Merge branch 'akpm' (patches from Andrew)
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
39279cc3
CM
63
64struct btrfs_iget_args {
90d3e592 65 struct btrfs_key *location;
39279cc3
CM
66 struct btrfs_root *root;
67};
68
6e1d5dcc
AD
69static const struct inode_operations btrfs_dir_inode_operations;
70static const struct inode_operations btrfs_symlink_inode_operations;
71static const struct inode_operations btrfs_dir_ro_inode_operations;
72static const struct inode_operations btrfs_special_inode_operations;
73static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
74static const struct address_space_operations btrfs_aops;
75static const struct address_space_operations btrfs_symlink_aops;
828c0950 76static const struct file_operations btrfs_dir_file_operations;
d1310b2e 77static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
78
79static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 80static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
81struct kmem_cache *btrfs_trans_handle_cachep;
82struct kmem_cache *btrfs_transaction_cachep;
39279cc3 83struct kmem_cache *btrfs_path_cachep;
dc89e982 84struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
85
86#define S_SHIFT 12
87static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
89 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
90 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
91 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
92 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
93 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
94 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
95};
96
3972f260 97static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 98static int btrfs_truncate(struct inode *inode);
5fd02043 99static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
100static noinline int cow_file_range(struct inode *inode,
101 struct page *locked_page,
102 u64 start, u64 end, int *page_started,
103 unsigned long *nr_written, int unlock);
70c8a91c
JB
104static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105 u64 len, u64 orig_start,
106 u64 block_start, u64 block_len,
cc95bef6
JB
107 u64 orig_block_len, u64 ram_bytes,
108 int type);
7b128766 109
48a3b636 110static int btrfs_dirty_inode(struct inode *inode);
7b128766 111
6a3891c5
JB
112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113void btrfs_test_inode_set_ops(struct inode *inode)
114{
115 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116}
117#endif
118
f34f57a3 119static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
120 struct inode *inode, struct inode *dir,
121 const struct qstr *qstr)
0279b4cd
JO
122{
123 int err;
124
f34f57a3 125 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 126 if (!err)
2a7dba39 127 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
128 return err;
129}
130
c8b97818
CM
131/*
132 * this does all the hard work for inserting an inline extent into
133 * the btree. The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
135 */
40f76580 136static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 137 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
138 struct btrfs_root *root, struct inode *inode,
139 u64 start, size_t size, size_t compressed_size,
fe3f566c 140 int compress_type,
c8b97818
CM
141 struct page **compressed_pages)
142{
c8b97818
CM
143 struct extent_buffer *leaf;
144 struct page *page = NULL;
145 char *kaddr;
146 unsigned long ptr;
147 struct btrfs_file_extent_item *ei;
148 int err = 0;
149 int ret;
150 size_t cur_size = size;
c8b97818 151 unsigned long offset;
c8b97818 152
fe3f566c 153 if (compressed_size && compressed_pages)
c8b97818 154 cur_size = compressed_size;
c8b97818 155
1acae57b 156 inode_add_bytes(inode, size);
c8b97818 157
1acae57b
FDBM
158 if (!extent_inserted) {
159 struct btrfs_key key;
160 size_t datasize;
c8b97818 161
1acae57b
FDBM
162 key.objectid = btrfs_ino(inode);
163 key.offset = start;
962a298f 164 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 165
1acae57b
FDBM
166 datasize = btrfs_file_extent_calc_inline_size(cur_size);
167 path->leave_spinning = 1;
168 ret = btrfs_insert_empty_item(trans, root, path, &key,
169 datasize);
170 if (ret) {
171 err = ret;
172 goto fail;
173 }
c8b97818
CM
174 }
175 leaf = path->nodes[0];
176 ei = btrfs_item_ptr(leaf, path->slots[0],
177 struct btrfs_file_extent_item);
178 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180 btrfs_set_file_extent_encryption(leaf, ei, 0);
181 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183 ptr = btrfs_file_extent_inline_start(ei);
184
261507a0 185 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
186 struct page *cpage;
187 int i = 0;
d397712b 188 while (compressed_size > 0) {
c8b97818 189 cpage = compressed_pages[i];
5b050f04 190 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
191 PAGE_CACHE_SIZE);
192
7ac687d9 193 kaddr = kmap_atomic(cpage);
c8b97818 194 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 195 kunmap_atomic(kaddr);
c8b97818
CM
196
197 i++;
198 ptr += cur_size;
199 compressed_size -= cur_size;
200 }
201 btrfs_set_file_extent_compression(leaf, ei,
261507a0 202 compress_type);
c8b97818
CM
203 } else {
204 page = find_get_page(inode->i_mapping,
205 start >> PAGE_CACHE_SHIFT);
206 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 207 kaddr = kmap_atomic(page);
c8b97818
CM
208 offset = start & (PAGE_CACHE_SIZE - 1);
209 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 210 kunmap_atomic(kaddr);
c8b97818
CM
211 page_cache_release(page);
212 }
213 btrfs_mark_buffer_dirty(leaf);
1acae57b 214 btrfs_release_path(path);
c8b97818 215
c2167754
YZ
216 /*
217 * we're an inline extent, so nobody can
218 * extend the file past i_size without locking
219 * a page we already have locked.
220 *
221 * We must do any isize and inode updates
222 * before we unlock the pages. Otherwise we
223 * could end up racing with unlink.
224 */
c8b97818 225 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 226 ret = btrfs_update_inode(trans, root, inode);
c2167754 227
79787eaa 228 return ret;
c8b97818 229fail:
c8b97818
CM
230 return err;
231}
232
233
234/*
235 * conditionally insert an inline extent into the file. This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
238 */
00361589
JB
239static noinline int cow_file_range_inline(struct btrfs_root *root,
240 struct inode *inode, u64 start,
241 u64 end, size_t compressed_size,
242 int compress_type,
243 struct page **compressed_pages)
c8b97818 244{
00361589 245 struct btrfs_trans_handle *trans;
c8b97818
CM
246 u64 isize = i_size_read(inode);
247 u64 actual_end = min(end + 1, isize);
248 u64 inline_len = actual_end - start;
fda2832f 249 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
250 u64 data_len = inline_len;
251 int ret;
1acae57b
FDBM
252 struct btrfs_path *path;
253 int extent_inserted = 0;
254 u32 extent_item_size;
c8b97818
CM
255
256 if (compressed_size)
257 data_len = compressed_size;
258
259 if (start > 0 ||
354877be
WS
260 actual_end > PAGE_CACHE_SIZE ||
261 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
262 (!compressed_size &&
263 (actual_end & (root->sectorsize - 1)) == 0) ||
264 end + 1 < isize ||
265 data_len > root->fs_info->max_inline) {
266 return 1;
267 }
268
1acae57b
FDBM
269 path = btrfs_alloc_path();
270 if (!path)
271 return -ENOMEM;
272
00361589 273 trans = btrfs_join_transaction(root);
1acae57b
FDBM
274 if (IS_ERR(trans)) {
275 btrfs_free_path(path);
00361589 276 return PTR_ERR(trans);
1acae57b 277 }
00361589
JB
278 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279
1acae57b
FDBM
280 if (compressed_size && compressed_pages)
281 extent_item_size = btrfs_file_extent_calc_inline_size(
282 compressed_size);
283 else
284 extent_item_size = btrfs_file_extent_calc_inline_size(
285 inline_len);
286
287 ret = __btrfs_drop_extents(trans, root, inode, path,
288 start, aligned_end, NULL,
289 1, 1, extent_item_size, &extent_inserted);
00361589
JB
290 if (ret) {
291 btrfs_abort_transaction(trans, root, ret);
292 goto out;
293 }
c8b97818
CM
294
295 if (isize > actual_end)
296 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
297 ret = insert_inline_extent(trans, path, extent_inserted,
298 root, inode, start,
c8b97818 299 inline_len, compressed_size,
fe3f566c 300 compress_type, compressed_pages);
2adcac1a 301 if (ret && ret != -ENOSPC) {
79787eaa 302 btrfs_abort_transaction(trans, root, ret);
00361589 303 goto out;
2adcac1a 304 } else if (ret == -ENOSPC) {
00361589
JB
305 ret = 1;
306 goto out;
79787eaa 307 }
2adcac1a 308
bdc20e67 309 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 310 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 311 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 312out:
94ed938a
QW
313 /*
314 * Don't forget to free the reserved space, as for inlined extent
315 * it won't count as data extent, free them directly here.
316 * And at reserve time, it's always aligned to page size, so
317 * just free one page here.
318 */
319 btrfs_qgroup_free_data(inode, 0, PAGE_CACHE_SIZE);
1acae57b 320 btrfs_free_path(path);
00361589
JB
321 btrfs_end_transaction(trans, root);
322 return ret;
c8b97818
CM
323}
324
771ed689
CM
325struct async_extent {
326 u64 start;
327 u64 ram_size;
328 u64 compressed_size;
329 struct page **pages;
330 unsigned long nr_pages;
261507a0 331 int compress_type;
771ed689
CM
332 struct list_head list;
333};
334
335struct async_cow {
336 struct inode *inode;
337 struct btrfs_root *root;
338 struct page *locked_page;
339 u64 start;
340 u64 end;
341 struct list_head extents;
342 struct btrfs_work work;
343};
344
345static noinline int add_async_extent(struct async_cow *cow,
346 u64 start, u64 ram_size,
347 u64 compressed_size,
348 struct page **pages,
261507a0
LZ
349 unsigned long nr_pages,
350 int compress_type)
771ed689
CM
351{
352 struct async_extent *async_extent;
353
354 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 355 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
356 async_extent->start = start;
357 async_extent->ram_size = ram_size;
358 async_extent->compressed_size = compressed_size;
359 async_extent->pages = pages;
360 async_extent->nr_pages = nr_pages;
261507a0 361 async_extent->compress_type = compress_type;
771ed689
CM
362 list_add_tail(&async_extent->list, &cow->extents);
363 return 0;
364}
365
f79707b0
WS
366static inline int inode_need_compress(struct inode *inode)
367{
368 struct btrfs_root *root = BTRFS_I(inode)->root;
369
370 /* force compress */
371 if (btrfs_test_opt(root, FORCE_COMPRESS))
372 return 1;
373 /* bad compression ratios */
374 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
375 return 0;
376 if (btrfs_test_opt(root, COMPRESS) ||
377 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
378 BTRFS_I(inode)->force_compress)
379 return 1;
380 return 0;
381}
382
d352ac68 383/*
771ed689
CM
384 * we create compressed extents in two phases. The first
385 * phase compresses a range of pages that have already been
386 * locked (both pages and state bits are locked).
c8b97818 387 *
771ed689
CM
388 * This is done inside an ordered work queue, and the compression
389 * is spread across many cpus. The actual IO submission is step
390 * two, and the ordered work queue takes care of making sure that
391 * happens in the same order things were put onto the queue by
392 * writepages and friends.
c8b97818 393 *
771ed689
CM
394 * If this code finds it can't get good compression, it puts an
395 * entry onto the work queue to write the uncompressed bytes. This
396 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
397 * are written in the same order that the flusher thread sent them
398 * down.
d352ac68 399 */
c44f649e 400static noinline void compress_file_range(struct inode *inode,
771ed689
CM
401 struct page *locked_page,
402 u64 start, u64 end,
403 struct async_cow *async_cow,
404 int *num_added)
b888db2b
CM
405{
406 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 407 u64 num_bytes;
db94535d 408 u64 blocksize = root->sectorsize;
c8b97818 409 u64 actual_end;
42dc7bab 410 u64 isize = i_size_read(inode);
e6dcd2dc 411 int ret = 0;
c8b97818
CM
412 struct page **pages = NULL;
413 unsigned long nr_pages;
414 unsigned long nr_pages_ret = 0;
415 unsigned long total_compressed = 0;
416 unsigned long total_in = 0;
417 unsigned long max_compressed = 128 * 1024;
771ed689 418 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
419 int i;
420 int will_compress;
261507a0 421 int compress_type = root->fs_info->compress_type;
4adaa611 422 int redirty = 0;
b888db2b 423
4cb13e5d
LB
424 /* if this is a small write inside eof, kick off a defrag */
425 if ((end - start + 1) < 16 * 1024 &&
426 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
427 btrfs_add_inode_defrag(NULL, inode);
428
42dc7bab 429 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
430again:
431 will_compress = 0;
432 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
433 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 434
f03d9301
CM
435 /*
436 * we don't want to send crud past the end of i_size through
437 * compression, that's just a waste of CPU time. So, if the
438 * end of the file is before the start of our current
439 * requested range of bytes, we bail out to the uncompressed
440 * cleanup code that can deal with all of this.
441 *
442 * It isn't really the fastest way to fix things, but this is a
443 * very uncommon corner.
444 */
445 if (actual_end <= start)
446 goto cleanup_and_bail_uncompressed;
447
c8b97818
CM
448 total_compressed = actual_end - start;
449
4bcbb332
SW
450 /*
451 * skip compression for a small file range(<=blocksize) that
452 * isn't an inline extent, since it dosen't save disk space at all.
453 */
454 if (total_compressed <= blocksize &&
455 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
456 goto cleanup_and_bail_uncompressed;
457
c8b97818
CM
458 /* we want to make sure that amount of ram required to uncompress
459 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
460 * of a compressed extent to 128k. This is a crucial number
461 * because it also controls how easily we can spread reads across
462 * cpus for decompression.
463 *
464 * We also want to make sure the amount of IO required to do
465 * a random read is reasonably small, so we limit the size of
466 * a compressed extent to 128k.
c8b97818
CM
467 */
468 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 469 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 470 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
471 total_in = 0;
472 ret = 0;
db94535d 473
771ed689
CM
474 /*
475 * we do compression for mount -o compress and when the
476 * inode has not been flagged as nocompress. This flag can
477 * change at any time if we discover bad compression ratios.
c8b97818 478 */
f79707b0 479 if (inode_need_compress(inode)) {
c8b97818 480 WARN_ON(pages);
31e818fe 481 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
482 if (!pages) {
483 /* just bail out to the uncompressed code */
484 goto cont;
485 }
c8b97818 486
261507a0
LZ
487 if (BTRFS_I(inode)->force_compress)
488 compress_type = BTRFS_I(inode)->force_compress;
489
4adaa611
CM
490 /*
491 * we need to call clear_page_dirty_for_io on each
492 * page in the range. Otherwise applications with the file
493 * mmap'd can wander in and change the page contents while
494 * we are compressing them.
495 *
496 * If the compression fails for any reason, we set the pages
497 * dirty again later on.
498 */
499 extent_range_clear_dirty_for_io(inode, start, end);
500 redirty = 1;
261507a0
LZ
501 ret = btrfs_compress_pages(compress_type,
502 inode->i_mapping, start,
503 total_compressed, pages,
504 nr_pages, &nr_pages_ret,
505 &total_in,
506 &total_compressed,
507 max_compressed);
c8b97818
CM
508
509 if (!ret) {
510 unsigned long offset = total_compressed &
511 (PAGE_CACHE_SIZE - 1);
512 struct page *page = pages[nr_pages_ret - 1];
513 char *kaddr;
514
515 /* zero the tail end of the last page, we might be
516 * sending it down to disk
517 */
518 if (offset) {
7ac687d9 519 kaddr = kmap_atomic(page);
c8b97818
CM
520 memset(kaddr + offset, 0,
521 PAGE_CACHE_SIZE - offset);
7ac687d9 522 kunmap_atomic(kaddr);
c8b97818
CM
523 }
524 will_compress = 1;
525 }
526 }
560f7d75 527cont:
c8b97818
CM
528 if (start == 0) {
529 /* lets try to make an inline extent */
771ed689 530 if (ret || total_in < (actual_end - start)) {
c8b97818 531 /* we didn't compress the entire range, try
771ed689 532 * to make an uncompressed inline extent.
c8b97818 533 */
00361589
JB
534 ret = cow_file_range_inline(root, inode, start, end,
535 0, 0, NULL);
c8b97818 536 } else {
771ed689 537 /* try making a compressed inline extent */
00361589 538 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
539 total_compressed,
540 compress_type, pages);
c8b97818 541 }
79787eaa 542 if (ret <= 0) {
151a41bc
JB
543 unsigned long clear_flags = EXTENT_DELALLOC |
544 EXTENT_DEFRAG;
e6eb4314
FM
545 unsigned long page_error_op;
546
151a41bc 547 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 548 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 549
771ed689 550 /*
79787eaa
JM
551 * inline extent creation worked or returned error,
552 * we don't need to create any more async work items.
553 * Unlock and free up our temp pages.
771ed689 554 */
c2790a2e 555 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 556 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
557 PAGE_CLEAR_DIRTY |
558 PAGE_SET_WRITEBACK |
e6eb4314 559 page_error_op |
c2790a2e 560 PAGE_END_WRITEBACK);
c8b97818
CM
561 goto free_pages_out;
562 }
563 }
564
565 if (will_compress) {
566 /*
567 * we aren't doing an inline extent round the compressed size
568 * up to a block size boundary so the allocator does sane
569 * things
570 */
fda2832f 571 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
572
573 /*
574 * one last check to make sure the compression is really a
575 * win, compare the page count read with the blocks on disk
576 */
fda2832f 577 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
578 if (total_compressed >= total_in) {
579 will_compress = 0;
580 } else {
c8b97818
CM
581 num_bytes = total_in;
582 }
583 }
584 if (!will_compress && pages) {
585 /*
586 * the compression code ran but failed to make things smaller,
587 * free any pages it allocated and our page pointer array
588 */
589 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 590 WARN_ON(pages[i]->mapping);
c8b97818
CM
591 page_cache_release(pages[i]);
592 }
593 kfree(pages);
594 pages = NULL;
595 total_compressed = 0;
596 nr_pages_ret = 0;
597
598 /* flag the file so we don't compress in the future */
1e701a32
CM
599 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
600 !(BTRFS_I(inode)->force_compress)) {
a555f810 601 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 602 }
c8b97818 603 }
771ed689
CM
604 if (will_compress) {
605 *num_added += 1;
c8b97818 606
771ed689
CM
607 /* the async work queues will take care of doing actual
608 * allocation on disk for these compressed pages,
609 * and will submit them to the elevator.
610 */
611 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
612 total_compressed, pages, nr_pages_ret,
613 compress_type);
179e29e4 614
24ae6365 615 if (start + num_bytes < end) {
771ed689
CM
616 start += num_bytes;
617 pages = NULL;
618 cond_resched();
619 goto again;
620 }
621 } else {
f03d9301 622cleanup_and_bail_uncompressed:
771ed689
CM
623 /*
624 * No compression, but we still need to write the pages in
625 * the file we've been given so far. redirty the locked
626 * page if it corresponds to our extent and set things up
627 * for the async work queue to run cow_file_range to do
628 * the normal delalloc dance
629 */
630 if (page_offset(locked_page) >= start &&
631 page_offset(locked_page) <= end) {
632 __set_page_dirty_nobuffers(locked_page);
633 /* unlocked later on in the async handlers */
634 }
4adaa611
CM
635 if (redirty)
636 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
637 add_async_extent(async_cow, start, end - start + 1,
638 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
639 *num_added += 1;
640 }
3b951516 641
c44f649e 642 return;
771ed689
CM
643
644free_pages_out:
645 for (i = 0; i < nr_pages_ret; i++) {
646 WARN_ON(pages[i]->mapping);
647 page_cache_release(pages[i]);
648 }
d397712b 649 kfree(pages);
771ed689 650}
771ed689 651
40ae837b
FM
652static void free_async_extent_pages(struct async_extent *async_extent)
653{
654 int i;
655
656 if (!async_extent->pages)
657 return;
658
659 for (i = 0; i < async_extent->nr_pages; i++) {
660 WARN_ON(async_extent->pages[i]->mapping);
661 page_cache_release(async_extent->pages[i]);
662 }
663 kfree(async_extent->pages);
664 async_extent->nr_pages = 0;
665 async_extent->pages = NULL;
771ed689
CM
666}
667
668/*
669 * phase two of compressed writeback. This is the ordered portion
670 * of the code, which only gets called in the order the work was
671 * queued. We walk all the async extents created by compress_file_range
672 * and send them down to the disk.
673 */
dec8f175 674static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
675 struct async_cow *async_cow)
676{
677 struct async_extent *async_extent;
678 u64 alloc_hint = 0;
771ed689
CM
679 struct btrfs_key ins;
680 struct extent_map *em;
681 struct btrfs_root *root = BTRFS_I(inode)->root;
682 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
683 struct extent_io_tree *io_tree;
f5a84ee3 684 int ret = 0;
771ed689 685
3e04e7f1 686again:
d397712b 687 while (!list_empty(&async_cow->extents)) {
771ed689
CM
688 async_extent = list_entry(async_cow->extents.next,
689 struct async_extent, list);
690 list_del(&async_extent->list);
c8b97818 691
771ed689
CM
692 io_tree = &BTRFS_I(inode)->io_tree;
693
f5a84ee3 694retry:
771ed689
CM
695 /* did the compression code fall back to uncompressed IO? */
696 if (!async_extent->pages) {
697 int page_started = 0;
698 unsigned long nr_written = 0;
699
700 lock_extent(io_tree, async_extent->start,
2ac55d41 701 async_extent->start +
d0082371 702 async_extent->ram_size - 1);
771ed689
CM
703
704 /* allocate blocks */
f5a84ee3
JB
705 ret = cow_file_range(inode, async_cow->locked_page,
706 async_extent->start,
707 async_extent->start +
708 async_extent->ram_size - 1,
709 &page_started, &nr_written, 0);
771ed689 710
79787eaa
JM
711 /* JDM XXX */
712
771ed689
CM
713 /*
714 * if page_started, cow_file_range inserted an
715 * inline extent and took care of all the unlocking
716 * and IO for us. Otherwise, we need to submit
717 * all those pages down to the drive.
718 */
f5a84ee3 719 if (!page_started && !ret)
771ed689
CM
720 extent_write_locked_range(io_tree,
721 inode, async_extent->start,
d397712b 722 async_extent->start +
771ed689
CM
723 async_extent->ram_size - 1,
724 btrfs_get_extent,
725 WB_SYNC_ALL);
3e04e7f1
JB
726 else if (ret)
727 unlock_page(async_cow->locked_page);
771ed689
CM
728 kfree(async_extent);
729 cond_resched();
730 continue;
731 }
732
733 lock_extent(io_tree, async_extent->start,
d0082371 734 async_extent->start + async_extent->ram_size - 1);
771ed689 735
00361589 736 ret = btrfs_reserve_extent(root,
771ed689
CM
737 async_extent->compressed_size,
738 async_extent->compressed_size,
e570fd27 739 0, alloc_hint, &ins, 1, 1);
f5a84ee3 740 if (ret) {
40ae837b 741 free_async_extent_pages(async_extent);
3e04e7f1 742
fdf8e2ea
JB
743 if (ret == -ENOSPC) {
744 unlock_extent(io_tree, async_extent->start,
745 async_extent->start +
746 async_extent->ram_size - 1);
ce62003f
LB
747
748 /*
749 * we need to redirty the pages if we decide to
750 * fallback to uncompressed IO, otherwise we
751 * will not submit these pages down to lower
752 * layers.
753 */
754 extent_range_redirty_for_io(inode,
755 async_extent->start,
756 async_extent->start +
757 async_extent->ram_size - 1);
758
79787eaa 759 goto retry;
fdf8e2ea 760 }
3e04e7f1 761 goto out_free;
f5a84ee3 762 }
c2167754
YZ
763 /*
764 * here we're doing allocation and writeback of the
765 * compressed pages
766 */
767 btrfs_drop_extent_cache(inode, async_extent->start,
768 async_extent->start +
769 async_extent->ram_size - 1, 0);
770
172ddd60 771 em = alloc_extent_map();
b9aa55be
LB
772 if (!em) {
773 ret = -ENOMEM;
3e04e7f1 774 goto out_free_reserve;
b9aa55be 775 }
771ed689
CM
776 em->start = async_extent->start;
777 em->len = async_extent->ram_size;
445a6944 778 em->orig_start = em->start;
2ab28f32
JB
779 em->mod_start = em->start;
780 em->mod_len = em->len;
c8b97818 781
771ed689
CM
782 em->block_start = ins.objectid;
783 em->block_len = ins.offset;
b4939680 784 em->orig_block_len = ins.offset;
cc95bef6 785 em->ram_bytes = async_extent->ram_size;
771ed689 786 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 787 em->compress_type = async_extent->compress_type;
771ed689
CM
788 set_bit(EXTENT_FLAG_PINNED, &em->flags);
789 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 790 em->generation = -1;
771ed689 791
d397712b 792 while (1) {
890871be 793 write_lock(&em_tree->lock);
09a2a8f9 794 ret = add_extent_mapping(em_tree, em, 1);
890871be 795 write_unlock(&em_tree->lock);
771ed689
CM
796 if (ret != -EEXIST) {
797 free_extent_map(em);
798 break;
799 }
800 btrfs_drop_extent_cache(inode, async_extent->start,
801 async_extent->start +
802 async_extent->ram_size - 1, 0);
803 }
804
3e04e7f1
JB
805 if (ret)
806 goto out_free_reserve;
807
261507a0
LZ
808 ret = btrfs_add_ordered_extent_compress(inode,
809 async_extent->start,
810 ins.objectid,
811 async_extent->ram_size,
812 ins.offset,
813 BTRFS_ORDERED_COMPRESSED,
814 async_extent->compress_type);
d9f85963
FM
815 if (ret) {
816 btrfs_drop_extent_cache(inode, async_extent->start,
817 async_extent->start +
818 async_extent->ram_size - 1, 0);
3e04e7f1 819 goto out_free_reserve;
d9f85963 820 }
771ed689 821
771ed689
CM
822 /*
823 * clear dirty, set writeback and unlock the pages.
824 */
c2790a2e 825 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
826 async_extent->start +
827 async_extent->ram_size - 1,
151a41bc
JB
828 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
829 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 830 PAGE_SET_WRITEBACK);
771ed689 831 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
832 async_extent->start,
833 async_extent->ram_size,
834 ins.objectid,
835 ins.offset, async_extent->pages,
836 async_extent->nr_pages);
fce2a4e6
FM
837 if (ret) {
838 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
839 struct page *p = async_extent->pages[0];
840 const u64 start = async_extent->start;
841 const u64 end = start + async_extent->ram_size - 1;
842
843 p->mapping = inode->i_mapping;
844 tree->ops->writepage_end_io_hook(p, start, end,
845 NULL, 0);
846 p->mapping = NULL;
847 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
848 PAGE_END_WRITEBACK |
849 PAGE_SET_ERROR);
40ae837b 850 free_async_extent_pages(async_extent);
fce2a4e6 851 }
771ed689
CM
852 alloc_hint = ins.objectid + ins.offset;
853 kfree(async_extent);
854 cond_resched();
855 }
dec8f175 856 return;
3e04e7f1 857out_free_reserve:
e570fd27 858 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 859out_free:
c2790a2e 860 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
861 async_extent->start +
862 async_extent->ram_size - 1,
c2790a2e 863 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
864 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
865 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
866 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
867 PAGE_SET_ERROR);
40ae837b 868 free_async_extent_pages(async_extent);
79787eaa 869 kfree(async_extent);
3e04e7f1 870 goto again;
771ed689
CM
871}
872
4b46fce2
JB
873static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
874 u64 num_bytes)
875{
876 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
877 struct extent_map *em;
878 u64 alloc_hint = 0;
879
880 read_lock(&em_tree->lock);
881 em = search_extent_mapping(em_tree, start, num_bytes);
882 if (em) {
883 /*
884 * if block start isn't an actual block number then find the
885 * first block in this inode and use that as a hint. If that
886 * block is also bogus then just don't worry about it.
887 */
888 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
889 free_extent_map(em);
890 em = search_extent_mapping(em_tree, 0, 0);
891 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
892 alloc_hint = em->block_start;
893 if (em)
894 free_extent_map(em);
895 } else {
896 alloc_hint = em->block_start;
897 free_extent_map(em);
898 }
899 }
900 read_unlock(&em_tree->lock);
901
902 return alloc_hint;
903}
904
771ed689
CM
905/*
906 * when extent_io.c finds a delayed allocation range in the file,
907 * the call backs end up in this code. The basic idea is to
908 * allocate extents on disk for the range, and create ordered data structs
909 * in ram to track those extents.
910 *
911 * locked_page is the page that writepage had locked already. We use
912 * it to make sure we don't do extra locks or unlocks.
913 *
914 * *page_started is set to one if we unlock locked_page and do everything
915 * required to start IO on it. It may be clean and already done with
916 * IO when we return.
917 */
00361589
JB
918static noinline int cow_file_range(struct inode *inode,
919 struct page *locked_page,
920 u64 start, u64 end, int *page_started,
921 unsigned long *nr_written,
922 int unlock)
771ed689 923{
00361589 924 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
925 u64 alloc_hint = 0;
926 u64 num_bytes;
927 unsigned long ram_size;
928 u64 disk_num_bytes;
929 u64 cur_alloc_size;
930 u64 blocksize = root->sectorsize;
771ed689
CM
931 struct btrfs_key ins;
932 struct extent_map *em;
933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
934 int ret = 0;
935
02ecd2c2
JB
936 if (btrfs_is_free_space_inode(inode)) {
937 WARN_ON_ONCE(1);
29bce2f3
JB
938 ret = -EINVAL;
939 goto out_unlock;
02ecd2c2 940 }
771ed689 941
fda2832f 942 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
943 num_bytes = max(blocksize, num_bytes);
944 disk_num_bytes = num_bytes;
771ed689 945
4cb5300b 946 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
947 if (num_bytes < 64 * 1024 &&
948 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 949 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 950
771ed689
CM
951 if (start == 0) {
952 /* lets try to make an inline extent */
00361589
JB
953 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
954 NULL);
771ed689 955 if (ret == 0) {
c2790a2e
JB
956 extent_clear_unlock_delalloc(inode, start, end, NULL,
957 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 958 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
959 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
960 PAGE_END_WRITEBACK);
c2167754 961
771ed689
CM
962 *nr_written = *nr_written +
963 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
964 *page_started = 1;
771ed689 965 goto out;
79787eaa 966 } else if (ret < 0) {
79787eaa 967 goto out_unlock;
771ed689
CM
968 }
969 }
970
971 BUG_ON(disk_num_bytes >
6c41761f 972 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 973
4b46fce2 974 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
975 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
976
d397712b 977 while (disk_num_bytes > 0) {
a791e35e
CM
978 unsigned long op;
979
287a0ab9 980 cur_alloc_size = disk_num_bytes;
00361589 981 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 982 root->sectorsize, 0, alloc_hint,
e570fd27 983 &ins, 1, 1);
00361589 984 if (ret < 0)
79787eaa 985 goto out_unlock;
d397712b 986
172ddd60 987 em = alloc_extent_map();
b9aa55be
LB
988 if (!em) {
989 ret = -ENOMEM;
ace68bac 990 goto out_reserve;
b9aa55be 991 }
e6dcd2dc 992 em->start = start;
445a6944 993 em->orig_start = em->start;
771ed689
CM
994 ram_size = ins.offset;
995 em->len = ins.offset;
2ab28f32
JB
996 em->mod_start = em->start;
997 em->mod_len = em->len;
c8b97818 998
e6dcd2dc 999 em->block_start = ins.objectid;
c8b97818 1000 em->block_len = ins.offset;
b4939680 1001 em->orig_block_len = ins.offset;
cc95bef6 1002 em->ram_bytes = ram_size;
e6dcd2dc 1003 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1004 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1005 em->generation = -1;
c8b97818 1006
d397712b 1007 while (1) {
890871be 1008 write_lock(&em_tree->lock);
09a2a8f9 1009 ret = add_extent_mapping(em_tree, em, 1);
890871be 1010 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1011 if (ret != -EEXIST) {
1012 free_extent_map(em);
1013 break;
1014 }
1015 btrfs_drop_extent_cache(inode, start,
c8b97818 1016 start + ram_size - 1, 0);
e6dcd2dc 1017 }
ace68bac
LB
1018 if (ret)
1019 goto out_reserve;
e6dcd2dc 1020
98d20f67 1021 cur_alloc_size = ins.offset;
e6dcd2dc 1022 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1023 ram_size, cur_alloc_size, 0);
ace68bac 1024 if (ret)
d9f85963 1025 goto out_drop_extent_cache;
c8b97818 1026
17d217fe
YZ
1027 if (root->root_key.objectid ==
1028 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1029 ret = btrfs_reloc_clone_csums(inode, start,
1030 cur_alloc_size);
00361589 1031 if (ret)
d9f85963 1032 goto out_drop_extent_cache;
17d217fe
YZ
1033 }
1034
d397712b 1035 if (disk_num_bytes < cur_alloc_size)
3b951516 1036 break;
d397712b 1037
c8b97818
CM
1038 /* we're not doing compressed IO, don't unlock the first
1039 * page (which the caller expects to stay locked), don't
1040 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1041 *
1042 * Do set the Private2 bit so we know this page was properly
1043 * setup for writepage
c8b97818 1044 */
c2790a2e
JB
1045 op = unlock ? PAGE_UNLOCK : 0;
1046 op |= PAGE_SET_PRIVATE2;
a791e35e 1047
c2790a2e
JB
1048 extent_clear_unlock_delalloc(inode, start,
1049 start + ram_size - 1, locked_page,
1050 EXTENT_LOCKED | EXTENT_DELALLOC,
1051 op);
c8b97818 1052 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1053 num_bytes -= cur_alloc_size;
1054 alloc_hint = ins.objectid + ins.offset;
1055 start += cur_alloc_size;
b888db2b 1056 }
79787eaa 1057out:
be20aa9d 1058 return ret;
b7d5b0a8 1059
d9f85963
FM
1060out_drop_extent_cache:
1061 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1062out_reserve:
e570fd27 1063 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1064out_unlock:
c2790a2e 1065 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1066 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1067 EXTENT_DELALLOC | EXTENT_DEFRAG,
1068 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1069 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1070 goto out;
771ed689 1071}
c8b97818 1072
771ed689
CM
1073/*
1074 * work queue call back to started compression on a file and pages
1075 */
1076static noinline void async_cow_start(struct btrfs_work *work)
1077{
1078 struct async_cow *async_cow;
1079 int num_added = 0;
1080 async_cow = container_of(work, struct async_cow, work);
1081
1082 compress_file_range(async_cow->inode, async_cow->locked_page,
1083 async_cow->start, async_cow->end, async_cow,
1084 &num_added);
8180ef88 1085 if (num_added == 0) {
cb77fcd8 1086 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1087 async_cow->inode = NULL;
8180ef88 1088 }
771ed689
CM
1089}
1090
1091/*
1092 * work queue call back to submit previously compressed pages
1093 */
1094static noinline void async_cow_submit(struct btrfs_work *work)
1095{
1096 struct async_cow *async_cow;
1097 struct btrfs_root *root;
1098 unsigned long nr_pages;
1099
1100 async_cow = container_of(work, struct async_cow, work);
1101
1102 root = async_cow->root;
1103 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1104 PAGE_CACHE_SHIFT;
1105
ee863954
DS
1106 /*
1107 * atomic_sub_return implies a barrier for waitqueue_active
1108 */
66657b31 1109 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1110 5 * 1024 * 1024 &&
771ed689
CM
1111 waitqueue_active(&root->fs_info->async_submit_wait))
1112 wake_up(&root->fs_info->async_submit_wait);
1113
d397712b 1114 if (async_cow->inode)
771ed689 1115 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1116}
c8b97818 1117
771ed689
CM
1118static noinline void async_cow_free(struct btrfs_work *work)
1119{
1120 struct async_cow *async_cow;
1121 async_cow = container_of(work, struct async_cow, work);
8180ef88 1122 if (async_cow->inode)
cb77fcd8 1123 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1124 kfree(async_cow);
1125}
1126
1127static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1128 u64 start, u64 end, int *page_started,
1129 unsigned long *nr_written)
1130{
1131 struct async_cow *async_cow;
1132 struct btrfs_root *root = BTRFS_I(inode)->root;
1133 unsigned long nr_pages;
1134 u64 cur_end;
287082b0 1135 int limit = 10 * 1024 * 1024;
771ed689 1136
a3429ab7
CM
1137 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1138 1, 0, NULL, GFP_NOFS);
d397712b 1139 while (start < end) {
771ed689 1140 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1141 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1142 async_cow->inode = igrab(inode);
771ed689
CM
1143 async_cow->root = root;
1144 async_cow->locked_page = locked_page;
1145 async_cow->start = start;
1146
f79707b0
WS
1147 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1148 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1149 cur_end = end;
1150 else
1151 cur_end = min(end, start + 512 * 1024 - 1);
1152
1153 async_cow->end = cur_end;
1154 INIT_LIST_HEAD(&async_cow->extents);
1155
9e0af237
LB
1156 btrfs_init_work(&async_cow->work,
1157 btrfs_delalloc_helper,
1158 async_cow_start, async_cow_submit,
1159 async_cow_free);
771ed689 1160
771ed689
CM
1161 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1162 PAGE_CACHE_SHIFT;
1163 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1164
afe3d242
QW
1165 btrfs_queue_work(root->fs_info->delalloc_workers,
1166 &async_cow->work);
771ed689
CM
1167
1168 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1169 wait_event(root->fs_info->async_submit_wait,
1170 (atomic_read(&root->fs_info->async_delalloc_pages) <
1171 limit));
1172 }
1173
d397712b 1174 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1175 atomic_read(&root->fs_info->async_delalloc_pages)) {
1176 wait_event(root->fs_info->async_submit_wait,
1177 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1178 0));
1179 }
1180
1181 *nr_written += nr_pages;
1182 start = cur_end + 1;
1183 }
1184 *page_started = 1;
1185 return 0;
be20aa9d
CM
1186}
1187
d397712b 1188static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1189 u64 bytenr, u64 num_bytes)
1190{
1191 int ret;
1192 struct btrfs_ordered_sum *sums;
1193 LIST_HEAD(list);
1194
07d400a6 1195 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1196 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1197 if (ret == 0 && list_empty(&list))
1198 return 0;
1199
1200 while (!list_empty(&list)) {
1201 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1202 list_del(&sums->list);
1203 kfree(sums);
1204 }
1205 return 1;
1206}
1207
d352ac68
CM
1208/*
1209 * when nowcow writeback call back. This checks for snapshots or COW copies
1210 * of the extents that exist in the file, and COWs the file as required.
1211 *
1212 * If no cow copies or snapshots exist, we write directly to the existing
1213 * blocks on disk
1214 */
7f366cfe
CM
1215static noinline int run_delalloc_nocow(struct inode *inode,
1216 struct page *locked_page,
771ed689
CM
1217 u64 start, u64 end, int *page_started, int force,
1218 unsigned long *nr_written)
be20aa9d 1219{
be20aa9d 1220 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1221 struct btrfs_trans_handle *trans;
be20aa9d 1222 struct extent_buffer *leaf;
be20aa9d 1223 struct btrfs_path *path;
80ff3856 1224 struct btrfs_file_extent_item *fi;
be20aa9d 1225 struct btrfs_key found_key;
80ff3856
YZ
1226 u64 cow_start;
1227 u64 cur_offset;
1228 u64 extent_end;
5d4f98a2 1229 u64 extent_offset;
80ff3856
YZ
1230 u64 disk_bytenr;
1231 u64 num_bytes;
b4939680 1232 u64 disk_num_bytes;
cc95bef6 1233 u64 ram_bytes;
80ff3856 1234 int extent_type;
79787eaa 1235 int ret, err;
d899e052 1236 int type;
80ff3856
YZ
1237 int nocow;
1238 int check_prev = 1;
82d5902d 1239 bool nolock;
33345d01 1240 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1241
1242 path = btrfs_alloc_path();
17ca04af 1243 if (!path) {
c2790a2e
JB
1244 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1245 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1246 EXTENT_DO_ACCOUNTING |
1247 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1248 PAGE_CLEAR_DIRTY |
1249 PAGE_SET_WRITEBACK |
1250 PAGE_END_WRITEBACK);
d8926bb3 1251 return -ENOMEM;
17ca04af 1252 }
82d5902d 1253
83eea1f1 1254 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1255
1256 if (nolock)
7a7eaa40 1257 trans = btrfs_join_transaction_nolock(root);
82d5902d 1258 else
7a7eaa40 1259 trans = btrfs_join_transaction(root);
ff5714cc 1260
79787eaa 1261 if (IS_ERR(trans)) {
c2790a2e
JB
1262 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1263 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1264 EXTENT_DO_ACCOUNTING |
1265 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1266 PAGE_CLEAR_DIRTY |
1267 PAGE_SET_WRITEBACK |
1268 PAGE_END_WRITEBACK);
79787eaa
JM
1269 btrfs_free_path(path);
1270 return PTR_ERR(trans);
1271 }
1272
74b21075 1273 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1274
80ff3856
YZ
1275 cow_start = (u64)-1;
1276 cur_offset = start;
1277 while (1) {
33345d01 1278 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1279 cur_offset, 0);
d788a349 1280 if (ret < 0)
79787eaa 1281 goto error;
80ff3856
YZ
1282 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1283 leaf = path->nodes[0];
1284 btrfs_item_key_to_cpu(leaf, &found_key,
1285 path->slots[0] - 1);
33345d01 1286 if (found_key.objectid == ino &&
80ff3856
YZ
1287 found_key.type == BTRFS_EXTENT_DATA_KEY)
1288 path->slots[0]--;
1289 }
1290 check_prev = 0;
1291next_slot:
1292 leaf = path->nodes[0];
1293 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1294 ret = btrfs_next_leaf(root, path);
d788a349 1295 if (ret < 0)
79787eaa 1296 goto error;
80ff3856
YZ
1297 if (ret > 0)
1298 break;
1299 leaf = path->nodes[0];
1300 }
be20aa9d 1301
80ff3856
YZ
1302 nocow = 0;
1303 disk_bytenr = 0;
17d217fe 1304 num_bytes = 0;
80ff3856
YZ
1305 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1306
33345d01 1307 if (found_key.objectid > ino ||
80ff3856
YZ
1308 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1309 found_key.offset > end)
1310 break;
1311
1312 if (found_key.offset > cur_offset) {
1313 extent_end = found_key.offset;
e9061e21 1314 extent_type = 0;
80ff3856
YZ
1315 goto out_check;
1316 }
1317
1318 fi = btrfs_item_ptr(leaf, path->slots[0],
1319 struct btrfs_file_extent_item);
1320 extent_type = btrfs_file_extent_type(leaf, fi);
1321
cc95bef6 1322 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1323 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1324 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1325 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1326 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1327 extent_end = found_key.offset +
1328 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1329 disk_num_bytes =
1330 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1331 if (extent_end <= start) {
1332 path->slots[0]++;
1333 goto next_slot;
1334 }
17d217fe
YZ
1335 if (disk_bytenr == 0)
1336 goto out_check;
80ff3856
YZ
1337 if (btrfs_file_extent_compression(leaf, fi) ||
1338 btrfs_file_extent_encryption(leaf, fi) ||
1339 btrfs_file_extent_other_encoding(leaf, fi))
1340 goto out_check;
d899e052
YZ
1341 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1342 goto out_check;
d2fb3437 1343 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1344 goto out_check;
33345d01 1345 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1346 found_key.offset -
1347 extent_offset, disk_bytenr))
17d217fe 1348 goto out_check;
5d4f98a2 1349 disk_bytenr += extent_offset;
17d217fe
YZ
1350 disk_bytenr += cur_offset - found_key.offset;
1351 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1352 /*
1353 * if there are pending snapshots for this root,
1354 * we fall into common COW way.
1355 */
1356 if (!nolock) {
9ea24bbe 1357 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1358 if (!err)
1359 goto out_check;
1360 }
17d217fe
YZ
1361 /*
1362 * force cow if csum exists in the range.
1363 * this ensure that csum for a given extent are
1364 * either valid or do not exist.
1365 */
1366 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1367 goto out_check;
80ff3856
YZ
1368 nocow = 1;
1369 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1370 extent_end = found_key.offset +
514ac8ad
CM
1371 btrfs_file_extent_inline_len(leaf,
1372 path->slots[0], fi);
80ff3856
YZ
1373 extent_end = ALIGN(extent_end, root->sectorsize);
1374 } else {
1375 BUG_ON(1);
1376 }
1377out_check:
1378 if (extent_end <= start) {
1379 path->slots[0]++;
e9894fd3 1380 if (!nolock && nocow)
9ea24bbe 1381 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1382 goto next_slot;
1383 }
1384 if (!nocow) {
1385 if (cow_start == (u64)-1)
1386 cow_start = cur_offset;
1387 cur_offset = extent_end;
1388 if (cur_offset > end)
1389 break;
1390 path->slots[0]++;
1391 goto next_slot;
7ea394f1
YZ
1392 }
1393
b3b4aa74 1394 btrfs_release_path(path);
80ff3856 1395 if (cow_start != (u64)-1) {
00361589
JB
1396 ret = cow_file_range(inode, locked_page,
1397 cow_start, found_key.offset - 1,
1398 page_started, nr_written, 1);
e9894fd3
WS
1399 if (ret) {
1400 if (!nolock && nocow)
9ea24bbe 1401 btrfs_end_write_no_snapshoting(root);
79787eaa 1402 goto error;
e9894fd3 1403 }
80ff3856 1404 cow_start = (u64)-1;
7ea394f1 1405 }
80ff3856 1406
d899e052
YZ
1407 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1408 struct extent_map *em;
1409 struct extent_map_tree *em_tree;
1410 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1411 em = alloc_extent_map();
79787eaa 1412 BUG_ON(!em); /* -ENOMEM */
d899e052 1413 em->start = cur_offset;
70c8a91c 1414 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1415 em->len = num_bytes;
1416 em->block_len = num_bytes;
1417 em->block_start = disk_bytenr;
b4939680 1418 em->orig_block_len = disk_num_bytes;
cc95bef6 1419 em->ram_bytes = ram_bytes;
d899e052 1420 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1421 em->mod_start = em->start;
1422 em->mod_len = em->len;
d899e052 1423 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1424 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1425 em->generation = -1;
d899e052 1426 while (1) {
890871be 1427 write_lock(&em_tree->lock);
09a2a8f9 1428 ret = add_extent_mapping(em_tree, em, 1);
890871be 1429 write_unlock(&em_tree->lock);
d899e052
YZ
1430 if (ret != -EEXIST) {
1431 free_extent_map(em);
1432 break;
1433 }
1434 btrfs_drop_extent_cache(inode, em->start,
1435 em->start + em->len - 1, 0);
1436 }
1437 type = BTRFS_ORDERED_PREALLOC;
1438 } else {
1439 type = BTRFS_ORDERED_NOCOW;
1440 }
80ff3856
YZ
1441
1442 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1443 num_bytes, num_bytes, type);
79787eaa 1444 BUG_ON(ret); /* -ENOMEM */
771ed689 1445
efa56464
YZ
1446 if (root->root_key.objectid ==
1447 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1448 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1449 num_bytes);
e9894fd3
WS
1450 if (ret) {
1451 if (!nolock && nocow)
9ea24bbe 1452 btrfs_end_write_no_snapshoting(root);
79787eaa 1453 goto error;
e9894fd3 1454 }
efa56464
YZ
1455 }
1456
c2790a2e
JB
1457 extent_clear_unlock_delalloc(inode, cur_offset,
1458 cur_offset + num_bytes - 1,
1459 locked_page, EXTENT_LOCKED |
1460 EXTENT_DELALLOC, PAGE_UNLOCK |
1461 PAGE_SET_PRIVATE2);
e9894fd3 1462 if (!nolock && nocow)
9ea24bbe 1463 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1464 cur_offset = extent_end;
1465 if (cur_offset > end)
1466 break;
be20aa9d 1467 }
b3b4aa74 1468 btrfs_release_path(path);
80ff3856 1469
17ca04af 1470 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1471 cow_start = cur_offset;
17ca04af
JB
1472 cur_offset = end;
1473 }
1474
80ff3856 1475 if (cow_start != (u64)-1) {
00361589
JB
1476 ret = cow_file_range(inode, locked_page, cow_start, end,
1477 page_started, nr_written, 1);
d788a349 1478 if (ret)
79787eaa 1479 goto error;
80ff3856
YZ
1480 }
1481
79787eaa 1482error:
a698d075 1483 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1484 if (!ret)
1485 ret = err;
1486
17ca04af 1487 if (ret && cur_offset < end)
c2790a2e
JB
1488 extent_clear_unlock_delalloc(inode, cur_offset, end,
1489 locked_page, EXTENT_LOCKED |
151a41bc
JB
1490 EXTENT_DELALLOC | EXTENT_DEFRAG |
1491 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1492 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1493 PAGE_SET_WRITEBACK |
1494 PAGE_END_WRITEBACK);
7ea394f1 1495 btrfs_free_path(path);
79787eaa 1496 return ret;
be20aa9d
CM
1497}
1498
47059d93
WS
1499static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1500{
1501
1502 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1503 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1504 return 0;
1505
1506 /*
1507 * @defrag_bytes is a hint value, no spinlock held here,
1508 * if is not zero, it means the file is defragging.
1509 * Force cow if given extent needs to be defragged.
1510 */
1511 if (BTRFS_I(inode)->defrag_bytes &&
1512 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1513 EXTENT_DEFRAG, 0, NULL))
1514 return 1;
1515
1516 return 0;
1517}
1518
d352ac68
CM
1519/*
1520 * extent_io.c call back to do delayed allocation processing
1521 */
c8b97818 1522static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1523 u64 start, u64 end, int *page_started,
1524 unsigned long *nr_written)
be20aa9d 1525{
be20aa9d 1526 int ret;
47059d93 1527 int force_cow = need_force_cow(inode, start, end);
a2135011 1528
47059d93 1529 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1530 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1531 page_started, 1, nr_written);
47059d93 1532 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1533 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1534 page_started, 0, nr_written);
7816030e 1535 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1536 ret = cow_file_range(inode, locked_page, start, end,
1537 page_started, nr_written, 1);
7ddf5a42
JB
1538 } else {
1539 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1540 &BTRFS_I(inode)->runtime_flags);
771ed689 1541 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1542 page_started, nr_written);
7ddf5a42 1543 }
b888db2b
CM
1544 return ret;
1545}
1546
1bf85046
JM
1547static void btrfs_split_extent_hook(struct inode *inode,
1548 struct extent_state *orig, u64 split)
9ed74f2d 1549{
dcab6a3b
JB
1550 u64 size;
1551
0ca1f7ce 1552 /* not delalloc, ignore it */
9ed74f2d 1553 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1554 return;
9ed74f2d 1555
dcab6a3b
JB
1556 size = orig->end - orig->start + 1;
1557 if (size > BTRFS_MAX_EXTENT_SIZE) {
1558 u64 num_extents;
1559 u64 new_size;
1560
1561 /*
ba117213
JB
1562 * See the explanation in btrfs_merge_extent_hook, the same
1563 * applies here, just in reverse.
dcab6a3b
JB
1564 */
1565 new_size = orig->end - split + 1;
ba117213 1566 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1567 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1568 new_size = split - orig->start;
1569 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1570 BTRFS_MAX_EXTENT_SIZE);
1571 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1572 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1573 return;
1574 }
1575
9e0baf60
JB
1576 spin_lock(&BTRFS_I(inode)->lock);
1577 BTRFS_I(inode)->outstanding_extents++;
1578 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1579}
1580
1581/*
1582 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1583 * extents so we can keep track of new extents that are just merged onto old
1584 * extents, such as when we are doing sequential writes, so we can properly
1585 * account for the metadata space we'll need.
1586 */
1bf85046
JM
1587static void btrfs_merge_extent_hook(struct inode *inode,
1588 struct extent_state *new,
1589 struct extent_state *other)
9ed74f2d 1590{
dcab6a3b
JB
1591 u64 new_size, old_size;
1592 u64 num_extents;
1593
9ed74f2d
JB
1594 /* not delalloc, ignore it */
1595 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1596 return;
9ed74f2d 1597
8461a3de
JB
1598 if (new->start > other->start)
1599 new_size = new->end - other->start + 1;
1600 else
1601 new_size = other->end - new->start + 1;
dcab6a3b
JB
1602
1603 /* we're not bigger than the max, unreserve the space and go */
1604 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1605 spin_lock(&BTRFS_I(inode)->lock);
1606 BTRFS_I(inode)->outstanding_extents--;
1607 spin_unlock(&BTRFS_I(inode)->lock);
1608 return;
1609 }
1610
1611 /*
ba117213
JB
1612 * We have to add up either side to figure out how many extents were
1613 * accounted for before we merged into one big extent. If the number of
1614 * extents we accounted for is <= the amount we need for the new range
1615 * then we can return, otherwise drop. Think of it like this
1616 *
1617 * [ 4k][MAX_SIZE]
1618 *
1619 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1620 * need 2 outstanding extents, on one side we have 1 and the other side
1621 * we have 1 so they are == and we can return. But in this case
1622 *
1623 * [MAX_SIZE+4k][MAX_SIZE+4k]
1624 *
1625 * Each range on their own accounts for 2 extents, but merged together
1626 * they are only 3 extents worth of accounting, so we need to drop in
1627 * this case.
dcab6a3b 1628 */
ba117213 1629 old_size = other->end - other->start + 1;
dcab6a3b
JB
1630 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1631 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1632 old_size = new->end - new->start + 1;
1633 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1634 BTRFS_MAX_EXTENT_SIZE);
1635
dcab6a3b 1636 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1637 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1638 return;
1639
9e0baf60
JB
1640 spin_lock(&BTRFS_I(inode)->lock);
1641 BTRFS_I(inode)->outstanding_extents--;
1642 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1643}
1644
eb73c1b7
MX
1645static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1646 struct inode *inode)
1647{
1648 spin_lock(&root->delalloc_lock);
1649 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1650 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1651 &root->delalloc_inodes);
1652 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1653 &BTRFS_I(inode)->runtime_flags);
1654 root->nr_delalloc_inodes++;
1655 if (root->nr_delalloc_inodes == 1) {
1656 spin_lock(&root->fs_info->delalloc_root_lock);
1657 BUG_ON(!list_empty(&root->delalloc_root));
1658 list_add_tail(&root->delalloc_root,
1659 &root->fs_info->delalloc_roots);
1660 spin_unlock(&root->fs_info->delalloc_root_lock);
1661 }
1662 }
1663 spin_unlock(&root->delalloc_lock);
1664}
1665
1666static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1667 struct inode *inode)
1668{
1669 spin_lock(&root->delalloc_lock);
1670 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1671 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1672 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1673 &BTRFS_I(inode)->runtime_flags);
1674 root->nr_delalloc_inodes--;
1675 if (!root->nr_delalloc_inodes) {
1676 spin_lock(&root->fs_info->delalloc_root_lock);
1677 BUG_ON(list_empty(&root->delalloc_root));
1678 list_del_init(&root->delalloc_root);
1679 spin_unlock(&root->fs_info->delalloc_root_lock);
1680 }
1681 }
1682 spin_unlock(&root->delalloc_lock);
1683}
1684
d352ac68
CM
1685/*
1686 * extent_io.c set_bit_hook, used to track delayed allocation
1687 * bytes in this file, and to maintain the list of inodes that
1688 * have pending delalloc work to be done.
1689 */
1bf85046 1690static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1691 struct extent_state *state, unsigned *bits)
291d673e 1692{
9ed74f2d 1693
47059d93
WS
1694 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1695 WARN_ON(1);
75eff68e
CM
1696 /*
1697 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1698 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1699 * bit, which is only set or cleared with irqs on
1700 */
0ca1f7ce 1701 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1702 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1703 u64 len = state->end + 1 - state->start;
83eea1f1 1704 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1705
9e0baf60 1706 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1707 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1708 } else {
1709 spin_lock(&BTRFS_I(inode)->lock);
1710 BTRFS_I(inode)->outstanding_extents++;
1711 spin_unlock(&BTRFS_I(inode)->lock);
1712 }
287a0ab9 1713
6a3891c5
JB
1714 /* For sanity tests */
1715 if (btrfs_test_is_dummy_root(root))
1716 return;
1717
963d678b
MX
1718 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1719 root->fs_info->delalloc_batch);
df0af1a5 1720 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1721 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1722 if (*bits & EXTENT_DEFRAG)
1723 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1724 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1725 &BTRFS_I(inode)->runtime_flags))
1726 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1727 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1728 }
291d673e
CM
1729}
1730
d352ac68
CM
1731/*
1732 * extent_io.c clear_bit_hook, see set_bit_hook for why
1733 */
1bf85046 1734static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1735 struct extent_state *state,
9ee49a04 1736 unsigned *bits)
291d673e 1737{
47059d93 1738 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1739 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1740 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1741
1742 spin_lock(&BTRFS_I(inode)->lock);
1743 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1744 BTRFS_I(inode)->defrag_bytes -= len;
1745 spin_unlock(&BTRFS_I(inode)->lock);
1746
75eff68e
CM
1747 /*
1748 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1749 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1750 * bit, which is only set or cleared with irqs on
1751 */
0ca1f7ce 1752 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1753 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1754 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1755
9e0baf60 1756 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1757 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1758 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1759 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1760 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1761 spin_unlock(&BTRFS_I(inode)->lock);
1762 }
0ca1f7ce 1763
b6d08f06
JB
1764 /*
1765 * We don't reserve metadata space for space cache inodes so we
1766 * don't need to call dellalloc_release_metadata if there is an
1767 * error.
1768 */
1769 if (*bits & EXTENT_DO_ACCOUNTING &&
1770 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1771 btrfs_delalloc_release_metadata(inode, len);
1772
6a3891c5
JB
1773 /* For sanity tests. */
1774 if (btrfs_test_is_dummy_root(root))
1775 return;
1776
0cb59c99 1777 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1778 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1779 btrfs_free_reserved_data_space_noquota(inode,
1780 state->start, len);
9ed74f2d 1781
963d678b
MX
1782 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1783 root->fs_info->delalloc_batch);
df0af1a5 1784 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1785 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1786 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1787 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1788 &BTRFS_I(inode)->runtime_flags))
1789 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1790 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1791 }
291d673e
CM
1792}
1793
d352ac68
CM
1794/*
1795 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1796 * we don't create bios that span stripes or chunks
1797 */
64a16701 1798int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1799 size_t size, struct bio *bio,
1800 unsigned long bio_flags)
239b14b3
CM
1801{
1802 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1803 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1804 u64 length = 0;
1805 u64 map_length;
239b14b3
CM
1806 int ret;
1807
771ed689
CM
1808 if (bio_flags & EXTENT_BIO_COMPRESSED)
1809 return 0;
1810
4f024f37 1811 length = bio->bi_iter.bi_size;
239b14b3 1812 map_length = length;
64a16701 1813 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1814 &map_length, NULL, 0);
3ec706c8 1815 /* Will always return 0 with map_multi == NULL */
3444a972 1816 BUG_ON(ret < 0);
d397712b 1817 if (map_length < length + size)
239b14b3 1818 return 1;
3444a972 1819 return 0;
239b14b3
CM
1820}
1821
d352ac68
CM
1822/*
1823 * in order to insert checksums into the metadata in large chunks,
1824 * we wait until bio submission time. All the pages in the bio are
1825 * checksummed and sums are attached onto the ordered extent record.
1826 *
1827 * At IO completion time the cums attached on the ordered extent record
1828 * are inserted into the btree
1829 */
d397712b
CM
1830static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1831 struct bio *bio, int mirror_num,
eaf25d93
CM
1832 unsigned long bio_flags,
1833 u64 bio_offset)
065631f6 1834{
065631f6 1835 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1836 int ret = 0;
e015640f 1837
d20f7043 1838 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1839 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1840 return 0;
1841}
e015640f 1842
4a69a410
CM
1843/*
1844 * in order to insert checksums into the metadata in large chunks,
1845 * we wait until bio submission time. All the pages in the bio are
1846 * checksummed and sums are attached onto the ordered extent record.
1847 *
1848 * At IO completion time the cums attached on the ordered extent record
1849 * are inserted into the btree
1850 */
b2950863 1851static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1852 int mirror_num, unsigned long bio_flags,
1853 u64 bio_offset)
4a69a410
CM
1854{
1855 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1856 int ret;
1857
1858 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1859 if (ret) {
1860 bio->bi_error = ret;
1861 bio_endio(bio);
1862 }
61891923 1863 return ret;
44b8bd7e
CM
1864}
1865
d352ac68 1866/*
cad321ad
CM
1867 * extent_io.c submission hook. This does the right thing for csum calculation
1868 * on write, or reading the csums from the tree before a read
d352ac68 1869 */
b2950863 1870static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1871 int mirror_num, unsigned long bio_flags,
1872 u64 bio_offset)
44b8bd7e
CM
1873{
1874 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1875 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1876 int ret = 0;
19b9bdb0 1877 int skip_sum;
b812ce28 1878 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1879
6cbff00f 1880 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1881
83eea1f1 1882 if (btrfs_is_free_space_inode(inode))
0d51e28a 1883 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1884
7b6d91da 1885 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1886 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1887 if (ret)
61891923 1888 goto out;
5fd02043 1889
d20f7043 1890 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1891 ret = btrfs_submit_compressed_read(inode, bio,
1892 mirror_num,
1893 bio_flags);
1894 goto out;
c2db1073
TI
1895 } else if (!skip_sum) {
1896 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1897 if (ret)
61891923 1898 goto out;
c2db1073 1899 }
4d1b5fb4 1900 goto mapit;
b812ce28 1901 } else if (async && !skip_sum) {
17d217fe
YZ
1902 /* csum items have already been cloned */
1903 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1904 goto mapit;
19b9bdb0 1905 /* we're doing a write, do the async checksumming */
61891923 1906 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1907 inode, rw, bio, mirror_num,
eaf25d93
CM
1908 bio_flags, bio_offset,
1909 __btrfs_submit_bio_start,
4a69a410 1910 __btrfs_submit_bio_done);
61891923 1911 goto out;
b812ce28
JB
1912 } else if (!skip_sum) {
1913 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1914 if (ret)
1915 goto out;
19b9bdb0
CM
1916 }
1917
0b86a832 1918mapit:
61891923
SB
1919 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1920
1921out:
4246a0b6
CH
1922 if (ret < 0) {
1923 bio->bi_error = ret;
1924 bio_endio(bio);
1925 }
61891923 1926 return ret;
065631f6 1927}
6885f308 1928
d352ac68
CM
1929/*
1930 * given a list of ordered sums record them in the inode. This happens
1931 * at IO completion time based on sums calculated at bio submission time.
1932 */
ba1da2f4 1933static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1934 struct inode *inode, u64 file_offset,
1935 struct list_head *list)
1936{
e6dcd2dc
CM
1937 struct btrfs_ordered_sum *sum;
1938
c6e30871 1939 list_for_each_entry(sum, list, list) {
39847c4d 1940 trans->adding_csums = 1;
d20f7043
CM
1941 btrfs_csum_file_blocks(trans,
1942 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1943 trans->adding_csums = 0;
e6dcd2dc
CM
1944 }
1945 return 0;
1946}
1947
2ac55d41
JB
1948int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1949 struct extent_state **cached_state)
ea8c2819 1950{
6c1500f2 1951 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1952 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1953 cached_state, GFP_NOFS);
ea8c2819
CM
1954}
1955
d352ac68 1956/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1957struct btrfs_writepage_fixup {
1958 struct page *page;
1959 struct btrfs_work work;
1960};
1961
b2950863 1962static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1963{
1964 struct btrfs_writepage_fixup *fixup;
1965 struct btrfs_ordered_extent *ordered;
2ac55d41 1966 struct extent_state *cached_state = NULL;
247e743c
CM
1967 struct page *page;
1968 struct inode *inode;
1969 u64 page_start;
1970 u64 page_end;
87826df0 1971 int ret;
247e743c
CM
1972
1973 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1974 page = fixup->page;
4a096752 1975again:
247e743c
CM
1976 lock_page(page);
1977 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1978 ClearPageChecked(page);
1979 goto out_page;
1980 }
1981
1982 inode = page->mapping->host;
1983 page_start = page_offset(page);
1984 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1985
2ac55d41 1986 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1987 &cached_state);
4a096752
CM
1988
1989 /* already ordered? We're done */
8b62b72b 1990 if (PagePrivate2(page))
247e743c 1991 goto out;
4a096752
CM
1992
1993 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1994 if (ordered) {
2ac55d41
JB
1995 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1996 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1997 unlock_page(page);
1998 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1999 btrfs_put_ordered_extent(ordered);
4a096752
CM
2000 goto again;
2001 }
247e743c 2002
7cf5b976
QW
2003 ret = btrfs_delalloc_reserve_space(inode, page_start,
2004 PAGE_CACHE_SIZE);
87826df0
JM
2005 if (ret) {
2006 mapping_set_error(page->mapping, ret);
2007 end_extent_writepage(page, ret, page_start, page_end);
2008 ClearPageChecked(page);
2009 goto out;
2010 }
2011
2ac55d41 2012 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2013 ClearPageChecked(page);
87826df0 2014 set_page_dirty(page);
247e743c 2015out:
2ac55d41
JB
2016 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2017 &cached_state, GFP_NOFS);
247e743c
CM
2018out_page:
2019 unlock_page(page);
2020 page_cache_release(page);
b897abec 2021 kfree(fixup);
247e743c
CM
2022}
2023
2024/*
2025 * There are a few paths in the higher layers of the kernel that directly
2026 * set the page dirty bit without asking the filesystem if it is a
2027 * good idea. This causes problems because we want to make sure COW
2028 * properly happens and the data=ordered rules are followed.
2029 *
c8b97818 2030 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2031 * hasn't been properly setup for IO. We kick off an async process
2032 * to fix it up. The async helper will wait for ordered extents, set
2033 * the delalloc bit and make it safe to write the page.
2034 */
b2950863 2035static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2036{
2037 struct inode *inode = page->mapping->host;
2038 struct btrfs_writepage_fixup *fixup;
2039 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2040
8b62b72b
CM
2041 /* this page is properly in the ordered list */
2042 if (TestClearPagePrivate2(page))
247e743c
CM
2043 return 0;
2044
2045 if (PageChecked(page))
2046 return -EAGAIN;
2047
2048 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2049 if (!fixup)
2050 return -EAGAIN;
f421950f 2051
247e743c
CM
2052 SetPageChecked(page);
2053 page_cache_get(page);
9e0af237
LB
2054 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2055 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2056 fixup->page = page;
dc6e3209 2057 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2058 return -EBUSY;
247e743c
CM
2059}
2060
d899e052
YZ
2061static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2062 struct inode *inode, u64 file_pos,
2063 u64 disk_bytenr, u64 disk_num_bytes,
2064 u64 num_bytes, u64 ram_bytes,
2065 u8 compression, u8 encryption,
2066 u16 other_encoding, int extent_type)
2067{
2068 struct btrfs_root *root = BTRFS_I(inode)->root;
2069 struct btrfs_file_extent_item *fi;
2070 struct btrfs_path *path;
2071 struct extent_buffer *leaf;
2072 struct btrfs_key ins;
1acae57b 2073 int extent_inserted = 0;
d899e052
YZ
2074 int ret;
2075
2076 path = btrfs_alloc_path();
d8926bb3
MF
2077 if (!path)
2078 return -ENOMEM;
d899e052 2079
a1ed835e
CM
2080 /*
2081 * we may be replacing one extent in the tree with another.
2082 * The new extent is pinned in the extent map, and we don't want
2083 * to drop it from the cache until it is completely in the btree.
2084 *
2085 * So, tell btrfs_drop_extents to leave this extent in the cache.
2086 * the caller is expected to unpin it and allow it to be merged
2087 * with the others.
2088 */
1acae57b
FDBM
2089 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2090 file_pos + num_bytes, NULL, 0,
2091 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2092 if (ret)
2093 goto out;
d899e052 2094
1acae57b
FDBM
2095 if (!extent_inserted) {
2096 ins.objectid = btrfs_ino(inode);
2097 ins.offset = file_pos;
2098 ins.type = BTRFS_EXTENT_DATA_KEY;
2099
2100 path->leave_spinning = 1;
2101 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2102 sizeof(*fi));
2103 if (ret)
2104 goto out;
2105 }
d899e052
YZ
2106 leaf = path->nodes[0];
2107 fi = btrfs_item_ptr(leaf, path->slots[0],
2108 struct btrfs_file_extent_item);
2109 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2110 btrfs_set_file_extent_type(leaf, fi, extent_type);
2111 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2112 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2113 btrfs_set_file_extent_offset(leaf, fi, 0);
2114 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2115 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2116 btrfs_set_file_extent_compression(leaf, fi, compression);
2117 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2118 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2119
d899e052 2120 btrfs_mark_buffer_dirty(leaf);
ce195332 2121 btrfs_release_path(path);
d899e052
YZ
2122
2123 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2124
2125 ins.objectid = disk_bytenr;
2126 ins.offset = disk_num_bytes;
2127 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2128 ret = btrfs_alloc_reserved_file_extent(trans, root,
2129 root->root_key.objectid,
5846a3c2
QW
2130 btrfs_ino(inode), file_pos,
2131 ram_bytes, &ins);
297d750b 2132 /*
5846a3c2
QW
2133 * Release the reserved range from inode dirty range map, as it is
2134 * already moved into delayed_ref_head
297d750b
QW
2135 */
2136 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2137out:
d899e052 2138 btrfs_free_path(path);
b9473439 2139
79787eaa 2140 return ret;
d899e052
YZ
2141}
2142
38c227d8
LB
2143/* snapshot-aware defrag */
2144struct sa_defrag_extent_backref {
2145 struct rb_node node;
2146 struct old_sa_defrag_extent *old;
2147 u64 root_id;
2148 u64 inum;
2149 u64 file_pos;
2150 u64 extent_offset;
2151 u64 num_bytes;
2152 u64 generation;
2153};
2154
2155struct old_sa_defrag_extent {
2156 struct list_head list;
2157 struct new_sa_defrag_extent *new;
2158
2159 u64 extent_offset;
2160 u64 bytenr;
2161 u64 offset;
2162 u64 len;
2163 int count;
2164};
2165
2166struct new_sa_defrag_extent {
2167 struct rb_root root;
2168 struct list_head head;
2169 struct btrfs_path *path;
2170 struct inode *inode;
2171 u64 file_pos;
2172 u64 len;
2173 u64 bytenr;
2174 u64 disk_len;
2175 u8 compress_type;
2176};
2177
2178static int backref_comp(struct sa_defrag_extent_backref *b1,
2179 struct sa_defrag_extent_backref *b2)
2180{
2181 if (b1->root_id < b2->root_id)
2182 return -1;
2183 else if (b1->root_id > b2->root_id)
2184 return 1;
2185
2186 if (b1->inum < b2->inum)
2187 return -1;
2188 else if (b1->inum > b2->inum)
2189 return 1;
2190
2191 if (b1->file_pos < b2->file_pos)
2192 return -1;
2193 else if (b1->file_pos > b2->file_pos)
2194 return 1;
2195
2196 /*
2197 * [------------------------------] ===> (a range of space)
2198 * |<--->| |<---->| =============> (fs/file tree A)
2199 * |<---------------------------->| ===> (fs/file tree B)
2200 *
2201 * A range of space can refer to two file extents in one tree while
2202 * refer to only one file extent in another tree.
2203 *
2204 * So we may process a disk offset more than one time(two extents in A)
2205 * and locate at the same extent(one extent in B), then insert two same
2206 * backrefs(both refer to the extent in B).
2207 */
2208 return 0;
2209}
2210
2211static void backref_insert(struct rb_root *root,
2212 struct sa_defrag_extent_backref *backref)
2213{
2214 struct rb_node **p = &root->rb_node;
2215 struct rb_node *parent = NULL;
2216 struct sa_defrag_extent_backref *entry;
2217 int ret;
2218
2219 while (*p) {
2220 parent = *p;
2221 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2222
2223 ret = backref_comp(backref, entry);
2224 if (ret < 0)
2225 p = &(*p)->rb_left;
2226 else
2227 p = &(*p)->rb_right;
2228 }
2229
2230 rb_link_node(&backref->node, parent, p);
2231 rb_insert_color(&backref->node, root);
2232}
2233
2234/*
2235 * Note the backref might has changed, and in this case we just return 0.
2236 */
2237static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2238 void *ctx)
2239{
2240 struct btrfs_file_extent_item *extent;
2241 struct btrfs_fs_info *fs_info;
2242 struct old_sa_defrag_extent *old = ctx;
2243 struct new_sa_defrag_extent *new = old->new;
2244 struct btrfs_path *path = new->path;
2245 struct btrfs_key key;
2246 struct btrfs_root *root;
2247 struct sa_defrag_extent_backref *backref;
2248 struct extent_buffer *leaf;
2249 struct inode *inode = new->inode;
2250 int slot;
2251 int ret;
2252 u64 extent_offset;
2253 u64 num_bytes;
2254
2255 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2256 inum == btrfs_ino(inode))
2257 return 0;
2258
2259 key.objectid = root_id;
2260 key.type = BTRFS_ROOT_ITEM_KEY;
2261 key.offset = (u64)-1;
2262
2263 fs_info = BTRFS_I(inode)->root->fs_info;
2264 root = btrfs_read_fs_root_no_name(fs_info, &key);
2265 if (IS_ERR(root)) {
2266 if (PTR_ERR(root) == -ENOENT)
2267 return 0;
2268 WARN_ON(1);
2269 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2270 inum, offset, root_id);
2271 return PTR_ERR(root);
2272 }
2273
2274 key.objectid = inum;
2275 key.type = BTRFS_EXTENT_DATA_KEY;
2276 if (offset > (u64)-1 << 32)
2277 key.offset = 0;
2278 else
2279 key.offset = offset;
2280
2281 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2282 if (WARN_ON(ret < 0))
38c227d8 2283 return ret;
50f1319c 2284 ret = 0;
38c227d8
LB
2285
2286 while (1) {
2287 cond_resched();
2288
2289 leaf = path->nodes[0];
2290 slot = path->slots[0];
2291
2292 if (slot >= btrfs_header_nritems(leaf)) {
2293 ret = btrfs_next_leaf(root, path);
2294 if (ret < 0) {
2295 goto out;
2296 } else if (ret > 0) {
2297 ret = 0;
2298 goto out;
2299 }
2300 continue;
2301 }
2302
2303 path->slots[0]++;
2304
2305 btrfs_item_key_to_cpu(leaf, &key, slot);
2306
2307 if (key.objectid > inum)
2308 goto out;
2309
2310 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2311 continue;
2312
2313 extent = btrfs_item_ptr(leaf, slot,
2314 struct btrfs_file_extent_item);
2315
2316 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2317 continue;
2318
e68afa49
LB
2319 /*
2320 * 'offset' refers to the exact key.offset,
2321 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2322 * (key.offset - extent_offset).
2323 */
2324 if (key.offset != offset)
38c227d8
LB
2325 continue;
2326
e68afa49 2327 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2328 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2329
38c227d8
LB
2330 if (extent_offset >= old->extent_offset + old->offset +
2331 old->len || extent_offset + num_bytes <=
2332 old->extent_offset + old->offset)
2333 continue;
38c227d8
LB
2334 break;
2335 }
2336
2337 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2338 if (!backref) {
2339 ret = -ENOENT;
2340 goto out;
2341 }
2342
2343 backref->root_id = root_id;
2344 backref->inum = inum;
e68afa49 2345 backref->file_pos = offset;
38c227d8
LB
2346 backref->num_bytes = num_bytes;
2347 backref->extent_offset = extent_offset;
2348 backref->generation = btrfs_file_extent_generation(leaf, extent);
2349 backref->old = old;
2350 backref_insert(&new->root, backref);
2351 old->count++;
2352out:
2353 btrfs_release_path(path);
2354 WARN_ON(ret);
2355 return ret;
2356}
2357
2358static noinline bool record_extent_backrefs(struct btrfs_path *path,
2359 struct new_sa_defrag_extent *new)
2360{
2361 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2362 struct old_sa_defrag_extent *old, *tmp;
2363 int ret;
2364
2365 new->path = path;
2366
2367 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2368 ret = iterate_inodes_from_logical(old->bytenr +
2369 old->extent_offset, fs_info,
38c227d8
LB
2370 path, record_one_backref,
2371 old);
4724b106
JB
2372 if (ret < 0 && ret != -ENOENT)
2373 return false;
38c227d8
LB
2374
2375 /* no backref to be processed for this extent */
2376 if (!old->count) {
2377 list_del(&old->list);
2378 kfree(old);
2379 }
2380 }
2381
2382 if (list_empty(&new->head))
2383 return false;
2384
2385 return true;
2386}
2387
2388static int relink_is_mergable(struct extent_buffer *leaf,
2389 struct btrfs_file_extent_item *fi,
116e0024 2390 struct new_sa_defrag_extent *new)
38c227d8 2391{
116e0024 2392 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2393 return 0;
2394
2395 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2396 return 0;
2397
116e0024
LB
2398 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2399 return 0;
2400
2401 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2402 btrfs_file_extent_other_encoding(leaf, fi))
2403 return 0;
2404
2405 return 1;
2406}
2407
2408/*
2409 * Note the backref might has changed, and in this case we just return 0.
2410 */
2411static noinline int relink_extent_backref(struct btrfs_path *path,
2412 struct sa_defrag_extent_backref *prev,
2413 struct sa_defrag_extent_backref *backref)
2414{
2415 struct btrfs_file_extent_item *extent;
2416 struct btrfs_file_extent_item *item;
2417 struct btrfs_ordered_extent *ordered;
2418 struct btrfs_trans_handle *trans;
2419 struct btrfs_fs_info *fs_info;
2420 struct btrfs_root *root;
2421 struct btrfs_key key;
2422 struct extent_buffer *leaf;
2423 struct old_sa_defrag_extent *old = backref->old;
2424 struct new_sa_defrag_extent *new = old->new;
2425 struct inode *src_inode = new->inode;
2426 struct inode *inode;
2427 struct extent_state *cached = NULL;
2428 int ret = 0;
2429 u64 start;
2430 u64 len;
2431 u64 lock_start;
2432 u64 lock_end;
2433 bool merge = false;
2434 int index;
2435
2436 if (prev && prev->root_id == backref->root_id &&
2437 prev->inum == backref->inum &&
2438 prev->file_pos + prev->num_bytes == backref->file_pos)
2439 merge = true;
2440
2441 /* step 1: get root */
2442 key.objectid = backref->root_id;
2443 key.type = BTRFS_ROOT_ITEM_KEY;
2444 key.offset = (u64)-1;
2445
2446 fs_info = BTRFS_I(src_inode)->root->fs_info;
2447 index = srcu_read_lock(&fs_info->subvol_srcu);
2448
2449 root = btrfs_read_fs_root_no_name(fs_info, &key);
2450 if (IS_ERR(root)) {
2451 srcu_read_unlock(&fs_info->subvol_srcu, index);
2452 if (PTR_ERR(root) == -ENOENT)
2453 return 0;
2454 return PTR_ERR(root);
2455 }
38c227d8 2456
bcbba5e6
WS
2457 if (btrfs_root_readonly(root)) {
2458 srcu_read_unlock(&fs_info->subvol_srcu, index);
2459 return 0;
2460 }
2461
38c227d8
LB
2462 /* step 2: get inode */
2463 key.objectid = backref->inum;
2464 key.type = BTRFS_INODE_ITEM_KEY;
2465 key.offset = 0;
2466
2467 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2468 if (IS_ERR(inode)) {
2469 srcu_read_unlock(&fs_info->subvol_srcu, index);
2470 return 0;
2471 }
2472
2473 srcu_read_unlock(&fs_info->subvol_srcu, index);
2474
2475 /* step 3: relink backref */
2476 lock_start = backref->file_pos;
2477 lock_end = backref->file_pos + backref->num_bytes - 1;
2478 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2479 0, &cached);
2480
2481 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2482 if (ordered) {
2483 btrfs_put_ordered_extent(ordered);
2484 goto out_unlock;
2485 }
2486
2487 trans = btrfs_join_transaction(root);
2488 if (IS_ERR(trans)) {
2489 ret = PTR_ERR(trans);
2490 goto out_unlock;
2491 }
2492
2493 key.objectid = backref->inum;
2494 key.type = BTRFS_EXTENT_DATA_KEY;
2495 key.offset = backref->file_pos;
2496
2497 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2498 if (ret < 0) {
2499 goto out_free_path;
2500 } else if (ret > 0) {
2501 ret = 0;
2502 goto out_free_path;
2503 }
2504
2505 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2506 struct btrfs_file_extent_item);
2507
2508 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2509 backref->generation)
2510 goto out_free_path;
2511
2512 btrfs_release_path(path);
2513
2514 start = backref->file_pos;
2515 if (backref->extent_offset < old->extent_offset + old->offset)
2516 start += old->extent_offset + old->offset -
2517 backref->extent_offset;
2518
2519 len = min(backref->extent_offset + backref->num_bytes,
2520 old->extent_offset + old->offset + old->len);
2521 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2522
2523 ret = btrfs_drop_extents(trans, root, inode, start,
2524 start + len, 1);
2525 if (ret)
2526 goto out_free_path;
2527again:
2528 key.objectid = btrfs_ino(inode);
2529 key.type = BTRFS_EXTENT_DATA_KEY;
2530 key.offset = start;
2531
a09a0a70 2532 path->leave_spinning = 1;
38c227d8
LB
2533 if (merge) {
2534 struct btrfs_file_extent_item *fi;
2535 u64 extent_len;
2536 struct btrfs_key found_key;
2537
3c9665df 2538 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2539 if (ret < 0)
2540 goto out_free_path;
2541
2542 path->slots[0]--;
2543 leaf = path->nodes[0];
2544 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2545
2546 fi = btrfs_item_ptr(leaf, path->slots[0],
2547 struct btrfs_file_extent_item);
2548 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2549
116e0024
LB
2550 if (extent_len + found_key.offset == start &&
2551 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2552 btrfs_set_file_extent_num_bytes(leaf, fi,
2553 extent_len + len);
2554 btrfs_mark_buffer_dirty(leaf);
2555 inode_add_bytes(inode, len);
2556
2557 ret = 1;
2558 goto out_free_path;
2559 } else {
2560 merge = false;
2561 btrfs_release_path(path);
2562 goto again;
2563 }
2564 }
2565
2566 ret = btrfs_insert_empty_item(trans, root, path, &key,
2567 sizeof(*extent));
2568 if (ret) {
2569 btrfs_abort_transaction(trans, root, ret);
2570 goto out_free_path;
2571 }
2572
2573 leaf = path->nodes[0];
2574 item = btrfs_item_ptr(leaf, path->slots[0],
2575 struct btrfs_file_extent_item);
2576 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2577 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2578 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2579 btrfs_set_file_extent_num_bytes(leaf, item, len);
2580 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2581 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2582 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2583 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2584 btrfs_set_file_extent_encryption(leaf, item, 0);
2585 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2586
2587 btrfs_mark_buffer_dirty(leaf);
2588 inode_add_bytes(inode, len);
a09a0a70 2589 btrfs_release_path(path);
38c227d8
LB
2590
2591 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2592 new->disk_len, 0,
2593 backref->root_id, backref->inum,
b06c4bf5 2594 new->file_pos); /* start - extent_offset */
38c227d8
LB
2595 if (ret) {
2596 btrfs_abort_transaction(trans, root, ret);
2597 goto out_free_path;
2598 }
2599
2600 ret = 1;
2601out_free_path:
2602 btrfs_release_path(path);
a09a0a70 2603 path->leave_spinning = 0;
38c227d8
LB
2604 btrfs_end_transaction(trans, root);
2605out_unlock:
2606 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2607 &cached, GFP_NOFS);
2608 iput(inode);
2609 return ret;
2610}
2611
6f519564
LB
2612static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2613{
2614 struct old_sa_defrag_extent *old, *tmp;
2615
2616 if (!new)
2617 return;
2618
2619 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2620 kfree(old);
2621 }
2622 kfree(new);
2623}
2624
38c227d8
LB
2625static void relink_file_extents(struct new_sa_defrag_extent *new)
2626{
2627 struct btrfs_path *path;
38c227d8
LB
2628 struct sa_defrag_extent_backref *backref;
2629 struct sa_defrag_extent_backref *prev = NULL;
2630 struct inode *inode;
2631 struct btrfs_root *root;
2632 struct rb_node *node;
2633 int ret;
2634
2635 inode = new->inode;
2636 root = BTRFS_I(inode)->root;
2637
2638 path = btrfs_alloc_path();
2639 if (!path)
2640 return;
2641
2642 if (!record_extent_backrefs(path, new)) {
2643 btrfs_free_path(path);
2644 goto out;
2645 }
2646 btrfs_release_path(path);
2647
2648 while (1) {
2649 node = rb_first(&new->root);
2650 if (!node)
2651 break;
2652 rb_erase(node, &new->root);
2653
2654 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2655
2656 ret = relink_extent_backref(path, prev, backref);
2657 WARN_ON(ret < 0);
2658
2659 kfree(prev);
2660
2661 if (ret == 1)
2662 prev = backref;
2663 else
2664 prev = NULL;
2665 cond_resched();
2666 }
2667 kfree(prev);
2668
2669 btrfs_free_path(path);
38c227d8 2670out:
6f519564
LB
2671 free_sa_defrag_extent(new);
2672
38c227d8
LB
2673 atomic_dec(&root->fs_info->defrag_running);
2674 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2675}
2676
2677static struct new_sa_defrag_extent *
2678record_old_file_extents(struct inode *inode,
2679 struct btrfs_ordered_extent *ordered)
2680{
2681 struct btrfs_root *root = BTRFS_I(inode)->root;
2682 struct btrfs_path *path;
2683 struct btrfs_key key;
6f519564 2684 struct old_sa_defrag_extent *old;
38c227d8
LB
2685 struct new_sa_defrag_extent *new;
2686 int ret;
2687
2688 new = kmalloc(sizeof(*new), GFP_NOFS);
2689 if (!new)
2690 return NULL;
2691
2692 new->inode = inode;
2693 new->file_pos = ordered->file_offset;
2694 new->len = ordered->len;
2695 new->bytenr = ordered->start;
2696 new->disk_len = ordered->disk_len;
2697 new->compress_type = ordered->compress_type;
2698 new->root = RB_ROOT;
2699 INIT_LIST_HEAD(&new->head);
2700
2701 path = btrfs_alloc_path();
2702 if (!path)
2703 goto out_kfree;
2704
2705 key.objectid = btrfs_ino(inode);
2706 key.type = BTRFS_EXTENT_DATA_KEY;
2707 key.offset = new->file_pos;
2708
2709 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2710 if (ret < 0)
2711 goto out_free_path;
2712 if (ret > 0 && path->slots[0] > 0)
2713 path->slots[0]--;
2714
2715 /* find out all the old extents for the file range */
2716 while (1) {
2717 struct btrfs_file_extent_item *extent;
2718 struct extent_buffer *l;
2719 int slot;
2720 u64 num_bytes;
2721 u64 offset;
2722 u64 end;
2723 u64 disk_bytenr;
2724 u64 extent_offset;
2725
2726 l = path->nodes[0];
2727 slot = path->slots[0];
2728
2729 if (slot >= btrfs_header_nritems(l)) {
2730 ret = btrfs_next_leaf(root, path);
2731 if (ret < 0)
6f519564 2732 goto out_free_path;
38c227d8
LB
2733 else if (ret > 0)
2734 break;
2735 continue;
2736 }
2737
2738 btrfs_item_key_to_cpu(l, &key, slot);
2739
2740 if (key.objectid != btrfs_ino(inode))
2741 break;
2742 if (key.type != BTRFS_EXTENT_DATA_KEY)
2743 break;
2744 if (key.offset >= new->file_pos + new->len)
2745 break;
2746
2747 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2748
2749 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2750 if (key.offset + num_bytes < new->file_pos)
2751 goto next;
2752
2753 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2754 if (!disk_bytenr)
2755 goto next;
2756
2757 extent_offset = btrfs_file_extent_offset(l, extent);
2758
2759 old = kmalloc(sizeof(*old), GFP_NOFS);
2760 if (!old)
6f519564 2761 goto out_free_path;
38c227d8
LB
2762
2763 offset = max(new->file_pos, key.offset);
2764 end = min(new->file_pos + new->len, key.offset + num_bytes);
2765
2766 old->bytenr = disk_bytenr;
2767 old->extent_offset = extent_offset;
2768 old->offset = offset - key.offset;
2769 old->len = end - offset;
2770 old->new = new;
2771 old->count = 0;
2772 list_add_tail(&old->list, &new->head);
2773next:
2774 path->slots[0]++;
2775 cond_resched();
2776 }
2777
2778 btrfs_free_path(path);
2779 atomic_inc(&root->fs_info->defrag_running);
2780
2781 return new;
2782
38c227d8
LB
2783out_free_path:
2784 btrfs_free_path(path);
2785out_kfree:
6f519564 2786 free_sa_defrag_extent(new);
38c227d8
LB
2787 return NULL;
2788}
2789
e570fd27
MX
2790static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2791 u64 start, u64 len)
2792{
2793 struct btrfs_block_group_cache *cache;
2794
2795 cache = btrfs_lookup_block_group(root->fs_info, start);
2796 ASSERT(cache);
2797
2798 spin_lock(&cache->lock);
2799 cache->delalloc_bytes -= len;
2800 spin_unlock(&cache->lock);
2801
2802 btrfs_put_block_group(cache);
2803}
2804
d352ac68
CM
2805/* as ordered data IO finishes, this gets called so we can finish
2806 * an ordered extent if the range of bytes in the file it covers are
2807 * fully written.
2808 */
5fd02043 2809static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2810{
5fd02043 2811 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2812 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2813 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2814 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2815 struct extent_state *cached_state = NULL;
38c227d8 2816 struct new_sa_defrag_extent *new = NULL;
261507a0 2817 int compress_type = 0;
77cef2ec
JB
2818 int ret = 0;
2819 u64 logical_len = ordered_extent->len;
82d5902d 2820 bool nolock;
77cef2ec 2821 bool truncated = false;
e6dcd2dc 2822
83eea1f1 2823 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2824
5fd02043
JB
2825 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2826 ret = -EIO;
2827 goto out;
2828 }
2829
f612496b
MX
2830 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2831 ordered_extent->file_offset +
2832 ordered_extent->len - 1);
2833
77cef2ec
JB
2834 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2835 truncated = true;
2836 logical_len = ordered_extent->truncated_len;
2837 /* Truncated the entire extent, don't bother adding */
2838 if (!logical_len)
2839 goto out;
2840 }
2841
c2167754 2842 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2843 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2844
2845 /*
2846 * For mwrite(mmap + memset to write) case, we still reserve
2847 * space for NOCOW range.
2848 * As NOCOW won't cause a new delayed ref, just free the space
2849 */
2850 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2851 ordered_extent->len);
6c760c07
JB
2852 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2853 if (nolock)
2854 trans = btrfs_join_transaction_nolock(root);
2855 else
2856 trans = btrfs_join_transaction(root);
2857 if (IS_ERR(trans)) {
2858 ret = PTR_ERR(trans);
2859 trans = NULL;
2860 goto out;
c2167754 2861 }
6c760c07
JB
2862 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2863 ret = btrfs_update_inode_fallback(trans, root, inode);
2864 if (ret) /* -ENOMEM or corruption */
2865 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2866 goto out;
2867 }
e6dcd2dc 2868
2ac55d41
JB
2869 lock_extent_bits(io_tree, ordered_extent->file_offset,
2870 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2871 0, &cached_state);
e6dcd2dc 2872
38c227d8
LB
2873 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2874 ordered_extent->file_offset + ordered_extent->len - 1,
2875 EXTENT_DEFRAG, 1, cached_state);
2876 if (ret) {
2877 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2878 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2879 /* the inode is shared */
2880 new = record_old_file_extents(inode, ordered_extent);
2881
2882 clear_extent_bit(io_tree, ordered_extent->file_offset,
2883 ordered_extent->file_offset + ordered_extent->len - 1,
2884 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2885 }
2886
0cb59c99 2887 if (nolock)
7a7eaa40 2888 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2889 else
7a7eaa40 2890 trans = btrfs_join_transaction(root);
79787eaa
JM
2891 if (IS_ERR(trans)) {
2892 ret = PTR_ERR(trans);
2893 trans = NULL;
2894 goto out_unlock;
2895 }
a79b7d4b 2896
0ca1f7ce 2897 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2898
c8b97818 2899 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2900 compress_type = ordered_extent->compress_type;
d899e052 2901 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2902 BUG_ON(compress_type);
920bbbfb 2903 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2904 ordered_extent->file_offset,
2905 ordered_extent->file_offset +
77cef2ec 2906 logical_len);
d899e052 2907 } else {
0af3d00b 2908 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2909 ret = insert_reserved_file_extent(trans, inode,
2910 ordered_extent->file_offset,
2911 ordered_extent->start,
2912 ordered_extent->disk_len,
77cef2ec 2913 logical_len, logical_len,
261507a0 2914 compress_type, 0, 0,
d899e052 2915 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2916 if (!ret)
2917 btrfs_release_delalloc_bytes(root,
2918 ordered_extent->start,
2919 ordered_extent->disk_len);
d899e052 2920 }
5dc562c5
JB
2921 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2922 ordered_extent->file_offset, ordered_extent->len,
2923 trans->transid);
79787eaa
JM
2924 if (ret < 0) {
2925 btrfs_abort_transaction(trans, root, ret);
5fd02043 2926 goto out_unlock;
79787eaa 2927 }
2ac55d41 2928
e6dcd2dc
CM
2929 add_pending_csums(trans, inode, ordered_extent->file_offset,
2930 &ordered_extent->list);
2931
6c760c07
JB
2932 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2933 ret = btrfs_update_inode_fallback(trans, root, inode);
2934 if (ret) { /* -ENOMEM or corruption */
2935 btrfs_abort_transaction(trans, root, ret);
2936 goto out_unlock;
1ef30be1
JB
2937 }
2938 ret = 0;
5fd02043
JB
2939out_unlock:
2940 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2941 ordered_extent->file_offset +
2942 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2943out:
5b0e95bf 2944 if (root != root->fs_info->tree_root)
0cb59c99 2945 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2946 if (trans)
2947 btrfs_end_transaction(trans, root);
0cb59c99 2948
77cef2ec
JB
2949 if (ret || truncated) {
2950 u64 start, end;
2951
2952 if (truncated)
2953 start = ordered_extent->file_offset + logical_len;
2954 else
2955 start = ordered_extent->file_offset;
2956 end = ordered_extent->file_offset + ordered_extent->len - 1;
2957 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2958
2959 /* Drop the cache for the part of the extent we didn't write. */
2960 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2961
0bec9ef5
JB
2962 /*
2963 * If the ordered extent had an IOERR or something else went
2964 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2965 * back to the allocator. We only free the extent in the
2966 * truncated case if we didn't write out the extent at all.
0bec9ef5 2967 */
77cef2ec
JB
2968 if ((ret || !logical_len) &&
2969 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2970 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2971 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2972 ordered_extent->disk_len, 1);
0bec9ef5
JB
2973 }
2974
2975
5fd02043 2976 /*
8bad3c02
LB
2977 * This needs to be done to make sure anybody waiting knows we are done
2978 * updating everything for this ordered extent.
5fd02043
JB
2979 */
2980 btrfs_remove_ordered_extent(inode, ordered_extent);
2981
38c227d8 2982 /* for snapshot-aware defrag */
6f519564
LB
2983 if (new) {
2984 if (ret) {
2985 free_sa_defrag_extent(new);
2986 atomic_dec(&root->fs_info->defrag_running);
2987 } else {
2988 relink_file_extents(new);
2989 }
2990 }
38c227d8 2991
e6dcd2dc
CM
2992 /* once for us */
2993 btrfs_put_ordered_extent(ordered_extent);
2994 /* once for the tree */
2995 btrfs_put_ordered_extent(ordered_extent);
2996
5fd02043
JB
2997 return ret;
2998}
2999
3000static void finish_ordered_fn(struct btrfs_work *work)
3001{
3002 struct btrfs_ordered_extent *ordered_extent;
3003 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3004 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3005}
3006
b2950863 3007static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3008 struct extent_state *state, int uptodate)
3009{
5fd02043
JB
3010 struct inode *inode = page->mapping->host;
3011 struct btrfs_root *root = BTRFS_I(inode)->root;
3012 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3013 struct btrfs_workqueue *wq;
3014 btrfs_work_func_t func;
5fd02043 3015
1abe9b8a 3016 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3017
8b62b72b 3018 ClearPagePrivate2(page);
5fd02043
JB
3019 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3020 end - start + 1, uptodate))
3021 return 0;
3022
9e0af237
LB
3023 if (btrfs_is_free_space_inode(inode)) {
3024 wq = root->fs_info->endio_freespace_worker;
3025 func = btrfs_freespace_write_helper;
3026 } else {
3027 wq = root->fs_info->endio_write_workers;
3028 func = btrfs_endio_write_helper;
3029 }
5fd02043 3030
9e0af237
LB
3031 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3032 NULL);
3033 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3034
3035 return 0;
211f90e6
CM
3036}
3037
dc380aea
MX
3038static int __readpage_endio_check(struct inode *inode,
3039 struct btrfs_io_bio *io_bio,
3040 int icsum, struct page *page,
3041 int pgoff, u64 start, size_t len)
3042{
3043 char *kaddr;
3044 u32 csum_expected;
3045 u32 csum = ~(u32)0;
dc380aea
MX
3046
3047 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3048
3049 kaddr = kmap_atomic(page);
3050 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3051 btrfs_csum_final(csum, (char *)&csum);
3052 if (csum != csum_expected)
3053 goto zeroit;
3054
3055 kunmap_atomic(kaddr);
3056 return 0;
3057zeroit:
94647322
DS
3058 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3059 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3060 btrfs_ino(inode), start, csum, csum_expected);
3061 memset(kaddr + pgoff, 1, len);
3062 flush_dcache_page(page);
3063 kunmap_atomic(kaddr);
3064 if (csum_expected == 0)
3065 return 0;
3066 return -EIO;
3067}
3068
d352ac68
CM
3069/*
3070 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3071 * if there's a match, we allow the bio to finish. If not, the code in
3072 * extent_io.c will try to find good copies for us.
d352ac68 3073 */
facc8a22
MX
3074static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3075 u64 phy_offset, struct page *page,
3076 u64 start, u64 end, int mirror)
07157aac 3077{
4eee4fa4 3078 size_t offset = start - page_offset(page);
07157aac 3079 struct inode *inode = page->mapping->host;
d1310b2e 3080 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3081 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3082
d20f7043
CM
3083 if (PageChecked(page)) {
3084 ClearPageChecked(page);
dc380aea 3085 return 0;
d20f7043 3086 }
6cbff00f
CH
3087
3088 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3089 return 0;
17d217fe
YZ
3090
3091 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3092 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
3093 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3094 GFP_NOFS);
b6cda9bc 3095 return 0;
17d217fe 3096 }
d20f7043 3097
facc8a22 3098 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3099 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3100 start, (size_t)(end - start + 1));
07157aac 3101}
b888db2b 3102
24bbcf04
YZ
3103struct delayed_iput {
3104 struct list_head list;
3105 struct inode *inode;
3106};
3107
79787eaa
JM
3108/* JDM: If this is fs-wide, why can't we add a pointer to
3109 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
3110void btrfs_add_delayed_iput(struct inode *inode)
3111{
3112 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3113 struct delayed_iput *delayed;
3114
3115 if (atomic_add_unless(&inode->i_count, -1, 1))
3116 return;
3117
3118 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3119 delayed->inode = inode;
3120
3121 spin_lock(&fs_info->delayed_iput_lock);
3122 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3123 spin_unlock(&fs_info->delayed_iput_lock);
3124}
3125
3126void btrfs_run_delayed_iputs(struct btrfs_root *root)
3127{
3128 LIST_HEAD(list);
3129 struct btrfs_fs_info *fs_info = root->fs_info;
3130 struct delayed_iput *delayed;
3131 int empty;
3132
3133 spin_lock(&fs_info->delayed_iput_lock);
3134 empty = list_empty(&fs_info->delayed_iputs);
3135 spin_unlock(&fs_info->delayed_iput_lock);
3136 if (empty)
3137 return;
3138
d7c15171
ZL
3139 down_read(&fs_info->delayed_iput_sem);
3140
24bbcf04
YZ
3141 spin_lock(&fs_info->delayed_iput_lock);
3142 list_splice_init(&fs_info->delayed_iputs, &list);
3143 spin_unlock(&fs_info->delayed_iput_lock);
3144
3145 while (!list_empty(&list)) {
3146 delayed = list_entry(list.next, struct delayed_iput, list);
3147 list_del(&delayed->list);
3148 iput(delayed->inode);
3149 kfree(delayed);
3150 }
d7c15171
ZL
3151
3152 up_read(&root->fs_info->delayed_iput_sem);
24bbcf04
YZ
3153}
3154
d68fc57b 3155/*
42b2aa86 3156 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3157 * files in the subvolume, it removes orphan item and frees block_rsv
3158 * structure.
3159 */
3160void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root)
3162{
90290e19 3163 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3164 int ret;
3165
8a35d95f 3166 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3167 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3168 return;
3169
90290e19 3170 spin_lock(&root->orphan_lock);
8a35d95f 3171 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3172 spin_unlock(&root->orphan_lock);
3173 return;
3174 }
3175
3176 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3177 spin_unlock(&root->orphan_lock);
3178 return;
3179 }
3180
3181 block_rsv = root->orphan_block_rsv;
3182 root->orphan_block_rsv = NULL;
3183 spin_unlock(&root->orphan_lock);
3184
27cdeb70 3185 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3186 btrfs_root_refs(&root->root_item) > 0) {
3187 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3188 root->root_key.objectid);
4ef31a45
JB
3189 if (ret)
3190 btrfs_abort_transaction(trans, root, ret);
3191 else
27cdeb70
MX
3192 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3193 &root->state);
d68fc57b
YZ
3194 }
3195
90290e19
JB
3196 if (block_rsv) {
3197 WARN_ON(block_rsv->size > 0);
3198 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3199 }
3200}
3201
7b128766
JB
3202/*
3203 * This creates an orphan entry for the given inode in case something goes
3204 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3205 *
3206 * NOTE: caller of this function should reserve 5 units of metadata for
3207 * this function.
7b128766
JB
3208 */
3209int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3210{
3211 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3212 struct btrfs_block_rsv *block_rsv = NULL;
3213 int reserve = 0;
3214 int insert = 0;
3215 int ret;
7b128766 3216
d68fc57b 3217 if (!root->orphan_block_rsv) {
66d8f3dd 3218 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3219 if (!block_rsv)
3220 return -ENOMEM;
d68fc57b 3221 }
7b128766 3222
d68fc57b
YZ
3223 spin_lock(&root->orphan_lock);
3224 if (!root->orphan_block_rsv) {
3225 root->orphan_block_rsv = block_rsv;
3226 } else if (block_rsv) {
3227 btrfs_free_block_rsv(root, block_rsv);
3228 block_rsv = NULL;
7b128766 3229 }
7b128766 3230
8a35d95f
JB
3231 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3232 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3233#if 0
3234 /*
3235 * For proper ENOSPC handling, we should do orphan
3236 * cleanup when mounting. But this introduces backward
3237 * compatibility issue.
3238 */
3239 if (!xchg(&root->orphan_item_inserted, 1))
3240 insert = 2;
3241 else
3242 insert = 1;
3243#endif
3244 insert = 1;
321f0e70 3245 atomic_inc(&root->orphan_inodes);
7b128766
JB
3246 }
3247
72ac3c0d
JB
3248 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3249 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3250 reserve = 1;
d68fc57b 3251 spin_unlock(&root->orphan_lock);
7b128766 3252
d68fc57b
YZ
3253 /* grab metadata reservation from transaction handle */
3254 if (reserve) {
3255 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3256 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3257 }
7b128766 3258
d68fc57b
YZ
3259 /* insert an orphan item to track this unlinked/truncated file */
3260 if (insert >= 1) {
33345d01 3261 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3262 if (ret) {
703c88e0 3263 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3264 if (reserve) {
3265 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3266 &BTRFS_I(inode)->runtime_flags);
3267 btrfs_orphan_release_metadata(inode);
3268 }
3269 if (ret != -EEXIST) {
e8e7cff6
JB
3270 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3271 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3272 btrfs_abort_transaction(trans, root, ret);
3273 return ret;
3274 }
79787eaa
JM
3275 }
3276 ret = 0;
d68fc57b
YZ
3277 }
3278
3279 /* insert an orphan item to track subvolume contains orphan files */
3280 if (insert >= 2) {
3281 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3282 root->root_key.objectid);
79787eaa
JM
3283 if (ret && ret != -EEXIST) {
3284 btrfs_abort_transaction(trans, root, ret);
3285 return ret;
3286 }
d68fc57b
YZ
3287 }
3288 return 0;
7b128766
JB
3289}
3290
3291/*
3292 * We have done the truncate/delete so we can go ahead and remove the orphan
3293 * item for this particular inode.
3294 */
48a3b636
ES
3295static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3296 struct inode *inode)
7b128766
JB
3297{
3298 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3299 int delete_item = 0;
3300 int release_rsv = 0;
7b128766
JB
3301 int ret = 0;
3302
d68fc57b 3303 spin_lock(&root->orphan_lock);
8a35d95f
JB
3304 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3305 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3306 delete_item = 1;
7b128766 3307
72ac3c0d
JB
3308 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3309 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3310 release_rsv = 1;
d68fc57b 3311 spin_unlock(&root->orphan_lock);
7b128766 3312
703c88e0 3313 if (delete_item) {
8a35d95f 3314 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3315 if (trans)
3316 ret = btrfs_del_orphan_item(trans, root,
3317 btrfs_ino(inode));
8a35d95f 3318 }
7b128766 3319
703c88e0
FDBM
3320 if (release_rsv)
3321 btrfs_orphan_release_metadata(inode);
3322
4ef31a45 3323 return ret;
7b128766
JB
3324}
3325
3326/*
3327 * this cleans up any orphans that may be left on the list from the last use
3328 * of this root.
3329 */
66b4ffd1 3330int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3331{
3332 struct btrfs_path *path;
3333 struct extent_buffer *leaf;
7b128766
JB
3334 struct btrfs_key key, found_key;
3335 struct btrfs_trans_handle *trans;
3336 struct inode *inode;
8f6d7f4f 3337 u64 last_objectid = 0;
7b128766
JB
3338 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3339
d68fc57b 3340 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3341 return 0;
c71bf099
YZ
3342
3343 path = btrfs_alloc_path();
66b4ffd1
JB
3344 if (!path) {
3345 ret = -ENOMEM;
3346 goto out;
3347 }
7b128766
JB
3348 path->reada = -1;
3349
3350 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3351 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3352 key.offset = (u64)-1;
3353
7b128766
JB
3354 while (1) {
3355 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3356 if (ret < 0)
3357 goto out;
7b128766
JB
3358
3359 /*
3360 * if ret == 0 means we found what we were searching for, which
25985edc 3361 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3362 * find the key and see if we have stuff that matches
3363 */
3364 if (ret > 0) {
66b4ffd1 3365 ret = 0;
7b128766
JB
3366 if (path->slots[0] == 0)
3367 break;
3368 path->slots[0]--;
3369 }
3370
3371 /* pull out the item */
3372 leaf = path->nodes[0];
7b128766
JB
3373 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3374
3375 /* make sure the item matches what we want */
3376 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3377 break;
962a298f 3378 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3379 break;
3380
3381 /* release the path since we're done with it */
b3b4aa74 3382 btrfs_release_path(path);
7b128766
JB
3383
3384 /*
3385 * this is where we are basically btrfs_lookup, without the
3386 * crossing root thing. we store the inode number in the
3387 * offset of the orphan item.
3388 */
8f6d7f4f
JB
3389
3390 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3391 btrfs_err(root->fs_info,
3392 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3393 ret = -EINVAL;
3394 goto out;
3395 }
3396
3397 last_objectid = found_key.offset;
3398
5d4f98a2
YZ
3399 found_key.objectid = found_key.offset;
3400 found_key.type = BTRFS_INODE_ITEM_KEY;
3401 found_key.offset = 0;
73f73415 3402 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3403 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3404 if (ret && ret != -ESTALE)
66b4ffd1 3405 goto out;
7b128766 3406
f8e9e0b0
AJ
3407 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3408 struct btrfs_root *dead_root;
3409 struct btrfs_fs_info *fs_info = root->fs_info;
3410 int is_dead_root = 0;
3411
3412 /*
3413 * this is an orphan in the tree root. Currently these
3414 * could come from 2 sources:
3415 * a) a snapshot deletion in progress
3416 * b) a free space cache inode
3417 * We need to distinguish those two, as the snapshot
3418 * orphan must not get deleted.
3419 * find_dead_roots already ran before us, so if this
3420 * is a snapshot deletion, we should find the root
3421 * in the dead_roots list
3422 */
3423 spin_lock(&fs_info->trans_lock);
3424 list_for_each_entry(dead_root, &fs_info->dead_roots,
3425 root_list) {
3426 if (dead_root->root_key.objectid ==
3427 found_key.objectid) {
3428 is_dead_root = 1;
3429 break;
3430 }
3431 }
3432 spin_unlock(&fs_info->trans_lock);
3433 if (is_dead_root) {
3434 /* prevent this orphan from being found again */
3435 key.offset = found_key.objectid - 1;
3436 continue;
3437 }
3438 }
7b128766 3439 /*
a8c9e576
JB
3440 * Inode is already gone but the orphan item is still there,
3441 * kill the orphan item.
7b128766 3442 */
a8c9e576
JB
3443 if (ret == -ESTALE) {
3444 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3445 if (IS_ERR(trans)) {
3446 ret = PTR_ERR(trans);
3447 goto out;
3448 }
c2cf52eb
SK
3449 btrfs_debug(root->fs_info, "auto deleting %Lu",
3450 found_key.objectid);
a8c9e576
JB
3451 ret = btrfs_del_orphan_item(trans, root,
3452 found_key.objectid);
5b21f2ed 3453 btrfs_end_transaction(trans, root);
4ef31a45
JB
3454 if (ret)
3455 goto out;
7b128766
JB
3456 continue;
3457 }
3458
a8c9e576
JB
3459 /*
3460 * add this inode to the orphan list so btrfs_orphan_del does
3461 * the proper thing when we hit it
3462 */
8a35d95f
JB
3463 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3464 &BTRFS_I(inode)->runtime_flags);
925396ec 3465 atomic_inc(&root->orphan_inodes);
a8c9e576 3466
7b128766
JB
3467 /* if we have links, this was a truncate, lets do that */
3468 if (inode->i_nlink) {
fae7f21c 3469 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3470 iput(inode);
3471 continue;
3472 }
7b128766 3473 nr_truncate++;
f3fe820c
JB
3474
3475 /* 1 for the orphan item deletion. */
3476 trans = btrfs_start_transaction(root, 1);
3477 if (IS_ERR(trans)) {
c69b26b0 3478 iput(inode);
f3fe820c
JB
3479 ret = PTR_ERR(trans);
3480 goto out;
3481 }
3482 ret = btrfs_orphan_add(trans, inode);
3483 btrfs_end_transaction(trans, root);
c69b26b0
JB
3484 if (ret) {
3485 iput(inode);
f3fe820c 3486 goto out;
c69b26b0 3487 }
f3fe820c 3488
66b4ffd1 3489 ret = btrfs_truncate(inode);
4a7d0f68
JB
3490 if (ret)
3491 btrfs_orphan_del(NULL, inode);
7b128766
JB
3492 } else {
3493 nr_unlink++;
3494 }
3495
3496 /* this will do delete_inode and everything for us */
3497 iput(inode);
66b4ffd1
JB
3498 if (ret)
3499 goto out;
7b128766 3500 }
3254c876
MX
3501 /* release the path since we're done with it */
3502 btrfs_release_path(path);
3503
d68fc57b
YZ
3504 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3505
3506 if (root->orphan_block_rsv)
3507 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3508 (u64)-1);
3509
27cdeb70
MX
3510 if (root->orphan_block_rsv ||
3511 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3512 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3513 if (!IS_ERR(trans))
3514 btrfs_end_transaction(trans, root);
d68fc57b 3515 }
7b128766
JB
3516
3517 if (nr_unlink)
4884b476 3518 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3519 if (nr_truncate)
4884b476 3520 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3521
3522out:
3523 if (ret)
68b663d1 3524 btrfs_err(root->fs_info,
c2cf52eb 3525 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3526 btrfs_free_path(path);
3527 return ret;
7b128766
JB
3528}
3529
46a53cca
CM
3530/*
3531 * very simple check to peek ahead in the leaf looking for xattrs. If we
3532 * don't find any xattrs, we know there can't be any acls.
3533 *
3534 * slot is the slot the inode is in, objectid is the objectid of the inode
3535 */
3536static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3537 int slot, u64 objectid,
3538 int *first_xattr_slot)
46a53cca
CM
3539{
3540 u32 nritems = btrfs_header_nritems(leaf);
3541 struct btrfs_key found_key;
f23b5a59
JB
3542 static u64 xattr_access = 0;
3543 static u64 xattr_default = 0;
46a53cca
CM
3544 int scanned = 0;
3545
f23b5a59
JB
3546 if (!xattr_access) {
3547 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3548 strlen(POSIX_ACL_XATTR_ACCESS));
3549 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3550 strlen(POSIX_ACL_XATTR_DEFAULT));
3551 }
3552
46a53cca 3553 slot++;
63541927 3554 *first_xattr_slot = -1;
46a53cca
CM
3555 while (slot < nritems) {
3556 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3557
3558 /* we found a different objectid, there must not be acls */
3559 if (found_key.objectid != objectid)
3560 return 0;
3561
3562 /* we found an xattr, assume we've got an acl */
f23b5a59 3563 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3564 if (*first_xattr_slot == -1)
3565 *first_xattr_slot = slot;
f23b5a59
JB
3566 if (found_key.offset == xattr_access ||
3567 found_key.offset == xattr_default)
3568 return 1;
3569 }
46a53cca
CM
3570
3571 /*
3572 * we found a key greater than an xattr key, there can't
3573 * be any acls later on
3574 */
3575 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3576 return 0;
3577
3578 slot++;
3579 scanned++;
3580
3581 /*
3582 * it goes inode, inode backrefs, xattrs, extents,
3583 * so if there are a ton of hard links to an inode there can
3584 * be a lot of backrefs. Don't waste time searching too hard,
3585 * this is just an optimization
3586 */
3587 if (scanned >= 8)
3588 break;
3589 }
3590 /* we hit the end of the leaf before we found an xattr or
3591 * something larger than an xattr. We have to assume the inode
3592 * has acls
3593 */
63541927
FDBM
3594 if (*first_xattr_slot == -1)
3595 *first_xattr_slot = slot;
46a53cca
CM
3596 return 1;
3597}
3598
d352ac68
CM
3599/*
3600 * read an inode from the btree into the in-memory inode
3601 */
5d4f98a2 3602static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3603{
3604 struct btrfs_path *path;
5f39d397 3605 struct extent_buffer *leaf;
39279cc3
CM
3606 struct btrfs_inode_item *inode_item;
3607 struct btrfs_root *root = BTRFS_I(inode)->root;
3608 struct btrfs_key location;
67de1176 3609 unsigned long ptr;
46a53cca 3610 int maybe_acls;
618e21d5 3611 u32 rdev;
39279cc3 3612 int ret;
2f7e33d4 3613 bool filled = false;
63541927 3614 int first_xattr_slot;
2f7e33d4
MX
3615
3616 ret = btrfs_fill_inode(inode, &rdev);
3617 if (!ret)
3618 filled = true;
39279cc3
CM
3619
3620 path = btrfs_alloc_path();
1748f843
MF
3621 if (!path)
3622 goto make_bad;
3623
39279cc3 3624 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3625
39279cc3 3626 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3627 if (ret)
39279cc3 3628 goto make_bad;
39279cc3 3629
5f39d397 3630 leaf = path->nodes[0];
2f7e33d4
MX
3631
3632 if (filled)
67de1176 3633 goto cache_index;
2f7e33d4 3634
5f39d397
CM
3635 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3636 struct btrfs_inode_item);
5f39d397 3637 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3638 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3639 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3640 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3641 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3642
a937b979
DS
3643 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3644 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3645
a937b979
DS
3646 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3647 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3648
a937b979
DS
3649 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3650 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3651
9cc97d64 3652 BTRFS_I(inode)->i_otime.tv_sec =
3653 btrfs_timespec_sec(leaf, &inode_item->otime);
3654 BTRFS_I(inode)->i_otime.tv_nsec =
3655 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3656
a76a3cd4 3657 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3658 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3659 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3660
6e17d30b
YD
3661 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3662 inode->i_generation = BTRFS_I(inode)->generation;
3663 inode->i_rdev = 0;
3664 rdev = btrfs_inode_rdev(leaf, inode_item);
3665
3666 BTRFS_I(inode)->index_cnt = (u64)-1;
3667 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3668
3669cache_index:
5dc562c5
JB
3670 /*
3671 * If we were modified in the current generation and evicted from memory
3672 * and then re-read we need to do a full sync since we don't have any
3673 * idea about which extents were modified before we were evicted from
3674 * cache.
6e17d30b
YD
3675 *
3676 * This is required for both inode re-read from disk and delayed inode
3677 * in delayed_nodes_tree.
5dc562c5
JB
3678 */
3679 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3680 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3681 &BTRFS_I(inode)->runtime_flags);
3682
bde6c242
FM
3683 /*
3684 * We don't persist the id of the transaction where an unlink operation
3685 * against the inode was last made. So here we assume the inode might
3686 * have been evicted, and therefore the exact value of last_unlink_trans
3687 * lost, and set it to last_trans to avoid metadata inconsistencies
3688 * between the inode and its parent if the inode is fsync'ed and the log
3689 * replayed. For example, in the scenario:
3690 *
3691 * touch mydir/foo
3692 * ln mydir/foo mydir/bar
3693 * sync
3694 * unlink mydir/bar
3695 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3696 * xfs_io -c fsync mydir/foo
3697 * <power failure>
3698 * mount fs, triggers fsync log replay
3699 *
3700 * We must make sure that when we fsync our inode foo we also log its
3701 * parent inode, otherwise after log replay the parent still has the
3702 * dentry with the "bar" name but our inode foo has a link count of 1
3703 * and doesn't have an inode ref with the name "bar" anymore.
3704 *
3705 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3706 * but it guarantees correctness at the expense of ocassional full
3707 * transaction commits on fsync if our inode is a directory, or if our
3708 * inode is not a directory, logging its parent unnecessarily.
3709 */
3710 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3711
67de1176
MX
3712 path->slots[0]++;
3713 if (inode->i_nlink != 1 ||
3714 path->slots[0] >= btrfs_header_nritems(leaf))
3715 goto cache_acl;
3716
3717 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3718 if (location.objectid != btrfs_ino(inode))
3719 goto cache_acl;
3720
3721 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3722 if (location.type == BTRFS_INODE_REF_KEY) {
3723 struct btrfs_inode_ref *ref;
3724
3725 ref = (struct btrfs_inode_ref *)ptr;
3726 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3727 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3728 struct btrfs_inode_extref *extref;
3729
3730 extref = (struct btrfs_inode_extref *)ptr;
3731 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3732 extref);
3733 }
2f7e33d4 3734cache_acl:
46a53cca
CM
3735 /*
3736 * try to precache a NULL acl entry for files that don't have
3737 * any xattrs or acls
3738 */
33345d01 3739 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3740 btrfs_ino(inode), &first_xattr_slot);
3741 if (first_xattr_slot != -1) {
3742 path->slots[0] = first_xattr_slot;
3743 ret = btrfs_load_inode_props(inode, path);
3744 if (ret)
3745 btrfs_err(root->fs_info,
351fd353 3746 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3747 btrfs_ino(inode),
3748 root->root_key.objectid, ret);
3749 }
3750 btrfs_free_path(path);
3751
72c04902
AV
3752 if (!maybe_acls)
3753 cache_no_acl(inode);
46a53cca 3754
39279cc3 3755 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3756 case S_IFREG:
3757 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3758 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3759 inode->i_fop = &btrfs_file_operations;
3760 inode->i_op = &btrfs_file_inode_operations;
3761 break;
3762 case S_IFDIR:
3763 inode->i_fop = &btrfs_dir_file_operations;
3764 if (root == root->fs_info->tree_root)
3765 inode->i_op = &btrfs_dir_ro_inode_operations;
3766 else
3767 inode->i_op = &btrfs_dir_inode_operations;
3768 break;
3769 case S_IFLNK:
3770 inode->i_op = &btrfs_symlink_inode_operations;
3771 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3772 break;
618e21d5 3773 default:
0279b4cd 3774 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3775 init_special_inode(inode, inode->i_mode, rdev);
3776 break;
39279cc3 3777 }
6cbff00f
CH
3778
3779 btrfs_update_iflags(inode);
39279cc3
CM
3780 return;
3781
3782make_bad:
39279cc3 3783 btrfs_free_path(path);
39279cc3
CM
3784 make_bad_inode(inode);
3785}
3786
d352ac68
CM
3787/*
3788 * given a leaf and an inode, copy the inode fields into the leaf
3789 */
e02119d5
CM
3790static void fill_inode_item(struct btrfs_trans_handle *trans,
3791 struct extent_buffer *leaf,
5f39d397 3792 struct btrfs_inode_item *item,
39279cc3
CM
3793 struct inode *inode)
3794{
51fab693
LB
3795 struct btrfs_map_token token;
3796
3797 btrfs_init_map_token(&token);
5f39d397 3798
51fab693
LB
3799 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3800 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3801 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3802 &token);
3803 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3804 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3805
a937b979 3806 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3807 inode->i_atime.tv_sec, &token);
a937b979 3808 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3809 inode->i_atime.tv_nsec, &token);
5f39d397 3810
a937b979 3811 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3812 inode->i_mtime.tv_sec, &token);
a937b979 3813 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3814 inode->i_mtime.tv_nsec, &token);
5f39d397 3815
a937b979 3816 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3817 inode->i_ctime.tv_sec, &token);
a937b979 3818 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3819 inode->i_ctime.tv_nsec, &token);
5f39d397 3820
9cc97d64 3821 btrfs_set_token_timespec_sec(leaf, &item->otime,
3822 BTRFS_I(inode)->i_otime.tv_sec, &token);
3823 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3824 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3825
51fab693
LB
3826 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3827 &token);
3828 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3829 &token);
3830 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3831 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3832 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3833 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3834 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3835}
3836
d352ac68
CM
3837/*
3838 * copy everything in the in-memory inode into the btree.
3839 */
2115133f 3840static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3841 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3842{
3843 struct btrfs_inode_item *inode_item;
3844 struct btrfs_path *path;
5f39d397 3845 struct extent_buffer *leaf;
39279cc3
CM
3846 int ret;
3847
3848 path = btrfs_alloc_path();
16cdcec7
MX
3849 if (!path)
3850 return -ENOMEM;
3851
b9473439 3852 path->leave_spinning = 1;
16cdcec7
MX
3853 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3854 1);
39279cc3
CM
3855 if (ret) {
3856 if (ret > 0)
3857 ret = -ENOENT;
3858 goto failed;
3859 }
3860
5f39d397
CM
3861 leaf = path->nodes[0];
3862 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3863 struct btrfs_inode_item);
39279cc3 3864
e02119d5 3865 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3866 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3867 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3868 ret = 0;
3869failed:
39279cc3
CM
3870 btrfs_free_path(path);
3871 return ret;
3872}
3873
2115133f
CM
3874/*
3875 * copy everything in the in-memory inode into the btree.
3876 */
3877noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3878 struct btrfs_root *root, struct inode *inode)
3879{
3880 int ret;
3881
3882 /*
3883 * If the inode is a free space inode, we can deadlock during commit
3884 * if we put it into the delayed code.
3885 *
3886 * The data relocation inode should also be directly updated
3887 * without delay
3888 */
83eea1f1 3889 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3890 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3891 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3892 btrfs_update_root_times(trans, root);
3893
2115133f
CM
3894 ret = btrfs_delayed_update_inode(trans, root, inode);
3895 if (!ret)
3896 btrfs_set_inode_last_trans(trans, inode);
3897 return ret;
3898 }
3899
3900 return btrfs_update_inode_item(trans, root, inode);
3901}
3902
be6aef60
JB
3903noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3904 struct btrfs_root *root,
3905 struct inode *inode)
2115133f
CM
3906{
3907 int ret;
3908
3909 ret = btrfs_update_inode(trans, root, inode);
3910 if (ret == -ENOSPC)
3911 return btrfs_update_inode_item(trans, root, inode);
3912 return ret;
3913}
3914
d352ac68
CM
3915/*
3916 * unlink helper that gets used here in inode.c and in the tree logging
3917 * recovery code. It remove a link in a directory with a given name, and
3918 * also drops the back refs in the inode to the directory
3919 */
92986796
AV
3920static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3921 struct btrfs_root *root,
3922 struct inode *dir, struct inode *inode,
3923 const char *name, int name_len)
39279cc3
CM
3924{
3925 struct btrfs_path *path;
39279cc3 3926 int ret = 0;
5f39d397 3927 struct extent_buffer *leaf;
39279cc3 3928 struct btrfs_dir_item *di;
5f39d397 3929 struct btrfs_key key;
aec7477b 3930 u64 index;
33345d01
LZ
3931 u64 ino = btrfs_ino(inode);
3932 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3933
3934 path = btrfs_alloc_path();
54aa1f4d
CM
3935 if (!path) {
3936 ret = -ENOMEM;
554233a6 3937 goto out;
54aa1f4d
CM
3938 }
3939
b9473439 3940 path->leave_spinning = 1;
33345d01 3941 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3942 name, name_len, -1);
3943 if (IS_ERR(di)) {
3944 ret = PTR_ERR(di);
3945 goto err;
3946 }
3947 if (!di) {
3948 ret = -ENOENT;
3949 goto err;
3950 }
5f39d397
CM
3951 leaf = path->nodes[0];
3952 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3953 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3954 if (ret)
3955 goto err;
b3b4aa74 3956 btrfs_release_path(path);
39279cc3 3957
67de1176
MX
3958 /*
3959 * If we don't have dir index, we have to get it by looking up
3960 * the inode ref, since we get the inode ref, remove it directly,
3961 * it is unnecessary to do delayed deletion.
3962 *
3963 * But if we have dir index, needn't search inode ref to get it.
3964 * Since the inode ref is close to the inode item, it is better
3965 * that we delay to delete it, and just do this deletion when
3966 * we update the inode item.
3967 */
3968 if (BTRFS_I(inode)->dir_index) {
3969 ret = btrfs_delayed_delete_inode_ref(inode);
3970 if (!ret) {
3971 index = BTRFS_I(inode)->dir_index;
3972 goto skip_backref;
3973 }
3974 }
3975
33345d01
LZ
3976 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3977 dir_ino, &index);
aec7477b 3978 if (ret) {
c2cf52eb
SK
3979 btrfs_info(root->fs_info,
3980 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3981 name_len, name, ino, dir_ino);
79787eaa 3982 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3983 goto err;
3984 }
67de1176 3985skip_backref:
16cdcec7 3986 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3987 if (ret) {
3988 btrfs_abort_transaction(trans, root, ret);
39279cc3 3989 goto err;
79787eaa 3990 }
39279cc3 3991
e02119d5 3992 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3993 inode, dir_ino);
79787eaa
JM
3994 if (ret != 0 && ret != -ENOENT) {
3995 btrfs_abort_transaction(trans, root, ret);
3996 goto err;
3997 }
e02119d5
CM
3998
3999 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4000 dir, index);
6418c961
CM
4001 if (ret == -ENOENT)
4002 ret = 0;
d4e3991b
ZB
4003 else if (ret)
4004 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4005err:
4006 btrfs_free_path(path);
e02119d5
CM
4007 if (ret)
4008 goto out;
4009
4010 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4011 inode_inc_iversion(inode);
4012 inode_inc_iversion(dir);
e02119d5 4013 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 4014 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4015out:
39279cc3
CM
4016 return ret;
4017}
4018
92986796
AV
4019int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4020 struct btrfs_root *root,
4021 struct inode *dir, struct inode *inode,
4022 const char *name, int name_len)
4023{
4024 int ret;
4025 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4026 if (!ret) {
8b558c5f 4027 drop_nlink(inode);
92986796
AV
4028 ret = btrfs_update_inode(trans, root, inode);
4029 }
4030 return ret;
4031}
39279cc3 4032
a22285a6
YZ
4033/*
4034 * helper to start transaction for unlink and rmdir.
4035 *
d52be818
JB
4036 * unlink and rmdir are special in btrfs, they do not always free space, so
4037 * if we cannot make our reservations the normal way try and see if there is
4038 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4039 * allow the unlink to occur.
a22285a6 4040 */
d52be818 4041static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4042{
39279cc3 4043 struct btrfs_trans_handle *trans;
a22285a6 4044 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4045 int ret;
4046
e70bea5f
JB
4047 /*
4048 * 1 for the possible orphan item
4049 * 1 for the dir item
4050 * 1 for the dir index
4051 * 1 for the inode ref
e70bea5f
JB
4052 * 1 for the inode
4053 */
6e137ed3 4054 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4055 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
4056 return trans;
4df27c4d 4057
d52be818
JB
4058 if (PTR_ERR(trans) == -ENOSPC) {
4059 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 4060
d52be818
JB
4061 trans = btrfs_start_transaction(root, 0);
4062 if (IS_ERR(trans))
4063 return trans;
4064 ret = btrfs_cond_migrate_bytes(root->fs_info,
4065 &root->fs_info->trans_block_rsv,
4066 num_bytes, 5);
4067 if (ret) {
4068 btrfs_end_transaction(trans, root);
4069 return ERR_PTR(ret);
a22285a6 4070 }
5a77d76c 4071 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 4072 trans->bytes_reserved = num_bytes;
a22285a6 4073 }
d52be818 4074 return trans;
a22285a6
YZ
4075}
4076
4077static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4078{
4079 struct btrfs_root *root = BTRFS_I(dir)->root;
4080 struct btrfs_trans_handle *trans;
2b0143b5 4081 struct inode *inode = d_inode(dentry);
a22285a6 4082 int ret;
a22285a6 4083
d52be818 4084 trans = __unlink_start_trans(dir);
a22285a6
YZ
4085 if (IS_ERR(trans))
4086 return PTR_ERR(trans);
5f39d397 4087
2b0143b5 4088 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4089
2b0143b5 4090 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4091 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4092 if (ret)
4093 goto out;
7b128766 4094
a22285a6 4095 if (inode->i_nlink == 0) {
7b128766 4096 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4097 if (ret)
4098 goto out;
a22285a6 4099 }
7b128766 4100
b532402e 4101out:
d52be818 4102 btrfs_end_transaction(trans, root);
b53d3f5d 4103 btrfs_btree_balance_dirty(root);
39279cc3
CM
4104 return ret;
4105}
4106
4df27c4d
YZ
4107int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4108 struct btrfs_root *root,
4109 struct inode *dir, u64 objectid,
4110 const char *name, int name_len)
4111{
4112 struct btrfs_path *path;
4113 struct extent_buffer *leaf;
4114 struct btrfs_dir_item *di;
4115 struct btrfs_key key;
4116 u64 index;
4117 int ret;
33345d01 4118 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4119
4120 path = btrfs_alloc_path();
4121 if (!path)
4122 return -ENOMEM;
4123
33345d01 4124 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4125 name, name_len, -1);
79787eaa
JM
4126 if (IS_ERR_OR_NULL(di)) {
4127 if (!di)
4128 ret = -ENOENT;
4129 else
4130 ret = PTR_ERR(di);
4131 goto out;
4132 }
4df27c4d
YZ
4133
4134 leaf = path->nodes[0];
4135 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4136 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4137 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4138 if (ret) {
4139 btrfs_abort_transaction(trans, root, ret);
4140 goto out;
4141 }
b3b4aa74 4142 btrfs_release_path(path);
4df27c4d
YZ
4143
4144 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4145 objectid, root->root_key.objectid,
33345d01 4146 dir_ino, &index, name, name_len);
4df27c4d 4147 if (ret < 0) {
79787eaa
JM
4148 if (ret != -ENOENT) {
4149 btrfs_abort_transaction(trans, root, ret);
4150 goto out;
4151 }
33345d01 4152 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4153 name, name_len);
79787eaa
JM
4154 if (IS_ERR_OR_NULL(di)) {
4155 if (!di)
4156 ret = -ENOENT;
4157 else
4158 ret = PTR_ERR(di);
4159 btrfs_abort_transaction(trans, root, ret);
4160 goto out;
4161 }
4df27c4d
YZ
4162
4163 leaf = path->nodes[0];
4164 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4165 btrfs_release_path(path);
4df27c4d
YZ
4166 index = key.offset;
4167 }
945d8962 4168 btrfs_release_path(path);
4df27c4d 4169
16cdcec7 4170 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4171 if (ret) {
4172 btrfs_abort_transaction(trans, root, ret);
4173 goto out;
4174 }
4df27c4d
YZ
4175
4176 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4177 inode_inc_iversion(dir);
4df27c4d 4178 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4179 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4180 if (ret)
4181 btrfs_abort_transaction(trans, root, ret);
4182out:
71d7aed0 4183 btrfs_free_path(path);
79787eaa 4184 return ret;
4df27c4d
YZ
4185}
4186
39279cc3
CM
4187static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4188{
2b0143b5 4189 struct inode *inode = d_inode(dentry);
1832a6d5 4190 int err = 0;
39279cc3 4191 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4192 struct btrfs_trans_handle *trans;
39279cc3 4193
b3ae244e 4194 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4195 return -ENOTEMPTY;
b3ae244e
DS
4196 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4197 return -EPERM;
134d4512 4198
d52be818 4199 trans = __unlink_start_trans(dir);
a22285a6 4200 if (IS_ERR(trans))
5df6a9f6 4201 return PTR_ERR(trans);
5df6a9f6 4202
33345d01 4203 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4204 err = btrfs_unlink_subvol(trans, root, dir,
4205 BTRFS_I(inode)->location.objectid,
4206 dentry->d_name.name,
4207 dentry->d_name.len);
4208 goto out;
4209 }
4210
7b128766
JB
4211 err = btrfs_orphan_add(trans, inode);
4212 if (err)
4df27c4d 4213 goto out;
7b128766 4214
39279cc3 4215 /* now the directory is empty */
2b0143b5 4216 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4217 dentry->d_name.name, dentry->d_name.len);
d397712b 4218 if (!err)
dbe674a9 4219 btrfs_i_size_write(inode, 0);
4df27c4d 4220out:
d52be818 4221 btrfs_end_transaction(trans, root);
b53d3f5d 4222 btrfs_btree_balance_dirty(root);
3954401f 4223
39279cc3
CM
4224 return err;
4225}
4226
28f75a0e
CM
4227static int truncate_space_check(struct btrfs_trans_handle *trans,
4228 struct btrfs_root *root,
4229 u64 bytes_deleted)
4230{
4231 int ret;
4232
4233 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4234 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4235 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4236 if (!ret)
4237 trans->bytes_reserved += bytes_deleted;
4238 return ret;
4239
4240}
4241
0305cd5f
FM
4242static int truncate_inline_extent(struct inode *inode,
4243 struct btrfs_path *path,
4244 struct btrfs_key *found_key,
4245 const u64 item_end,
4246 const u64 new_size)
4247{
4248 struct extent_buffer *leaf = path->nodes[0];
4249 int slot = path->slots[0];
4250 struct btrfs_file_extent_item *fi;
4251 u32 size = (u32)(new_size - found_key->offset);
4252 struct btrfs_root *root = BTRFS_I(inode)->root;
4253
4254 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4255
4256 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4257 loff_t offset = new_size;
4258 loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4259
4260 /*
4261 * Zero out the remaining of the last page of our inline extent,
4262 * instead of directly truncating our inline extent here - that
4263 * would be much more complex (decompressing all the data, then
4264 * compressing the truncated data, which might be bigger than
4265 * the size of the inline extent, resize the extent, etc).
4266 * We release the path because to get the page we might need to
4267 * read the extent item from disk (data not in the page cache).
4268 */
4269 btrfs_release_path(path);
4270 return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4271 }
4272
4273 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4274 size = btrfs_file_extent_calc_inline_size(size);
4275 btrfs_truncate_item(root, path, size, 1);
4276
4277 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4278 inode_sub_bytes(inode, item_end + 1 - new_size);
4279
4280 return 0;
4281}
4282
39279cc3
CM
4283/*
4284 * this can truncate away extent items, csum items and directory items.
4285 * It starts at a high offset and removes keys until it can't find
d352ac68 4286 * any higher than new_size
39279cc3
CM
4287 *
4288 * csum items that cross the new i_size are truncated to the new size
4289 * as well.
7b128766
JB
4290 *
4291 * min_type is the minimum key type to truncate down to. If set to 0, this
4292 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4293 */
8082510e
YZ
4294int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4295 struct btrfs_root *root,
4296 struct inode *inode,
4297 u64 new_size, u32 min_type)
39279cc3 4298{
39279cc3 4299 struct btrfs_path *path;
5f39d397 4300 struct extent_buffer *leaf;
39279cc3 4301 struct btrfs_file_extent_item *fi;
8082510e
YZ
4302 struct btrfs_key key;
4303 struct btrfs_key found_key;
39279cc3 4304 u64 extent_start = 0;
db94535d 4305 u64 extent_num_bytes = 0;
5d4f98a2 4306 u64 extent_offset = 0;
39279cc3 4307 u64 item_end = 0;
c1aa4575 4308 u64 last_size = new_size;
8082510e 4309 u32 found_type = (u8)-1;
39279cc3
CM
4310 int found_extent;
4311 int del_item;
85e21bac
CM
4312 int pending_del_nr = 0;
4313 int pending_del_slot = 0;
179e29e4 4314 int extent_type = -1;
8082510e
YZ
4315 int ret;
4316 int err = 0;
33345d01 4317 u64 ino = btrfs_ino(inode);
28ed1345 4318 u64 bytes_deleted = 0;
1262133b
JB
4319 bool be_nice = 0;
4320 bool should_throttle = 0;
28f75a0e 4321 bool should_end = 0;
8082510e
YZ
4322
4323 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4324
28ed1345
CM
4325 /*
4326 * for non-free space inodes and ref cows, we want to back off from
4327 * time to time
4328 */
4329 if (!btrfs_is_free_space_inode(inode) &&
4330 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4331 be_nice = 1;
4332
0eb0e19c
MF
4333 path = btrfs_alloc_path();
4334 if (!path)
4335 return -ENOMEM;
4336 path->reada = -1;
4337
5dc562c5
JB
4338 /*
4339 * We want to drop from the next block forward in case this new size is
4340 * not block aligned since we will be keeping the last block of the
4341 * extent just the way it is.
4342 */
27cdeb70
MX
4343 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4344 root == root->fs_info->tree_root)
fda2832f
QW
4345 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4346 root->sectorsize), (u64)-1, 0);
8082510e 4347
16cdcec7
MX
4348 /*
4349 * This function is also used to drop the items in the log tree before
4350 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4351 * it is used to drop the loged items. So we shouldn't kill the delayed
4352 * items.
4353 */
4354 if (min_type == 0 && root == BTRFS_I(inode)->root)
4355 btrfs_kill_delayed_inode_items(inode);
4356
33345d01 4357 key.objectid = ino;
39279cc3 4358 key.offset = (u64)-1;
5f39d397
CM
4359 key.type = (u8)-1;
4360
85e21bac 4361search_again:
28ed1345
CM
4362 /*
4363 * with a 16K leaf size and 128MB extents, you can actually queue
4364 * up a huge file in a single leaf. Most of the time that
4365 * bytes_deleted is > 0, it will be huge by the time we get here
4366 */
4367 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4368 if (btrfs_should_end_transaction(trans, root)) {
4369 err = -EAGAIN;
4370 goto error;
4371 }
4372 }
4373
4374
b9473439 4375 path->leave_spinning = 1;
85e21bac 4376 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4377 if (ret < 0) {
4378 err = ret;
4379 goto out;
4380 }
d397712b 4381
85e21bac 4382 if (ret > 0) {
e02119d5
CM
4383 /* there are no items in the tree for us to truncate, we're
4384 * done
4385 */
8082510e
YZ
4386 if (path->slots[0] == 0)
4387 goto out;
85e21bac
CM
4388 path->slots[0]--;
4389 }
4390
d397712b 4391 while (1) {
39279cc3 4392 fi = NULL;
5f39d397
CM
4393 leaf = path->nodes[0];
4394 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4395 found_type = found_key.type;
39279cc3 4396
33345d01 4397 if (found_key.objectid != ino)
39279cc3 4398 break;
5f39d397 4399
85e21bac 4400 if (found_type < min_type)
39279cc3
CM
4401 break;
4402
5f39d397 4403 item_end = found_key.offset;
39279cc3 4404 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4405 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4406 struct btrfs_file_extent_item);
179e29e4
CM
4407 extent_type = btrfs_file_extent_type(leaf, fi);
4408 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4409 item_end +=
db94535d 4410 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4411 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4412 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4413 path->slots[0], fi);
39279cc3 4414 }
008630c1 4415 item_end--;
39279cc3 4416 }
8082510e
YZ
4417 if (found_type > min_type) {
4418 del_item = 1;
4419 } else {
4420 if (item_end < new_size)
b888db2b 4421 break;
8082510e
YZ
4422 if (found_key.offset >= new_size)
4423 del_item = 1;
4424 else
4425 del_item = 0;
39279cc3 4426 }
39279cc3 4427 found_extent = 0;
39279cc3 4428 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4429 if (found_type != BTRFS_EXTENT_DATA_KEY)
4430 goto delete;
4431
7f4f6e0a
JB
4432 if (del_item)
4433 last_size = found_key.offset;
4434 else
4435 last_size = new_size;
4436
179e29e4 4437 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4438 u64 num_dec;
db94535d 4439 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4440 if (!del_item) {
db94535d
CM
4441 u64 orig_num_bytes =
4442 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4443 extent_num_bytes = ALIGN(new_size -
4444 found_key.offset,
4445 root->sectorsize);
db94535d
CM
4446 btrfs_set_file_extent_num_bytes(leaf, fi,
4447 extent_num_bytes);
4448 num_dec = (orig_num_bytes -
9069218d 4449 extent_num_bytes);
27cdeb70
MX
4450 if (test_bit(BTRFS_ROOT_REF_COWS,
4451 &root->state) &&
4452 extent_start != 0)
a76a3cd4 4453 inode_sub_bytes(inode, num_dec);
5f39d397 4454 btrfs_mark_buffer_dirty(leaf);
39279cc3 4455 } else {
db94535d
CM
4456 extent_num_bytes =
4457 btrfs_file_extent_disk_num_bytes(leaf,
4458 fi);
5d4f98a2
YZ
4459 extent_offset = found_key.offset -
4460 btrfs_file_extent_offset(leaf, fi);
4461
39279cc3 4462 /* FIXME blocksize != 4096 */
9069218d 4463 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4464 if (extent_start != 0) {
4465 found_extent = 1;
27cdeb70
MX
4466 if (test_bit(BTRFS_ROOT_REF_COWS,
4467 &root->state))
a76a3cd4 4468 inode_sub_bytes(inode, num_dec);
e02119d5 4469 }
39279cc3 4470 }
9069218d 4471 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4472 /*
4473 * we can't truncate inline items that have had
4474 * special encodings
4475 */
4476 if (!del_item &&
c8b97818
CM
4477 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4478 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4479
4480 /*
0305cd5f
FM
4481 * Need to release path in order to truncate a
4482 * compressed extent. So delete any accumulated
4483 * extent items so far.
514ac8ad 4484 */
0305cd5f
FM
4485 if (btrfs_file_extent_compression(leaf, fi) !=
4486 BTRFS_COMPRESS_NONE && pending_del_nr) {
4487 err = btrfs_del_items(trans, root, path,
4488 pending_del_slot,
4489 pending_del_nr);
4490 if (err) {
4491 btrfs_abort_transaction(trans,
4492 root,
4493 err);
4494 goto error;
4495 }
4496 pending_del_nr = 0;
4497 }
4498
4499 err = truncate_inline_extent(inode, path,
4500 &found_key,
4501 item_end,
4502 new_size);
4503 if (err) {
4504 btrfs_abort_transaction(trans,
4505 root, err);
4506 goto error;
4507 }
27cdeb70
MX
4508 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4509 &root->state)) {
0305cd5f 4510 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4511 }
39279cc3 4512 }
179e29e4 4513delete:
39279cc3 4514 if (del_item) {
85e21bac
CM
4515 if (!pending_del_nr) {
4516 /* no pending yet, add ourselves */
4517 pending_del_slot = path->slots[0];
4518 pending_del_nr = 1;
4519 } else if (pending_del_nr &&
4520 path->slots[0] + 1 == pending_del_slot) {
4521 /* hop on the pending chunk */
4522 pending_del_nr++;
4523 pending_del_slot = path->slots[0];
4524 } else {
d397712b 4525 BUG();
85e21bac 4526 }
39279cc3
CM
4527 } else {
4528 break;
4529 }
28f75a0e
CM
4530 should_throttle = 0;
4531
27cdeb70
MX
4532 if (found_extent &&
4533 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4534 root == root->fs_info->tree_root)) {
b9473439 4535 btrfs_set_path_blocking(path);
28ed1345 4536 bytes_deleted += extent_num_bytes;
39279cc3 4537 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4538 extent_num_bytes, 0,
4539 btrfs_header_owner(leaf),
b06c4bf5 4540 ino, extent_offset);
39279cc3 4541 BUG_ON(ret);
1262133b 4542 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345
CM
4543 btrfs_async_run_delayed_refs(root,
4544 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4545 if (be_nice) {
4546 if (truncate_space_check(trans, root,
4547 extent_num_bytes)) {
4548 should_end = 1;
4549 }
4550 if (btrfs_should_throttle_delayed_refs(trans,
4551 root)) {
4552 should_throttle = 1;
4553 }
4554 }
39279cc3 4555 }
85e21bac 4556
8082510e
YZ
4557 if (found_type == BTRFS_INODE_ITEM_KEY)
4558 break;
4559
4560 if (path->slots[0] == 0 ||
1262133b 4561 path->slots[0] != pending_del_slot ||
28f75a0e 4562 should_throttle || should_end) {
8082510e
YZ
4563 if (pending_del_nr) {
4564 ret = btrfs_del_items(trans, root, path,
4565 pending_del_slot,
4566 pending_del_nr);
79787eaa
JM
4567 if (ret) {
4568 btrfs_abort_transaction(trans,
4569 root, ret);
4570 goto error;
4571 }
8082510e
YZ
4572 pending_del_nr = 0;
4573 }
b3b4aa74 4574 btrfs_release_path(path);
28f75a0e 4575 if (should_throttle) {
1262133b
JB
4576 unsigned long updates = trans->delayed_ref_updates;
4577 if (updates) {
4578 trans->delayed_ref_updates = 0;
4579 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4580 if (ret && !err)
4581 err = ret;
4582 }
4583 }
28f75a0e
CM
4584 /*
4585 * if we failed to refill our space rsv, bail out
4586 * and let the transaction restart
4587 */
4588 if (should_end) {
4589 err = -EAGAIN;
4590 goto error;
4591 }
85e21bac 4592 goto search_again;
8082510e
YZ
4593 } else {
4594 path->slots[0]--;
85e21bac 4595 }
39279cc3 4596 }
8082510e 4597out:
85e21bac
CM
4598 if (pending_del_nr) {
4599 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4600 pending_del_nr);
79787eaa
JM
4601 if (ret)
4602 btrfs_abort_transaction(trans, root, ret);
85e21bac 4603 }
79787eaa 4604error:
c1aa4575 4605 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4606 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4607
39279cc3 4608 btrfs_free_path(path);
28ed1345 4609
28f75a0e 4610 if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
28ed1345
CM
4611 unsigned long updates = trans->delayed_ref_updates;
4612 if (updates) {
4613 trans->delayed_ref_updates = 0;
4614 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4615 if (ret && !err)
4616 err = ret;
4617 }
4618 }
8082510e 4619 return err;
39279cc3
CM
4620}
4621
4622/*
2aaa6655
JB
4623 * btrfs_truncate_page - read, zero a chunk and write a page
4624 * @inode - inode that we're zeroing
4625 * @from - the offset to start zeroing
4626 * @len - the length to zero, 0 to zero the entire range respective to the
4627 * offset
4628 * @front - zero up to the offset instead of from the offset on
4629 *
4630 * This will find the page for the "from" offset and cow the page and zero the
4631 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4632 */
2aaa6655
JB
4633int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4634 int front)
39279cc3 4635{
2aaa6655 4636 struct address_space *mapping = inode->i_mapping;
db94535d 4637 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4638 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4639 struct btrfs_ordered_extent *ordered;
2ac55d41 4640 struct extent_state *cached_state = NULL;
e6dcd2dc 4641 char *kaddr;
db94535d 4642 u32 blocksize = root->sectorsize;
39279cc3
CM
4643 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4644 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4645 struct page *page;
3b16a4e3 4646 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4647 int ret = 0;
a52d9a80 4648 u64 page_start;
e6dcd2dc 4649 u64 page_end;
39279cc3 4650
2aaa6655
JB
4651 if ((offset & (blocksize - 1)) == 0 &&
4652 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4653 goto out;
7cf5b976 4654 ret = btrfs_delalloc_reserve_space(inode,
df480633 4655 round_down(from, PAGE_CACHE_SIZE), PAGE_CACHE_SIZE);
5d5e103a
JB
4656 if (ret)
4657 goto out;
39279cc3 4658
211c17f5 4659again:
3b16a4e3 4660 page = find_or_create_page(mapping, index, mask);
5d5e103a 4661 if (!page) {
7cf5b976 4662 btrfs_delalloc_release_space(inode,
df480633
QW
4663 round_down(from, PAGE_CACHE_SIZE),
4664 PAGE_CACHE_SIZE);
ac6a2b36 4665 ret = -ENOMEM;
39279cc3 4666 goto out;
5d5e103a 4667 }
e6dcd2dc
CM
4668
4669 page_start = page_offset(page);
4670 page_end = page_start + PAGE_CACHE_SIZE - 1;
4671
39279cc3 4672 if (!PageUptodate(page)) {
9ebefb18 4673 ret = btrfs_readpage(NULL, page);
39279cc3 4674 lock_page(page);
211c17f5
CM
4675 if (page->mapping != mapping) {
4676 unlock_page(page);
4677 page_cache_release(page);
4678 goto again;
4679 }
39279cc3
CM
4680 if (!PageUptodate(page)) {
4681 ret = -EIO;
89642229 4682 goto out_unlock;
39279cc3
CM
4683 }
4684 }
211c17f5 4685 wait_on_page_writeback(page);
e6dcd2dc 4686
d0082371 4687 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4688 set_page_extent_mapped(page);
4689
4690 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4691 if (ordered) {
2ac55d41
JB
4692 unlock_extent_cached(io_tree, page_start, page_end,
4693 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4694 unlock_page(page);
4695 page_cache_release(page);
eb84ae03 4696 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4697 btrfs_put_ordered_extent(ordered);
4698 goto again;
4699 }
4700
2ac55d41 4701 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4702 EXTENT_DIRTY | EXTENT_DELALLOC |
4703 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4704 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4705
2ac55d41
JB
4706 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4707 &cached_state);
9ed74f2d 4708 if (ret) {
2ac55d41
JB
4709 unlock_extent_cached(io_tree, page_start, page_end,
4710 &cached_state, GFP_NOFS);
9ed74f2d
JB
4711 goto out_unlock;
4712 }
4713
e6dcd2dc 4714 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4715 if (!len)
4716 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4717 kaddr = kmap(page);
2aaa6655
JB
4718 if (front)
4719 memset(kaddr, 0, offset);
4720 else
4721 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4722 flush_dcache_page(page);
4723 kunmap(page);
4724 }
247e743c 4725 ClearPageChecked(page);
e6dcd2dc 4726 set_page_dirty(page);
2ac55d41
JB
4727 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4728 GFP_NOFS);
39279cc3 4729
89642229 4730out_unlock:
5d5e103a 4731 if (ret)
7cf5b976
QW
4732 btrfs_delalloc_release_space(inode, page_start,
4733 PAGE_CACHE_SIZE);
39279cc3
CM
4734 unlock_page(page);
4735 page_cache_release(page);
4736out:
4737 return ret;
4738}
4739
16e7549f
JB
4740static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4741 u64 offset, u64 len)
4742{
4743 struct btrfs_trans_handle *trans;
4744 int ret;
4745
4746 /*
4747 * Still need to make sure the inode looks like it's been updated so
4748 * that any holes get logged if we fsync.
4749 */
4750 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4751 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4752 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4753 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4754 return 0;
4755 }
4756
4757 /*
4758 * 1 - for the one we're dropping
4759 * 1 - for the one we're adding
4760 * 1 - for updating the inode.
4761 */
4762 trans = btrfs_start_transaction(root, 3);
4763 if (IS_ERR(trans))
4764 return PTR_ERR(trans);
4765
4766 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4767 if (ret) {
4768 btrfs_abort_transaction(trans, root, ret);
4769 btrfs_end_transaction(trans, root);
4770 return ret;
4771 }
4772
4773 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4774 0, 0, len, 0, len, 0, 0, 0);
4775 if (ret)
4776 btrfs_abort_transaction(trans, root, ret);
4777 else
4778 btrfs_update_inode(trans, root, inode);
4779 btrfs_end_transaction(trans, root);
4780 return ret;
4781}
4782
695a0d0d
JB
4783/*
4784 * This function puts in dummy file extents for the area we're creating a hole
4785 * for. So if we are truncating this file to a larger size we need to insert
4786 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4787 * the range between oldsize and size
4788 */
a41ad394 4789int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4790{
9036c102
YZ
4791 struct btrfs_root *root = BTRFS_I(inode)->root;
4792 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4793 struct extent_map *em = NULL;
2ac55d41 4794 struct extent_state *cached_state = NULL;
5dc562c5 4795 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4796 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4797 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4798 u64 last_byte;
4799 u64 cur_offset;
4800 u64 hole_size;
9ed74f2d 4801 int err = 0;
39279cc3 4802
a71754fc
JB
4803 /*
4804 * If our size started in the middle of a page we need to zero out the
4805 * rest of the page before we expand the i_size, otherwise we could
4806 * expose stale data.
4807 */
4808 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4809 if (err)
4810 return err;
4811
9036c102
YZ
4812 if (size <= hole_start)
4813 return 0;
4814
9036c102
YZ
4815 while (1) {
4816 struct btrfs_ordered_extent *ordered;
fa7c1494 4817
2ac55d41 4818 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4819 &cached_state);
fa7c1494
MX
4820 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4821 block_end - hole_start);
9036c102
YZ
4822 if (!ordered)
4823 break;
2ac55d41
JB
4824 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4825 &cached_state, GFP_NOFS);
fa7c1494 4826 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4827 btrfs_put_ordered_extent(ordered);
4828 }
39279cc3 4829
9036c102
YZ
4830 cur_offset = hole_start;
4831 while (1) {
4832 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4833 block_end - cur_offset, 0);
79787eaa
JM
4834 if (IS_ERR(em)) {
4835 err = PTR_ERR(em);
f2767956 4836 em = NULL;
79787eaa
JM
4837 break;
4838 }
9036c102 4839 last_byte = min(extent_map_end(em), block_end);
fda2832f 4840 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4841 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4842 struct extent_map *hole_em;
9036c102 4843 hole_size = last_byte - cur_offset;
9ed74f2d 4844
16e7549f
JB
4845 err = maybe_insert_hole(root, inode, cur_offset,
4846 hole_size);
4847 if (err)
3893e33b 4848 break;
5dc562c5
JB
4849 btrfs_drop_extent_cache(inode, cur_offset,
4850 cur_offset + hole_size - 1, 0);
4851 hole_em = alloc_extent_map();
4852 if (!hole_em) {
4853 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4854 &BTRFS_I(inode)->runtime_flags);
4855 goto next;
4856 }
4857 hole_em->start = cur_offset;
4858 hole_em->len = hole_size;
4859 hole_em->orig_start = cur_offset;
8082510e 4860
5dc562c5
JB
4861 hole_em->block_start = EXTENT_MAP_HOLE;
4862 hole_em->block_len = 0;
b4939680 4863 hole_em->orig_block_len = 0;
cc95bef6 4864 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4865 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4866 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4867 hole_em->generation = root->fs_info->generation;
8082510e 4868
5dc562c5
JB
4869 while (1) {
4870 write_lock(&em_tree->lock);
09a2a8f9 4871 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4872 write_unlock(&em_tree->lock);
4873 if (err != -EEXIST)
4874 break;
4875 btrfs_drop_extent_cache(inode, cur_offset,
4876 cur_offset +
4877 hole_size - 1, 0);
4878 }
4879 free_extent_map(hole_em);
9036c102 4880 }
16e7549f 4881next:
9036c102 4882 free_extent_map(em);
a22285a6 4883 em = NULL;
9036c102 4884 cur_offset = last_byte;
8082510e 4885 if (cur_offset >= block_end)
9036c102
YZ
4886 break;
4887 }
a22285a6 4888 free_extent_map(em);
2ac55d41
JB
4889 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4890 GFP_NOFS);
9036c102
YZ
4891 return err;
4892}
39279cc3 4893
9ea24bbe
FM
4894static int wait_snapshoting_atomic_t(atomic_t *a)
4895{
4896 schedule();
4897 return 0;
4898}
4899
4900static void wait_for_snapshot_creation(struct btrfs_root *root)
4901{
4902 while (true) {
4903 int ret;
4904
4905 ret = btrfs_start_write_no_snapshoting(root);
4906 if (ret)
4907 break;
4908 wait_on_atomic_t(&root->will_be_snapshoted,
4909 wait_snapshoting_atomic_t,
4910 TASK_UNINTERRUPTIBLE);
4911 }
4912}
4913
3972f260 4914static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4915{
f4a2f4c5
MX
4916 struct btrfs_root *root = BTRFS_I(inode)->root;
4917 struct btrfs_trans_handle *trans;
a41ad394 4918 loff_t oldsize = i_size_read(inode);
3972f260
ES
4919 loff_t newsize = attr->ia_size;
4920 int mask = attr->ia_valid;
8082510e
YZ
4921 int ret;
4922
3972f260
ES
4923 /*
4924 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4925 * special case where we need to update the times despite not having
4926 * these flags set. For all other operations the VFS set these flags
4927 * explicitly if it wants a timestamp update.
4928 */
dff6efc3
CH
4929 if (newsize != oldsize) {
4930 inode_inc_iversion(inode);
4931 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4932 inode->i_ctime = inode->i_mtime =
4933 current_fs_time(inode->i_sb);
4934 }
3972f260 4935
a41ad394 4936 if (newsize > oldsize) {
7caef267 4937 truncate_pagecache(inode, newsize);
9ea24bbe
FM
4938 /*
4939 * Don't do an expanding truncate while snapshoting is ongoing.
4940 * This is to ensure the snapshot captures a fully consistent
4941 * state of this file - if the snapshot captures this expanding
4942 * truncation, it must capture all writes that happened before
4943 * this truncation.
4944 */
4945 wait_for_snapshot_creation(root);
a41ad394 4946 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4947 if (ret) {
4948 btrfs_end_write_no_snapshoting(root);
8082510e 4949 return ret;
9ea24bbe 4950 }
8082510e 4951
f4a2f4c5 4952 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4953 if (IS_ERR(trans)) {
4954 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4955 return PTR_ERR(trans);
9ea24bbe 4956 }
f4a2f4c5
MX
4957
4958 i_size_write(inode, newsize);
4959 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4960 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4961 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4962 btrfs_end_transaction(trans, root);
a41ad394 4963 } else {
8082510e 4964
a41ad394
JB
4965 /*
4966 * We're truncating a file that used to have good data down to
4967 * zero. Make sure it gets into the ordered flush list so that
4968 * any new writes get down to disk quickly.
4969 */
4970 if (newsize == 0)
72ac3c0d
JB
4971 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4972 &BTRFS_I(inode)->runtime_flags);
8082510e 4973
f3fe820c
JB
4974 /*
4975 * 1 for the orphan item we're going to add
4976 * 1 for the orphan item deletion.
4977 */
4978 trans = btrfs_start_transaction(root, 2);
4979 if (IS_ERR(trans))
4980 return PTR_ERR(trans);
4981
4982 /*
4983 * We need to do this in case we fail at _any_ point during the
4984 * actual truncate. Once we do the truncate_setsize we could
4985 * invalidate pages which forces any outstanding ordered io to
4986 * be instantly completed which will give us extents that need
4987 * to be truncated. If we fail to get an orphan inode down we
4988 * could have left over extents that were never meant to live,
4989 * so we need to garuntee from this point on that everything
4990 * will be consistent.
4991 */
4992 ret = btrfs_orphan_add(trans, inode);
4993 btrfs_end_transaction(trans, root);
4994 if (ret)
4995 return ret;
4996
a41ad394
JB
4997 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4998 truncate_setsize(inode, newsize);
2e60a51e
MX
4999
5000 /* Disable nonlocked read DIO to avoid the end less truncate */
5001 btrfs_inode_block_unlocked_dio(inode);
5002 inode_dio_wait(inode);
5003 btrfs_inode_resume_unlocked_dio(inode);
5004
a41ad394 5005 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5006 if (ret && inode->i_nlink) {
5007 int err;
5008
5009 /*
5010 * failed to truncate, disk_i_size is only adjusted down
5011 * as we remove extents, so it should represent the true
5012 * size of the inode, so reset the in memory size and
5013 * delete our orphan entry.
5014 */
5015 trans = btrfs_join_transaction(root);
5016 if (IS_ERR(trans)) {
5017 btrfs_orphan_del(NULL, inode);
5018 return ret;
5019 }
5020 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5021 err = btrfs_orphan_del(trans, inode);
5022 if (err)
5023 btrfs_abort_transaction(trans, root, err);
5024 btrfs_end_transaction(trans, root);
5025 }
8082510e
YZ
5026 }
5027
a41ad394 5028 return ret;
8082510e
YZ
5029}
5030
9036c102
YZ
5031static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5032{
2b0143b5 5033 struct inode *inode = d_inode(dentry);
b83cc969 5034 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5035 int err;
39279cc3 5036
b83cc969
LZ
5037 if (btrfs_root_readonly(root))
5038 return -EROFS;
5039
9036c102
YZ
5040 err = inode_change_ok(inode, attr);
5041 if (err)
5042 return err;
2bf5a725 5043
5a3f23d5 5044 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5045 err = btrfs_setsize(inode, attr);
8082510e
YZ
5046 if (err)
5047 return err;
39279cc3 5048 }
9036c102 5049
1025774c
CH
5050 if (attr->ia_valid) {
5051 setattr_copy(inode, attr);
0c4d2d95 5052 inode_inc_iversion(inode);
22c44fe6 5053 err = btrfs_dirty_inode(inode);
1025774c 5054
22c44fe6 5055 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5056 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5057 }
33268eaf 5058
39279cc3
CM
5059 return err;
5060}
61295eb8 5061
131e404a
FDBM
5062/*
5063 * While truncating the inode pages during eviction, we get the VFS calling
5064 * btrfs_invalidatepage() against each page of the inode. This is slow because
5065 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5066 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5067 * extent_state structures over and over, wasting lots of time.
5068 *
5069 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5070 * those expensive operations on a per page basis and do only the ordered io
5071 * finishing, while we release here the extent_map and extent_state structures,
5072 * without the excessive merging and splitting.
5073 */
5074static void evict_inode_truncate_pages(struct inode *inode)
5075{
5076 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5077 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5078 struct rb_node *node;
5079
5080 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5081 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5082
5083 write_lock(&map_tree->lock);
5084 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5085 struct extent_map *em;
5086
5087 node = rb_first(&map_tree->map);
5088 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5089 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5090 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5091 remove_extent_mapping(map_tree, em);
5092 free_extent_map(em);
7064dd5c
FM
5093 if (need_resched()) {
5094 write_unlock(&map_tree->lock);
5095 cond_resched();
5096 write_lock(&map_tree->lock);
5097 }
131e404a
FDBM
5098 }
5099 write_unlock(&map_tree->lock);
5100
6ca07097
FM
5101 /*
5102 * Keep looping until we have no more ranges in the io tree.
5103 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5104 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5105 * still in progress (unlocked the pages in the bio but did not yet
5106 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5107 * ranges can still be locked and eviction started because before
5108 * submitting those bios, which are executed by a separate task (work
5109 * queue kthread), inode references (inode->i_count) were not taken
5110 * (which would be dropped in the end io callback of each bio).
5111 * Therefore here we effectively end up waiting for those bios and
5112 * anyone else holding locked ranges without having bumped the inode's
5113 * reference count - if we don't do it, when they access the inode's
5114 * io_tree to unlock a range it may be too late, leading to an
5115 * use-after-free issue.
5116 */
131e404a
FDBM
5117 spin_lock(&io_tree->lock);
5118 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5119 struct extent_state *state;
5120 struct extent_state *cached_state = NULL;
6ca07097
FM
5121 u64 start;
5122 u64 end;
131e404a
FDBM
5123
5124 node = rb_first(&io_tree->state);
5125 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5126 start = state->start;
5127 end = state->end;
131e404a
FDBM
5128 spin_unlock(&io_tree->lock);
5129
6ca07097 5130 lock_extent_bits(io_tree, start, end, 0, &cached_state);
b9d0b389
QW
5131
5132 /*
5133 * If still has DELALLOC flag, the extent didn't reach disk,
5134 * and its reserved space won't be freed by delayed_ref.
5135 * So we need to free its reserved space here.
5136 * (Refer to comment in btrfs_invalidatepage, case 2)
5137 *
5138 * Note, end is the bytenr of last byte, so we need + 1 here.
5139 */
5140 if (state->state & EXTENT_DELALLOC)
5141 btrfs_qgroup_free_data(inode, start, end - start + 1);
5142
6ca07097 5143 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5144 EXTENT_LOCKED | EXTENT_DIRTY |
5145 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5146 EXTENT_DEFRAG, 1, 1,
5147 &cached_state, GFP_NOFS);
131e404a 5148
7064dd5c 5149 cond_resched();
131e404a
FDBM
5150 spin_lock(&io_tree->lock);
5151 }
5152 spin_unlock(&io_tree->lock);
5153}
5154
bd555975 5155void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5156{
5157 struct btrfs_trans_handle *trans;
5158 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5159 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5160 int steal_from_global = 0;
07127184 5161 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
5162 int ret;
5163
1abe9b8a 5164 trace_btrfs_inode_evict(inode);
5165
131e404a
FDBM
5166 evict_inode_truncate_pages(inode);
5167
69e9c6c6
SB
5168 if (inode->i_nlink &&
5169 ((btrfs_root_refs(&root->root_item) != 0 &&
5170 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5171 btrfs_is_free_space_inode(inode)))
bd555975
AV
5172 goto no_delete;
5173
39279cc3 5174 if (is_bad_inode(inode)) {
7b128766 5175 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5176 goto no_delete;
5177 }
bd555975 5178 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5179 if (!special_file(inode->i_mode))
5180 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5181
f612496b
MX
5182 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5183
c71bf099 5184 if (root->fs_info->log_root_recovering) {
6bf02314 5185 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5186 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5187 goto no_delete;
5188 }
5189
76dda93c 5190 if (inode->i_nlink > 0) {
69e9c6c6
SB
5191 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5192 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5193 goto no_delete;
5194 }
5195
0e8c36a9
MX
5196 ret = btrfs_commit_inode_delayed_inode(inode);
5197 if (ret) {
5198 btrfs_orphan_del(NULL, inode);
5199 goto no_delete;
5200 }
5201
66d8f3dd 5202 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5203 if (!rsv) {
5204 btrfs_orphan_del(NULL, inode);
5205 goto no_delete;
5206 }
4a338542 5207 rsv->size = min_size;
ca7e70f5 5208 rsv->failfast = 1;
726c35fa 5209 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5210
dbe674a9 5211 btrfs_i_size_write(inode, 0);
5f39d397 5212
4289a667 5213 /*
8407aa46
MX
5214 * This is a bit simpler than btrfs_truncate since we've already
5215 * reserved our space for our orphan item in the unlink, so we just
5216 * need to reserve some slack space in case we add bytes and update
5217 * inode item when doing the truncate.
4289a667 5218 */
8082510e 5219 while (1) {
08e007d2
MX
5220 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5221 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5222
5223 /*
5224 * Try and steal from the global reserve since we will
5225 * likely not use this space anyway, we want to try as
5226 * hard as possible to get this to work.
5227 */
5228 if (ret)
3bce876f
JB
5229 steal_from_global++;
5230 else
5231 steal_from_global = 0;
5232 ret = 0;
d68fc57b 5233
3bce876f
JB
5234 /*
5235 * steal_from_global == 0: we reserved stuff, hooray!
5236 * steal_from_global == 1: we didn't reserve stuff, boo!
5237 * steal_from_global == 2: we've committed, still not a lot of
5238 * room but maybe we'll have room in the global reserve this
5239 * time.
5240 * steal_from_global == 3: abandon all hope!
5241 */
5242 if (steal_from_global > 2) {
c2cf52eb
SK
5243 btrfs_warn(root->fs_info,
5244 "Could not get space for a delete, will truncate on mount %d",
5245 ret);
4289a667
JB
5246 btrfs_orphan_del(NULL, inode);
5247 btrfs_free_block_rsv(root, rsv);
5248 goto no_delete;
d68fc57b 5249 }
7b128766 5250
0e8c36a9 5251 trans = btrfs_join_transaction(root);
4289a667
JB
5252 if (IS_ERR(trans)) {
5253 btrfs_orphan_del(NULL, inode);
5254 btrfs_free_block_rsv(root, rsv);
5255 goto no_delete;
d68fc57b 5256 }
7b128766 5257
3bce876f
JB
5258 /*
5259 * We can't just steal from the global reserve, we need tomake
5260 * sure there is room to do it, if not we need to commit and try
5261 * again.
5262 */
5263 if (steal_from_global) {
5264 if (!btrfs_check_space_for_delayed_refs(trans, root))
5265 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5266 min_size);
5267 else
5268 ret = -ENOSPC;
5269 }
5270
5271 /*
5272 * Couldn't steal from the global reserve, we have too much
5273 * pending stuff built up, commit the transaction and try it
5274 * again.
5275 */
5276 if (ret) {
5277 ret = btrfs_commit_transaction(trans, root);
5278 if (ret) {
5279 btrfs_orphan_del(NULL, inode);
5280 btrfs_free_block_rsv(root, rsv);
5281 goto no_delete;
5282 }
5283 continue;
5284 } else {
5285 steal_from_global = 0;
5286 }
5287
4289a667
JB
5288 trans->block_rsv = rsv;
5289
d68fc57b 5290 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5291 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5292 break;
85e21bac 5293
8407aa46 5294 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5295 btrfs_end_transaction(trans, root);
5296 trans = NULL;
b53d3f5d 5297 btrfs_btree_balance_dirty(root);
8082510e 5298 }
5f39d397 5299
4289a667
JB
5300 btrfs_free_block_rsv(root, rsv);
5301
4ef31a45
JB
5302 /*
5303 * Errors here aren't a big deal, it just means we leave orphan items
5304 * in the tree. They will be cleaned up on the next mount.
5305 */
8082510e 5306 if (ret == 0) {
4289a667 5307 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5308 btrfs_orphan_del(trans, inode);
5309 } else {
5310 btrfs_orphan_del(NULL, inode);
8082510e 5311 }
54aa1f4d 5312
4289a667 5313 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5314 if (!(root == root->fs_info->tree_root ||
5315 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5316 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5317
54aa1f4d 5318 btrfs_end_transaction(trans, root);
b53d3f5d 5319 btrfs_btree_balance_dirty(root);
39279cc3 5320no_delete:
89042e5a 5321 btrfs_remove_delayed_node(inode);
dbd5768f 5322 clear_inode(inode);
8082510e 5323 return;
39279cc3
CM
5324}
5325
5326/*
5327 * this returns the key found in the dir entry in the location pointer.
5328 * If no dir entries were found, location->objectid is 0.
5329 */
5330static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5331 struct btrfs_key *location)
5332{
5333 const char *name = dentry->d_name.name;
5334 int namelen = dentry->d_name.len;
5335 struct btrfs_dir_item *di;
5336 struct btrfs_path *path;
5337 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5338 int ret = 0;
39279cc3
CM
5339
5340 path = btrfs_alloc_path();
d8926bb3
MF
5341 if (!path)
5342 return -ENOMEM;
3954401f 5343
33345d01 5344 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5345 namelen, 0);
0d9f7f3e
Y
5346 if (IS_ERR(di))
5347 ret = PTR_ERR(di);
d397712b 5348
c704005d 5349 if (IS_ERR_OR_NULL(di))
3954401f 5350 goto out_err;
d397712b 5351
5f39d397 5352 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5353out:
39279cc3
CM
5354 btrfs_free_path(path);
5355 return ret;
3954401f
CM
5356out_err:
5357 location->objectid = 0;
5358 goto out;
39279cc3
CM
5359}
5360
5361/*
5362 * when we hit a tree root in a directory, the btrfs part of the inode
5363 * needs to be changed to reflect the root directory of the tree root. This
5364 * is kind of like crossing a mount point.
5365 */
5366static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5367 struct inode *dir,
5368 struct dentry *dentry,
5369 struct btrfs_key *location,
5370 struct btrfs_root **sub_root)
39279cc3 5371{
4df27c4d
YZ
5372 struct btrfs_path *path;
5373 struct btrfs_root *new_root;
5374 struct btrfs_root_ref *ref;
5375 struct extent_buffer *leaf;
1d4c08e0 5376 struct btrfs_key key;
4df27c4d
YZ
5377 int ret;
5378 int err = 0;
39279cc3 5379
4df27c4d
YZ
5380 path = btrfs_alloc_path();
5381 if (!path) {
5382 err = -ENOMEM;
5383 goto out;
5384 }
39279cc3 5385
4df27c4d 5386 err = -ENOENT;
1d4c08e0
DS
5387 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5388 key.type = BTRFS_ROOT_REF_KEY;
5389 key.offset = location->objectid;
5390
5391 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5392 0, 0);
4df27c4d
YZ
5393 if (ret) {
5394 if (ret < 0)
5395 err = ret;
5396 goto out;
5397 }
39279cc3 5398
4df27c4d
YZ
5399 leaf = path->nodes[0];
5400 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5401 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5402 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5403 goto out;
39279cc3 5404
4df27c4d
YZ
5405 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5406 (unsigned long)(ref + 1),
5407 dentry->d_name.len);
5408 if (ret)
5409 goto out;
5410
b3b4aa74 5411 btrfs_release_path(path);
4df27c4d
YZ
5412
5413 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5414 if (IS_ERR(new_root)) {
5415 err = PTR_ERR(new_root);
5416 goto out;
5417 }
5418
4df27c4d
YZ
5419 *sub_root = new_root;
5420 location->objectid = btrfs_root_dirid(&new_root->root_item);
5421 location->type = BTRFS_INODE_ITEM_KEY;
5422 location->offset = 0;
5423 err = 0;
5424out:
5425 btrfs_free_path(path);
5426 return err;
39279cc3
CM
5427}
5428
5d4f98a2
YZ
5429static void inode_tree_add(struct inode *inode)
5430{
5431 struct btrfs_root *root = BTRFS_I(inode)->root;
5432 struct btrfs_inode *entry;
03e860bd
FNP
5433 struct rb_node **p;
5434 struct rb_node *parent;
cef21937 5435 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5436 u64 ino = btrfs_ino(inode);
5d4f98a2 5437
1d3382cb 5438 if (inode_unhashed(inode))
76dda93c 5439 return;
e1409cef 5440 parent = NULL;
5d4f98a2 5441 spin_lock(&root->inode_lock);
e1409cef 5442 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5443 while (*p) {
5444 parent = *p;
5445 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5446
33345d01 5447 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5448 p = &parent->rb_left;
33345d01 5449 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5450 p = &parent->rb_right;
5d4f98a2
YZ
5451 else {
5452 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5453 (I_WILL_FREE | I_FREEING)));
cef21937 5454 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5455 RB_CLEAR_NODE(parent);
5456 spin_unlock(&root->inode_lock);
cef21937 5457 return;
5d4f98a2
YZ
5458 }
5459 }
cef21937
FDBM
5460 rb_link_node(new, parent, p);
5461 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5462 spin_unlock(&root->inode_lock);
5463}
5464
5465static void inode_tree_del(struct inode *inode)
5466{
5467 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5468 int empty = 0;
5d4f98a2 5469
03e860bd 5470 spin_lock(&root->inode_lock);
5d4f98a2 5471 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5472 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5473 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5474 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5475 }
03e860bd 5476 spin_unlock(&root->inode_lock);
76dda93c 5477
69e9c6c6 5478 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5479 synchronize_srcu(&root->fs_info->subvol_srcu);
5480 spin_lock(&root->inode_lock);
5481 empty = RB_EMPTY_ROOT(&root->inode_tree);
5482 spin_unlock(&root->inode_lock);
5483 if (empty)
5484 btrfs_add_dead_root(root);
5485 }
5486}
5487
143bede5 5488void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5489{
5490 struct rb_node *node;
5491 struct rb_node *prev;
5492 struct btrfs_inode *entry;
5493 struct inode *inode;
5494 u64 objectid = 0;
5495
7813b3db
LB
5496 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5497 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5498
5499 spin_lock(&root->inode_lock);
5500again:
5501 node = root->inode_tree.rb_node;
5502 prev = NULL;
5503 while (node) {
5504 prev = node;
5505 entry = rb_entry(node, struct btrfs_inode, rb_node);
5506
33345d01 5507 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5508 node = node->rb_left;
33345d01 5509 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5510 node = node->rb_right;
5511 else
5512 break;
5513 }
5514 if (!node) {
5515 while (prev) {
5516 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5517 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5518 node = prev;
5519 break;
5520 }
5521 prev = rb_next(prev);
5522 }
5523 }
5524 while (node) {
5525 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5526 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5527 inode = igrab(&entry->vfs_inode);
5528 if (inode) {
5529 spin_unlock(&root->inode_lock);
5530 if (atomic_read(&inode->i_count) > 1)
5531 d_prune_aliases(inode);
5532 /*
45321ac5 5533 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5534 * the inode cache when its usage count
5535 * hits zero.
5536 */
5537 iput(inode);
5538 cond_resched();
5539 spin_lock(&root->inode_lock);
5540 goto again;
5541 }
5542
5543 if (cond_resched_lock(&root->inode_lock))
5544 goto again;
5545
5546 node = rb_next(node);
5547 }
5548 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5549}
5550
e02119d5
CM
5551static int btrfs_init_locked_inode(struct inode *inode, void *p)
5552{
5553 struct btrfs_iget_args *args = p;
90d3e592
CM
5554 inode->i_ino = args->location->objectid;
5555 memcpy(&BTRFS_I(inode)->location, args->location,
5556 sizeof(*args->location));
e02119d5 5557 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5558 return 0;
5559}
5560
5561static int btrfs_find_actor(struct inode *inode, void *opaque)
5562{
5563 struct btrfs_iget_args *args = opaque;
90d3e592 5564 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5565 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5566}
5567
5d4f98a2 5568static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5569 struct btrfs_key *location,
5d4f98a2 5570 struct btrfs_root *root)
39279cc3
CM
5571{
5572 struct inode *inode;
5573 struct btrfs_iget_args args;
90d3e592 5574 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5575
90d3e592 5576 args.location = location;
39279cc3
CM
5577 args.root = root;
5578
778ba82b 5579 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5580 btrfs_init_locked_inode,
5581 (void *)&args);
5582 return inode;
5583}
5584
1a54ef8c
BR
5585/* Get an inode object given its location and corresponding root.
5586 * Returns in *is_new if the inode was read from disk
5587 */
5588struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5589 struct btrfs_root *root, int *new)
1a54ef8c
BR
5590{
5591 struct inode *inode;
5592
90d3e592 5593 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5594 if (!inode)
5d4f98a2 5595 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5596
5597 if (inode->i_state & I_NEW) {
1a54ef8c 5598 btrfs_read_locked_inode(inode);
1748f843
MF
5599 if (!is_bad_inode(inode)) {
5600 inode_tree_add(inode);
5601 unlock_new_inode(inode);
5602 if (new)
5603 *new = 1;
5604 } else {
e0b6d65b
ST
5605 unlock_new_inode(inode);
5606 iput(inode);
5607 inode = ERR_PTR(-ESTALE);
1748f843
MF
5608 }
5609 }
5610
1a54ef8c
BR
5611 return inode;
5612}
5613
4df27c4d
YZ
5614static struct inode *new_simple_dir(struct super_block *s,
5615 struct btrfs_key *key,
5616 struct btrfs_root *root)
5617{
5618 struct inode *inode = new_inode(s);
5619
5620 if (!inode)
5621 return ERR_PTR(-ENOMEM);
5622
4df27c4d
YZ
5623 BTRFS_I(inode)->root = root;
5624 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5625 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5626
5627 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5628 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5629 inode->i_fop = &simple_dir_operations;
5630 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
9cc97d64 5631 inode->i_mtime = CURRENT_TIME;
5632 inode->i_atime = inode->i_mtime;
5633 inode->i_ctime = inode->i_mtime;
5634 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5635
5636 return inode;
5637}
5638
3de4586c 5639struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5640{
d397712b 5641 struct inode *inode;
4df27c4d 5642 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5643 struct btrfs_root *sub_root = root;
5644 struct btrfs_key location;
76dda93c 5645 int index;
b4aff1f8 5646 int ret = 0;
39279cc3
CM
5647
5648 if (dentry->d_name.len > BTRFS_NAME_LEN)
5649 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5650
39e3c955 5651 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5652 if (ret < 0)
5653 return ERR_PTR(ret);
5f39d397 5654
4df27c4d 5655 if (location.objectid == 0)
5662344b 5656 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5657
5658 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5659 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5660 return inode;
5661 }
5662
5663 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5664
76dda93c 5665 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5666 ret = fixup_tree_root_location(root, dir, dentry,
5667 &location, &sub_root);
5668 if (ret < 0) {
5669 if (ret != -ENOENT)
5670 inode = ERR_PTR(ret);
5671 else
5672 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5673 } else {
73f73415 5674 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5675 }
76dda93c
YZ
5676 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5677
34d19bad 5678 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5679 down_read(&root->fs_info->cleanup_work_sem);
5680 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5681 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5682 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5683 if (ret) {
5684 iput(inode);
66b4ffd1 5685 inode = ERR_PTR(ret);
01cd3367 5686 }
c71bf099
YZ
5687 }
5688
3de4586c
CM
5689 return inode;
5690}
5691
fe15ce44 5692static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5693{
5694 struct btrfs_root *root;
2b0143b5 5695 struct inode *inode = d_inode(dentry);
76dda93c 5696
848cce0d 5697 if (!inode && !IS_ROOT(dentry))
2b0143b5 5698 inode = d_inode(dentry->d_parent);
76dda93c 5699
848cce0d
LZ
5700 if (inode) {
5701 root = BTRFS_I(inode)->root;
efefb143
YZ
5702 if (btrfs_root_refs(&root->root_item) == 0)
5703 return 1;
848cce0d
LZ
5704
5705 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5706 return 1;
efefb143 5707 }
76dda93c
YZ
5708 return 0;
5709}
5710
b4aff1f8
JB
5711static void btrfs_dentry_release(struct dentry *dentry)
5712{
944a4515 5713 kfree(dentry->d_fsdata);
b4aff1f8
JB
5714}
5715
3de4586c 5716static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5717 unsigned int flags)
3de4586c 5718{
5662344b 5719 struct inode *inode;
a66e7cc6 5720
5662344b
TI
5721 inode = btrfs_lookup_dentry(dir, dentry);
5722 if (IS_ERR(inode)) {
5723 if (PTR_ERR(inode) == -ENOENT)
5724 inode = NULL;
5725 else
5726 return ERR_CAST(inode);
5727 }
5728
41d28bca 5729 return d_splice_alias(inode, dentry);
39279cc3
CM
5730}
5731
16cdcec7 5732unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5733 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5734};
5735
9cdda8d3 5736static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5737{
9cdda8d3 5738 struct inode *inode = file_inode(file);
39279cc3
CM
5739 struct btrfs_root *root = BTRFS_I(inode)->root;
5740 struct btrfs_item *item;
5741 struct btrfs_dir_item *di;
5742 struct btrfs_key key;
5f39d397 5743 struct btrfs_key found_key;
39279cc3 5744 struct btrfs_path *path;
16cdcec7
MX
5745 struct list_head ins_list;
5746 struct list_head del_list;
39279cc3 5747 int ret;
5f39d397 5748 struct extent_buffer *leaf;
39279cc3 5749 int slot;
39279cc3
CM
5750 unsigned char d_type;
5751 int over = 0;
5752 u32 di_cur;
5753 u32 di_total;
5754 u32 di_len;
5755 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5756 char tmp_name[32];
5757 char *name_ptr;
5758 int name_len;
9cdda8d3 5759 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5760
5761 /* FIXME, use a real flag for deciding about the key type */
5762 if (root->fs_info->tree_root == root)
5763 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5764
9cdda8d3
AV
5765 if (!dir_emit_dots(file, ctx))
5766 return 0;
5767
49593bfa 5768 path = btrfs_alloc_path();
16cdcec7
MX
5769 if (!path)
5770 return -ENOMEM;
ff5714cc 5771
026fd317 5772 path->reada = 1;
49593bfa 5773
16cdcec7
MX
5774 if (key_type == BTRFS_DIR_INDEX_KEY) {
5775 INIT_LIST_HEAD(&ins_list);
5776 INIT_LIST_HEAD(&del_list);
5777 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5778 }
5779
962a298f 5780 key.type = key_type;
9cdda8d3 5781 key.offset = ctx->pos;
33345d01 5782 key.objectid = btrfs_ino(inode);
5f39d397 5783
39279cc3
CM
5784 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5785 if (ret < 0)
5786 goto err;
49593bfa
DW
5787
5788 while (1) {
5f39d397 5789 leaf = path->nodes[0];
39279cc3 5790 slot = path->slots[0];
b9e03af0
LZ
5791 if (slot >= btrfs_header_nritems(leaf)) {
5792 ret = btrfs_next_leaf(root, path);
5793 if (ret < 0)
5794 goto err;
5795 else if (ret > 0)
5796 break;
5797 continue;
39279cc3 5798 }
3de4586c 5799
dd3cc16b 5800 item = btrfs_item_nr(slot);
5f39d397
CM
5801 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5802
5803 if (found_key.objectid != key.objectid)
39279cc3 5804 break;
962a298f 5805 if (found_key.type != key_type)
39279cc3 5806 break;
9cdda8d3 5807 if (found_key.offset < ctx->pos)
b9e03af0 5808 goto next;
16cdcec7
MX
5809 if (key_type == BTRFS_DIR_INDEX_KEY &&
5810 btrfs_should_delete_dir_index(&del_list,
5811 found_key.offset))
5812 goto next;
5f39d397 5813
9cdda8d3 5814 ctx->pos = found_key.offset;
16cdcec7 5815 is_curr = 1;
49593bfa 5816
39279cc3
CM
5817 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5818 di_cur = 0;
5f39d397 5819 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5820
5821 while (di_cur < di_total) {
5f39d397
CM
5822 struct btrfs_key location;
5823
22a94d44
JB
5824 if (verify_dir_item(root, leaf, di))
5825 break;
5826
5f39d397 5827 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5828 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5829 name_ptr = tmp_name;
5830 } else {
5831 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5832 if (!name_ptr) {
5833 ret = -ENOMEM;
5834 goto err;
5835 }
5f39d397
CM
5836 }
5837 read_extent_buffer(leaf, name_ptr,
5838 (unsigned long)(di + 1), name_len);
5839
5840 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5841 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5842
fede766f 5843
3de4586c 5844 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5845 * skip it.
5846 *
5847 * In contrast to old kernels, we insert the snapshot's
5848 * dir item and dir index after it has been created, so
5849 * we won't find a reference to our own snapshot. We
5850 * still keep the following code for backward
5851 * compatibility.
3de4586c
CM
5852 */
5853 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5854 location.objectid == root->root_key.objectid) {
5855 over = 0;
5856 goto skip;
5857 }
9cdda8d3
AV
5858 over = !dir_emit(ctx, name_ptr, name_len,
5859 location.objectid, d_type);
5f39d397 5860
3de4586c 5861skip:
5f39d397
CM
5862 if (name_ptr != tmp_name)
5863 kfree(name_ptr);
5864
39279cc3
CM
5865 if (over)
5866 goto nopos;
5103e947 5867 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5868 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5869 di_cur += di_len;
5870 di = (struct btrfs_dir_item *)((char *)di + di_len);
5871 }
b9e03af0
LZ
5872next:
5873 path->slots[0]++;
39279cc3 5874 }
49593bfa 5875
16cdcec7
MX
5876 if (key_type == BTRFS_DIR_INDEX_KEY) {
5877 if (is_curr)
9cdda8d3
AV
5878 ctx->pos++;
5879 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5880 if (ret)
5881 goto nopos;
5882 }
5883
49593bfa 5884 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5885 ctx->pos++;
5886
5887 /*
5888 * Stop new entries from being returned after we return the last
5889 * entry.
5890 *
5891 * New directory entries are assigned a strictly increasing
5892 * offset. This means that new entries created during readdir
5893 * are *guaranteed* to be seen in the future by that readdir.
5894 * This has broken buggy programs which operate on names as
5895 * they're returned by readdir. Until we re-use freed offsets
5896 * we have this hack to stop new entries from being returned
5897 * under the assumption that they'll never reach this huge
5898 * offset.
5899 *
5900 * This is being careful not to overflow 32bit loff_t unless the
5901 * last entry requires it because doing so has broken 32bit apps
5902 * in the past.
5903 */
5904 if (key_type == BTRFS_DIR_INDEX_KEY) {
5905 if (ctx->pos >= INT_MAX)
5906 ctx->pos = LLONG_MAX;
5907 else
5908 ctx->pos = INT_MAX;
5909 }
39279cc3
CM
5910nopos:
5911 ret = 0;
5912err:
16cdcec7
MX
5913 if (key_type == BTRFS_DIR_INDEX_KEY)
5914 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5915 btrfs_free_path(path);
39279cc3
CM
5916 return ret;
5917}
5918
a9185b41 5919int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5920{
5921 struct btrfs_root *root = BTRFS_I(inode)->root;
5922 struct btrfs_trans_handle *trans;
5923 int ret = 0;
0af3d00b 5924 bool nolock = false;
39279cc3 5925
72ac3c0d 5926 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5927 return 0;
5928
83eea1f1 5929 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5930 nolock = true;
0af3d00b 5931
a9185b41 5932 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5933 if (nolock)
7a7eaa40 5934 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5935 else
7a7eaa40 5936 trans = btrfs_join_transaction(root);
3612b495
TI
5937 if (IS_ERR(trans))
5938 return PTR_ERR(trans);
a698d075 5939 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5940 }
5941 return ret;
5942}
5943
5944/*
54aa1f4d 5945 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5946 * inode changes. But, it is most likely to find the inode in cache.
5947 * FIXME, needs more benchmarking...there are no reasons other than performance
5948 * to keep or drop this code.
5949 */
48a3b636 5950static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5951{
5952 struct btrfs_root *root = BTRFS_I(inode)->root;
5953 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5954 int ret;
5955
72ac3c0d 5956 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5957 return 0;
39279cc3 5958
7a7eaa40 5959 trans = btrfs_join_transaction(root);
22c44fe6
JB
5960 if (IS_ERR(trans))
5961 return PTR_ERR(trans);
8929ecfa
YZ
5962
5963 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5964 if (ret && ret == -ENOSPC) {
5965 /* whoops, lets try again with the full transaction */
5966 btrfs_end_transaction(trans, root);
5967 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5968 if (IS_ERR(trans))
5969 return PTR_ERR(trans);
8929ecfa 5970
94b60442 5971 ret = btrfs_update_inode(trans, root, inode);
94b60442 5972 }
39279cc3 5973 btrfs_end_transaction(trans, root);
16cdcec7
MX
5974 if (BTRFS_I(inode)->delayed_node)
5975 btrfs_balance_delayed_items(root);
22c44fe6
JB
5976
5977 return ret;
5978}
5979
5980/*
5981 * This is a copy of file_update_time. We need this so we can return error on
5982 * ENOSPC for updating the inode in the case of file write and mmap writes.
5983 */
e41f941a
JB
5984static int btrfs_update_time(struct inode *inode, struct timespec *now,
5985 int flags)
22c44fe6 5986{
2bc55652
AB
5987 struct btrfs_root *root = BTRFS_I(inode)->root;
5988
5989 if (btrfs_root_readonly(root))
5990 return -EROFS;
5991
e41f941a 5992 if (flags & S_VERSION)
22c44fe6 5993 inode_inc_iversion(inode);
e41f941a
JB
5994 if (flags & S_CTIME)
5995 inode->i_ctime = *now;
5996 if (flags & S_MTIME)
5997 inode->i_mtime = *now;
5998 if (flags & S_ATIME)
5999 inode->i_atime = *now;
6000 return btrfs_dirty_inode(inode);
39279cc3
CM
6001}
6002
d352ac68
CM
6003/*
6004 * find the highest existing sequence number in a directory
6005 * and then set the in-memory index_cnt variable to reflect
6006 * free sequence numbers
6007 */
aec7477b
JB
6008static int btrfs_set_inode_index_count(struct inode *inode)
6009{
6010 struct btrfs_root *root = BTRFS_I(inode)->root;
6011 struct btrfs_key key, found_key;
6012 struct btrfs_path *path;
6013 struct extent_buffer *leaf;
6014 int ret;
6015
33345d01 6016 key.objectid = btrfs_ino(inode);
962a298f 6017 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6018 key.offset = (u64)-1;
6019
6020 path = btrfs_alloc_path();
6021 if (!path)
6022 return -ENOMEM;
6023
6024 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6025 if (ret < 0)
6026 goto out;
6027 /* FIXME: we should be able to handle this */
6028 if (ret == 0)
6029 goto out;
6030 ret = 0;
6031
6032 /*
6033 * MAGIC NUMBER EXPLANATION:
6034 * since we search a directory based on f_pos we have to start at 2
6035 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6036 * else has to start at 2
6037 */
6038 if (path->slots[0] == 0) {
6039 BTRFS_I(inode)->index_cnt = 2;
6040 goto out;
6041 }
6042
6043 path->slots[0]--;
6044
6045 leaf = path->nodes[0];
6046 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6047
33345d01 6048 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6049 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6050 BTRFS_I(inode)->index_cnt = 2;
6051 goto out;
6052 }
6053
6054 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6055out:
6056 btrfs_free_path(path);
6057 return ret;
6058}
6059
d352ac68
CM
6060/*
6061 * helper to find a free sequence number in a given directory. This current
6062 * code is very simple, later versions will do smarter things in the btree
6063 */
3de4586c 6064int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6065{
6066 int ret = 0;
6067
6068 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6069 ret = btrfs_inode_delayed_dir_index_count(dir);
6070 if (ret) {
6071 ret = btrfs_set_inode_index_count(dir);
6072 if (ret)
6073 return ret;
6074 }
aec7477b
JB
6075 }
6076
00e4e6b3 6077 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6078 BTRFS_I(dir)->index_cnt++;
6079
6080 return ret;
6081}
6082
b0d5d10f
CM
6083static int btrfs_insert_inode_locked(struct inode *inode)
6084{
6085 struct btrfs_iget_args args;
6086 args.location = &BTRFS_I(inode)->location;
6087 args.root = BTRFS_I(inode)->root;
6088
6089 return insert_inode_locked4(inode,
6090 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6091 btrfs_find_actor, &args);
6092}
6093
39279cc3
CM
6094static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6095 struct btrfs_root *root,
aec7477b 6096 struct inode *dir,
9c58309d 6097 const char *name, int name_len,
175a4eb7
AV
6098 u64 ref_objectid, u64 objectid,
6099 umode_t mode, u64 *index)
39279cc3
CM
6100{
6101 struct inode *inode;
5f39d397 6102 struct btrfs_inode_item *inode_item;
39279cc3 6103 struct btrfs_key *location;
5f39d397 6104 struct btrfs_path *path;
9c58309d
CM
6105 struct btrfs_inode_ref *ref;
6106 struct btrfs_key key[2];
6107 u32 sizes[2];
ef3b9af5 6108 int nitems = name ? 2 : 1;
9c58309d 6109 unsigned long ptr;
39279cc3 6110 int ret;
39279cc3 6111
5f39d397 6112 path = btrfs_alloc_path();
d8926bb3
MF
6113 if (!path)
6114 return ERR_PTR(-ENOMEM);
5f39d397 6115
39279cc3 6116 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6117 if (!inode) {
6118 btrfs_free_path(path);
39279cc3 6119 return ERR_PTR(-ENOMEM);
8fb27640 6120 }
39279cc3 6121
5762b5c9
FM
6122 /*
6123 * O_TMPFILE, set link count to 0, so that after this point,
6124 * we fill in an inode item with the correct link count.
6125 */
6126 if (!name)
6127 set_nlink(inode, 0);
6128
581bb050
LZ
6129 /*
6130 * we have to initialize this early, so we can reclaim the inode
6131 * number if we fail afterwards in this function.
6132 */
6133 inode->i_ino = objectid;
6134
ef3b9af5 6135 if (dir && name) {
1abe9b8a 6136 trace_btrfs_inode_request(dir);
6137
3de4586c 6138 ret = btrfs_set_inode_index(dir, index);
09771430 6139 if (ret) {
8fb27640 6140 btrfs_free_path(path);
09771430 6141 iput(inode);
aec7477b 6142 return ERR_PTR(ret);
09771430 6143 }
ef3b9af5
FM
6144 } else if (dir) {
6145 *index = 0;
aec7477b
JB
6146 }
6147 /*
6148 * index_cnt is ignored for everything but a dir,
6149 * btrfs_get_inode_index_count has an explanation for the magic
6150 * number
6151 */
6152 BTRFS_I(inode)->index_cnt = 2;
67de1176 6153 BTRFS_I(inode)->dir_index = *index;
39279cc3 6154 BTRFS_I(inode)->root = root;
e02119d5 6155 BTRFS_I(inode)->generation = trans->transid;
76195853 6156 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6157
5dc562c5
JB
6158 /*
6159 * We could have gotten an inode number from somebody who was fsynced
6160 * and then removed in this same transaction, so let's just set full
6161 * sync since it will be a full sync anyway and this will blow away the
6162 * old info in the log.
6163 */
6164 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6165
9c58309d 6166 key[0].objectid = objectid;
962a298f 6167 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6168 key[0].offset = 0;
6169
9c58309d 6170 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6171
6172 if (name) {
6173 /*
6174 * Start new inodes with an inode_ref. This is slightly more
6175 * efficient for small numbers of hard links since they will
6176 * be packed into one item. Extended refs will kick in if we
6177 * add more hard links than can fit in the ref item.
6178 */
6179 key[1].objectid = objectid;
962a298f 6180 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6181 key[1].offset = ref_objectid;
6182
6183 sizes[1] = name_len + sizeof(*ref);
6184 }
9c58309d 6185
b0d5d10f
CM
6186 location = &BTRFS_I(inode)->location;
6187 location->objectid = objectid;
6188 location->offset = 0;
962a298f 6189 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6190
6191 ret = btrfs_insert_inode_locked(inode);
6192 if (ret < 0)
6193 goto fail;
6194
b9473439 6195 path->leave_spinning = 1;
ef3b9af5 6196 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6197 if (ret != 0)
b0d5d10f 6198 goto fail_unlock;
5f39d397 6199
ecc11fab 6200 inode_init_owner(inode, dir, mode);
a76a3cd4 6201 inode_set_bytes(inode, 0);
9cc97d64 6202
6203 inode->i_mtime = CURRENT_TIME;
6204 inode->i_atime = inode->i_mtime;
6205 inode->i_ctime = inode->i_mtime;
6206 BTRFS_I(inode)->i_otime = inode->i_mtime;
6207
5f39d397
CM
6208 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6209 struct btrfs_inode_item);
293f7e07
LZ
6210 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6211 sizeof(*inode_item));
e02119d5 6212 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6213
ef3b9af5
FM
6214 if (name) {
6215 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6216 struct btrfs_inode_ref);
6217 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6218 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6219 ptr = (unsigned long)(ref + 1);
6220 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6221 }
9c58309d 6222
5f39d397
CM
6223 btrfs_mark_buffer_dirty(path->nodes[0]);
6224 btrfs_free_path(path);
6225
6cbff00f
CH
6226 btrfs_inherit_iflags(inode, dir);
6227
569254b0 6228 if (S_ISREG(mode)) {
94272164
CM
6229 if (btrfs_test_opt(root, NODATASUM))
6230 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 6231 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
6232 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6233 BTRFS_INODE_NODATASUM;
94272164
CM
6234 }
6235
5d4f98a2 6236 inode_tree_add(inode);
1abe9b8a 6237
6238 trace_btrfs_inode_new(inode);
1973f0fa 6239 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6240
8ea05e3a
AB
6241 btrfs_update_root_times(trans, root);
6242
63541927
FDBM
6243 ret = btrfs_inode_inherit_props(trans, inode, dir);
6244 if (ret)
6245 btrfs_err(root->fs_info,
6246 "error inheriting props for ino %llu (root %llu): %d",
6247 btrfs_ino(inode), root->root_key.objectid, ret);
6248
39279cc3 6249 return inode;
b0d5d10f
CM
6250
6251fail_unlock:
6252 unlock_new_inode(inode);
5f39d397 6253fail:
ef3b9af5 6254 if (dir && name)
aec7477b 6255 BTRFS_I(dir)->index_cnt--;
5f39d397 6256 btrfs_free_path(path);
09771430 6257 iput(inode);
5f39d397 6258 return ERR_PTR(ret);
39279cc3
CM
6259}
6260
6261static inline u8 btrfs_inode_type(struct inode *inode)
6262{
6263 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6264}
6265
d352ac68
CM
6266/*
6267 * utility function to add 'inode' into 'parent_inode' with
6268 * a give name and a given sequence number.
6269 * if 'add_backref' is true, also insert a backref from the
6270 * inode to the parent directory.
6271 */
e02119d5
CM
6272int btrfs_add_link(struct btrfs_trans_handle *trans,
6273 struct inode *parent_inode, struct inode *inode,
6274 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6275{
4df27c4d 6276 int ret = 0;
39279cc3 6277 struct btrfs_key key;
e02119d5 6278 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6279 u64 ino = btrfs_ino(inode);
6280 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6281
33345d01 6282 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6283 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6284 } else {
33345d01 6285 key.objectid = ino;
962a298f 6286 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6287 key.offset = 0;
6288 }
6289
33345d01 6290 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6291 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6292 key.objectid, root->root_key.objectid,
33345d01 6293 parent_ino, index, name, name_len);
4df27c4d 6294 } else if (add_backref) {
33345d01
LZ
6295 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6296 parent_ino, index);
4df27c4d 6297 }
39279cc3 6298
79787eaa
JM
6299 /* Nothing to clean up yet */
6300 if (ret)
6301 return ret;
4df27c4d 6302
79787eaa
JM
6303 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6304 parent_inode, &key,
6305 btrfs_inode_type(inode), index);
9c52057c 6306 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6307 goto fail_dir_item;
6308 else if (ret) {
6309 btrfs_abort_transaction(trans, root, ret);
6310 return ret;
39279cc3 6311 }
79787eaa
JM
6312
6313 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6314 name_len * 2);
0c4d2d95 6315 inode_inc_iversion(parent_inode);
79787eaa
JM
6316 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6317 ret = btrfs_update_inode(trans, root, parent_inode);
6318 if (ret)
6319 btrfs_abort_transaction(trans, root, ret);
39279cc3 6320 return ret;
fe66a05a
CM
6321
6322fail_dir_item:
6323 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6324 u64 local_index;
6325 int err;
6326 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6327 key.objectid, root->root_key.objectid,
6328 parent_ino, &local_index, name, name_len);
6329
6330 } else if (add_backref) {
6331 u64 local_index;
6332 int err;
6333
6334 err = btrfs_del_inode_ref(trans, root, name, name_len,
6335 ino, parent_ino, &local_index);
6336 }
6337 return ret;
39279cc3
CM
6338}
6339
6340static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6341 struct inode *dir, struct dentry *dentry,
6342 struct inode *inode, int backref, u64 index)
39279cc3 6343{
a1b075d2
JB
6344 int err = btrfs_add_link(trans, dir, inode,
6345 dentry->d_name.name, dentry->d_name.len,
6346 backref, index);
39279cc3
CM
6347 if (err > 0)
6348 err = -EEXIST;
6349 return err;
6350}
6351
618e21d5 6352static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6353 umode_t mode, dev_t rdev)
618e21d5
JB
6354{
6355 struct btrfs_trans_handle *trans;
6356 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6357 struct inode *inode = NULL;
618e21d5
JB
6358 int err;
6359 int drop_inode = 0;
6360 u64 objectid;
00e4e6b3 6361 u64 index = 0;
618e21d5 6362
9ed74f2d
JB
6363 /*
6364 * 2 for inode item and ref
6365 * 2 for dir items
6366 * 1 for xattr if selinux is on
6367 */
a22285a6
YZ
6368 trans = btrfs_start_transaction(root, 5);
6369 if (IS_ERR(trans))
6370 return PTR_ERR(trans);
1832a6d5 6371
581bb050
LZ
6372 err = btrfs_find_free_ino(root, &objectid);
6373 if (err)
6374 goto out_unlock;
6375
aec7477b 6376 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6377 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6378 mode, &index);
7cf96da3
TI
6379 if (IS_ERR(inode)) {
6380 err = PTR_ERR(inode);
618e21d5 6381 goto out_unlock;
7cf96da3 6382 }
618e21d5 6383
ad19db71
CS
6384 /*
6385 * If the active LSM wants to access the inode during
6386 * d_instantiate it needs these. Smack checks to see
6387 * if the filesystem supports xattrs by looking at the
6388 * ops vector.
6389 */
ad19db71 6390 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6391 init_special_inode(inode, inode->i_mode, rdev);
6392
6393 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6394 if (err)
b0d5d10f
CM
6395 goto out_unlock_inode;
6396
6397 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6398 if (err) {
6399 goto out_unlock_inode;
6400 } else {
1b4ab1bb 6401 btrfs_update_inode(trans, root, inode);
b0d5d10f 6402 unlock_new_inode(inode);
08c422c2 6403 d_instantiate(dentry, inode);
618e21d5 6404 }
b0d5d10f 6405
618e21d5 6406out_unlock:
7ad85bb7 6407 btrfs_end_transaction(trans, root);
c581afc8 6408 btrfs_balance_delayed_items(root);
b53d3f5d 6409 btrfs_btree_balance_dirty(root);
618e21d5
JB
6410 if (drop_inode) {
6411 inode_dec_link_count(inode);
6412 iput(inode);
6413 }
618e21d5 6414 return err;
b0d5d10f
CM
6415
6416out_unlock_inode:
6417 drop_inode = 1;
6418 unlock_new_inode(inode);
6419 goto out_unlock;
6420
618e21d5
JB
6421}
6422
39279cc3 6423static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6424 umode_t mode, bool excl)
39279cc3
CM
6425{
6426 struct btrfs_trans_handle *trans;
6427 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6428 struct inode *inode = NULL;
43baa579 6429 int drop_inode_on_err = 0;
a22285a6 6430 int err;
39279cc3 6431 u64 objectid;
00e4e6b3 6432 u64 index = 0;
39279cc3 6433
9ed74f2d
JB
6434 /*
6435 * 2 for inode item and ref
6436 * 2 for dir items
6437 * 1 for xattr if selinux is on
6438 */
a22285a6
YZ
6439 trans = btrfs_start_transaction(root, 5);
6440 if (IS_ERR(trans))
6441 return PTR_ERR(trans);
9ed74f2d 6442
581bb050
LZ
6443 err = btrfs_find_free_ino(root, &objectid);
6444 if (err)
6445 goto out_unlock;
6446
aec7477b 6447 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6448 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6449 mode, &index);
7cf96da3
TI
6450 if (IS_ERR(inode)) {
6451 err = PTR_ERR(inode);
39279cc3 6452 goto out_unlock;
7cf96da3 6453 }
43baa579 6454 drop_inode_on_err = 1;
ad19db71
CS
6455 /*
6456 * If the active LSM wants to access the inode during
6457 * d_instantiate it needs these. Smack checks to see
6458 * if the filesystem supports xattrs by looking at the
6459 * ops vector.
6460 */
6461 inode->i_fop = &btrfs_file_operations;
6462 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6463 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6464
6465 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6466 if (err)
6467 goto out_unlock_inode;
6468
6469 err = btrfs_update_inode(trans, root, inode);
6470 if (err)
6471 goto out_unlock_inode;
ad19db71 6472
a1b075d2 6473 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6474 if (err)
b0d5d10f 6475 goto out_unlock_inode;
43baa579 6476
43baa579 6477 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6478 unlock_new_inode(inode);
43baa579
FB
6479 d_instantiate(dentry, inode);
6480
39279cc3 6481out_unlock:
7ad85bb7 6482 btrfs_end_transaction(trans, root);
43baa579 6483 if (err && drop_inode_on_err) {
39279cc3
CM
6484 inode_dec_link_count(inode);
6485 iput(inode);
6486 }
c581afc8 6487 btrfs_balance_delayed_items(root);
b53d3f5d 6488 btrfs_btree_balance_dirty(root);
39279cc3 6489 return err;
b0d5d10f
CM
6490
6491out_unlock_inode:
6492 unlock_new_inode(inode);
6493 goto out_unlock;
6494
39279cc3
CM
6495}
6496
6497static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6498 struct dentry *dentry)
6499{
6500 struct btrfs_trans_handle *trans;
6501 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6502 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6503 u64 index;
39279cc3
CM
6504 int err;
6505 int drop_inode = 0;
6506
4a8be425
TH
6507 /* do not allow sys_link's with other subvols of the same device */
6508 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6509 return -EXDEV;
4a8be425 6510
f186373f 6511 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6512 return -EMLINK;
4a8be425 6513
3de4586c 6514 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6515 if (err)
6516 goto fail;
6517
a22285a6 6518 /*
7e6b6465 6519 * 2 items for inode and inode ref
a22285a6 6520 * 2 items for dir items
7e6b6465 6521 * 1 item for parent inode
a22285a6 6522 */
7e6b6465 6523 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6524 if (IS_ERR(trans)) {
6525 err = PTR_ERR(trans);
6526 goto fail;
6527 }
5f39d397 6528
67de1176
MX
6529 /* There are several dir indexes for this inode, clear the cache. */
6530 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6531 inc_nlink(inode);
0c4d2d95 6532 inode_inc_iversion(inode);
3153495d 6533 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6534 ihold(inode);
e9976151 6535 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6536
a1b075d2 6537 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6538
a5719521 6539 if (err) {
54aa1f4d 6540 drop_inode = 1;
a5719521 6541 } else {
10d9f309 6542 struct dentry *parent = dentry->d_parent;
a5719521 6543 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6544 if (err)
6545 goto fail;
ef3b9af5
FM
6546 if (inode->i_nlink == 1) {
6547 /*
6548 * If new hard link count is 1, it's a file created
6549 * with open(2) O_TMPFILE flag.
6550 */
6551 err = btrfs_orphan_del(trans, inode);
6552 if (err)
6553 goto fail;
6554 }
08c422c2 6555 d_instantiate(dentry, inode);
6a912213 6556 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6557 }
39279cc3 6558
7ad85bb7 6559 btrfs_end_transaction(trans, root);
c581afc8 6560 btrfs_balance_delayed_items(root);
1832a6d5 6561fail:
39279cc3
CM
6562 if (drop_inode) {
6563 inode_dec_link_count(inode);
6564 iput(inode);
6565 }
b53d3f5d 6566 btrfs_btree_balance_dirty(root);
39279cc3
CM
6567 return err;
6568}
6569
18bb1db3 6570static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6571{
b9d86667 6572 struct inode *inode = NULL;
39279cc3
CM
6573 struct btrfs_trans_handle *trans;
6574 struct btrfs_root *root = BTRFS_I(dir)->root;
6575 int err = 0;
6576 int drop_on_err = 0;
b9d86667 6577 u64 objectid = 0;
00e4e6b3 6578 u64 index = 0;
39279cc3 6579
9ed74f2d
JB
6580 /*
6581 * 2 items for inode and ref
6582 * 2 items for dir items
6583 * 1 for xattr if selinux is on
6584 */
a22285a6
YZ
6585 trans = btrfs_start_transaction(root, 5);
6586 if (IS_ERR(trans))
6587 return PTR_ERR(trans);
39279cc3 6588
581bb050
LZ
6589 err = btrfs_find_free_ino(root, &objectid);
6590 if (err)
6591 goto out_fail;
6592
aec7477b 6593 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6594 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6595 S_IFDIR | mode, &index);
39279cc3
CM
6596 if (IS_ERR(inode)) {
6597 err = PTR_ERR(inode);
6598 goto out_fail;
6599 }
5f39d397 6600
39279cc3 6601 drop_on_err = 1;
b0d5d10f
CM
6602 /* these must be set before we unlock the inode */
6603 inode->i_op = &btrfs_dir_inode_operations;
6604 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6605
2a7dba39 6606 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6607 if (err)
b0d5d10f 6608 goto out_fail_inode;
39279cc3 6609
dbe674a9 6610 btrfs_i_size_write(inode, 0);
39279cc3
CM
6611 err = btrfs_update_inode(trans, root, inode);
6612 if (err)
b0d5d10f 6613 goto out_fail_inode;
5f39d397 6614
a1b075d2
JB
6615 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6616 dentry->d_name.len, 0, index);
39279cc3 6617 if (err)
b0d5d10f 6618 goto out_fail_inode;
5f39d397 6619
39279cc3 6620 d_instantiate(dentry, inode);
b0d5d10f
CM
6621 /*
6622 * mkdir is special. We're unlocking after we call d_instantiate
6623 * to avoid a race with nfsd calling d_instantiate.
6624 */
6625 unlock_new_inode(inode);
39279cc3 6626 drop_on_err = 0;
39279cc3
CM
6627
6628out_fail:
7ad85bb7 6629 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6630 if (drop_on_err) {
6631 inode_dec_link_count(inode);
39279cc3 6632 iput(inode);
c7cfb8a5 6633 }
c581afc8 6634 btrfs_balance_delayed_items(root);
b53d3f5d 6635 btrfs_btree_balance_dirty(root);
39279cc3 6636 return err;
b0d5d10f
CM
6637
6638out_fail_inode:
6639 unlock_new_inode(inode);
6640 goto out_fail;
39279cc3
CM
6641}
6642
e6c4efd8
QW
6643/* Find next extent map of a given extent map, caller needs to ensure locks */
6644static struct extent_map *next_extent_map(struct extent_map *em)
6645{
6646 struct rb_node *next;
6647
6648 next = rb_next(&em->rb_node);
6649 if (!next)
6650 return NULL;
6651 return container_of(next, struct extent_map, rb_node);
6652}
6653
6654static struct extent_map *prev_extent_map(struct extent_map *em)
6655{
6656 struct rb_node *prev;
6657
6658 prev = rb_prev(&em->rb_node);
6659 if (!prev)
6660 return NULL;
6661 return container_of(prev, struct extent_map, rb_node);
6662}
6663
d352ac68 6664/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6665 * the existing extent is the nearest extent to map_start,
d352ac68 6666 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6667 * the best fitted new extent into the tree.
d352ac68 6668 */
3b951516
CM
6669static int merge_extent_mapping(struct extent_map_tree *em_tree,
6670 struct extent_map *existing,
e6dcd2dc 6671 struct extent_map *em,
51f395ad 6672 u64 map_start)
3b951516 6673{
e6c4efd8
QW
6674 struct extent_map *prev;
6675 struct extent_map *next;
6676 u64 start;
6677 u64 end;
3b951516 6678 u64 start_diff;
3b951516 6679
e6dcd2dc 6680 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6681
6682 if (existing->start > map_start) {
6683 next = existing;
6684 prev = prev_extent_map(next);
6685 } else {
6686 prev = existing;
6687 next = next_extent_map(prev);
6688 }
6689
6690 start = prev ? extent_map_end(prev) : em->start;
6691 start = max_t(u64, start, em->start);
6692 end = next ? next->start : extent_map_end(em);
6693 end = min_t(u64, end, extent_map_end(em));
6694 start_diff = start - em->start;
6695 em->start = start;
6696 em->len = end - start;
c8b97818
CM
6697 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6698 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6699 em->block_start += start_diff;
c8b97818
CM
6700 em->block_len -= start_diff;
6701 }
09a2a8f9 6702 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6703}
6704
c8b97818
CM
6705static noinline int uncompress_inline(struct btrfs_path *path,
6706 struct inode *inode, struct page *page,
6707 size_t pg_offset, u64 extent_offset,
6708 struct btrfs_file_extent_item *item)
6709{
6710 int ret;
6711 struct extent_buffer *leaf = path->nodes[0];
6712 char *tmp;
6713 size_t max_size;
6714 unsigned long inline_size;
6715 unsigned long ptr;
261507a0 6716 int compress_type;
c8b97818
CM
6717
6718 WARN_ON(pg_offset != 0);
261507a0 6719 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6720 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6721 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6722 btrfs_item_nr(path->slots[0]));
c8b97818 6723 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6724 if (!tmp)
6725 return -ENOMEM;
c8b97818
CM
6726 ptr = btrfs_file_extent_inline_start(item);
6727
6728 read_extent_buffer(leaf, tmp, ptr, inline_size);
6729
5b050f04 6730 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6731 ret = btrfs_decompress(compress_type, tmp, page,
6732 extent_offset, inline_size, max_size);
c8b97818 6733 kfree(tmp);
166ae5a4 6734 return ret;
c8b97818
CM
6735}
6736
d352ac68
CM
6737/*
6738 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6739 * the ugly parts come from merging extents from the disk with the in-ram
6740 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6741 * where the in-ram extents might be locked pending data=ordered completion.
6742 *
6743 * This also copies inline extents directly into the page.
6744 */
d397712b 6745
a52d9a80 6746struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6747 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6748 int create)
6749{
6750 int ret;
6751 int err = 0;
a52d9a80
CM
6752 u64 extent_start = 0;
6753 u64 extent_end = 0;
33345d01 6754 u64 objectid = btrfs_ino(inode);
a52d9a80 6755 u32 found_type;
f421950f 6756 struct btrfs_path *path = NULL;
a52d9a80
CM
6757 struct btrfs_root *root = BTRFS_I(inode)->root;
6758 struct btrfs_file_extent_item *item;
5f39d397
CM
6759 struct extent_buffer *leaf;
6760 struct btrfs_key found_key;
a52d9a80
CM
6761 struct extent_map *em = NULL;
6762 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6763 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6764 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6765 const bool new_inline = !page || create;
a52d9a80 6766
a52d9a80 6767again:
890871be 6768 read_lock(&em_tree->lock);
d1310b2e 6769 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6770 if (em)
6771 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6772 read_unlock(&em_tree->lock);
d1310b2e 6773
a52d9a80 6774 if (em) {
e1c4b745
CM
6775 if (em->start > start || em->start + em->len <= start)
6776 free_extent_map(em);
6777 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6778 free_extent_map(em);
6779 else
6780 goto out;
a52d9a80 6781 }
172ddd60 6782 em = alloc_extent_map();
a52d9a80 6783 if (!em) {
d1310b2e
CM
6784 err = -ENOMEM;
6785 goto out;
a52d9a80 6786 }
e6dcd2dc 6787 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6788 em->start = EXTENT_MAP_HOLE;
445a6944 6789 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6790 em->len = (u64)-1;
c8b97818 6791 em->block_len = (u64)-1;
f421950f
CM
6792
6793 if (!path) {
6794 path = btrfs_alloc_path();
026fd317
JB
6795 if (!path) {
6796 err = -ENOMEM;
6797 goto out;
6798 }
6799 /*
6800 * Chances are we'll be called again, so go ahead and do
6801 * readahead
6802 */
6803 path->reada = 1;
f421950f
CM
6804 }
6805
179e29e4
CM
6806 ret = btrfs_lookup_file_extent(trans, root, path,
6807 objectid, start, trans != NULL);
a52d9a80
CM
6808 if (ret < 0) {
6809 err = ret;
6810 goto out;
6811 }
6812
6813 if (ret != 0) {
6814 if (path->slots[0] == 0)
6815 goto not_found;
6816 path->slots[0]--;
6817 }
6818
5f39d397
CM
6819 leaf = path->nodes[0];
6820 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6821 struct btrfs_file_extent_item);
a52d9a80 6822 /* are we inside the extent that was found? */
5f39d397 6823 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6824 found_type = found_key.type;
5f39d397 6825 if (found_key.objectid != objectid ||
a52d9a80 6826 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6827 /*
6828 * If we backup past the first extent we want to move forward
6829 * and see if there is an extent in front of us, otherwise we'll
6830 * say there is a hole for our whole search range which can
6831 * cause problems.
6832 */
6833 extent_end = start;
6834 goto next;
a52d9a80
CM
6835 }
6836
5f39d397
CM
6837 found_type = btrfs_file_extent_type(leaf, item);
6838 extent_start = found_key.offset;
d899e052
YZ
6839 if (found_type == BTRFS_FILE_EXTENT_REG ||
6840 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6841 extent_end = extent_start +
db94535d 6842 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6843 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6844 size_t size;
514ac8ad 6845 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6846 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6847 }
25a50341 6848next:
9036c102
YZ
6849 if (start >= extent_end) {
6850 path->slots[0]++;
6851 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6852 ret = btrfs_next_leaf(root, path);
6853 if (ret < 0) {
6854 err = ret;
6855 goto out;
a52d9a80 6856 }
9036c102
YZ
6857 if (ret > 0)
6858 goto not_found;
6859 leaf = path->nodes[0];
a52d9a80 6860 }
9036c102
YZ
6861 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6862 if (found_key.objectid != objectid ||
6863 found_key.type != BTRFS_EXTENT_DATA_KEY)
6864 goto not_found;
6865 if (start + len <= found_key.offset)
6866 goto not_found;
e2eca69d
WS
6867 if (start > found_key.offset)
6868 goto next;
9036c102 6869 em->start = start;
70c8a91c 6870 em->orig_start = start;
9036c102
YZ
6871 em->len = found_key.offset - start;
6872 goto not_found_em;
6873 }
6874
7ffbb598
FM
6875 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6876
d899e052
YZ
6877 if (found_type == BTRFS_FILE_EXTENT_REG ||
6878 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6879 goto insert;
6880 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6881 unsigned long ptr;
a52d9a80 6882 char *map;
3326d1b0
CM
6883 size_t size;
6884 size_t extent_offset;
6885 size_t copy_size;
a52d9a80 6886
7ffbb598 6887 if (new_inline)
689f9346 6888 goto out;
5f39d397 6889
514ac8ad 6890 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6891 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6892 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6893 size - extent_offset);
3326d1b0 6894 em->start = extent_start + extent_offset;
fda2832f 6895 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6896 em->orig_block_len = em->len;
70c8a91c 6897 em->orig_start = em->start;
689f9346 6898 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6899 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6900 if (btrfs_file_extent_compression(leaf, item) !=
6901 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6902 ret = uncompress_inline(path, inode, page,
6903 pg_offset,
6904 extent_offset, item);
166ae5a4
ZB
6905 if (ret) {
6906 err = ret;
6907 goto out;
6908 }
c8b97818
CM
6909 } else {
6910 map = kmap(page);
6911 read_extent_buffer(leaf, map + pg_offset, ptr,
6912 copy_size);
93c82d57
CM
6913 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6914 memset(map + pg_offset + copy_size, 0,
6915 PAGE_CACHE_SIZE - pg_offset -
6916 copy_size);
6917 }
c8b97818
CM
6918 kunmap(page);
6919 }
179e29e4
CM
6920 flush_dcache_page(page);
6921 } else if (create && PageUptodate(page)) {
6bf7e080 6922 BUG();
179e29e4
CM
6923 if (!trans) {
6924 kunmap(page);
6925 free_extent_map(em);
6926 em = NULL;
ff5714cc 6927
b3b4aa74 6928 btrfs_release_path(path);
7a7eaa40 6929 trans = btrfs_join_transaction(root);
ff5714cc 6930
3612b495
TI
6931 if (IS_ERR(trans))
6932 return ERR_CAST(trans);
179e29e4
CM
6933 goto again;
6934 }
c8b97818 6935 map = kmap(page);
70dec807 6936 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6937 copy_size);
c8b97818 6938 kunmap(page);
179e29e4 6939 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6940 }
d1310b2e 6941 set_extent_uptodate(io_tree, em->start,
507903b8 6942 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6943 goto insert;
a52d9a80
CM
6944 }
6945not_found:
6946 em->start = start;
70c8a91c 6947 em->orig_start = start;
d1310b2e 6948 em->len = len;
a52d9a80 6949not_found_em:
5f39d397 6950 em->block_start = EXTENT_MAP_HOLE;
9036c102 6951 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6952insert:
b3b4aa74 6953 btrfs_release_path(path);
d1310b2e 6954 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6955 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6956 em->start, em->len, start, len);
a52d9a80
CM
6957 err = -EIO;
6958 goto out;
6959 }
d1310b2e
CM
6960
6961 err = 0;
890871be 6962 write_lock(&em_tree->lock);
09a2a8f9 6963 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6964 /* it is possible that someone inserted the extent into the tree
6965 * while we had the lock dropped. It is also possible that
6966 * an overlapping map exists in the tree
6967 */
a52d9a80 6968 if (ret == -EEXIST) {
3b951516 6969 struct extent_map *existing;
e6dcd2dc
CM
6970
6971 ret = 0;
6972
e6c4efd8
QW
6973 existing = search_extent_mapping(em_tree, start, len);
6974 /*
6975 * existing will always be non-NULL, since there must be
6976 * extent causing the -EEXIST.
6977 */
6978 if (start >= extent_map_end(existing) ||
32be3a1a 6979 start <= existing->start) {
e6c4efd8
QW
6980 /*
6981 * The existing extent map is the one nearest to
6982 * the [start, start + len) range which overlaps
6983 */
6984 err = merge_extent_mapping(em_tree, existing,
6985 em, start);
e1c4b745 6986 free_extent_map(existing);
e6c4efd8 6987 if (err) {
3b951516
CM
6988 free_extent_map(em);
6989 em = NULL;
6990 }
6991 } else {
6992 free_extent_map(em);
6993 em = existing;
e6dcd2dc 6994 err = 0;
a52d9a80 6995 }
a52d9a80 6996 }
890871be 6997 write_unlock(&em_tree->lock);
a52d9a80 6998out:
1abe9b8a 6999
4cd8587c 7000 trace_btrfs_get_extent(root, em);
1abe9b8a 7001
527afb44 7002 btrfs_free_path(path);
a52d9a80
CM
7003 if (trans) {
7004 ret = btrfs_end_transaction(trans, root);
d397712b 7005 if (!err)
a52d9a80
CM
7006 err = ret;
7007 }
a52d9a80
CM
7008 if (err) {
7009 free_extent_map(em);
a52d9a80
CM
7010 return ERR_PTR(err);
7011 }
79787eaa 7012 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7013 return em;
7014}
7015
ec29ed5b
CM
7016struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7017 size_t pg_offset, u64 start, u64 len,
7018 int create)
7019{
7020 struct extent_map *em;
7021 struct extent_map *hole_em = NULL;
7022 u64 range_start = start;
7023 u64 end;
7024 u64 found;
7025 u64 found_end;
7026 int err = 0;
7027
7028 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7029 if (IS_ERR(em))
7030 return em;
7031 if (em) {
7032 /*
f9e4fb53
LB
7033 * if our em maps to
7034 * - a hole or
7035 * - a pre-alloc extent,
7036 * there might actually be delalloc bytes behind it.
ec29ed5b 7037 */
f9e4fb53
LB
7038 if (em->block_start != EXTENT_MAP_HOLE &&
7039 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7040 return em;
7041 else
7042 hole_em = em;
7043 }
7044
7045 /* check to see if we've wrapped (len == -1 or similar) */
7046 end = start + len;
7047 if (end < start)
7048 end = (u64)-1;
7049 else
7050 end -= 1;
7051
7052 em = NULL;
7053
7054 /* ok, we didn't find anything, lets look for delalloc */
7055 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7056 end, len, EXTENT_DELALLOC, 1);
7057 found_end = range_start + found;
7058 if (found_end < range_start)
7059 found_end = (u64)-1;
7060
7061 /*
7062 * we didn't find anything useful, return
7063 * the original results from get_extent()
7064 */
7065 if (range_start > end || found_end <= start) {
7066 em = hole_em;
7067 hole_em = NULL;
7068 goto out;
7069 }
7070
7071 /* adjust the range_start to make sure it doesn't
7072 * go backwards from the start they passed in
7073 */
67871254 7074 range_start = max(start, range_start);
ec29ed5b
CM
7075 found = found_end - range_start;
7076
7077 if (found > 0) {
7078 u64 hole_start = start;
7079 u64 hole_len = len;
7080
172ddd60 7081 em = alloc_extent_map();
ec29ed5b
CM
7082 if (!em) {
7083 err = -ENOMEM;
7084 goto out;
7085 }
7086 /*
7087 * when btrfs_get_extent can't find anything it
7088 * returns one huge hole
7089 *
7090 * make sure what it found really fits our range, and
7091 * adjust to make sure it is based on the start from
7092 * the caller
7093 */
7094 if (hole_em) {
7095 u64 calc_end = extent_map_end(hole_em);
7096
7097 if (calc_end <= start || (hole_em->start > end)) {
7098 free_extent_map(hole_em);
7099 hole_em = NULL;
7100 } else {
7101 hole_start = max(hole_em->start, start);
7102 hole_len = calc_end - hole_start;
7103 }
7104 }
7105 em->bdev = NULL;
7106 if (hole_em && range_start > hole_start) {
7107 /* our hole starts before our delalloc, so we
7108 * have to return just the parts of the hole
7109 * that go until the delalloc starts
7110 */
7111 em->len = min(hole_len,
7112 range_start - hole_start);
7113 em->start = hole_start;
7114 em->orig_start = hole_start;
7115 /*
7116 * don't adjust block start at all,
7117 * it is fixed at EXTENT_MAP_HOLE
7118 */
7119 em->block_start = hole_em->block_start;
7120 em->block_len = hole_len;
f9e4fb53
LB
7121 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7122 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7123 } else {
7124 em->start = range_start;
7125 em->len = found;
7126 em->orig_start = range_start;
7127 em->block_start = EXTENT_MAP_DELALLOC;
7128 em->block_len = found;
7129 }
7130 } else if (hole_em) {
7131 return hole_em;
7132 }
7133out:
7134
7135 free_extent_map(hole_em);
7136 if (err) {
7137 free_extent_map(em);
7138 return ERR_PTR(err);
7139 }
7140 return em;
7141}
7142
4b46fce2
JB
7143static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7144 u64 start, u64 len)
7145{
7146 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7147 struct extent_map *em;
4b46fce2
JB
7148 struct btrfs_key ins;
7149 u64 alloc_hint;
7150 int ret;
4b46fce2 7151
4b46fce2 7152 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7153 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7154 alloc_hint, &ins, 1, 1);
00361589
JB
7155 if (ret)
7156 return ERR_PTR(ret);
4b46fce2 7157
70c8a91c 7158 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 7159 ins.offset, ins.offset, ins.offset, 0);
00361589 7160 if (IS_ERR(em)) {
e570fd27 7161 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7162 return em;
7163 }
4b46fce2
JB
7164
7165 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7166 ins.offset, ins.offset, 0);
7167 if (ret) {
e570fd27 7168 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
7169 free_extent_map(em);
7170 return ERR_PTR(ret);
4b46fce2 7171 }
00361589 7172
4b46fce2
JB
7173 return em;
7174}
7175
46bfbb5c
CM
7176/*
7177 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7178 * block must be cow'd
7179 */
00361589 7180noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7181 u64 *orig_start, u64 *orig_block_len,
7182 u64 *ram_bytes)
46bfbb5c 7183{
00361589 7184 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7185 struct btrfs_path *path;
7186 int ret;
7187 struct extent_buffer *leaf;
7188 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7189 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7190 struct btrfs_file_extent_item *fi;
7191 struct btrfs_key key;
7192 u64 disk_bytenr;
7193 u64 backref_offset;
7194 u64 extent_end;
7195 u64 num_bytes;
7196 int slot;
7197 int found_type;
7ee9e440 7198 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7199
46bfbb5c
CM
7200 path = btrfs_alloc_path();
7201 if (!path)
7202 return -ENOMEM;
7203
00361589 7204 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7205 offset, 0);
7206 if (ret < 0)
7207 goto out;
7208
7209 slot = path->slots[0];
7210 if (ret == 1) {
7211 if (slot == 0) {
7212 /* can't find the item, must cow */
7213 ret = 0;
7214 goto out;
7215 }
7216 slot--;
7217 }
7218 ret = 0;
7219 leaf = path->nodes[0];
7220 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7221 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7222 key.type != BTRFS_EXTENT_DATA_KEY) {
7223 /* not our file or wrong item type, must cow */
7224 goto out;
7225 }
7226
7227 if (key.offset > offset) {
7228 /* Wrong offset, must cow */
7229 goto out;
7230 }
7231
7232 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7233 found_type = btrfs_file_extent_type(leaf, fi);
7234 if (found_type != BTRFS_FILE_EXTENT_REG &&
7235 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7236 /* not a regular extent, must cow */
7237 goto out;
7238 }
7ee9e440
JB
7239
7240 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7241 goto out;
7242
e77751aa
MX
7243 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7244 if (extent_end <= offset)
7245 goto out;
7246
46bfbb5c 7247 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7248 if (disk_bytenr == 0)
7249 goto out;
7250
7251 if (btrfs_file_extent_compression(leaf, fi) ||
7252 btrfs_file_extent_encryption(leaf, fi) ||
7253 btrfs_file_extent_other_encoding(leaf, fi))
7254 goto out;
7255
46bfbb5c
CM
7256 backref_offset = btrfs_file_extent_offset(leaf, fi);
7257
7ee9e440
JB
7258 if (orig_start) {
7259 *orig_start = key.offset - backref_offset;
7260 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7261 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7262 }
eb384b55 7263
46bfbb5c
CM
7264 if (btrfs_extent_readonly(root, disk_bytenr))
7265 goto out;
7b2b7085
MX
7266
7267 num_bytes = min(offset + *len, extent_end) - offset;
7268 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7269 u64 range_end;
7270
7271 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7272 ret = test_range_bit(io_tree, offset, range_end,
7273 EXTENT_DELALLOC, 0, NULL);
7274 if (ret) {
7275 ret = -EAGAIN;
7276 goto out;
7277 }
7278 }
7279
1bda19eb 7280 btrfs_release_path(path);
46bfbb5c
CM
7281
7282 /*
7283 * look for other files referencing this extent, if we
7284 * find any we must cow
7285 */
00361589
JB
7286 trans = btrfs_join_transaction(root);
7287 if (IS_ERR(trans)) {
7288 ret = 0;
46bfbb5c 7289 goto out;
00361589
JB
7290 }
7291
7292 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7293 key.offset - backref_offset, disk_bytenr);
7294 btrfs_end_transaction(trans, root);
7295 if (ret) {
7296 ret = 0;
7297 goto out;
7298 }
46bfbb5c
CM
7299
7300 /*
7301 * adjust disk_bytenr and num_bytes to cover just the bytes
7302 * in this extent we are about to write. If there
7303 * are any csums in that range we have to cow in order
7304 * to keep the csums correct
7305 */
7306 disk_bytenr += backref_offset;
7307 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7308 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7309 goto out;
7310 /*
7311 * all of the above have passed, it is safe to overwrite this extent
7312 * without cow
7313 */
eb384b55 7314 *len = num_bytes;
46bfbb5c
CM
7315 ret = 1;
7316out:
7317 btrfs_free_path(path);
7318 return ret;
7319}
7320
fc4adbff
AG
7321bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7322{
7323 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7324 int found = false;
7325 void **pagep = NULL;
7326 struct page *page = NULL;
7327 int start_idx;
7328 int end_idx;
7329
7330 start_idx = start >> PAGE_CACHE_SHIFT;
7331
7332 /*
7333 * end is the last byte in the last page. end == start is legal
7334 */
7335 end_idx = end >> PAGE_CACHE_SHIFT;
7336
7337 rcu_read_lock();
7338
7339 /* Most of the code in this while loop is lifted from
7340 * find_get_page. It's been modified to begin searching from a
7341 * page and return just the first page found in that range. If the
7342 * found idx is less than or equal to the end idx then we know that
7343 * a page exists. If no pages are found or if those pages are
7344 * outside of the range then we're fine (yay!) */
7345 while (page == NULL &&
7346 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7347 page = radix_tree_deref_slot(pagep);
7348 if (unlikely(!page))
7349 break;
7350
7351 if (radix_tree_exception(page)) {
809f9016
FM
7352 if (radix_tree_deref_retry(page)) {
7353 page = NULL;
fc4adbff 7354 continue;
809f9016 7355 }
fc4adbff
AG
7356 /*
7357 * Otherwise, shmem/tmpfs must be storing a swap entry
7358 * here as an exceptional entry: so return it without
7359 * attempting to raise page count.
7360 */
6fdef6d4 7361 page = NULL;
fc4adbff
AG
7362 break; /* TODO: Is this relevant for this use case? */
7363 }
7364
91405151
FM
7365 if (!page_cache_get_speculative(page)) {
7366 page = NULL;
fc4adbff 7367 continue;
91405151 7368 }
fc4adbff
AG
7369
7370 /*
7371 * Has the page moved?
7372 * This is part of the lockless pagecache protocol. See
7373 * include/linux/pagemap.h for details.
7374 */
7375 if (unlikely(page != *pagep)) {
7376 page_cache_release(page);
7377 page = NULL;
7378 }
7379 }
7380
7381 if (page) {
7382 if (page->index <= end_idx)
7383 found = true;
7384 page_cache_release(page);
7385 }
7386
7387 rcu_read_unlock();
7388 return found;
7389}
7390
eb838e73
JB
7391static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7392 struct extent_state **cached_state, int writing)
7393{
7394 struct btrfs_ordered_extent *ordered;
7395 int ret = 0;
7396
7397 while (1) {
7398 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7399 0, cached_state);
7400 /*
7401 * We're concerned with the entire range that we're going to be
7402 * doing DIO to, so we need to make sure theres no ordered
7403 * extents in this range.
7404 */
7405 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7406 lockend - lockstart + 1);
7407
7408 /*
7409 * We need to make sure there are no buffered pages in this
7410 * range either, we could have raced between the invalidate in
7411 * generic_file_direct_write and locking the extent. The
7412 * invalidate needs to happen so that reads after a write do not
7413 * get stale data.
7414 */
fc4adbff
AG
7415 if (!ordered &&
7416 (!writing ||
7417 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7418 break;
7419
7420 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7421 cached_state, GFP_NOFS);
7422
7423 if (ordered) {
7424 btrfs_start_ordered_extent(inode, ordered, 1);
7425 btrfs_put_ordered_extent(ordered);
7426 } else {
7427 /* Screw you mmap */
728404da 7428 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
075bdbdb
FM
7429 if (ret)
7430 break;
7431 ret = filemap_fdatawait_range(inode->i_mapping,
7432 lockstart,
7433 lockend);
eb838e73
JB
7434 if (ret)
7435 break;
7436
7437 /*
7438 * If we found a page that couldn't be invalidated just
7439 * fall back to buffered.
7440 */
7441 ret = invalidate_inode_pages2_range(inode->i_mapping,
7442 lockstart >> PAGE_CACHE_SHIFT,
7443 lockend >> PAGE_CACHE_SHIFT);
7444 if (ret)
7445 break;
7446 }
7447
7448 cond_resched();
7449 }
7450
7451 return ret;
7452}
7453
69ffb543
JB
7454static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7455 u64 len, u64 orig_start,
7456 u64 block_start, u64 block_len,
cc95bef6
JB
7457 u64 orig_block_len, u64 ram_bytes,
7458 int type)
69ffb543
JB
7459{
7460 struct extent_map_tree *em_tree;
7461 struct extent_map *em;
7462 struct btrfs_root *root = BTRFS_I(inode)->root;
7463 int ret;
7464
7465 em_tree = &BTRFS_I(inode)->extent_tree;
7466 em = alloc_extent_map();
7467 if (!em)
7468 return ERR_PTR(-ENOMEM);
7469
7470 em->start = start;
7471 em->orig_start = orig_start;
2ab28f32
JB
7472 em->mod_start = start;
7473 em->mod_len = len;
69ffb543
JB
7474 em->len = len;
7475 em->block_len = block_len;
7476 em->block_start = block_start;
7477 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7478 em->orig_block_len = orig_block_len;
cc95bef6 7479 em->ram_bytes = ram_bytes;
70c8a91c 7480 em->generation = -1;
69ffb543
JB
7481 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7482 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7483 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7484
7485 do {
7486 btrfs_drop_extent_cache(inode, em->start,
7487 em->start + em->len - 1, 0);
7488 write_lock(&em_tree->lock);
09a2a8f9 7489 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7490 write_unlock(&em_tree->lock);
7491 } while (ret == -EEXIST);
7492
7493 if (ret) {
7494 free_extent_map(em);
7495 return ERR_PTR(ret);
7496 }
7497
7498 return em;
7499}
7500
50745b0a 7501struct btrfs_dio_data {
7502 u64 outstanding_extents;
7503 u64 reserve;
7504};
69ffb543 7505
4b46fce2
JB
7506static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7507 struct buffer_head *bh_result, int create)
7508{
7509 struct extent_map *em;
7510 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7511 struct extent_state *cached_state = NULL;
50745b0a 7512 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7513 u64 start = iblock << inode->i_blkbits;
eb838e73 7514 u64 lockstart, lockend;
4b46fce2 7515 u64 len = bh_result->b_size;
eb838e73 7516 int unlock_bits = EXTENT_LOCKED;
0934856d 7517 int ret = 0;
eb838e73 7518
172a5049 7519 if (create)
3266789f 7520 unlock_bits |= EXTENT_DIRTY;
172a5049 7521 else
c329861d 7522 len = min_t(u64, len, root->sectorsize);
eb838e73 7523
c329861d
JB
7524 lockstart = start;
7525 lockend = start + len - 1;
7526
e1cbbfa5
JB
7527 if (current->journal_info) {
7528 /*
7529 * Need to pull our outstanding extents and set journal_info to NULL so
7530 * that anything that needs to check if there's a transction doesn't get
7531 * confused.
7532 */
50745b0a 7533 dio_data = current->journal_info;
e1cbbfa5
JB
7534 current->journal_info = NULL;
7535 }
7536
eb838e73
JB
7537 /*
7538 * If this errors out it's because we couldn't invalidate pagecache for
7539 * this range and we need to fallback to buffered.
7540 */
7541 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7542 return -ENOTBLK;
7543
4b46fce2 7544 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7545 if (IS_ERR(em)) {
7546 ret = PTR_ERR(em);
7547 goto unlock_err;
7548 }
4b46fce2
JB
7549
7550 /*
7551 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7552 * io. INLINE is special, and we could probably kludge it in here, but
7553 * it's still buffered so for safety lets just fall back to the generic
7554 * buffered path.
7555 *
7556 * For COMPRESSED we _have_ to read the entire extent in so we can
7557 * decompress it, so there will be buffering required no matter what we
7558 * do, so go ahead and fallback to buffered.
7559 *
7560 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7561 * to buffered IO. Don't blame me, this is the price we pay for using
7562 * the generic code.
7563 */
7564 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7565 em->block_start == EXTENT_MAP_INLINE) {
7566 free_extent_map(em);
eb838e73
JB
7567 ret = -ENOTBLK;
7568 goto unlock_err;
4b46fce2
JB
7569 }
7570
7571 /* Just a good old fashioned hole, return */
7572 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7573 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7574 free_extent_map(em);
eb838e73 7575 goto unlock_err;
4b46fce2
JB
7576 }
7577
7578 /*
7579 * We don't allocate a new extent in the following cases
7580 *
7581 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7582 * existing extent.
7583 * 2) The extent is marked as PREALLOC. We're good to go here and can
7584 * just use the extent.
7585 *
7586 */
46bfbb5c 7587 if (!create) {
eb838e73
JB
7588 len = min(len, em->len - (start - em->start));
7589 lockstart = start + len;
7590 goto unlock;
46bfbb5c 7591 }
4b46fce2
JB
7592
7593 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7594 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7595 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7596 int type;
eb384b55 7597 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7598
7599 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7600 type = BTRFS_ORDERED_PREALLOC;
7601 else
7602 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7603 len = min(len, em->len - (start - em->start));
4b46fce2 7604 block_start = em->block_start + (start - em->start);
46bfbb5c 7605
00361589 7606 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7607 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7608 if (type == BTRFS_ORDERED_PREALLOC) {
7609 free_extent_map(em);
7610 em = create_pinned_em(inode, start, len,
7611 orig_start,
b4939680 7612 block_start, len,
cc95bef6
JB
7613 orig_block_len,
7614 ram_bytes, type);
555e1286
FM
7615 if (IS_ERR(em)) {
7616 ret = PTR_ERR(em);
69ffb543 7617 goto unlock_err;
555e1286 7618 }
69ffb543
JB
7619 }
7620
46bfbb5c
CM
7621 ret = btrfs_add_ordered_extent_dio(inode, start,
7622 block_start, len, len, type);
46bfbb5c
CM
7623 if (ret) {
7624 free_extent_map(em);
eb838e73 7625 goto unlock_err;
46bfbb5c
CM
7626 }
7627 goto unlock;
4b46fce2 7628 }
4b46fce2 7629 }
00361589 7630
46bfbb5c
CM
7631 /*
7632 * this will cow the extent, reset the len in case we changed
7633 * it above
7634 */
7635 len = bh_result->b_size;
70c8a91c
JB
7636 free_extent_map(em);
7637 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7638 if (IS_ERR(em)) {
7639 ret = PTR_ERR(em);
7640 goto unlock_err;
7641 }
46bfbb5c
CM
7642 len = min(len, em->len - (start - em->start));
7643unlock:
4b46fce2
JB
7644 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7645 inode->i_blkbits;
46bfbb5c 7646 bh_result->b_size = len;
4b46fce2
JB
7647 bh_result->b_bdev = em->bdev;
7648 set_buffer_mapped(bh_result);
c3473e83
JB
7649 if (create) {
7650 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7651 set_buffer_new(bh_result);
7652
7653 /*
7654 * Need to update the i_size under the extent lock so buffered
7655 * readers will get the updated i_size when we unlock.
7656 */
7657 if (start + len > i_size_read(inode))
7658 i_size_write(inode, start + len);
0934856d 7659
e1cbbfa5
JB
7660 /*
7661 * If we have an outstanding_extents count still set then we're
7662 * within our reservation, otherwise we need to adjust our inode
7663 * counter appropriately.
7664 */
50745b0a 7665 if (dio_data->outstanding_extents) {
7666 (dio_data->outstanding_extents)--;
e1cbbfa5 7667 } else {
3e05bde8
JB
7668 spin_lock(&BTRFS_I(inode)->lock);
7669 BTRFS_I(inode)->outstanding_extents++;
7670 spin_unlock(&BTRFS_I(inode)->lock);
7671 }
e1cbbfa5 7672
7cf5b976 7673 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7674 WARN_ON(dio_data->reserve < len);
7675 dio_data->reserve -= len;
7676 current->journal_info = dio_data;
c3473e83 7677 }
4b46fce2 7678
eb838e73
JB
7679 /*
7680 * In the case of write we need to clear and unlock the entire range,
7681 * in the case of read we need to unlock only the end area that we
7682 * aren't using if there is any left over space.
7683 */
24c03fa5 7684 if (lockstart < lockend) {
0934856d
MX
7685 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7686 lockend, unlock_bits, 1, 0,
7687 &cached_state, GFP_NOFS);
24c03fa5 7688 } else {
eb838e73 7689 free_extent_state(cached_state);
24c03fa5 7690 }
eb838e73 7691
4b46fce2
JB
7692 free_extent_map(em);
7693
7694 return 0;
eb838e73
JB
7695
7696unlock_err:
eb838e73
JB
7697 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7698 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
50745b0a 7699 if (dio_data)
7700 current->journal_info = dio_data;
eb838e73 7701 return ret;
4b46fce2
JB
7702}
7703
8b110e39
MX
7704static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7705 int rw, int mirror_num)
7706{
7707 struct btrfs_root *root = BTRFS_I(inode)->root;
7708 int ret;
7709
7710 BUG_ON(rw & REQ_WRITE);
7711
7712 bio_get(bio);
7713
7714 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7715 BTRFS_WQ_ENDIO_DIO_REPAIR);
7716 if (ret)
7717 goto err;
7718
7719 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7720err:
7721 bio_put(bio);
7722 return ret;
7723}
7724
7725static int btrfs_check_dio_repairable(struct inode *inode,
7726 struct bio *failed_bio,
7727 struct io_failure_record *failrec,
7728 int failed_mirror)
7729{
7730 int num_copies;
7731
7732 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7733 failrec->logical, failrec->len);
7734 if (num_copies == 1) {
7735 /*
7736 * we only have a single copy of the data, so don't bother with
7737 * all the retry and error correction code that follows. no
7738 * matter what the error is, it is very likely to persist.
7739 */
7740 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7741 num_copies, failrec->this_mirror, failed_mirror);
7742 return 0;
7743 }
7744
7745 failrec->failed_mirror = failed_mirror;
7746 failrec->this_mirror++;
7747 if (failrec->this_mirror == failed_mirror)
7748 failrec->this_mirror++;
7749
7750 if (failrec->this_mirror > num_copies) {
7751 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7752 num_copies, failrec->this_mirror, failed_mirror);
7753 return 0;
7754 }
7755
7756 return 1;
7757}
7758
7759static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7760 struct page *page, u64 start, u64 end,
7761 int failed_mirror, bio_end_io_t *repair_endio,
7762 void *repair_arg)
7763{
7764 struct io_failure_record *failrec;
7765 struct bio *bio;
7766 int isector;
7767 int read_mode;
7768 int ret;
7769
7770 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7771
7772 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7773 if (ret)
7774 return ret;
7775
7776 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7777 failed_mirror);
7778 if (!ret) {
7779 free_io_failure(inode, failrec);
7780 return -EIO;
7781 }
7782
7783 if (failed_bio->bi_vcnt > 1)
7784 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7785 else
7786 read_mode = READ_SYNC;
7787
7788 isector = start - btrfs_io_bio(failed_bio)->logical;
7789 isector >>= inode->i_sb->s_blocksize_bits;
7790 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7791 0, isector, repair_endio, repair_arg);
7792 if (!bio) {
7793 free_io_failure(inode, failrec);
7794 return -EIO;
7795 }
7796
7797 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7798 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7799 read_mode, failrec->this_mirror, failrec->in_validation);
7800
7801 ret = submit_dio_repair_bio(inode, bio, read_mode,
7802 failrec->this_mirror);
7803 if (ret) {
7804 free_io_failure(inode, failrec);
7805 bio_put(bio);
7806 }
7807
7808 return ret;
7809}
7810
7811struct btrfs_retry_complete {
7812 struct completion done;
7813 struct inode *inode;
7814 u64 start;
7815 int uptodate;
7816};
7817
4246a0b6 7818static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7819{
7820 struct btrfs_retry_complete *done = bio->bi_private;
7821 struct bio_vec *bvec;
7822 int i;
7823
4246a0b6 7824 if (bio->bi_error)
8b110e39
MX
7825 goto end;
7826
7827 done->uptodate = 1;
7828 bio_for_each_segment_all(bvec, bio, i)
7829 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7830end:
7831 complete(&done->done);
7832 bio_put(bio);
7833}
7834
7835static int __btrfs_correct_data_nocsum(struct inode *inode,
7836 struct btrfs_io_bio *io_bio)
4b46fce2 7837{
2c30c71b 7838 struct bio_vec *bvec;
8b110e39 7839 struct btrfs_retry_complete done;
4b46fce2 7840 u64 start;
2c30c71b 7841 int i;
c1dc0896 7842 int ret;
4b46fce2 7843
8b110e39
MX
7844 start = io_bio->logical;
7845 done.inode = inode;
7846
7847 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7848try_again:
7849 done.uptodate = 0;
7850 done.start = start;
7851 init_completion(&done.done);
7852
7853 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7854 start + bvec->bv_len - 1,
7855 io_bio->mirror_num,
7856 btrfs_retry_endio_nocsum, &done);
7857 if (ret)
7858 return ret;
7859
7860 wait_for_completion(&done.done);
7861
7862 if (!done.uptodate) {
7863 /* We might have another mirror, so try again */
7864 goto try_again;
7865 }
7866
7867 start += bvec->bv_len;
7868 }
7869
7870 return 0;
7871}
7872
4246a0b6 7873static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7874{
7875 struct btrfs_retry_complete *done = bio->bi_private;
7876 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7877 struct bio_vec *bvec;
7878 int uptodate;
7879 int ret;
7880 int i;
7881
4246a0b6 7882 if (bio->bi_error)
8b110e39
MX
7883 goto end;
7884
7885 uptodate = 1;
7886 bio_for_each_segment_all(bvec, bio, i) {
7887 ret = __readpage_endio_check(done->inode, io_bio, i,
7888 bvec->bv_page, 0,
7889 done->start, bvec->bv_len);
7890 if (!ret)
7891 clean_io_failure(done->inode, done->start,
7892 bvec->bv_page, 0);
7893 else
7894 uptodate = 0;
7895 }
7896
7897 done->uptodate = uptodate;
7898end:
7899 complete(&done->done);
7900 bio_put(bio);
7901}
7902
7903static int __btrfs_subio_endio_read(struct inode *inode,
7904 struct btrfs_io_bio *io_bio, int err)
7905{
7906 struct bio_vec *bvec;
7907 struct btrfs_retry_complete done;
7908 u64 start;
7909 u64 offset = 0;
7910 int i;
7911 int ret;
dc380aea 7912
8b110e39 7913 err = 0;
c1dc0896 7914 start = io_bio->logical;
8b110e39
MX
7915 done.inode = inode;
7916
c1dc0896 7917 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7918 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7919 0, start, bvec->bv_len);
8b110e39
MX
7920 if (likely(!ret))
7921 goto next;
7922try_again:
7923 done.uptodate = 0;
7924 done.start = start;
7925 init_completion(&done.done);
7926
7927 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7928 start + bvec->bv_len - 1,
7929 io_bio->mirror_num,
7930 btrfs_retry_endio, &done);
7931 if (ret) {
7932 err = ret;
7933 goto next;
7934 }
7935
7936 wait_for_completion(&done.done);
7937
7938 if (!done.uptodate) {
7939 /* We might have another mirror, so try again */
7940 goto try_again;
7941 }
7942next:
7943 offset += bvec->bv_len;
4b46fce2 7944 start += bvec->bv_len;
2c30c71b 7945 }
c1dc0896
MX
7946
7947 return err;
7948}
7949
8b110e39
MX
7950static int btrfs_subio_endio_read(struct inode *inode,
7951 struct btrfs_io_bio *io_bio, int err)
7952{
7953 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7954
7955 if (skip_csum) {
7956 if (unlikely(err))
7957 return __btrfs_correct_data_nocsum(inode, io_bio);
7958 else
7959 return 0;
7960 } else {
7961 return __btrfs_subio_endio_read(inode, io_bio, err);
7962 }
7963}
7964
4246a0b6 7965static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
7966{
7967 struct btrfs_dio_private *dip = bio->bi_private;
7968 struct inode *inode = dip->inode;
7969 struct bio *dio_bio;
7970 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 7971 int err = bio->bi_error;
c1dc0896 7972
8b110e39
MX
7973 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7974 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 7975
4b46fce2 7976 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7977 dip->logical_offset + dip->bytes - 1);
9be3395b 7978 dio_bio = dip->dio_bio;
4b46fce2 7979
4b46fce2 7980 kfree(dip);
c0da7aa1 7981
4246a0b6 7982 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
7983
7984 if (io_bio->end_io)
7985 io_bio->end_io(io_bio, err);
9be3395b 7986 bio_put(bio);
4b46fce2
JB
7987}
7988
4246a0b6 7989static void btrfs_endio_direct_write(struct bio *bio)
4b46fce2
JB
7990{
7991 struct btrfs_dio_private *dip = bio->bi_private;
7992 struct inode *inode = dip->inode;
7993 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7994 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7995 u64 ordered_offset = dip->logical_offset;
7996 u64 ordered_bytes = dip->bytes;
9be3395b 7997 struct bio *dio_bio;
4b46fce2
JB
7998 int ret;
7999
163cf09c
CM
8000again:
8001 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8002 &ordered_offset,
4246a0b6
CH
8003 ordered_bytes,
8004 !bio->bi_error);
4b46fce2 8005 if (!ret)
163cf09c 8006 goto out_test;
4b46fce2 8007
9e0af237
LB
8008 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8009 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8010 btrfs_queue_work(root->fs_info->endio_write_workers,
8011 &ordered->work);
163cf09c
CM
8012out_test:
8013 /*
8014 * our bio might span multiple ordered extents. If we haven't
8015 * completed the accounting for the whole dio, go back and try again
8016 */
8017 if (ordered_offset < dip->logical_offset + dip->bytes) {
8018 ordered_bytes = dip->logical_offset + dip->bytes -
8019 ordered_offset;
5fd02043 8020 ordered = NULL;
163cf09c
CM
8021 goto again;
8022 }
9be3395b 8023 dio_bio = dip->dio_bio;
4b46fce2 8024
4b46fce2 8025 kfree(dip);
c0da7aa1 8026
4246a0b6 8027 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8028 bio_put(bio);
4b46fce2
JB
8029}
8030
eaf25d93
CM
8031static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8032 struct bio *bio, int mirror_num,
8033 unsigned long bio_flags, u64 offset)
8034{
8035 int ret;
8036 struct btrfs_root *root = BTRFS_I(inode)->root;
8037 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8038 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8039 return 0;
8040}
8041
4246a0b6 8042static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8043{
8044 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8045 int err = bio->bi_error;
e65e1535 8046
8b110e39
MX
8047 if (err)
8048 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8049 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8050 btrfs_ino(dip->inode), bio->bi_rw,
8051 (unsigned long long)bio->bi_iter.bi_sector,
8052 bio->bi_iter.bi_size, err);
8053
8054 if (dip->subio_endio)
8055 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8056
8057 if (err) {
e65e1535
MX
8058 dip->errors = 1;
8059
8060 /*
8061 * before atomic variable goto zero, we must make sure
8062 * dip->errors is perceived to be set.
8063 */
4e857c58 8064 smp_mb__before_atomic();
e65e1535
MX
8065 }
8066
8067 /* if there are more bios still pending for this dio, just exit */
8068 if (!atomic_dec_and_test(&dip->pending_bios))
8069 goto out;
8070
9be3395b 8071 if (dip->errors) {
e65e1535 8072 bio_io_error(dip->orig_bio);
9be3395b 8073 } else {
4246a0b6
CH
8074 dip->dio_bio->bi_error = 0;
8075 bio_endio(dip->orig_bio);
e65e1535
MX
8076 }
8077out:
8078 bio_put(bio);
8079}
8080
8081static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8082 u64 first_sector, gfp_t gfp_flags)
8083{
da2f0f74 8084 struct bio *bio;
22365979 8085 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8086 if (bio)
8087 bio_associate_current(bio);
8088 return bio;
e65e1535
MX
8089}
8090
c1dc0896
MX
8091static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8092 struct inode *inode,
8093 struct btrfs_dio_private *dip,
8094 struct bio *bio,
8095 u64 file_offset)
8096{
8097 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8098 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8099 int ret;
8100
8101 /*
8102 * We load all the csum data we need when we submit
8103 * the first bio to reduce the csum tree search and
8104 * contention.
8105 */
8106 if (dip->logical_offset == file_offset) {
8107 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8108 file_offset);
8109 if (ret)
8110 return ret;
8111 }
8112
8113 if (bio == dip->orig_bio)
8114 return 0;
8115
8116 file_offset -= dip->logical_offset;
8117 file_offset >>= inode->i_sb->s_blocksize_bits;
8118 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8119
8120 return 0;
8121}
8122
e65e1535
MX
8123static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8124 int rw, u64 file_offset, int skip_sum,
c329861d 8125 int async_submit)
e65e1535 8126{
facc8a22 8127 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8128 int write = rw & REQ_WRITE;
8129 struct btrfs_root *root = BTRFS_I(inode)->root;
8130 int ret;
8131
b812ce28
JB
8132 if (async_submit)
8133 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8134
e65e1535 8135 bio_get(bio);
5fd02043
JB
8136
8137 if (!write) {
bfebd8b5
DS
8138 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8139 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8140 if (ret)
8141 goto err;
8142 }
e65e1535 8143
1ae39938
JB
8144 if (skip_sum)
8145 goto map;
8146
8147 if (write && async_submit) {
e65e1535
MX
8148 ret = btrfs_wq_submit_bio(root->fs_info,
8149 inode, rw, bio, 0, 0,
8150 file_offset,
8151 __btrfs_submit_bio_start_direct_io,
8152 __btrfs_submit_bio_done);
8153 goto err;
1ae39938
JB
8154 } else if (write) {
8155 /*
8156 * If we aren't doing async submit, calculate the csum of the
8157 * bio now.
8158 */
8159 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8160 if (ret)
8161 goto err;
23ea8e5a 8162 } else {
c1dc0896
MX
8163 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8164 file_offset);
c2db1073
TI
8165 if (ret)
8166 goto err;
8167 }
1ae39938
JB
8168map:
8169 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8170err:
8171 bio_put(bio);
8172 return ret;
8173}
8174
8175static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8176 int skip_sum)
8177{
8178 struct inode *inode = dip->inode;
8179 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8180 struct bio *bio;
8181 struct bio *orig_bio = dip->orig_bio;
8182 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8183 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8184 u64 file_offset = dip->logical_offset;
8185 u64 submit_len = 0;
8186 u64 map_length;
8187 int nr_pages = 0;
23ea8e5a 8188 int ret;
1ae39938 8189 int async_submit = 0;
e65e1535 8190
4f024f37 8191 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8192 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8193 &map_length, NULL, 0);
7a5c3c9b 8194 if (ret)
e65e1535 8195 return -EIO;
facc8a22 8196
4f024f37 8197 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8198 bio = orig_bio;
c1dc0896 8199 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8200 goto submit;
8201 }
8202
53b381b3 8203 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8204 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8205 async_submit = 0;
8206 else
8207 async_submit = 1;
8208
02f57c7a
JB
8209 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8210 if (!bio)
8211 return -ENOMEM;
7a5c3c9b 8212
02f57c7a
JB
8213 bio->bi_private = dip;
8214 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8215 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8216 atomic_inc(&dip->pending_bios);
8217
e65e1535 8218 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
ee39b432 8219 if (map_length < submit_len + bvec->bv_len ||
e65e1535 8220 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
ee39b432 8221 bvec->bv_offset) < bvec->bv_len) {
e65e1535
MX
8222 /*
8223 * inc the count before we submit the bio so
8224 * we know the end IO handler won't happen before
8225 * we inc the count. Otherwise, the dip might get freed
8226 * before we're done setting it up
8227 */
8228 atomic_inc(&dip->pending_bios);
8229 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8230 file_offset, skip_sum,
c329861d 8231 async_submit);
e65e1535
MX
8232 if (ret) {
8233 bio_put(bio);
8234 atomic_dec(&dip->pending_bios);
8235 goto out_err;
8236 }
8237
e65e1535
MX
8238 start_sector += submit_len >> 9;
8239 file_offset += submit_len;
8240
8241 submit_len = 0;
8242 nr_pages = 0;
8243
8244 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8245 start_sector, GFP_NOFS);
8246 if (!bio)
8247 goto out_err;
8248 bio->bi_private = dip;
8249 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8250 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8251
4f024f37 8252 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8253 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8254 start_sector << 9,
e65e1535
MX
8255 &map_length, NULL, 0);
8256 if (ret) {
8257 bio_put(bio);
8258 goto out_err;
8259 }
8260 } else {
8261 submit_len += bvec->bv_len;
67871254 8262 nr_pages++;
e65e1535
MX
8263 bvec++;
8264 }
8265 }
8266
02f57c7a 8267submit:
e65e1535 8268 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8269 async_submit);
e65e1535
MX
8270 if (!ret)
8271 return 0;
8272
8273 bio_put(bio);
8274out_err:
8275 dip->errors = 1;
8276 /*
8277 * before atomic variable goto zero, we must
8278 * make sure dip->errors is perceived to be set.
8279 */
4e857c58 8280 smp_mb__before_atomic();
e65e1535
MX
8281 if (atomic_dec_and_test(&dip->pending_bios))
8282 bio_io_error(dip->orig_bio);
8283
8284 /* bio_end_io() will handle error, so we needn't return it */
8285 return 0;
8286}
8287
9be3395b
CM
8288static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8289 struct inode *inode, loff_t file_offset)
4b46fce2 8290{
61de718f
FM
8291 struct btrfs_dio_private *dip = NULL;
8292 struct bio *io_bio = NULL;
23ea8e5a 8293 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8294 int skip_sum;
7b6d91da 8295 int write = rw & REQ_WRITE;
4b46fce2
JB
8296 int ret = 0;
8297
8298 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8299
9be3395b 8300 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8301 if (!io_bio) {
8302 ret = -ENOMEM;
8303 goto free_ordered;
8304 }
8305
c1dc0896 8306 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8307 if (!dip) {
8308 ret = -ENOMEM;
61de718f 8309 goto free_ordered;
4b46fce2 8310 }
4b46fce2 8311
9be3395b 8312 dip->private = dio_bio->bi_private;
4b46fce2
JB
8313 dip->inode = inode;
8314 dip->logical_offset = file_offset;
4f024f37
KO
8315 dip->bytes = dio_bio->bi_iter.bi_size;
8316 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8317 io_bio->bi_private = dip;
9be3395b
CM
8318 dip->orig_bio = io_bio;
8319 dip->dio_bio = dio_bio;
e65e1535 8320 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8321 btrfs_bio = btrfs_io_bio(io_bio);
8322 btrfs_bio->logical = file_offset;
4b46fce2 8323
c1dc0896 8324 if (write) {
9be3395b 8325 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8326 } else {
9be3395b 8327 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8328 dip->subio_endio = btrfs_subio_endio_read;
8329 }
4b46fce2 8330
e65e1535
MX
8331 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8332 if (!ret)
eaf25d93 8333 return;
9be3395b 8334
23ea8e5a
MX
8335 if (btrfs_bio->end_io)
8336 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8337
4b46fce2
JB
8338free_ordered:
8339 /*
61de718f
FM
8340 * If we arrived here it means either we failed to submit the dip
8341 * or we either failed to clone the dio_bio or failed to allocate the
8342 * dip. If we cloned the dio_bio and allocated the dip, we can just
8343 * call bio_endio against our io_bio so that we get proper resource
8344 * cleanup if we fail to submit the dip, otherwise, we must do the
8345 * same as btrfs_endio_direct_[write|read] because we can't call these
8346 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8347 */
61de718f 8348 if (io_bio && dip) {
4246a0b6
CH
8349 io_bio->bi_error = -EIO;
8350 bio_endio(io_bio);
61de718f
FM
8351 /*
8352 * The end io callbacks free our dip, do the final put on io_bio
8353 * and all the cleanup and final put for dio_bio (through
8354 * dio_end_io()).
8355 */
8356 dip = NULL;
8357 io_bio = NULL;
8358 } else {
8359 if (write) {
8360 struct btrfs_ordered_extent *ordered;
8361
8362 ordered = btrfs_lookup_ordered_extent(inode,
8363 file_offset);
8364 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
8365 /*
8366 * Decrements our ref on the ordered extent and removes
8367 * the ordered extent from the inode's ordered tree,
8368 * doing all the proper resource cleanup such as for the
8369 * reserved space and waking up any waiters for this
8370 * ordered extent (through btrfs_remove_ordered_extent).
8371 */
8372 btrfs_finish_ordered_io(ordered);
8373 } else {
8374 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8375 file_offset + dio_bio->bi_iter.bi_size - 1);
8376 }
4246a0b6 8377 dio_bio->bi_error = -EIO;
61de718f
FM
8378 /*
8379 * Releases and cleans up our dio_bio, no need to bio_put()
8380 * nor bio_endio()/bio_io_error() against dio_bio.
8381 */
8382 dio_end_io(dio_bio, ret);
4b46fce2 8383 }
61de718f
FM
8384 if (io_bio)
8385 bio_put(io_bio);
8386 kfree(dip);
4b46fce2
JB
8387}
8388
6f673763 8389static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8390 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8391{
8392 int seg;
a1b75f7d 8393 int i;
5a5f79b5
CM
8394 unsigned blocksize_mask = root->sectorsize - 1;
8395 ssize_t retval = -EINVAL;
5a5f79b5
CM
8396
8397 if (offset & blocksize_mask)
8398 goto out;
8399
28060d5d
AV
8400 if (iov_iter_alignment(iter) & blocksize_mask)
8401 goto out;
a1b75f7d 8402
28060d5d 8403 /* If this is a write we don't need to check anymore */
6f673763 8404 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8405 return 0;
8406 /*
8407 * Check to make sure we don't have duplicate iov_base's in this
8408 * iovec, if so return EINVAL, otherwise we'll get csum errors
8409 * when reading back.
8410 */
8411 for (seg = 0; seg < iter->nr_segs; seg++) {
8412 for (i = seg + 1; i < iter->nr_segs; i++) {
8413 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8414 goto out;
8415 }
5a5f79b5
CM
8416 }
8417 retval = 0;
8418out:
8419 return retval;
8420}
eb838e73 8421
22c6186e
OS
8422static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8423 loff_t offset)
16432985 8424{
4b46fce2
JB
8425 struct file *file = iocb->ki_filp;
8426 struct inode *inode = file->f_mapping->host;
50745b0a 8427 struct btrfs_root *root = BTRFS_I(inode)->root;
8428 struct btrfs_dio_data dio_data = { 0 };
0934856d 8429 size_t count = 0;
2e60a51e 8430 int flags = 0;
38851cc1
MX
8431 bool wakeup = true;
8432 bool relock = false;
0934856d 8433 ssize_t ret;
4b46fce2 8434
6f673763 8435 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8436 return 0;
3f7c579c 8437
fe0f07d0 8438 inode_dio_begin(inode);
4e857c58 8439 smp_mb__after_atomic();
38851cc1 8440
0e267c44 8441 /*
41bd9ca4
MX
8442 * The generic stuff only does filemap_write_and_wait_range, which
8443 * isn't enough if we've written compressed pages to this area, so
8444 * we need to flush the dirty pages again to make absolutely sure
8445 * that any outstanding dirty pages are on disk.
0e267c44 8446 */
a6cbcd4a 8447 count = iov_iter_count(iter);
41bd9ca4
MX
8448 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8449 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8450 filemap_fdatawrite_range(inode->i_mapping, offset,
8451 offset + count - 1);
0e267c44 8452
6f673763 8453 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8454 /*
8455 * If the write DIO is beyond the EOF, we need update
8456 * the isize, but it is protected by i_mutex. So we can
8457 * not unlock the i_mutex at this case.
8458 */
8459 if (offset + count <= inode->i_size) {
8460 mutex_unlock(&inode->i_mutex);
8461 relock = true;
8462 }
7cf5b976 8463 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8464 if (ret)
38851cc1 8465 goto out;
50745b0a 8466 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8467 BTRFS_MAX_EXTENT_SIZE - 1,
8468 BTRFS_MAX_EXTENT_SIZE);
8469
8470 /*
8471 * We need to know how many extents we reserved so that we can
8472 * do the accounting properly if we go over the number we
8473 * originally calculated. Abuse current->journal_info for this.
8474 */
50745b0a 8475 dio_data.reserve = round_up(count, root->sectorsize);
8476 current->journal_info = &dio_data;
ee39b432
DS
8477 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8478 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8479 inode_dio_end(inode);
38851cc1
MX
8480 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8481 wakeup = false;
0934856d
MX
8482 }
8483
17f8c842
OS
8484 ret = __blockdev_direct_IO(iocb, inode,
8485 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8486 iter, offset, btrfs_get_blocks_direct, NULL,
8487 btrfs_submit_direct, flags);
6f673763 8488 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8489 current->journal_info = NULL;
ddba1bfc 8490 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8491 if (dio_data.reserve)
7cf5b976
QW
8492 btrfs_delalloc_release_space(inode, offset,
8493 dio_data.reserve);
ddba1bfc 8494 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8495 btrfs_delalloc_release_space(inode, offset,
8496 count - (size_t)ret);
0934856d 8497 }
38851cc1 8498out:
2e60a51e 8499 if (wakeup)
fe0f07d0 8500 inode_dio_end(inode);
38851cc1
MX
8501 if (relock)
8502 mutex_lock(&inode->i_mutex);
0934856d
MX
8503
8504 return ret;
16432985
CM
8505}
8506
05dadc09
TI
8507#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8508
1506fcc8
YS
8509static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8510 __u64 start, __u64 len)
8511{
05dadc09
TI
8512 int ret;
8513
8514 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8515 if (ret)
8516 return ret;
8517
ec29ed5b 8518 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8519}
8520
a52d9a80 8521int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8522{
d1310b2e
CM
8523 struct extent_io_tree *tree;
8524 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8525 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8526}
1832a6d5 8527
a52d9a80 8528static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8529{
d1310b2e 8530 struct extent_io_tree *tree;
b888db2b
CM
8531
8532
8533 if (current->flags & PF_MEMALLOC) {
8534 redirty_page_for_writepage(wbc, page);
8535 unlock_page(page);
8536 return 0;
8537 }
d1310b2e 8538 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 8539 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
8540}
8541
48a3b636
ES
8542static int btrfs_writepages(struct address_space *mapping,
8543 struct writeback_control *wbc)
b293f02e 8544{
d1310b2e 8545 struct extent_io_tree *tree;
771ed689 8546
d1310b2e 8547 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8548 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8549}
8550
3ab2fb5a
CM
8551static int
8552btrfs_readpages(struct file *file, struct address_space *mapping,
8553 struct list_head *pages, unsigned nr_pages)
8554{
d1310b2e
CM
8555 struct extent_io_tree *tree;
8556 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8557 return extent_readpages(tree, mapping, pages, nr_pages,
8558 btrfs_get_extent);
8559}
e6dcd2dc 8560static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8561{
d1310b2e
CM
8562 struct extent_io_tree *tree;
8563 struct extent_map_tree *map;
a52d9a80 8564 int ret;
8c2383c3 8565
d1310b2e
CM
8566 tree = &BTRFS_I(page->mapping->host)->io_tree;
8567 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8568 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8569 if (ret == 1) {
8570 ClearPagePrivate(page);
8571 set_page_private(page, 0);
8572 page_cache_release(page);
39279cc3 8573 }
a52d9a80 8574 return ret;
39279cc3
CM
8575}
8576
e6dcd2dc
CM
8577static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8578{
98509cfc
CM
8579 if (PageWriteback(page) || PageDirty(page))
8580 return 0;
b335b003 8581 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8582}
8583
d47992f8
LC
8584static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8585 unsigned int length)
39279cc3 8586{
5fd02043 8587 struct inode *inode = page->mapping->host;
d1310b2e 8588 struct extent_io_tree *tree;
e6dcd2dc 8589 struct btrfs_ordered_extent *ordered;
2ac55d41 8590 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8591 u64 page_start = page_offset(page);
8592 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8593 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8594
8b62b72b
CM
8595 /*
8596 * we have the page locked, so new writeback can't start,
8597 * and the dirty bit won't be cleared while we are here.
8598 *
8599 * Wait for IO on this page so that we can safely clear
8600 * the PagePrivate2 bit and do ordered accounting
8601 */
e6dcd2dc 8602 wait_on_page_writeback(page);
8b62b72b 8603
5fd02043 8604 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8605 if (offset) {
8606 btrfs_releasepage(page, GFP_NOFS);
8607 return;
8608 }
131e404a
FDBM
8609
8610 if (!inode_evicting)
8611 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8612 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8613 if (ordered) {
eb84ae03
CM
8614 /*
8615 * IO on this page will never be started, so we need
8616 * to account for any ordered extents now
8617 */
131e404a
FDBM
8618 if (!inode_evicting)
8619 clear_extent_bit(tree, page_start, page_end,
8620 EXTENT_DIRTY | EXTENT_DELALLOC |
8621 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8622 EXTENT_DEFRAG, 1, 0, &cached_state,
8623 GFP_NOFS);
8b62b72b
CM
8624 /*
8625 * whoever cleared the private bit is responsible
8626 * for the finish_ordered_io
8627 */
77cef2ec
JB
8628 if (TestClearPagePrivate2(page)) {
8629 struct btrfs_ordered_inode_tree *tree;
8630 u64 new_len;
8631
8632 tree = &BTRFS_I(inode)->ordered_tree;
8633
8634 spin_lock_irq(&tree->lock);
8635 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8636 new_len = page_start - ordered->file_offset;
8637 if (new_len < ordered->truncated_len)
8638 ordered->truncated_len = new_len;
8639 spin_unlock_irq(&tree->lock);
8640
8641 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8642 page_start,
8643 PAGE_CACHE_SIZE, 1))
8644 btrfs_finish_ordered_io(ordered);
8b62b72b 8645 }
e6dcd2dc 8646 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8647 if (!inode_evicting) {
8648 cached_state = NULL;
8649 lock_extent_bits(tree, page_start, page_end, 0,
8650 &cached_state);
8651 }
8652 }
8653
b9d0b389
QW
8654 /*
8655 * Qgroup reserved space handler
8656 * Page here will be either
8657 * 1) Already written to disk
8658 * In this case, its reserved space is released from data rsv map
8659 * and will be freed by delayed_ref handler finally.
8660 * So even we call qgroup_free_data(), it won't decrease reserved
8661 * space.
8662 * 2) Not written to disk
8663 * This means the reserved space should be freed here.
8664 */
8665 btrfs_qgroup_free_data(inode, page_start, PAGE_CACHE_SIZE);
131e404a
FDBM
8666 if (!inode_evicting) {
8667 clear_extent_bit(tree, page_start, page_end,
8668 EXTENT_LOCKED | EXTENT_DIRTY |
8669 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8670 EXTENT_DEFRAG, 1, 1,
8671 &cached_state, GFP_NOFS);
8672
8673 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8674 }
e6dcd2dc 8675
4a096752 8676 ClearPageChecked(page);
9ad6b7bc 8677 if (PagePrivate(page)) {
9ad6b7bc
CM
8678 ClearPagePrivate(page);
8679 set_page_private(page, 0);
8680 page_cache_release(page);
8681 }
39279cc3
CM
8682}
8683
9ebefb18
CM
8684/*
8685 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8686 * called from a page fault handler when a page is first dirtied. Hence we must
8687 * be careful to check for EOF conditions here. We set the page up correctly
8688 * for a written page which means we get ENOSPC checking when writing into
8689 * holes and correct delalloc and unwritten extent mapping on filesystems that
8690 * support these features.
8691 *
8692 * We are not allowed to take the i_mutex here so we have to play games to
8693 * protect against truncate races as the page could now be beyond EOF. Because
8694 * vmtruncate() writes the inode size before removing pages, once we have the
8695 * page lock we can determine safely if the page is beyond EOF. If it is not
8696 * beyond EOF, then the page is guaranteed safe against truncation until we
8697 * unlock the page.
8698 */
c2ec175c 8699int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8700{
c2ec175c 8701 struct page *page = vmf->page;
496ad9aa 8702 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8703 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8704 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8705 struct btrfs_ordered_extent *ordered;
2ac55d41 8706 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8707 char *kaddr;
8708 unsigned long zero_start;
9ebefb18 8709 loff_t size;
1832a6d5 8710 int ret;
9998eb70 8711 int reserved = 0;
a52d9a80 8712 u64 page_start;
e6dcd2dc 8713 u64 page_end;
9ebefb18 8714
b2b5ef5c 8715 sb_start_pagefault(inode->i_sb);
df480633
QW
8716 page_start = page_offset(page);
8717 page_end = page_start + PAGE_CACHE_SIZE - 1;
8718
7cf5b976
QW
8719 ret = btrfs_delalloc_reserve_space(inode, page_start,
8720 PAGE_CACHE_SIZE);
9998eb70 8721 if (!ret) {
e41f941a 8722 ret = file_update_time(vma->vm_file);
9998eb70
CM
8723 reserved = 1;
8724 }
56a76f82
NP
8725 if (ret) {
8726 if (ret == -ENOMEM)
8727 ret = VM_FAULT_OOM;
8728 else /* -ENOSPC, -EIO, etc */
8729 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8730 if (reserved)
8731 goto out;
8732 goto out_noreserve;
56a76f82 8733 }
1832a6d5 8734
56a76f82 8735 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8736again:
9ebefb18 8737 lock_page(page);
9ebefb18 8738 size = i_size_read(inode);
a52d9a80 8739
9ebefb18 8740 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8741 (page_start >= size)) {
9ebefb18
CM
8742 /* page got truncated out from underneath us */
8743 goto out_unlock;
8744 }
e6dcd2dc
CM
8745 wait_on_page_writeback(page);
8746
d0082371 8747 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
8748 set_page_extent_mapped(page);
8749
eb84ae03
CM
8750 /*
8751 * we can't set the delalloc bits if there are pending ordered
8752 * extents. Drop our locks and wait for them to finish
8753 */
e6dcd2dc
CM
8754 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8755 if (ordered) {
2ac55d41
JB
8756 unlock_extent_cached(io_tree, page_start, page_end,
8757 &cached_state, GFP_NOFS);
e6dcd2dc 8758 unlock_page(page);
eb84ae03 8759 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8760 btrfs_put_ordered_extent(ordered);
8761 goto again;
8762 }
8763
fbf19087
JB
8764 /*
8765 * XXX - page_mkwrite gets called every time the page is dirtied, even
8766 * if it was already dirty, so for space accounting reasons we need to
8767 * clear any delalloc bits for the range we are fixing to save. There
8768 * is probably a better way to do this, but for now keep consistent with
8769 * prepare_pages in the normal write path.
8770 */
2ac55d41 8771 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8772 EXTENT_DIRTY | EXTENT_DELALLOC |
8773 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8774 0, 0, &cached_state, GFP_NOFS);
fbf19087 8775
2ac55d41
JB
8776 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8777 &cached_state);
9ed74f2d 8778 if (ret) {
2ac55d41
JB
8779 unlock_extent_cached(io_tree, page_start, page_end,
8780 &cached_state, GFP_NOFS);
9ed74f2d
JB
8781 ret = VM_FAULT_SIGBUS;
8782 goto out_unlock;
8783 }
e6dcd2dc 8784 ret = 0;
9ebefb18
CM
8785
8786 /* page is wholly or partially inside EOF */
a52d9a80 8787 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8788 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8789 else
e6dcd2dc 8790 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8791
e6dcd2dc
CM
8792 if (zero_start != PAGE_CACHE_SIZE) {
8793 kaddr = kmap(page);
8794 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8795 flush_dcache_page(page);
8796 kunmap(page);
8797 }
247e743c 8798 ClearPageChecked(page);
e6dcd2dc 8799 set_page_dirty(page);
50a9b214 8800 SetPageUptodate(page);
5a3f23d5 8801
257c62e1
CM
8802 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8803 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8804 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8805
2ac55d41 8806 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8807
8808out_unlock:
b2b5ef5c
JK
8809 if (!ret) {
8810 sb_end_pagefault(inode->i_sb);
50a9b214 8811 return VM_FAULT_LOCKED;
b2b5ef5c 8812 }
9ebefb18 8813 unlock_page(page);
1832a6d5 8814out:
7cf5b976 8815 btrfs_delalloc_release_space(inode, page_start, PAGE_CACHE_SIZE);
9998eb70 8816out_noreserve:
b2b5ef5c 8817 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8818 return ret;
8819}
8820
a41ad394 8821static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8822{
8823 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8824 struct btrfs_block_rsv *rsv;
a71754fc 8825 int ret = 0;
3893e33b 8826 int err = 0;
39279cc3 8827 struct btrfs_trans_handle *trans;
dbe674a9 8828 u64 mask = root->sectorsize - 1;
07127184 8829 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8830
0ef8b726
JB
8831 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8832 (u64)-1);
8833 if (ret)
8834 return ret;
39279cc3 8835
fcb80c2a
JB
8836 /*
8837 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8838 * 3 things going on here
8839 *
8840 * 1) We need to reserve space for our orphan item and the space to
8841 * delete our orphan item. Lord knows we don't want to have a dangling
8842 * orphan item because we didn't reserve space to remove it.
8843 *
8844 * 2) We need to reserve space to update our inode.
8845 *
8846 * 3) We need to have something to cache all the space that is going to
8847 * be free'd up by the truncate operation, but also have some slack
8848 * space reserved in case it uses space during the truncate (thank you
8849 * very much snapshotting).
8850 *
8851 * And we need these to all be seperate. The fact is we can use alot of
8852 * space doing the truncate, and we have no earthly idea how much space
8853 * we will use, so we need the truncate reservation to be seperate so it
8854 * doesn't end up using space reserved for updating the inode or
8855 * removing the orphan item. We also need to be able to stop the
8856 * transaction and start a new one, which means we need to be able to
8857 * update the inode several times, and we have no idea of knowing how
8858 * many times that will be, so we can't just reserve 1 item for the
8859 * entirety of the opration, so that has to be done seperately as well.
8860 * Then there is the orphan item, which does indeed need to be held on
8861 * to for the whole operation, and we need nobody to touch this reserved
8862 * space except the orphan code.
8863 *
8864 * So that leaves us with
8865 *
8866 * 1) root->orphan_block_rsv - for the orphan deletion.
8867 * 2) rsv - for the truncate reservation, which we will steal from the
8868 * transaction reservation.
8869 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8870 * updating the inode.
8871 */
66d8f3dd 8872 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8873 if (!rsv)
8874 return -ENOMEM;
4a338542 8875 rsv->size = min_size;
ca7e70f5 8876 rsv->failfast = 1;
f0cd846e 8877
907cbceb 8878 /*
07127184 8879 * 1 for the truncate slack space
907cbceb
JB
8880 * 1 for updating the inode.
8881 */
f3fe820c 8882 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8883 if (IS_ERR(trans)) {
8884 err = PTR_ERR(trans);
8885 goto out;
8886 }
f0cd846e 8887
907cbceb
JB
8888 /* Migrate the slack space for the truncate to our reserve */
8889 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8890 min_size);
fcb80c2a 8891 BUG_ON(ret);
f0cd846e 8892
5dc562c5
JB
8893 /*
8894 * So if we truncate and then write and fsync we normally would just
8895 * write the extents that changed, which is a problem if we need to
8896 * first truncate that entire inode. So set this flag so we write out
8897 * all of the extents in the inode to the sync log so we're completely
8898 * safe.
8899 */
8900 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8901 trans->block_rsv = rsv;
907cbceb 8902
8082510e
YZ
8903 while (1) {
8904 ret = btrfs_truncate_inode_items(trans, root, inode,
8905 inode->i_size,
8906 BTRFS_EXTENT_DATA_KEY);
28ed1345 8907 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 8908 err = ret;
8082510e 8909 break;
3893e33b 8910 }
39279cc3 8911
fcb80c2a 8912 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8913 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8914 if (ret) {
8915 err = ret;
8916 break;
8917 }
ca7e70f5 8918
8082510e 8919 btrfs_end_transaction(trans, root);
b53d3f5d 8920 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8921
8922 trans = btrfs_start_transaction(root, 2);
8923 if (IS_ERR(trans)) {
8924 ret = err = PTR_ERR(trans);
8925 trans = NULL;
8926 break;
8927 }
8928
8929 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8930 rsv, min_size);
8931 BUG_ON(ret); /* shouldn't happen */
8932 trans->block_rsv = rsv;
8082510e
YZ
8933 }
8934
8935 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8936 trans->block_rsv = root->orphan_block_rsv;
8082510e 8937 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8938 if (ret)
8939 err = ret;
8082510e
YZ
8940 }
8941
917c16b2
CM
8942 if (trans) {
8943 trans->block_rsv = &root->fs_info->trans_block_rsv;
8944 ret = btrfs_update_inode(trans, root, inode);
8945 if (ret && !err)
8946 err = ret;
7b128766 8947
7ad85bb7 8948 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8949 btrfs_btree_balance_dirty(root);
917c16b2 8950 }
fcb80c2a
JB
8951
8952out:
8953 btrfs_free_block_rsv(root, rsv);
8954
3893e33b
JB
8955 if (ret && !err)
8956 err = ret;
a41ad394 8957
3893e33b 8958 return err;
39279cc3
CM
8959}
8960
d352ac68
CM
8961/*
8962 * create a new subvolume directory/inode (helper for the ioctl).
8963 */
d2fb3437 8964int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8965 struct btrfs_root *new_root,
8966 struct btrfs_root *parent_root,
8967 u64 new_dirid)
39279cc3 8968{
39279cc3 8969 struct inode *inode;
76dda93c 8970 int err;
00e4e6b3 8971 u64 index = 0;
39279cc3 8972
12fc9d09
FA
8973 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8974 new_dirid, new_dirid,
8975 S_IFDIR | (~current_umask() & S_IRWXUGO),
8976 &index);
54aa1f4d 8977 if (IS_ERR(inode))
f46b5a66 8978 return PTR_ERR(inode);
39279cc3
CM
8979 inode->i_op = &btrfs_dir_inode_operations;
8980 inode->i_fop = &btrfs_dir_file_operations;
8981
bfe86848 8982 set_nlink(inode, 1);
dbe674a9 8983 btrfs_i_size_write(inode, 0);
b0d5d10f 8984 unlock_new_inode(inode);
3b96362c 8985
63541927
FDBM
8986 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8987 if (err)
8988 btrfs_err(new_root->fs_info,
351fd353 8989 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8990 new_root->root_key.objectid, err);
8991
76dda93c 8992 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8993
76dda93c 8994 iput(inode);
ce598979 8995 return err;
39279cc3
CM
8996}
8997
39279cc3
CM
8998struct inode *btrfs_alloc_inode(struct super_block *sb)
8999{
9000 struct btrfs_inode *ei;
2ead6ae7 9001 struct inode *inode;
39279cc3
CM
9002
9003 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9004 if (!ei)
9005 return NULL;
2ead6ae7
YZ
9006
9007 ei->root = NULL;
2ead6ae7 9008 ei->generation = 0;
15ee9bc7 9009 ei->last_trans = 0;
257c62e1 9010 ei->last_sub_trans = 0;
e02119d5 9011 ei->logged_trans = 0;
2ead6ae7 9012 ei->delalloc_bytes = 0;
47059d93 9013 ei->defrag_bytes = 0;
2ead6ae7
YZ
9014 ei->disk_i_size = 0;
9015 ei->flags = 0;
7709cde3 9016 ei->csum_bytes = 0;
2ead6ae7 9017 ei->index_cnt = (u64)-1;
67de1176 9018 ei->dir_index = 0;
2ead6ae7 9019 ei->last_unlink_trans = 0;
46d8bc34 9020 ei->last_log_commit = 0;
2ead6ae7 9021
9e0baf60
JB
9022 spin_lock_init(&ei->lock);
9023 ei->outstanding_extents = 0;
9024 ei->reserved_extents = 0;
2ead6ae7 9025
72ac3c0d 9026 ei->runtime_flags = 0;
261507a0 9027 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9028
16cdcec7
MX
9029 ei->delayed_node = NULL;
9030
9cc97d64 9031 ei->i_otime.tv_sec = 0;
9032 ei->i_otime.tv_nsec = 0;
9033
2ead6ae7 9034 inode = &ei->vfs_inode;
a8067e02 9035 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9036 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9037 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9038 ei->io_tree.track_uptodate = 1;
9039 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9040 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9041 mutex_init(&ei->log_mutex);
f248679e 9042 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9043 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9044 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
9045 RB_CLEAR_NODE(&ei->rb_node);
9046
9047 return inode;
39279cc3
CM
9048}
9049
aaedb55b
JB
9050#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9051void btrfs_test_destroy_inode(struct inode *inode)
9052{
9053 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9054 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9055}
9056#endif
9057
fa0d7e3d
NP
9058static void btrfs_i_callback(struct rcu_head *head)
9059{
9060 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9061 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9062}
9063
39279cc3
CM
9064void btrfs_destroy_inode(struct inode *inode)
9065{
e6dcd2dc 9066 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9067 struct btrfs_root *root = BTRFS_I(inode)->root;
9068
b3d9b7a3 9069 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9070 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9071 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9072 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9073 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9074 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9075 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9076
a6dbd429
JB
9077 /*
9078 * This can happen where we create an inode, but somebody else also
9079 * created the same inode and we need to destroy the one we already
9080 * created.
9081 */
9082 if (!root)
9083 goto free;
9084
8a35d95f
JB
9085 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9086 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9087 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9088 btrfs_ino(inode));
8a35d95f 9089 atomic_dec(&root->orphan_inodes);
7b128766 9090 }
7b128766 9091
d397712b 9092 while (1) {
e6dcd2dc
CM
9093 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9094 if (!ordered)
9095 break;
9096 else {
c2cf52eb 9097 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9098 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9099 btrfs_remove_ordered_extent(inode, ordered);
9100 btrfs_put_ordered_extent(ordered);
9101 btrfs_put_ordered_extent(ordered);
9102 }
9103 }
56fa9d07 9104 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9105 inode_tree_del(inode);
5b21f2ed 9106 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9107free:
fa0d7e3d 9108 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9109}
9110
45321ac5 9111int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9112{
9113 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9114
6379ef9f
NA
9115 if (root == NULL)
9116 return 1;
9117
fa6ac876 9118 /* the snap/subvol tree is on deleting */
69e9c6c6 9119 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9120 return 1;
76dda93c 9121 else
45321ac5 9122 return generic_drop_inode(inode);
76dda93c
YZ
9123}
9124
0ee0fda0 9125static void init_once(void *foo)
39279cc3
CM
9126{
9127 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9128
9129 inode_init_once(&ei->vfs_inode);
9130}
9131
9132void btrfs_destroy_cachep(void)
9133{
8c0a8537
KS
9134 /*
9135 * Make sure all delayed rcu free inodes are flushed before we
9136 * destroy cache.
9137 */
9138 rcu_barrier();
39279cc3
CM
9139 if (btrfs_inode_cachep)
9140 kmem_cache_destroy(btrfs_inode_cachep);
9141 if (btrfs_trans_handle_cachep)
9142 kmem_cache_destroy(btrfs_trans_handle_cachep);
9143 if (btrfs_transaction_cachep)
9144 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
9145 if (btrfs_path_cachep)
9146 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
9147 if (btrfs_free_space_cachep)
9148 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
9149 if (btrfs_delalloc_work_cachep)
9150 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
9151}
9152
9153int btrfs_init_cachep(void)
9154{
837e1972 9155 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
9156 sizeof(struct btrfs_inode), 0,
9157 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
9158 if (!btrfs_inode_cachep)
9159 goto fail;
9601e3f6 9160
837e1972 9161 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
9162 sizeof(struct btrfs_trans_handle), 0,
9163 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9164 if (!btrfs_trans_handle_cachep)
9165 goto fail;
9601e3f6 9166
837e1972 9167 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
9168 sizeof(struct btrfs_transaction), 0,
9169 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9170 if (!btrfs_transaction_cachep)
9171 goto fail;
9601e3f6 9172
837e1972 9173 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
9174 sizeof(struct btrfs_path), 0,
9175 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9176 if (!btrfs_path_cachep)
9177 goto fail;
9601e3f6 9178
837e1972 9179 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
9180 sizeof(struct btrfs_free_space), 0,
9181 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9182 if (!btrfs_free_space_cachep)
9183 goto fail;
9184
8ccf6f19
MX
9185 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9186 sizeof(struct btrfs_delalloc_work), 0,
9187 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9188 NULL);
9189 if (!btrfs_delalloc_work_cachep)
9190 goto fail;
9191
39279cc3
CM
9192 return 0;
9193fail:
9194 btrfs_destroy_cachep();
9195 return -ENOMEM;
9196}
9197
9198static int btrfs_getattr(struct vfsmount *mnt,
9199 struct dentry *dentry, struct kstat *stat)
9200{
df0af1a5 9201 u64 delalloc_bytes;
2b0143b5 9202 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9203 u32 blocksize = inode->i_sb->s_blocksize;
9204
39279cc3 9205 generic_fillattr(inode, stat);
0ee5dc67 9206 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 9207 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
9208
9209 spin_lock(&BTRFS_I(inode)->lock);
9210 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9211 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9212 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9213 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9214 return 0;
9215}
9216
d397712b
CM
9217static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9218 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
9219{
9220 struct btrfs_trans_handle *trans;
9221 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9222 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9223 struct inode *new_inode = d_inode(new_dentry);
9224 struct inode *old_inode = d_inode(old_dentry);
39279cc3 9225 struct timespec ctime = CURRENT_TIME;
00e4e6b3 9226 u64 index = 0;
4df27c4d 9227 u64 root_objectid;
39279cc3 9228 int ret;
33345d01 9229 u64 old_ino = btrfs_ino(old_inode);
39279cc3 9230
33345d01 9231 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9232 return -EPERM;
9233
4df27c4d 9234 /* we only allow rename subvolume link between subvolumes */
33345d01 9235 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9236 return -EXDEV;
9237
33345d01
LZ
9238 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9239 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9240 return -ENOTEMPTY;
5f39d397 9241
4df27c4d
YZ
9242 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9243 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9244 return -ENOTEMPTY;
9c52057c
CM
9245
9246
9247 /* check for collisions, even if the name isn't there */
4871c158 9248 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9249 new_dentry->d_name.name,
9250 new_dentry->d_name.len);
9251
9252 if (ret) {
9253 if (ret == -EEXIST) {
9254 /* we shouldn't get
9255 * eexist without a new_inode */
fae7f21c 9256 if (WARN_ON(!new_inode)) {
9c52057c
CM
9257 return ret;
9258 }
9259 } else {
9260 /* maybe -EOVERFLOW */
9261 return ret;
9262 }
9263 }
9264 ret = 0;
9265
5a3f23d5 9266 /*
8d875f95
CM
9267 * we're using rename to replace one file with another. Start IO on it
9268 * now so we don't add too much work to the end of the transaction
5a3f23d5 9269 */
8d875f95 9270 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9271 filemap_flush(old_inode->i_mapping);
9272
76dda93c 9273 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9274 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9275 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9276 /*
9277 * We want to reserve the absolute worst case amount of items. So if
9278 * both inodes are subvols and we need to unlink them then that would
9279 * require 4 item modifications, but if they are both normal inodes it
9280 * would require 5 item modifications, so we'll assume their normal
9281 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9282 * should cover the worst case number of items we'll modify.
9283 */
6e137ed3 9284 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
9285 if (IS_ERR(trans)) {
9286 ret = PTR_ERR(trans);
9287 goto out_notrans;
9288 }
76dda93c 9289
4df27c4d
YZ
9290 if (dest != root)
9291 btrfs_record_root_in_trans(trans, dest);
5f39d397 9292
a5719521
YZ
9293 ret = btrfs_set_inode_index(new_dir, &index);
9294 if (ret)
9295 goto out_fail;
5a3f23d5 9296
67de1176 9297 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9298 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9299 /* force full log commit if subvolume involved. */
995946dd 9300 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9301 } else {
a5719521
YZ
9302 ret = btrfs_insert_inode_ref(trans, dest,
9303 new_dentry->d_name.name,
9304 new_dentry->d_name.len,
33345d01
LZ
9305 old_ino,
9306 btrfs_ino(new_dir), index);
a5719521
YZ
9307 if (ret)
9308 goto out_fail;
4df27c4d
YZ
9309 /*
9310 * this is an ugly little race, but the rename is required
9311 * to make sure that if we crash, the inode is either at the
9312 * old name or the new one. pinning the log transaction lets
9313 * us make sure we don't allow a log commit to come in after
9314 * we unlink the name but before we add the new name back in.
9315 */
9316 btrfs_pin_log_trans(root);
9317 }
5a3f23d5 9318
0c4d2d95
JB
9319 inode_inc_iversion(old_dir);
9320 inode_inc_iversion(new_dir);
9321 inode_inc_iversion(old_inode);
39279cc3
CM
9322 old_dir->i_ctime = old_dir->i_mtime = ctime;
9323 new_dir->i_ctime = new_dir->i_mtime = ctime;
9324 old_inode->i_ctime = ctime;
5f39d397 9325
12fcfd22
CM
9326 if (old_dentry->d_parent != new_dentry->d_parent)
9327 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9328
33345d01 9329 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9330 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9331 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9332 old_dentry->d_name.name,
9333 old_dentry->d_name.len);
9334 } else {
92986796 9335 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9336 d_inode(old_dentry),
92986796
AV
9337 old_dentry->d_name.name,
9338 old_dentry->d_name.len);
9339 if (!ret)
9340 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9341 }
79787eaa
JM
9342 if (ret) {
9343 btrfs_abort_transaction(trans, root, ret);
9344 goto out_fail;
9345 }
39279cc3
CM
9346
9347 if (new_inode) {
0c4d2d95 9348 inode_inc_iversion(new_inode);
39279cc3 9349 new_inode->i_ctime = CURRENT_TIME;
33345d01 9350 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9351 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9352 root_objectid = BTRFS_I(new_inode)->location.objectid;
9353 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9354 root_objectid,
9355 new_dentry->d_name.name,
9356 new_dentry->d_name.len);
9357 BUG_ON(new_inode->i_nlink == 0);
9358 } else {
9359 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9360 d_inode(new_dentry),
4df27c4d
YZ
9361 new_dentry->d_name.name,
9362 new_dentry->d_name.len);
9363 }
4ef31a45 9364 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9365 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9366 if (ret) {
9367 btrfs_abort_transaction(trans, root, ret);
9368 goto out_fail;
9369 }
39279cc3 9370 }
aec7477b 9371
4df27c4d
YZ
9372 ret = btrfs_add_link(trans, new_dir, old_inode,
9373 new_dentry->d_name.name,
a5719521 9374 new_dentry->d_name.len, 0, index);
79787eaa
JM
9375 if (ret) {
9376 btrfs_abort_transaction(trans, root, ret);
9377 goto out_fail;
9378 }
39279cc3 9379
67de1176
MX
9380 if (old_inode->i_nlink == 1)
9381 BTRFS_I(old_inode)->dir_index = index;
9382
33345d01 9383 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 9384 struct dentry *parent = new_dentry->d_parent;
6a912213 9385 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
9386 btrfs_end_log_trans(root);
9387 }
39279cc3 9388out_fail:
7ad85bb7 9389 btrfs_end_transaction(trans, root);
b44c59a8 9390out_notrans:
33345d01 9391 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9392 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9393
39279cc3
CM
9394 return ret;
9395}
9396
80ace85c
MS
9397static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9398 struct inode *new_dir, struct dentry *new_dentry,
9399 unsigned int flags)
9400{
9401 if (flags & ~RENAME_NOREPLACE)
9402 return -EINVAL;
9403
9404 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9405}
9406
8ccf6f19
MX
9407static void btrfs_run_delalloc_work(struct btrfs_work *work)
9408{
9409 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9410 struct inode *inode;
8ccf6f19
MX
9411
9412 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9413 work);
9f23e289
JB
9414 inode = delalloc_work->inode;
9415 if (delalloc_work->wait) {
9416 btrfs_wait_ordered_range(inode, 0, (u64)-1);
9417 } else {
9418 filemap_flush(inode->i_mapping);
9419 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9420 &BTRFS_I(inode)->runtime_flags))
9421 filemap_flush(inode->i_mapping);
9422 }
8ccf6f19
MX
9423
9424 if (delalloc_work->delay_iput)
9f23e289 9425 btrfs_add_delayed_iput(inode);
8ccf6f19 9426 else
9f23e289 9427 iput(inode);
8ccf6f19
MX
9428 complete(&delalloc_work->completion);
9429}
9430
9431struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9432 int wait, int delay_iput)
9433{
9434 struct btrfs_delalloc_work *work;
9435
9436 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9437 if (!work)
9438 return NULL;
9439
9440 init_completion(&work->completion);
9441 INIT_LIST_HEAD(&work->list);
9442 work->inode = inode;
9443 work->wait = wait;
9444 work->delay_iput = delay_iput;
9e0af237
LB
9445 WARN_ON_ONCE(!inode);
9446 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9447 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9448
9449 return work;
9450}
9451
9452void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9453{
9454 wait_for_completion(&work->completion);
9455 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9456}
9457
d352ac68
CM
9458/*
9459 * some fairly slow code that needs optimization. This walks the list
9460 * of all the inodes with pending delalloc and forces them to disk.
9461 */
6c255e67
MX
9462static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9463 int nr)
ea8c2819 9464{
ea8c2819 9465 struct btrfs_inode *binode;
5b21f2ed 9466 struct inode *inode;
8ccf6f19
MX
9467 struct btrfs_delalloc_work *work, *next;
9468 struct list_head works;
1eafa6c7 9469 struct list_head splice;
8ccf6f19 9470 int ret = 0;
ea8c2819 9471
8ccf6f19 9472 INIT_LIST_HEAD(&works);
1eafa6c7 9473 INIT_LIST_HEAD(&splice);
63607cc8 9474
573bfb72 9475 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9476 spin_lock(&root->delalloc_lock);
9477 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9478 while (!list_empty(&splice)) {
9479 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9480 delalloc_inodes);
1eafa6c7 9481
eb73c1b7
MX
9482 list_move_tail(&binode->delalloc_inodes,
9483 &root->delalloc_inodes);
5b21f2ed 9484 inode = igrab(&binode->vfs_inode);
df0af1a5 9485 if (!inode) {
eb73c1b7 9486 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9487 continue;
df0af1a5 9488 }
eb73c1b7 9489 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
9490
9491 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
5d99a998 9492 if (!work) {
f4ab9ea7
JB
9493 if (delay_iput)
9494 btrfs_add_delayed_iput(inode);
9495 else
9496 iput(inode);
1eafa6c7 9497 ret = -ENOMEM;
a1ecaabb 9498 goto out;
5b21f2ed 9499 }
1eafa6c7 9500 list_add_tail(&work->list, &works);
a44903ab
QW
9501 btrfs_queue_work(root->fs_info->flush_workers,
9502 &work->work);
6c255e67
MX
9503 ret++;
9504 if (nr != -1 && ret >= nr)
a1ecaabb 9505 goto out;
5b21f2ed 9506 cond_resched();
eb73c1b7 9507 spin_lock(&root->delalloc_lock);
ea8c2819 9508 }
eb73c1b7 9509 spin_unlock(&root->delalloc_lock);
8c8bee1d 9510
a1ecaabb 9511out:
eb73c1b7
MX
9512 list_for_each_entry_safe(work, next, &works, list) {
9513 list_del_init(&work->list);
9514 btrfs_wait_and_free_delalloc_work(work);
9515 }
9516
9517 if (!list_empty_careful(&splice)) {
9518 spin_lock(&root->delalloc_lock);
9519 list_splice_tail(&splice, &root->delalloc_inodes);
9520 spin_unlock(&root->delalloc_lock);
9521 }
573bfb72 9522 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9523 return ret;
9524}
1eafa6c7 9525
eb73c1b7
MX
9526int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9527{
9528 int ret;
1eafa6c7 9529
2c21b4d7 9530 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9531 return -EROFS;
9532
6c255e67
MX
9533 ret = __start_delalloc_inodes(root, delay_iput, -1);
9534 if (ret > 0)
9535 ret = 0;
eb73c1b7
MX
9536 /*
9537 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9538 * we have to make sure the IO is actually started and that
9539 * ordered extents get created before we return
9540 */
9541 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9542 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9543 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9544 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9545 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9546 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9547 }
9548 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9549 return ret;
9550}
9551
6c255e67
MX
9552int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9553 int nr)
eb73c1b7
MX
9554{
9555 struct btrfs_root *root;
9556 struct list_head splice;
9557 int ret;
9558
2c21b4d7 9559 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9560 return -EROFS;
9561
9562 INIT_LIST_HEAD(&splice);
9563
573bfb72 9564 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9565 spin_lock(&fs_info->delalloc_root_lock);
9566 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9567 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9568 root = list_first_entry(&splice, struct btrfs_root,
9569 delalloc_root);
9570 root = btrfs_grab_fs_root(root);
9571 BUG_ON(!root);
9572 list_move_tail(&root->delalloc_root,
9573 &fs_info->delalloc_roots);
9574 spin_unlock(&fs_info->delalloc_root_lock);
9575
6c255e67 9576 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9577 btrfs_put_fs_root(root);
6c255e67 9578 if (ret < 0)
eb73c1b7
MX
9579 goto out;
9580
6c255e67
MX
9581 if (nr != -1) {
9582 nr -= ret;
9583 WARN_ON(nr < 0);
9584 }
eb73c1b7 9585 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9586 }
eb73c1b7 9587 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9588
6c255e67 9589 ret = 0;
eb73c1b7
MX
9590 atomic_inc(&fs_info->async_submit_draining);
9591 while (atomic_read(&fs_info->nr_async_submits) ||
9592 atomic_read(&fs_info->async_delalloc_pages)) {
9593 wait_event(fs_info->async_submit_wait,
9594 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9595 atomic_read(&fs_info->async_delalloc_pages) == 0));
9596 }
9597 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9598out:
1eafa6c7 9599 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9600 spin_lock(&fs_info->delalloc_root_lock);
9601 list_splice_tail(&splice, &fs_info->delalloc_roots);
9602 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9603 }
573bfb72 9604 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9605 return ret;
ea8c2819
CM
9606}
9607
39279cc3
CM
9608static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9609 const char *symname)
9610{
9611 struct btrfs_trans_handle *trans;
9612 struct btrfs_root *root = BTRFS_I(dir)->root;
9613 struct btrfs_path *path;
9614 struct btrfs_key key;
1832a6d5 9615 struct inode *inode = NULL;
39279cc3
CM
9616 int err;
9617 int drop_inode = 0;
9618 u64 objectid;
67871254 9619 u64 index = 0;
39279cc3
CM
9620 int name_len;
9621 int datasize;
5f39d397 9622 unsigned long ptr;
39279cc3 9623 struct btrfs_file_extent_item *ei;
5f39d397 9624 struct extent_buffer *leaf;
39279cc3 9625
f06becc4 9626 name_len = strlen(symname);
39279cc3
CM
9627 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9628 return -ENAMETOOLONG;
1832a6d5 9629
9ed74f2d
JB
9630 /*
9631 * 2 items for inode item and ref
9632 * 2 items for dir items
9633 * 1 item for xattr if selinux is on
9634 */
a22285a6
YZ
9635 trans = btrfs_start_transaction(root, 5);
9636 if (IS_ERR(trans))
9637 return PTR_ERR(trans);
1832a6d5 9638
581bb050
LZ
9639 err = btrfs_find_free_ino(root, &objectid);
9640 if (err)
9641 goto out_unlock;
9642
aec7477b 9643 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9644 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9645 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9646 if (IS_ERR(inode)) {
9647 err = PTR_ERR(inode);
39279cc3 9648 goto out_unlock;
7cf96da3 9649 }
39279cc3 9650
ad19db71
CS
9651 /*
9652 * If the active LSM wants to access the inode during
9653 * d_instantiate it needs these. Smack checks to see
9654 * if the filesystem supports xattrs by looking at the
9655 * ops vector.
9656 */
9657 inode->i_fop = &btrfs_file_operations;
9658 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 9659 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
9660 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9661
9662 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9663 if (err)
9664 goto out_unlock_inode;
ad19db71 9665
a1b075d2 9666 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 9667 if (err)
b0d5d10f 9668 goto out_unlock_inode;
39279cc3
CM
9669
9670 path = btrfs_alloc_path();
d8926bb3
MF
9671 if (!path) {
9672 err = -ENOMEM;
b0d5d10f 9673 goto out_unlock_inode;
d8926bb3 9674 }
33345d01 9675 key.objectid = btrfs_ino(inode);
39279cc3 9676 key.offset = 0;
962a298f 9677 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9678 datasize = btrfs_file_extent_calc_inline_size(name_len);
9679 err = btrfs_insert_empty_item(trans, root, path, &key,
9680 datasize);
54aa1f4d 9681 if (err) {
b0839166 9682 btrfs_free_path(path);
b0d5d10f 9683 goto out_unlock_inode;
54aa1f4d 9684 }
5f39d397
CM
9685 leaf = path->nodes[0];
9686 ei = btrfs_item_ptr(leaf, path->slots[0],
9687 struct btrfs_file_extent_item);
9688 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9689 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9690 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9691 btrfs_set_file_extent_encryption(leaf, ei, 0);
9692 btrfs_set_file_extent_compression(leaf, ei, 0);
9693 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9694 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9695
39279cc3 9696 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9697 write_extent_buffer(leaf, symname, ptr, name_len);
9698 btrfs_mark_buffer_dirty(leaf);
39279cc3 9699 btrfs_free_path(path);
5f39d397 9700
39279cc3
CM
9701 inode->i_op = &btrfs_symlink_inode_operations;
9702 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 9703 inode_set_bytes(inode, name_len);
f06becc4 9704 btrfs_i_size_write(inode, name_len);
54aa1f4d 9705 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 9706 if (err) {
54aa1f4d 9707 drop_inode = 1;
b0d5d10f
CM
9708 goto out_unlock_inode;
9709 }
9710
9711 unlock_new_inode(inode);
9712 d_instantiate(dentry, inode);
39279cc3
CM
9713
9714out_unlock:
7ad85bb7 9715 btrfs_end_transaction(trans, root);
39279cc3
CM
9716 if (drop_inode) {
9717 inode_dec_link_count(inode);
9718 iput(inode);
9719 }
b53d3f5d 9720 btrfs_btree_balance_dirty(root);
39279cc3 9721 return err;
b0d5d10f
CM
9722
9723out_unlock_inode:
9724 drop_inode = 1;
9725 unlock_new_inode(inode);
9726 goto out_unlock;
39279cc3 9727}
16432985 9728
0af3d00b
JB
9729static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9730 u64 start, u64 num_bytes, u64 min_size,
9731 loff_t actual_len, u64 *alloc_hint,
9732 struct btrfs_trans_handle *trans)
d899e052 9733{
5dc562c5
JB
9734 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9735 struct extent_map *em;
d899e052
YZ
9736 struct btrfs_root *root = BTRFS_I(inode)->root;
9737 struct btrfs_key ins;
d899e052 9738 u64 cur_offset = start;
55a61d1d 9739 u64 i_size;
154ea289 9740 u64 cur_bytes;
0b670dc4 9741 u64 last_alloc = (u64)-1;
d899e052 9742 int ret = 0;
0af3d00b 9743 bool own_trans = true;
d899e052 9744
0af3d00b
JB
9745 if (trans)
9746 own_trans = false;
d899e052 9747 while (num_bytes > 0) {
0af3d00b
JB
9748 if (own_trans) {
9749 trans = btrfs_start_transaction(root, 3);
9750 if (IS_ERR(trans)) {
9751 ret = PTR_ERR(trans);
9752 break;
9753 }
5a303d5d
YZ
9754 }
9755
154ea289
CM
9756 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9757 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
9758 /*
9759 * If we are severely fragmented we could end up with really
9760 * small allocations, so if the allocator is returning small
9761 * chunks lets make its job easier by only searching for those
9762 * sized chunks.
9763 */
9764 cur_bytes = min(cur_bytes, last_alloc);
00361589 9765 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9766 *alloc_hint, &ins, 1, 0);
5a303d5d 9767 if (ret) {
0af3d00b
JB
9768 if (own_trans)
9769 btrfs_end_transaction(trans, root);
a22285a6 9770 break;
d899e052 9771 }
5a303d5d 9772
0b670dc4 9773 last_alloc = ins.offset;
d899e052
YZ
9774 ret = insert_reserved_file_extent(trans, inode,
9775 cur_offset, ins.objectid,
9776 ins.offset, ins.offset,
920bbbfb 9777 ins.offset, 0, 0, 0,
d899e052 9778 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9779 if (ret) {
857cc2fc 9780 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9781 ins.offset, 0);
79787eaa
JM
9782 btrfs_abort_transaction(trans, root, ret);
9783 if (own_trans)
9784 btrfs_end_transaction(trans, root);
9785 break;
9786 }
31193213 9787
a1ed835e
CM
9788 btrfs_drop_extent_cache(inode, cur_offset,
9789 cur_offset + ins.offset -1, 0);
5a303d5d 9790
5dc562c5
JB
9791 em = alloc_extent_map();
9792 if (!em) {
9793 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9794 &BTRFS_I(inode)->runtime_flags);
9795 goto next;
9796 }
9797
9798 em->start = cur_offset;
9799 em->orig_start = cur_offset;
9800 em->len = ins.offset;
9801 em->block_start = ins.objectid;
9802 em->block_len = ins.offset;
b4939680 9803 em->orig_block_len = ins.offset;
cc95bef6 9804 em->ram_bytes = ins.offset;
5dc562c5
JB
9805 em->bdev = root->fs_info->fs_devices->latest_bdev;
9806 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9807 em->generation = trans->transid;
9808
9809 while (1) {
9810 write_lock(&em_tree->lock);
09a2a8f9 9811 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9812 write_unlock(&em_tree->lock);
9813 if (ret != -EEXIST)
9814 break;
9815 btrfs_drop_extent_cache(inode, cur_offset,
9816 cur_offset + ins.offset - 1,
9817 0);
9818 }
9819 free_extent_map(em);
9820next:
d899e052
YZ
9821 num_bytes -= ins.offset;
9822 cur_offset += ins.offset;
efa56464 9823 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9824
0c4d2d95 9825 inode_inc_iversion(inode);
d899e052 9826 inode->i_ctime = CURRENT_TIME;
6cbff00f 9827 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9828 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9829 (actual_len > inode->i_size) &&
9830 (cur_offset > inode->i_size)) {
d1ea6a61 9831 if (cur_offset > actual_len)
55a61d1d 9832 i_size = actual_len;
d1ea6a61 9833 else
55a61d1d
JB
9834 i_size = cur_offset;
9835 i_size_write(inode, i_size);
9836 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9837 }
9838
d899e052 9839 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9840
9841 if (ret) {
9842 btrfs_abort_transaction(trans, root, ret);
9843 if (own_trans)
9844 btrfs_end_transaction(trans, root);
9845 break;
9846 }
d899e052 9847
0af3d00b
JB
9848 if (own_trans)
9849 btrfs_end_transaction(trans, root);
5a303d5d 9850 }
d899e052
YZ
9851 return ret;
9852}
9853
0af3d00b
JB
9854int btrfs_prealloc_file_range(struct inode *inode, int mode,
9855 u64 start, u64 num_bytes, u64 min_size,
9856 loff_t actual_len, u64 *alloc_hint)
9857{
9858 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9859 min_size, actual_len, alloc_hint,
9860 NULL);
9861}
9862
9863int btrfs_prealloc_file_range_trans(struct inode *inode,
9864 struct btrfs_trans_handle *trans, int mode,
9865 u64 start, u64 num_bytes, u64 min_size,
9866 loff_t actual_len, u64 *alloc_hint)
9867{
9868 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9869 min_size, actual_len, alloc_hint, trans);
9870}
9871
e6dcd2dc
CM
9872static int btrfs_set_page_dirty(struct page *page)
9873{
e6dcd2dc
CM
9874 return __set_page_dirty_nobuffers(page);
9875}
9876
10556cb2 9877static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9878{
b83cc969 9879 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9880 umode_t mode = inode->i_mode;
b83cc969 9881
cb6db4e5
JM
9882 if (mask & MAY_WRITE &&
9883 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9884 if (btrfs_root_readonly(root))
9885 return -EROFS;
9886 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9887 return -EACCES;
9888 }
2830ba7f 9889 return generic_permission(inode, mask);
fdebe2bd 9890}
39279cc3 9891
ef3b9af5
FM
9892static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9893{
9894 struct btrfs_trans_handle *trans;
9895 struct btrfs_root *root = BTRFS_I(dir)->root;
9896 struct inode *inode = NULL;
9897 u64 objectid;
9898 u64 index;
9899 int ret = 0;
9900
9901 /*
9902 * 5 units required for adding orphan entry
9903 */
9904 trans = btrfs_start_transaction(root, 5);
9905 if (IS_ERR(trans))
9906 return PTR_ERR(trans);
9907
9908 ret = btrfs_find_free_ino(root, &objectid);
9909 if (ret)
9910 goto out;
9911
9912 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9913 btrfs_ino(dir), objectid, mode, &index);
9914 if (IS_ERR(inode)) {
9915 ret = PTR_ERR(inode);
9916 inode = NULL;
9917 goto out;
9918 }
9919
ef3b9af5
FM
9920 inode->i_fop = &btrfs_file_operations;
9921 inode->i_op = &btrfs_file_inode_operations;
9922
9923 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
9924 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9925
b0d5d10f
CM
9926 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9927 if (ret)
9928 goto out_inode;
9929
9930 ret = btrfs_update_inode(trans, root, inode);
9931 if (ret)
9932 goto out_inode;
ef3b9af5
FM
9933 ret = btrfs_orphan_add(trans, inode);
9934 if (ret)
b0d5d10f 9935 goto out_inode;
ef3b9af5 9936
5762b5c9
FM
9937 /*
9938 * We set number of links to 0 in btrfs_new_inode(), and here we set
9939 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9940 * through:
9941 *
9942 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9943 */
9944 set_nlink(inode, 1);
b0d5d10f 9945 unlock_new_inode(inode);
ef3b9af5
FM
9946 d_tmpfile(dentry, inode);
9947 mark_inode_dirty(inode);
9948
9949out:
9950 btrfs_end_transaction(trans, root);
9951 if (ret)
9952 iput(inode);
9953 btrfs_balance_delayed_items(root);
9954 btrfs_btree_balance_dirty(root);
ef3b9af5 9955 return ret;
b0d5d10f
CM
9956
9957out_inode:
9958 unlock_new_inode(inode);
9959 goto out;
9960
ef3b9af5
FM
9961}
9962
b38ef71c
FM
9963/* Inspired by filemap_check_errors() */
9964int btrfs_inode_check_errors(struct inode *inode)
9965{
9966 int ret = 0;
9967
9968 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9969 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9970 ret = -ENOSPC;
9971 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9972 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9973 ret = -EIO;
9974
9975 return ret;
9976}
9977
6e1d5dcc 9978static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9979 .getattr = btrfs_getattr,
39279cc3
CM
9980 .lookup = btrfs_lookup,
9981 .create = btrfs_create,
9982 .unlink = btrfs_unlink,
9983 .link = btrfs_link,
9984 .mkdir = btrfs_mkdir,
9985 .rmdir = btrfs_rmdir,
80ace85c 9986 .rename2 = btrfs_rename2,
39279cc3
CM
9987 .symlink = btrfs_symlink,
9988 .setattr = btrfs_setattr,
618e21d5 9989 .mknod = btrfs_mknod,
95819c05
CH
9990 .setxattr = btrfs_setxattr,
9991 .getxattr = btrfs_getxattr,
5103e947 9992 .listxattr = btrfs_listxattr,
95819c05 9993 .removexattr = btrfs_removexattr,
fdebe2bd 9994 .permission = btrfs_permission,
4e34e719 9995 .get_acl = btrfs_get_acl,
996a710d 9996 .set_acl = btrfs_set_acl,
93fd63c2 9997 .update_time = btrfs_update_time,
ef3b9af5 9998 .tmpfile = btrfs_tmpfile,
39279cc3 9999};
6e1d5dcc 10000static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10001 .lookup = btrfs_lookup,
fdebe2bd 10002 .permission = btrfs_permission,
4e34e719 10003 .get_acl = btrfs_get_acl,
996a710d 10004 .set_acl = btrfs_set_acl,
93fd63c2 10005 .update_time = btrfs_update_time,
39279cc3 10006};
76dda93c 10007
828c0950 10008static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10009 .llseek = generic_file_llseek,
10010 .read = generic_read_dir,
9cdda8d3 10011 .iterate = btrfs_real_readdir,
34287aa3 10012 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10013#ifdef CONFIG_COMPAT
34287aa3 10014 .compat_ioctl = btrfs_ioctl,
39279cc3 10015#endif
6bf13c0c 10016 .release = btrfs_release_file,
e02119d5 10017 .fsync = btrfs_sync_file,
39279cc3
CM
10018};
10019
d1310b2e 10020static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10021 .fill_delalloc = run_delalloc_range,
065631f6 10022 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10023 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10024 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10025 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10026 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10027 .set_bit_hook = btrfs_set_bit_hook,
10028 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10029 .merge_extent_hook = btrfs_merge_extent_hook,
10030 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10031};
10032
35054394
CM
10033/*
10034 * btrfs doesn't support the bmap operation because swapfiles
10035 * use bmap to make a mapping of extents in the file. They assume
10036 * these extents won't change over the life of the file and they
10037 * use the bmap result to do IO directly to the drive.
10038 *
10039 * the btrfs bmap call would return logical addresses that aren't
10040 * suitable for IO and they also will change frequently as COW
10041 * operations happen. So, swapfile + btrfs == corruption.
10042 *
10043 * For now we're avoiding this by dropping bmap.
10044 */
7f09410b 10045static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10046 .readpage = btrfs_readpage,
10047 .writepage = btrfs_writepage,
b293f02e 10048 .writepages = btrfs_writepages,
3ab2fb5a 10049 .readpages = btrfs_readpages,
16432985 10050 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10051 .invalidatepage = btrfs_invalidatepage,
10052 .releasepage = btrfs_releasepage,
e6dcd2dc 10053 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10054 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10055};
10056
7f09410b 10057static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10058 .readpage = btrfs_readpage,
10059 .writepage = btrfs_writepage,
2bf5a725
CM
10060 .invalidatepage = btrfs_invalidatepage,
10061 .releasepage = btrfs_releasepage,
39279cc3
CM
10062};
10063
6e1d5dcc 10064static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10065 .getattr = btrfs_getattr,
10066 .setattr = btrfs_setattr,
95819c05
CH
10067 .setxattr = btrfs_setxattr,
10068 .getxattr = btrfs_getxattr,
5103e947 10069 .listxattr = btrfs_listxattr,
95819c05 10070 .removexattr = btrfs_removexattr,
fdebe2bd 10071 .permission = btrfs_permission,
1506fcc8 10072 .fiemap = btrfs_fiemap,
4e34e719 10073 .get_acl = btrfs_get_acl,
996a710d 10074 .set_acl = btrfs_set_acl,
e41f941a 10075 .update_time = btrfs_update_time,
39279cc3 10076};
6e1d5dcc 10077static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10078 .getattr = btrfs_getattr,
10079 .setattr = btrfs_setattr,
fdebe2bd 10080 .permission = btrfs_permission,
95819c05
CH
10081 .setxattr = btrfs_setxattr,
10082 .getxattr = btrfs_getxattr,
33268eaf 10083 .listxattr = btrfs_listxattr,
95819c05 10084 .removexattr = btrfs_removexattr,
4e34e719 10085 .get_acl = btrfs_get_acl,
996a710d 10086 .set_acl = btrfs_set_acl,
e41f941a 10087 .update_time = btrfs_update_time,
618e21d5 10088};
6e1d5dcc 10089static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
10090 .readlink = generic_readlink,
10091 .follow_link = page_follow_link_light,
10092 .put_link = page_put_link,
f209561a 10093 .getattr = btrfs_getattr,
22c44fe6 10094 .setattr = btrfs_setattr,
fdebe2bd 10095 .permission = btrfs_permission,
0279b4cd
JO
10096 .setxattr = btrfs_setxattr,
10097 .getxattr = btrfs_getxattr,
10098 .listxattr = btrfs_listxattr,
10099 .removexattr = btrfs_removexattr,
e41f941a 10100 .update_time = btrfs_update_time,
39279cc3 10101};
76dda93c 10102
82d339d9 10103const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10104 .d_delete = btrfs_dentry_delete,
b4aff1f8 10105 .d_release = btrfs_dentry_release,
76dda93c 10106};