2
JB
7815static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7816 struct buffer_head *bh_result, int create)
7817{
0b246afa 7818 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7819 struct extent_map *em;
eb838e73 7820 struct extent_state *cached_state = NULL;
50745b0a 7821 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7822 u64 start = iblock << inode->i_blkbits;
eb838e73 7823 u64 lockstart, lockend;
4b46fce2 7824 u64 len = bh_result->b_size;
eb838e73 7825 int unlock_bits = EXTENT_LOCKED;
0934856d 7826 int ret = 0;
eb838e73 7827
172a5049 7828 if (create)
3266789f 7829 unlock_bits |= EXTENT_DIRTY;
172a5049 7830 else
0b246afa 7831 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7832
c329861d
JB
7833 lockstart = start;
7834 lockend = start + len - 1;
7835
e1cbbfa5
JB
7836 if (current->journal_info) {
7837 /*
7838 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7839 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7840 * confused.
7841 */
50745b0a 7842 dio_data = current->journal_info;
e1cbbfa5
JB
7843 current->journal_info = NULL;
7844 }
7845
eb838e73
JB
7846 /*
7847 * If this errors out it's because we couldn't invalidate pagecache for
7848 * this range and we need to fallback to buffered.
7849 */
9c9464cc
FM
7850 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7851 create)) {
7852 ret = -ENOTBLK;
7853 goto err;
7854 }
eb838e73 7855
fc4f21b1 7856 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7857 if (IS_ERR(em)) {
7858 ret = PTR_ERR(em);
7859 goto unlock_err;
7860 }
4b46fce2
JB
7861
7862 /*
7863 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7864 * io. INLINE is special, and we could probably kludge it in here, but
7865 * it's still buffered so for safety lets just fall back to the generic
7866 * buffered path.
7867 *
7868 * For COMPRESSED we _have_ to read the entire extent in so we can
7869 * decompress it, so there will be buffering required no matter what we
7870 * do, so go ahead and fallback to buffered.
7871 *
01327610 7872 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7873 * to buffered IO. Don't blame me, this is the price we pay for using
7874 * the generic code.
7875 */
7876 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7877 em->block_start == EXTENT_MAP_INLINE) {
7878 free_extent_map(em);
eb838e73
JB
7879 ret = -ENOTBLK;
7880 goto unlock_err;
4b46fce2
JB
7881 }
7882
7883 /* Just a good old fashioned hole, return */
7884 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7885 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7886 free_extent_map(em);
eb838e73 7887 goto unlock_err;
4b46fce2
JB
7888 }
7889
7890 /*
7891 * We don't allocate a new extent in the following cases
7892 *
7893 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7894 * existing extent.
7895 * 2) The extent is marked as PREALLOC. We're good to go here and can
7896 * just use the extent.
7897 *
7898 */
46bfbb5c 7899 if (!create) {
eb838e73
JB
7900 len = min(len, em->len - (start - em->start));
7901 lockstart = start + len;
7902 goto unlock;
46bfbb5c 7903 }
4b46fce2
JB
7904
7905 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7906 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7907 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7908 int type;
eb384b55 7909 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7910
7911 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7912 type = BTRFS_ORDERED_PREALLOC;
7913 else
7914 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7915 len = min(len, em->len - (start - em->start));
4b46fce2 7916 block_start = em->block_start + (start - em->start);
46bfbb5c 7917
00361589 7918 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7919 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7920 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7921 struct extent_map *em2;
0b901916 7922
5f9a8a51
FM
7923 em2 = btrfs_create_dio_extent(inode, start, len,
7924 orig_start, block_start,
7925 len, orig_block_len,
7926 ram_bytes, type);
0b246afa 7927 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7928 if (type == BTRFS_ORDERED_PREALLOC) {
7929 free_extent_map(em);
5f9a8a51 7930 em = em2;
69ffb543 7931 }
5f9a8a51
FM
7932 if (em2 && IS_ERR(em2)) {
7933 ret = PTR_ERR(em2);
eb838e73 7934 goto unlock_err;
46bfbb5c 7935 }
18513091
WX
7936 /*
7937 * For inode marked NODATACOW or extent marked PREALLOC,
7938 * use the existing or preallocated extent, so does not
7939 * need to adjust btrfs_space_info's bytes_may_use.
7940 */
7941 btrfs_free_reserved_data_space_noquota(inode,
7942 start, len);
46bfbb5c 7943 goto unlock;
4b46fce2 7944 }
4b46fce2 7945 }
00361589 7946
46bfbb5c
CM
7947 /*
7948 * this will cow the extent, reset the len in case we changed
7949 * it above
7950 */
7951 len = bh_result->b_size;
70c8a91c
JB
7952 free_extent_map(em);
7953 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7954 if (IS_ERR(em)) {
7955 ret = PTR_ERR(em);
7956 goto unlock_err;
7957 }
46bfbb5c
CM
7958 len = min(len, em->len - (start - em->start));
7959unlock:
4b46fce2
JB
7960 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7961 inode->i_blkbits;
46bfbb5c 7962 bh_result->b_size = len;
4b46fce2
JB
7963 bh_result->b_bdev = em->bdev;
7964 set_buffer_mapped(bh_result);
c3473e83
JB
7965 if (create) {
7966 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7967 set_buffer_new(bh_result);
7968
7969 /*
7970 * Need to update the i_size under the extent lock so buffered
7971 * readers will get the updated i_size when we unlock.
7972 */
4aaedfb0 7973 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7974 i_size_write(inode, start + len);
0934856d 7975
9c9464cc 7976 adjust_dio_outstanding_extents(inode, dio_data, len);
50745b0a 7977 WARN_ON(dio_data->reserve < len);
7978 dio_data->reserve -= len;
f28a4928 7979 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7980 current->journal_info = dio_data;
c3473e83 7981 }
4b46fce2 7982
eb838e73
JB
7983 /*
7984 * In the case of write we need to clear and unlock the entire range,
7985 * in the case of read we need to unlock only the end area that we
7986 * aren't using if there is any left over space.
7987 */
24c03fa5 7988 if (lockstart < lockend) {
0934856d
MX
7989 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7990 lockend, unlock_bits, 1, 0,
7991 &cached_state, GFP_NOFS);
24c03fa5 7992 } else {
eb838e73 7993 free_extent_state(cached_state);
24c03fa5 7994 }
eb838e73 7995
4b46fce2
JB
7996 free_extent_map(em);
7997
7998 return 0;
eb838e73
JB
7999
8000unlock_err:
eb838e73
JB
8001 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
8002 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 8003err:
50745b0a 8004 if (dio_data)
8005 current->journal_info = dio_data;
9c9464cc
FM
8006 /*
8007 * Compensate the delalloc release we do in btrfs_direct_IO() when we
8008 * write less data then expected, so that we don't underflow our inode's
8009 * outstanding extents counter.
8010 */
8011 if (create && dio_data)
8012 adjust_dio_outstanding_extents(inode, dio_data, len);
8013
eb838e73 8014 return ret;
4b46fce2
JB
8015}
8016
58efbc9f
OS
8017static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
8018 struct bio *bio,
8019 int mirror_num)
8b110e39 8020{
2ff7e61e 8021 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 8022 blk_status_t ret;
8b110e39 8023
37226b21 8024 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
8025
8026 bio_get(bio);
8027
2ff7e61e 8028 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
8029 if (ret)
8030 goto err;
8031
2ff7e61e 8032 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
8033err:
8034 bio_put(bio);
8035 return ret;
8036}
8037
8038static int btrfs_check_dio_repairable(struct inode *inode,
8039 struct bio *failed_bio,
8040 struct io_failure_record *failrec,
8041 int failed_mirror)
8042{
ab8d0fc4 8043 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
8044 int num_copies;
8045
ab8d0fc4 8046 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
8047 if (num_copies == 1) {
8048 /*
8049 * we only have a single copy of the data, so don't bother with
8050 * all the retry and error correction code that follows. no
8051 * matter what the error is, it is very likely to persist.
8052 */
ab8d0fc4
JM
8053 btrfs_debug(fs_info,
8054 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
8055 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
8056 return 0;
8057 }
8058
8059 failrec->failed_mirror = failed_mirror;
8060 failrec->this_mirror++;
8061 if (failrec->this_mirror == failed_mirror)
8062 failrec->this_mirror++;
8063
8064 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
8065 btrfs_debug(fs_info,
8066 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
8067 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
8068 return 0;
8069 }
8070
8071 return 1;
8072}
8073
58efbc9f
OS
8074static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
8075 struct page *page, unsigned int pgoff,
8076 u64 start, u64 end, int failed_mirror,
8077 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
8078{
8079 struct io_failure_record *failrec;
7870d082
JB
8080 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8081 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
8082 struct bio *bio;
8083 int isector;
f1c77c55 8084 unsigned int read_mode = 0;
17347cec 8085 int segs;
8b110e39 8086 int ret;
58efbc9f 8087 blk_status_t status;
8b110e39 8088
37226b21 8089 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
8090
8091 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8092 if (ret)
58efbc9f 8093 return errno_to_blk_status(ret);
8b110e39
MX
8094
8095 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8096 failed_mirror);
8097 if (!ret) {
7870d082 8098 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 8099 return BLK_STS_IOERR;
8b110e39
MX
8100 }
8101
17347cec
LB
8102 segs = bio_segments(failed_bio);
8103 if (segs > 1 ||
8104 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 8105 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
8106
8107 isector = start - btrfs_io_bio(failed_bio)->logical;
8108 isector >>= inode->i_sb->s_blocksize_bits;
8109 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 8110 pgoff, isector, repair_endio, repair_arg);
37226b21 8111 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
8112
8113 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 8114 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
8115 read_mode, failrec->this_mirror, failrec->in_validation);
8116
58efbc9f
OS
8117 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8118 if (status) {
7870d082 8119 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8120 bio_put(bio);
8121 }
8122
58efbc9f 8123 return status;
8b110e39
MX
8124}
8125
8126struct btrfs_retry_complete {
8127 struct completion done;
8128 struct inode *inode;
8129 u64 start;
8130 int uptodate;
8131};
8132
4246a0b6 8133static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
8134{
8135 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 8136 struct inode *inode = done->inode;
8b110e39 8137 struct bio_vec *bvec;
7870d082 8138 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
8139 int i;
8140
4e4cbee9 8141 if (bio->bi_status)
8b110e39
MX
8142 goto end;
8143
2dabb324 8144 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
8145 io_tree = &BTRFS_I(inode)->io_tree;
8146 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8147 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8148
8b110e39 8149 done->uptodate = 1;
c09abff8 8150 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8151 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
8152 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8153 io_tree, done->start, bvec->bv_page,
8154 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8155end:
8156 complete(&done->done);
8157 bio_put(bio);
8158}
8159
58efbc9f
OS
8160static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8161 struct btrfs_io_bio *io_bio)
4b46fce2 8162{
2dabb324 8163 struct btrfs_fs_info *fs_info;
17347cec
LB
8164 struct bio_vec bvec;
8165 struct bvec_iter iter;
8b110e39 8166 struct btrfs_retry_complete done;
4b46fce2 8167 u64 start;
2dabb324
CR
8168 unsigned int pgoff;
8169 u32 sectorsize;
8170 int nr_sectors;
58efbc9f
OS
8171 blk_status_t ret;
8172 blk_status_t err = BLK_STS_OK;
4b46fce2 8173
2dabb324 8174 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8175 sectorsize = fs_info->sectorsize;
2dabb324 8176
8b110e39
MX
8177 start = io_bio->logical;
8178 done.inode = inode;
17347cec 8179 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8180
17347cec
LB
8181 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8182 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8183 pgoff = bvec.bv_offset;
2dabb324
CR
8184
8185next_block_or_try_again:
8b110e39
MX
8186 done.uptodate = 0;
8187 done.start = start;
8188 init_completion(&done.done);
8189
17347cec 8190 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8191 pgoff, start, start + sectorsize - 1,
8192 io_bio->mirror_num,
8193 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8194 if (ret) {
8195 err = ret;
8196 goto next;
8197 }
8b110e39 8198
9c17f6cd 8199 wait_for_completion_io(&done.done);
8b110e39
MX
8200
8201 if (!done.uptodate) {
8202 /* We might have another mirror, so try again */
2dabb324 8203 goto next_block_or_try_again;
8b110e39
MX
8204 }
8205
629ebf4f 8206next:
2dabb324
CR
8207 start += sectorsize;
8208
97bf5a55
LB
8209 nr_sectors--;
8210 if (nr_sectors) {
2dabb324 8211 pgoff += sectorsize;
97bf5a55 8212 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8213 goto next_block_or_try_again;
8214 }
8b110e39
MX
8215 }
8216
629ebf4f 8217 return err;
8b110e39
MX
8218}
8219
4246a0b6 8220static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8221{
8222 struct btrfs_retry_complete *done = bio->bi_private;
8223 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8224 struct extent_io_tree *io_tree, *failure_tree;
8225 struct inode *inode = done->inode;
8b110e39
MX
8226 struct bio_vec *bvec;
8227 int uptodate;
8228 int ret;
8229 int i;
8230
4e4cbee9 8231 if (bio->bi_status)
8b110e39
MX
8232 goto end;
8233
8234 uptodate = 1;
2dabb324 8235
2dabb324 8236 ASSERT(bio->bi_vcnt == 1);
2e949b0a 8237 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8238
7870d082
JB
8239 io_tree = &BTRFS_I(inode)->io_tree;
8240 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8241
c09abff8 8242 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8243 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8244 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8245 bvec->bv_offset, done->start,
8246 bvec->bv_len);
8b110e39 8247 if (!ret)
7870d082
JB
8248 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8249 failure_tree, io_tree, done->start,
8250 bvec->bv_page,
8251 btrfs_ino(BTRFS_I(inode)),
8252 bvec->bv_offset);
8b110e39
MX
8253 else
8254 uptodate = 0;
8255 }
8256
8257 done->uptodate = uptodate;
8258end:
8259 complete(&done->done);
8260 bio_put(bio);
8261}
8262
4e4cbee9
CH
8263static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8264 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8265{
2dabb324 8266 struct btrfs_fs_info *fs_info;
17347cec
LB
8267 struct bio_vec bvec;
8268 struct bvec_iter iter;
8b110e39
MX
8269 struct btrfs_retry_complete done;
8270 u64 start;
8271 u64 offset = 0;
2dabb324
CR
8272 u32 sectorsize;
8273 int nr_sectors;
8274 unsigned int pgoff;
8275 int csum_pos;
ef7cdac1 8276 bool uptodate = (err == 0);
8b110e39 8277 int ret;
58efbc9f 8278 blk_status_t status;
dc380aea 8279
2dabb324 8280 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8281 sectorsize = fs_info->sectorsize;
2dabb324 8282
58efbc9f 8283 err = BLK_STS_OK;
c1dc0896 8284 start = io_bio->logical;
8b110e39 8285 done.inode = inode;
17347cec 8286 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8287
17347cec
LB
8288 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8289 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8290
17347cec 8291 pgoff = bvec.bv_offset;
2dabb324 8292next_block:
ef7cdac1
LB
8293 if (uptodate) {
8294 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8295 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8296 bvec.bv_page, pgoff, start, sectorsize);
8297 if (likely(!ret))
8298 goto next;
8299 }
8b110e39
MX
8300try_again:
8301 done.uptodate = 0;
8302 done.start = start;
8303 init_completion(&done.done);
8304
58efbc9f
OS
8305 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8306 pgoff, start, start + sectorsize - 1,
8307 io_bio->mirror_num, btrfs_retry_endio,
8308 &done);
8309 if (status) {
8310 err = status;
8b110e39
MX
8311 goto next;
8312 }
8313
9c17f6cd 8314 wait_for_completion_io(&done.done);
8b110e39
MX
8315
8316 if (!done.uptodate) {
8317 /* We might have another mirror, so try again */
8318 goto try_again;
8319 }
8320next:
2dabb324
CR
8321 offset += sectorsize;
8322 start += sectorsize;
8323
8324 ASSERT(nr_sectors);
8325
97bf5a55
LB
8326 nr_sectors--;
8327 if (nr_sectors) {
2dabb324 8328 pgoff += sectorsize;
97bf5a55 8329 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8330 goto next_block;
8331 }
2c30c71b 8332 }
c1dc0896
MX
8333
8334 return err;
8335}
8336
4e4cbee9
CH
8337static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8338 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8339{
8340 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8341
8342 if (skip_csum) {
8343 if (unlikely(err))
8344 return __btrfs_correct_data_nocsum(inode, io_bio);
8345 else
58efbc9f 8346 return BLK_STS_OK;
8b110e39
MX
8347 } else {
8348 return __btrfs_subio_endio_read(inode, io_bio, err);
8349 }
8350}
8351
4246a0b6 8352static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8353{
8354 struct btrfs_dio_private *dip = bio->bi_private;
8355 struct inode *inode = dip->inode;
8356 struct bio *dio_bio;
8357 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8358 blk_status_t err = bio->bi_status;
c1dc0896 8359
e3d37fab 8360 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) {
8b110e39 8361 err = btrfs_subio_endio_read(inode, io_bio, err);
e3d37fab 8362 if (!err)
8c27cb35 8363 bio->bi_status = 0;
e3d37fab 8364 }
c1dc0896 8365
4b46fce2 8366 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8367 dip->logical_offset + dip->bytes - 1);
9be3395b 8368 dio_bio = dip->dio_bio;
4b46fce2 8369
4b46fce2 8370 kfree(dip);
c0da7aa1 8371
4e4cbee9 8372 dio_bio->bi_status = bio->bi_status;
4055351c 8373 dio_end_io(dio_bio);
23ea8e5a
MX
8374
8375 if (io_bio->end_io)
4e4cbee9 8376 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8377 bio_put(bio);
4b46fce2
JB
8378}
8379
52427260
QW
8380static void __endio_write_update_ordered(struct inode *inode,
8381 const u64 offset, const u64 bytes,
8382 const bool uptodate)
4b46fce2 8383{
0b246afa 8384 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8385 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8386 struct btrfs_workqueue *wq;
8387 btrfs_work_func_t func;
14543774
FM
8388 u64 ordered_offset = offset;
8389 u64 ordered_bytes = bytes;
4b46fce2
JB
8390 int ret;
8391
52427260
QW
8392 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8393 wq = fs_info->endio_freespace_worker;
8394 func = btrfs_freespace_write_helper;
8395 } else {
8396 wq = fs_info->endio_write_workers;
8397 func = btrfs_endio_write_helper;
8398 }
8399
163cf09c
CM
8400again:
8401 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8402 &ordered_offset,
4246a0b6 8403 ordered_bytes,
14543774 8404 uptodate);
4b46fce2 8405 if (!ret)
163cf09c 8406 goto out_test;
4b46fce2 8407
52427260
QW
8408 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8409 btrfs_queue_work(wq, &ordered->work);
163cf09c
CM
8410out_test:
8411 /*
8412 * our bio might span multiple ordered extents. If we haven't
8413 * completed the accounting for the whole dio, go back and try again
8414 */
14543774
FM
8415 if (ordered_offset < offset + bytes) {
8416 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8417 ordered = NULL;
163cf09c
CM
8418 goto again;
8419 }
14543774
FM
8420}
8421
8422static void btrfs_endio_direct_write(struct bio *bio)
8423{
8424 struct btrfs_dio_private *dip = bio->bi_private;
8425 struct bio *dio_bio = dip->dio_bio;
8426
52427260 8427 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8428 dip->bytes, !bio->bi_status);
4b46fce2 8429
4b46fce2 8430 kfree(dip);
c0da7aa1 8431
4e4cbee9 8432 dio_bio->bi_status = bio->bi_status;
4055351c 8433 dio_end_io(dio_bio);
9be3395b 8434 bio_put(bio);
4b46fce2
JB
8435}
8436
8c27cb35 8437static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
eaf25d93
CM
8438 struct bio *bio, int mirror_num,
8439 unsigned long bio_flags, u64 offset)
8440{
c6100a4b 8441 struct inode *inode = private_data;
4e4cbee9 8442 blk_status_t ret;
2ff7e61e 8443 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8444 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8445 return 0;
8446}
8447
4246a0b6 8448static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8449{
8450 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8451 blk_status_t err = bio->bi_status;
e65e1535 8452
8b110e39
MX
8453 if (err)
8454 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8455 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8456 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8457 bio->bi_opf,
8b110e39
MX
8458 (unsigned long long)bio->bi_iter.bi_sector,
8459 bio->bi_iter.bi_size, err);
8460
8461 if (dip->subio_endio)
8462 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8463
8464 if (err) {
e65e1535
MX
8465 dip->errors = 1;
8466
8467 /*
8468 * before atomic variable goto zero, we must make sure
8469 * dip->errors is perceived to be set.
8470 */
4e857c58 8471 smp_mb__before_atomic();
e65e1535
MX
8472 }
8473
8474 /* if there are more bios still pending for this dio, just exit */
8475 if (!atomic_dec_and_test(&dip->pending_bios))
8476 goto out;
8477
9be3395b 8478 if (dip->errors) {
e65e1535 8479 bio_io_error(dip->orig_bio);
9be3395b 8480 } else {
4e4cbee9 8481 dip->dio_bio->bi_status = 0;
4246a0b6 8482 bio_endio(dip->orig_bio);
e65e1535
MX
8483 }
8484out:
8485 bio_put(bio);
8486}
8487
4e4cbee9 8488static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8489 struct btrfs_dio_private *dip,
8490 struct bio *bio,
8491 u64 file_offset)
8492{
8493 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8494 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8495 blk_status_t ret;
c1dc0896
MX
8496
8497 /*
8498 * We load all the csum data we need when we submit
8499 * the first bio to reduce the csum tree search and
8500 * contention.
8501 */
8502 if (dip->logical_offset == file_offset) {
2ff7e61e 8503 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8504 file_offset);
8505 if (ret)
8506 return ret;
8507 }
8508
8509 if (bio == dip->orig_bio)
8510 return 0;
8511
8512 file_offset -= dip->logical_offset;
8513 file_offset >>= inode->i_sb->s_blocksize_bits;
8514 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8515
8516 return 0;
8517}
8518
58efbc9f
OS
8519static inline blk_status_t
8520__btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
66ba772e 8521 int async_submit)
e65e1535 8522{
0b246afa 8523 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8524 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8525 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8526 blk_status_t ret;
e65e1535 8527
b812ce28
JB
8528 if (async_submit)
8529 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8530
e65e1535 8531 bio_get(bio);
5fd02043
JB
8532
8533 if (!write) {
0b246afa 8534 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8535 if (ret)
8536 goto err;
8537 }
e65e1535 8538
e6961cac 8539 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8540 goto map;
8541
8542 if (write && async_submit) {
c6100a4b
JB
8543 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8544 file_offset, inode,
0b246afa
JM
8545 __btrfs_submit_bio_start_direct_io,
8546 __btrfs_submit_bio_done);
e65e1535 8547 goto err;
1ae39938
JB
8548 } else if (write) {
8549 /*
8550 * If we aren't doing async submit, calculate the csum of the
8551 * bio now.
8552 */
2ff7e61e 8553 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8554 if (ret)
8555 goto err;
23ea8e5a 8556 } else {
2ff7e61e 8557 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8558 file_offset);
c2db1073
TI
8559 if (ret)
8560 goto err;
8561 }
1ae39938 8562map:
2ff7e61e 8563 ret = btrfs_map_bio(fs_info, bio, 0, async_submit);
e65e1535
MX
8564err:
8565 bio_put(bio);
8566 return ret;
8567}
8568
e6961cac 8569static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8570{
8571 struct inode *inode = dip->inode;
0b246afa 8572 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8573 struct bio *bio;
8574 struct bio *orig_bio = dip->orig_bio;
4f024f37 8575 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8576 u64 file_offset = dip->logical_offset;
e65e1535 8577 u64 map_length;
1ae39938 8578 int async_submit = 0;
725130ba
LB
8579 u64 submit_len;
8580 int clone_offset = 0;
8581 int clone_len;
5f4dc8fc 8582 int ret;
58efbc9f 8583 blk_status_t status;
e65e1535 8584
4f024f37 8585 map_length = orig_bio->bi_iter.bi_size;
725130ba 8586 submit_len = map_length;
0b246afa
JM
8587 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8588 &map_length, NULL, 0);
7a5c3c9b 8589 if (ret)
e65e1535 8590 return -EIO;
facc8a22 8591
725130ba 8592 if (map_length >= submit_len) {
02f57c7a 8593 bio = orig_bio;
c1dc0896 8594 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8595 goto submit;
8596 }
8597
53b381b3 8598 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8599 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8600 async_submit = 0;
8601 else
8602 async_submit = 1;
8603
725130ba
LB
8604 /* bio split */
8605 ASSERT(map_length <= INT_MAX);
02f57c7a 8606 atomic_inc(&dip->pending_bios);
3c91ee69 8607 do {
725130ba 8608 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8609
725130ba
LB
8610 /*
8611 * This will never fail as it's passing GPF_NOFS and
8612 * the allocation is backed by btrfs_bioset.
8613 */
e477094f 8614 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8615 clone_len);
8616 bio->bi_private = dip;
8617 bio->bi_end_io = btrfs_end_dio_bio;
8618 btrfs_io_bio(bio)->logical = file_offset;
8619
8620 ASSERT(submit_len >= clone_len);
8621 submit_len -= clone_len;
8622 if (submit_len == 0)
8623 break;
e65e1535 8624
725130ba
LB
8625 /*
8626 * Increase the count before we submit the bio so we know
8627 * the end IO handler won't happen before we increase the
8628 * count. Otherwise, the dip might get freed before we're
8629 * done setting it up.
8630 */
8631 atomic_inc(&dip->pending_bios);
e65e1535 8632
66ba772e 8633 status = __btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8634 async_submit);
8635 if (status) {
725130ba
LB
8636 bio_put(bio);
8637 atomic_dec(&dip->pending_bios);
8638 goto out_err;
8639 }
e65e1535 8640
725130ba
LB
8641 clone_offset += clone_len;
8642 start_sector += clone_len >> 9;
8643 file_offset += clone_len;
5f4dc8fc 8644
725130ba
LB
8645 map_length = submit_len;
8646 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8647 start_sector << 9, &map_length, NULL, 0);
8648 if (ret)
8649 goto out_err;
3c91ee69 8650 } while (submit_len > 0);
e65e1535 8651
02f57c7a 8652submit:
66ba772e 8653 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8654 if (!status)
e65e1535
MX
8655 return 0;
8656
8657 bio_put(bio);
8658out_err:
8659 dip->errors = 1;
8660 /*
8661 * before atomic variable goto zero, we must
8662 * make sure dip->errors is perceived to be set.
8663 */
4e857c58 8664 smp_mb__before_atomic();
e65e1535
MX
8665 if (atomic_dec_and_test(&dip->pending_bios))
8666 bio_io_error(dip->orig_bio);
8667
8668 /* bio_end_io() will handle error, so we needn't return it */
8669 return 0;
8670}
8671
8a4c1e42
MC
8672static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8673 loff_t file_offset)
4b46fce2 8674{
61de718f 8675 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8676 struct bio *bio = NULL;
8677 struct btrfs_io_bio *io_bio;
8a4c1e42 8678 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8679 int ret = 0;
8680
8b6c1d56 8681 bio = btrfs_bio_clone(dio_bio);
9be3395b 8682
c1dc0896 8683 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8684 if (!dip) {
8685 ret = -ENOMEM;
61de718f 8686 goto free_ordered;
4b46fce2 8687 }
4b46fce2 8688
9be3395b 8689 dip->private = dio_bio->bi_private;
4b46fce2
JB
8690 dip->inode = inode;
8691 dip->logical_offset = file_offset;
4f024f37
KO
8692 dip->bytes = dio_bio->bi_iter.bi_size;
8693 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8694 bio->bi_private = dip;
8695 dip->orig_bio = bio;
9be3395b 8696 dip->dio_bio = dio_bio;
e65e1535 8697 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8698 io_bio = btrfs_io_bio(bio);
8699 io_bio->logical = file_offset;
4b46fce2 8700
c1dc0896 8701 if (write) {
3892ac90 8702 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8703 } else {
3892ac90 8704 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8705 dip->subio_endio = btrfs_subio_endio_read;
8706 }
4b46fce2 8707
f28a4928
FM
8708 /*
8709 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8710 * even if we fail to submit a bio, because in such case we do the
8711 * corresponding error handling below and it must not be done a second
8712 * time by btrfs_direct_IO().
8713 */
8714 if (write) {
8715 struct btrfs_dio_data *dio_data = current->journal_info;
8716
8717 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8718 dip->bytes;
8719 dio_data->unsubmitted_oe_range_start =
8720 dio_data->unsubmitted_oe_range_end;
8721 }
8722
e6961cac 8723 ret = btrfs_submit_direct_hook(dip);
e65e1535 8724 if (!ret)
eaf25d93 8725 return;
9be3395b 8726
3892ac90
LB
8727 if (io_bio->end_io)
8728 io_bio->end_io(io_bio, ret);
9be3395b 8729
4b46fce2
JB
8730free_ordered:
8731 /*
61de718f
FM
8732 * If we arrived here it means either we failed to submit the dip
8733 * or we either failed to clone the dio_bio or failed to allocate the
8734 * dip. If we cloned the dio_bio and allocated the dip, we can just
8735 * call bio_endio against our io_bio so that we get proper resource
8736 * cleanup if we fail to submit the dip, otherwise, we must do the
8737 * same as btrfs_endio_direct_[write|read] because we can't call these
8738 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8739 */
3892ac90 8740 if (bio && dip) {
054ec2f6 8741 bio_io_error(bio);
61de718f 8742 /*
3892ac90 8743 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8744 * and all the cleanup and final put for dio_bio (through
8745 * dio_end_io()).
8746 */
8747 dip = NULL;
3892ac90 8748 bio = NULL;
61de718f 8749 } else {
14543774 8750 if (write)
52427260 8751 __endio_write_update_ordered(inode,
14543774
FM
8752 file_offset,
8753 dio_bio->bi_iter.bi_size,
52427260 8754 false);
14543774 8755 else
61de718f
FM
8756 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8757 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8758
4e4cbee9 8759 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8760 /*
8761 * Releases and cleans up our dio_bio, no need to bio_put()
8762 * nor bio_endio()/bio_io_error() against dio_bio.
8763 */
4055351c 8764 dio_end_io(dio_bio);
4b46fce2 8765 }
3892ac90
LB
8766 if (bio)
8767 bio_put(bio);
61de718f 8768 kfree(dip);
4b46fce2
JB
8769}
8770
2ff7e61e
JM
8771static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
8772 struct kiocb *iocb,
8773 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8774{
8775 int seg;
a1b75f7d 8776 int i;
0b246afa 8777 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8778 ssize_t retval = -EINVAL;
5a5f79b5
CM
8779
8780 if (offset & blocksize_mask)
8781 goto out;
8782
28060d5d
AV
8783 if (iov_iter_alignment(iter) & blocksize_mask)
8784 goto out;
a1b75f7d 8785
28060d5d 8786 /* If this is a write we don't need to check anymore */
cd27e455 8787 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8788 return 0;
8789 /*
8790 * Check to make sure we don't have duplicate iov_base's in this
8791 * iovec, if so return EINVAL, otherwise we'll get csum errors
8792 * when reading back.
8793 */
8794 for (seg = 0; seg < iter->nr_segs; seg++) {
8795 for (i = seg + 1; i < iter->nr_segs; i++) {
8796 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8797 goto out;
8798 }
5a5f79b5
CM
8799 }
8800 retval = 0;
8801out:
8802 return retval;
8803}
eb838e73 8804
c8b8e32d 8805static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8806{
4b46fce2
JB
8807 struct file *file = iocb->ki_filp;
8808 struct inode *inode = file->f_mapping->host;
0b246afa 8809 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8810 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8811 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8812 loff_t offset = iocb->ki_pos;
0934856d 8813 size_t count = 0;
2e60a51e 8814 int flags = 0;
38851cc1
MX
8815 bool wakeup = true;
8816 bool relock = false;
0934856d 8817 ssize_t ret;
4b46fce2 8818
2ff7e61e 8819 if (check_direct_IO(fs_info, iocb, iter, offset))
5a5f79b5 8820 return 0;
3f7c579c 8821
fe0f07d0 8822 inode_dio_begin(inode);
38851cc1 8823
0e267c44 8824 /*
41bd9ca4
MX
8825 * The generic stuff only does filemap_write_and_wait_range, which
8826 * isn't enough if we've written compressed pages to this area, so
8827 * we need to flush the dirty pages again to make absolutely sure
8828 * that any outstanding dirty pages are on disk.
0e267c44 8829 */
a6cbcd4a 8830 count = iov_iter_count(iter);
41bd9ca4
MX
8831 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8832 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8833 filemap_fdatawrite_range(inode->i_mapping, offset,
8834 offset + count - 1);
0e267c44 8835
6f673763 8836 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8837 /*
8838 * If the write DIO is beyond the EOF, we need update
8839 * the isize, but it is protected by i_mutex. So we can
8840 * not unlock the i_mutex at this case.
8841 */
8842 if (offset + count <= inode->i_size) {
4aaedfb0 8843 dio_data.overwrite = 1;
5955102c 8844 inode_unlock(inode);
38851cc1 8845 relock = true;
edf064e7
GR
8846 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8847 ret = -EAGAIN;
8848 goto out;
38851cc1 8849 }
364ecf36
QW
8850 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8851 offset, count);
0934856d 8852 if (ret)
38851cc1 8853 goto out;
823bb20a 8854 dio_data.outstanding_extents = count_max_extents(count);
e1cbbfa5
JB
8855
8856 /*
8857 * We need to know how many extents we reserved so that we can
8858 * do the accounting properly if we go over the number we
8859 * originally calculated. Abuse current->journal_info for this.
8860 */
da17066c 8861 dio_data.reserve = round_up(count,
0b246afa 8862 fs_info->sectorsize);
f28a4928
FM
8863 dio_data.unsubmitted_oe_range_start = (u64)offset;
8864 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8865 current->journal_info = &dio_data;
97dcdea0 8866 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8867 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8868 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8869 inode_dio_end(inode);
38851cc1
MX
8870 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8871 wakeup = false;
0934856d
MX
8872 }
8873
17f8c842 8874 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8875 fs_info->fs_devices->latest_bdev,
c8b8e32d 8876 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8877 btrfs_submit_direct, flags);
6f673763 8878 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8879 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8880 current->journal_info = NULL;
ddba1bfc 8881 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8882 if (dio_data.reserve)
bc42bda2
QW
8883 btrfs_delalloc_release_space(inode, data_reserved,
8884 offset, dio_data.reserve);
f28a4928
FM
8885 /*
8886 * On error we might have left some ordered extents
8887 * without submitting corresponding bios for them, so
8888 * cleanup them up to avoid other tasks getting them
8889 * and waiting for them to complete forever.
8890 */
8891 if (dio_data.unsubmitted_oe_range_start <
8892 dio_data.unsubmitted_oe_range_end)
52427260 8893 __endio_write_update_ordered(inode,
f28a4928
FM
8894 dio_data.unsubmitted_oe_range_start,
8895 dio_data.unsubmitted_oe_range_end -
8896 dio_data.unsubmitted_oe_range_start,
52427260 8897 false);
ddba1bfc 8898 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2
QW
8899 btrfs_delalloc_release_space(inode, data_reserved,
8900 offset, count - (size_t)ret);
0934856d 8901 }
38851cc1 8902out:
2e60a51e 8903 if (wakeup)
fe0f07d0 8904 inode_dio_end(inode);
38851cc1 8905 if (relock)
5955102c 8906 inode_lock(inode);
0934856d 8907
364ecf36 8908 extent_changeset_free(data_reserved);
0934856d 8909 return ret;
16432985
CM
8910}
8911
05dadc09
TI
8912#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8913
1506fcc8
YS
8914static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8915 __u64 start, __u64 len)
8916{
05dadc09
TI
8917 int ret;
8918
8919 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8920 if (ret)
8921 return ret;
8922
ec29ed5b 8923 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8924}
8925
a52d9a80 8926int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8927{
d1310b2e
CM
8928 struct extent_io_tree *tree;
8929 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8930 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8931}
1832a6d5 8932
a52d9a80 8933static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8934{
d1310b2e 8935 struct extent_io_tree *tree;
be7bd730
JB
8936 struct inode *inode = page->mapping->host;
8937 int ret;
b888db2b
CM
8938
8939 if (current->flags & PF_MEMALLOC) {
8940 redirty_page_for_writepage(wbc, page);
8941 unlock_page(page);
8942 return 0;
8943 }
be7bd730
JB
8944
8945 /*
8946 * If we are under memory pressure we will call this directly from the
8947 * VM, we need to make sure we have the inode referenced for the ordered
8948 * extent. If not just return like we didn't do anything.
8949 */
8950 if (!igrab(inode)) {
8951 redirty_page_for_writepage(wbc, page);
8952 return AOP_WRITEPAGE_ACTIVATE;
8953 }
d1310b2e 8954 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8955 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8956 btrfs_add_delayed_iput(inode);
8957 return ret;
9ebefb18
CM
8958}
8959
48a3b636
ES
8960static int btrfs_writepages(struct address_space *mapping,
8961 struct writeback_control *wbc)
b293f02e 8962{
d1310b2e 8963 struct extent_io_tree *tree;
771ed689 8964
d1310b2e 8965 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8966 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8967}
8968
3ab2fb5a
CM
8969static int
8970btrfs_readpages(struct file *file, struct address_space *mapping,
8971 struct list_head *pages, unsigned nr_pages)
8972{
d1310b2e
CM
8973 struct extent_io_tree *tree;
8974 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8975 return extent_readpages(tree, mapping, pages, nr_pages,
8976 btrfs_get_extent);
8977}
e6dcd2dc 8978static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8979{
d1310b2e
CM
8980 struct extent_io_tree *tree;
8981 struct extent_map_tree *map;
a52d9a80 8982 int ret;
8c2383c3 8983
d1310b2e
CM
8984 tree = &BTRFS_I(page->mapping->host)->io_tree;
8985 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8986 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8987 if (ret == 1) {
8988 ClearPagePrivate(page);
8989 set_page_private(page, 0);
09cbfeaf 8990 put_page(page);
39279cc3 8991 }
a52d9a80 8992 return ret;
39279cc3
CM
8993}
8994
e6dcd2dc
CM
8995static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8996{
98509cfc
CM
8997 if (PageWriteback(page) || PageDirty(page))
8998 return 0;
3ba7ab22 8999 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
9000}
9001
d47992f8
LC
9002static void btrfs_invalidatepage(struct page *page, unsigned int offset,
9003 unsigned int length)
39279cc3 9004{
5fd02043 9005 struct inode *inode = page->mapping->host;
d1310b2e 9006 struct extent_io_tree *tree;
e6dcd2dc 9007 struct btrfs_ordered_extent *ordered;
2ac55d41 9008 struct extent_state *cached_state = NULL;
e6dcd2dc 9009 u64 page_start = page_offset(page);
09cbfeaf 9010 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
9011 u64 start;
9012 u64 end;
131e404a 9013 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 9014
8b62b72b
CM
9015 /*
9016 * we have the page locked, so new writeback can't start,
9017 * and the dirty bit won't be cleared while we are here.
9018 *
9019 * Wait for IO on this page so that we can safely clear
9020 * the PagePrivate2 bit and do ordered accounting
9021 */
e6dcd2dc 9022 wait_on_page_writeback(page);
8b62b72b 9023
5fd02043 9024 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
9025 if (offset) {
9026 btrfs_releasepage(page, GFP_NOFS);
9027 return;
9028 }
131e404a
FDBM
9029
9030 if (!inode_evicting)
ff13db41 9031 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
9032again:
9033 start = page_start;
a776c6fa 9034 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 9035 page_end - start + 1);
e6dcd2dc 9036 if (ordered) {
dbfdb6d1 9037 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
9038 /*
9039 * IO on this page will never be started, so we need
9040 * to account for any ordered extents now
9041 */
131e404a 9042 if (!inode_evicting)
dbfdb6d1 9043 clear_extent_bit(tree, start, end,
131e404a 9044 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 9045 EXTENT_DELALLOC_NEW |
131e404a
FDBM
9046 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
9047 EXTENT_DEFRAG, 1, 0, &cached_state,
9048 GFP_NOFS);
8b62b72b
CM
9049 /*
9050 * whoever cleared the private bit is responsible
9051 * for the finish_ordered_io
9052 */
77cef2ec
JB
9053 if (TestClearPagePrivate2(page)) {
9054 struct btrfs_ordered_inode_tree *tree;
9055 u64 new_len;
9056
9057 tree = &BTRFS_I(inode)->ordered_tree;
9058
9059 spin_lock_irq(&tree->lock);
9060 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 9061 new_len = start - ordered->file_offset;
77cef2ec
JB
9062 if (new_len < ordered->truncated_len)
9063 ordered->truncated_len = new_len;
9064 spin_unlock_irq(&tree->lock);
9065
9066 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
9067 start,
9068 end - start + 1, 1))
77cef2ec 9069 btrfs_finish_ordered_io(ordered);
8b62b72b 9070 }
e6dcd2dc 9071 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
9072 if (!inode_evicting) {
9073 cached_state = NULL;
dbfdb6d1 9074 lock_extent_bits(tree, start, end,
131e404a
FDBM
9075 &cached_state);
9076 }
dbfdb6d1
CR
9077
9078 start = end + 1;
9079 if (start < page_end)
9080 goto again;
131e404a
FDBM
9081 }
9082
b9d0b389
QW
9083 /*
9084 * Qgroup reserved space handler
9085 * Page here will be either
9086 * 1) Already written to disk
9087 * In this case, its reserved space is released from data rsv map
9088 * and will be freed by delayed_ref handler finally.
9089 * So even we call qgroup_free_data(), it won't decrease reserved
9090 * space.
9091 * 2) Not written to disk
0b34c261
GR
9092 * This means the reserved space should be freed here. However,
9093 * if a truncate invalidates the page (by clearing PageDirty)
9094 * and the page is accounted for while allocating extent
9095 * in btrfs_check_data_free_space() we let delayed_ref to
9096 * free the entire extent.
b9d0b389 9097 */
0b34c261 9098 if (PageDirty(page))
bc42bda2 9099 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
9100 if (!inode_evicting) {
9101 clear_extent_bit(tree, page_start, page_end,
9102 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
9103 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9104 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
131e404a
FDBM
9105 &cached_state, GFP_NOFS);
9106
9107 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 9108 }
e6dcd2dc 9109
4a096752 9110 ClearPageChecked(page);
9ad6b7bc 9111 if (PagePrivate(page)) {
9ad6b7bc
CM
9112 ClearPagePrivate(page);
9113 set_page_private(page, 0);
09cbfeaf 9114 put_page(page);
9ad6b7bc 9115 }
39279cc3
CM
9116}
9117
9ebefb18
CM
9118/*
9119 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9120 * called from a page fault handler when a page is first dirtied. Hence we must
9121 * be careful to check for EOF conditions here. We set the page up correctly
9122 * for a written page which means we get ENOSPC checking when writing into
9123 * holes and correct delalloc and unwritten extent mapping on filesystems that
9124 * support these features.
9125 *
9126 * We are not allowed to take the i_mutex here so we have to play games to
9127 * protect against truncate races as the page could now be beyond EOF. Because
9128 * vmtruncate() writes the inode size before removing pages, once we have the
9129 * page lock we can determine safely if the page is beyond EOF. If it is not
9130 * beyond EOF, then the page is guaranteed safe against truncation until we
9131 * unlock the page.
9132 */
11bac800 9133int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 9134{
c2ec175c 9135 struct page *page = vmf->page;
11bac800 9136 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 9137 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
9138 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9139 struct btrfs_ordered_extent *ordered;
2ac55d41 9140 struct extent_state *cached_state = NULL;
364ecf36 9141 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
9142 char *kaddr;
9143 unsigned long zero_start;
9ebefb18 9144 loff_t size;
1832a6d5 9145 int ret;
9998eb70 9146 int reserved = 0;
d0b7da88 9147 u64 reserved_space;
a52d9a80 9148 u64 page_start;
e6dcd2dc 9149 u64 page_end;
d0b7da88
CR
9150 u64 end;
9151
09cbfeaf 9152 reserved_space = PAGE_SIZE;
9ebefb18 9153
b2b5ef5c 9154 sb_start_pagefault(inode->i_sb);
df480633 9155 page_start = page_offset(page);
09cbfeaf 9156 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 9157 end = page_end;
df480633 9158
d0b7da88
CR
9159 /*
9160 * Reserving delalloc space after obtaining the page lock can lead to
9161 * deadlock. For example, if a dirty page is locked by this function
9162 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9163 * dirty page write out, then the btrfs_writepage() function could
9164 * end up waiting indefinitely to get a lock on the page currently
9165 * being processed by btrfs_page_mkwrite() function.
9166 */
364ecf36 9167 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 9168 reserved_space);
9998eb70 9169 if (!ret) {
11bac800 9170 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9171 reserved = 1;
9172 }
56a76f82
NP
9173 if (ret) {
9174 if (ret == -ENOMEM)
9175 ret = VM_FAULT_OOM;
9176 else /* -ENOSPC, -EIO, etc */
9177 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9178 if (reserved)
9179 goto out;
9180 goto out_noreserve;
56a76f82 9181 }
1832a6d5 9182
56a76f82 9183 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9184again:
9ebefb18 9185 lock_page(page);
9ebefb18 9186 size = i_size_read(inode);
a52d9a80 9187
9ebefb18 9188 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9189 (page_start >= size)) {
9ebefb18
CM
9190 /* page got truncated out from underneath us */
9191 goto out_unlock;
9192 }
e6dcd2dc
CM
9193 wait_on_page_writeback(page);
9194
ff13db41 9195 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9196 set_page_extent_mapped(page);
9197
eb84ae03
CM
9198 /*
9199 * we can't set the delalloc bits if there are pending ordered
9200 * extents. Drop our locks and wait for them to finish
9201 */
a776c6fa
NB
9202 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9203 PAGE_SIZE);
e6dcd2dc 9204 if (ordered) {
2ac55d41
JB
9205 unlock_extent_cached(io_tree, page_start, page_end,
9206 &cached_state, GFP_NOFS);
e6dcd2dc 9207 unlock_page(page);
eb84ae03 9208 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9209 btrfs_put_ordered_extent(ordered);
9210 goto again;
9211 }
9212
09cbfeaf 9213 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9214 reserved_space = round_up(size - page_start,
0b246afa 9215 fs_info->sectorsize);
09cbfeaf 9216 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
9217 end = page_start + reserved_space - 1;
9218 spin_lock(&BTRFS_I(inode)->lock);
9219 BTRFS_I(inode)->outstanding_extents++;
9220 spin_unlock(&BTRFS_I(inode)->lock);
bc42bda2
QW
9221 btrfs_delalloc_release_space(inode, data_reserved,
9222 page_start, PAGE_SIZE - reserved_space);
d0b7da88
CR
9223 }
9224 }
9225
fbf19087 9226 /*
5416034f
LB
9227 * page_mkwrite gets called when the page is firstly dirtied after it's
9228 * faulted in, but write(2) could also dirty a page and set delalloc
9229 * bits, thus in this case for space account reason, we still need to
9230 * clear any delalloc bits within this page range since we have to
9231 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9232 */
d0b7da88 9233 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9234 EXTENT_DIRTY | EXTENT_DELALLOC |
9235 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9236 0, 0, &cached_state, GFP_NOFS);
fbf19087 9237
d0b7da88 9238 ret = btrfs_set_extent_delalloc(inode, page_start, end,
ba8b04c1 9239 &cached_state, 0);
9ed74f2d 9240 if (ret) {
2ac55d41
JB
9241 unlock_extent_cached(io_tree, page_start, page_end,
9242 &cached_state, GFP_NOFS);
9ed74f2d
JB
9243 ret = VM_FAULT_SIGBUS;
9244 goto out_unlock;
9245 }
e6dcd2dc 9246 ret = 0;
9ebefb18
CM
9247
9248 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9249 if (page_start + PAGE_SIZE > size)
9250 zero_start = size & ~PAGE_MASK;
9ebefb18 9251 else
09cbfeaf 9252 zero_start = PAGE_SIZE;
9ebefb18 9253
09cbfeaf 9254 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9255 kaddr = kmap(page);
09cbfeaf 9256 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9257 flush_dcache_page(page);
9258 kunmap(page);
9259 }
247e743c 9260 ClearPageChecked(page);
e6dcd2dc 9261 set_page_dirty(page);
50a9b214 9262 SetPageUptodate(page);
5a3f23d5 9263
0b246afa 9264 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9265 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9266 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9267
2ac55d41 9268 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9269
9270out_unlock:
b2b5ef5c
JK
9271 if (!ret) {
9272 sb_end_pagefault(inode->i_sb);
364ecf36 9273 extent_changeset_free(data_reserved);
50a9b214 9274 return VM_FAULT_LOCKED;
b2b5ef5c 9275 }
9ebefb18 9276 unlock_page(page);
1832a6d5 9277out:
bc42bda2
QW
9278 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9279 reserved_space);
9998eb70 9280out_noreserve:
b2b5ef5c 9281 sb_end_pagefault(inode->i_sb);
364ecf36 9282 extent_changeset_free(data_reserved);
9ebefb18
CM
9283 return ret;
9284}
9285
a41ad394 9286static int btrfs_truncate(struct inode *inode)
39279cc3 9287{
0b246afa 9288 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9289 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9290 struct btrfs_block_rsv *rsv;
a71754fc 9291 int ret = 0;
3893e33b 9292 int err = 0;
39279cc3 9293 struct btrfs_trans_handle *trans;
0b246afa
JM
9294 u64 mask = fs_info->sectorsize - 1;
9295 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9296
0ef8b726
JB
9297 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9298 (u64)-1);
9299 if (ret)
9300 return ret;
39279cc3 9301
fcb80c2a 9302 /*
01327610 9303 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9304 * 3 things going on here
9305 *
9306 * 1) We need to reserve space for our orphan item and the space to
9307 * delete our orphan item. Lord knows we don't want to have a dangling
9308 * orphan item because we didn't reserve space to remove it.
9309 *
9310 * 2) We need to reserve space to update our inode.
9311 *
9312 * 3) We need to have something to cache all the space that is going to
9313 * be free'd up by the truncate operation, but also have some slack
9314 * space reserved in case it uses space during the truncate (thank you
9315 * very much snapshotting).
9316 *
01327610 9317 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9318 * space doing the truncate, and we have no earthly idea how much space
01327610 9319 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9320 * doesn't end up using space reserved for updating the inode or
9321 * removing the orphan item. We also need to be able to stop the
9322 * transaction and start a new one, which means we need to be able to
9323 * update the inode several times, and we have no idea of knowing how
9324 * many times that will be, so we can't just reserve 1 item for the
01327610 9325 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9326 * Then there is the orphan item, which does indeed need to be held on
9327 * to for the whole operation, and we need nobody to touch this reserved
9328 * space except the orphan code.
9329 *
9330 * So that leaves us with
9331 *
9332 * 1) root->orphan_block_rsv - for the orphan deletion.
9333 * 2) rsv - for the truncate reservation, which we will steal from the
9334 * transaction reservation.
9335 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9336 * updating the inode.
9337 */
2ff7e61e 9338 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9339 if (!rsv)
9340 return -ENOMEM;
4a338542 9341 rsv->size = min_size;
ca7e70f5 9342 rsv->failfast = 1;
f0cd846e 9343
907cbceb 9344 /*
07127184 9345 * 1 for the truncate slack space
907cbceb
JB
9346 * 1 for updating the inode.
9347 */
f3fe820c 9348 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9349 if (IS_ERR(trans)) {
9350 err = PTR_ERR(trans);
9351 goto out;
9352 }
f0cd846e 9353
907cbceb 9354 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9355 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9356 min_size, 0);
fcb80c2a 9357 BUG_ON(ret);
f0cd846e 9358
5dc562c5
JB
9359 /*
9360 * So if we truncate and then write and fsync we normally would just
9361 * write the extents that changed, which is a problem if we need to
9362 * first truncate that entire inode. So set this flag so we write out
9363 * all of the extents in the inode to the sync log so we're completely
9364 * safe.
9365 */
9366 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9367 trans->block_rsv = rsv;
907cbceb 9368
8082510e
YZ
9369 while (1) {
9370 ret = btrfs_truncate_inode_items(trans, root, inode,
9371 inode->i_size,
9372 BTRFS_EXTENT_DATA_KEY);
28ed1345 9373 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9374 err = ret;
8082510e 9375 break;
3893e33b 9376 }
39279cc3 9377
0b246afa 9378 trans->block_rsv = &fs_info->trans_block_rsv;
8082510e 9379 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9380 if (ret) {
9381 err = ret;
9382 break;
9383 }
ca7e70f5 9384
3a45bb20 9385 btrfs_end_transaction(trans);
2ff7e61e 9386 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9387
9388 trans = btrfs_start_transaction(root, 2);
9389 if (IS_ERR(trans)) {
9390 ret = err = PTR_ERR(trans);
9391 trans = NULL;
9392 break;
9393 }
9394
47b5d646 9395 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9396 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9397 rsv, min_size, 0);
ca7e70f5
JB
9398 BUG_ON(ret); /* shouldn't happen */
9399 trans->block_rsv = rsv;
8082510e
YZ
9400 }
9401
9402 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9403 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9404 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9405 if (ret)
9406 err = ret;
8082510e
YZ
9407 }
9408
917c16b2 9409 if (trans) {
0b246afa 9410 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9411 ret = btrfs_update_inode(trans, root, inode);
9412 if (ret && !err)
9413 err = ret;
7b128766 9414
3a45bb20 9415 ret = btrfs_end_transaction(trans);
2ff7e61e 9416 btrfs_btree_balance_dirty(fs_info);
917c16b2 9417 }
fcb80c2a 9418out:
2ff7e61e 9419 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9420
3893e33b
JB
9421 if (ret && !err)
9422 err = ret;
a41ad394 9423
3893e33b 9424 return err;
39279cc3
CM
9425}
9426
d352ac68
CM
9427/*
9428 * create a new subvolume directory/inode (helper for the ioctl).
9429 */
d2fb3437 9430int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9431 struct btrfs_root *new_root,
9432 struct btrfs_root *parent_root,
9433 u64 new_dirid)
39279cc3 9434{
39279cc3 9435 struct inode *inode;
76dda93c 9436 int err;
00e4e6b3 9437 u64 index = 0;
39279cc3 9438
12fc9d09
FA
9439 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9440 new_dirid, new_dirid,
9441 S_IFDIR | (~current_umask() & S_IRWXUGO),
9442 &index);
54aa1f4d 9443 if (IS_ERR(inode))
f46b5a66 9444 return PTR_ERR(inode);
39279cc3
CM
9445 inode->i_op = &btrfs_dir_inode_operations;
9446 inode->i_fop = &btrfs_dir_file_operations;
9447
bfe86848 9448 set_nlink(inode, 1);
6ef06d27 9449 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9450 unlock_new_inode(inode);
3b96362c 9451
63541927
FDBM
9452 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9453 if (err)
9454 btrfs_err(new_root->fs_info,
351fd353 9455 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9456 new_root->root_key.objectid, err);
9457
76dda93c 9458 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9459
76dda93c 9460 iput(inode);
ce598979 9461 return err;
39279cc3
CM
9462}
9463
39279cc3
CM
9464struct inode *btrfs_alloc_inode(struct super_block *sb)
9465{
9466 struct btrfs_inode *ei;
2ead6ae7 9467 struct inode *inode;
39279cc3
CM
9468
9469 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9470 if (!ei)
9471 return NULL;
2ead6ae7
YZ
9472
9473 ei->root = NULL;
2ead6ae7 9474 ei->generation = 0;
15ee9bc7 9475 ei->last_trans = 0;
257c62e1 9476 ei->last_sub_trans = 0;
e02119d5 9477 ei->logged_trans = 0;
2ead6ae7 9478 ei->delalloc_bytes = 0;
a7e3b975 9479 ei->new_delalloc_bytes = 0;
47059d93 9480 ei->defrag_bytes = 0;
2ead6ae7
YZ
9481 ei->disk_i_size = 0;
9482 ei->flags = 0;
7709cde3 9483 ei->csum_bytes = 0;
2ead6ae7 9484 ei->index_cnt = (u64)-1;
67de1176 9485 ei->dir_index = 0;
2ead6ae7 9486 ei->last_unlink_trans = 0;
46d8bc34 9487 ei->last_log_commit = 0;
8089fe62 9488 ei->delayed_iput_count = 0;
2ead6ae7 9489
9e0baf60
JB
9490 spin_lock_init(&ei->lock);
9491 ei->outstanding_extents = 0;
9492 ei->reserved_extents = 0;
2ead6ae7 9493
72ac3c0d 9494 ei->runtime_flags = 0;
b52aa8c9 9495 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9496 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9497
16cdcec7
MX
9498 ei->delayed_node = NULL;
9499
9cc97d64 9500 ei->i_otime.tv_sec = 0;
9501 ei->i_otime.tv_nsec = 0;
9502
2ead6ae7 9503 inode = &ei->vfs_inode;
a8067e02 9504 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9505 extent_io_tree_init(&ei->io_tree, inode);
9506 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9507 ei->io_tree.track_uptodate = 1;
9508 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9509 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9510 mutex_init(&ei->log_mutex);
f248679e 9511 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9512 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9513 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9514 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9515 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9516 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9517
9518 return inode;
39279cc3
CM
9519}
9520
aaedb55b
JB
9521#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9522void btrfs_test_destroy_inode(struct inode *inode)
9523{
dcdbc059 9524 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9525 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9526}
9527#endif
9528
fa0d7e3d
NP
9529static void btrfs_i_callback(struct rcu_head *head)
9530{
9531 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9532 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9533}
9534
39279cc3
CM
9535void btrfs_destroy_inode(struct inode *inode)
9536{
0b246afa 9537 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9538 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9539 struct btrfs_root *root = BTRFS_I(inode)->root;
9540
b3d9b7a3 9541 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9542 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9543 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9544 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3 9545 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9546 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9547 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9548 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9549
a6dbd429
JB
9550 /*
9551 * This can happen where we create an inode, but somebody else also
9552 * created the same inode and we need to destroy the one we already
9553 * created.
9554 */
9555 if (!root)
9556 goto free;
9557
8a35d95f
JB
9558 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9559 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9560 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9561 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9562 atomic_dec(&root->orphan_inodes);
7b128766 9563 }
7b128766 9564
d397712b 9565 while (1) {
e6dcd2dc
CM
9566 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9567 if (!ordered)
9568 break;
9569 else {
0b246afa 9570 btrfs_err(fs_info,
5d163e0e
JM
9571 "found ordered extent %llu %llu on inode cleanup",
9572 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9573 btrfs_remove_ordered_extent(inode, ordered);
9574 btrfs_put_ordered_extent(ordered);
9575 btrfs_put_ordered_extent(ordered);
9576 }
9577 }
56fa9d07 9578 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9579 inode_tree_del(inode);
dcdbc059 9580 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9581free:
fa0d7e3d 9582 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9583}
9584
45321ac5 9585int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9586{
9587 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9588
6379ef9f
NA
9589 if (root == NULL)
9590 return 1;
9591
fa6ac876 9592 /* the snap/subvol tree is on deleting */
69e9c6c6 9593 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9594 return 1;
76dda93c 9595 else
45321ac5 9596 return generic_drop_inode(inode);
76dda93c
YZ
9597}
9598
0ee0fda0 9599static void init_once(void *foo)
39279cc3
CM
9600{
9601 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9602
9603 inode_init_once(&ei->vfs_inode);
9604}
9605
9606void btrfs_destroy_cachep(void)
9607{
8c0a8537
KS
9608 /*
9609 * Make sure all delayed rcu free inodes are flushed before we
9610 * destroy cache.
9611 */
9612 rcu_barrier();
5598e900
KM
9613 kmem_cache_destroy(btrfs_inode_cachep);
9614 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9615 kmem_cache_destroy(btrfs_path_cachep);
9616 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9617}
9618
9619int btrfs_init_cachep(void)
9620{
837e1972 9621 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9622 sizeof(struct btrfs_inode), 0,
5d097056
VD
9623 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9624 init_once);
39279cc3
CM
9625 if (!btrfs_inode_cachep)
9626 goto fail;
9601e3f6 9627
837e1972 9628 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9629 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9630 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9631 if (!btrfs_trans_handle_cachep)
9632 goto fail;
9601e3f6 9633
837e1972 9634 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9635 sizeof(struct btrfs_path), 0,
fba4b697 9636 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9637 if (!btrfs_path_cachep)
9638 goto fail;
9601e3f6 9639
837e1972 9640 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9641 sizeof(struct btrfs_free_space), 0,
fba4b697 9642 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9643 if (!btrfs_free_space_cachep)
9644 goto fail;
9645
39279cc3
CM
9646 return 0;
9647fail:
9648 btrfs_destroy_cachep();
9649 return -ENOMEM;
9650}
9651
a528d35e
DH
9652static int btrfs_getattr(const struct path *path, struct kstat *stat,
9653 u32 request_mask, unsigned int flags)
39279cc3 9654{
df0af1a5 9655 u64 delalloc_bytes;
a528d35e 9656 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9657 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9658 u32 bi_flags = BTRFS_I(inode)->flags;
9659
9660 stat->result_mask |= STATX_BTIME;
9661 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9662 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9663 if (bi_flags & BTRFS_INODE_APPEND)
9664 stat->attributes |= STATX_ATTR_APPEND;
9665 if (bi_flags & BTRFS_INODE_COMPRESS)
9666 stat->attributes |= STATX_ATTR_COMPRESSED;
9667 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9668 stat->attributes |= STATX_ATTR_IMMUTABLE;
9669 if (bi_flags & BTRFS_INODE_NODUMP)
9670 stat->attributes |= STATX_ATTR_NODUMP;
9671
9672 stat->attributes_mask |= (STATX_ATTR_APPEND |
9673 STATX_ATTR_COMPRESSED |
9674 STATX_ATTR_IMMUTABLE |
9675 STATX_ATTR_NODUMP);
fadc0d8b 9676
39279cc3 9677 generic_fillattr(inode, stat);
0ee5dc67 9678 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9679
9680 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9681 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9682 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9683 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9684 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9685 return 0;
9686}
9687
cdd1fedf
DF
9688static int btrfs_rename_exchange(struct inode *old_dir,
9689 struct dentry *old_dentry,
9690 struct inode *new_dir,
9691 struct dentry *new_dentry)
9692{
0b246afa 9693 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9694 struct btrfs_trans_handle *trans;
9695 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9696 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9697 struct inode *new_inode = new_dentry->d_inode;
9698 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9699 struct timespec ctime = current_time(old_inode);
cdd1fedf 9700 struct dentry *parent;
4a0cc7ca
NB
9701 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9702 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9703 u64 old_idx = 0;
9704 u64 new_idx = 0;
9705 u64 root_objectid;
9706 int ret;
86e8aa0e
FM
9707 bool root_log_pinned = false;
9708 bool dest_log_pinned = false;
cdd1fedf
DF
9709
9710 /* we only allow rename subvolume link between subvolumes */
9711 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9712 return -EXDEV;
9713
9714 /* close the race window with snapshot create/destroy ioctl */
9715 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9716 down_read(&fs_info->subvol_sem);
cdd1fedf 9717 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9718 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9719
9720 /*
9721 * We want to reserve the absolute worst case amount of items. So if
9722 * both inodes are subvols and we need to unlink them then that would
9723 * require 4 item modifications, but if they are both normal inodes it
9724 * would require 5 item modifications, so we'll assume their normal
9725 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9726 * should cover the worst case number of items we'll modify.
9727 */
9728 trans = btrfs_start_transaction(root, 12);
9729 if (IS_ERR(trans)) {
9730 ret = PTR_ERR(trans);
9731 goto out_notrans;
9732 }
9733
9734 /*
9735 * We need to find a free sequence number both in the source and
9736 * in the destination directory for the exchange.
9737 */
877574e2 9738 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9739 if (ret)
9740 goto out_fail;
877574e2 9741 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9742 if (ret)
9743 goto out_fail;
9744
9745 BTRFS_I(old_inode)->dir_index = 0ULL;
9746 BTRFS_I(new_inode)->dir_index = 0ULL;
9747
9748 /* Reference for the source. */
9749 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9750 /* force full log commit if subvolume involved. */
0b246afa 9751 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9752 } else {
376e5a57
FM
9753 btrfs_pin_log_trans(root);
9754 root_log_pinned = true;
cdd1fedf
DF
9755 ret = btrfs_insert_inode_ref(trans, dest,
9756 new_dentry->d_name.name,
9757 new_dentry->d_name.len,
9758 old_ino,
f85b7379
DS
9759 btrfs_ino(BTRFS_I(new_dir)),
9760 old_idx);
cdd1fedf
DF
9761 if (ret)
9762 goto out_fail;
cdd1fedf
DF
9763 }
9764
9765 /* And now for the dest. */
9766 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9767 /* force full log commit if subvolume involved. */
0b246afa 9768 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9769 } else {
376e5a57
FM
9770 btrfs_pin_log_trans(dest);
9771 dest_log_pinned = true;
cdd1fedf
DF
9772 ret = btrfs_insert_inode_ref(trans, root,
9773 old_dentry->d_name.name,
9774 old_dentry->d_name.len,
9775 new_ino,
f85b7379
DS
9776 btrfs_ino(BTRFS_I(old_dir)),
9777 new_idx);
cdd1fedf
DF
9778 if (ret)
9779 goto out_fail;
cdd1fedf
DF
9780 }
9781
9782 /* Update inode version and ctime/mtime. */
9783 inode_inc_iversion(old_dir);
9784 inode_inc_iversion(new_dir);
9785 inode_inc_iversion(old_inode);
9786 inode_inc_iversion(new_inode);
9787 old_dir->i_ctime = old_dir->i_mtime = ctime;
9788 new_dir->i_ctime = new_dir->i_mtime = ctime;
9789 old_inode->i_ctime = ctime;
9790 new_inode->i_ctime = ctime;
9791
9792 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9793 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9794 BTRFS_I(old_inode), 1);
9795 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9796 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9797 }
9798
9799 /* src is a subvolume */
9800 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9801 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9802 ret = btrfs_unlink_subvol(trans, root, old_dir,
9803 root_objectid,
9804 old_dentry->d_name.name,
9805 old_dentry->d_name.len);
9806 } else { /* src is an inode */
4ec5934e
NB
9807 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9808 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9809 old_dentry->d_name.name,
9810 old_dentry->d_name.len);
9811 if (!ret)
9812 ret = btrfs_update_inode(trans, root, old_inode);
9813 }
9814 if (ret) {
66642832 9815 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9816 goto out_fail;
9817 }
9818
9819 /* dest is a subvolume */
9820 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9821 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9822 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9823 root_objectid,
9824 new_dentry->d_name.name,
9825 new_dentry->d_name.len);
9826 } else { /* dest is an inode */
4ec5934e
NB
9827 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9828 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9829 new_dentry->d_name.name,
9830 new_dentry->d_name.len);
9831 if (!ret)
9832 ret = btrfs_update_inode(trans, dest, new_inode);
9833 }
9834 if (ret) {
66642832 9835 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9836 goto out_fail;
9837 }
9838
db0a669f 9839 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9840 new_dentry->d_name.name,
9841 new_dentry->d_name.len, 0, old_idx);
9842 if (ret) {
66642832 9843 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9844 goto out_fail;
9845 }
9846
db0a669f 9847 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9848 old_dentry->d_name.name,
9849 old_dentry->d_name.len, 0, new_idx);
9850 if (ret) {
66642832 9851 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9852 goto out_fail;
9853 }
9854
9855 if (old_inode->i_nlink == 1)
9856 BTRFS_I(old_inode)->dir_index = old_idx;
9857 if (new_inode->i_nlink == 1)
9858 BTRFS_I(new_inode)->dir_index = new_idx;
9859
86e8aa0e 9860 if (root_log_pinned) {
cdd1fedf 9861 parent = new_dentry->d_parent;
f85b7379
DS
9862 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9863 parent);
cdd1fedf 9864 btrfs_end_log_trans(root);
86e8aa0e 9865 root_log_pinned = false;
cdd1fedf 9866 }
86e8aa0e 9867 if (dest_log_pinned) {
cdd1fedf 9868 parent = old_dentry->d_parent;
f85b7379
DS
9869 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9870 parent);
cdd1fedf 9871 btrfs_end_log_trans(dest);
86e8aa0e 9872 dest_log_pinned = false;
cdd1fedf
DF
9873 }
9874out_fail:
86e8aa0e
FM
9875 /*
9876 * If we have pinned a log and an error happened, we unpin tasks
9877 * trying to sync the log and force them to fallback to a transaction
9878 * commit if the log currently contains any of the inodes involved in
9879 * this rename operation (to ensure we do not persist a log with an
9880 * inconsistent state for any of these inodes or leading to any
9881 * inconsistencies when replayed). If the transaction was aborted, the
9882 * abortion reason is propagated to userspace when attempting to commit
9883 * the transaction. If the log does not contain any of these inodes, we
9884 * allow the tasks to sync it.
9885 */
9886 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9887 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9888 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9889 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9890 (new_inode &&
0f8939b8 9891 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9892 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9893
9894 if (root_log_pinned) {
9895 btrfs_end_log_trans(root);
9896 root_log_pinned = false;
9897 }
9898 if (dest_log_pinned) {
9899 btrfs_end_log_trans(dest);
9900 dest_log_pinned = false;
9901 }
9902 }
3a45bb20 9903 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9904out_notrans:
9905 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9906 up_read(&fs_info->subvol_sem);
cdd1fedf 9907 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9908 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9909
9910 return ret;
9911}
9912
9913static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9914 struct btrfs_root *root,
9915 struct inode *dir,
9916 struct dentry *dentry)
9917{
9918 int ret;
9919 struct inode *inode;
9920 u64 objectid;
9921 u64 index;
9922
9923 ret = btrfs_find_free_ino(root, &objectid);
9924 if (ret)
9925 return ret;
9926
9927 inode = btrfs_new_inode(trans, root, dir,
9928 dentry->d_name.name,
9929 dentry->d_name.len,
4a0cc7ca 9930 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9931 objectid,
9932 S_IFCHR | WHITEOUT_MODE,
9933 &index);
9934
9935 if (IS_ERR(inode)) {
9936 ret = PTR_ERR(inode);
9937 return ret;
9938 }
9939
9940 inode->i_op = &btrfs_special_inode_operations;
9941 init_special_inode(inode, inode->i_mode,
9942 WHITEOUT_DEV);
9943
9944 ret = btrfs_init_inode_security(trans, inode, dir,
9945 &dentry->d_name);
9946 if (ret)
c9901618 9947 goto out;
cdd1fedf 9948
cef415af
NB
9949 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9950 BTRFS_I(inode), 0, index);
cdd1fedf 9951 if (ret)
c9901618 9952 goto out;
cdd1fedf
DF
9953
9954 ret = btrfs_update_inode(trans, root, inode);
c9901618 9955out:
cdd1fedf 9956 unlock_new_inode(inode);
c9901618
FM
9957 if (ret)
9958 inode_dec_link_count(inode);
cdd1fedf
DF
9959 iput(inode);
9960
c9901618 9961 return ret;
cdd1fedf
DF
9962}
9963
d397712b 9964static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9965 struct inode *new_dir, struct dentry *new_dentry,
9966 unsigned int flags)
39279cc3 9967{
0b246afa 9968 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9969 struct btrfs_trans_handle *trans;
5062af35 9970 unsigned int trans_num_items;
39279cc3 9971 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9972 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9973 struct inode *new_inode = d_inode(new_dentry);
9974 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9975 u64 index = 0;
4df27c4d 9976 u64 root_objectid;
39279cc3 9977 int ret;
4a0cc7ca 9978 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9979 bool log_pinned = false;
39279cc3 9980
4a0cc7ca 9981 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9982 return -EPERM;
9983
4df27c4d 9984 /* we only allow rename subvolume link between subvolumes */
33345d01 9985 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9986 return -EXDEV;
9987
33345d01 9988 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9989 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9990 return -ENOTEMPTY;
5f39d397 9991
4df27c4d
YZ
9992 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9993 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9994 return -ENOTEMPTY;
9c52057c
CM
9995
9996
9997 /* check for collisions, even if the name isn't there */
4871c158 9998 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9999 new_dentry->d_name.name,
10000 new_dentry->d_name.len);
10001
10002 if (ret) {
10003 if (ret == -EEXIST) {
10004 /* we shouldn't get
10005 * eexist without a new_inode */
fae7f21c 10006 if (WARN_ON(!new_inode)) {
9c52057c
CM
10007 return ret;
10008 }
10009 } else {
10010 /* maybe -EOVERFLOW */
10011 return ret;
10012 }
10013 }
10014 ret = 0;
10015
5a3f23d5 10016 /*
8d875f95
CM
10017 * we're using rename to replace one file with another. Start IO on it
10018 * now so we don't add too much work to the end of the transaction
5a3f23d5 10019 */
8d875f95 10020 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
10021 filemap_flush(old_inode->i_mapping);
10022
76dda93c 10023 /* close the racy window with snapshot create/destroy ioctl */
33345d01 10024 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10025 down_read(&fs_info->subvol_sem);
a22285a6
YZ
10026 /*
10027 * We want to reserve the absolute worst case amount of items. So if
10028 * both inodes are subvols and we need to unlink them then that would
10029 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 10030 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
10031 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
10032 * should cover the worst case number of items we'll modify.
5062af35
FM
10033 * If our rename has the whiteout flag, we need more 5 units for the
10034 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
10035 * when selinux is enabled).
a22285a6 10036 */
5062af35
FM
10037 trans_num_items = 11;
10038 if (flags & RENAME_WHITEOUT)
10039 trans_num_items += 5;
10040 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 10041 if (IS_ERR(trans)) {
cdd1fedf
DF
10042 ret = PTR_ERR(trans);
10043 goto out_notrans;
10044 }
76dda93c 10045
4df27c4d
YZ
10046 if (dest != root)
10047 btrfs_record_root_in_trans(trans, dest);
5f39d397 10048
877574e2 10049 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
10050 if (ret)
10051 goto out_fail;
5a3f23d5 10052
67de1176 10053 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 10054 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 10055 /* force full log commit if subvolume involved. */
0b246afa 10056 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 10057 } else {
c4aba954
FM
10058 btrfs_pin_log_trans(root);
10059 log_pinned = true;
a5719521
YZ
10060 ret = btrfs_insert_inode_ref(trans, dest,
10061 new_dentry->d_name.name,
10062 new_dentry->d_name.len,
33345d01 10063 old_ino,
4a0cc7ca 10064 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
10065 if (ret)
10066 goto out_fail;
4df27c4d 10067 }
5a3f23d5 10068
0c4d2d95
JB
10069 inode_inc_iversion(old_dir);
10070 inode_inc_iversion(new_dir);
10071 inode_inc_iversion(old_inode);
04b285f3
DD
10072 old_dir->i_ctime = old_dir->i_mtime =
10073 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 10074 old_inode->i_ctime = current_time(old_dir);
5f39d397 10075
12fcfd22 10076 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
10077 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10078 BTRFS_I(old_inode), 1);
12fcfd22 10079
33345d01 10080 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
10081 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
10082 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
10083 old_dentry->d_name.name,
10084 old_dentry->d_name.len);
10085 } else {
4ec5934e
NB
10086 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10087 BTRFS_I(d_inode(old_dentry)),
92986796
AV
10088 old_dentry->d_name.name,
10089 old_dentry->d_name.len);
10090 if (!ret)
10091 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 10092 }
79787eaa 10093 if (ret) {
66642832 10094 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10095 goto out_fail;
10096 }
39279cc3
CM
10097
10098 if (new_inode) {
0c4d2d95 10099 inode_inc_iversion(new_inode);
c2050a45 10100 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 10101 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
10102 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10103 root_objectid = BTRFS_I(new_inode)->location.objectid;
10104 ret = btrfs_unlink_subvol(trans, dest, new_dir,
10105 root_objectid,
10106 new_dentry->d_name.name,
10107 new_dentry->d_name.len);
10108 BUG_ON(new_inode->i_nlink == 0);
10109 } else {
4ec5934e
NB
10110 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10111 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
10112 new_dentry->d_name.name,
10113 new_dentry->d_name.len);
10114 }
4ef31a45 10115 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
10116 ret = btrfs_orphan_add(trans,
10117 BTRFS_I(d_inode(new_dentry)));
79787eaa 10118 if (ret) {
66642832 10119 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10120 goto out_fail;
10121 }
39279cc3 10122 }
aec7477b 10123
db0a669f 10124 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10125 new_dentry->d_name.name,
a5719521 10126 new_dentry->d_name.len, 0, index);
79787eaa 10127 if (ret) {
66642832 10128 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10129 goto out_fail;
10130 }
39279cc3 10131
67de1176
MX
10132 if (old_inode->i_nlink == 1)
10133 BTRFS_I(old_inode)->dir_index = index;
10134
3dc9e8f7 10135 if (log_pinned) {
10d9f309 10136 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10137
f85b7379
DS
10138 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10139 parent);
4df27c4d 10140 btrfs_end_log_trans(root);
3dc9e8f7 10141 log_pinned = false;
4df27c4d 10142 }
cdd1fedf
DF
10143
10144 if (flags & RENAME_WHITEOUT) {
10145 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10146 old_dentry);
10147
10148 if (ret) {
66642832 10149 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10150 goto out_fail;
10151 }
4df27c4d 10152 }
39279cc3 10153out_fail:
3dc9e8f7
FM
10154 /*
10155 * If we have pinned the log and an error happened, we unpin tasks
10156 * trying to sync the log and force them to fallback to a transaction
10157 * commit if the log currently contains any of the inodes involved in
10158 * this rename operation (to ensure we do not persist a log with an
10159 * inconsistent state for any of these inodes or leading to any
10160 * inconsistencies when replayed). If the transaction was aborted, the
10161 * abortion reason is propagated to userspace when attempting to commit
10162 * the transaction. If the log does not contain any of these inodes, we
10163 * allow the tasks to sync it.
10164 */
10165 if (ret && log_pinned) {
0f8939b8
NB
10166 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10167 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10168 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10169 (new_inode &&
0f8939b8 10170 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 10171 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
10172
10173 btrfs_end_log_trans(root);
10174 log_pinned = false;
10175 }
3a45bb20 10176 btrfs_end_transaction(trans);
b44c59a8 10177out_notrans:
33345d01 10178 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10179 up_read(&fs_info->subvol_sem);
9ed74f2d 10180
39279cc3
CM
10181 return ret;
10182}
10183
80ace85c
MS
10184static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10185 struct inode *new_dir, struct dentry *new_dentry,
10186 unsigned int flags)
10187{
cdd1fedf 10188 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10189 return -EINVAL;
10190
cdd1fedf
DF
10191 if (flags & RENAME_EXCHANGE)
10192 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10193 new_dentry);
10194
10195 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10196}
10197
8ccf6f19
MX
10198static void btrfs_run_delalloc_work(struct btrfs_work *work)
10199{
10200 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10201 struct inode *inode;
8ccf6f19
MX
10202
10203 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10204 work);
9f23e289 10205 inode = delalloc_work->inode;
30424601
DS
10206 filemap_flush(inode->i_mapping);
10207 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10208 &BTRFS_I(inode)->runtime_flags))
9f23e289 10209 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10210
10211 if (delalloc_work->delay_iput)
9f23e289 10212 btrfs_add_delayed_iput(inode);
8ccf6f19 10213 else
9f23e289 10214 iput(inode);
8ccf6f19
MX
10215 complete(&delalloc_work->completion);
10216}
10217
10218struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10219 int delay_iput)
8ccf6f19
MX
10220{
10221 struct btrfs_delalloc_work *work;
10222
100d5702 10223 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10224 if (!work)
10225 return NULL;
10226
10227 init_completion(&work->completion);
10228 INIT_LIST_HEAD(&work->list);
10229 work->inode = inode;
8ccf6f19 10230 work->delay_iput = delay_iput;
9e0af237
LB
10231 WARN_ON_ONCE(!inode);
10232 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10233 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10234
10235 return work;
10236}
10237
10238void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10239{
10240 wait_for_completion(&work->completion);
100d5702 10241 kfree(work);
8ccf6f19
MX
10242}
10243
d352ac68
CM
10244/*
10245 * some fairly slow code that needs optimization. This walks the list
10246 * of all the inodes with pending delalloc and forces them to disk.
10247 */
6c255e67
MX
10248static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10249 int nr)
ea8c2819 10250{
ea8c2819 10251 struct btrfs_inode *binode;
5b21f2ed 10252 struct inode *inode;
8ccf6f19
MX
10253 struct btrfs_delalloc_work *work, *next;
10254 struct list_head works;
1eafa6c7 10255 struct list_head splice;
8ccf6f19 10256 int ret = 0;
ea8c2819 10257
8ccf6f19 10258 INIT_LIST_HEAD(&works);
1eafa6c7 10259 INIT_LIST_HEAD(&splice);
63607cc8 10260
573bfb72 10261 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10262 spin_lock(&root->delalloc_lock);
10263 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10264 while (!list_empty(&splice)) {
10265 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10266 delalloc_inodes);
1eafa6c7 10267
eb73c1b7
MX
10268 list_move_tail(&binode->delalloc_inodes,
10269 &root->delalloc_inodes);
5b21f2ed 10270 inode = igrab(&binode->vfs_inode);
df0af1a5 10271 if (!inode) {
eb73c1b7 10272 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10273 continue;
df0af1a5 10274 }
eb73c1b7 10275 spin_unlock(&root->delalloc_lock);
1eafa6c7 10276
651d494a 10277 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10278 if (!work) {
f4ab9ea7
JB
10279 if (delay_iput)
10280 btrfs_add_delayed_iput(inode);
10281 else
10282 iput(inode);
1eafa6c7 10283 ret = -ENOMEM;
a1ecaabb 10284 goto out;
5b21f2ed 10285 }
1eafa6c7 10286 list_add_tail(&work->list, &works);
a44903ab
QW
10287 btrfs_queue_work(root->fs_info->flush_workers,
10288 &work->work);
6c255e67
MX
10289 ret++;
10290 if (nr != -1 && ret >= nr)
a1ecaabb 10291 goto out;
5b21f2ed 10292 cond_resched();
eb73c1b7 10293 spin_lock(&root->delalloc_lock);
ea8c2819 10294 }
eb73c1b7 10295 spin_unlock(&root->delalloc_lock);
8c8bee1d 10296
a1ecaabb 10297out:
eb73c1b7
MX
10298 list_for_each_entry_safe(work, next, &works, list) {
10299 list_del_init(&work->list);
10300 btrfs_wait_and_free_delalloc_work(work);
10301 }
10302
10303 if (!list_empty_careful(&splice)) {
10304 spin_lock(&root->delalloc_lock);
10305 list_splice_tail(&splice, &root->delalloc_inodes);
10306 spin_unlock(&root->delalloc_lock);
10307 }
573bfb72 10308 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10309 return ret;
10310}
1eafa6c7 10311
eb73c1b7
MX
10312int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10313{
0b246afa 10314 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10315 int ret;
1eafa6c7 10316
0b246afa 10317 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10318 return -EROFS;
10319
6c255e67
MX
10320 ret = __start_delalloc_inodes(root, delay_iput, -1);
10321 if (ret > 0)
10322 ret = 0;
eb73c1b7
MX
10323 /*
10324 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10325 * we have to make sure the IO is actually started and that
10326 * ordered extents get created before we return
10327 */
0b246afa
JM
10328 atomic_inc(&fs_info->async_submit_draining);
10329 while (atomic_read(&fs_info->nr_async_submits) ||
10330 atomic_read(&fs_info->async_delalloc_pages)) {
10331 wait_event(fs_info->async_submit_wait,
10332 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10333 atomic_read(&fs_info->async_delalloc_pages) == 0));
10334 }
10335 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7
MX
10336 return ret;
10337}
10338
6c255e67
MX
10339int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10340 int nr)
eb73c1b7
MX
10341{
10342 struct btrfs_root *root;
10343 struct list_head splice;
10344 int ret;
10345
2c21b4d7 10346 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10347 return -EROFS;
10348
10349 INIT_LIST_HEAD(&splice);
10350
573bfb72 10351 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10352 spin_lock(&fs_info->delalloc_root_lock);
10353 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10354 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10355 root = list_first_entry(&splice, struct btrfs_root,
10356 delalloc_root);
10357 root = btrfs_grab_fs_root(root);
10358 BUG_ON(!root);
10359 list_move_tail(&root->delalloc_root,
10360 &fs_info->delalloc_roots);
10361 spin_unlock(&fs_info->delalloc_root_lock);
10362
6c255e67 10363 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10364 btrfs_put_fs_root(root);
6c255e67 10365 if (ret < 0)
eb73c1b7
MX
10366 goto out;
10367
6c255e67
MX
10368 if (nr != -1) {
10369 nr -= ret;
10370 WARN_ON(nr < 0);
10371 }
eb73c1b7 10372 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10373 }
eb73c1b7 10374 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10375
6c255e67 10376 ret = 0;
eb73c1b7
MX
10377 atomic_inc(&fs_info->async_submit_draining);
10378 while (atomic_read(&fs_info->nr_async_submits) ||
10379 atomic_read(&fs_info->async_delalloc_pages)) {
10380 wait_event(fs_info->async_submit_wait,
10381 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10382 atomic_read(&fs_info->async_delalloc_pages) == 0));
10383 }
10384 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10385out:
1eafa6c7 10386 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10387 spin_lock(&fs_info->delalloc_root_lock);
10388 list_splice_tail(&splice, &fs_info->delalloc_roots);
10389 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10390 }
573bfb72 10391 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10392 return ret;
ea8c2819
CM
10393}
10394
39279cc3
CM
10395static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10396 const char *symname)
10397{
0b246afa 10398 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10399 struct btrfs_trans_handle *trans;
10400 struct btrfs_root *root = BTRFS_I(dir)->root;
10401 struct btrfs_path *path;
10402 struct btrfs_key key;
1832a6d5 10403 struct inode *inode = NULL;
39279cc3
CM
10404 int err;
10405 int drop_inode = 0;
10406 u64 objectid;
67871254 10407 u64 index = 0;
39279cc3
CM
10408 int name_len;
10409 int datasize;
5f39d397 10410 unsigned long ptr;
39279cc3 10411 struct btrfs_file_extent_item *ei;
5f39d397 10412 struct extent_buffer *leaf;
39279cc3 10413
f06becc4 10414 name_len = strlen(symname);
0b246afa 10415 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10416 return -ENAMETOOLONG;
1832a6d5 10417
9ed74f2d
JB
10418 /*
10419 * 2 items for inode item and ref
10420 * 2 items for dir items
9269d12b
FM
10421 * 1 item for updating parent inode item
10422 * 1 item for the inline extent item
9ed74f2d
JB
10423 * 1 item for xattr if selinux is on
10424 */
9269d12b 10425 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10426 if (IS_ERR(trans))
10427 return PTR_ERR(trans);
1832a6d5 10428
581bb050
LZ
10429 err = btrfs_find_free_ino(root, &objectid);
10430 if (err)
10431 goto out_unlock;
10432
aec7477b 10433 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10434 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10435 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10436 if (IS_ERR(inode)) {
10437 err = PTR_ERR(inode);
39279cc3 10438 goto out_unlock;
7cf96da3 10439 }
39279cc3 10440
ad19db71
CS
10441 /*
10442 * If the active LSM wants to access the inode during
10443 * d_instantiate it needs these. Smack checks to see
10444 * if the filesystem supports xattrs by looking at the
10445 * ops vector.
10446 */
10447 inode->i_fop = &btrfs_file_operations;
10448 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10449 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10450 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10451
10452 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10453 if (err)
10454 goto out_unlock_inode;
ad19db71 10455
39279cc3 10456 path = btrfs_alloc_path();
d8926bb3
MF
10457 if (!path) {
10458 err = -ENOMEM;
b0d5d10f 10459 goto out_unlock_inode;
d8926bb3 10460 }
4a0cc7ca 10461 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10462 key.offset = 0;
962a298f 10463 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10464 datasize = btrfs_file_extent_calc_inline_size(name_len);
10465 err = btrfs_insert_empty_item(trans, root, path, &key,
10466 datasize);
54aa1f4d 10467 if (err) {
b0839166 10468 btrfs_free_path(path);
b0d5d10f 10469 goto out_unlock_inode;
54aa1f4d 10470 }
5f39d397
CM
10471 leaf = path->nodes[0];
10472 ei = btrfs_item_ptr(leaf, path->slots[0],
10473 struct btrfs_file_extent_item);
10474 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10475 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10476 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10477 btrfs_set_file_extent_encryption(leaf, ei, 0);
10478 btrfs_set_file_extent_compression(leaf, ei, 0);
10479 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10480 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10481
39279cc3 10482 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10483 write_extent_buffer(leaf, symname, ptr, name_len);
10484 btrfs_mark_buffer_dirty(leaf);
39279cc3 10485 btrfs_free_path(path);
5f39d397 10486
39279cc3 10487 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10488 inode_nohighmem(inode);
39279cc3 10489 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10490 inode_set_bytes(inode, name_len);
6ef06d27 10491 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10492 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10493 /*
10494 * Last step, add directory indexes for our symlink inode. This is the
10495 * last step to avoid extra cleanup of these indexes if an error happens
10496 * elsewhere above.
10497 */
10498 if (!err)
cef415af
NB
10499 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10500 BTRFS_I(inode), 0, index);
b0d5d10f 10501 if (err) {
54aa1f4d 10502 drop_inode = 1;
b0d5d10f
CM
10503 goto out_unlock_inode;
10504 }
10505
10506 unlock_new_inode(inode);
10507 d_instantiate(dentry, inode);
39279cc3
CM
10508
10509out_unlock:
3a45bb20 10510 btrfs_end_transaction(trans);
39279cc3
CM
10511 if (drop_inode) {
10512 inode_dec_link_count(inode);
10513 iput(inode);
10514 }
2ff7e61e 10515 btrfs_btree_balance_dirty(fs_info);
39279cc3 10516 return err;
b0d5d10f
CM
10517
10518out_unlock_inode:
10519 drop_inode = 1;
10520 unlock_new_inode(inode);
10521 goto out_unlock;
39279cc3 10522}
16432985 10523
0af3d00b
JB
10524static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10525 u64 start, u64 num_bytes, u64 min_size,
10526 loff_t actual_len, u64 *alloc_hint,
10527 struct btrfs_trans_handle *trans)
d899e052 10528{
0b246afa 10529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10530 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10531 struct extent_map *em;
d899e052
YZ
10532 struct btrfs_root *root = BTRFS_I(inode)->root;
10533 struct btrfs_key ins;
d899e052 10534 u64 cur_offset = start;
55a61d1d 10535 u64 i_size;
154ea289 10536 u64 cur_bytes;
0b670dc4 10537 u64 last_alloc = (u64)-1;
d899e052 10538 int ret = 0;
0af3d00b 10539 bool own_trans = true;
18513091 10540 u64 end = start + num_bytes - 1;
d899e052 10541
0af3d00b
JB
10542 if (trans)
10543 own_trans = false;
d899e052 10544 while (num_bytes > 0) {
0af3d00b
JB
10545 if (own_trans) {
10546 trans = btrfs_start_transaction(root, 3);
10547 if (IS_ERR(trans)) {
10548 ret = PTR_ERR(trans);
10549 break;
10550 }
5a303d5d
YZ
10551 }
10552
ee22184b 10553 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10554 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10555 /*
10556 * If we are severely fragmented we could end up with really
10557 * small allocations, so if the allocator is returning small
10558 * chunks lets make its job easier by only searching for those
10559 * sized chunks.
10560 */
10561 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10562 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10563 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10564 if (ret) {
0af3d00b 10565 if (own_trans)
3a45bb20 10566 btrfs_end_transaction(trans);
a22285a6 10567 break;
d899e052 10568 }
0b246afa 10569 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10570
0b670dc4 10571 last_alloc = ins.offset;
d899e052
YZ
10572 ret = insert_reserved_file_extent(trans, inode,
10573 cur_offset, ins.objectid,
10574 ins.offset, ins.offset,
920bbbfb 10575 ins.offset, 0, 0, 0,
d899e052 10576 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10577 if (ret) {
2ff7e61e 10578 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10579 ins.offset, 0);
66642832 10580 btrfs_abort_transaction(trans, ret);
79787eaa 10581 if (own_trans)
3a45bb20 10582 btrfs_end_transaction(trans);
79787eaa
JM
10583 break;
10584 }
31193213 10585
dcdbc059 10586 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10587 cur_offset + ins.offset -1, 0);
5a303d5d 10588
5dc562c5
JB
10589 em = alloc_extent_map();
10590 if (!em) {
10591 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10592 &BTRFS_I(inode)->runtime_flags);
10593 goto next;
10594 }
10595
10596 em->start = cur_offset;
10597 em->orig_start = cur_offset;
10598 em->len = ins.offset;
10599 em->block_start = ins.objectid;
10600 em->block_len = ins.offset;
b4939680 10601 em->orig_block_len = ins.offset;
cc95bef6 10602 em->ram_bytes = ins.offset;
0b246afa 10603 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10604 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10605 em->generation = trans->transid;
10606
10607 while (1) {
10608 write_lock(&em_tree->lock);
09a2a8f9 10609 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10610 write_unlock(&em_tree->lock);
10611 if (ret != -EEXIST)
10612 break;
dcdbc059 10613 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10614 cur_offset + ins.offset - 1,
10615 0);
10616 }
10617 free_extent_map(em);
10618next:
d899e052
YZ
10619 num_bytes -= ins.offset;
10620 cur_offset += ins.offset;
efa56464 10621 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10622
0c4d2d95 10623 inode_inc_iversion(inode);
c2050a45 10624 inode->i_ctime = current_time(inode);
6cbff00f 10625 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10626 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10627 (actual_len > inode->i_size) &&
10628 (cur_offset > inode->i_size)) {
d1ea6a61 10629 if (cur_offset > actual_len)
55a61d1d 10630 i_size = actual_len;
d1ea6a61 10631 else
55a61d1d
JB
10632 i_size = cur_offset;
10633 i_size_write(inode, i_size);
10634 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10635 }
10636
d899e052 10637 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10638
10639 if (ret) {
66642832 10640 btrfs_abort_transaction(trans, ret);
79787eaa 10641 if (own_trans)
3a45bb20 10642 btrfs_end_transaction(trans);
79787eaa
JM
10643 break;
10644 }
d899e052 10645
0af3d00b 10646 if (own_trans)
3a45bb20 10647 btrfs_end_transaction(trans);
5a303d5d 10648 }
18513091 10649 if (cur_offset < end)
bc42bda2 10650 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10651 end - cur_offset + 1);
d899e052
YZ
10652 return ret;
10653}
10654
0af3d00b
JB
10655int btrfs_prealloc_file_range(struct inode *inode, int mode,
10656 u64 start, u64 num_bytes, u64 min_size,
10657 loff_t actual_len, u64 *alloc_hint)
10658{
10659 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10660 min_size, actual_len, alloc_hint,
10661 NULL);
10662}
10663
10664int btrfs_prealloc_file_range_trans(struct inode *inode,
10665 struct btrfs_trans_handle *trans, int mode,
10666 u64 start, u64 num_bytes, u64 min_size,
10667 loff_t actual_len, u64 *alloc_hint)
10668{
10669 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10670 min_size, actual_len, alloc_hint, trans);
10671}
10672
e6dcd2dc
CM
10673static int btrfs_set_page_dirty(struct page *page)
10674{
e6dcd2dc
CM
10675 return __set_page_dirty_nobuffers(page);
10676}
10677
10556cb2 10678static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10679{
b83cc969 10680 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10681 umode_t mode = inode->i_mode;
b83cc969 10682
cb6db4e5
JM
10683 if (mask & MAY_WRITE &&
10684 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10685 if (btrfs_root_readonly(root))
10686 return -EROFS;
10687 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10688 return -EACCES;
10689 }
2830ba7f 10690 return generic_permission(inode, mask);
fdebe2bd 10691}
39279cc3 10692
ef3b9af5
FM
10693static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10694{
2ff7e61e 10695 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10696 struct btrfs_trans_handle *trans;
10697 struct btrfs_root *root = BTRFS_I(dir)->root;
10698 struct inode *inode = NULL;
10699 u64 objectid;
10700 u64 index;
10701 int ret = 0;
10702
10703 /*
10704 * 5 units required for adding orphan entry
10705 */
10706 trans = btrfs_start_transaction(root, 5);
10707 if (IS_ERR(trans))
10708 return PTR_ERR(trans);
10709
10710 ret = btrfs_find_free_ino(root, &objectid);
10711 if (ret)
10712 goto out;
10713
10714 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10715 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10716 if (IS_ERR(inode)) {
10717 ret = PTR_ERR(inode);
10718 inode = NULL;
10719 goto out;
10720 }
10721
ef3b9af5
FM
10722 inode->i_fop = &btrfs_file_operations;
10723 inode->i_op = &btrfs_file_inode_operations;
10724
10725 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10726 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10727
b0d5d10f
CM
10728 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10729 if (ret)
10730 goto out_inode;
10731
10732 ret = btrfs_update_inode(trans, root, inode);
10733 if (ret)
10734 goto out_inode;
73f2e545 10735 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10736 if (ret)
b0d5d10f 10737 goto out_inode;
ef3b9af5 10738
5762b5c9
FM
10739 /*
10740 * We set number of links to 0 in btrfs_new_inode(), and here we set
10741 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10742 * through:
10743 *
10744 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10745 */
10746 set_nlink(inode, 1);
b0d5d10f 10747 unlock_new_inode(inode);
ef3b9af5
FM
10748 d_tmpfile(dentry, inode);
10749 mark_inode_dirty(inode);
10750
10751out:
3a45bb20 10752 btrfs_end_transaction(trans);
ef3b9af5
FM
10753 if (ret)
10754 iput(inode);
2ff7e61e
JM
10755 btrfs_balance_delayed_items(fs_info);
10756 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10757 return ret;
b0d5d10f
CM
10758
10759out_inode:
10760 unlock_new_inode(inode);
10761 goto out;
10762
ef3b9af5
FM
10763}
10764
20a7db8a 10765__attribute__((const))
9d0d1c8b 10766static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10767{
9d0d1c8b 10768 return -EAGAIN;
20a7db8a
DS
10769}
10770
c6100a4b
JB
10771static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10772{
10773 struct inode *inode = private_data;
10774 return btrfs_sb(inode->i_sb);
10775}
10776
10777static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10778 u64 start, u64 end)
10779{
10780 struct inode *inode = private_data;
10781 u64 isize;
10782
10783 isize = i_size_read(inode);
10784 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10785 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10786 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10787 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10788 }
10789}
10790
10791void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10792{
10793 struct inode *inode = private_data;
10794 unsigned long index = start >> PAGE_SHIFT;
10795 unsigned long end_index = end >> PAGE_SHIFT;
10796 struct page *page;
10797
10798 while (index <= end_index) {
10799 page = find_get_page(inode->i_mapping, index);
10800 ASSERT(page); /* Pages should be in the extent_io_tree */
10801 set_page_writeback(page);
10802 put_page(page);
10803 index++;
10804 }
10805}
10806
6e1d5dcc 10807static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10808 .getattr = btrfs_getattr,
39279cc3
CM
10809 .lookup = btrfs_lookup,
10810 .create = btrfs_create,
10811 .unlink = btrfs_unlink,
10812 .link = btrfs_link,
10813 .mkdir = btrfs_mkdir,
10814 .rmdir = btrfs_rmdir,
2773bf00 10815 .rename = btrfs_rename2,
39279cc3
CM
10816 .symlink = btrfs_symlink,
10817 .setattr = btrfs_setattr,
618e21d5 10818 .mknod = btrfs_mknod,
5103e947 10819 .listxattr = btrfs_listxattr,
fdebe2bd 10820 .permission = btrfs_permission,
4e34e719 10821 .get_acl = btrfs_get_acl,
996a710d 10822 .set_acl = btrfs_set_acl,
93fd63c2 10823 .update_time = btrfs_update_time,
ef3b9af5 10824 .tmpfile = btrfs_tmpfile,
39279cc3 10825};
6e1d5dcc 10826static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10827 .lookup = btrfs_lookup,
fdebe2bd 10828 .permission = btrfs_permission,
93fd63c2 10829 .update_time = btrfs_update_time,
39279cc3 10830};
76dda93c 10831
828c0950 10832static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10833 .llseek = generic_file_llseek,
10834 .read = generic_read_dir,
02dbfc99 10835 .iterate_shared = btrfs_real_readdir,
23b5ec74 10836 .open = btrfs_opendir,
34287aa3 10837 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10838#ifdef CONFIG_COMPAT
4c63c245 10839 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10840#endif
6bf13c0c 10841 .release = btrfs_release_file,
e02119d5 10842 .fsync = btrfs_sync_file,
39279cc3
CM
10843};
10844
20e5506b 10845static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10846 /* mandatory callbacks */
065631f6 10847 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10848 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10849 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10850 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10851 .tree_fs_info = iotree_fs_info,
10852 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10853
10854 /* optional callbacks */
10855 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10856 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10857 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10858 .set_bit_hook = btrfs_set_bit_hook,
10859 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10860 .merge_extent_hook = btrfs_merge_extent_hook,
10861 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10862 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10863};
10864
35054394
CM
10865/*
10866 * btrfs doesn't support the bmap operation because swapfiles
10867 * use bmap to make a mapping of extents in the file. They assume
10868 * these extents won't change over the life of the file and they
10869 * use the bmap result to do IO directly to the drive.
10870 *
10871 * the btrfs bmap call would return logical addresses that aren't
10872 * suitable for IO and they also will change frequently as COW
10873 * operations happen. So, swapfile + btrfs == corruption.
10874 *
10875 * For now we're avoiding this by dropping bmap.
10876 */
7f09410b 10877static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10878 .readpage = btrfs_readpage,
10879 .writepage = btrfs_writepage,
b293f02e 10880 .writepages = btrfs_writepages,
3ab2fb5a 10881 .readpages = btrfs_readpages,
16432985 10882 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10883 .invalidatepage = btrfs_invalidatepage,
10884 .releasepage = btrfs_releasepage,
e6dcd2dc 10885 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10886 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10887};
10888
7f09410b 10889static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10890 .readpage = btrfs_readpage,
10891 .writepage = btrfs_writepage,
2bf5a725
CM
10892 .invalidatepage = btrfs_invalidatepage,
10893 .releasepage = btrfs_releasepage,
39279cc3
CM
10894};
10895
6e1d5dcc 10896static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10897 .getattr = btrfs_getattr,
10898 .setattr = btrfs_setattr,
5103e947 10899 .listxattr = btrfs_listxattr,
fdebe2bd 10900 .permission = btrfs_permission,
1506fcc8 10901 .fiemap = btrfs_fiemap,
4e34e719 10902 .get_acl = btrfs_get_acl,
996a710d 10903 .set_acl = btrfs_set_acl,
e41f941a 10904 .update_time = btrfs_update_time,
39279cc3 10905};
6e1d5dcc 10906static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10907 .getattr = btrfs_getattr,
10908 .setattr = btrfs_setattr,
fdebe2bd 10909 .permission = btrfs_permission,
33268eaf 10910 .listxattr = btrfs_listxattr,
4e34e719 10911 .get_acl = btrfs_get_acl,
996a710d 10912 .set_acl = btrfs_set_acl,
e41f941a 10913 .update_time = btrfs_update_time,
618e21d5 10914};
6e1d5dcc 10915static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10916 .get_link = page_get_link,
f209561a 10917 .getattr = btrfs_getattr,
22c44fe6 10918 .setattr = btrfs_setattr,
fdebe2bd 10919 .permission = btrfs_permission,
0279b4cd 10920 .listxattr = btrfs_listxattr,
e41f941a 10921 .update_time = btrfs_update_time,
39279cc3 10922};
76dda93c 10923
82d339d9 10924const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10925 .d_delete = btrfs_dentry_delete,
b4aff1f8 10926 .d_release = btrfs_dentry_release,
76dda93c 10927};