btrfs: use kvzalloc to allocate btrfs_fs_info
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
69fe2d75 45#include <linux/magic.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
dda3245e 63#include "dedupe.h"
39279cc3
CM
64
65struct btrfs_iget_args {
90d3e592 66 struct btrfs_key *location;
39279cc3
CM
67 struct btrfs_root *root;
68};
69
f28a4928 70struct btrfs_dio_data {
f28a4928
FM
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
dda3245e
WX
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
111static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
115 int type);
7b128766 116
52427260
QW
117static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
120
121/*
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
124 *
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
133 */
134static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 const u64 offset,
136 const u64 bytes)
137{
63d71450
NA
138 unsigned long index = offset >> PAGE_SHIFT;
139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
140 struct page *page;
141
142 while (index <= end_index) {
143 page = find_get_page(inode->i_mapping, index);
144 index++;
145 if (!page)
146 continue;
147 ClearPagePrivate2(page);
148 put_page(page);
149 }
52427260
QW
150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 bytes - PAGE_SIZE, false);
152}
153
48a3b636 154static int btrfs_dirty_inode(struct inode *inode);
7b128766 155
6a3891c5
JB
156#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157void btrfs_test_inode_set_ops(struct inode *inode)
158{
159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
160}
161#endif
162
f34f57a3 163static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
164 struct inode *inode, struct inode *dir,
165 const struct qstr *qstr)
0279b4cd
JO
166{
167 int err;
168
f34f57a3 169 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 170 if (!err)
2a7dba39 171 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
172 return err;
173}
174
c8b97818
CM
175/*
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
179 */
40f76580 180static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 181 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
182 struct btrfs_root *root, struct inode *inode,
183 u64 start, size_t size, size_t compressed_size,
fe3f566c 184 int compress_type,
c8b97818
CM
185 struct page **compressed_pages)
186{
c8b97818
CM
187 struct extent_buffer *leaf;
188 struct page *page = NULL;
189 char *kaddr;
190 unsigned long ptr;
191 struct btrfs_file_extent_item *ei;
c8b97818
CM
192 int ret;
193 size_t cur_size = size;
c8b97818 194 unsigned long offset;
c8b97818 195
fe3f566c 196 if (compressed_size && compressed_pages)
c8b97818 197 cur_size = compressed_size;
c8b97818 198
1acae57b 199 inode_add_bytes(inode, size);
c8b97818 200
1acae57b
FDBM
201 if (!extent_inserted) {
202 struct btrfs_key key;
203 size_t datasize;
c8b97818 204
4a0cc7ca 205 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 206 key.offset = start;
962a298f 207 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 208
1acae57b
FDBM
209 datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 path->leave_spinning = 1;
211 ret = btrfs_insert_empty_item(trans, root, path, &key,
212 datasize);
79b4f4c6 213 if (ret)
1acae57b 214 goto fail;
c8b97818
CM
215 }
216 leaf = path->nodes[0];
217 ei = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_file_extent_item);
219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 btrfs_set_file_extent_encryption(leaf, ei, 0);
222 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 ptr = btrfs_file_extent_inline_start(ei);
225
261507a0 226 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
227 struct page *cpage;
228 int i = 0;
d397712b 229 while (compressed_size > 0) {
c8b97818 230 cpage = compressed_pages[i];
5b050f04 231 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 232 PAGE_SIZE);
c8b97818 233
7ac687d9 234 kaddr = kmap_atomic(cpage);
c8b97818 235 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 236 kunmap_atomic(kaddr);
c8b97818
CM
237
238 i++;
239 ptr += cur_size;
240 compressed_size -= cur_size;
241 }
242 btrfs_set_file_extent_compression(leaf, ei,
261507a0 243 compress_type);
c8b97818
CM
244 } else {
245 page = find_get_page(inode->i_mapping,
09cbfeaf 246 start >> PAGE_SHIFT);
c8b97818 247 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 248 kaddr = kmap_atomic(page);
09cbfeaf 249 offset = start & (PAGE_SIZE - 1);
c8b97818 250 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 251 kunmap_atomic(kaddr);
09cbfeaf 252 put_page(page);
c8b97818
CM
253 }
254 btrfs_mark_buffer_dirty(leaf);
1acae57b 255 btrfs_release_path(path);
c8b97818 256
c2167754
YZ
257 /*
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
261 *
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
265 */
c8b97818 266 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 267 ret = btrfs_update_inode(trans, root, inode);
c2167754 268
c8b97818 269fail:
79b4f4c6 270 return ret;
c8b97818
CM
271}
272
273
274/*
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
278 */
00361589
JB
279static noinline int cow_file_range_inline(struct btrfs_root *root,
280 struct inode *inode, u64 start,
281 u64 end, size_t compressed_size,
282 int compress_type,
283 struct page **compressed_pages)
c8b97818 284{
0b246afa 285 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 286 struct btrfs_trans_handle *trans;
c8b97818
CM
287 u64 isize = i_size_read(inode);
288 u64 actual_end = min(end + 1, isize);
289 u64 inline_len = actual_end - start;
0b246afa 290 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
291 u64 data_len = inline_len;
292 int ret;
1acae57b
FDBM
293 struct btrfs_path *path;
294 int extent_inserted = 0;
295 u32 extent_item_size;
c8b97818
CM
296
297 if (compressed_size)
298 data_len = compressed_size;
299
300 if (start > 0 ||
0b246afa
JM
301 actual_end > fs_info->sectorsize ||
302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 303 (!compressed_size &&
0b246afa 304 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 305 end + 1 < isize ||
0b246afa 306 data_len > fs_info->max_inline) {
c8b97818
CM
307 return 1;
308 }
309
1acae57b
FDBM
310 path = btrfs_alloc_path();
311 if (!path)
312 return -ENOMEM;
313
00361589 314 trans = btrfs_join_transaction(root);
1acae57b
FDBM
315 if (IS_ERR(trans)) {
316 btrfs_free_path(path);
00361589 317 return PTR_ERR(trans);
1acae57b 318 }
69fe2d75 319 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 320
1acae57b
FDBM
321 if (compressed_size && compressed_pages)
322 extent_item_size = btrfs_file_extent_calc_inline_size(
323 compressed_size);
324 else
325 extent_item_size = btrfs_file_extent_calc_inline_size(
326 inline_len);
327
328 ret = __btrfs_drop_extents(trans, root, inode, path,
329 start, aligned_end, NULL,
330 1, 1, extent_item_size, &extent_inserted);
00361589 331 if (ret) {
66642832 332 btrfs_abort_transaction(trans, ret);
00361589
JB
333 goto out;
334 }
c8b97818
CM
335
336 if (isize > actual_end)
337 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
338 ret = insert_inline_extent(trans, path, extent_inserted,
339 root, inode, start,
c8b97818 340 inline_len, compressed_size,
fe3f566c 341 compress_type, compressed_pages);
2adcac1a 342 if (ret && ret != -ENOSPC) {
66642832 343 btrfs_abort_transaction(trans, ret);
00361589 344 goto out;
2adcac1a 345 } else if (ret == -ENOSPC) {
00361589
JB
346 ret = 1;
347 goto out;
79787eaa 348 }
2adcac1a 349
bdc20e67 350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 351 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 352out:
94ed938a
QW
353 /*
354 * Don't forget to free the reserved space, as for inlined extent
355 * it won't count as data extent, free them directly here.
356 * And at reserve time, it's always aligned to page size, so
357 * just free one page here.
358 */
bc42bda2 359 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 360 btrfs_free_path(path);
3a45bb20 361 btrfs_end_transaction(trans);
00361589 362 return ret;
c8b97818
CM
363}
364
771ed689
CM
365struct async_extent {
366 u64 start;
367 u64 ram_size;
368 u64 compressed_size;
369 struct page **pages;
370 unsigned long nr_pages;
261507a0 371 int compress_type;
771ed689
CM
372 struct list_head list;
373};
374
375struct async_cow {
376 struct inode *inode;
377 struct btrfs_root *root;
378 struct page *locked_page;
379 u64 start;
380 u64 end;
f82b7359 381 unsigned int write_flags;
771ed689
CM
382 struct list_head extents;
383 struct btrfs_work work;
384};
385
386static noinline int add_async_extent(struct async_cow *cow,
387 u64 start, u64 ram_size,
388 u64 compressed_size,
389 struct page **pages,
261507a0
LZ
390 unsigned long nr_pages,
391 int compress_type)
771ed689
CM
392{
393 struct async_extent *async_extent;
394
395 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 396 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
397 async_extent->start = start;
398 async_extent->ram_size = ram_size;
399 async_extent->compressed_size = compressed_size;
400 async_extent->pages = pages;
401 async_extent->nr_pages = nr_pages;
261507a0 402 async_extent->compress_type = compress_type;
771ed689
CM
403 list_add_tail(&async_extent->list, &cow->extents);
404 return 0;
405}
406
c2fcdcdf 407static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 408{
0b246afa 409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
410
411 /* force compress */
0b246afa 412 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 413 return 1;
eec63c65
DS
414 /* defrag ioctl */
415 if (BTRFS_I(inode)->defrag_compress)
416 return 1;
f79707b0
WS
417 /* bad compression ratios */
418 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
419 return 0;
0b246afa 420 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 421 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 422 BTRFS_I(inode)->prop_compress)
c2fcdcdf 423 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
424 return 0;
425}
426
6158e1ce 427static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
428 u64 start, u64 end, u64 num_bytes, u64 small_write)
429{
430 /* If this is a small write inside eof, kick off a defrag */
431 if (num_bytes < small_write &&
6158e1ce 432 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
433 btrfs_add_inode_defrag(NULL, inode);
434}
435
d352ac68 436/*
771ed689
CM
437 * we create compressed extents in two phases. The first
438 * phase compresses a range of pages that have already been
439 * locked (both pages and state bits are locked).
c8b97818 440 *
771ed689
CM
441 * This is done inside an ordered work queue, and the compression
442 * is spread across many cpus. The actual IO submission is step
443 * two, and the ordered work queue takes care of making sure that
444 * happens in the same order things were put onto the queue by
445 * writepages and friends.
c8b97818 446 *
771ed689
CM
447 * If this code finds it can't get good compression, it puts an
448 * entry onto the work queue to write the uncompressed bytes. This
449 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
450 * are written in the same order that the flusher thread sent them
451 * down.
d352ac68 452 */
c44f649e 453static noinline void compress_file_range(struct inode *inode,
771ed689
CM
454 struct page *locked_page,
455 u64 start, u64 end,
456 struct async_cow *async_cow,
457 int *num_added)
b888db2b 458{
0b246afa 459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 460 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 461 u64 blocksize = fs_info->sectorsize;
c8b97818 462 u64 actual_end;
42dc7bab 463 u64 isize = i_size_read(inode);
e6dcd2dc 464 int ret = 0;
c8b97818
CM
465 struct page **pages = NULL;
466 unsigned long nr_pages;
c8b97818
CM
467 unsigned long total_compressed = 0;
468 unsigned long total_in = 0;
c8b97818
CM
469 int i;
470 int will_compress;
0b246afa 471 int compress_type = fs_info->compress_type;
4adaa611 472 int redirty = 0;
b888db2b 473
6158e1ce
NB
474 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
475 SZ_16K);
4cb5300b 476
42dc7bab 477 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
478again:
479 will_compress = 0;
09cbfeaf 480 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
481 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
482 nr_pages = min_t(unsigned long, nr_pages,
483 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 484
f03d9301
CM
485 /*
486 * we don't want to send crud past the end of i_size through
487 * compression, that's just a waste of CPU time. So, if the
488 * end of the file is before the start of our current
489 * requested range of bytes, we bail out to the uncompressed
490 * cleanup code that can deal with all of this.
491 *
492 * It isn't really the fastest way to fix things, but this is a
493 * very uncommon corner.
494 */
495 if (actual_end <= start)
496 goto cleanup_and_bail_uncompressed;
497
c8b97818
CM
498 total_compressed = actual_end - start;
499
4bcbb332
SW
500 /*
501 * skip compression for a small file range(<=blocksize) that
01327610 502 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
503 */
504 if (total_compressed <= blocksize &&
505 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
506 goto cleanup_and_bail_uncompressed;
507
069eac78
DS
508 total_compressed = min_t(unsigned long, total_compressed,
509 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
510 total_in = 0;
511 ret = 0;
db94535d 512
771ed689
CM
513 /*
514 * we do compression for mount -o compress and when the
515 * inode has not been flagged as nocompress. This flag can
516 * change at any time if we discover bad compression ratios.
c8b97818 517 */
c2fcdcdf 518 if (inode_need_compress(inode, start, end)) {
c8b97818 519 WARN_ON(pages);
31e818fe 520 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
521 if (!pages) {
522 /* just bail out to the uncompressed code */
523 goto cont;
524 }
c8b97818 525
eec63c65
DS
526 if (BTRFS_I(inode)->defrag_compress)
527 compress_type = BTRFS_I(inode)->defrag_compress;
528 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 529 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 530
4adaa611
CM
531 /*
532 * we need to call clear_page_dirty_for_io on each
533 * page in the range. Otherwise applications with the file
534 * mmap'd can wander in and change the page contents while
535 * we are compressing them.
536 *
537 * If the compression fails for any reason, we set the pages
538 * dirty again later on.
e9679de3
TT
539 *
540 * Note that the remaining part is redirtied, the start pointer
541 * has moved, the end is the original one.
4adaa611 542 */
e9679de3
TT
543 if (!redirty) {
544 extent_range_clear_dirty_for_io(inode, start, end);
545 redirty = 1;
546 }
f51d2b59
DS
547
548 /* Compression level is applied here and only here */
549 ret = btrfs_compress_pages(
550 compress_type | (fs_info->compress_level << 4),
261507a0 551 inode->i_mapping, start,
38c31464 552 pages,
4d3a800e 553 &nr_pages,
261507a0 554 &total_in,
e5d74902 555 &total_compressed);
c8b97818
CM
556
557 if (!ret) {
558 unsigned long offset = total_compressed &
09cbfeaf 559 (PAGE_SIZE - 1);
4d3a800e 560 struct page *page = pages[nr_pages - 1];
c8b97818
CM
561 char *kaddr;
562
563 /* zero the tail end of the last page, we might be
564 * sending it down to disk
565 */
566 if (offset) {
7ac687d9 567 kaddr = kmap_atomic(page);
c8b97818 568 memset(kaddr + offset, 0,
09cbfeaf 569 PAGE_SIZE - offset);
7ac687d9 570 kunmap_atomic(kaddr);
c8b97818
CM
571 }
572 will_compress = 1;
573 }
574 }
560f7d75 575cont:
c8b97818
CM
576 if (start == 0) {
577 /* lets try to make an inline extent */
6018ba0a 578 if (ret || total_in < actual_end) {
c8b97818 579 /* we didn't compress the entire range, try
771ed689 580 * to make an uncompressed inline extent.
c8b97818 581 */
00361589 582 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 583 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 584 } else {
771ed689 585 /* try making a compressed inline extent */
00361589 586 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
587 total_compressed,
588 compress_type, pages);
c8b97818 589 }
79787eaa 590 if (ret <= 0) {
151a41bc 591 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
592 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
593 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
594 unsigned long page_error_op;
595
e6eb4314 596 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 597
771ed689 598 /*
79787eaa
JM
599 * inline extent creation worked or returned error,
600 * we don't need to create any more async work items.
601 * Unlock and free up our temp pages.
8b62f87b
JB
602 *
603 * We use DO_ACCOUNTING here because we need the
604 * delalloc_release_metadata to be done _after_ we drop
605 * our outstanding extent for clearing delalloc for this
606 * range.
771ed689 607 */
ba8b04c1
QW
608 extent_clear_unlock_delalloc(inode, start, end, end,
609 NULL, clear_flags,
610 PAGE_UNLOCK |
c2790a2e
JB
611 PAGE_CLEAR_DIRTY |
612 PAGE_SET_WRITEBACK |
e6eb4314 613 page_error_op |
c2790a2e 614 PAGE_END_WRITEBACK);
c8b97818
CM
615 goto free_pages_out;
616 }
617 }
618
619 if (will_compress) {
620 /*
621 * we aren't doing an inline extent round the compressed size
622 * up to a block size boundary so the allocator does sane
623 * things
624 */
fda2832f 625 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
626
627 /*
628 * one last check to make sure the compression is really a
170607eb
TT
629 * win, compare the page count read with the blocks on disk,
630 * compression must free at least one sector size
c8b97818 631 */
09cbfeaf 632 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 633 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
634 *num_added += 1;
635
636 /*
637 * The async work queues will take care of doing actual
638 * allocation on disk for these compressed pages, and
639 * will submit them to the elevator.
640 */
1170862d 641 add_async_extent(async_cow, start, total_in,
4d3a800e 642 total_compressed, pages, nr_pages,
c8bb0c8b
AS
643 compress_type);
644
1170862d
TT
645 if (start + total_in < end) {
646 start += total_in;
c8bb0c8b
AS
647 pages = NULL;
648 cond_resched();
649 goto again;
650 }
651 return;
c8b97818
CM
652 }
653 }
c8bb0c8b 654 if (pages) {
c8b97818
CM
655 /*
656 * the compression code ran but failed to make things smaller,
657 * free any pages it allocated and our page pointer array
658 */
4d3a800e 659 for (i = 0; i < nr_pages; i++) {
70b99e69 660 WARN_ON(pages[i]->mapping);
09cbfeaf 661 put_page(pages[i]);
c8b97818
CM
662 }
663 kfree(pages);
664 pages = NULL;
665 total_compressed = 0;
4d3a800e 666 nr_pages = 0;
c8b97818
CM
667
668 /* flag the file so we don't compress in the future */
0b246afa 669 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 670 !(BTRFS_I(inode)->prop_compress)) {
a555f810 671 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 672 }
c8b97818 673 }
f03d9301 674cleanup_and_bail_uncompressed:
c8bb0c8b
AS
675 /*
676 * No compression, but we still need to write the pages in the file
677 * we've been given so far. redirty the locked page if it corresponds
678 * to our extent and set things up for the async work queue to run
679 * cow_file_range to do the normal delalloc dance.
680 */
681 if (page_offset(locked_page) >= start &&
682 page_offset(locked_page) <= end)
683 __set_page_dirty_nobuffers(locked_page);
684 /* unlocked later on in the async handlers */
685
686 if (redirty)
687 extent_range_redirty_for_io(inode, start, end);
688 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
689 BTRFS_COMPRESS_NONE);
690 *num_added += 1;
3b951516 691
c44f649e 692 return;
771ed689
CM
693
694free_pages_out:
4d3a800e 695 for (i = 0; i < nr_pages; i++) {
771ed689 696 WARN_ON(pages[i]->mapping);
09cbfeaf 697 put_page(pages[i]);
771ed689 698 }
d397712b 699 kfree(pages);
771ed689 700}
771ed689 701
40ae837b
FM
702static void free_async_extent_pages(struct async_extent *async_extent)
703{
704 int i;
705
706 if (!async_extent->pages)
707 return;
708
709 for (i = 0; i < async_extent->nr_pages; i++) {
710 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 711 put_page(async_extent->pages[i]);
40ae837b
FM
712 }
713 kfree(async_extent->pages);
714 async_extent->nr_pages = 0;
715 async_extent->pages = NULL;
771ed689
CM
716}
717
718/*
719 * phase two of compressed writeback. This is the ordered portion
720 * of the code, which only gets called in the order the work was
721 * queued. We walk all the async extents created by compress_file_range
722 * and send them down to the disk.
723 */
dec8f175 724static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
725 struct async_cow *async_cow)
726{
0b246afa 727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
728 struct async_extent *async_extent;
729 u64 alloc_hint = 0;
771ed689
CM
730 struct btrfs_key ins;
731 struct extent_map *em;
732 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 733 struct extent_io_tree *io_tree;
f5a84ee3 734 int ret = 0;
771ed689 735
3e04e7f1 736again:
d397712b 737 while (!list_empty(&async_cow->extents)) {
771ed689
CM
738 async_extent = list_entry(async_cow->extents.next,
739 struct async_extent, list);
740 list_del(&async_extent->list);
c8b97818 741
771ed689
CM
742 io_tree = &BTRFS_I(inode)->io_tree;
743
f5a84ee3 744retry:
771ed689
CM
745 /* did the compression code fall back to uncompressed IO? */
746 if (!async_extent->pages) {
747 int page_started = 0;
748 unsigned long nr_written = 0;
749
750 lock_extent(io_tree, async_extent->start,
2ac55d41 751 async_extent->start +
d0082371 752 async_extent->ram_size - 1);
771ed689
CM
753
754 /* allocate blocks */
f5a84ee3
JB
755 ret = cow_file_range(inode, async_cow->locked_page,
756 async_extent->start,
757 async_extent->start +
758 async_extent->ram_size - 1,
dda3245e
WX
759 async_extent->start +
760 async_extent->ram_size - 1,
761 &page_started, &nr_written, 0,
762 NULL);
771ed689 763
79787eaa
JM
764 /* JDM XXX */
765
771ed689
CM
766 /*
767 * if page_started, cow_file_range inserted an
768 * inline extent and took care of all the unlocking
769 * and IO for us. Otherwise, we need to submit
770 * all those pages down to the drive.
771 */
f5a84ee3 772 if (!page_started && !ret)
5e3ee236
NB
773 extent_write_locked_range(inode,
774 async_extent->start,
d397712b 775 async_extent->start +
771ed689 776 async_extent->ram_size - 1,
771ed689 777 WB_SYNC_ALL);
3e04e7f1
JB
778 else if (ret)
779 unlock_page(async_cow->locked_page);
771ed689
CM
780 kfree(async_extent);
781 cond_resched();
782 continue;
783 }
784
785 lock_extent(io_tree, async_extent->start,
d0082371 786 async_extent->start + async_extent->ram_size - 1);
771ed689 787
18513091 788 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
789 async_extent->compressed_size,
790 async_extent->compressed_size,
e570fd27 791 0, alloc_hint, &ins, 1, 1);
f5a84ee3 792 if (ret) {
40ae837b 793 free_async_extent_pages(async_extent);
3e04e7f1 794
fdf8e2ea
JB
795 if (ret == -ENOSPC) {
796 unlock_extent(io_tree, async_extent->start,
797 async_extent->start +
798 async_extent->ram_size - 1);
ce62003f
LB
799
800 /*
801 * we need to redirty the pages if we decide to
802 * fallback to uncompressed IO, otherwise we
803 * will not submit these pages down to lower
804 * layers.
805 */
806 extent_range_redirty_for_io(inode,
807 async_extent->start,
808 async_extent->start +
809 async_extent->ram_size - 1);
810
79787eaa 811 goto retry;
fdf8e2ea 812 }
3e04e7f1 813 goto out_free;
f5a84ee3 814 }
c2167754
YZ
815 /*
816 * here we're doing allocation and writeback of the
817 * compressed pages
818 */
6f9994db
LB
819 em = create_io_em(inode, async_extent->start,
820 async_extent->ram_size, /* len */
821 async_extent->start, /* orig_start */
822 ins.objectid, /* block_start */
823 ins.offset, /* block_len */
824 ins.offset, /* orig_block_len */
825 async_extent->ram_size, /* ram_bytes */
826 async_extent->compress_type,
827 BTRFS_ORDERED_COMPRESSED);
828 if (IS_ERR(em))
829 /* ret value is not necessary due to void function */
3e04e7f1 830 goto out_free_reserve;
6f9994db 831 free_extent_map(em);
3e04e7f1 832
261507a0
LZ
833 ret = btrfs_add_ordered_extent_compress(inode,
834 async_extent->start,
835 ins.objectid,
836 async_extent->ram_size,
837 ins.offset,
838 BTRFS_ORDERED_COMPRESSED,
839 async_extent->compress_type);
d9f85963 840 if (ret) {
dcdbc059
NB
841 btrfs_drop_extent_cache(BTRFS_I(inode),
842 async_extent->start,
d9f85963
FM
843 async_extent->start +
844 async_extent->ram_size - 1, 0);
3e04e7f1 845 goto out_free_reserve;
d9f85963 846 }
0b246afa 847 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 848
771ed689
CM
849 /*
850 * clear dirty, set writeback and unlock the pages.
851 */
c2790a2e 852 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
853 async_extent->start +
854 async_extent->ram_size - 1,
a791e35e
CM
855 async_extent->start +
856 async_extent->ram_size - 1,
151a41bc
JB
857 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
858 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 859 PAGE_SET_WRITEBACK);
4e4cbee9 860 if (btrfs_submit_compressed_write(inode,
d397712b
CM
861 async_extent->start,
862 async_extent->ram_size,
863 ins.objectid,
864 ins.offset, async_extent->pages,
f82b7359
LB
865 async_extent->nr_pages,
866 async_cow->write_flags)) {
fce2a4e6
FM
867 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
868 struct page *p = async_extent->pages[0];
869 const u64 start = async_extent->start;
870 const u64 end = start + async_extent->ram_size - 1;
871
872 p->mapping = inode->i_mapping;
873 tree->ops->writepage_end_io_hook(p, start, end,
874 NULL, 0);
875 p->mapping = NULL;
ba8b04c1
QW
876 extent_clear_unlock_delalloc(inode, start, end, end,
877 NULL, 0,
fce2a4e6
FM
878 PAGE_END_WRITEBACK |
879 PAGE_SET_ERROR);
40ae837b 880 free_async_extent_pages(async_extent);
fce2a4e6 881 }
771ed689
CM
882 alloc_hint = ins.objectid + ins.offset;
883 kfree(async_extent);
884 cond_resched();
885 }
dec8f175 886 return;
3e04e7f1 887out_free_reserve:
0b246afa 888 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 889 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 890out_free:
c2790a2e 891 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
892 async_extent->start +
893 async_extent->ram_size - 1,
3e04e7f1
JB
894 async_extent->start +
895 async_extent->ram_size - 1,
c2790a2e 896 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 897 EXTENT_DELALLOC_NEW |
151a41bc
JB
898 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
899 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
900 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
901 PAGE_SET_ERROR);
40ae837b 902 free_async_extent_pages(async_extent);
79787eaa 903 kfree(async_extent);
3e04e7f1 904 goto again;
771ed689
CM
905}
906
4b46fce2
JB
907static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
908 u64 num_bytes)
909{
910 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
911 struct extent_map *em;
912 u64 alloc_hint = 0;
913
914 read_lock(&em_tree->lock);
915 em = search_extent_mapping(em_tree, start, num_bytes);
916 if (em) {
917 /*
918 * if block start isn't an actual block number then find the
919 * first block in this inode and use that as a hint. If that
920 * block is also bogus then just don't worry about it.
921 */
922 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
923 free_extent_map(em);
924 em = search_extent_mapping(em_tree, 0, 0);
925 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
926 alloc_hint = em->block_start;
927 if (em)
928 free_extent_map(em);
929 } else {
930 alloc_hint = em->block_start;
931 free_extent_map(em);
932 }
933 }
934 read_unlock(&em_tree->lock);
935
936 return alloc_hint;
937}
938
771ed689
CM
939/*
940 * when extent_io.c finds a delayed allocation range in the file,
941 * the call backs end up in this code. The basic idea is to
942 * allocate extents on disk for the range, and create ordered data structs
943 * in ram to track those extents.
944 *
945 * locked_page is the page that writepage had locked already. We use
946 * it to make sure we don't do extra locks or unlocks.
947 *
948 * *page_started is set to one if we unlock locked_page and do everything
949 * required to start IO on it. It may be clean and already done with
950 * IO when we return.
951 */
00361589
JB
952static noinline int cow_file_range(struct inode *inode,
953 struct page *locked_page,
dda3245e
WX
954 u64 start, u64 end, u64 delalloc_end,
955 int *page_started, unsigned long *nr_written,
956 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 957{
0b246afa 958 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 959 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
960 u64 alloc_hint = 0;
961 u64 num_bytes;
962 unsigned long ram_size;
963 u64 disk_num_bytes;
a315e68f 964 u64 cur_alloc_size = 0;
0b246afa 965 u64 blocksize = fs_info->sectorsize;
771ed689
CM
966 struct btrfs_key ins;
967 struct extent_map *em;
a315e68f
FM
968 unsigned clear_bits;
969 unsigned long page_ops;
970 bool extent_reserved = false;
771ed689
CM
971 int ret = 0;
972
70ddc553 973 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 974 WARN_ON_ONCE(1);
29bce2f3
JB
975 ret = -EINVAL;
976 goto out_unlock;
02ecd2c2 977 }
771ed689 978
fda2832f 979 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
980 num_bytes = max(blocksize, num_bytes);
981 disk_num_bytes = num_bytes;
771ed689 982
6158e1ce 983 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 984
771ed689
CM
985 if (start == 0) {
986 /* lets try to make an inline extent */
f74670f7
AJ
987 ret = cow_file_range_inline(root, inode, start, end, 0,
988 BTRFS_COMPRESS_NONE, NULL);
771ed689 989 if (ret == 0) {
8b62f87b
JB
990 /*
991 * We use DO_ACCOUNTING here because we need the
992 * delalloc_release_metadata to be run _after_ we drop
993 * our outstanding extent for clearing delalloc for this
994 * range.
995 */
ba8b04c1
QW
996 extent_clear_unlock_delalloc(inode, start, end,
997 delalloc_end, NULL,
c2790a2e 998 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
999 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1000 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
1001 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1002 PAGE_END_WRITEBACK);
771ed689 1003 *nr_written = *nr_written +
09cbfeaf 1004 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 1005 *page_started = 1;
771ed689 1006 goto out;
79787eaa 1007 } else if (ret < 0) {
79787eaa 1008 goto out_unlock;
771ed689
CM
1009 }
1010 }
1011
1012 BUG_ON(disk_num_bytes >
0b246afa 1013 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1014
4b46fce2 1015 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1016 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1017 start + num_bytes - 1, 0);
771ed689 1018
d397712b 1019 while (disk_num_bytes > 0) {
287a0ab9 1020 cur_alloc_size = disk_num_bytes;
18513091 1021 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1022 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1023 &ins, 1, 1);
00361589 1024 if (ret < 0)
79787eaa 1025 goto out_unlock;
a315e68f
FM
1026 cur_alloc_size = ins.offset;
1027 extent_reserved = true;
d397712b 1028
771ed689 1029 ram_size = ins.offset;
6f9994db
LB
1030 em = create_io_em(inode, start, ins.offset, /* len */
1031 start, /* orig_start */
1032 ins.objectid, /* block_start */
1033 ins.offset, /* block_len */
1034 ins.offset, /* orig_block_len */
1035 ram_size, /* ram_bytes */
1036 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1037 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1038 if (IS_ERR(em))
ace68bac 1039 goto out_reserve;
6f9994db 1040 free_extent_map(em);
e6dcd2dc 1041
e6dcd2dc 1042 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1043 ram_size, cur_alloc_size, 0);
ace68bac 1044 if (ret)
d9f85963 1045 goto out_drop_extent_cache;
c8b97818 1046
17d217fe
YZ
1047 if (root->root_key.objectid ==
1048 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1049 ret = btrfs_reloc_clone_csums(inode, start,
1050 cur_alloc_size);
4dbd80fb
QW
1051 /*
1052 * Only drop cache here, and process as normal.
1053 *
1054 * We must not allow extent_clear_unlock_delalloc()
1055 * at out_unlock label to free meta of this ordered
1056 * extent, as its meta should be freed by
1057 * btrfs_finish_ordered_io().
1058 *
1059 * So we must continue until @start is increased to
1060 * skip current ordered extent.
1061 */
00361589 1062 if (ret)
4dbd80fb
QW
1063 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1064 start + ram_size - 1, 0);
17d217fe
YZ
1065 }
1066
0b246afa 1067 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1068
c8b97818
CM
1069 /* we're not doing compressed IO, don't unlock the first
1070 * page (which the caller expects to stay locked), don't
1071 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1072 *
1073 * Do set the Private2 bit so we know this page was properly
1074 * setup for writepage
c8b97818 1075 */
a315e68f
FM
1076 page_ops = unlock ? PAGE_UNLOCK : 0;
1077 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1078
c2790a2e 1079 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1080 start + ram_size - 1,
1081 delalloc_end, locked_page,
c2790a2e 1082 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1083 page_ops);
4dbd80fb
QW
1084 if (disk_num_bytes < cur_alloc_size)
1085 disk_num_bytes = 0;
1086 else
1087 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1088 num_bytes -= cur_alloc_size;
1089 alloc_hint = ins.objectid + ins.offset;
1090 start += cur_alloc_size;
a315e68f 1091 extent_reserved = false;
4dbd80fb
QW
1092
1093 /*
1094 * btrfs_reloc_clone_csums() error, since start is increased
1095 * extent_clear_unlock_delalloc() at out_unlock label won't
1096 * free metadata of current ordered extent, we're OK to exit.
1097 */
1098 if (ret)
1099 goto out_unlock;
b888db2b 1100 }
79787eaa 1101out:
be20aa9d 1102 return ret;
b7d5b0a8 1103
d9f85963 1104out_drop_extent_cache:
dcdbc059 1105 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1106out_reserve:
0b246afa 1107 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1108 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1109out_unlock:
a7e3b975
FM
1110 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1111 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1112 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1113 PAGE_END_WRITEBACK;
1114 /*
1115 * If we reserved an extent for our delalloc range (or a subrange) and
1116 * failed to create the respective ordered extent, then it means that
1117 * when we reserved the extent we decremented the extent's size from
1118 * the data space_info's bytes_may_use counter and incremented the
1119 * space_info's bytes_reserved counter by the same amount. We must make
1120 * sure extent_clear_unlock_delalloc() does not try to decrement again
1121 * the data space_info's bytes_may_use counter, therefore we do not pass
1122 * it the flag EXTENT_CLEAR_DATA_RESV.
1123 */
1124 if (extent_reserved) {
1125 extent_clear_unlock_delalloc(inode, start,
1126 start + cur_alloc_size,
1127 start + cur_alloc_size,
1128 locked_page,
1129 clear_bits,
1130 page_ops);
1131 start += cur_alloc_size;
1132 if (start >= end)
1133 goto out;
1134 }
ba8b04c1
QW
1135 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1136 locked_page,
a315e68f
FM
1137 clear_bits | EXTENT_CLEAR_DATA_RESV,
1138 page_ops);
79787eaa 1139 goto out;
771ed689 1140}
c8b97818 1141
771ed689
CM
1142/*
1143 * work queue call back to started compression on a file and pages
1144 */
1145static noinline void async_cow_start(struct btrfs_work *work)
1146{
1147 struct async_cow *async_cow;
1148 int num_added = 0;
1149 async_cow = container_of(work, struct async_cow, work);
1150
1151 compress_file_range(async_cow->inode, async_cow->locked_page,
1152 async_cow->start, async_cow->end, async_cow,
1153 &num_added);
8180ef88 1154 if (num_added == 0) {
cb77fcd8 1155 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1156 async_cow->inode = NULL;
8180ef88 1157 }
771ed689
CM
1158}
1159
1160/*
1161 * work queue call back to submit previously compressed pages
1162 */
1163static noinline void async_cow_submit(struct btrfs_work *work)
1164{
0b246afa 1165 struct btrfs_fs_info *fs_info;
771ed689
CM
1166 struct async_cow *async_cow;
1167 struct btrfs_root *root;
1168 unsigned long nr_pages;
1169
1170 async_cow = container_of(work, struct async_cow, work);
1171
1172 root = async_cow->root;
0b246afa 1173 fs_info = root->fs_info;
09cbfeaf
KS
1174 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1175 PAGE_SHIFT;
771ed689 1176
ee863954
DS
1177 /*
1178 * atomic_sub_return implies a barrier for waitqueue_active
1179 */
0b246afa 1180 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1181 5 * SZ_1M &&
0b246afa
JM
1182 waitqueue_active(&fs_info->async_submit_wait))
1183 wake_up(&fs_info->async_submit_wait);
771ed689 1184
d397712b 1185 if (async_cow->inode)
771ed689 1186 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1187}
c8b97818 1188
771ed689
CM
1189static noinline void async_cow_free(struct btrfs_work *work)
1190{
1191 struct async_cow *async_cow;
1192 async_cow = container_of(work, struct async_cow, work);
8180ef88 1193 if (async_cow->inode)
cb77fcd8 1194 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1195 kfree(async_cow);
1196}
1197
1198static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1199 u64 start, u64 end, int *page_started,
f82b7359
LB
1200 unsigned long *nr_written,
1201 unsigned int write_flags)
771ed689 1202{
0b246afa 1203 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1204 struct async_cow *async_cow;
1205 struct btrfs_root *root = BTRFS_I(inode)->root;
1206 unsigned long nr_pages;
1207 u64 cur_end;
771ed689 1208
a3429ab7 1209 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
ae0f1625 1210 1, 0, NULL);
d397712b 1211 while (start < end) {
771ed689 1212 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1213 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1214 async_cow->inode = igrab(inode);
771ed689
CM
1215 async_cow->root = root;
1216 async_cow->locked_page = locked_page;
1217 async_cow->start = start;
f82b7359 1218 async_cow->write_flags = write_flags;
771ed689 1219
f79707b0 1220 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1221 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1222 cur_end = end;
1223 else
ee22184b 1224 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1225
1226 async_cow->end = cur_end;
1227 INIT_LIST_HEAD(&async_cow->extents);
1228
9e0af237
LB
1229 btrfs_init_work(&async_cow->work,
1230 btrfs_delalloc_helper,
1231 async_cow_start, async_cow_submit,
1232 async_cow_free);
771ed689 1233
09cbfeaf
KS
1234 nr_pages = (cur_end - start + PAGE_SIZE) >>
1235 PAGE_SHIFT;
0b246afa 1236 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1237
0b246afa 1238 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1239
771ed689
CM
1240 *nr_written += nr_pages;
1241 start = cur_end + 1;
1242 }
1243 *page_started = 1;
1244 return 0;
be20aa9d
CM
1245}
1246
2ff7e61e 1247static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1248 u64 bytenr, u64 num_bytes)
1249{
1250 int ret;
1251 struct btrfs_ordered_sum *sums;
1252 LIST_HEAD(list);
1253
0b246afa 1254 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1255 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1256 if (ret == 0 && list_empty(&list))
1257 return 0;
1258
1259 while (!list_empty(&list)) {
1260 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1261 list_del(&sums->list);
1262 kfree(sums);
1263 }
1264 return 1;
1265}
1266
d352ac68
CM
1267/*
1268 * when nowcow writeback call back. This checks for snapshots or COW copies
1269 * of the extents that exist in the file, and COWs the file as required.
1270 *
1271 * If no cow copies or snapshots exist, we write directly to the existing
1272 * blocks on disk
1273 */
7f366cfe
CM
1274static noinline int run_delalloc_nocow(struct inode *inode,
1275 struct page *locked_page,
771ed689
CM
1276 u64 start, u64 end, int *page_started, int force,
1277 unsigned long *nr_written)
be20aa9d 1278{
0b246afa 1279 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1280 struct btrfs_root *root = BTRFS_I(inode)->root;
1281 struct extent_buffer *leaf;
be20aa9d 1282 struct btrfs_path *path;
80ff3856 1283 struct btrfs_file_extent_item *fi;
be20aa9d 1284 struct btrfs_key found_key;
6f9994db 1285 struct extent_map *em;
80ff3856
YZ
1286 u64 cow_start;
1287 u64 cur_offset;
1288 u64 extent_end;
5d4f98a2 1289 u64 extent_offset;
80ff3856
YZ
1290 u64 disk_bytenr;
1291 u64 num_bytes;
b4939680 1292 u64 disk_num_bytes;
cc95bef6 1293 u64 ram_bytes;
80ff3856 1294 int extent_type;
79787eaa 1295 int ret, err;
d899e052 1296 int type;
80ff3856
YZ
1297 int nocow;
1298 int check_prev = 1;
82d5902d 1299 bool nolock;
4a0cc7ca 1300 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1301
1302 path = btrfs_alloc_path();
17ca04af 1303 if (!path) {
ba8b04c1
QW
1304 extent_clear_unlock_delalloc(inode, start, end, end,
1305 locked_page,
c2790a2e 1306 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1307 EXTENT_DO_ACCOUNTING |
1308 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1309 PAGE_CLEAR_DIRTY |
1310 PAGE_SET_WRITEBACK |
1311 PAGE_END_WRITEBACK);
d8926bb3 1312 return -ENOMEM;
17ca04af 1313 }
82d5902d 1314
70ddc553 1315 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1316
80ff3856
YZ
1317 cow_start = (u64)-1;
1318 cur_offset = start;
1319 while (1) {
e4c3b2dc 1320 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1321 cur_offset, 0);
d788a349 1322 if (ret < 0)
79787eaa 1323 goto error;
80ff3856
YZ
1324 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1325 leaf = path->nodes[0];
1326 btrfs_item_key_to_cpu(leaf, &found_key,
1327 path->slots[0] - 1);
33345d01 1328 if (found_key.objectid == ino &&
80ff3856
YZ
1329 found_key.type == BTRFS_EXTENT_DATA_KEY)
1330 path->slots[0]--;
1331 }
1332 check_prev = 0;
1333next_slot:
1334 leaf = path->nodes[0];
1335 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1336 ret = btrfs_next_leaf(root, path);
e8916699
LB
1337 if (ret < 0) {
1338 if (cow_start != (u64)-1)
1339 cur_offset = cow_start;
79787eaa 1340 goto error;
e8916699 1341 }
80ff3856
YZ
1342 if (ret > 0)
1343 break;
1344 leaf = path->nodes[0];
1345 }
be20aa9d 1346
80ff3856
YZ
1347 nocow = 0;
1348 disk_bytenr = 0;
17d217fe 1349 num_bytes = 0;
80ff3856
YZ
1350 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1351
1d512cb7
FM
1352 if (found_key.objectid > ino)
1353 break;
1354 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1355 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1356 path->slots[0]++;
1357 goto next_slot;
1358 }
1359 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1360 found_key.offset > end)
1361 break;
1362
1363 if (found_key.offset > cur_offset) {
1364 extent_end = found_key.offset;
e9061e21 1365 extent_type = 0;
80ff3856
YZ
1366 goto out_check;
1367 }
1368
1369 fi = btrfs_item_ptr(leaf, path->slots[0],
1370 struct btrfs_file_extent_item);
1371 extent_type = btrfs_file_extent_type(leaf, fi);
1372
cc95bef6 1373 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1374 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1375 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1376 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1377 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1378 extent_end = found_key.offset +
1379 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1380 disk_num_bytes =
1381 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1382 if (extent_end <= start) {
1383 path->slots[0]++;
1384 goto next_slot;
1385 }
17d217fe
YZ
1386 if (disk_bytenr == 0)
1387 goto out_check;
80ff3856
YZ
1388 if (btrfs_file_extent_compression(leaf, fi) ||
1389 btrfs_file_extent_encryption(leaf, fi) ||
1390 btrfs_file_extent_other_encoding(leaf, fi))
1391 goto out_check;
d899e052
YZ
1392 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1393 goto out_check;
2ff7e61e 1394 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1395 goto out_check;
e4c3b2dc 1396 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1397 found_key.offset -
1398 extent_offset, disk_bytenr))
17d217fe 1399 goto out_check;
5d4f98a2 1400 disk_bytenr += extent_offset;
17d217fe
YZ
1401 disk_bytenr += cur_offset - found_key.offset;
1402 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1403 /*
1404 * if there are pending snapshots for this root,
1405 * we fall into common COW way.
1406 */
1407 if (!nolock) {
ea14b57f 1408 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1409 if (!err)
1410 goto out_check;
1411 }
17d217fe
YZ
1412 /*
1413 * force cow if csum exists in the range.
1414 * this ensure that csum for a given extent are
1415 * either valid or do not exist.
1416 */
2ff7e61e 1417 if (csum_exist_in_range(fs_info, disk_bytenr,
91e1f56a
RK
1418 num_bytes)) {
1419 if (!nolock)
ea14b57f 1420 btrfs_end_write_no_snapshotting(root);
17d217fe 1421 goto out_check;
91e1f56a
RK
1422 }
1423 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1424 if (!nolock)
ea14b57f 1425 btrfs_end_write_no_snapshotting(root);
f78c436c 1426 goto out_check;
91e1f56a 1427 }
80ff3856
YZ
1428 nocow = 1;
1429 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1430 extent_end = found_key.offset +
514ac8ad
CM
1431 btrfs_file_extent_inline_len(leaf,
1432 path->slots[0], fi);
da17066c 1433 extent_end = ALIGN(extent_end,
0b246afa 1434 fs_info->sectorsize);
80ff3856
YZ
1435 } else {
1436 BUG_ON(1);
1437 }
1438out_check:
1439 if (extent_end <= start) {
1440 path->slots[0]++;
e9894fd3 1441 if (!nolock && nocow)
ea14b57f 1442 btrfs_end_write_no_snapshotting(root);
f78c436c 1443 if (nocow)
0b246afa 1444 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1445 goto next_slot;
1446 }
1447 if (!nocow) {
1448 if (cow_start == (u64)-1)
1449 cow_start = cur_offset;
1450 cur_offset = extent_end;
1451 if (cur_offset > end)
1452 break;
1453 path->slots[0]++;
1454 goto next_slot;
7ea394f1
YZ
1455 }
1456
b3b4aa74 1457 btrfs_release_path(path);
80ff3856 1458 if (cow_start != (u64)-1) {
00361589
JB
1459 ret = cow_file_range(inode, locked_page,
1460 cow_start, found_key.offset - 1,
dda3245e
WX
1461 end, page_started, nr_written, 1,
1462 NULL);
e9894fd3
WS
1463 if (ret) {
1464 if (!nolock && nocow)
ea14b57f 1465 btrfs_end_write_no_snapshotting(root);
f78c436c 1466 if (nocow)
0b246afa 1467 btrfs_dec_nocow_writers(fs_info,
f78c436c 1468 disk_bytenr);
79787eaa 1469 goto error;
e9894fd3 1470 }
80ff3856 1471 cow_start = (u64)-1;
7ea394f1 1472 }
80ff3856 1473
d899e052 1474 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1475 u64 orig_start = found_key.offset - extent_offset;
1476
1477 em = create_io_em(inode, cur_offset, num_bytes,
1478 orig_start,
1479 disk_bytenr, /* block_start */
1480 num_bytes, /* block_len */
1481 disk_num_bytes, /* orig_block_len */
1482 ram_bytes, BTRFS_COMPRESS_NONE,
1483 BTRFS_ORDERED_PREALLOC);
1484 if (IS_ERR(em)) {
1485 if (!nolock && nocow)
ea14b57f 1486 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1487 if (nocow)
1488 btrfs_dec_nocow_writers(fs_info,
1489 disk_bytenr);
1490 ret = PTR_ERR(em);
1491 goto error;
d899e052 1492 }
6f9994db
LB
1493 free_extent_map(em);
1494 }
1495
1496 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1497 type = BTRFS_ORDERED_PREALLOC;
1498 } else {
1499 type = BTRFS_ORDERED_NOCOW;
1500 }
80ff3856
YZ
1501
1502 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1503 num_bytes, num_bytes, type);
f78c436c 1504 if (nocow)
0b246afa 1505 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1506 BUG_ON(ret); /* -ENOMEM */
771ed689 1507
efa56464 1508 if (root->root_key.objectid ==
4dbd80fb
QW
1509 BTRFS_DATA_RELOC_TREE_OBJECTID)
1510 /*
1511 * Error handled later, as we must prevent
1512 * extent_clear_unlock_delalloc() in error handler
1513 * from freeing metadata of created ordered extent.
1514 */
efa56464
YZ
1515 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1516 num_bytes);
efa56464 1517
c2790a2e 1518 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1519 cur_offset + num_bytes - 1, end,
c2790a2e 1520 locked_page, EXTENT_LOCKED |
18513091
WX
1521 EXTENT_DELALLOC |
1522 EXTENT_CLEAR_DATA_RESV,
1523 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1524
e9894fd3 1525 if (!nolock && nocow)
ea14b57f 1526 btrfs_end_write_no_snapshotting(root);
80ff3856 1527 cur_offset = extent_end;
4dbd80fb
QW
1528
1529 /*
1530 * btrfs_reloc_clone_csums() error, now we're OK to call error
1531 * handler, as metadata for created ordered extent will only
1532 * be freed by btrfs_finish_ordered_io().
1533 */
1534 if (ret)
1535 goto error;
80ff3856
YZ
1536 if (cur_offset > end)
1537 break;
be20aa9d 1538 }
b3b4aa74 1539 btrfs_release_path(path);
80ff3856 1540
17ca04af 1541 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1542 cow_start = cur_offset;
17ca04af
JB
1543 cur_offset = end;
1544 }
1545
80ff3856 1546 if (cow_start != (u64)-1) {
dda3245e
WX
1547 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1548 page_started, nr_written, 1, NULL);
d788a349 1549 if (ret)
79787eaa 1550 goto error;
80ff3856
YZ
1551 }
1552
79787eaa 1553error:
17ca04af 1554 if (ret && cur_offset < end)
ba8b04c1 1555 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1556 locked_page, EXTENT_LOCKED |
151a41bc
JB
1557 EXTENT_DELALLOC | EXTENT_DEFRAG |
1558 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1559 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1560 PAGE_SET_WRITEBACK |
1561 PAGE_END_WRITEBACK);
7ea394f1 1562 btrfs_free_path(path);
79787eaa 1563 return ret;
be20aa9d
CM
1564}
1565
47059d93
WS
1566static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1567{
1568
1569 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1570 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1571 return 0;
1572
1573 /*
1574 * @defrag_bytes is a hint value, no spinlock held here,
1575 * if is not zero, it means the file is defragging.
1576 * Force cow if given extent needs to be defragged.
1577 */
1578 if (BTRFS_I(inode)->defrag_bytes &&
1579 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1580 EXTENT_DEFRAG, 0, NULL))
1581 return 1;
1582
1583 return 0;
1584}
1585
d352ac68
CM
1586/*
1587 * extent_io.c call back to do delayed allocation processing
1588 */
c6100a4b 1589static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689 1590 u64 start, u64 end, int *page_started,
f82b7359
LB
1591 unsigned long *nr_written,
1592 struct writeback_control *wbc)
be20aa9d 1593{
c6100a4b 1594 struct inode *inode = private_data;
be20aa9d 1595 int ret;
47059d93 1596 int force_cow = need_force_cow(inode, start, end);
f82b7359 1597 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1598
47059d93 1599 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1600 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1601 page_started, 1, nr_written);
47059d93 1602 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1603 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1604 page_started, 0, nr_written);
c2fcdcdf 1605 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1606 ret = cow_file_range(inode, locked_page, start, end, end,
1607 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1608 } else {
1609 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1610 &BTRFS_I(inode)->runtime_flags);
771ed689 1611 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1612 page_started, nr_written,
1613 write_flags);
7ddf5a42 1614 }
52427260
QW
1615 if (ret)
1616 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1617 return ret;
1618}
1619
c6100a4b 1620static void btrfs_split_extent_hook(void *private_data,
1bf85046 1621 struct extent_state *orig, u64 split)
9ed74f2d 1622{
c6100a4b 1623 struct inode *inode = private_data;
dcab6a3b
JB
1624 u64 size;
1625
0ca1f7ce 1626 /* not delalloc, ignore it */
9ed74f2d 1627 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1628 return;
9ed74f2d 1629
dcab6a3b
JB
1630 size = orig->end - orig->start + 1;
1631 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1632 u32 num_extents;
dcab6a3b
JB
1633 u64 new_size;
1634
1635 /*
ba117213
JB
1636 * See the explanation in btrfs_merge_extent_hook, the same
1637 * applies here, just in reverse.
dcab6a3b
JB
1638 */
1639 new_size = orig->end - split + 1;
823bb20a 1640 num_extents = count_max_extents(new_size);
ba117213 1641 new_size = split - orig->start;
823bb20a
DS
1642 num_extents += count_max_extents(new_size);
1643 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1644 return;
1645 }
1646
9e0baf60 1647 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1648 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1649 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1650}
1651
1652/*
1653 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1654 * extents so we can keep track of new extents that are just merged onto old
1655 * extents, such as when we are doing sequential writes, so we can properly
1656 * account for the metadata space we'll need.
1657 */
c6100a4b 1658static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1659 struct extent_state *new,
1660 struct extent_state *other)
9ed74f2d 1661{
c6100a4b 1662 struct inode *inode = private_data;
dcab6a3b 1663 u64 new_size, old_size;
823bb20a 1664 u32 num_extents;
dcab6a3b 1665
9ed74f2d
JB
1666 /* not delalloc, ignore it */
1667 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1668 return;
9ed74f2d 1669
8461a3de
JB
1670 if (new->start > other->start)
1671 new_size = new->end - other->start + 1;
1672 else
1673 new_size = other->end - new->start + 1;
dcab6a3b
JB
1674
1675 /* we're not bigger than the max, unreserve the space and go */
1676 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1677 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1678 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1679 spin_unlock(&BTRFS_I(inode)->lock);
1680 return;
1681 }
1682
1683 /*
ba117213
JB
1684 * We have to add up either side to figure out how many extents were
1685 * accounted for before we merged into one big extent. If the number of
1686 * extents we accounted for is <= the amount we need for the new range
1687 * then we can return, otherwise drop. Think of it like this
1688 *
1689 * [ 4k][MAX_SIZE]
1690 *
1691 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1692 * need 2 outstanding extents, on one side we have 1 and the other side
1693 * we have 1 so they are == and we can return. But in this case
1694 *
1695 * [MAX_SIZE+4k][MAX_SIZE+4k]
1696 *
1697 * Each range on their own accounts for 2 extents, but merged together
1698 * they are only 3 extents worth of accounting, so we need to drop in
1699 * this case.
dcab6a3b 1700 */
ba117213 1701 old_size = other->end - other->start + 1;
823bb20a 1702 num_extents = count_max_extents(old_size);
ba117213 1703 old_size = new->end - new->start + 1;
823bb20a
DS
1704 num_extents += count_max_extents(old_size);
1705 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1706 return;
1707
9e0baf60 1708 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1709 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1710 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1711}
1712
eb73c1b7
MX
1713static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1714 struct inode *inode)
1715{
0b246afa
JM
1716 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1717
eb73c1b7
MX
1718 spin_lock(&root->delalloc_lock);
1719 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1720 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1721 &root->delalloc_inodes);
1722 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1723 &BTRFS_I(inode)->runtime_flags);
1724 root->nr_delalloc_inodes++;
1725 if (root->nr_delalloc_inodes == 1) {
0b246afa 1726 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1727 BUG_ON(!list_empty(&root->delalloc_root));
1728 list_add_tail(&root->delalloc_root,
0b246afa
JM
1729 &fs_info->delalloc_roots);
1730 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1731 }
1732 }
1733 spin_unlock(&root->delalloc_lock);
1734}
1735
1736static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1737 struct btrfs_inode *inode)
eb73c1b7 1738{
9e3e97f4 1739 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1740
eb73c1b7 1741 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1742 if (!list_empty(&inode->delalloc_inodes)) {
1743 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1744 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1745 &inode->runtime_flags);
eb73c1b7
MX
1746 root->nr_delalloc_inodes--;
1747 if (!root->nr_delalloc_inodes) {
0b246afa 1748 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1749 BUG_ON(list_empty(&root->delalloc_root));
1750 list_del_init(&root->delalloc_root);
0b246afa 1751 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1752 }
1753 }
1754 spin_unlock(&root->delalloc_lock);
1755}
1756
d352ac68
CM
1757/*
1758 * extent_io.c set_bit_hook, used to track delayed allocation
1759 * bytes in this file, and to maintain the list of inodes that
1760 * have pending delalloc work to be done.
1761 */
c6100a4b 1762static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1763 struct extent_state *state, unsigned *bits)
291d673e 1764{
c6100a4b 1765 struct inode *inode = private_data;
9ed74f2d 1766
0b246afa
JM
1767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1768
47059d93
WS
1769 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1770 WARN_ON(1);
75eff68e
CM
1771 /*
1772 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1773 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1774 * bit, which is only set or cleared with irqs on
1775 */
0ca1f7ce 1776 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1777 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1778 u64 len = state->end + 1 - state->start;
8b62f87b 1779 u32 num_extents = count_max_extents(len);
70ddc553 1780 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1781
8b62f87b
JB
1782 spin_lock(&BTRFS_I(inode)->lock);
1783 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1784 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1785
6a3891c5 1786 /* For sanity tests */
0b246afa 1787 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1788 return;
1789
104b4e51
NB
1790 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1791 fs_info->delalloc_batch);
df0af1a5 1792 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1793 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1794 if (*bits & EXTENT_DEFRAG)
1795 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1796 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1797 &BTRFS_I(inode)->runtime_flags))
1798 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1799 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1800 }
a7e3b975
FM
1801
1802 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1803 (*bits & EXTENT_DELALLOC_NEW)) {
1804 spin_lock(&BTRFS_I(inode)->lock);
1805 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1806 state->start;
1807 spin_unlock(&BTRFS_I(inode)->lock);
1808 }
291d673e
CM
1809}
1810
d352ac68
CM
1811/*
1812 * extent_io.c clear_bit_hook, see set_bit_hook for why
1813 */
c6100a4b 1814static void btrfs_clear_bit_hook(void *private_data,
41074888 1815 struct extent_state *state,
9ee49a04 1816 unsigned *bits)
291d673e 1817{
c6100a4b 1818 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1819 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1820 u64 len = state->end + 1 - state->start;
823bb20a 1821 u32 num_extents = count_max_extents(len);
47059d93 1822
4a4b964f
FM
1823 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1824 spin_lock(&inode->lock);
6fc0ef68 1825 inode->defrag_bytes -= len;
4a4b964f
FM
1826 spin_unlock(&inode->lock);
1827 }
47059d93 1828
75eff68e
CM
1829 /*
1830 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1831 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1832 * bit, which is only set or cleared with irqs on
1833 */
0ca1f7ce 1834 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1835 struct btrfs_root *root = inode->root;
83eea1f1 1836 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1837
8b62f87b
JB
1838 spin_lock(&inode->lock);
1839 btrfs_mod_outstanding_extents(inode, -num_extents);
1840 spin_unlock(&inode->lock);
0ca1f7ce 1841
b6d08f06
JB
1842 /*
1843 * We don't reserve metadata space for space cache inodes so we
1844 * don't need to call dellalloc_release_metadata if there is an
1845 * error.
1846 */
a315e68f 1847 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1848 root != fs_info->tree_root)
0ca1f7ce
YZ
1849 btrfs_delalloc_release_metadata(inode, len);
1850
6a3891c5 1851 /* For sanity tests. */
0b246afa 1852 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1853 return;
1854
a315e68f
FM
1855 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1856 do_list && !(state->state & EXTENT_NORESERVE) &&
1857 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1858 btrfs_free_reserved_data_space_noquota(
1859 &inode->vfs_inode,
51773bec 1860 state->start, len);
9ed74f2d 1861
104b4e51
NB
1862 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1863 fs_info->delalloc_batch);
6fc0ef68
NB
1864 spin_lock(&inode->lock);
1865 inode->delalloc_bytes -= len;
1866 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1867 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1868 &inode->runtime_flags))
eb73c1b7 1869 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1870 spin_unlock(&inode->lock);
291d673e 1871 }
a7e3b975
FM
1872
1873 if ((state->state & EXTENT_DELALLOC_NEW) &&
1874 (*bits & EXTENT_DELALLOC_NEW)) {
1875 spin_lock(&inode->lock);
1876 ASSERT(inode->new_delalloc_bytes >= len);
1877 inode->new_delalloc_bytes -= len;
1878 spin_unlock(&inode->lock);
1879 }
291d673e
CM
1880}
1881
d352ac68
CM
1882/*
1883 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1884 * we don't create bios that span stripes or chunks
6f034ece
LB
1885 *
1886 * return 1 if page cannot be merged to bio
1887 * return 0 if page can be merged to bio
1888 * return error otherwise
d352ac68 1889 */
81a75f67 1890int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1891 size_t size, struct bio *bio,
1892 unsigned long bio_flags)
239b14b3 1893{
0b246afa
JM
1894 struct inode *inode = page->mapping->host;
1895 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1896 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1897 u64 length = 0;
1898 u64 map_length;
239b14b3
CM
1899 int ret;
1900
771ed689
CM
1901 if (bio_flags & EXTENT_BIO_COMPRESSED)
1902 return 0;
1903
4f024f37 1904 length = bio->bi_iter.bi_size;
239b14b3 1905 map_length = length;
0b246afa
JM
1906 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1907 NULL, 0);
6f034ece
LB
1908 if (ret < 0)
1909 return ret;
d397712b 1910 if (map_length < length + size)
239b14b3 1911 return 1;
3444a972 1912 return 0;
239b14b3
CM
1913}
1914
d352ac68
CM
1915/*
1916 * in order to insert checksums into the metadata in large chunks,
1917 * we wait until bio submission time. All the pages in the bio are
1918 * checksummed and sums are attached onto the ordered extent record.
1919 *
1920 * At IO completion time the cums attached on the ordered extent record
1921 * are inserted into the btree
1922 */
8c27cb35 1923static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 1924 int mirror_num, unsigned long bio_flags,
eaf25d93 1925 u64 bio_offset)
065631f6 1926{
c6100a4b 1927 struct inode *inode = private_data;
4e4cbee9 1928 blk_status_t ret = 0;
e015640f 1929
2ff7e61e 1930 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1931 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1932 return 0;
1933}
e015640f 1934
4a69a410
CM
1935/*
1936 * in order to insert checksums into the metadata in large chunks,
1937 * we wait until bio submission time. All the pages in the bio are
1938 * checksummed and sums are attached onto the ordered extent record.
1939 *
1940 * At IO completion time the cums attached on the ordered extent record
1941 * are inserted into the btree
1942 */
8c27cb35 1943static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
1944 int mirror_num, unsigned long bio_flags,
1945 u64 bio_offset)
4a69a410 1946{
c6100a4b 1947 struct inode *inode = private_data;
2ff7e61e 1948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1949 blk_status_t ret;
61891923 1950
2ff7e61e 1951 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1952 if (ret) {
4e4cbee9 1953 bio->bi_status = ret;
4246a0b6
CH
1954 bio_endio(bio);
1955 }
61891923 1956 return ret;
44b8bd7e
CM
1957}
1958
d352ac68 1959/*
cad321ad 1960 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1961 * on write, or reading the csums from the tree before a read.
1962 *
1963 * Rules about async/sync submit,
1964 * a) read: sync submit
1965 *
1966 * b) write without checksum: sync submit
1967 *
1968 * c) write with checksum:
1969 * c-1) if bio is issued by fsync: sync submit
1970 * (sync_writers != 0)
1971 *
1972 * c-2) if root is reloc root: sync submit
1973 * (only in case of buffered IO)
1974 *
1975 * c-3) otherwise: async submit
d352ac68 1976 */
8c27cb35 1977static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1978 int mirror_num, unsigned long bio_flags,
1979 u64 bio_offset)
44b8bd7e 1980{
c6100a4b 1981 struct inode *inode = private_data;
0b246afa 1982 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1983 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1984 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1985 blk_status_t ret = 0;
19b9bdb0 1986 int skip_sum;
b812ce28 1987 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1988
6cbff00f 1989 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1990
70ddc553 1991 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1992 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1993
37226b21 1994 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1995 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1996 if (ret)
61891923 1997 goto out;
5fd02043 1998
d20f7043 1999 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
2000 ret = btrfs_submit_compressed_read(inode, bio,
2001 mirror_num,
2002 bio_flags);
2003 goto out;
c2db1073 2004 } else if (!skip_sum) {
2ff7e61e 2005 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 2006 if (ret)
61891923 2007 goto out;
c2db1073 2008 }
4d1b5fb4 2009 goto mapit;
b812ce28 2010 } else if (async && !skip_sum) {
17d217fe
YZ
2011 /* csum items have already been cloned */
2012 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2013 goto mapit;
19b9bdb0 2014 /* we're doing a write, do the async checksumming */
c6100a4b
JB
2015 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2016 bio_offset, inode,
0b246afa
JM
2017 __btrfs_submit_bio_start,
2018 __btrfs_submit_bio_done);
61891923 2019 goto out;
b812ce28 2020 } else if (!skip_sum) {
2ff7e61e 2021 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2022 if (ret)
2023 goto out;
19b9bdb0
CM
2024 }
2025
0b86a832 2026mapit:
2ff7e61e 2027 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2028
2029out:
4e4cbee9
CH
2030 if (ret) {
2031 bio->bi_status = ret;
4246a0b6
CH
2032 bio_endio(bio);
2033 }
61891923 2034 return ret;
065631f6 2035}
6885f308 2036
d352ac68
CM
2037/*
2038 * given a list of ordered sums record them in the inode. This happens
2039 * at IO completion time based on sums calculated at bio submission time.
2040 */
ba1da2f4 2041static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2042 struct inode *inode, struct list_head *list)
e6dcd2dc 2043{
e6dcd2dc
CM
2044 struct btrfs_ordered_sum *sum;
2045
c6e30871 2046 list_for_each_entry(sum, list, list) {
7c2871a2 2047 trans->adding_csums = true;
d20f7043
CM
2048 btrfs_csum_file_blocks(trans,
2049 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2050 trans->adding_csums = false;
e6dcd2dc
CM
2051 }
2052 return 0;
2053}
2054
2ac55d41 2055int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2056 unsigned int extra_bits,
ba8b04c1 2057 struct extent_state **cached_state, int dedupe)
ea8c2819 2058{
09cbfeaf 2059 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2060 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2061 extra_bits, cached_state);
ea8c2819
CM
2062}
2063
d352ac68 2064/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2065struct btrfs_writepage_fixup {
2066 struct page *page;
2067 struct btrfs_work work;
2068};
2069
b2950863 2070static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2071{
2072 struct btrfs_writepage_fixup *fixup;
2073 struct btrfs_ordered_extent *ordered;
2ac55d41 2074 struct extent_state *cached_state = NULL;
364ecf36 2075 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2076 struct page *page;
2077 struct inode *inode;
2078 u64 page_start;
2079 u64 page_end;
87826df0 2080 int ret;
247e743c
CM
2081
2082 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2083 page = fixup->page;
4a096752 2084again:
247e743c
CM
2085 lock_page(page);
2086 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2087 ClearPageChecked(page);
2088 goto out_page;
2089 }
2090
2091 inode = page->mapping->host;
2092 page_start = page_offset(page);
09cbfeaf 2093 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2094
ff13db41 2095 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2096 &cached_state);
4a096752
CM
2097
2098 /* already ordered? We're done */
8b62b72b 2099 if (PagePrivate2(page))
247e743c 2100 goto out;
4a096752 2101
a776c6fa 2102 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2103 PAGE_SIZE);
4a096752 2104 if (ordered) {
2ac55d41 2105 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2106 page_end, &cached_state);
4a096752
CM
2107 unlock_page(page);
2108 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2109 btrfs_put_ordered_extent(ordered);
4a096752
CM
2110 goto again;
2111 }
247e743c 2112
364ecf36 2113 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2114 PAGE_SIZE);
87826df0
JM
2115 if (ret) {
2116 mapping_set_error(page->mapping, ret);
2117 end_extent_writepage(page, ret, page_start, page_end);
2118 ClearPageChecked(page);
2119 goto out;
2120 }
2121
f3038ee3
NB
2122 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2123 &cached_state, 0);
2124 if (ret) {
2125 mapping_set_error(page->mapping, ret);
2126 end_extent_writepage(page, ret, page_start, page_end);
2127 ClearPageChecked(page);
2128 goto out;
2129 }
2130
247e743c 2131 ClearPageChecked(page);
87826df0 2132 set_page_dirty(page);
8b62f87b 2133 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
247e743c 2134out:
2ac55d41 2135 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2136 &cached_state);
247e743c
CM
2137out_page:
2138 unlock_page(page);
09cbfeaf 2139 put_page(page);
b897abec 2140 kfree(fixup);
364ecf36 2141 extent_changeset_free(data_reserved);
247e743c
CM
2142}
2143
2144/*
2145 * There are a few paths in the higher layers of the kernel that directly
2146 * set the page dirty bit without asking the filesystem if it is a
2147 * good idea. This causes problems because we want to make sure COW
2148 * properly happens and the data=ordered rules are followed.
2149 *
c8b97818 2150 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2151 * hasn't been properly setup for IO. We kick off an async process
2152 * to fix it up. The async helper will wait for ordered extents, set
2153 * the delalloc bit and make it safe to write the page.
2154 */
b2950863 2155static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2156{
2157 struct inode *inode = page->mapping->host;
0b246afa 2158 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2159 struct btrfs_writepage_fixup *fixup;
247e743c 2160
8b62b72b
CM
2161 /* this page is properly in the ordered list */
2162 if (TestClearPagePrivate2(page))
247e743c
CM
2163 return 0;
2164
2165 if (PageChecked(page))
2166 return -EAGAIN;
2167
2168 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2169 if (!fixup)
2170 return -EAGAIN;
f421950f 2171
247e743c 2172 SetPageChecked(page);
09cbfeaf 2173 get_page(page);
9e0af237
LB
2174 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2175 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2176 fixup->page = page;
0b246afa 2177 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2178 return -EBUSY;
247e743c
CM
2179}
2180
d899e052
YZ
2181static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2182 struct inode *inode, u64 file_pos,
2183 u64 disk_bytenr, u64 disk_num_bytes,
2184 u64 num_bytes, u64 ram_bytes,
2185 u8 compression, u8 encryption,
2186 u16 other_encoding, int extent_type)
2187{
2188 struct btrfs_root *root = BTRFS_I(inode)->root;
2189 struct btrfs_file_extent_item *fi;
2190 struct btrfs_path *path;
2191 struct extent_buffer *leaf;
2192 struct btrfs_key ins;
a12b877b 2193 u64 qg_released;
1acae57b 2194 int extent_inserted = 0;
d899e052
YZ
2195 int ret;
2196
2197 path = btrfs_alloc_path();
d8926bb3
MF
2198 if (!path)
2199 return -ENOMEM;
d899e052 2200
a1ed835e
CM
2201 /*
2202 * we may be replacing one extent in the tree with another.
2203 * The new extent is pinned in the extent map, and we don't want
2204 * to drop it from the cache until it is completely in the btree.
2205 *
2206 * So, tell btrfs_drop_extents to leave this extent in the cache.
2207 * the caller is expected to unpin it and allow it to be merged
2208 * with the others.
2209 */
1acae57b
FDBM
2210 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2211 file_pos + num_bytes, NULL, 0,
2212 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2213 if (ret)
2214 goto out;
d899e052 2215
1acae57b 2216 if (!extent_inserted) {
4a0cc7ca 2217 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2218 ins.offset = file_pos;
2219 ins.type = BTRFS_EXTENT_DATA_KEY;
2220
2221 path->leave_spinning = 1;
2222 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2223 sizeof(*fi));
2224 if (ret)
2225 goto out;
2226 }
d899e052
YZ
2227 leaf = path->nodes[0];
2228 fi = btrfs_item_ptr(leaf, path->slots[0],
2229 struct btrfs_file_extent_item);
2230 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2231 btrfs_set_file_extent_type(leaf, fi, extent_type);
2232 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2233 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2234 btrfs_set_file_extent_offset(leaf, fi, 0);
2235 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2236 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2237 btrfs_set_file_extent_compression(leaf, fi, compression);
2238 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2239 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2240
d899e052 2241 btrfs_mark_buffer_dirty(leaf);
ce195332 2242 btrfs_release_path(path);
d899e052
YZ
2243
2244 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2245
2246 ins.objectid = disk_bytenr;
2247 ins.offset = disk_num_bytes;
2248 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2249
297d750b 2250 /*
5846a3c2
QW
2251 * Release the reserved range from inode dirty range map, as it is
2252 * already moved into delayed_ref_head
297d750b 2253 */
a12b877b
QW
2254 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2255 if (ret < 0)
2256 goto out;
2257 qg_released = ret;
84f7d8e6
JB
2258 ret = btrfs_alloc_reserved_file_extent(trans, root,
2259 btrfs_ino(BTRFS_I(inode)),
2260 file_pos, qg_released, &ins);
79787eaa 2261out:
d899e052 2262 btrfs_free_path(path);
b9473439 2263
79787eaa 2264 return ret;
d899e052
YZ
2265}
2266
38c227d8
LB
2267/* snapshot-aware defrag */
2268struct sa_defrag_extent_backref {
2269 struct rb_node node;
2270 struct old_sa_defrag_extent *old;
2271 u64 root_id;
2272 u64 inum;
2273 u64 file_pos;
2274 u64 extent_offset;
2275 u64 num_bytes;
2276 u64 generation;
2277};
2278
2279struct old_sa_defrag_extent {
2280 struct list_head list;
2281 struct new_sa_defrag_extent *new;
2282
2283 u64 extent_offset;
2284 u64 bytenr;
2285 u64 offset;
2286 u64 len;
2287 int count;
2288};
2289
2290struct new_sa_defrag_extent {
2291 struct rb_root root;
2292 struct list_head head;
2293 struct btrfs_path *path;
2294 struct inode *inode;
2295 u64 file_pos;
2296 u64 len;
2297 u64 bytenr;
2298 u64 disk_len;
2299 u8 compress_type;
2300};
2301
2302static int backref_comp(struct sa_defrag_extent_backref *b1,
2303 struct sa_defrag_extent_backref *b2)
2304{
2305 if (b1->root_id < b2->root_id)
2306 return -1;
2307 else if (b1->root_id > b2->root_id)
2308 return 1;
2309
2310 if (b1->inum < b2->inum)
2311 return -1;
2312 else if (b1->inum > b2->inum)
2313 return 1;
2314
2315 if (b1->file_pos < b2->file_pos)
2316 return -1;
2317 else if (b1->file_pos > b2->file_pos)
2318 return 1;
2319
2320 /*
2321 * [------------------------------] ===> (a range of space)
2322 * |<--->| |<---->| =============> (fs/file tree A)
2323 * |<---------------------------->| ===> (fs/file tree B)
2324 *
2325 * A range of space can refer to two file extents in one tree while
2326 * refer to only one file extent in another tree.
2327 *
2328 * So we may process a disk offset more than one time(two extents in A)
2329 * and locate at the same extent(one extent in B), then insert two same
2330 * backrefs(both refer to the extent in B).
2331 */
2332 return 0;
2333}
2334
2335static void backref_insert(struct rb_root *root,
2336 struct sa_defrag_extent_backref *backref)
2337{
2338 struct rb_node **p = &root->rb_node;
2339 struct rb_node *parent = NULL;
2340 struct sa_defrag_extent_backref *entry;
2341 int ret;
2342
2343 while (*p) {
2344 parent = *p;
2345 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2346
2347 ret = backref_comp(backref, entry);
2348 if (ret < 0)
2349 p = &(*p)->rb_left;
2350 else
2351 p = &(*p)->rb_right;
2352 }
2353
2354 rb_link_node(&backref->node, parent, p);
2355 rb_insert_color(&backref->node, root);
2356}
2357
2358/*
2359 * Note the backref might has changed, and in this case we just return 0.
2360 */
2361static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2362 void *ctx)
2363{
2364 struct btrfs_file_extent_item *extent;
38c227d8
LB
2365 struct old_sa_defrag_extent *old = ctx;
2366 struct new_sa_defrag_extent *new = old->new;
2367 struct btrfs_path *path = new->path;
2368 struct btrfs_key key;
2369 struct btrfs_root *root;
2370 struct sa_defrag_extent_backref *backref;
2371 struct extent_buffer *leaf;
2372 struct inode *inode = new->inode;
0b246afa 2373 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2374 int slot;
2375 int ret;
2376 u64 extent_offset;
2377 u64 num_bytes;
2378
2379 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2380 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2381 return 0;
2382
2383 key.objectid = root_id;
2384 key.type = BTRFS_ROOT_ITEM_KEY;
2385 key.offset = (u64)-1;
2386
38c227d8
LB
2387 root = btrfs_read_fs_root_no_name(fs_info, &key);
2388 if (IS_ERR(root)) {
2389 if (PTR_ERR(root) == -ENOENT)
2390 return 0;
2391 WARN_ON(1);
ab8d0fc4 2392 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2393 inum, offset, root_id);
2394 return PTR_ERR(root);
2395 }
2396
2397 key.objectid = inum;
2398 key.type = BTRFS_EXTENT_DATA_KEY;
2399 if (offset > (u64)-1 << 32)
2400 key.offset = 0;
2401 else
2402 key.offset = offset;
2403
2404 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2405 if (WARN_ON(ret < 0))
38c227d8 2406 return ret;
50f1319c 2407 ret = 0;
38c227d8
LB
2408
2409 while (1) {
2410 cond_resched();
2411
2412 leaf = path->nodes[0];
2413 slot = path->slots[0];
2414
2415 if (slot >= btrfs_header_nritems(leaf)) {
2416 ret = btrfs_next_leaf(root, path);
2417 if (ret < 0) {
2418 goto out;
2419 } else if (ret > 0) {
2420 ret = 0;
2421 goto out;
2422 }
2423 continue;
2424 }
2425
2426 path->slots[0]++;
2427
2428 btrfs_item_key_to_cpu(leaf, &key, slot);
2429
2430 if (key.objectid > inum)
2431 goto out;
2432
2433 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2434 continue;
2435
2436 extent = btrfs_item_ptr(leaf, slot,
2437 struct btrfs_file_extent_item);
2438
2439 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2440 continue;
2441
e68afa49
LB
2442 /*
2443 * 'offset' refers to the exact key.offset,
2444 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2445 * (key.offset - extent_offset).
2446 */
2447 if (key.offset != offset)
38c227d8
LB
2448 continue;
2449
e68afa49 2450 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2451 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2452
38c227d8
LB
2453 if (extent_offset >= old->extent_offset + old->offset +
2454 old->len || extent_offset + num_bytes <=
2455 old->extent_offset + old->offset)
2456 continue;
38c227d8
LB
2457 break;
2458 }
2459
2460 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2461 if (!backref) {
2462 ret = -ENOENT;
2463 goto out;
2464 }
2465
2466 backref->root_id = root_id;
2467 backref->inum = inum;
e68afa49 2468 backref->file_pos = offset;
38c227d8
LB
2469 backref->num_bytes = num_bytes;
2470 backref->extent_offset = extent_offset;
2471 backref->generation = btrfs_file_extent_generation(leaf, extent);
2472 backref->old = old;
2473 backref_insert(&new->root, backref);
2474 old->count++;
2475out:
2476 btrfs_release_path(path);
2477 WARN_ON(ret);
2478 return ret;
2479}
2480
2481static noinline bool record_extent_backrefs(struct btrfs_path *path,
2482 struct new_sa_defrag_extent *new)
2483{
0b246afa 2484 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2485 struct old_sa_defrag_extent *old, *tmp;
2486 int ret;
2487
2488 new->path = path;
2489
2490 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2491 ret = iterate_inodes_from_logical(old->bytenr +
2492 old->extent_offset, fs_info,
38c227d8 2493 path, record_one_backref,
c995ab3c 2494 old, false);
4724b106
JB
2495 if (ret < 0 && ret != -ENOENT)
2496 return false;
38c227d8
LB
2497
2498 /* no backref to be processed for this extent */
2499 if (!old->count) {
2500 list_del(&old->list);
2501 kfree(old);
2502 }
2503 }
2504
2505 if (list_empty(&new->head))
2506 return false;
2507
2508 return true;
2509}
2510
2511static int relink_is_mergable(struct extent_buffer *leaf,
2512 struct btrfs_file_extent_item *fi,
116e0024 2513 struct new_sa_defrag_extent *new)
38c227d8 2514{
116e0024 2515 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2516 return 0;
2517
2518 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2519 return 0;
2520
116e0024
LB
2521 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2522 return 0;
2523
2524 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2525 btrfs_file_extent_other_encoding(leaf, fi))
2526 return 0;
2527
2528 return 1;
2529}
2530
2531/*
2532 * Note the backref might has changed, and in this case we just return 0.
2533 */
2534static noinline int relink_extent_backref(struct btrfs_path *path,
2535 struct sa_defrag_extent_backref *prev,
2536 struct sa_defrag_extent_backref *backref)
2537{
2538 struct btrfs_file_extent_item *extent;
2539 struct btrfs_file_extent_item *item;
2540 struct btrfs_ordered_extent *ordered;
2541 struct btrfs_trans_handle *trans;
38c227d8
LB
2542 struct btrfs_root *root;
2543 struct btrfs_key key;
2544 struct extent_buffer *leaf;
2545 struct old_sa_defrag_extent *old = backref->old;
2546 struct new_sa_defrag_extent *new = old->new;
0b246afa 2547 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2548 struct inode *inode;
2549 struct extent_state *cached = NULL;
2550 int ret = 0;
2551 u64 start;
2552 u64 len;
2553 u64 lock_start;
2554 u64 lock_end;
2555 bool merge = false;
2556 int index;
2557
2558 if (prev && prev->root_id == backref->root_id &&
2559 prev->inum == backref->inum &&
2560 prev->file_pos + prev->num_bytes == backref->file_pos)
2561 merge = true;
2562
2563 /* step 1: get root */
2564 key.objectid = backref->root_id;
2565 key.type = BTRFS_ROOT_ITEM_KEY;
2566 key.offset = (u64)-1;
2567
38c227d8
LB
2568 index = srcu_read_lock(&fs_info->subvol_srcu);
2569
2570 root = btrfs_read_fs_root_no_name(fs_info, &key);
2571 if (IS_ERR(root)) {
2572 srcu_read_unlock(&fs_info->subvol_srcu, index);
2573 if (PTR_ERR(root) == -ENOENT)
2574 return 0;
2575 return PTR_ERR(root);
2576 }
38c227d8 2577
bcbba5e6
WS
2578 if (btrfs_root_readonly(root)) {
2579 srcu_read_unlock(&fs_info->subvol_srcu, index);
2580 return 0;
2581 }
2582
38c227d8
LB
2583 /* step 2: get inode */
2584 key.objectid = backref->inum;
2585 key.type = BTRFS_INODE_ITEM_KEY;
2586 key.offset = 0;
2587
2588 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2589 if (IS_ERR(inode)) {
2590 srcu_read_unlock(&fs_info->subvol_srcu, index);
2591 return 0;
2592 }
2593
2594 srcu_read_unlock(&fs_info->subvol_srcu, index);
2595
2596 /* step 3: relink backref */
2597 lock_start = backref->file_pos;
2598 lock_end = backref->file_pos + backref->num_bytes - 1;
2599 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2600 &cached);
38c227d8
LB
2601
2602 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2603 if (ordered) {
2604 btrfs_put_ordered_extent(ordered);
2605 goto out_unlock;
2606 }
2607
2608 trans = btrfs_join_transaction(root);
2609 if (IS_ERR(trans)) {
2610 ret = PTR_ERR(trans);
2611 goto out_unlock;
2612 }
2613
2614 key.objectid = backref->inum;
2615 key.type = BTRFS_EXTENT_DATA_KEY;
2616 key.offset = backref->file_pos;
2617
2618 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2619 if (ret < 0) {
2620 goto out_free_path;
2621 } else if (ret > 0) {
2622 ret = 0;
2623 goto out_free_path;
2624 }
2625
2626 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2627 struct btrfs_file_extent_item);
2628
2629 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2630 backref->generation)
2631 goto out_free_path;
2632
2633 btrfs_release_path(path);
2634
2635 start = backref->file_pos;
2636 if (backref->extent_offset < old->extent_offset + old->offset)
2637 start += old->extent_offset + old->offset -
2638 backref->extent_offset;
2639
2640 len = min(backref->extent_offset + backref->num_bytes,
2641 old->extent_offset + old->offset + old->len);
2642 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2643
2644 ret = btrfs_drop_extents(trans, root, inode, start,
2645 start + len, 1);
2646 if (ret)
2647 goto out_free_path;
2648again:
4a0cc7ca 2649 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2650 key.type = BTRFS_EXTENT_DATA_KEY;
2651 key.offset = start;
2652
a09a0a70 2653 path->leave_spinning = 1;
38c227d8
LB
2654 if (merge) {
2655 struct btrfs_file_extent_item *fi;
2656 u64 extent_len;
2657 struct btrfs_key found_key;
2658
3c9665df 2659 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2660 if (ret < 0)
2661 goto out_free_path;
2662
2663 path->slots[0]--;
2664 leaf = path->nodes[0];
2665 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2666
2667 fi = btrfs_item_ptr(leaf, path->slots[0],
2668 struct btrfs_file_extent_item);
2669 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2670
116e0024
LB
2671 if (extent_len + found_key.offset == start &&
2672 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2673 btrfs_set_file_extent_num_bytes(leaf, fi,
2674 extent_len + len);
2675 btrfs_mark_buffer_dirty(leaf);
2676 inode_add_bytes(inode, len);
2677
2678 ret = 1;
2679 goto out_free_path;
2680 } else {
2681 merge = false;
2682 btrfs_release_path(path);
2683 goto again;
2684 }
2685 }
2686
2687 ret = btrfs_insert_empty_item(trans, root, path, &key,
2688 sizeof(*extent));
2689 if (ret) {
66642832 2690 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2691 goto out_free_path;
2692 }
2693
2694 leaf = path->nodes[0];
2695 item = btrfs_item_ptr(leaf, path->slots[0],
2696 struct btrfs_file_extent_item);
2697 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2698 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2699 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2700 btrfs_set_file_extent_num_bytes(leaf, item, len);
2701 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2702 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2703 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2704 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2705 btrfs_set_file_extent_encryption(leaf, item, 0);
2706 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2707
2708 btrfs_mark_buffer_dirty(leaf);
2709 inode_add_bytes(inode, len);
a09a0a70 2710 btrfs_release_path(path);
38c227d8 2711
84f7d8e6 2712 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2713 new->disk_len, 0,
2714 backref->root_id, backref->inum,
b06c4bf5 2715 new->file_pos); /* start - extent_offset */
38c227d8 2716 if (ret) {
66642832 2717 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2718 goto out_free_path;
2719 }
2720
2721 ret = 1;
2722out_free_path:
2723 btrfs_release_path(path);
a09a0a70 2724 path->leave_spinning = 0;
3a45bb20 2725 btrfs_end_transaction(trans);
38c227d8
LB
2726out_unlock:
2727 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2728 &cached);
38c227d8
LB
2729 iput(inode);
2730 return ret;
2731}
2732
6f519564
LB
2733static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2734{
2735 struct old_sa_defrag_extent *old, *tmp;
2736
2737 if (!new)
2738 return;
2739
2740 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2741 kfree(old);
2742 }
2743 kfree(new);
2744}
2745
38c227d8
LB
2746static void relink_file_extents(struct new_sa_defrag_extent *new)
2747{
0b246afa 2748 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2749 struct btrfs_path *path;
38c227d8
LB
2750 struct sa_defrag_extent_backref *backref;
2751 struct sa_defrag_extent_backref *prev = NULL;
2752 struct inode *inode;
2753 struct btrfs_root *root;
2754 struct rb_node *node;
2755 int ret;
2756
2757 inode = new->inode;
2758 root = BTRFS_I(inode)->root;
2759
2760 path = btrfs_alloc_path();
2761 if (!path)
2762 return;
2763
2764 if (!record_extent_backrefs(path, new)) {
2765 btrfs_free_path(path);
2766 goto out;
2767 }
2768 btrfs_release_path(path);
2769
2770 while (1) {
2771 node = rb_first(&new->root);
2772 if (!node)
2773 break;
2774 rb_erase(node, &new->root);
2775
2776 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2777
2778 ret = relink_extent_backref(path, prev, backref);
2779 WARN_ON(ret < 0);
2780
2781 kfree(prev);
2782
2783 if (ret == 1)
2784 prev = backref;
2785 else
2786 prev = NULL;
2787 cond_resched();
2788 }
2789 kfree(prev);
2790
2791 btrfs_free_path(path);
38c227d8 2792out:
6f519564
LB
2793 free_sa_defrag_extent(new);
2794
0b246afa
JM
2795 atomic_dec(&fs_info->defrag_running);
2796 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2797}
2798
2799static struct new_sa_defrag_extent *
2800record_old_file_extents(struct inode *inode,
2801 struct btrfs_ordered_extent *ordered)
2802{
0b246afa 2803 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2804 struct btrfs_root *root = BTRFS_I(inode)->root;
2805 struct btrfs_path *path;
2806 struct btrfs_key key;
6f519564 2807 struct old_sa_defrag_extent *old;
38c227d8
LB
2808 struct new_sa_defrag_extent *new;
2809 int ret;
2810
2811 new = kmalloc(sizeof(*new), GFP_NOFS);
2812 if (!new)
2813 return NULL;
2814
2815 new->inode = inode;
2816 new->file_pos = ordered->file_offset;
2817 new->len = ordered->len;
2818 new->bytenr = ordered->start;
2819 new->disk_len = ordered->disk_len;
2820 new->compress_type = ordered->compress_type;
2821 new->root = RB_ROOT;
2822 INIT_LIST_HEAD(&new->head);
2823
2824 path = btrfs_alloc_path();
2825 if (!path)
2826 goto out_kfree;
2827
4a0cc7ca 2828 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2829 key.type = BTRFS_EXTENT_DATA_KEY;
2830 key.offset = new->file_pos;
2831
2832 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2833 if (ret < 0)
2834 goto out_free_path;
2835 if (ret > 0 && path->slots[0] > 0)
2836 path->slots[0]--;
2837
2838 /* find out all the old extents for the file range */
2839 while (1) {
2840 struct btrfs_file_extent_item *extent;
2841 struct extent_buffer *l;
2842 int slot;
2843 u64 num_bytes;
2844 u64 offset;
2845 u64 end;
2846 u64 disk_bytenr;
2847 u64 extent_offset;
2848
2849 l = path->nodes[0];
2850 slot = path->slots[0];
2851
2852 if (slot >= btrfs_header_nritems(l)) {
2853 ret = btrfs_next_leaf(root, path);
2854 if (ret < 0)
6f519564 2855 goto out_free_path;
38c227d8
LB
2856 else if (ret > 0)
2857 break;
2858 continue;
2859 }
2860
2861 btrfs_item_key_to_cpu(l, &key, slot);
2862
4a0cc7ca 2863 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2864 break;
2865 if (key.type != BTRFS_EXTENT_DATA_KEY)
2866 break;
2867 if (key.offset >= new->file_pos + new->len)
2868 break;
2869
2870 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2871
2872 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2873 if (key.offset + num_bytes < new->file_pos)
2874 goto next;
2875
2876 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2877 if (!disk_bytenr)
2878 goto next;
2879
2880 extent_offset = btrfs_file_extent_offset(l, extent);
2881
2882 old = kmalloc(sizeof(*old), GFP_NOFS);
2883 if (!old)
6f519564 2884 goto out_free_path;
38c227d8
LB
2885
2886 offset = max(new->file_pos, key.offset);
2887 end = min(new->file_pos + new->len, key.offset + num_bytes);
2888
2889 old->bytenr = disk_bytenr;
2890 old->extent_offset = extent_offset;
2891 old->offset = offset - key.offset;
2892 old->len = end - offset;
2893 old->new = new;
2894 old->count = 0;
2895 list_add_tail(&old->list, &new->head);
2896next:
2897 path->slots[0]++;
2898 cond_resched();
2899 }
2900
2901 btrfs_free_path(path);
0b246afa 2902 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2903
2904 return new;
2905
38c227d8
LB
2906out_free_path:
2907 btrfs_free_path(path);
2908out_kfree:
6f519564 2909 free_sa_defrag_extent(new);
38c227d8
LB
2910 return NULL;
2911}
2912
2ff7e61e 2913static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2914 u64 start, u64 len)
2915{
2916 struct btrfs_block_group_cache *cache;
2917
0b246afa 2918 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2919 ASSERT(cache);
2920
2921 spin_lock(&cache->lock);
2922 cache->delalloc_bytes -= len;
2923 spin_unlock(&cache->lock);
2924
2925 btrfs_put_block_group(cache);
2926}
2927
d352ac68
CM
2928/* as ordered data IO finishes, this gets called so we can finish
2929 * an ordered extent if the range of bytes in the file it covers are
2930 * fully written.
2931 */
5fd02043 2932static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2933{
5fd02043 2934 struct inode *inode = ordered_extent->inode;
0b246afa 2935 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2936 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2937 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2938 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2939 struct extent_state *cached_state = NULL;
38c227d8 2940 struct new_sa_defrag_extent *new = NULL;
261507a0 2941 int compress_type = 0;
77cef2ec
JB
2942 int ret = 0;
2943 u64 logical_len = ordered_extent->len;
82d5902d 2944 bool nolock;
77cef2ec 2945 bool truncated = false;
a7e3b975
FM
2946 bool range_locked = false;
2947 bool clear_new_delalloc_bytes = false;
2948
2949 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2950 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2951 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2952 clear_new_delalloc_bytes = true;
e6dcd2dc 2953
70ddc553 2954 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2955
5fd02043
JB
2956 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2957 ret = -EIO;
2958 goto out;
2959 }
2960
7ab7956e
NB
2961 btrfs_free_io_failure_record(BTRFS_I(inode),
2962 ordered_extent->file_offset,
2963 ordered_extent->file_offset +
2964 ordered_extent->len - 1);
f612496b 2965
77cef2ec
JB
2966 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2967 truncated = true;
2968 logical_len = ordered_extent->truncated_len;
2969 /* Truncated the entire extent, don't bother adding */
2970 if (!logical_len)
2971 goto out;
2972 }
2973
c2167754 2974 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2975 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2976
2977 /*
2978 * For mwrite(mmap + memset to write) case, we still reserve
2979 * space for NOCOW range.
2980 * As NOCOW won't cause a new delayed ref, just free the space
2981 */
bc42bda2 2982 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2983 ordered_extent->len);
6c760c07
JB
2984 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2985 if (nolock)
2986 trans = btrfs_join_transaction_nolock(root);
2987 else
2988 trans = btrfs_join_transaction(root);
2989 if (IS_ERR(trans)) {
2990 ret = PTR_ERR(trans);
2991 trans = NULL;
2992 goto out;
c2167754 2993 }
69fe2d75 2994 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2995 ret = btrfs_update_inode_fallback(trans, root, inode);
2996 if (ret) /* -ENOMEM or corruption */
66642832 2997 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2998 goto out;
2999 }
e6dcd2dc 3000
a7e3b975 3001 range_locked = true;
2ac55d41
JB
3002 lock_extent_bits(io_tree, ordered_extent->file_offset,
3003 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 3004 &cached_state);
e6dcd2dc 3005
38c227d8
LB
3006 ret = test_range_bit(io_tree, ordered_extent->file_offset,
3007 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 3008 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
3009 if (ret) {
3010 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 3011 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
3012 /* the inode is shared */
3013 new = record_old_file_extents(inode, ordered_extent);
3014
3015 clear_extent_bit(io_tree, ordered_extent->file_offset,
3016 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 3017 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
3018 }
3019
0cb59c99 3020 if (nolock)
7a7eaa40 3021 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3022 else
7a7eaa40 3023 trans = btrfs_join_transaction(root);
79787eaa
JM
3024 if (IS_ERR(trans)) {
3025 ret = PTR_ERR(trans);
3026 trans = NULL;
a7e3b975 3027 goto out;
79787eaa 3028 }
a79b7d4b 3029
69fe2d75 3030 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3031
c8b97818 3032 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3033 compress_type = ordered_extent->compress_type;
d899e052 3034 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3035 BUG_ON(compress_type);
b430b775
JM
3036 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3037 ordered_extent->len);
7a6d7067 3038 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3039 ordered_extent->file_offset,
3040 ordered_extent->file_offset +
77cef2ec 3041 logical_len);
d899e052 3042 } else {
0b246afa 3043 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3044 ret = insert_reserved_file_extent(trans, inode,
3045 ordered_extent->file_offset,
3046 ordered_extent->start,
3047 ordered_extent->disk_len,
77cef2ec 3048 logical_len, logical_len,
261507a0 3049 compress_type, 0, 0,
d899e052 3050 BTRFS_FILE_EXTENT_REG);
e570fd27 3051 if (!ret)
2ff7e61e 3052 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3053 ordered_extent->start,
3054 ordered_extent->disk_len);
d899e052 3055 }
5dc562c5
JB
3056 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3057 ordered_extent->file_offset, ordered_extent->len,
3058 trans->transid);
79787eaa 3059 if (ret < 0) {
66642832 3060 btrfs_abort_transaction(trans, ret);
a7e3b975 3061 goto out;
79787eaa 3062 }
2ac55d41 3063
df9f628e 3064 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 3065
6c760c07
JB
3066 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3067 ret = btrfs_update_inode_fallback(trans, root, inode);
3068 if (ret) { /* -ENOMEM or corruption */
66642832 3069 btrfs_abort_transaction(trans, ret);
a7e3b975 3070 goto out;
1ef30be1
JB
3071 }
3072 ret = 0;
c2167754 3073out:
a7e3b975
FM
3074 if (range_locked || clear_new_delalloc_bytes) {
3075 unsigned int clear_bits = 0;
3076
3077 if (range_locked)
3078 clear_bits |= EXTENT_LOCKED;
3079 if (clear_new_delalloc_bytes)
3080 clear_bits |= EXTENT_DELALLOC_NEW;
3081 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3082 ordered_extent->file_offset,
3083 ordered_extent->file_offset +
3084 ordered_extent->len - 1,
3085 clear_bits,
3086 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3087 0, &cached_state);
a7e3b975
FM
3088 }
3089
a698d075 3090 if (trans)
3a45bb20 3091 btrfs_end_transaction(trans);
0cb59c99 3092
77cef2ec
JB
3093 if (ret || truncated) {
3094 u64 start, end;
3095
3096 if (truncated)
3097 start = ordered_extent->file_offset + logical_len;
3098 else
3099 start = ordered_extent->file_offset;
3100 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3101 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3102
3103 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3104 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3105
0bec9ef5
JB
3106 /*
3107 * If the ordered extent had an IOERR or something else went
3108 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3109 * back to the allocator. We only free the extent in the
3110 * truncated case if we didn't write out the extent at all.
0bec9ef5 3111 */
77cef2ec
JB
3112 if ((ret || !logical_len) &&
3113 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3114 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3115 btrfs_free_reserved_extent(fs_info,
3116 ordered_extent->start,
e570fd27 3117 ordered_extent->disk_len, 1);
0bec9ef5
JB
3118 }
3119
3120
5fd02043 3121 /*
8bad3c02
LB
3122 * This needs to be done to make sure anybody waiting knows we are done
3123 * updating everything for this ordered extent.
5fd02043
JB
3124 */
3125 btrfs_remove_ordered_extent(inode, ordered_extent);
3126
38c227d8 3127 /* for snapshot-aware defrag */
6f519564
LB
3128 if (new) {
3129 if (ret) {
3130 free_sa_defrag_extent(new);
0b246afa 3131 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3132 } else {
3133 relink_file_extents(new);
3134 }
3135 }
38c227d8 3136
e6dcd2dc
CM
3137 /* once for us */
3138 btrfs_put_ordered_extent(ordered_extent);
3139 /* once for the tree */
3140 btrfs_put_ordered_extent(ordered_extent);
3141
5fd02043
JB
3142 return ret;
3143}
3144
3145static void finish_ordered_fn(struct btrfs_work *work)
3146{
3147 struct btrfs_ordered_extent *ordered_extent;
3148 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3149 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3150}
3151
c3988d63 3152static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3153 struct extent_state *state, int uptodate)
3154{
5fd02043 3155 struct inode *inode = page->mapping->host;
0b246afa 3156 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3157 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3158 struct btrfs_workqueue *wq;
3159 btrfs_work_func_t func;
5fd02043 3160
1abe9b8a 3161 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3162
8b62b72b 3163 ClearPagePrivate2(page);
5fd02043
JB
3164 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3165 end - start + 1, uptodate))
c3988d63 3166 return;
5fd02043 3167
70ddc553 3168 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3169 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3170 func = btrfs_freespace_write_helper;
3171 } else {
0b246afa 3172 wq = fs_info->endio_write_workers;
9e0af237
LB
3173 func = btrfs_endio_write_helper;
3174 }
5fd02043 3175
9e0af237
LB
3176 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3177 NULL);
3178 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3179}
3180
dc380aea
MX
3181static int __readpage_endio_check(struct inode *inode,
3182 struct btrfs_io_bio *io_bio,
3183 int icsum, struct page *page,
3184 int pgoff, u64 start, size_t len)
3185{
3186 char *kaddr;
3187 u32 csum_expected;
3188 u32 csum = ~(u32)0;
dc380aea
MX
3189
3190 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3191
3192 kaddr = kmap_atomic(page);
3193 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3194 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3195 if (csum != csum_expected)
3196 goto zeroit;
3197
3198 kunmap_atomic(kaddr);
3199 return 0;
3200zeroit:
0970a22e 3201 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3202 io_bio->mirror_num);
dc380aea
MX
3203 memset(kaddr + pgoff, 1, len);
3204 flush_dcache_page(page);
3205 kunmap_atomic(kaddr);
dc380aea
MX
3206 return -EIO;
3207}
3208
d352ac68
CM
3209/*
3210 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3211 * if there's a match, we allow the bio to finish. If not, the code in
3212 * extent_io.c will try to find good copies for us.
d352ac68 3213 */
facc8a22
MX
3214static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3215 u64 phy_offset, struct page *page,
3216 u64 start, u64 end, int mirror)
07157aac 3217{
4eee4fa4 3218 size_t offset = start - page_offset(page);
07157aac 3219 struct inode *inode = page->mapping->host;
d1310b2e 3220 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3221 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3222
d20f7043
CM
3223 if (PageChecked(page)) {
3224 ClearPageChecked(page);
dc380aea 3225 return 0;
d20f7043 3226 }
6cbff00f
CH
3227
3228 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3229 return 0;
17d217fe
YZ
3230
3231 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3232 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3233 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3234 return 0;
17d217fe 3235 }
d20f7043 3236
facc8a22 3237 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3238 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3239 start, (size_t)(end - start + 1));
07157aac 3240}
b888db2b 3241
24bbcf04
YZ
3242void btrfs_add_delayed_iput(struct inode *inode)
3243{
0b246afa 3244 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3245 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3246
3247 if (atomic_add_unless(&inode->i_count, -1, 1))
3248 return;
3249
24bbcf04 3250 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3251 if (binode->delayed_iput_count == 0) {
3252 ASSERT(list_empty(&binode->delayed_iput));
3253 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3254 } else {
3255 binode->delayed_iput_count++;
3256 }
24bbcf04
YZ
3257 spin_unlock(&fs_info->delayed_iput_lock);
3258}
3259
2ff7e61e 3260void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3261{
24bbcf04 3262
24bbcf04 3263 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3264 while (!list_empty(&fs_info->delayed_iputs)) {
3265 struct btrfs_inode *inode;
3266
3267 inode = list_first_entry(&fs_info->delayed_iputs,
3268 struct btrfs_inode, delayed_iput);
3269 if (inode->delayed_iput_count) {
3270 inode->delayed_iput_count--;
3271 list_move_tail(&inode->delayed_iput,
3272 &fs_info->delayed_iputs);
3273 } else {
3274 list_del_init(&inode->delayed_iput);
3275 }
3276 spin_unlock(&fs_info->delayed_iput_lock);
3277 iput(&inode->vfs_inode);
3278 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3279 }
8089fe62 3280 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3281}
3282
d68fc57b 3283/*
42b2aa86 3284 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3285 * files in the subvolume, it removes orphan item and frees block_rsv
3286 * structure.
3287 */
3288void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3289 struct btrfs_root *root)
3290{
0b246afa 3291 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3292 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3293 int ret;
3294
8a35d95f 3295 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3296 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3297 return;
3298
90290e19 3299 spin_lock(&root->orphan_lock);
8a35d95f 3300 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3301 spin_unlock(&root->orphan_lock);
3302 return;
3303 }
3304
3305 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3306 spin_unlock(&root->orphan_lock);
3307 return;
3308 }
3309
3310 block_rsv = root->orphan_block_rsv;
3311 root->orphan_block_rsv = NULL;
3312 spin_unlock(&root->orphan_lock);
3313
27cdeb70 3314 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3315 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3316 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3317 root->root_key.objectid);
4ef31a45 3318 if (ret)
66642832 3319 btrfs_abort_transaction(trans, ret);
4ef31a45 3320 else
27cdeb70
MX
3321 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3322 &root->state);
d68fc57b
YZ
3323 }
3324
90290e19
JB
3325 if (block_rsv) {
3326 WARN_ON(block_rsv->size > 0);
2ff7e61e 3327 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3328 }
3329}
3330
7b128766
JB
3331/*
3332 * This creates an orphan entry for the given inode in case something goes
3333 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3334 *
3335 * NOTE: caller of this function should reserve 5 units of metadata for
3336 * this function.
7b128766 3337 */
73f2e545
NB
3338int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3339 struct btrfs_inode *inode)
7b128766 3340{
73f2e545
NB
3341 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3342 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3343 struct btrfs_block_rsv *block_rsv = NULL;
3344 int reserve = 0;
3345 int insert = 0;
3346 int ret;
7b128766 3347
d68fc57b 3348 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3349 block_rsv = btrfs_alloc_block_rsv(fs_info,
3350 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3351 if (!block_rsv)
3352 return -ENOMEM;
d68fc57b 3353 }
7b128766 3354
d68fc57b
YZ
3355 spin_lock(&root->orphan_lock);
3356 if (!root->orphan_block_rsv) {
3357 root->orphan_block_rsv = block_rsv;
3358 } else if (block_rsv) {
2ff7e61e 3359 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3360 block_rsv = NULL;
7b128766 3361 }
7b128766 3362
8a35d95f 3363 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3364 &inode->runtime_flags)) {
d68fc57b
YZ
3365#if 0
3366 /*
3367 * For proper ENOSPC handling, we should do orphan
3368 * cleanup when mounting. But this introduces backward
3369 * compatibility issue.
3370 */
3371 if (!xchg(&root->orphan_item_inserted, 1))
3372 insert = 2;
3373 else
3374 insert = 1;
3375#endif
3376 insert = 1;
321f0e70 3377 atomic_inc(&root->orphan_inodes);
7b128766
JB
3378 }
3379
72ac3c0d 3380 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3381 &inode->runtime_flags))
d68fc57b 3382 reserve = 1;
d68fc57b 3383 spin_unlock(&root->orphan_lock);
7b128766 3384
d68fc57b
YZ
3385 /* grab metadata reservation from transaction handle */
3386 if (reserve) {
3387 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3388 ASSERT(!ret);
3389 if (ret) {
1a932ef4
LB
3390 /*
3391 * dec doesn't need spin_lock as ->orphan_block_rsv
3392 * would be released only if ->orphan_inodes is
3393 * zero.
3394 */
3b6571c1
JB
3395 atomic_dec(&root->orphan_inodes);
3396 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3397 &inode->runtime_flags);
3b6571c1
JB
3398 if (insert)
3399 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3400 &inode->runtime_flags);
3b6571c1
JB
3401 return ret;
3402 }
d68fc57b 3403 }
7b128766 3404
d68fc57b
YZ
3405 /* insert an orphan item to track this unlinked/truncated file */
3406 if (insert >= 1) {
73f2e545 3407 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3408 if (ret) {
4ef31a45
JB
3409 if (reserve) {
3410 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3411 &inode->runtime_flags);
4ef31a45
JB
3412 btrfs_orphan_release_metadata(inode);
3413 }
1a932ef4
LB
3414 /*
3415 * btrfs_orphan_commit_root may race with us and set
3416 * ->orphan_block_rsv to zero, in order to avoid that,
3417 * decrease ->orphan_inodes after everything is done.
3418 */
3419 atomic_dec(&root->orphan_inodes);
4ef31a45 3420 if (ret != -EEXIST) {
e8e7cff6 3421 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3422 &inode->runtime_flags);
66642832 3423 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3424 return ret;
3425 }
79787eaa
JM
3426 }
3427 ret = 0;
d68fc57b
YZ
3428 }
3429
3430 /* insert an orphan item to track subvolume contains orphan files */
3431 if (insert >= 2) {
0b246afa 3432 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3433 root->root_key.objectid);
79787eaa 3434 if (ret && ret != -EEXIST) {
66642832 3435 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3436 return ret;
3437 }
d68fc57b
YZ
3438 }
3439 return 0;
7b128766
JB
3440}
3441
3442/*
3443 * We have done the truncate/delete so we can go ahead and remove the orphan
3444 * item for this particular inode.
3445 */
48a3b636 3446static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3447 struct btrfs_inode *inode)
7b128766 3448{
3d6ae7bb 3449 struct btrfs_root *root = inode->root;
d68fc57b 3450 int delete_item = 0;
7b128766
JB
3451 int ret = 0;
3452
8a35d95f 3453 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3454 &inode->runtime_flags))
d68fc57b 3455 delete_item = 1;
7b128766 3456
1a932ef4
LB
3457 if (delete_item && trans)
3458 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3459
72ac3c0d 3460 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3461 &inode->runtime_flags))
1a932ef4 3462 btrfs_orphan_release_metadata(inode);
7b128766 3463
1a932ef4
LB
3464 /*
3465 * btrfs_orphan_commit_root may race with us and set ->orphan_block_rsv
3466 * to zero, in order to avoid that, decrease ->orphan_inodes after
3467 * everything is done.
3468 */
3469 if (delete_item)
8a35d95f 3470 atomic_dec(&root->orphan_inodes);
703c88e0 3471
4ef31a45 3472 return ret;
7b128766
JB
3473}
3474
3475/*
3476 * this cleans up any orphans that may be left on the list from the last use
3477 * of this root.
3478 */
66b4ffd1 3479int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3480{
0b246afa 3481 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3482 struct btrfs_path *path;
3483 struct extent_buffer *leaf;
7b128766
JB
3484 struct btrfs_key key, found_key;
3485 struct btrfs_trans_handle *trans;
3486 struct inode *inode;
8f6d7f4f 3487 u64 last_objectid = 0;
7b128766
JB
3488 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3489
d68fc57b 3490 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3491 return 0;
c71bf099
YZ
3492
3493 path = btrfs_alloc_path();
66b4ffd1
JB
3494 if (!path) {
3495 ret = -ENOMEM;
3496 goto out;
3497 }
e4058b54 3498 path->reada = READA_BACK;
7b128766
JB
3499
3500 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3501 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3502 key.offset = (u64)-1;
3503
7b128766
JB
3504 while (1) {
3505 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3506 if (ret < 0)
3507 goto out;
7b128766
JB
3508
3509 /*
3510 * if ret == 0 means we found what we were searching for, which
25985edc 3511 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3512 * find the key and see if we have stuff that matches
3513 */
3514 if (ret > 0) {
66b4ffd1 3515 ret = 0;
7b128766
JB
3516 if (path->slots[0] == 0)
3517 break;
3518 path->slots[0]--;
3519 }
3520
3521 /* pull out the item */
3522 leaf = path->nodes[0];
7b128766
JB
3523 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3524
3525 /* make sure the item matches what we want */
3526 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3527 break;
962a298f 3528 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3529 break;
3530
3531 /* release the path since we're done with it */
b3b4aa74 3532 btrfs_release_path(path);
7b128766
JB
3533
3534 /*
3535 * this is where we are basically btrfs_lookup, without the
3536 * crossing root thing. we store the inode number in the
3537 * offset of the orphan item.
3538 */
8f6d7f4f
JB
3539
3540 if (found_key.offset == last_objectid) {
0b246afa
JM
3541 btrfs_err(fs_info,
3542 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3543 ret = -EINVAL;
3544 goto out;
3545 }
3546
3547 last_objectid = found_key.offset;
3548
5d4f98a2
YZ
3549 found_key.objectid = found_key.offset;
3550 found_key.type = BTRFS_INODE_ITEM_KEY;
3551 found_key.offset = 0;
0b246afa 3552 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3553 ret = PTR_ERR_OR_ZERO(inode);
67710892 3554 if (ret && ret != -ENOENT)
66b4ffd1 3555 goto out;
7b128766 3556
0b246afa 3557 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3558 struct btrfs_root *dead_root;
3559 struct btrfs_fs_info *fs_info = root->fs_info;
3560 int is_dead_root = 0;
3561
3562 /*
3563 * this is an orphan in the tree root. Currently these
3564 * could come from 2 sources:
3565 * a) a snapshot deletion in progress
3566 * b) a free space cache inode
3567 * We need to distinguish those two, as the snapshot
3568 * orphan must not get deleted.
3569 * find_dead_roots already ran before us, so if this
3570 * is a snapshot deletion, we should find the root
3571 * in the dead_roots list
3572 */
3573 spin_lock(&fs_info->trans_lock);
3574 list_for_each_entry(dead_root, &fs_info->dead_roots,
3575 root_list) {
3576 if (dead_root->root_key.objectid ==
3577 found_key.objectid) {
3578 is_dead_root = 1;
3579 break;
3580 }
3581 }
3582 spin_unlock(&fs_info->trans_lock);
3583 if (is_dead_root) {
3584 /* prevent this orphan from being found again */
3585 key.offset = found_key.objectid - 1;
3586 continue;
3587 }
3588 }
7b128766 3589 /*
a8c9e576
JB
3590 * Inode is already gone but the orphan item is still there,
3591 * kill the orphan item.
7b128766 3592 */
67710892 3593 if (ret == -ENOENT) {
a8c9e576 3594 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3595 if (IS_ERR(trans)) {
3596 ret = PTR_ERR(trans);
3597 goto out;
3598 }
0b246afa
JM
3599 btrfs_debug(fs_info, "auto deleting %Lu",
3600 found_key.objectid);
a8c9e576
JB
3601 ret = btrfs_del_orphan_item(trans, root,
3602 found_key.objectid);
3a45bb20 3603 btrfs_end_transaction(trans);
4ef31a45
JB
3604 if (ret)
3605 goto out;
7b128766
JB
3606 continue;
3607 }
3608
a8c9e576
JB
3609 /*
3610 * add this inode to the orphan list so btrfs_orphan_del does
3611 * the proper thing when we hit it
3612 */
8a35d95f
JB
3613 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3614 &BTRFS_I(inode)->runtime_flags);
925396ec 3615 atomic_inc(&root->orphan_inodes);
a8c9e576 3616
7b128766
JB
3617 /* if we have links, this was a truncate, lets do that */
3618 if (inode->i_nlink) {
fae7f21c 3619 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3620 iput(inode);
3621 continue;
3622 }
7b128766 3623 nr_truncate++;
f3fe820c
JB
3624
3625 /* 1 for the orphan item deletion. */
3626 trans = btrfs_start_transaction(root, 1);
3627 if (IS_ERR(trans)) {
c69b26b0 3628 iput(inode);
f3fe820c
JB
3629 ret = PTR_ERR(trans);
3630 goto out;
3631 }
73f2e545 3632 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3633 btrfs_end_transaction(trans);
c69b26b0
JB
3634 if (ret) {
3635 iput(inode);
f3fe820c 3636 goto out;
c69b26b0 3637 }
f3fe820c 3638
66b4ffd1 3639 ret = btrfs_truncate(inode);
4a7d0f68 3640 if (ret)
3d6ae7bb 3641 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3642 } else {
3643 nr_unlink++;
3644 }
3645
3646 /* this will do delete_inode and everything for us */
3647 iput(inode);
66b4ffd1
JB
3648 if (ret)
3649 goto out;
7b128766 3650 }
3254c876
MX
3651 /* release the path since we're done with it */
3652 btrfs_release_path(path);
3653
d68fc57b
YZ
3654 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3655
3656 if (root->orphan_block_rsv)
2ff7e61e 3657 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3658 (u64)-1);
3659
27cdeb70
MX
3660 if (root->orphan_block_rsv ||
3661 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3662 trans = btrfs_join_transaction(root);
66b4ffd1 3663 if (!IS_ERR(trans))
3a45bb20 3664 btrfs_end_transaction(trans);
d68fc57b 3665 }
7b128766
JB
3666
3667 if (nr_unlink)
0b246afa 3668 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3669 if (nr_truncate)
0b246afa 3670 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3671
3672out:
3673 if (ret)
0b246afa 3674 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3675 btrfs_free_path(path);
3676 return ret;
7b128766
JB
3677}
3678
46a53cca
CM
3679/*
3680 * very simple check to peek ahead in the leaf looking for xattrs. If we
3681 * don't find any xattrs, we know there can't be any acls.
3682 *
3683 * slot is the slot the inode is in, objectid is the objectid of the inode
3684 */
3685static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3686 int slot, u64 objectid,
3687 int *first_xattr_slot)
46a53cca
CM
3688{
3689 u32 nritems = btrfs_header_nritems(leaf);
3690 struct btrfs_key found_key;
f23b5a59
JB
3691 static u64 xattr_access = 0;
3692 static u64 xattr_default = 0;
46a53cca
CM
3693 int scanned = 0;
3694
f23b5a59 3695 if (!xattr_access) {
97d79299
AG
3696 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3697 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3698 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3699 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3700 }
3701
46a53cca 3702 slot++;
63541927 3703 *first_xattr_slot = -1;
46a53cca
CM
3704 while (slot < nritems) {
3705 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3706
3707 /* we found a different objectid, there must not be acls */
3708 if (found_key.objectid != objectid)
3709 return 0;
3710
3711 /* we found an xattr, assume we've got an acl */
f23b5a59 3712 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3713 if (*first_xattr_slot == -1)
3714 *first_xattr_slot = slot;
f23b5a59
JB
3715 if (found_key.offset == xattr_access ||
3716 found_key.offset == xattr_default)
3717 return 1;
3718 }
46a53cca
CM
3719
3720 /*
3721 * we found a key greater than an xattr key, there can't
3722 * be any acls later on
3723 */
3724 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3725 return 0;
3726
3727 slot++;
3728 scanned++;
3729
3730 /*
3731 * it goes inode, inode backrefs, xattrs, extents,
3732 * so if there are a ton of hard links to an inode there can
3733 * be a lot of backrefs. Don't waste time searching too hard,
3734 * this is just an optimization
3735 */
3736 if (scanned >= 8)
3737 break;
3738 }
3739 /* we hit the end of the leaf before we found an xattr or
3740 * something larger than an xattr. We have to assume the inode
3741 * has acls
3742 */
63541927
FDBM
3743 if (*first_xattr_slot == -1)
3744 *first_xattr_slot = slot;
46a53cca
CM
3745 return 1;
3746}
3747
d352ac68
CM
3748/*
3749 * read an inode from the btree into the in-memory inode
3750 */
67710892 3751static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3752{
0b246afa 3753 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3754 struct btrfs_path *path;
5f39d397 3755 struct extent_buffer *leaf;
39279cc3
CM
3756 struct btrfs_inode_item *inode_item;
3757 struct btrfs_root *root = BTRFS_I(inode)->root;
3758 struct btrfs_key location;
67de1176 3759 unsigned long ptr;
46a53cca 3760 int maybe_acls;
618e21d5 3761 u32 rdev;
39279cc3 3762 int ret;
2f7e33d4 3763 bool filled = false;
63541927 3764 int first_xattr_slot;
2f7e33d4
MX
3765
3766 ret = btrfs_fill_inode(inode, &rdev);
3767 if (!ret)
3768 filled = true;
39279cc3
CM
3769
3770 path = btrfs_alloc_path();
67710892
FM
3771 if (!path) {
3772 ret = -ENOMEM;
1748f843 3773 goto make_bad;
67710892 3774 }
1748f843 3775
39279cc3 3776 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3777
39279cc3 3778 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3779 if (ret) {
3780 if (ret > 0)
3781 ret = -ENOENT;
39279cc3 3782 goto make_bad;
67710892 3783 }
39279cc3 3784
5f39d397 3785 leaf = path->nodes[0];
2f7e33d4
MX
3786
3787 if (filled)
67de1176 3788 goto cache_index;
2f7e33d4 3789
5f39d397
CM
3790 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3791 struct btrfs_inode_item);
5f39d397 3792 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3793 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3794 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3795 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3796 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3797
a937b979
DS
3798 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3799 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3800
a937b979
DS
3801 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3802 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3803
a937b979
DS
3804 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3805 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3806
9cc97d64 3807 BTRFS_I(inode)->i_otime.tv_sec =
3808 btrfs_timespec_sec(leaf, &inode_item->otime);
3809 BTRFS_I(inode)->i_otime.tv_nsec =
3810 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3811
a76a3cd4 3812 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3813 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3814 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3815
6e17d30b
YD
3816 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3817 inode->i_generation = BTRFS_I(inode)->generation;
3818 inode->i_rdev = 0;
3819 rdev = btrfs_inode_rdev(leaf, inode_item);
3820
3821 BTRFS_I(inode)->index_cnt = (u64)-1;
3822 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3823
3824cache_index:
5dc562c5
JB
3825 /*
3826 * If we were modified in the current generation and evicted from memory
3827 * and then re-read we need to do a full sync since we don't have any
3828 * idea about which extents were modified before we were evicted from
3829 * cache.
6e17d30b
YD
3830 *
3831 * This is required for both inode re-read from disk and delayed inode
3832 * in delayed_nodes_tree.
5dc562c5 3833 */
0b246afa 3834 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3835 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3836 &BTRFS_I(inode)->runtime_flags);
3837
bde6c242
FM
3838 /*
3839 * We don't persist the id of the transaction where an unlink operation
3840 * against the inode was last made. So here we assume the inode might
3841 * have been evicted, and therefore the exact value of last_unlink_trans
3842 * lost, and set it to last_trans to avoid metadata inconsistencies
3843 * between the inode and its parent if the inode is fsync'ed and the log
3844 * replayed. For example, in the scenario:
3845 *
3846 * touch mydir/foo
3847 * ln mydir/foo mydir/bar
3848 * sync
3849 * unlink mydir/bar
3850 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3851 * xfs_io -c fsync mydir/foo
3852 * <power failure>
3853 * mount fs, triggers fsync log replay
3854 *
3855 * We must make sure that when we fsync our inode foo we also log its
3856 * parent inode, otherwise after log replay the parent still has the
3857 * dentry with the "bar" name but our inode foo has a link count of 1
3858 * and doesn't have an inode ref with the name "bar" anymore.
3859 *
3860 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3861 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3862 * transaction commits on fsync if our inode is a directory, or if our
3863 * inode is not a directory, logging its parent unnecessarily.
3864 */
3865 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3866
67de1176
MX
3867 path->slots[0]++;
3868 if (inode->i_nlink != 1 ||
3869 path->slots[0] >= btrfs_header_nritems(leaf))
3870 goto cache_acl;
3871
3872 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3873 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3874 goto cache_acl;
3875
3876 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3877 if (location.type == BTRFS_INODE_REF_KEY) {
3878 struct btrfs_inode_ref *ref;
3879
3880 ref = (struct btrfs_inode_ref *)ptr;
3881 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3882 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3883 struct btrfs_inode_extref *extref;
3884
3885 extref = (struct btrfs_inode_extref *)ptr;
3886 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3887 extref);
3888 }
2f7e33d4 3889cache_acl:
46a53cca
CM
3890 /*
3891 * try to precache a NULL acl entry for files that don't have
3892 * any xattrs or acls
3893 */
33345d01 3894 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3895 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3896 if (first_xattr_slot != -1) {
3897 path->slots[0] = first_xattr_slot;
3898 ret = btrfs_load_inode_props(inode, path);
3899 if (ret)
0b246afa 3900 btrfs_err(fs_info,
351fd353 3901 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3902 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3903 root->root_key.objectid, ret);
3904 }
3905 btrfs_free_path(path);
3906
72c04902
AV
3907 if (!maybe_acls)
3908 cache_no_acl(inode);
46a53cca 3909
39279cc3 3910 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3911 case S_IFREG:
3912 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3913 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3914 inode->i_fop = &btrfs_file_operations;
3915 inode->i_op = &btrfs_file_inode_operations;
3916 break;
3917 case S_IFDIR:
3918 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3919 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3920 break;
3921 case S_IFLNK:
3922 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3923 inode_nohighmem(inode);
39279cc3
CM
3924 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3925 break;
618e21d5 3926 default:
0279b4cd 3927 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3928 init_special_inode(inode, inode->i_mode, rdev);
3929 break;
39279cc3 3930 }
6cbff00f
CH
3931
3932 btrfs_update_iflags(inode);
67710892 3933 return 0;
39279cc3
CM
3934
3935make_bad:
39279cc3 3936 btrfs_free_path(path);
39279cc3 3937 make_bad_inode(inode);
67710892 3938 return ret;
39279cc3
CM
3939}
3940
d352ac68
CM
3941/*
3942 * given a leaf and an inode, copy the inode fields into the leaf
3943 */
e02119d5
CM
3944static void fill_inode_item(struct btrfs_trans_handle *trans,
3945 struct extent_buffer *leaf,
5f39d397 3946 struct btrfs_inode_item *item,
39279cc3
CM
3947 struct inode *inode)
3948{
51fab693
LB
3949 struct btrfs_map_token token;
3950
3951 btrfs_init_map_token(&token);
5f39d397 3952
51fab693
LB
3953 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3954 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3955 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3956 &token);
3957 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3958 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3959
a937b979 3960 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3961 inode->i_atime.tv_sec, &token);
a937b979 3962 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3963 inode->i_atime.tv_nsec, &token);
5f39d397 3964
a937b979 3965 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3966 inode->i_mtime.tv_sec, &token);
a937b979 3967 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3968 inode->i_mtime.tv_nsec, &token);
5f39d397 3969
a937b979 3970 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3971 inode->i_ctime.tv_sec, &token);
a937b979 3972 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3973 inode->i_ctime.tv_nsec, &token);
5f39d397 3974
9cc97d64 3975 btrfs_set_token_timespec_sec(leaf, &item->otime,
3976 BTRFS_I(inode)->i_otime.tv_sec, &token);
3977 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3978 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3979
51fab693
LB
3980 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3981 &token);
3982 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3983 &token);
3984 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3985 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3986 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3987 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3988 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3989}
3990
d352ac68
CM
3991/*
3992 * copy everything in the in-memory inode into the btree.
3993 */
2115133f 3994static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3995 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3996{
3997 struct btrfs_inode_item *inode_item;
3998 struct btrfs_path *path;
5f39d397 3999 struct extent_buffer *leaf;
39279cc3
CM
4000 int ret;
4001
4002 path = btrfs_alloc_path();
16cdcec7
MX
4003 if (!path)
4004 return -ENOMEM;
4005
b9473439 4006 path->leave_spinning = 1;
16cdcec7
MX
4007 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
4008 1);
39279cc3
CM
4009 if (ret) {
4010 if (ret > 0)
4011 ret = -ENOENT;
4012 goto failed;
4013 }
4014
5f39d397
CM
4015 leaf = path->nodes[0];
4016 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 4017 struct btrfs_inode_item);
39279cc3 4018
e02119d5 4019 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 4020 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 4021 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
4022 ret = 0;
4023failed:
39279cc3
CM
4024 btrfs_free_path(path);
4025 return ret;
4026}
4027
2115133f
CM
4028/*
4029 * copy everything in the in-memory inode into the btree.
4030 */
4031noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
4032 struct btrfs_root *root, struct inode *inode)
4033{
0b246afa 4034 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
4035 int ret;
4036
4037 /*
4038 * If the inode is a free space inode, we can deadlock during commit
4039 * if we put it into the delayed code.
4040 *
4041 * The data relocation inode should also be directly updated
4042 * without delay
4043 */
70ddc553 4044 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 4045 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4046 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4047 btrfs_update_root_times(trans, root);
4048
2115133f
CM
4049 ret = btrfs_delayed_update_inode(trans, root, inode);
4050 if (!ret)
4051 btrfs_set_inode_last_trans(trans, inode);
4052 return ret;
4053 }
4054
4055 return btrfs_update_inode_item(trans, root, inode);
4056}
4057
be6aef60
JB
4058noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4059 struct btrfs_root *root,
4060 struct inode *inode)
2115133f
CM
4061{
4062 int ret;
4063
4064 ret = btrfs_update_inode(trans, root, inode);
4065 if (ret == -ENOSPC)
4066 return btrfs_update_inode_item(trans, root, inode);
4067 return ret;
4068}
4069
d352ac68
CM
4070/*
4071 * unlink helper that gets used here in inode.c and in the tree logging
4072 * recovery code. It remove a link in a directory with a given name, and
4073 * also drops the back refs in the inode to the directory
4074 */
92986796
AV
4075static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4076 struct btrfs_root *root,
4ec5934e
NB
4077 struct btrfs_inode *dir,
4078 struct btrfs_inode *inode,
92986796 4079 const char *name, int name_len)
39279cc3 4080{
0b246afa 4081 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4082 struct btrfs_path *path;
39279cc3 4083 int ret = 0;
5f39d397 4084 struct extent_buffer *leaf;
39279cc3 4085 struct btrfs_dir_item *di;
5f39d397 4086 struct btrfs_key key;
aec7477b 4087 u64 index;
33345d01
LZ
4088 u64 ino = btrfs_ino(inode);
4089 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4090
4091 path = btrfs_alloc_path();
54aa1f4d
CM
4092 if (!path) {
4093 ret = -ENOMEM;
554233a6 4094 goto out;
54aa1f4d
CM
4095 }
4096
b9473439 4097 path->leave_spinning = 1;
33345d01 4098 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4099 name, name_len, -1);
4100 if (IS_ERR(di)) {
4101 ret = PTR_ERR(di);
4102 goto err;
4103 }
4104 if (!di) {
4105 ret = -ENOENT;
4106 goto err;
4107 }
5f39d397
CM
4108 leaf = path->nodes[0];
4109 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4110 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4111 if (ret)
4112 goto err;
b3b4aa74 4113 btrfs_release_path(path);
39279cc3 4114
67de1176
MX
4115 /*
4116 * If we don't have dir index, we have to get it by looking up
4117 * the inode ref, since we get the inode ref, remove it directly,
4118 * it is unnecessary to do delayed deletion.
4119 *
4120 * But if we have dir index, needn't search inode ref to get it.
4121 * Since the inode ref is close to the inode item, it is better
4122 * that we delay to delete it, and just do this deletion when
4123 * we update the inode item.
4124 */
4ec5934e 4125 if (inode->dir_index) {
67de1176
MX
4126 ret = btrfs_delayed_delete_inode_ref(inode);
4127 if (!ret) {
4ec5934e 4128 index = inode->dir_index;
67de1176
MX
4129 goto skip_backref;
4130 }
4131 }
4132
33345d01
LZ
4133 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4134 dir_ino, &index);
aec7477b 4135 if (ret) {
0b246afa 4136 btrfs_info(fs_info,
c2cf52eb 4137 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4138 name_len, name, ino, dir_ino);
66642832 4139 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4140 goto err;
4141 }
67de1176 4142skip_backref:
2ff7e61e 4143 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4144 if (ret) {
66642832 4145 btrfs_abort_transaction(trans, ret);
39279cc3 4146 goto err;
79787eaa 4147 }
39279cc3 4148
4ec5934e
NB
4149 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4150 dir_ino);
79787eaa 4151 if (ret != 0 && ret != -ENOENT) {
66642832 4152 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4153 goto err;
4154 }
e02119d5 4155
4ec5934e
NB
4156 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4157 index);
6418c961
CM
4158 if (ret == -ENOENT)
4159 ret = 0;
d4e3991b 4160 else if (ret)
66642832 4161 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4162err:
4163 btrfs_free_path(path);
e02119d5
CM
4164 if (ret)
4165 goto out;
4166
6ef06d27 4167 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4168 inode_inc_iversion(&inode->vfs_inode);
4169 inode_inc_iversion(&dir->vfs_inode);
4170 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4171 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4172 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4173out:
39279cc3
CM
4174 return ret;
4175}
4176
92986796
AV
4177int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4178 struct btrfs_root *root,
4ec5934e 4179 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4180 const char *name, int name_len)
4181{
4182 int ret;
4183 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4184 if (!ret) {
4ec5934e
NB
4185 drop_nlink(&inode->vfs_inode);
4186 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4187 }
4188 return ret;
4189}
39279cc3 4190
a22285a6
YZ
4191/*
4192 * helper to start transaction for unlink and rmdir.
4193 *
d52be818
JB
4194 * unlink and rmdir are special in btrfs, they do not always free space, so
4195 * if we cannot make our reservations the normal way try and see if there is
4196 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4197 * allow the unlink to occur.
a22285a6 4198 */
d52be818 4199static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4200{
a22285a6 4201 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4202
e70bea5f
JB
4203 /*
4204 * 1 for the possible orphan item
4205 * 1 for the dir item
4206 * 1 for the dir index
4207 * 1 for the inode ref
e70bea5f
JB
4208 * 1 for the inode
4209 */
8eab77ff 4210 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4211}
4212
4213static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4214{
4215 struct btrfs_root *root = BTRFS_I(dir)->root;
4216 struct btrfs_trans_handle *trans;
2b0143b5 4217 struct inode *inode = d_inode(dentry);
a22285a6 4218 int ret;
a22285a6 4219
d52be818 4220 trans = __unlink_start_trans(dir);
a22285a6
YZ
4221 if (IS_ERR(trans))
4222 return PTR_ERR(trans);
5f39d397 4223
4ec5934e
NB
4224 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4225 0);
12fcfd22 4226
4ec5934e
NB
4227 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4228 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4229 dentry->d_name.len);
b532402e
TI
4230 if (ret)
4231 goto out;
7b128766 4232
a22285a6 4233 if (inode->i_nlink == 0) {
73f2e545 4234 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4235 if (ret)
4236 goto out;
a22285a6 4237 }
7b128766 4238
b532402e 4239out:
3a45bb20 4240 btrfs_end_transaction(trans);
2ff7e61e 4241 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4242 return ret;
4243}
4244
4df27c4d
YZ
4245int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4246 struct btrfs_root *root,
4247 struct inode *dir, u64 objectid,
4248 const char *name, int name_len)
4249{
0b246afa 4250 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4251 struct btrfs_path *path;
4252 struct extent_buffer *leaf;
4253 struct btrfs_dir_item *di;
4254 struct btrfs_key key;
4255 u64 index;
4256 int ret;
4a0cc7ca 4257 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4258
4259 path = btrfs_alloc_path();
4260 if (!path)
4261 return -ENOMEM;
4262
33345d01 4263 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4264 name, name_len, -1);
79787eaa
JM
4265 if (IS_ERR_OR_NULL(di)) {
4266 if (!di)
4267 ret = -ENOENT;
4268 else
4269 ret = PTR_ERR(di);
4270 goto out;
4271 }
4df27c4d
YZ
4272
4273 leaf = path->nodes[0];
4274 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4275 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4276 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4277 if (ret) {
66642832 4278 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4279 goto out;
4280 }
b3b4aa74 4281 btrfs_release_path(path);
4df27c4d 4282
0b246afa
JM
4283 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4284 root->root_key.objectid, dir_ino,
4285 &index, name, name_len);
4df27c4d 4286 if (ret < 0) {
79787eaa 4287 if (ret != -ENOENT) {
66642832 4288 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4289 goto out;
4290 }
33345d01 4291 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4292 name, name_len);
79787eaa
JM
4293 if (IS_ERR_OR_NULL(di)) {
4294 if (!di)
4295 ret = -ENOENT;
4296 else
4297 ret = PTR_ERR(di);
66642832 4298 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4299 goto out;
4300 }
4df27c4d
YZ
4301
4302 leaf = path->nodes[0];
4303 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4304 btrfs_release_path(path);
4df27c4d
YZ
4305 index = key.offset;
4306 }
945d8962 4307 btrfs_release_path(path);
4df27c4d 4308
e67bbbb9 4309 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4310 if (ret) {
66642832 4311 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4312 goto out;
4313 }
4df27c4d 4314
6ef06d27 4315 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4316 inode_inc_iversion(dir);
c2050a45 4317 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4318 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4319 if (ret)
66642832 4320 btrfs_abort_transaction(trans, ret);
79787eaa 4321out:
71d7aed0 4322 btrfs_free_path(path);
79787eaa 4323 return ret;
4df27c4d
YZ
4324}
4325
39279cc3
CM
4326static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4327{
2b0143b5 4328 struct inode *inode = d_inode(dentry);
1832a6d5 4329 int err = 0;
39279cc3 4330 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4331 struct btrfs_trans_handle *trans;
44f714da 4332 u64 last_unlink_trans;
39279cc3 4333
b3ae244e 4334 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4335 return -ENOTEMPTY;
4a0cc7ca 4336 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4337 return -EPERM;
134d4512 4338
d52be818 4339 trans = __unlink_start_trans(dir);
a22285a6 4340 if (IS_ERR(trans))
5df6a9f6 4341 return PTR_ERR(trans);
5df6a9f6 4342
4a0cc7ca 4343 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4344 err = btrfs_unlink_subvol(trans, root, dir,
4345 BTRFS_I(inode)->location.objectid,
4346 dentry->d_name.name,
4347 dentry->d_name.len);
4348 goto out;
4349 }
4350
73f2e545 4351 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4352 if (err)
4df27c4d 4353 goto out;
7b128766 4354
44f714da
FM
4355 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4356
39279cc3 4357 /* now the directory is empty */
4ec5934e
NB
4358 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4359 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4360 dentry->d_name.len);
44f714da 4361 if (!err) {
6ef06d27 4362 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4363 /*
4364 * Propagate the last_unlink_trans value of the deleted dir to
4365 * its parent directory. This is to prevent an unrecoverable
4366 * log tree in the case we do something like this:
4367 * 1) create dir foo
4368 * 2) create snapshot under dir foo
4369 * 3) delete the snapshot
4370 * 4) rmdir foo
4371 * 5) mkdir foo
4372 * 6) fsync foo or some file inside foo
4373 */
4374 if (last_unlink_trans >= trans->transid)
4375 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4376 }
4df27c4d 4377out:
3a45bb20 4378 btrfs_end_transaction(trans);
2ff7e61e 4379 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4380
39279cc3
CM
4381 return err;
4382}
4383
28f75a0e
CM
4384static int truncate_space_check(struct btrfs_trans_handle *trans,
4385 struct btrfs_root *root,
4386 u64 bytes_deleted)
4387{
0b246afa 4388 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4389 int ret;
4390
dc95f7bf
JB
4391 /*
4392 * This is only used to apply pressure to the enospc system, we don't
4393 * intend to use this reservation at all.
4394 */
2ff7e61e 4395 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4396 bytes_deleted *= fs_info->nodesize;
4397 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4398 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4399 if (!ret) {
0b246afa 4400 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4401 trans->transid,
4402 bytes_deleted, 1);
28f75a0e 4403 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4404 }
28f75a0e
CM
4405 return ret;
4406
4407}
4408
ddfae63c
JB
4409/*
4410 * Return this if we need to call truncate_block for the last bit of the
4411 * truncate.
4412 */
4413#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4414
39279cc3
CM
4415/*
4416 * this can truncate away extent items, csum items and directory items.
4417 * It starts at a high offset and removes keys until it can't find
d352ac68 4418 * any higher than new_size
39279cc3
CM
4419 *
4420 * csum items that cross the new i_size are truncated to the new size
4421 * as well.
7b128766
JB
4422 *
4423 * min_type is the minimum key type to truncate down to. If set to 0, this
4424 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4425 */
8082510e
YZ
4426int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4427 struct btrfs_root *root,
4428 struct inode *inode,
4429 u64 new_size, u32 min_type)
39279cc3 4430{
0b246afa 4431 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4432 struct btrfs_path *path;
5f39d397 4433 struct extent_buffer *leaf;
39279cc3 4434 struct btrfs_file_extent_item *fi;
8082510e
YZ
4435 struct btrfs_key key;
4436 struct btrfs_key found_key;
39279cc3 4437 u64 extent_start = 0;
db94535d 4438 u64 extent_num_bytes = 0;
5d4f98a2 4439 u64 extent_offset = 0;
39279cc3 4440 u64 item_end = 0;
c1aa4575 4441 u64 last_size = new_size;
8082510e 4442 u32 found_type = (u8)-1;
39279cc3
CM
4443 int found_extent;
4444 int del_item;
85e21bac
CM
4445 int pending_del_nr = 0;
4446 int pending_del_slot = 0;
179e29e4 4447 int extent_type = -1;
8082510e
YZ
4448 int ret;
4449 int err = 0;
4a0cc7ca 4450 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4451 u64 bytes_deleted = 0;
897ca819
TM
4452 bool be_nice = false;
4453 bool should_throttle = false;
4454 bool should_end = false;
8082510e
YZ
4455
4456 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4457
28ed1345
CM
4458 /*
4459 * for non-free space inodes and ref cows, we want to back off from
4460 * time to time
4461 */
70ddc553 4462 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4463 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4464 be_nice = true;
28ed1345 4465
0eb0e19c
MF
4466 path = btrfs_alloc_path();
4467 if (!path)
4468 return -ENOMEM;
e4058b54 4469 path->reada = READA_BACK;
0eb0e19c 4470
5dc562c5
JB
4471 /*
4472 * We want to drop from the next block forward in case this new size is
4473 * not block aligned since we will be keeping the last block of the
4474 * extent just the way it is.
4475 */
27cdeb70 4476 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4477 root == fs_info->tree_root)
dcdbc059 4478 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4479 fs_info->sectorsize),
da17066c 4480 (u64)-1, 0);
8082510e 4481
16cdcec7
MX
4482 /*
4483 * This function is also used to drop the items in the log tree before
4484 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4485 * it is used to drop the loged items. So we shouldn't kill the delayed
4486 * items.
4487 */
4488 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4489 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4490
33345d01 4491 key.objectid = ino;
39279cc3 4492 key.offset = (u64)-1;
5f39d397
CM
4493 key.type = (u8)-1;
4494
85e21bac 4495search_again:
28ed1345
CM
4496 /*
4497 * with a 16K leaf size and 128MB extents, you can actually queue
4498 * up a huge file in a single leaf. Most of the time that
4499 * bytes_deleted is > 0, it will be huge by the time we get here
4500 */
ee22184b 4501 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4502 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4503 err = -EAGAIN;
4504 goto error;
4505 }
4506 }
4507
4508
b9473439 4509 path->leave_spinning = 1;
85e21bac 4510 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4511 if (ret < 0) {
4512 err = ret;
4513 goto out;
4514 }
d397712b 4515
85e21bac 4516 if (ret > 0) {
e02119d5
CM
4517 /* there are no items in the tree for us to truncate, we're
4518 * done
4519 */
8082510e
YZ
4520 if (path->slots[0] == 0)
4521 goto out;
85e21bac
CM
4522 path->slots[0]--;
4523 }
4524
d397712b 4525 while (1) {
39279cc3 4526 fi = NULL;
5f39d397
CM
4527 leaf = path->nodes[0];
4528 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4529 found_type = found_key.type;
39279cc3 4530
33345d01 4531 if (found_key.objectid != ino)
39279cc3 4532 break;
5f39d397 4533
85e21bac 4534 if (found_type < min_type)
39279cc3
CM
4535 break;
4536
5f39d397 4537 item_end = found_key.offset;
39279cc3 4538 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4539 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4540 struct btrfs_file_extent_item);
179e29e4
CM
4541 extent_type = btrfs_file_extent_type(leaf, fi);
4542 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4543 item_end +=
db94535d 4544 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4545
4546 trace_btrfs_truncate_show_fi_regular(
4547 BTRFS_I(inode), leaf, fi,
4548 found_key.offset);
179e29e4 4549 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4550 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4551 path->slots[0], fi);
09ed2f16
LB
4552
4553 trace_btrfs_truncate_show_fi_inline(
4554 BTRFS_I(inode), leaf, fi, path->slots[0],
4555 found_key.offset);
39279cc3 4556 }
008630c1 4557 item_end--;
39279cc3 4558 }
8082510e
YZ
4559 if (found_type > min_type) {
4560 del_item = 1;
4561 } else {
76b42abb 4562 if (item_end < new_size)
b888db2b 4563 break;
8082510e
YZ
4564 if (found_key.offset >= new_size)
4565 del_item = 1;
4566 else
4567 del_item = 0;
39279cc3 4568 }
39279cc3 4569 found_extent = 0;
39279cc3 4570 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4571 if (found_type != BTRFS_EXTENT_DATA_KEY)
4572 goto delete;
4573
4574 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4575 u64 num_dec;
db94535d 4576 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4577 if (!del_item) {
db94535d
CM
4578 u64 orig_num_bytes =
4579 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4580 extent_num_bytes = ALIGN(new_size -
4581 found_key.offset,
0b246afa 4582 fs_info->sectorsize);
db94535d
CM
4583 btrfs_set_file_extent_num_bytes(leaf, fi,
4584 extent_num_bytes);
4585 num_dec = (orig_num_bytes -
9069218d 4586 extent_num_bytes);
27cdeb70
MX
4587 if (test_bit(BTRFS_ROOT_REF_COWS,
4588 &root->state) &&
4589 extent_start != 0)
a76a3cd4 4590 inode_sub_bytes(inode, num_dec);
5f39d397 4591 btrfs_mark_buffer_dirty(leaf);
39279cc3 4592 } else {
db94535d
CM
4593 extent_num_bytes =
4594 btrfs_file_extent_disk_num_bytes(leaf,
4595 fi);
5d4f98a2
YZ
4596 extent_offset = found_key.offset -
4597 btrfs_file_extent_offset(leaf, fi);
4598
39279cc3 4599 /* FIXME blocksize != 4096 */
9069218d 4600 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4601 if (extent_start != 0) {
4602 found_extent = 1;
27cdeb70
MX
4603 if (test_bit(BTRFS_ROOT_REF_COWS,
4604 &root->state))
a76a3cd4 4605 inode_sub_bytes(inode, num_dec);
e02119d5 4606 }
39279cc3 4607 }
9069218d 4608 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4609 /*
4610 * we can't truncate inline items that have had
4611 * special encodings
4612 */
4613 if (!del_item &&
c8b97818 4614 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4615 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4616 btrfs_file_extent_compression(leaf, fi) == 0) {
4617 u32 size = (u32)(new_size - found_key.offset);
4618
4619 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4620 size = btrfs_file_extent_calc_inline_size(size);
4621 btrfs_truncate_item(root->fs_info, path, size, 1);
4622 } else if (!del_item) {
514ac8ad 4623 /*
ddfae63c
JB
4624 * We have to bail so the last_size is set to
4625 * just before this extent.
514ac8ad 4626 */
ddfae63c
JB
4627 err = NEED_TRUNCATE_BLOCK;
4628 break;
4629 }
0305cd5f 4630
ddfae63c 4631 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4632 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4633 }
179e29e4 4634delete:
ddfae63c
JB
4635 if (del_item)
4636 last_size = found_key.offset;
4637 else
4638 last_size = new_size;
39279cc3 4639 if (del_item) {
85e21bac
CM
4640 if (!pending_del_nr) {
4641 /* no pending yet, add ourselves */
4642 pending_del_slot = path->slots[0];
4643 pending_del_nr = 1;
4644 } else if (pending_del_nr &&
4645 path->slots[0] + 1 == pending_del_slot) {
4646 /* hop on the pending chunk */
4647 pending_del_nr++;
4648 pending_del_slot = path->slots[0];
4649 } else {
d397712b 4650 BUG();
85e21bac 4651 }
39279cc3
CM
4652 } else {
4653 break;
4654 }
897ca819 4655 should_throttle = false;
28f75a0e 4656
27cdeb70
MX
4657 if (found_extent &&
4658 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4659 root == fs_info->tree_root)) {
b9473439 4660 btrfs_set_path_blocking(path);
28ed1345 4661 bytes_deleted += extent_num_bytes;
84f7d8e6 4662 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4663 extent_num_bytes, 0,
4664 btrfs_header_owner(leaf),
b06c4bf5 4665 ino, extent_offset);
39279cc3 4666 BUG_ON(ret);
2ff7e61e
JM
4667 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4668 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4669 trans->delayed_ref_updates * 2,
4670 trans->transid, 0);
28f75a0e
CM
4671 if (be_nice) {
4672 if (truncate_space_check(trans, root,
4673 extent_num_bytes)) {
897ca819 4674 should_end = true;
28f75a0e
CM
4675 }
4676 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4677 fs_info))
897ca819 4678 should_throttle = true;
28f75a0e 4679 }
39279cc3 4680 }
85e21bac 4681
8082510e
YZ
4682 if (found_type == BTRFS_INODE_ITEM_KEY)
4683 break;
4684
4685 if (path->slots[0] == 0 ||
1262133b 4686 path->slots[0] != pending_del_slot ||
28f75a0e 4687 should_throttle || should_end) {
8082510e
YZ
4688 if (pending_del_nr) {
4689 ret = btrfs_del_items(trans, root, path,
4690 pending_del_slot,
4691 pending_del_nr);
79787eaa 4692 if (ret) {
66642832 4693 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4694 goto error;
4695 }
8082510e
YZ
4696 pending_del_nr = 0;
4697 }
b3b4aa74 4698 btrfs_release_path(path);
28f75a0e 4699 if (should_throttle) {
1262133b
JB
4700 unsigned long updates = trans->delayed_ref_updates;
4701 if (updates) {
4702 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4703 ret = btrfs_run_delayed_refs(trans,
4704 fs_info,
4705 updates * 2);
1262133b
JB
4706 if (ret && !err)
4707 err = ret;
4708 }
4709 }
28f75a0e
CM
4710 /*
4711 * if we failed to refill our space rsv, bail out
4712 * and let the transaction restart
4713 */
4714 if (should_end) {
4715 err = -EAGAIN;
4716 goto error;
4717 }
85e21bac 4718 goto search_again;
8082510e
YZ
4719 } else {
4720 path->slots[0]--;
85e21bac 4721 }
39279cc3 4722 }
8082510e 4723out:
85e21bac
CM
4724 if (pending_del_nr) {
4725 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4726 pending_del_nr);
79787eaa 4727 if (ret)
66642832 4728 btrfs_abort_transaction(trans, ret);
85e21bac 4729 }
79787eaa 4730error:
76b42abb
FM
4731 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4732 ASSERT(last_size >= new_size);
4733 if (!err && last_size > new_size)
4734 last_size = new_size;
7f4f6e0a 4735 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4736 }
28ed1345 4737
39279cc3 4738 btrfs_free_path(path);
28ed1345 4739
ee22184b 4740 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4741 unsigned long updates = trans->delayed_ref_updates;
4742 if (updates) {
4743 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4744 ret = btrfs_run_delayed_refs(trans, fs_info,
4745 updates * 2);
28ed1345
CM
4746 if (ret && !err)
4747 err = ret;
4748 }
4749 }
8082510e 4750 return err;
39279cc3
CM
4751}
4752
4753/*
9703fefe 4754 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4755 * @inode - inode that we're zeroing
4756 * @from - the offset to start zeroing
4757 * @len - the length to zero, 0 to zero the entire range respective to the
4758 * offset
4759 * @front - zero up to the offset instead of from the offset on
4760 *
9703fefe 4761 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4762 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4763 */
9703fefe 4764int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4765 int front)
39279cc3 4766{
0b246afa 4767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4768 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4769 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4770 struct btrfs_ordered_extent *ordered;
2ac55d41 4771 struct extent_state *cached_state = NULL;
364ecf36 4772 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4773 char *kaddr;
0b246afa 4774 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4775 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4776 unsigned offset = from & (blocksize - 1);
39279cc3 4777 struct page *page;
3b16a4e3 4778 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4779 int ret = 0;
9703fefe
CR
4780 u64 block_start;
4781 u64 block_end;
39279cc3 4782
b03ebd99
NB
4783 if (IS_ALIGNED(offset, blocksize) &&
4784 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4785 goto out;
9703fefe 4786
8b62f87b
JB
4787 block_start = round_down(from, blocksize);
4788 block_end = block_start + blocksize - 1;
4789
364ecf36 4790 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4791 block_start, blocksize);
5d5e103a
JB
4792 if (ret)
4793 goto out;
39279cc3 4794
211c17f5 4795again:
3b16a4e3 4796 page = find_or_create_page(mapping, index, mask);
5d5e103a 4797 if (!page) {
bc42bda2 4798 btrfs_delalloc_release_space(inode, data_reserved,
8b62f87b
JB
4799 block_start, blocksize);
4800 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4801 ret = -ENOMEM;
39279cc3 4802 goto out;
5d5e103a 4803 }
e6dcd2dc 4804
39279cc3 4805 if (!PageUptodate(page)) {
9ebefb18 4806 ret = btrfs_readpage(NULL, page);
39279cc3 4807 lock_page(page);
211c17f5
CM
4808 if (page->mapping != mapping) {
4809 unlock_page(page);
09cbfeaf 4810 put_page(page);
211c17f5
CM
4811 goto again;
4812 }
39279cc3
CM
4813 if (!PageUptodate(page)) {
4814 ret = -EIO;
89642229 4815 goto out_unlock;
39279cc3
CM
4816 }
4817 }
211c17f5 4818 wait_on_page_writeback(page);
e6dcd2dc 4819
9703fefe 4820 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4821 set_page_extent_mapped(page);
4822
9703fefe 4823 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4824 if (ordered) {
9703fefe 4825 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4826 &cached_state);
e6dcd2dc 4827 unlock_page(page);
09cbfeaf 4828 put_page(page);
eb84ae03 4829 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4830 btrfs_put_ordered_extent(ordered);
4831 goto again;
4832 }
4833
9703fefe 4834 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4835 EXTENT_DIRTY | EXTENT_DELALLOC |
4836 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 4837 0, 0, &cached_state);
5d5e103a 4838
e3b8a485 4839 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4840 &cached_state, 0);
9ed74f2d 4841 if (ret) {
9703fefe 4842 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4843 &cached_state);
9ed74f2d
JB
4844 goto out_unlock;
4845 }
4846
9703fefe 4847 if (offset != blocksize) {
2aaa6655 4848 if (!len)
9703fefe 4849 len = blocksize - offset;
e6dcd2dc 4850 kaddr = kmap(page);
2aaa6655 4851 if (front)
9703fefe
CR
4852 memset(kaddr + (block_start - page_offset(page)),
4853 0, offset);
2aaa6655 4854 else
9703fefe
CR
4855 memset(kaddr + (block_start - page_offset(page)) + offset,
4856 0, len);
e6dcd2dc
CM
4857 flush_dcache_page(page);
4858 kunmap(page);
4859 }
247e743c 4860 ClearPageChecked(page);
e6dcd2dc 4861 set_page_dirty(page);
e43bbe5e 4862 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4863
89642229 4864out_unlock:
5d5e103a 4865 if (ret)
bc42bda2 4866 btrfs_delalloc_release_space(inode, data_reserved, block_start,
9703fefe 4867 blocksize);
8b62f87b 4868 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4869 unlock_page(page);
09cbfeaf 4870 put_page(page);
39279cc3 4871out:
364ecf36 4872 extent_changeset_free(data_reserved);
39279cc3
CM
4873 return ret;
4874}
4875
16e7549f
JB
4876static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4877 u64 offset, u64 len)
4878{
0b246afa 4879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4880 struct btrfs_trans_handle *trans;
4881 int ret;
4882
4883 /*
4884 * Still need to make sure the inode looks like it's been updated so
4885 * that any holes get logged if we fsync.
4886 */
0b246afa
JM
4887 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4888 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4889 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4890 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4891 return 0;
4892 }
4893
4894 /*
4895 * 1 - for the one we're dropping
4896 * 1 - for the one we're adding
4897 * 1 - for updating the inode.
4898 */
4899 trans = btrfs_start_transaction(root, 3);
4900 if (IS_ERR(trans))
4901 return PTR_ERR(trans);
4902
4903 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4904 if (ret) {
66642832 4905 btrfs_abort_transaction(trans, ret);
3a45bb20 4906 btrfs_end_transaction(trans);
16e7549f
JB
4907 return ret;
4908 }
4909
f85b7379
DS
4910 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4911 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4912 if (ret)
66642832 4913 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4914 else
4915 btrfs_update_inode(trans, root, inode);
3a45bb20 4916 btrfs_end_transaction(trans);
16e7549f
JB
4917 return ret;
4918}
4919
695a0d0d
JB
4920/*
4921 * This function puts in dummy file extents for the area we're creating a hole
4922 * for. So if we are truncating this file to a larger size we need to insert
4923 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4924 * the range between oldsize and size
4925 */
a41ad394 4926int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4927{
0b246afa 4928 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4929 struct btrfs_root *root = BTRFS_I(inode)->root;
4930 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4931 struct extent_map *em = NULL;
2ac55d41 4932 struct extent_state *cached_state = NULL;
5dc562c5 4933 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4934 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4935 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4936 u64 last_byte;
4937 u64 cur_offset;
4938 u64 hole_size;
9ed74f2d 4939 int err = 0;
39279cc3 4940
a71754fc 4941 /*
9703fefe
CR
4942 * If our size started in the middle of a block we need to zero out the
4943 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4944 * expose stale data.
4945 */
9703fefe 4946 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4947 if (err)
4948 return err;
4949
9036c102
YZ
4950 if (size <= hole_start)
4951 return 0;
4952
9036c102
YZ
4953 while (1) {
4954 struct btrfs_ordered_extent *ordered;
fa7c1494 4955
ff13db41 4956 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4957 &cached_state);
a776c6fa 4958 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4959 block_end - hole_start);
9036c102
YZ
4960 if (!ordered)
4961 break;
2ac55d41 4962 unlock_extent_cached(io_tree, hole_start, block_end - 1,
e43bbe5e 4963 &cached_state);
fa7c1494 4964 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4965 btrfs_put_ordered_extent(ordered);
4966 }
39279cc3 4967
9036c102
YZ
4968 cur_offset = hole_start;
4969 while (1) {
fc4f21b1 4970 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4971 block_end - cur_offset, 0);
79787eaa
JM
4972 if (IS_ERR(em)) {
4973 err = PTR_ERR(em);
f2767956 4974 em = NULL;
79787eaa
JM
4975 break;
4976 }
9036c102 4977 last_byte = min(extent_map_end(em), block_end);
0b246afa 4978 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4979 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4980 struct extent_map *hole_em;
9036c102 4981 hole_size = last_byte - cur_offset;
9ed74f2d 4982
16e7549f
JB
4983 err = maybe_insert_hole(root, inode, cur_offset,
4984 hole_size);
4985 if (err)
3893e33b 4986 break;
dcdbc059 4987 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4988 cur_offset + hole_size - 1, 0);
4989 hole_em = alloc_extent_map();
4990 if (!hole_em) {
4991 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4992 &BTRFS_I(inode)->runtime_flags);
4993 goto next;
4994 }
4995 hole_em->start = cur_offset;
4996 hole_em->len = hole_size;
4997 hole_em->orig_start = cur_offset;
8082510e 4998
5dc562c5
JB
4999 hole_em->block_start = EXTENT_MAP_HOLE;
5000 hole_em->block_len = 0;
b4939680 5001 hole_em->orig_block_len = 0;
cc95bef6 5002 hole_em->ram_bytes = hole_size;
0b246afa 5003 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5004 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5005 hole_em->generation = fs_info->generation;
8082510e 5006
5dc562c5
JB
5007 while (1) {
5008 write_lock(&em_tree->lock);
09a2a8f9 5009 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5010 write_unlock(&em_tree->lock);
5011 if (err != -EEXIST)
5012 break;
dcdbc059
NB
5013 btrfs_drop_extent_cache(BTRFS_I(inode),
5014 cur_offset,
5dc562c5
JB
5015 cur_offset +
5016 hole_size - 1, 0);
5017 }
5018 free_extent_map(hole_em);
9036c102 5019 }
16e7549f 5020next:
9036c102 5021 free_extent_map(em);
a22285a6 5022 em = NULL;
9036c102 5023 cur_offset = last_byte;
8082510e 5024 if (cur_offset >= block_end)
9036c102
YZ
5025 break;
5026 }
a22285a6 5027 free_extent_map(em);
e43bbe5e 5028 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5029 return err;
5030}
39279cc3 5031
3972f260 5032static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5033{
f4a2f4c5
MX
5034 struct btrfs_root *root = BTRFS_I(inode)->root;
5035 struct btrfs_trans_handle *trans;
a41ad394 5036 loff_t oldsize = i_size_read(inode);
3972f260
ES
5037 loff_t newsize = attr->ia_size;
5038 int mask = attr->ia_valid;
8082510e
YZ
5039 int ret;
5040
3972f260
ES
5041 /*
5042 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5043 * special case where we need to update the times despite not having
5044 * these flags set. For all other operations the VFS set these flags
5045 * explicitly if it wants a timestamp update.
5046 */
dff6efc3
CH
5047 if (newsize != oldsize) {
5048 inode_inc_iversion(inode);
5049 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5050 inode->i_ctime = inode->i_mtime =
c2050a45 5051 current_time(inode);
dff6efc3 5052 }
3972f260 5053
a41ad394 5054 if (newsize > oldsize) {
9ea24bbe 5055 /*
ea14b57f 5056 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5057 * This is to ensure the snapshot captures a fully consistent
5058 * state of this file - if the snapshot captures this expanding
5059 * truncation, it must capture all writes that happened before
5060 * this truncation.
5061 */
0bc19f90 5062 btrfs_wait_for_snapshot_creation(root);
a41ad394 5063 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5064 if (ret) {
ea14b57f 5065 btrfs_end_write_no_snapshotting(root);
8082510e 5066 return ret;
9ea24bbe 5067 }
8082510e 5068
f4a2f4c5 5069 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5070 if (IS_ERR(trans)) {
ea14b57f 5071 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5072 return PTR_ERR(trans);
9ea24bbe 5073 }
f4a2f4c5
MX
5074
5075 i_size_write(inode, newsize);
5076 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5077 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5078 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5079 btrfs_end_write_no_snapshotting(root);
3a45bb20 5080 btrfs_end_transaction(trans);
a41ad394 5081 } else {
8082510e 5082
a41ad394
JB
5083 /*
5084 * We're truncating a file that used to have good data down to
5085 * zero. Make sure it gets into the ordered flush list so that
5086 * any new writes get down to disk quickly.
5087 */
5088 if (newsize == 0)
72ac3c0d
JB
5089 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5090 &BTRFS_I(inode)->runtime_flags);
8082510e 5091
f3fe820c
JB
5092 /*
5093 * 1 for the orphan item we're going to add
5094 * 1 for the orphan item deletion.
5095 */
5096 trans = btrfs_start_transaction(root, 2);
5097 if (IS_ERR(trans))
5098 return PTR_ERR(trans);
5099
5100 /*
5101 * We need to do this in case we fail at _any_ point during the
5102 * actual truncate. Once we do the truncate_setsize we could
5103 * invalidate pages which forces any outstanding ordered io to
5104 * be instantly completed which will give us extents that need
5105 * to be truncated. If we fail to get an orphan inode down we
5106 * could have left over extents that were never meant to live,
01327610 5107 * so we need to guarantee from this point on that everything
f3fe820c
JB
5108 * will be consistent.
5109 */
73f2e545 5110 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5111 btrfs_end_transaction(trans);
f3fe820c
JB
5112 if (ret)
5113 return ret;
5114
a41ad394
JB
5115 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5116 truncate_setsize(inode, newsize);
2e60a51e
MX
5117
5118 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5119 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5120 inode_dio_wait(inode);
0b581701 5121 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5122
a41ad394 5123 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5124 if (ret && inode->i_nlink) {
5125 int err;
5126
19fd2df5
LB
5127 /* To get a stable disk_i_size */
5128 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5129 if (err) {
3d6ae7bb 5130 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5131 return err;
5132 }
5133
7f4f6e0a
JB
5134 /*
5135 * failed to truncate, disk_i_size is only adjusted down
5136 * as we remove extents, so it should represent the true
5137 * size of the inode, so reset the in memory size and
5138 * delete our orphan entry.
5139 */
5140 trans = btrfs_join_transaction(root);
5141 if (IS_ERR(trans)) {
3d6ae7bb 5142 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5143 return ret;
5144 }
5145 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5146 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5147 if (err)
66642832 5148 btrfs_abort_transaction(trans, err);
3a45bb20 5149 btrfs_end_transaction(trans);
7f4f6e0a 5150 }
8082510e
YZ
5151 }
5152
a41ad394 5153 return ret;
8082510e
YZ
5154}
5155
9036c102
YZ
5156static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5157{
2b0143b5 5158 struct inode *inode = d_inode(dentry);
b83cc969 5159 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5160 int err;
39279cc3 5161
b83cc969
LZ
5162 if (btrfs_root_readonly(root))
5163 return -EROFS;
5164
31051c85 5165 err = setattr_prepare(dentry, attr);
9036c102
YZ
5166 if (err)
5167 return err;
2bf5a725 5168
5a3f23d5 5169 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5170 err = btrfs_setsize(inode, attr);
8082510e
YZ
5171 if (err)
5172 return err;
39279cc3 5173 }
9036c102 5174
1025774c
CH
5175 if (attr->ia_valid) {
5176 setattr_copy(inode, attr);
0c4d2d95 5177 inode_inc_iversion(inode);
22c44fe6 5178 err = btrfs_dirty_inode(inode);
1025774c 5179
22c44fe6 5180 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5181 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5182 }
33268eaf 5183
39279cc3
CM
5184 return err;
5185}
61295eb8 5186
131e404a
FDBM
5187/*
5188 * While truncating the inode pages during eviction, we get the VFS calling
5189 * btrfs_invalidatepage() against each page of the inode. This is slow because
5190 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5191 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5192 * extent_state structures over and over, wasting lots of time.
5193 *
5194 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5195 * those expensive operations on a per page basis and do only the ordered io
5196 * finishing, while we release here the extent_map and extent_state structures,
5197 * without the excessive merging and splitting.
5198 */
5199static void evict_inode_truncate_pages(struct inode *inode)
5200{
5201 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5202 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5203 struct rb_node *node;
5204
5205 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5206 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5207
5208 write_lock(&map_tree->lock);
5209 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5210 struct extent_map *em;
5211
5212 node = rb_first(&map_tree->map);
5213 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5214 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5215 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5216 remove_extent_mapping(map_tree, em);
5217 free_extent_map(em);
7064dd5c
FM
5218 if (need_resched()) {
5219 write_unlock(&map_tree->lock);
5220 cond_resched();
5221 write_lock(&map_tree->lock);
5222 }
131e404a
FDBM
5223 }
5224 write_unlock(&map_tree->lock);
5225
6ca07097
FM
5226 /*
5227 * Keep looping until we have no more ranges in the io tree.
5228 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5229 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5230 * still in progress (unlocked the pages in the bio but did not yet
5231 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5232 * ranges can still be locked and eviction started because before
5233 * submitting those bios, which are executed by a separate task (work
5234 * queue kthread), inode references (inode->i_count) were not taken
5235 * (which would be dropped in the end io callback of each bio).
5236 * Therefore here we effectively end up waiting for those bios and
5237 * anyone else holding locked ranges without having bumped the inode's
5238 * reference count - if we don't do it, when they access the inode's
5239 * io_tree to unlock a range it may be too late, leading to an
5240 * use-after-free issue.
5241 */
131e404a
FDBM
5242 spin_lock(&io_tree->lock);
5243 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5244 struct extent_state *state;
5245 struct extent_state *cached_state = NULL;
6ca07097
FM
5246 u64 start;
5247 u64 end;
131e404a
FDBM
5248
5249 node = rb_first(&io_tree->state);
5250 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5251 start = state->start;
5252 end = state->end;
131e404a
FDBM
5253 spin_unlock(&io_tree->lock);
5254
ff13db41 5255 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5256
5257 /*
5258 * If still has DELALLOC flag, the extent didn't reach disk,
5259 * and its reserved space won't be freed by delayed_ref.
5260 * So we need to free its reserved space here.
5261 * (Refer to comment in btrfs_invalidatepage, case 2)
5262 *
5263 * Note, end is the bytenr of last byte, so we need + 1 here.
5264 */
5265 if (state->state & EXTENT_DELALLOC)
bc42bda2 5266 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5267
6ca07097 5268 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5269 EXTENT_LOCKED | EXTENT_DIRTY |
5270 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5271 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5272
7064dd5c 5273 cond_resched();
131e404a
FDBM
5274 spin_lock(&io_tree->lock);
5275 }
5276 spin_unlock(&io_tree->lock);
5277}
5278
bd555975 5279void btrfs_evict_inode(struct inode *inode)
39279cc3 5280{
0b246afa 5281 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5282 struct btrfs_trans_handle *trans;
5283 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5284 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5285 int steal_from_global = 0;
3d48d981 5286 u64 min_size;
39279cc3
CM
5287 int ret;
5288
1abe9b8a 5289 trace_btrfs_inode_evict(inode);
5290
3d48d981 5291 if (!root) {
e8f1bc14 5292 clear_inode(inode);
3d48d981
NB
5293 return;
5294 }
5295
0b246afa 5296 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5297
131e404a
FDBM
5298 evict_inode_truncate_pages(inode);
5299
69e9c6c6
SB
5300 if (inode->i_nlink &&
5301 ((btrfs_root_refs(&root->root_item) != 0 &&
5302 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5303 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5304 goto no_delete;
5305
39279cc3 5306 if (is_bad_inode(inode)) {
3d6ae7bb 5307 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5308 goto no_delete;
5309 }
bd555975 5310 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5311 if (!special_file(inode->i_mode))
5312 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5313
7ab7956e 5314 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5315
0b246afa 5316 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5317 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5318 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5319 goto no_delete;
5320 }
5321
76dda93c 5322 if (inode->i_nlink > 0) {
69e9c6c6
SB
5323 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5324 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5325 goto no_delete;
5326 }
5327
aa79021f 5328 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5329 if (ret) {
3d6ae7bb 5330 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5331 goto no_delete;
5332 }
5333
2ff7e61e 5334 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5335 if (!rsv) {
3d6ae7bb 5336 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5337 goto no_delete;
5338 }
4a338542 5339 rsv->size = min_size;
ca7e70f5 5340 rsv->failfast = 1;
0b246afa 5341 global_rsv = &fs_info->global_block_rsv;
4289a667 5342
6ef06d27 5343 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5344
4289a667 5345 /*
8407aa46
MX
5346 * This is a bit simpler than btrfs_truncate since we've already
5347 * reserved our space for our orphan item in the unlink, so we just
5348 * need to reserve some slack space in case we add bytes and update
5349 * inode item when doing the truncate.
4289a667 5350 */
8082510e 5351 while (1) {
08e007d2
MX
5352 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5353 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5354
5355 /*
5356 * Try and steal from the global reserve since we will
5357 * likely not use this space anyway, we want to try as
5358 * hard as possible to get this to work.
5359 */
5360 if (ret)
3bce876f
JB
5361 steal_from_global++;
5362 else
5363 steal_from_global = 0;
5364 ret = 0;
d68fc57b 5365
3bce876f
JB
5366 /*
5367 * steal_from_global == 0: we reserved stuff, hooray!
5368 * steal_from_global == 1: we didn't reserve stuff, boo!
5369 * steal_from_global == 2: we've committed, still not a lot of
5370 * room but maybe we'll have room in the global reserve this
5371 * time.
5372 * steal_from_global == 3: abandon all hope!
5373 */
5374 if (steal_from_global > 2) {
0b246afa
JM
5375 btrfs_warn(fs_info,
5376 "Could not get space for a delete, will truncate on mount %d",
5377 ret);
3d6ae7bb 5378 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5379 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5380 goto no_delete;
d68fc57b 5381 }
7b128766 5382
0e8c36a9 5383 trans = btrfs_join_transaction(root);
4289a667 5384 if (IS_ERR(trans)) {
3d6ae7bb 5385 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5386 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5387 goto no_delete;
d68fc57b 5388 }
7b128766 5389
3bce876f 5390 /*
01327610 5391 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5392 * sure there is room to do it, if not we need to commit and try
5393 * again.
5394 */
5395 if (steal_from_global) {
2ff7e61e 5396 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5397 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5398 min_size, 0);
3bce876f
JB
5399 else
5400 ret = -ENOSPC;
5401 }
5402
5403 /*
5404 * Couldn't steal from the global reserve, we have too much
5405 * pending stuff built up, commit the transaction and try it
5406 * again.
5407 */
5408 if (ret) {
3a45bb20 5409 ret = btrfs_commit_transaction(trans);
3bce876f 5410 if (ret) {
3d6ae7bb 5411 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5412 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5413 goto no_delete;
5414 }
5415 continue;
5416 } else {
5417 steal_from_global = 0;
5418 }
5419
4289a667
JB
5420 trans->block_rsv = rsv;
5421
d68fc57b 5422 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5423 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5424 break;
85e21bac 5425
0b246afa 5426 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5427 btrfs_end_transaction(trans);
8082510e 5428 trans = NULL;
2ff7e61e 5429 btrfs_btree_balance_dirty(fs_info);
8082510e 5430 }
5f39d397 5431
2ff7e61e 5432 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5433
4ef31a45
JB
5434 /*
5435 * Errors here aren't a big deal, it just means we leave orphan items
5436 * in the tree. They will be cleaned up on the next mount.
5437 */
8082510e 5438 if (ret == 0) {
4289a667 5439 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5440 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5441 } else {
3d6ae7bb 5442 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5443 }
54aa1f4d 5444
0b246afa
JM
5445 trans->block_rsv = &fs_info->trans_block_rsv;
5446 if (!(root == fs_info->tree_root ||
581bb050 5447 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5448 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5449
3a45bb20 5450 btrfs_end_transaction(trans);
2ff7e61e 5451 btrfs_btree_balance_dirty(fs_info);
39279cc3 5452no_delete:
f48d1cf5 5453 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5454 clear_inode(inode);
39279cc3
CM
5455}
5456
5457/*
5458 * this returns the key found in the dir entry in the location pointer.
5459 * If no dir entries were found, location->objectid is 0.
5460 */
5461static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5462 struct btrfs_key *location)
5463{
5464 const char *name = dentry->d_name.name;
5465 int namelen = dentry->d_name.len;
5466 struct btrfs_dir_item *di;
5467 struct btrfs_path *path;
5468 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5469 int ret = 0;
39279cc3
CM
5470
5471 path = btrfs_alloc_path();
d8926bb3
MF
5472 if (!path)
5473 return -ENOMEM;
3954401f 5474
f85b7379
DS
5475 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5476 name, namelen, 0);
0d9f7f3e
Y
5477 if (IS_ERR(di))
5478 ret = PTR_ERR(di);
d397712b 5479
c704005d 5480 if (IS_ERR_OR_NULL(di))
3954401f 5481 goto out_err;
d397712b 5482
5f39d397 5483 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5484 if (location->type != BTRFS_INODE_ITEM_KEY &&
5485 location->type != BTRFS_ROOT_ITEM_KEY) {
5486 btrfs_warn(root->fs_info,
5487"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5488 __func__, name, btrfs_ino(BTRFS_I(dir)),
5489 location->objectid, location->type, location->offset);
5490 goto out_err;
5491 }
39279cc3 5492out:
39279cc3
CM
5493 btrfs_free_path(path);
5494 return ret;
3954401f
CM
5495out_err:
5496 location->objectid = 0;
5497 goto out;
39279cc3
CM
5498}
5499
5500/*
5501 * when we hit a tree root in a directory, the btrfs part of the inode
5502 * needs to be changed to reflect the root directory of the tree root. This
5503 * is kind of like crossing a mount point.
5504 */
2ff7e61e 5505static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5506 struct inode *dir,
5507 struct dentry *dentry,
5508 struct btrfs_key *location,
5509 struct btrfs_root **sub_root)
39279cc3 5510{
4df27c4d
YZ
5511 struct btrfs_path *path;
5512 struct btrfs_root *new_root;
5513 struct btrfs_root_ref *ref;
5514 struct extent_buffer *leaf;
1d4c08e0 5515 struct btrfs_key key;
4df27c4d
YZ
5516 int ret;
5517 int err = 0;
39279cc3 5518
4df27c4d
YZ
5519 path = btrfs_alloc_path();
5520 if (!path) {
5521 err = -ENOMEM;
5522 goto out;
5523 }
39279cc3 5524
4df27c4d 5525 err = -ENOENT;
1d4c08e0
DS
5526 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5527 key.type = BTRFS_ROOT_REF_KEY;
5528 key.offset = location->objectid;
5529
0b246afa 5530 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5531 if (ret) {
5532 if (ret < 0)
5533 err = ret;
5534 goto out;
5535 }
39279cc3 5536
4df27c4d
YZ
5537 leaf = path->nodes[0];
5538 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5539 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5540 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5541 goto out;
39279cc3 5542
4df27c4d
YZ
5543 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5544 (unsigned long)(ref + 1),
5545 dentry->d_name.len);
5546 if (ret)
5547 goto out;
5548
b3b4aa74 5549 btrfs_release_path(path);
4df27c4d 5550
0b246afa 5551 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5552 if (IS_ERR(new_root)) {
5553 err = PTR_ERR(new_root);
5554 goto out;
5555 }
5556
4df27c4d
YZ
5557 *sub_root = new_root;
5558 location->objectid = btrfs_root_dirid(&new_root->root_item);
5559 location->type = BTRFS_INODE_ITEM_KEY;
5560 location->offset = 0;
5561 err = 0;
5562out:
5563 btrfs_free_path(path);
5564 return err;
39279cc3
CM
5565}
5566
5d4f98a2
YZ
5567static void inode_tree_add(struct inode *inode)
5568{
5569 struct btrfs_root *root = BTRFS_I(inode)->root;
5570 struct btrfs_inode *entry;
03e860bd
FNP
5571 struct rb_node **p;
5572 struct rb_node *parent;
cef21937 5573 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5574 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5575
1d3382cb 5576 if (inode_unhashed(inode))
76dda93c 5577 return;
e1409cef 5578 parent = NULL;
5d4f98a2 5579 spin_lock(&root->inode_lock);
e1409cef 5580 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5581 while (*p) {
5582 parent = *p;
5583 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5584
4a0cc7ca 5585 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5586 p = &parent->rb_left;
4a0cc7ca 5587 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5588 p = &parent->rb_right;
5d4f98a2
YZ
5589 else {
5590 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5591 (I_WILL_FREE | I_FREEING)));
cef21937 5592 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5593 RB_CLEAR_NODE(parent);
5594 spin_unlock(&root->inode_lock);
cef21937 5595 return;
5d4f98a2
YZ
5596 }
5597 }
cef21937
FDBM
5598 rb_link_node(new, parent, p);
5599 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5600 spin_unlock(&root->inode_lock);
5601}
5602
5603static void inode_tree_del(struct inode *inode)
5604{
0b246afa 5605 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5606 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5607 int empty = 0;
5d4f98a2 5608
03e860bd 5609 spin_lock(&root->inode_lock);
5d4f98a2 5610 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5611 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5612 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5613 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5614 }
03e860bd 5615 spin_unlock(&root->inode_lock);
76dda93c 5616
69e9c6c6 5617 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5618 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5619 spin_lock(&root->inode_lock);
5620 empty = RB_EMPTY_ROOT(&root->inode_tree);
5621 spin_unlock(&root->inode_lock);
5622 if (empty)
5623 btrfs_add_dead_root(root);
5624 }
5625}
5626
143bede5 5627void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5628{
0b246afa 5629 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5630 struct rb_node *node;
5631 struct rb_node *prev;
5632 struct btrfs_inode *entry;
5633 struct inode *inode;
5634 u64 objectid = 0;
5635
0b246afa 5636 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5637 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5638
5639 spin_lock(&root->inode_lock);
5640again:
5641 node = root->inode_tree.rb_node;
5642 prev = NULL;
5643 while (node) {
5644 prev = node;
5645 entry = rb_entry(node, struct btrfs_inode, rb_node);
5646
4a0cc7ca 5647 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5648 node = node->rb_left;
4a0cc7ca 5649 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5650 node = node->rb_right;
5651 else
5652 break;
5653 }
5654 if (!node) {
5655 while (prev) {
5656 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5657 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5658 node = prev;
5659 break;
5660 }
5661 prev = rb_next(prev);
5662 }
5663 }
5664 while (node) {
5665 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5666 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5667 inode = igrab(&entry->vfs_inode);
5668 if (inode) {
5669 spin_unlock(&root->inode_lock);
5670 if (atomic_read(&inode->i_count) > 1)
5671 d_prune_aliases(inode);
5672 /*
45321ac5 5673 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5674 * the inode cache when its usage count
5675 * hits zero.
5676 */
5677 iput(inode);
5678 cond_resched();
5679 spin_lock(&root->inode_lock);
5680 goto again;
5681 }
5682
5683 if (cond_resched_lock(&root->inode_lock))
5684 goto again;
5685
5686 node = rb_next(node);
5687 }
5688 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5689}
5690
e02119d5
CM
5691static int btrfs_init_locked_inode(struct inode *inode, void *p)
5692{
5693 struct btrfs_iget_args *args = p;
90d3e592
CM
5694 inode->i_ino = args->location->objectid;
5695 memcpy(&BTRFS_I(inode)->location, args->location,
5696 sizeof(*args->location));
e02119d5 5697 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5698 return 0;
5699}
5700
5701static int btrfs_find_actor(struct inode *inode, void *opaque)
5702{
5703 struct btrfs_iget_args *args = opaque;
90d3e592 5704 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5705 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5706}
5707
5d4f98a2 5708static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5709 struct btrfs_key *location,
5d4f98a2 5710 struct btrfs_root *root)
39279cc3
CM
5711{
5712 struct inode *inode;
5713 struct btrfs_iget_args args;
90d3e592 5714 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5715
90d3e592 5716 args.location = location;
39279cc3
CM
5717 args.root = root;
5718
778ba82b 5719 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5720 btrfs_init_locked_inode,
5721 (void *)&args);
5722 return inode;
5723}
5724
1a54ef8c
BR
5725/* Get an inode object given its location and corresponding root.
5726 * Returns in *is_new if the inode was read from disk
5727 */
5728struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5729 struct btrfs_root *root, int *new)
1a54ef8c
BR
5730{
5731 struct inode *inode;
5732
90d3e592 5733 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5734 if (!inode)
5d4f98a2 5735 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5736
5737 if (inode->i_state & I_NEW) {
67710892
FM
5738 int ret;
5739
5740 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5741 if (!is_bad_inode(inode)) {
5742 inode_tree_add(inode);
5743 unlock_new_inode(inode);
5744 if (new)
5745 *new = 1;
5746 } else {
e0b6d65b
ST
5747 unlock_new_inode(inode);
5748 iput(inode);
67710892
FM
5749 ASSERT(ret < 0);
5750 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5751 }
5752 }
5753
1a54ef8c
BR
5754 return inode;
5755}
5756
4df27c4d
YZ
5757static struct inode *new_simple_dir(struct super_block *s,
5758 struct btrfs_key *key,
5759 struct btrfs_root *root)
5760{
5761 struct inode *inode = new_inode(s);
5762
5763 if (!inode)
5764 return ERR_PTR(-ENOMEM);
5765
4df27c4d
YZ
5766 BTRFS_I(inode)->root = root;
5767 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5768 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5769
5770 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5771 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5772 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5773 inode->i_fop = &simple_dir_operations;
5774 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5775 inode->i_mtime = current_time(inode);
9cc97d64 5776 inode->i_atime = inode->i_mtime;
5777 inode->i_ctime = inode->i_mtime;
5778 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5779
5780 return inode;
5781}
5782
3de4586c 5783struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5784{
0b246afa 5785 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5786 struct inode *inode;
4df27c4d 5787 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5788 struct btrfs_root *sub_root = root;
5789 struct btrfs_key location;
76dda93c 5790 int index;
b4aff1f8 5791 int ret = 0;
39279cc3
CM
5792
5793 if (dentry->d_name.len > BTRFS_NAME_LEN)
5794 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5795
39e3c955 5796 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5797 if (ret < 0)
5798 return ERR_PTR(ret);
5f39d397 5799
4df27c4d 5800 if (location.objectid == 0)
5662344b 5801 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5802
5803 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5804 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5805 return inode;
5806 }
5807
0b246afa 5808 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5809 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5810 &location, &sub_root);
5811 if (ret < 0) {
5812 if (ret != -ENOENT)
5813 inode = ERR_PTR(ret);
5814 else
5815 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5816 } else {
73f73415 5817 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5818 }
0b246afa 5819 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5820
34d19bad 5821 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5822 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5823 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5824 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5825 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5826 if (ret) {
5827 iput(inode);
66b4ffd1 5828 inode = ERR_PTR(ret);
01cd3367 5829 }
c71bf099
YZ
5830 }
5831
3de4586c
CM
5832 return inode;
5833}
5834
fe15ce44 5835static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5836{
5837 struct btrfs_root *root;
2b0143b5 5838 struct inode *inode = d_inode(dentry);
76dda93c 5839
848cce0d 5840 if (!inode && !IS_ROOT(dentry))
2b0143b5 5841 inode = d_inode(dentry->d_parent);
76dda93c 5842
848cce0d
LZ
5843 if (inode) {
5844 root = BTRFS_I(inode)->root;
efefb143
YZ
5845 if (btrfs_root_refs(&root->root_item) == 0)
5846 return 1;
848cce0d 5847
4a0cc7ca 5848 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5849 return 1;
efefb143 5850 }
76dda93c
YZ
5851 return 0;
5852}
5853
b4aff1f8
JB
5854static void btrfs_dentry_release(struct dentry *dentry)
5855{
944a4515 5856 kfree(dentry->d_fsdata);
b4aff1f8
JB
5857}
5858
3de4586c 5859static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5860 unsigned int flags)
3de4586c 5861{
5662344b 5862 struct inode *inode;
a66e7cc6 5863
5662344b
TI
5864 inode = btrfs_lookup_dentry(dir, dentry);
5865 if (IS_ERR(inode)) {
5866 if (PTR_ERR(inode) == -ENOENT)
5867 inode = NULL;
5868 else
5869 return ERR_CAST(inode);
5870 }
5871
41d28bca 5872 return d_splice_alias(inode, dentry);
39279cc3
CM
5873}
5874
16cdcec7 5875unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5876 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5877};
5878
23b5ec74
JB
5879/*
5880 * All this infrastructure exists because dir_emit can fault, and we are holding
5881 * the tree lock when doing readdir. For now just allocate a buffer and copy
5882 * our information into that, and then dir_emit from the buffer. This is
5883 * similar to what NFS does, only we don't keep the buffer around in pagecache
5884 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5885 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5886 * tree lock.
5887 */
5888static int btrfs_opendir(struct inode *inode, struct file *file)
5889{
5890 struct btrfs_file_private *private;
5891
5892 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5893 if (!private)
5894 return -ENOMEM;
5895 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5896 if (!private->filldir_buf) {
5897 kfree(private);
5898 return -ENOMEM;
5899 }
5900 file->private_data = private;
5901 return 0;
5902}
5903
5904struct dir_entry {
5905 u64 ino;
5906 u64 offset;
5907 unsigned type;
5908 int name_len;
5909};
5910
5911static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5912{
5913 while (entries--) {
5914 struct dir_entry *entry = addr;
5915 char *name = (char *)(entry + 1);
5916
5917 ctx->pos = entry->offset;
5918 if (!dir_emit(ctx, name, entry->name_len, entry->ino,
5919 entry->type))
5920 return 1;
5921 addr += sizeof(struct dir_entry) + entry->name_len;
5922 ctx->pos++;
5923 }
5924 return 0;
5925}
5926
9cdda8d3 5927static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5928{
9cdda8d3 5929 struct inode *inode = file_inode(file);
39279cc3 5930 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5931 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5932 struct btrfs_dir_item *di;
5933 struct btrfs_key key;
5f39d397 5934 struct btrfs_key found_key;
39279cc3 5935 struct btrfs_path *path;
23b5ec74 5936 void *addr;
16cdcec7
MX
5937 struct list_head ins_list;
5938 struct list_head del_list;
39279cc3 5939 int ret;
5f39d397 5940 struct extent_buffer *leaf;
39279cc3 5941 int slot;
5f39d397
CM
5942 char *name_ptr;
5943 int name_len;
23b5ec74
JB
5944 int entries = 0;
5945 int total_len = 0;
02dbfc99 5946 bool put = false;
c2951f32 5947 struct btrfs_key location;
5f39d397 5948
9cdda8d3
AV
5949 if (!dir_emit_dots(file, ctx))
5950 return 0;
5951
49593bfa 5952 path = btrfs_alloc_path();
16cdcec7
MX
5953 if (!path)
5954 return -ENOMEM;
ff5714cc 5955
23b5ec74 5956 addr = private->filldir_buf;
e4058b54 5957 path->reada = READA_FORWARD;
49593bfa 5958
c2951f32
JM
5959 INIT_LIST_HEAD(&ins_list);
5960 INIT_LIST_HEAD(&del_list);
5961 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5962
23b5ec74 5963again:
c2951f32 5964 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5965 key.offset = ctx->pos;
4a0cc7ca 5966 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5967
39279cc3
CM
5968 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5969 if (ret < 0)
5970 goto err;
49593bfa
DW
5971
5972 while (1) {
23b5ec74
JB
5973 struct dir_entry *entry;
5974
5f39d397 5975 leaf = path->nodes[0];
39279cc3 5976 slot = path->slots[0];
b9e03af0
LZ
5977 if (slot >= btrfs_header_nritems(leaf)) {
5978 ret = btrfs_next_leaf(root, path);
5979 if (ret < 0)
5980 goto err;
5981 else if (ret > 0)
5982 break;
5983 continue;
39279cc3 5984 }
3de4586c 5985
5f39d397
CM
5986 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5987
5988 if (found_key.objectid != key.objectid)
39279cc3 5989 break;
c2951f32 5990 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5991 break;
9cdda8d3 5992 if (found_key.offset < ctx->pos)
b9e03af0 5993 goto next;
c2951f32 5994 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5995 goto next;
39279cc3 5996 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5997 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5998 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5999 PAGE_SIZE) {
6000 btrfs_release_path(path);
6001 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6002 if (ret)
6003 goto nopos;
6004 addr = private->filldir_buf;
6005 entries = 0;
6006 total_len = 0;
6007 goto again;
c2951f32 6008 }
23b5ec74
JB
6009
6010 entry = addr;
6011 entry->name_len = name_len;
6012 name_ptr = (char *)(entry + 1);
c2951f32
JM
6013 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
6014 name_len);
23b5ec74 6015 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
c2951f32 6016 btrfs_dir_item_key_to_cpu(leaf, di, &location);
23b5ec74
JB
6017 entry->ino = location.objectid;
6018 entry->offset = found_key.offset;
6019 entries++;
6020 addr += sizeof(struct dir_entry) + name_len;
6021 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
6022next:
6023 path->slots[0]++;
39279cc3 6024 }
23b5ec74
JB
6025 btrfs_release_path(path);
6026
6027 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
6028 if (ret)
6029 goto nopos;
49593bfa 6030
d2fbb2b5 6031 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 6032 if (ret)
bc4ef759
DS
6033 goto nopos;
6034
db62efbb
ZB
6035 /*
6036 * Stop new entries from being returned after we return the last
6037 * entry.
6038 *
6039 * New directory entries are assigned a strictly increasing
6040 * offset. This means that new entries created during readdir
6041 * are *guaranteed* to be seen in the future by that readdir.
6042 * This has broken buggy programs which operate on names as
6043 * they're returned by readdir. Until we re-use freed offsets
6044 * we have this hack to stop new entries from being returned
6045 * under the assumption that they'll never reach this huge
6046 * offset.
6047 *
6048 * This is being careful not to overflow 32bit loff_t unless the
6049 * last entry requires it because doing so has broken 32bit apps
6050 * in the past.
6051 */
c2951f32
JM
6052 if (ctx->pos >= INT_MAX)
6053 ctx->pos = LLONG_MAX;
6054 else
6055 ctx->pos = INT_MAX;
39279cc3
CM
6056nopos:
6057 ret = 0;
6058err:
02dbfc99
OS
6059 if (put)
6060 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6061 btrfs_free_path(path);
39279cc3
CM
6062 return ret;
6063}
6064
a9185b41 6065int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6066{
6067 struct btrfs_root *root = BTRFS_I(inode)->root;
6068 struct btrfs_trans_handle *trans;
6069 int ret = 0;
0af3d00b 6070 bool nolock = false;
39279cc3 6071
72ac3c0d 6072 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6073 return 0;
6074
70ddc553
NB
6075 if (btrfs_fs_closing(root->fs_info) &&
6076 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6077 nolock = true;
0af3d00b 6078
a9185b41 6079 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6080 if (nolock)
7a7eaa40 6081 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6082 else
7a7eaa40 6083 trans = btrfs_join_transaction(root);
3612b495
TI
6084 if (IS_ERR(trans))
6085 return PTR_ERR(trans);
3a45bb20 6086 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6087 }
6088 return ret;
6089}
6090
6091/*
54aa1f4d 6092 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6093 * inode changes. But, it is most likely to find the inode in cache.
6094 * FIXME, needs more benchmarking...there are no reasons other than performance
6095 * to keep or drop this code.
6096 */
48a3b636 6097static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6098{
2ff7e61e 6099 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6100 struct btrfs_root *root = BTRFS_I(inode)->root;
6101 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6102 int ret;
6103
72ac3c0d 6104 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6105 return 0;
39279cc3 6106
7a7eaa40 6107 trans = btrfs_join_transaction(root);
22c44fe6
JB
6108 if (IS_ERR(trans))
6109 return PTR_ERR(trans);
8929ecfa
YZ
6110
6111 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6112 if (ret && ret == -ENOSPC) {
6113 /* whoops, lets try again with the full transaction */
3a45bb20 6114 btrfs_end_transaction(trans);
94b60442 6115 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6116 if (IS_ERR(trans))
6117 return PTR_ERR(trans);
8929ecfa 6118
94b60442 6119 ret = btrfs_update_inode(trans, root, inode);
94b60442 6120 }
3a45bb20 6121 btrfs_end_transaction(trans);
16cdcec7 6122 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6123 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6124
6125 return ret;
6126}
6127
6128/*
6129 * This is a copy of file_update_time. We need this so we can return error on
6130 * ENOSPC for updating the inode in the case of file write and mmap writes.
6131 */
e41f941a
JB
6132static int btrfs_update_time(struct inode *inode, struct timespec *now,
6133 int flags)
22c44fe6 6134{
2bc55652
AB
6135 struct btrfs_root *root = BTRFS_I(inode)->root;
6136
6137 if (btrfs_root_readonly(root))
6138 return -EROFS;
6139
e41f941a 6140 if (flags & S_VERSION)
22c44fe6 6141 inode_inc_iversion(inode);
e41f941a
JB
6142 if (flags & S_CTIME)
6143 inode->i_ctime = *now;
6144 if (flags & S_MTIME)
6145 inode->i_mtime = *now;
6146 if (flags & S_ATIME)
6147 inode->i_atime = *now;
6148 return btrfs_dirty_inode(inode);
39279cc3
CM
6149}
6150
d352ac68
CM
6151/*
6152 * find the highest existing sequence number in a directory
6153 * and then set the in-memory index_cnt variable to reflect
6154 * free sequence numbers
6155 */
4c570655 6156static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6157{
4c570655 6158 struct btrfs_root *root = inode->root;
aec7477b
JB
6159 struct btrfs_key key, found_key;
6160 struct btrfs_path *path;
6161 struct extent_buffer *leaf;
6162 int ret;
6163
4c570655 6164 key.objectid = btrfs_ino(inode);
962a298f 6165 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6166 key.offset = (u64)-1;
6167
6168 path = btrfs_alloc_path();
6169 if (!path)
6170 return -ENOMEM;
6171
6172 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6173 if (ret < 0)
6174 goto out;
6175 /* FIXME: we should be able to handle this */
6176 if (ret == 0)
6177 goto out;
6178 ret = 0;
6179
6180 /*
6181 * MAGIC NUMBER EXPLANATION:
6182 * since we search a directory based on f_pos we have to start at 2
6183 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6184 * else has to start at 2
6185 */
6186 if (path->slots[0] == 0) {
4c570655 6187 inode->index_cnt = 2;
aec7477b
JB
6188 goto out;
6189 }
6190
6191 path->slots[0]--;
6192
6193 leaf = path->nodes[0];
6194 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6195
4c570655 6196 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6197 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6198 inode->index_cnt = 2;
aec7477b
JB
6199 goto out;
6200 }
6201
4c570655 6202 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6203out:
6204 btrfs_free_path(path);
6205 return ret;
6206}
6207
d352ac68
CM
6208/*
6209 * helper to find a free sequence number in a given directory. This current
6210 * code is very simple, later versions will do smarter things in the btree
6211 */
877574e2 6212int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6213{
6214 int ret = 0;
6215
877574e2
NB
6216 if (dir->index_cnt == (u64)-1) {
6217 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6218 if (ret) {
6219 ret = btrfs_set_inode_index_count(dir);
6220 if (ret)
6221 return ret;
6222 }
aec7477b
JB
6223 }
6224
877574e2
NB
6225 *index = dir->index_cnt;
6226 dir->index_cnt++;
aec7477b
JB
6227
6228 return ret;
6229}
6230
b0d5d10f
CM
6231static int btrfs_insert_inode_locked(struct inode *inode)
6232{
6233 struct btrfs_iget_args args;
6234 args.location = &BTRFS_I(inode)->location;
6235 args.root = BTRFS_I(inode)->root;
6236
6237 return insert_inode_locked4(inode,
6238 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6239 btrfs_find_actor, &args);
6240}
6241
19aee8de
AJ
6242/*
6243 * Inherit flags from the parent inode.
6244 *
6245 * Currently only the compression flags and the cow flags are inherited.
6246 */
6247static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6248{
6249 unsigned int flags;
6250
6251 if (!dir)
6252 return;
6253
6254 flags = BTRFS_I(dir)->flags;
6255
6256 if (flags & BTRFS_INODE_NOCOMPRESS) {
6257 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6258 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6259 } else if (flags & BTRFS_INODE_COMPRESS) {
6260 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6261 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6262 }
6263
6264 if (flags & BTRFS_INODE_NODATACOW) {
6265 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6266 if (S_ISREG(inode->i_mode))
6267 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6268 }
6269
6270 btrfs_update_iflags(inode);
6271}
6272
39279cc3
CM
6273static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6274 struct btrfs_root *root,
aec7477b 6275 struct inode *dir,
9c58309d 6276 const char *name, int name_len,
175a4eb7
AV
6277 u64 ref_objectid, u64 objectid,
6278 umode_t mode, u64 *index)
39279cc3 6279{
0b246afa 6280 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6281 struct inode *inode;
5f39d397 6282 struct btrfs_inode_item *inode_item;
39279cc3 6283 struct btrfs_key *location;
5f39d397 6284 struct btrfs_path *path;
9c58309d
CM
6285 struct btrfs_inode_ref *ref;
6286 struct btrfs_key key[2];
6287 u32 sizes[2];
ef3b9af5 6288 int nitems = name ? 2 : 1;
9c58309d 6289 unsigned long ptr;
39279cc3 6290 int ret;
39279cc3 6291
5f39d397 6292 path = btrfs_alloc_path();
d8926bb3
MF
6293 if (!path)
6294 return ERR_PTR(-ENOMEM);
5f39d397 6295
0b246afa 6296 inode = new_inode(fs_info->sb);
8fb27640
YS
6297 if (!inode) {
6298 btrfs_free_path(path);
39279cc3 6299 return ERR_PTR(-ENOMEM);
8fb27640 6300 }
39279cc3 6301
5762b5c9
FM
6302 /*
6303 * O_TMPFILE, set link count to 0, so that after this point,
6304 * we fill in an inode item with the correct link count.
6305 */
6306 if (!name)
6307 set_nlink(inode, 0);
6308
581bb050
LZ
6309 /*
6310 * we have to initialize this early, so we can reclaim the inode
6311 * number if we fail afterwards in this function.
6312 */
6313 inode->i_ino = objectid;
6314
ef3b9af5 6315 if (dir && name) {
1abe9b8a 6316 trace_btrfs_inode_request(dir);
6317
877574e2 6318 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6319 if (ret) {
8fb27640 6320 btrfs_free_path(path);
09771430 6321 iput(inode);
aec7477b 6322 return ERR_PTR(ret);
09771430 6323 }
ef3b9af5
FM
6324 } else if (dir) {
6325 *index = 0;
aec7477b
JB
6326 }
6327 /*
6328 * index_cnt is ignored for everything but a dir,
df6703e1 6329 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6330 * number
6331 */
6332 BTRFS_I(inode)->index_cnt = 2;
67de1176 6333 BTRFS_I(inode)->dir_index = *index;
39279cc3 6334 BTRFS_I(inode)->root = root;
e02119d5 6335 BTRFS_I(inode)->generation = trans->transid;
76195853 6336 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6337
5dc562c5
JB
6338 /*
6339 * We could have gotten an inode number from somebody who was fsynced
6340 * and then removed in this same transaction, so let's just set full
6341 * sync since it will be a full sync anyway and this will blow away the
6342 * old info in the log.
6343 */
6344 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6345
9c58309d 6346 key[0].objectid = objectid;
962a298f 6347 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6348 key[0].offset = 0;
6349
9c58309d 6350 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6351
6352 if (name) {
6353 /*
6354 * Start new inodes with an inode_ref. This is slightly more
6355 * efficient for small numbers of hard links since they will
6356 * be packed into one item. Extended refs will kick in if we
6357 * add more hard links than can fit in the ref item.
6358 */
6359 key[1].objectid = objectid;
962a298f 6360 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6361 key[1].offset = ref_objectid;
6362
6363 sizes[1] = name_len + sizeof(*ref);
6364 }
9c58309d 6365
b0d5d10f
CM
6366 location = &BTRFS_I(inode)->location;
6367 location->objectid = objectid;
6368 location->offset = 0;
962a298f 6369 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6370
6371 ret = btrfs_insert_inode_locked(inode);
6372 if (ret < 0)
6373 goto fail;
6374
b9473439 6375 path->leave_spinning = 1;
ef3b9af5 6376 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6377 if (ret != 0)
b0d5d10f 6378 goto fail_unlock;
5f39d397 6379
ecc11fab 6380 inode_init_owner(inode, dir, mode);
a76a3cd4 6381 inode_set_bytes(inode, 0);
9cc97d64 6382
c2050a45 6383 inode->i_mtime = current_time(inode);
9cc97d64 6384 inode->i_atime = inode->i_mtime;
6385 inode->i_ctime = inode->i_mtime;
6386 BTRFS_I(inode)->i_otime = inode->i_mtime;
6387
5f39d397
CM
6388 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6389 struct btrfs_inode_item);
b159fa28 6390 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6391 sizeof(*inode_item));
e02119d5 6392 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6393
ef3b9af5
FM
6394 if (name) {
6395 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6396 struct btrfs_inode_ref);
6397 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6398 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6399 ptr = (unsigned long)(ref + 1);
6400 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6401 }
9c58309d 6402
5f39d397
CM
6403 btrfs_mark_buffer_dirty(path->nodes[0]);
6404 btrfs_free_path(path);
6405
6cbff00f
CH
6406 btrfs_inherit_iflags(inode, dir);
6407
569254b0 6408 if (S_ISREG(mode)) {
0b246afa 6409 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6410 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6411 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6412 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6413 BTRFS_INODE_NODATASUM;
94272164
CM
6414 }
6415
5d4f98a2 6416 inode_tree_add(inode);
1abe9b8a 6417
6418 trace_btrfs_inode_new(inode);
1973f0fa 6419 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6420
8ea05e3a
AB
6421 btrfs_update_root_times(trans, root);
6422
63541927
FDBM
6423 ret = btrfs_inode_inherit_props(trans, inode, dir);
6424 if (ret)
0b246afa 6425 btrfs_err(fs_info,
63541927 6426 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6427 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6428
39279cc3 6429 return inode;
b0d5d10f
CM
6430
6431fail_unlock:
6432 unlock_new_inode(inode);
5f39d397 6433fail:
ef3b9af5 6434 if (dir && name)
aec7477b 6435 BTRFS_I(dir)->index_cnt--;
5f39d397 6436 btrfs_free_path(path);
09771430 6437 iput(inode);
5f39d397 6438 return ERR_PTR(ret);
39279cc3
CM
6439}
6440
6441static inline u8 btrfs_inode_type(struct inode *inode)
6442{
6443 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6444}
6445
d352ac68
CM
6446/*
6447 * utility function to add 'inode' into 'parent_inode' with
6448 * a give name and a given sequence number.
6449 * if 'add_backref' is true, also insert a backref from the
6450 * inode to the parent directory.
6451 */
e02119d5 6452int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6453 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6454 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6455{
db0a669f 6456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6457 int ret = 0;
39279cc3 6458 struct btrfs_key key;
db0a669f
NB
6459 struct btrfs_root *root = parent_inode->root;
6460 u64 ino = btrfs_ino(inode);
6461 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6462
33345d01 6463 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6464 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6465 } else {
33345d01 6466 key.objectid = ino;
962a298f 6467 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6468 key.offset = 0;
6469 }
6470
33345d01 6471 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6472 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6473 root->root_key.objectid, parent_ino,
6474 index, name, name_len);
4df27c4d 6475 } else if (add_backref) {
33345d01
LZ
6476 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6477 parent_ino, index);
4df27c4d 6478 }
39279cc3 6479
79787eaa
JM
6480 /* Nothing to clean up yet */
6481 if (ret)
6482 return ret;
4df27c4d 6483
79787eaa
JM
6484 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6485 parent_inode, &key,
db0a669f 6486 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6487 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6488 goto fail_dir_item;
6489 else if (ret) {
66642832 6490 btrfs_abort_transaction(trans, ret);
79787eaa 6491 return ret;
39279cc3 6492 }
79787eaa 6493
db0a669f 6494 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6495 name_len * 2);
db0a669f
NB
6496 inode_inc_iversion(&parent_inode->vfs_inode);
6497 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6498 current_time(&parent_inode->vfs_inode);
6499 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6500 if (ret)
66642832 6501 btrfs_abort_transaction(trans, ret);
39279cc3 6502 return ret;
fe66a05a
CM
6503
6504fail_dir_item:
6505 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6506 u64 local_index;
6507 int err;
0b246afa
JM
6508 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6509 root->root_key.objectid, parent_ino,
6510 &local_index, name, name_len);
fe66a05a
CM
6511
6512 } else if (add_backref) {
6513 u64 local_index;
6514 int err;
6515
6516 err = btrfs_del_inode_ref(trans, root, name, name_len,
6517 ino, parent_ino, &local_index);
6518 }
6519 return ret;
39279cc3
CM
6520}
6521
6522static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6523 struct btrfs_inode *dir, struct dentry *dentry,
6524 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6525{
a1b075d2
JB
6526 int err = btrfs_add_link(trans, dir, inode,
6527 dentry->d_name.name, dentry->d_name.len,
6528 backref, index);
39279cc3
CM
6529 if (err > 0)
6530 err = -EEXIST;
6531 return err;
6532}
6533
618e21d5 6534static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6535 umode_t mode, dev_t rdev)
618e21d5 6536{
2ff7e61e 6537 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6538 struct btrfs_trans_handle *trans;
6539 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6540 struct inode *inode = NULL;
618e21d5
JB
6541 int err;
6542 int drop_inode = 0;
6543 u64 objectid;
00e4e6b3 6544 u64 index = 0;
618e21d5 6545
9ed74f2d
JB
6546 /*
6547 * 2 for inode item and ref
6548 * 2 for dir items
6549 * 1 for xattr if selinux is on
6550 */
a22285a6
YZ
6551 trans = btrfs_start_transaction(root, 5);
6552 if (IS_ERR(trans))
6553 return PTR_ERR(trans);
1832a6d5 6554
581bb050
LZ
6555 err = btrfs_find_free_ino(root, &objectid);
6556 if (err)
6557 goto out_unlock;
6558
aec7477b 6559 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6560 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6561 mode, &index);
7cf96da3
TI
6562 if (IS_ERR(inode)) {
6563 err = PTR_ERR(inode);
618e21d5 6564 goto out_unlock;
7cf96da3 6565 }
618e21d5 6566
ad19db71
CS
6567 /*
6568 * If the active LSM wants to access the inode during
6569 * d_instantiate it needs these. Smack checks to see
6570 * if the filesystem supports xattrs by looking at the
6571 * ops vector.
6572 */
ad19db71 6573 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6574 init_special_inode(inode, inode->i_mode, rdev);
6575
6576 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6577 if (err)
b0d5d10f
CM
6578 goto out_unlock_inode;
6579
cef415af
NB
6580 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6581 0, index);
b0d5d10f
CM
6582 if (err) {
6583 goto out_unlock_inode;
6584 } else {
1b4ab1bb 6585 btrfs_update_inode(trans, root, inode);
b0d5d10f 6586 unlock_new_inode(inode);
08c422c2 6587 d_instantiate(dentry, inode);
618e21d5 6588 }
b0d5d10f 6589
618e21d5 6590out_unlock:
3a45bb20 6591 btrfs_end_transaction(trans);
2ff7e61e 6592 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6593 if (drop_inode) {
6594 inode_dec_link_count(inode);
6595 iput(inode);
6596 }
618e21d5 6597 return err;
b0d5d10f
CM
6598
6599out_unlock_inode:
6600 drop_inode = 1;
6601 unlock_new_inode(inode);
6602 goto out_unlock;
6603
618e21d5
JB
6604}
6605
39279cc3 6606static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6607 umode_t mode, bool excl)
39279cc3 6608{
2ff7e61e 6609 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6610 struct btrfs_trans_handle *trans;
6611 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6612 struct inode *inode = NULL;
43baa579 6613 int drop_inode_on_err = 0;
a22285a6 6614 int err;
39279cc3 6615 u64 objectid;
00e4e6b3 6616 u64 index = 0;
39279cc3 6617
9ed74f2d
JB
6618 /*
6619 * 2 for inode item and ref
6620 * 2 for dir items
6621 * 1 for xattr if selinux is on
6622 */
a22285a6
YZ
6623 trans = btrfs_start_transaction(root, 5);
6624 if (IS_ERR(trans))
6625 return PTR_ERR(trans);
9ed74f2d 6626
581bb050
LZ
6627 err = btrfs_find_free_ino(root, &objectid);
6628 if (err)
6629 goto out_unlock;
6630
aec7477b 6631 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6632 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6633 mode, &index);
7cf96da3
TI
6634 if (IS_ERR(inode)) {
6635 err = PTR_ERR(inode);
39279cc3 6636 goto out_unlock;
7cf96da3 6637 }
43baa579 6638 drop_inode_on_err = 1;
ad19db71
CS
6639 /*
6640 * If the active LSM wants to access the inode during
6641 * d_instantiate it needs these. Smack checks to see
6642 * if the filesystem supports xattrs by looking at the
6643 * ops vector.
6644 */
6645 inode->i_fop = &btrfs_file_operations;
6646 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6647 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6648
6649 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6650 if (err)
6651 goto out_unlock_inode;
6652
6653 err = btrfs_update_inode(trans, root, inode);
6654 if (err)
6655 goto out_unlock_inode;
ad19db71 6656
cef415af
NB
6657 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6658 0, index);
39279cc3 6659 if (err)
b0d5d10f 6660 goto out_unlock_inode;
43baa579 6661
43baa579 6662 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6663 unlock_new_inode(inode);
43baa579
FB
6664 d_instantiate(dentry, inode);
6665
39279cc3 6666out_unlock:
3a45bb20 6667 btrfs_end_transaction(trans);
43baa579 6668 if (err && drop_inode_on_err) {
39279cc3
CM
6669 inode_dec_link_count(inode);
6670 iput(inode);
6671 }
2ff7e61e 6672 btrfs_btree_balance_dirty(fs_info);
39279cc3 6673 return err;
b0d5d10f
CM
6674
6675out_unlock_inode:
6676 unlock_new_inode(inode);
6677 goto out_unlock;
6678
39279cc3
CM
6679}
6680
6681static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6682 struct dentry *dentry)
6683{
271dba45 6684 struct btrfs_trans_handle *trans = NULL;
39279cc3 6685 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6686 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6687 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6688 u64 index;
39279cc3
CM
6689 int err;
6690 int drop_inode = 0;
6691
4a8be425
TH
6692 /* do not allow sys_link's with other subvols of the same device */
6693 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6694 return -EXDEV;
4a8be425 6695
f186373f 6696 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6697 return -EMLINK;
4a8be425 6698
877574e2 6699 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6700 if (err)
6701 goto fail;
6702
a22285a6 6703 /*
7e6b6465 6704 * 2 items for inode and inode ref
a22285a6 6705 * 2 items for dir items
7e6b6465 6706 * 1 item for parent inode
a22285a6 6707 */
7e6b6465 6708 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6709 if (IS_ERR(trans)) {
6710 err = PTR_ERR(trans);
271dba45 6711 trans = NULL;
a22285a6
YZ
6712 goto fail;
6713 }
5f39d397 6714
67de1176
MX
6715 /* There are several dir indexes for this inode, clear the cache. */
6716 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6717 inc_nlink(inode);
0c4d2d95 6718 inode_inc_iversion(inode);
c2050a45 6719 inode->i_ctime = current_time(inode);
7de9c6ee 6720 ihold(inode);
e9976151 6721 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6722
cef415af
NB
6723 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6724 1, index);
5f39d397 6725
a5719521 6726 if (err) {
54aa1f4d 6727 drop_inode = 1;
a5719521 6728 } else {
10d9f309 6729 struct dentry *parent = dentry->d_parent;
a5719521 6730 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6731 if (err)
6732 goto fail;
ef3b9af5
FM
6733 if (inode->i_nlink == 1) {
6734 /*
6735 * If new hard link count is 1, it's a file created
6736 * with open(2) O_TMPFILE flag.
6737 */
3d6ae7bb 6738 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6739 if (err)
6740 goto fail;
6741 }
08c422c2 6742 d_instantiate(dentry, inode);
9ca5fbfb 6743 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6744 }
39279cc3 6745
1832a6d5 6746fail:
271dba45 6747 if (trans)
3a45bb20 6748 btrfs_end_transaction(trans);
39279cc3
CM
6749 if (drop_inode) {
6750 inode_dec_link_count(inode);
6751 iput(inode);
6752 }
2ff7e61e 6753 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6754 return err;
6755}
6756
18bb1db3 6757static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6758{
2ff7e61e 6759 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6760 struct inode *inode = NULL;
39279cc3
CM
6761 struct btrfs_trans_handle *trans;
6762 struct btrfs_root *root = BTRFS_I(dir)->root;
6763 int err = 0;
6764 int drop_on_err = 0;
b9d86667 6765 u64 objectid = 0;
00e4e6b3 6766 u64 index = 0;
39279cc3 6767
9ed74f2d
JB
6768 /*
6769 * 2 items for inode and ref
6770 * 2 items for dir items
6771 * 1 for xattr if selinux is on
6772 */
a22285a6
YZ
6773 trans = btrfs_start_transaction(root, 5);
6774 if (IS_ERR(trans))
6775 return PTR_ERR(trans);
39279cc3 6776
581bb050
LZ
6777 err = btrfs_find_free_ino(root, &objectid);
6778 if (err)
6779 goto out_fail;
6780
aec7477b 6781 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6782 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6783 S_IFDIR | mode, &index);
39279cc3
CM
6784 if (IS_ERR(inode)) {
6785 err = PTR_ERR(inode);
6786 goto out_fail;
6787 }
5f39d397 6788
39279cc3 6789 drop_on_err = 1;
b0d5d10f
CM
6790 /* these must be set before we unlock the inode */
6791 inode->i_op = &btrfs_dir_inode_operations;
6792 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6793
2a7dba39 6794 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6795 if (err)
b0d5d10f 6796 goto out_fail_inode;
39279cc3 6797
6ef06d27 6798 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6799 err = btrfs_update_inode(trans, root, inode);
6800 if (err)
b0d5d10f 6801 goto out_fail_inode;
5f39d397 6802
db0a669f
NB
6803 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6804 dentry->d_name.name,
6805 dentry->d_name.len, 0, index);
39279cc3 6806 if (err)
b0d5d10f 6807 goto out_fail_inode;
5f39d397 6808
39279cc3 6809 d_instantiate(dentry, inode);
b0d5d10f
CM
6810 /*
6811 * mkdir is special. We're unlocking after we call d_instantiate
6812 * to avoid a race with nfsd calling d_instantiate.
6813 */
6814 unlock_new_inode(inode);
39279cc3 6815 drop_on_err = 0;
39279cc3
CM
6816
6817out_fail:
3a45bb20 6818 btrfs_end_transaction(trans);
c7cfb8a5
WS
6819 if (drop_on_err) {
6820 inode_dec_link_count(inode);
39279cc3 6821 iput(inode);
c7cfb8a5 6822 }
2ff7e61e 6823 btrfs_btree_balance_dirty(fs_info);
39279cc3 6824 return err;
b0d5d10f
CM
6825
6826out_fail_inode:
6827 unlock_new_inode(inode);
6828 goto out_fail;
39279cc3
CM
6829}
6830
c8b97818 6831static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6832 struct page *page,
c8b97818
CM
6833 size_t pg_offset, u64 extent_offset,
6834 struct btrfs_file_extent_item *item)
6835{
6836 int ret;
6837 struct extent_buffer *leaf = path->nodes[0];
6838 char *tmp;
6839 size_t max_size;
6840 unsigned long inline_size;
6841 unsigned long ptr;
261507a0 6842 int compress_type;
c8b97818
CM
6843
6844 WARN_ON(pg_offset != 0);
261507a0 6845 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6846 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6847 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6848 btrfs_item_nr(path->slots[0]));
c8b97818 6849 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6850 if (!tmp)
6851 return -ENOMEM;
c8b97818
CM
6852 ptr = btrfs_file_extent_inline_start(item);
6853
6854 read_extent_buffer(leaf, tmp, ptr, inline_size);
6855
09cbfeaf 6856 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6857 ret = btrfs_decompress(compress_type, tmp, page,
6858 extent_offset, inline_size, max_size);
e1699d2d
ZB
6859
6860 /*
6861 * decompression code contains a memset to fill in any space between the end
6862 * of the uncompressed data and the end of max_size in case the decompressed
6863 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6864 * the end of an inline extent and the beginning of the next block, so we
6865 * cover that region here.
6866 */
6867
6868 if (max_size + pg_offset < PAGE_SIZE) {
6869 char *map = kmap(page);
6870 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6871 kunmap(page);
6872 }
c8b97818 6873 kfree(tmp);
166ae5a4 6874 return ret;
c8b97818
CM
6875}
6876
d352ac68
CM
6877/*
6878 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6879 * the ugly parts come from merging extents from the disk with the in-ram
6880 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6881 * where the in-ram extents might be locked pending data=ordered completion.
6882 *
6883 * This also copies inline extents directly into the page.
6884 */
fc4f21b1
NB
6885struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6886 struct page *page,
6887 size_t pg_offset, u64 start, u64 len,
6888 int create)
a52d9a80 6889{
fc4f21b1 6890 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6891 int ret;
6892 int err = 0;
a52d9a80
CM
6893 u64 extent_start = 0;
6894 u64 extent_end = 0;
fc4f21b1 6895 u64 objectid = btrfs_ino(inode);
a52d9a80 6896 u32 found_type;
f421950f 6897 struct btrfs_path *path = NULL;
fc4f21b1 6898 struct btrfs_root *root = inode->root;
a52d9a80 6899 struct btrfs_file_extent_item *item;
5f39d397
CM
6900 struct extent_buffer *leaf;
6901 struct btrfs_key found_key;
a52d9a80 6902 struct extent_map *em = NULL;
fc4f21b1
NB
6903 struct extent_map_tree *em_tree = &inode->extent_tree;
6904 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6905 const bool new_inline = !page || create;
a52d9a80 6906
890871be 6907 read_lock(&em_tree->lock);
d1310b2e 6908 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6909 if (em)
0b246afa 6910 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6911 read_unlock(&em_tree->lock);
d1310b2e 6912
a52d9a80 6913 if (em) {
e1c4b745
CM
6914 if (em->start > start || em->start + em->len <= start)
6915 free_extent_map(em);
6916 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6917 free_extent_map(em);
6918 else
6919 goto out;
a52d9a80 6920 }
172ddd60 6921 em = alloc_extent_map();
a52d9a80 6922 if (!em) {
d1310b2e
CM
6923 err = -ENOMEM;
6924 goto out;
a52d9a80 6925 }
0b246afa 6926 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6927 em->start = EXTENT_MAP_HOLE;
445a6944 6928 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6929 em->len = (u64)-1;
c8b97818 6930 em->block_len = (u64)-1;
f421950f
CM
6931
6932 if (!path) {
6933 path = btrfs_alloc_path();
026fd317
JB
6934 if (!path) {
6935 err = -ENOMEM;
6936 goto out;
6937 }
6938 /*
6939 * Chances are we'll be called again, so go ahead and do
6940 * readahead
6941 */
e4058b54 6942 path->reada = READA_FORWARD;
f421950f
CM
6943 }
6944
5c9a702e 6945 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6946 if (ret < 0) {
6947 err = ret;
6948 goto out;
6949 }
6950
6951 if (ret != 0) {
6952 if (path->slots[0] == 0)
6953 goto not_found;
6954 path->slots[0]--;
6955 }
6956
5f39d397
CM
6957 leaf = path->nodes[0];
6958 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6959 struct btrfs_file_extent_item);
a52d9a80 6960 /* are we inside the extent that was found? */
5f39d397 6961 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6962 found_type = found_key.type;
5f39d397 6963 if (found_key.objectid != objectid ||
a52d9a80 6964 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6965 /*
6966 * If we backup past the first extent we want to move forward
6967 * and see if there is an extent in front of us, otherwise we'll
6968 * say there is a hole for our whole search range which can
6969 * cause problems.
6970 */
6971 extent_end = start;
6972 goto next;
a52d9a80
CM
6973 }
6974
5f39d397
CM
6975 found_type = btrfs_file_extent_type(leaf, item);
6976 extent_start = found_key.offset;
d899e052
YZ
6977 if (found_type == BTRFS_FILE_EXTENT_REG ||
6978 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6979 extent_end = extent_start +
db94535d 6980 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6981
6982 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6983 extent_start);
9036c102
YZ
6984 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6985 size_t size;
514ac8ad 6986 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 6987 extent_end = ALIGN(extent_start + size,
0b246afa 6988 fs_info->sectorsize);
09ed2f16
LB
6989
6990 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6991 path->slots[0],
6992 extent_start);
9036c102 6993 }
25a50341 6994next:
9036c102
YZ
6995 if (start >= extent_end) {
6996 path->slots[0]++;
6997 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6998 ret = btrfs_next_leaf(root, path);
6999 if (ret < 0) {
7000 err = ret;
7001 goto out;
a52d9a80 7002 }
9036c102
YZ
7003 if (ret > 0)
7004 goto not_found;
7005 leaf = path->nodes[0];
a52d9a80 7006 }
9036c102
YZ
7007 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7008 if (found_key.objectid != objectid ||
7009 found_key.type != BTRFS_EXTENT_DATA_KEY)
7010 goto not_found;
7011 if (start + len <= found_key.offset)
7012 goto not_found;
e2eca69d
WS
7013 if (start > found_key.offset)
7014 goto next;
9036c102 7015 em->start = start;
70c8a91c 7016 em->orig_start = start;
9036c102
YZ
7017 em->len = found_key.offset - start;
7018 goto not_found_em;
7019 }
7020
fc4f21b1 7021 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7022 new_inline, em);
7ffbb598 7023
d899e052
YZ
7024 if (found_type == BTRFS_FILE_EXTENT_REG ||
7025 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7026 goto insert;
7027 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7028 unsigned long ptr;
a52d9a80 7029 char *map;
3326d1b0
CM
7030 size_t size;
7031 size_t extent_offset;
7032 size_t copy_size;
a52d9a80 7033
7ffbb598 7034 if (new_inline)
689f9346 7035 goto out;
5f39d397 7036
514ac8ad 7037 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7038 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7039 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7040 size - extent_offset);
3326d1b0 7041 em->start = extent_start + extent_offset;
0b246afa 7042 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7043 em->orig_block_len = em->len;
70c8a91c 7044 em->orig_start = em->start;
689f9346 7045 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
bf46f52d 7046 if (!PageUptodate(page)) {
261507a0
LZ
7047 if (btrfs_file_extent_compression(leaf, item) !=
7048 BTRFS_COMPRESS_NONE) {
e40da0e5 7049 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7050 extent_offset, item);
166ae5a4
ZB
7051 if (ret) {
7052 err = ret;
7053 goto out;
7054 }
c8b97818
CM
7055 } else {
7056 map = kmap(page);
7057 read_extent_buffer(leaf, map + pg_offset, ptr,
7058 copy_size);
09cbfeaf 7059 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7060 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7061 PAGE_SIZE - pg_offset -
93c82d57
CM
7062 copy_size);
7063 }
c8b97818
CM
7064 kunmap(page);
7065 }
179e29e4 7066 flush_dcache_page(page);
a52d9a80 7067 }
d1310b2e 7068 set_extent_uptodate(io_tree, em->start,
507903b8 7069 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7070 goto insert;
a52d9a80
CM
7071 }
7072not_found:
7073 em->start = start;
70c8a91c 7074 em->orig_start = start;
d1310b2e 7075 em->len = len;
a52d9a80 7076not_found_em:
5f39d397 7077 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 7078insert:
b3b4aa74 7079 btrfs_release_path(path);
d1310b2e 7080 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7081 btrfs_err(fs_info,
5d163e0e
JM
7082 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7083 em->start, em->len, start, len);
a52d9a80
CM
7084 err = -EIO;
7085 goto out;
7086 }
d1310b2e
CM
7087
7088 err = 0;
890871be 7089 write_lock(&em_tree->lock);
7b4df058 7090 err = btrfs_add_extent_mapping(em_tree, &em, start, len);
890871be 7091 write_unlock(&em_tree->lock);
a52d9a80 7092out:
1abe9b8a 7093
fc4f21b1 7094 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7095
527afb44 7096 btrfs_free_path(path);
a52d9a80
CM
7097 if (err) {
7098 free_extent_map(em);
a52d9a80
CM
7099 return ERR_PTR(err);
7100 }
79787eaa 7101 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7102 return em;
7103}
7104
fc4f21b1
NB
7105struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7106 struct page *page,
7107 size_t pg_offset, u64 start, u64 len,
7108 int create)
ec29ed5b
CM
7109{
7110 struct extent_map *em;
7111 struct extent_map *hole_em = NULL;
7112 u64 range_start = start;
7113 u64 end;
7114 u64 found;
7115 u64 found_end;
7116 int err = 0;
7117
7118 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7119 if (IS_ERR(em))
7120 return em;
9986277e
DC
7121 /*
7122 * If our em maps to:
7123 * - a hole or
7124 * - a pre-alloc extent,
7125 * there might actually be delalloc bytes behind it.
7126 */
7127 if (em->block_start != EXTENT_MAP_HOLE &&
7128 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7129 return em;
7130 else
7131 hole_em = em;
ec29ed5b
CM
7132
7133 /* check to see if we've wrapped (len == -1 or similar) */
7134 end = start + len;
7135 if (end < start)
7136 end = (u64)-1;
7137 else
7138 end -= 1;
7139
7140 em = NULL;
7141
7142 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7143 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7144 end, len, EXTENT_DELALLOC, 1);
7145 found_end = range_start + found;
7146 if (found_end < range_start)
7147 found_end = (u64)-1;
7148
7149 /*
7150 * we didn't find anything useful, return
7151 * the original results from get_extent()
7152 */
7153 if (range_start > end || found_end <= start) {
7154 em = hole_em;
7155 hole_em = NULL;
7156 goto out;
7157 }
7158
7159 /* adjust the range_start to make sure it doesn't
7160 * go backwards from the start they passed in
7161 */
67871254 7162 range_start = max(start, range_start);
ec29ed5b
CM
7163 found = found_end - range_start;
7164
7165 if (found > 0) {
7166 u64 hole_start = start;
7167 u64 hole_len = len;
7168
172ddd60 7169 em = alloc_extent_map();
ec29ed5b
CM
7170 if (!em) {
7171 err = -ENOMEM;
7172 goto out;
7173 }
7174 /*
7175 * when btrfs_get_extent can't find anything it
7176 * returns one huge hole
7177 *
7178 * make sure what it found really fits our range, and
7179 * adjust to make sure it is based on the start from
7180 * the caller
7181 */
7182 if (hole_em) {
7183 u64 calc_end = extent_map_end(hole_em);
7184
7185 if (calc_end <= start || (hole_em->start > end)) {
7186 free_extent_map(hole_em);
7187 hole_em = NULL;
7188 } else {
7189 hole_start = max(hole_em->start, start);
7190 hole_len = calc_end - hole_start;
7191 }
7192 }
7193 em->bdev = NULL;
7194 if (hole_em && range_start > hole_start) {
7195 /* our hole starts before our delalloc, so we
7196 * have to return just the parts of the hole
7197 * that go until the delalloc starts
7198 */
7199 em->len = min(hole_len,
7200 range_start - hole_start);
7201 em->start = hole_start;
7202 em->orig_start = hole_start;
7203 /*
7204 * don't adjust block start at all,
7205 * it is fixed at EXTENT_MAP_HOLE
7206 */
7207 em->block_start = hole_em->block_start;
7208 em->block_len = hole_len;
f9e4fb53
LB
7209 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7210 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7211 } else {
7212 em->start = range_start;
7213 em->len = found;
7214 em->orig_start = range_start;
7215 em->block_start = EXTENT_MAP_DELALLOC;
7216 em->block_len = found;
7217 }
bf8d32b9 7218 } else {
ec29ed5b
CM
7219 return hole_em;
7220 }
7221out:
7222
7223 free_extent_map(hole_em);
7224 if (err) {
7225 free_extent_map(em);
7226 return ERR_PTR(err);
7227 }
7228 return em;
7229}
7230
5f9a8a51
FM
7231static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7232 const u64 start,
7233 const u64 len,
7234 const u64 orig_start,
7235 const u64 block_start,
7236 const u64 block_len,
7237 const u64 orig_block_len,
7238 const u64 ram_bytes,
7239 const int type)
7240{
7241 struct extent_map *em = NULL;
7242 int ret;
7243
5f9a8a51 7244 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7245 em = create_io_em(inode, start, len, orig_start,
7246 block_start, block_len, orig_block_len,
7247 ram_bytes,
7248 BTRFS_COMPRESS_NONE, /* compress_type */
7249 type);
5f9a8a51
FM
7250 if (IS_ERR(em))
7251 goto out;
7252 }
7253 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7254 len, block_len, type);
7255 if (ret) {
7256 if (em) {
7257 free_extent_map(em);
dcdbc059 7258 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7259 start + len - 1, 0);
7260 }
7261 em = ERR_PTR(ret);
7262 }
7263 out:
5f9a8a51
FM
7264
7265 return em;
7266}
7267
4b46fce2
JB
7268static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7269 u64 start, u64 len)
7270{
0b246afa 7271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7272 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7273 struct extent_map *em;
4b46fce2
JB
7274 struct btrfs_key ins;
7275 u64 alloc_hint;
7276 int ret;
4b46fce2 7277
4b46fce2 7278 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7279 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7280 0, alloc_hint, &ins, 1, 1);
00361589
JB
7281 if (ret)
7282 return ERR_PTR(ret);
4b46fce2 7283
5f9a8a51
FM
7284 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7285 ins.objectid, ins.offset, ins.offset,
6288d6ea 7286 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7287 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7288 if (IS_ERR(em))
2ff7e61e
JM
7289 btrfs_free_reserved_extent(fs_info, ins.objectid,
7290 ins.offset, 1);
de0ee0ed 7291
4b46fce2
JB
7292 return em;
7293}
7294
46bfbb5c
CM
7295/*
7296 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7297 * block must be cow'd
7298 */
00361589 7299noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7300 u64 *orig_start, u64 *orig_block_len,
7301 u64 *ram_bytes)
46bfbb5c 7302{
2ff7e61e 7303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7304 struct btrfs_path *path;
7305 int ret;
7306 struct extent_buffer *leaf;
7307 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7308 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7309 struct btrfs_file_extent_item *fi;
7310 struct btrfs_key key;
7311 u64 disk_bytenr;
7312 u64 backref_offset;
7313 u64 extent_end;
7314 u64 num_bytes;
7315 int slot;
7316 int found_type;
7ee9e440 7317 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7318
46bfbb5c
CM
7319 path = btrfs_alloc_path();
7320 if (!path)
7321 return -ENOMEM;
7322
f85b7379
DS
7323 ret = btrfs_lookup_file_extent(NULL, root, path,
7324 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7325 if (ret < 0)
7326 goto out;
7327
7328 slot = path->slots[0];
7329 if (ret == 1) {
7330 if (slot == 0) {
7331 /* can't find the item, must cow */
7332 ret = 0;
7333 goto out;
7334 }
7335 slot--;
7336 }
7337 ret = 0;
7338 leaf = path->nodes[0];
7339 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7340 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7341 key.type != BTRFS_EXTENT_DATA_KEY) {
7342 /* not our file or wrong item type, must cow */
7343 goto out;
7344 }
7345
7346 if (key.offset > offset) {
7347 /* Wrong offset, must cow */
7348 goto out;
7349 }
7350
7351 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7352 found_type = btrfs_file_extent_type(leaf, fi);
7353 if (found_type != BTRFS_FILE_EXTENT_REG &&
7354 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7355 /* not a regular extent, must cow */
7356 goto out;
7357 }
7ee9e440
JB
7358
7359 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7360 goto out;
7361
e77751aa
MX
7362 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7363 if (extent_end <= offset)
7364 goto out;
7365
46bfbb5c 7366 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7367 if (disk_bytenr == 0)
7368 goto out;
7369
7370 if (btrfs_file_extent_compression(leaf, fi) ||
7371 btrfs_file_extent_encryption(leaf, fi) ||
7372 btrfs_file_extent_other_encoding(leaf, fi))
7373 goto out;
7374
46bfbb5c
CM
7375 backref_offset = btrfs_file_extent_offset(leaf, fi);
7376
7ee9e440
JB
7377 if (orig_start) {
7378 *orig_start = key.offset - backref_offset;
7379 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7380 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7381 }
eb384b55 7382
2ff7e61e 7383 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7384 goto out;
7b2b7085
MX
7385
7386 num_bytes = min(offset + *len, extent_end) - offset;
7387 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7388 u64 range_end;
7389
da17066c
JM
7390 range_end = round_up(offset + num_bytes,
7391 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7392 ret = test_range_bit(io_tree, offset, range_end,
7393 EXTENT_DELALLOC, 0, NULL);
7394 if (ret) {
7395 ret = -EAGAIN;
7396 goto out;
7397 }
7398 }
7399
1bda19eb 7400 btrfs_release_path(path);
46bfbb5c
CM
7401
7402 /*
7403 * look for other files referencing this extent, if we
7404 * find any we must cow
7405 */
00361589 7406
e4c3b2dc 7407 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7408 key.offset - backref_offset, disk_bytenr);
00361589
JB
7409 if (ret) {
7410 ret = 0;
7411 goto out;
7412 }
46bfbb5c
CM
7413
7414 /*
7415 * adjust disk_bytenr and num_bytes to cover just the bytes
7416 * in this extent we are about to write. If there
7417 * are any csums in that range we have to cow in order
7418 * to keep the csums correct
7419 */
7420 disk_bytenr += backref_offset;
7421 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7422 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7423 goto out;
46bfbb5c
CM
7424 /*
7425 * all of the above have passed, it is safe to overwrite this extent
7426 * without cow
7427 */
eb384b55 7428 *len = num_bytes;
46bfbb5c
CM
7429 ret = 1;
7430out:
7431 btrfs_free_path(path);
7432 return ret;
7433}
7434
fc4adbff
AG
7435bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7436{
7437 struct radix_tree_root *root = &inode->i_mapping->page_tree;
e03733da 7438 bool found = false;
fc4adbff
AG
7439 void **pagep = NULL;
7440 struct page *page = NULL;
cc2b702c
DS
7441 unsigned long start_idx;
7442 unsigned long end_idx;
fc4adbff 7443
09cbfeaf 7444 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7445
7446 /*
7447 * end is the last byte in the last page. end == start is legal
7448 */
09cbfeaf 7449 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7450
7451 rcu_read_lock();
7452
7453 /* Most of the code in this while loop is lifted from
7454 * find_get_page. It's been modified to begin searching from a
7455 * page and return just the first page found in that range. If the
7456 * found idx is less than or equal to the end idx then we know that
7457 * a page exists. If no pages are found or if those pages are
7458 * outside of the range then we're fine (yay!) */
7459 while (page == NULL &&
7460 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7461 page = radix_tree_deref_slot(pagep);
7462 if (unlikely(!page))
7463 break;
7464
7465 if (radix_tree_exception(page)) {
809f9016
FM
7466 if (radix_tree_deref_retry(page)) {
7467 page = NULL;
fc4adbff 7468 continue;
809f9016 7469 }
fc4adbff
AG
7470 /*
7471 * Otherwise, shmem/tmpfs must be storing a swap entry
7472 * here as an exceptional entry: so return it without
7473 * attempting to raise page count.
7474 */
6fdef6d4 7475 page = NULL;
fc4adbff
AG
7476 break; /* TODO: Is this relevant for this use case? */
7477 }
7478
91405151
FM
7479 if (!page_cache_get_speculative(page)) {
7480 page = NULL;
fc4adbff 7481 continue;
91405151 7482 }
fc4adbff
AG
7483
7484 /*
7485 * Has the page moved?
7486 * This is part of the lockless pagecache protocol. See
7487 * include/linux/pagemap.h for details.
7488 */
7489 if (unlikely(page != *pagep)) {
09cbfeaf 7490 put_page(page);
fc4adbff
AG
7491 page = NULL;
7492 }
7493 }
7494
7495 if (page) {
7496 if (page->index <= end_idx)
7497 found = true;
09cbfeaf 7498 put_page(page);
fc4adbff
AG
7499 }
7500
7501 rcu_read_unlock();
7502 return found;
7503}
7504
eb838e73
JB
7505static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7506 struct extent_state **cached_state, int writing)
7507{
7508 struct btrfs_ordered_extent *ordered;
7509 int ret = 0;
7510
7511 while (1) {
7512 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7513 cached_state);
eb838e73
JB
7514 /*
7515 * We're concerned with the entire range that we're going to be
01327610 7516 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7517 * extents in this range.
7518 */
a776c6fa 7519 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7520 lockend - lockstart + 1);
7521
7522 /*
7523 * We need to make sure there are no buffered pages in this
7524 * range either, we could have raced between the invalidate in
7525 * generic_file_direct_write and locking the extent. The
7526 * invalidate needs to happen so that reads after a write do not
7527 * get stale data.
7528 */
fc4adbff
AG
7529 if (!ordered &&
7530 (!writing ||
7531 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7532 break;
7533
7534 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7535 cached_state);
eb838e73
JB
7536
7537 if (ordered) {
ade77029
FM
7538 /*
7539 * If we are doing a DIO read and the ordered extent we
7540 * found is for a buffered write, we can not wait for it
7541 * to complete and retry, because if we do so we can
7542 * deadlock with concurrent buffered writes on page
7543 * locks. This happens only if our DIO read covers more
7544 * than one extent map, if at this point has already
7545 * created an ordered extent for a previous extent map
7546 * and locked its range in the inode's io tree, and a
7547 * concurrent write against that previous extent map's
7548 * range and this range started (we unlock the ranges
7549 * in the io tree only when the bios complete and
7550 * buffered writes always lock pages before attempting
7551 * to lock range in the io tree).
7552 */
7553 if (writing ||
7554 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7555 btrfs_start_ordered_extent(inode, ordered, 1);
7556 else
7557 ret = -ENOTBLK;
eb838e73
JB
7558 btrfs_put_ordered_extent(ordered);
7559 } else {
eb838e73 7560 /*
b850ae14
FM
7561 * We could trigger writeback for this range (and wait
7562 * for it to complete) and then invalidate the pages for
7563 * this range (through invalidate_inode_pages2_range()),
7564 * but that can lead us to a deadlock with a concurrent
7565 * call to readpages() (a buffered read or a defrag call
7566 * triggered a readahead) on a page lock due to an
7567 * ordered dio extent we created before but did not have
7568 * yet a corresponding bio submitted (whence it can not
7569 * complete), which makes readpages() wait for that
7570 * ordered extent to complete while holding a lock on
7571 * that page.
eb838e73 7572 */
b850ae14 7573 ret = -ENOTBLK;
eb838e73
JB
7574 }
7575
ade77029
FM
7576 if (ret)
7577 break;
7578
eb838e73
JB
7579 cond_resched();
7580 }
7581
7582 return ret;
7583}
7584
6f9994db
LB
7585/* The callers of this must take lock_extent() */
7586static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7587 u64 orig_start, u64 block_start,
7588 u64 block_len, u64 orig_block_len,
7589 u64 ram_bytes, int compress_type,
7590 int type)
69ffb543
JB
7591{
7592 struct extent_map_tree *em_tree;
7593 struct extent_map *em;
7594 struct btrfs_root *root = BTRFS_I(inode)->root;
7595 int ret;
7596
6f9994db
LB
7597 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7598 type == BTRFS_ORDERED_COMPRESSED ||
7599 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7600 type == BTRFS_ORDERED_REGULAR);
6f9994db 7601
69ffb543
JB
7602 em_tree = &BTRFS_I(inode)->extent_tree;
7603 em = alloc_extent_map();
7604 if (!em)
7605 return ERR_PTR(-ENOMEM);
7606
7607 em->start = start;
7608 em->orig_start = orig_start;
7609 em->len = len;
7610 em->block_len = block_len;
7611 em->block_start = block_start;
7612 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7613 em->orig_block_len = orig_block_len;
cc95bef6 7614 em->ram_bytes = ram_bytes;
70c8a91c 7615 em->generation = -1;
69ffb543 7616 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7617 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7618 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7619 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7620 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7621 em->compress_type = compress_type;
7622 }
69ffb543
JB
7623
7624 do {
dcdbc059 7625 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7626 em->start + em->len - 1, 0);
7627 write_lock(&em_tree->lock);
09a2a8f9 7628 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7629 write_unlock(&em_tree->lock);
6f9994db
LB
7630 /*
7631 * The caller has taken lock_extent(), who could race with us
7632 * to add em?
7633 */
69ffb543
JB
7634 } while (ret == -EEXIST);
7635
7636 if (ret) {
7637 free_extent_map(em);
7638 return ERR_PTR(ret);
7639 }
7640
6f9994db 7641 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7642 return em;
7643}
7644
4b46fce2
JB
7645static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7646 struct buffer_head *bh_result, int create)
7647{
0b246afa 7648 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7649 struct extent_map *em;
eb838e73 7650 struct extent_state *cached_state = NULL;
50745b0a 7651 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7652 u64 start = iblock << inode->i_blkbits;
eb838e73 7653 u64 lockstart, lockend;
4b46fce2 7654 u64 len = bh_result->b_size;
eb838e73 7655 int unlock_bits = EXTENT_LOCKED;
0934856d 7656 int ret = 0;
eb838e73 7657
172a5049 7658 if (create)
3266789f 7659 unlock_bits |= EXTENT_DIRTY;
172a5049 7660 else
0b246afa 7661 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7662
c329861d
JB
7663 lockstart = start;
7664 lockend = start + len - 1;
7665
e1cbbfa5
JB
7666 if (current->journal_info) {
7667 /*
7668 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7669 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7670 * confused.
7671 */
50745b0a 7672 dio_data = current->journal_info;
e1cbbfa5
JB
7673 current->journal_info = NULL;
7674 }
7675
eb838e73
JB
7676 /*
7677 * If this errors out it's because we couldn't invalidate pagecache for
7678 * this range and we need to fallback to buffered.
7679 */
9c9464cc
FM
7680 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7681 create)) {
7682 ret = -ENOTBLK;
7683 goto err;
7684 }
eb838e73 7685
fc4f21b1 7686 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7687 if (IS_ERR(em)) {
7688 ret = PTR_ERR(em);
7689 goto unlock_err;
7690 }
4b46fce2
JB
7691
7692 /*
7693 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7694 * io. INLINE is special, and we could probably kludge it in here, but
7695 * it's still buffered so for safety lets just fall back to the generic
7696 * buffered path.
7697 *
7698 * For COMPRESSED we _have_ to read the entire extent in so we can
7699 * decompress it, so there will be buffering required no matter what we
7700 * do, so go ahead and fallback to buffered.
7701 *
01327610 7702 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7703 * to buffered IO. Don't blame me, this is the price we pay for using
7704 * the generic code.
7705 */
7706 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7707 em->block_start == EXTENT_MAP_INLINE) {
7708 free_extent_map(em);
eb838e73
JB
7709 ret = -ENOTBLK;
7710 goto unlock_err;
4b46fce2
JB
7711 }
7712
7713 /* Just a good old fashioned hole, return */
7714 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7715 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7716 free_extent_map(em);
eb838e73 7717 goto unlock_err;
4b46fce2
JB
7718 }
7719
7720 /*
7721 * We don't allocate a new extent in the following cases
7722 *
7723 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7724 * existing extent.
7725 * 2) The extent is marked as PREALLOC. We're good to go here and can
7726 * just use the extent.
7727 *
7728 */
46bfbb5c 7729 if (!create) {
eb838e73
JB
7730 len = min(len, em->len - (start - em->start));
7731 lockstart = start + len;
7732 goto unlock;
46bfbb5c 7733 }
4b46fce2
JB
7734
7735 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7736 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7737 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7738 int type;
eb384b55 7739 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7740
7741 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7742 type = BTRFS_ORDERED_PREALLOC;
7743 else
7744 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7745 len = min(len, em->len - (start - em->start));
4b46fce2 7746 block_start = em->block_start + (start - em->start);
46bfbb5c 7747
00361589 7748 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7749 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7750 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7751 struct extent_map *em2;
0b901916 7752
5f9a8a51
FM
7753 em2 = btrfs_create_dio_extent(inode, start, len,
7754 orig_start, block_start,
7755 len, orig_block_len,
7756 ram_bytes, type);
0b246afa 7757 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7758 if (type == BTRFS_ORDERED_PREALLOC) {
7759 free_extent_map(em);
5f9a8a51 7760 em = em2;
69ffb543 7761 }
5f9a8a51
FM
7762 if (em2 && IS_ERR(em2)) {
7763 ret = PTR_ERR(em2);
eb838e73 7764 goto unlock_err;
46bfbb5c 7765 }
18513091
WX
7766 /*
7767 * For inode marked NODATACOW or extent marked PREALLOC,
7768 * use the existing or preallocated extent, so does not
7769 * need to adjust btrfs_space_info's bytes_may_use.
7770 */
7771 btrfs_free_reserved_data_space_noquota(inode,
7772 start, len);
46bfbb5c 7773 goto unlock;
4b46fce2 7774 }
4b46fce2 7775 }
00361589 7776
46bfbb5c
CM
7777 /*
7778 * this will cow the extent, reset the len in case we changed
7779 * it above
7780 */
7781 len = bh_result->b_size;
70c8a91c
JB
7782 free_extent_map(em);
7783 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7784 if (IS_ERR(em)) {
7785 ret = PTR_ERR(em);
7786 goto unlock_err;
7787 }
46bfbb5c
CM
7788 len = min(len, em->len - (start - em->start));
7789unlock:
4b46fce2
JB
7790 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7791 inode->i_blkbits;
46bfbb5c 7792 bh_result->b_size = len;
4b46fce2
JB
7793 bh_result->b_bdev = em->bdev;
7794 set_buffer_mapped(bh_result);
c3473e83
JB
7795 if (create) {
7796 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7797 set_buffer_new(bh_result);
7798
7799 /*
7800 * Need to update the i_size under the extent lock so buffered
7801 * readers will get the updated i_size when we unlock.
7802 */
4aaedfb0 7803 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7804 i_size_write(inode, start + len);
0934856d 7805
50745b0a 7806 WARN_ON(dio_data->reserve < len);
7807 dio_data->reserve -= len;
f28a4928 7808 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7809 current->journal_info = dio_data;
c3473e83 7810 }
4b46fce2 7811
eb838e73
JB
7812 /*
7813 * In the case of write we need to clear and unlock the entire range,
7814 * in the case of read we need to unlock only the end area that we
7815 * aren't using if there is any left over space.
7816 */
24c03fa5 7817 if (lockstart < lockend) {
0934856d
MX
7818 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7819 lockend, unlock_bits, 1, 0,
ae0f1625 7820 &cached_state);
24c03fa5 7821 } else {
eb838e73 7822 free_extent_state(cached_state);
24c03fa5 7823 }
eb838e73 7824
4b46fce2
JB
7825 free_extent_map(em);
7826
7827 return 0;
eb838e73
JB
7828
7829unlock_err:
eb838e73 7830 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7831 unlock_bits, 1, 0, &cached_state);
9c9464cc 7832err:
50745b0a 7833 if (dio_data)
7834 current->journal_info = dio_data;
eb838e73 7835 return ret;
4b46fce2
JB
7836}
7837
58efbc9f
OS
7838static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7839 struct bio *bio,
7840 int mirror_num)
8b110e39 7841{
2ff7e61e 7842 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7843 blk_status_t ret;
8b110e39 7844
37226b21 7845 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7846
2ff7e61e 7847 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7848 if (ret)
ea057f6d 7849 return ret;
8b110e39 7850
2ff7e61e 7851 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7852
8b110e39
MX
7853 return ret;
7854}
7855
7856static int btrfs_check_dio_repairable(struct inode *inode,
7857 struct bio *failed_bio,
7858 struct io_failure_record *failrec,
7859 int failed_mirror)
7860{
ab8d0fc4 7861 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7862 int num_copies;
7863
ab8d0fc4 7864 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7865 if (num_copies == 1) {
7866 /*
7867 * we only have a single copy of the data, so don't bother with
7868 * all the retry and error correction code that follows. no
7869 * matter what the error is, it is very likely to persist.
7870 */
ab8d0fc4
JM
7871 btrfs_debug(fs_info,
7872 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7873 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7874 return 0;
7875 }
7876
7877 failrec->failed_mirror = failed_mirror;
7878 failrec->this_mirror++;
7879 if (failrec->this_mirror == failed_mirror)
7880 failrec->this_mirror++;
7881
7882 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7883 btrfs_debug(fs_info,
7884 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7885 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7886 return 0;
7887 }
7888
7889 return 1;
7890}
7891
58efbc9f
OS
7892static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7893 struct page *page, unsigned int pgoff,
7894 u64 start, u64 end, int failed_mirror,
7895 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7896{
7897 struct io_failure_record *failrec;
7870d082
JB
7898 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7899 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7900 struct bio *bio;
7901 int isector;
f1c77c55 7902 unsigned int read_mode = 0;
17347cec 7903 int segs;
8b110e39 7904 int ret;
58efbc9f 7905 blk_status_t status;
8b110e39 7906
37226b21 7907 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7908
7909 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7910 if (ret)
58efbc9f 7911 return errno_to_blk_status(ret);
8b110e39
MX
7912
7913 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7914 failed_mirror);
7915 if (!ret) {
7870d082 7916 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7917 return BLK_STS_IOERR;
8b110e39
MX
7918 }
7919
17347cec
LB
7920 segs = bio_segments(failed_bio);
7921 if (segs > 1 ||
7922 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7923 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7924
7925 isector = start - btrfs_io_bio(failed_bio)->logical;
7926 isector >>= inode->i_sb->s_blocksize_bits;
7927 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7928 pgoff, isector, repair_endio, repair_arg);
37226b21 7929 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
7930
7931 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7932 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7933 read_mode, failrec->this_mirror, failrec->in_validation);
7934
58efbc9f
OS
7935 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7936 if (status) {
7870d082 7937 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7938 bio_put(bio);
7939 }
7940
58efbc9f 7941 return status;
8b110e39
MX
7942}
7943
7944struct btrfs_retry_complete {
7945 struct completion done;
7946 struct inode *inode;
7947 u64 start;
7948 int uptodate;
7949};
7950
4246a0b6 7951static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7952{
7953 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7954 struct inode *inode = done->inode;
8b110e39 7955 struct bio_vec *bvec;
7870d082 7956 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
7957 int i;
7958
4e4cbee9 7959 if (bio->bi_status)
8b110e39
MX
7960 goto end;
7961
2dabb324 7962 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
7963 io_tree = &BTRFS_I(inode)->io_tree;
7964 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7965 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7966
8b110e39 7967 done->uptodate = 1;
c09abff8 7968 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7969 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
7970 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7971 io_tree, done->start, bvec->bv_page,
7972 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
7973end:
7974 complete(&done->done);
7975 bio_put(bio);
7976}
7977
58efbc9f
OS
7978static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7979 struct btrfs_io_bio *io_bio)
4b46fce2 7980{
2dabb324 7981 struct btrfs_fs_info *fs_info;
17347cec
LB
7982 struct bio_vec bvec;
7983 struct bvec_iter iter;
8b110e39 7984 struct btrfs_retry_complete done;
4b46fce2 7985 u64 start;
2dabb324
CR
7986 unsigned int pgoff;
7987 u32 sectorsize;
7988 int nr_sectors;
58efbc9f
OS
7989 blk_status_t ret;
7990 blk_status_t err = BLK_STS_OK;
4b46fce2 7991
2dabb324 7992 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7993 sectorsize = fs_info->sectorsize;
2dabb324 7994
8b110e39
MX
7995 start = io_bio->logical;
7996 done.inode = inode;
17347cec 7997 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7998
17347cec
LB
7999 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8000 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8001 pgoff = bvec.bv_offset;
2dabb324
CR
8002
8003next_block_or_try_again:
8b110e39
MX
8004 done.uptodate = 0;
8005 done.start = start;
8006 init_completion(&done.done);
8007
17347cec 8008 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8009 pgoff, start, start + sectorsize - 1,
8010 io_bio->mirror_num,
8011 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8012 if (ret) {
8013 err = ret;
8014 goto next;
8015 }
8b110e39 8016
9c17f6cd 8017 wait_for_completion_io(&done.done);
8b110e39
MX
8018
8019 if (!done.uptodate) {
8020 /* We might have another mirror, so try again */
2dabb324 8021 goto next_block_or_try_again;
8b110e39
MX
8022 }
8023
629ebf4f 8024next:
2dabb324
CR
8025 start += sectorsize;
8026
97bf5a55
LB
8027 nr_sectors--;
8028 if (nr_sectors) {
2dabb324 8029 pgoff += sectorsize;
97bf5a55 8030 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8031 goto next_block_or_try_again;
8032 }
8b110e39
MX
8033 }
8034
629ebf4f 8035 return err;
8b110e39
MX
8036}
8037
4246a0b6 8038static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8039{
8040 struct btrfs_retry_complete *done = bio->bi_private;
8041 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8042 struct extent_io_tree *io_tree, *failure_tree;
8043 struct inode *inode = done->inode;
8b110e39
MX
8044 struct bio_vec *bvec;
8045 int uptodate;
8046 int ret;
8047 int i;
8048
4e4cbee9 8049 if (bio->bi_status)
8b110e39
MX
8050 goto end;
8051
8052 uptodate = 1;
2dabb324 8053
2dabb324 8054 ASSERT(bio->bi_vcnt == 1);
2e949b0a 8055 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8056
7870d082
JB
8057 io_tree = &BTRFS_I(inode)->io_tree;
8058 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8059
c09abff8 8060 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8061 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8062 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8063 bvec->bv_offset, done->start,
8064 bvec->bv_len);
8b110e39 8065 if (!ret)
7870d082
JB
8066 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8067 failure_tree, io_tree, done->start,
8068 bvec->bv_page,
8069 btrfs_ino(BTRFS_I(inode)),
8070 bvec->bv_offset);
8b110e39
MX
8071 else
8072 uptodate = 0;
8073 }
8074
8075 done->uptodate = uptodate;
8076end:
8077 complete(&done->done);
8078 bio_put(bio);
8079}
8080
4e4cbee9
CH
8081static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8082 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8083{
2dabb324 8084 struct btrfs_fs_info *fs_info;
17347cec
LB
8085 struct bio_vec bvec;
8086 struct bvec_iter iter;
8b110e39
MX
8087 struct btrfs_retry_complete done;
8088 u64 start;
8089 u64 offset = 0;
2dabb324
CR
8090 u32 sectorsize;
8091 int nr_sectors;
8092 unsigned int pgoff;
8093 int csum_pos;
ef7cdac1 8094 bool uptodate = (err == 0);
8b110e39 8095 int ret;
58efbc9f 8096 blk_status_t status;
dc380aea 8097
2dabb324 8098 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8099 sectorsize = fs_info->sectorsize;
2dabb324 8100
58efbc9f 8101 err = BLK_STS_OK;
c1dc0896 8102 start = io_bio->logical;
8b110e39 8103 done.inode = inode;
17347cec 8104 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8105
17347cec
LB
8106 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8107 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8108
17347cec 8109 pgoff = bvec.bv_offset;
2dabb324 8110next_block:
ef7cdac1
LB
8111 if (uptodate) {
8112 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8113 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8114 bvec.bv_page, pgoff, start, sectorsize);
8115 if (likely(!ret))
8116 goto next;
8117 }
8b110e39
MX
8118try_again:
8119 done.uptodate = 0;
8120 done.start = start;
8121 init_completion(&done.done);
8122
58efbc9f
OS
8123 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8124 pgoff, start, start + sectorsize - 1,
8125 io_bio->mirror_num, btrfs_retry_endio,
8126 &done);
8127 if (status) {
8128 err = status;
8b110e39
MX
8129 goto next;
8130 }
8131
9c17f6cd 8132 wait_for_completion_io(&done.done);
8b110e39
MX
8133
8134 if (!done.uptodate) {
8135 /* We might have another mirror, so try again */
8136 goto try_again;
8137 }
8138next:
2dabb324
CR
8139 offset += sectorsize;
8140 start += sectorsize;
8141
8142 ASSERT(nr_sectors);
8143
97bf5a55
LB
8144 nr_sectors--;
8145 if (nr_sectors) {
2dabb324 8146 pgoff += sectorsize;
97bf5a55 8147 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8148 goto next_block;
8149 }
2c30c71b 8150 }
c1dc0896
MX
8151
8152 return err;
8153}
8154
4e4cbee9
CH
8155static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8156 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8157{
8158 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8159
8160 if (skip_csum) {
8161 if (unlikely(err))
8162 return __btrfs_correct_data_nocsum(inode, io_bio);
8163 else
58efbc9f 8164 return BLK_STS_OK;
8b110e39
MX
8165 } else {
8166 return __btrfs_subio_endio_read(inode, io_bio, err);
8167 }
8168}
8169
4246a0b6 8170static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8171{
8172 struct btrfs_dio_private *dip = bio->bi_private;
8173 struct inode *inode = dip->inode;
8174 struct bio *dio_bio;
8175 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8176 blk_status_t err = bio->bi_status;
c1dc0896 8177
99c4e3b9 8178 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8179 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8180
4b46fce2 8181 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8182 dip->logical_offset + dip->bytes - 1);
9be3395b 8183 dio_bio = dip->dio_bio;
4b46fce2 8184
4b46fce2 8185 kfree(dip);
c0da7aa1 8186
99c4e3b9 8187 dio_bio->bi_status = err;
4055351c 8188 dio_end_io(dio_bio);
23ea8e5a
MX
8189
8190 if (io_bio->end_io)
4e4cbee9 8191 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8192 bio_put(bio);
4b46fce2
JB
8193}
8194
52427260
QW
8195static void __endio_write_update_ordered(struct inode *inode,
8196 const u64 offset, const u64 bytes,
8197 const bool uptodate)
4b46fce2 8198{
0b246afa 8199 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8200 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8201 struct btrfs_workqueue *wq;
8202 btrfs_work_func_t func;
14543774
FM
8203 u64 ordered_offset = offset;
8204 u64 ordered_bytes = bytes;
67c003f9 8205 u64 last_offset;
4b46fce2
JB
8206 int ret;
8207
52427260
QW
8208 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8209 wq = fs_info->endio_freespace_worker;
8210 func = btrfs_freespace_write_helper;
8211 } else {
8212 wq = fs_info->endio_write_workers;
8213 func = btrfs_endio_write_helper;
8214 }
8215
163cf09c 8216again:
67c003f9 8217 last_offset = ordered_offset;
163cf09c
CM
8218 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8219 &ordered_offset,
4246a0b6 8220 ordered_bytes,
14543774 8221 uptodate);
4b46fce2 8222 if (!ret)
163cf09c 8223 goto out_test;
4b46fce2 8224
52427260
QW
8225 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8226 btrfs_queue_work(wq, &ordered->work);
163cf09c 8227out_test:
67c003f9
NA
8228 /*
8229 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8230 * in the range, we can exit.
8231 */
8232 if (ordered_offset == last_offset)
8233 return;
163cf09c
CM
8234 /*
8235 * our bio might span multiple ordered extents. If we haven't
8236 * completed the accounting for the whole dio, go back and try again
8237 */
14543774
FM
8238 if (ordered_offset < offset + bytes) {
8239 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8240 ordered = NULL;
163cf09c
CM
8241 goto again;
8242 }
14543774
FM
8243}
8244
8245static void btrfs_endio_direct_write(struct bio *bio)
8246{
8247 struct btrfs_dio_private *dip = bio->bi_private;
8248 struct bio *dio_bio = dip->dio_bio;
8249
52427260 8250 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8251 dip->bytes, !bio->bi_status);
4b46fce2 8252
4b46fce2 8253 kfree(dip);
c0da7aa1 8254
4e4cbee9 8255 dio_bio->bi_status = bio->bi_status;
4055351c 8256 dio_end_io(dio_bio);
9be3395b 8257 bio_put(bio);
4b46fce2
JB
8258}
8259
8c27cb35 8260static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
eaf25d93
CM
8261 struct bio *bio, int mirror_num,
8262 unsigned long bio_flags, u64 offset)
8263{
c6100a4b 8264 struct inode *inode = private_data;
4e4cbee9 8265 blk_status_t ret;
2ff7e61e 8266 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8267 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8268 return 0;
8269}
8270
4246a0b6 8271static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8272{
8273 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8274 blk_status_t err = bio->bi_status;
e65e1535 8275
8b110e39
MX
8276 if (err)
8277 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8278 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8279 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8280 bio->bi_opf,
8b110e39
MX
8281 (unsigned long long)bio->bi_iter.bi_sector,
8282 bio->bi_iter.bi_size, err);
8283
8284 if (dip->subio_endio)
8285 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8286
8287 if (err) {
e65e1535
MX
8288 dip->errors = 1;
8289
8290 /*
8291 * before atomic variable goto zero, we must make sure
8292 * dip->errors is perceived to be set.
8293 */
4e857c58 8294 smp_mb__before_atomic();
e65e1535
MX
8295 }
8296
8297 /* if there are more bios still pending for this dio, just exit */
8298 if (!atomic_dec_and_test(&dip->pending_bios))
8299 goto out;
8300
9be3395b 8301 if (dip->errors) {
e65e1535 8302 bio_io_error(dip->orig_bio);
9be3395b 8303 } else {
2dbe0c77 8304 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8305 bio_endio(dip->orig_bio);
e65e1535
MX
8306 }
8307out:
8308 bio_put(bio);
8309}
8310
4e4cbee9 8311static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8312 struct btrfs_dio_private *dip,
8313 struct bio *bio,
8314 u64 file_offset)
8315{
8316 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8317 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8318 blk_status_t ret;
c1dc0896
MX
8319
8320 /*
8321 * We load all the csum data we need when we submit
8322 * the first bio to reduce the csum tree search and
8323 * contention.
8324 */
8325 if (dip->logical_offset == file_offset) {
2ff7e61e 8326 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8327 file_offset);
8328 if (ret)
8329 return ret;
8330 }
8331
8332 if (bio == dip->orig_bio)
8333 return 0;
8334
8335 file_offset -= dip->logical_offset;
8336 file_offset >>= inode->i_sb->s_blocksize_bits;
8337 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8338
8339 return 0;
8340}
8341
58efbc9f
OS
8342static inline blk_status_t
8343__btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
66ba772e 8344 int async_submit)
e65e1535 8345{
0b246afa 8346 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8347 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8348 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8349 blk_status_t ret;
e65e1535 8350
4c274bc6 8351 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8352 if (async_submit)
8353 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8354
5fd02043 8355 if (!write) {
0b246afa 8356 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8357 if (ret)
8358 goto err;
8359 }
e65e1535 8360
e6961cac 8361 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8362 goto map;
8363
8364 if (write && async_submit) {
c6100a4b
JB
8365 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8366 file_offset, inode,
0b246afa
JM
8367 __btrfs_submit_bio_start_direct_io,
8368 __btrfs_submit_bio_done);
e65e1535 8369 goto err;
1ae39938
JB
8370 } else if (write) {
8371 /*
8372 * If we aren't doing async submit, calculate the csum of the
8373 * bio now.
8374 */
2ff7e61e 8375 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8376 if (ret)
8377 goto err;
23ea8e5a 8378 } else {
2ff7e61e 8379 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8380 file_offset);
c2db1073
TI
8381 if (ret)
8382 goto err;
8383 }
1ae39938 8384map:
9b4a9b28 8385 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8386err:
e65e1535
MX
8387 return ret;
8388}
8389
e6961cac 8390static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8391{
8392 struct inode *inode = dip->inode;
0b246afa 8393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8394 struct bio *bio;
8395 struct bio *orig_bio = dip->orig_bio;
4f024f37 8396 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8397 u64 file_offset = dip->logical_offset;
e65e1535 8398 u64 map_length;
1ae39938 8399 int async_submit = 0;
725130ba
LB
8400 u64 submit_len;
8401 int clone_offset = 0;
8402 int clone_len;
5f4dc8fc 8403 int ret;
58efbc9f 8404 blk_status_t status;
e65e1535 8405
4f024f37 8406 map_length = orig_bio->bi_iter.bi_size;
725130ba 8407 submit_len = map_length;
0b246afa
JM
8408 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8409 &map_length, NULL, 0);
7a5c3c9b 8410 if (ret)
e65e1535 8411 return -EIO;
facc8a22 8412
725130ba 8413 if (map_length >= submit_len) {
02f57c7a 8414 bio = orig_bio;
c1dc0896 8415 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8416 goto submit;
8417 }
8418
53b381b3 8419 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8420 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8421 async_submit = 0;
8422 else
8423 async_submit = 1;
8424
725130ba
LB
8425 /* bio split */
8426 ASSERT(map_length <= INT_MAX);
02f57c7a 8427 atomic_inc(&dip->pending_bios);
3c91ee69 8428 do {
725130ba 8429 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8430
725130ba
LB
8431 /*
8432 * This will never fail as it's passing GPF_NOFS and
8433 * the allocation is backed by btrfs_bioset.
8434 */
e477094f 8435 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8436 clone_len);
8437 bio->bi_private = dip;
8438 bio->bi_end_io = btrfs_end_dio_bio;
8439 btrfs_io_bio(bio)->logical = file_offset;
8440
8441 ASSERT(submit_len >= clone_len);
8442 submit_len -= clone_len;
8443 if (submit_len == 0)
8444 break;
e65e1535 8445
725130ba
LB
8446 /*
8447 * Increase the count before we submit the bio so we know
8448 * the end IO handler won't happen before we increase the
8449 * count. Otherwise, the dip might get freed before we're
8450 * done setting it up.
8451 */
8452 atomic_inc(&dip->pending_bios);
e65e1535 8453
66ba772e 8454 status = __btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8455 async_submit);
8456 if (status) {
725130ba
LB
8457 bio_put(bio);
8458 atomic_dec(&dip->pending_bios);
8459 goto out_err;
8460 }
e65e1535 8461
725130ba
LB
8462 clone_offset += clone_len;
8463 start_sector += clone_len >> 9;
8464 file_offset += clone_len;
5f4dc8fc 8465
725130ba
LB
8466 map_length = submit_len;
8467 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8468 start_sector << 9, &map_length, NULL, 0);
8469 if (ret)
8470 goto out_err;
3c91ee69 8471 } while (submit_len > 0);
e65e1535 8472
02f57c7a 8473submit:
66ba772e 8474 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8475 if (!status)
e65e1535
MX
8476 return 0;
8477
8478 bio_put(bio);
8479out_err:
8480 dip->errors = 1;
8481 /*
8482 * before atomic variable goto zero, we must
8483 * make sure dip->errors is perceived to be set.
8484 */
4e857c58 8485 smp_mb__before_atomic();
e65e1535
MX
8486 if (atomic_dec_and_test(&dip->pending_bios))
8487 bio_io_error(dip->orig_bio);
8488
8489 /* bio_end_io() will handle error, so we needn't return it */
8490 return 0;
8491}
8492
8a4c1e42
MC
8493static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8494 loff_t file_offset)
4b46fce2 8495{
61de718f 8496 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8497 struct bio *bio = NULL;
8498 struct btrfs_io_bio *io_bio;
8a4c1e42 8499 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8500 int ret = 0;
8501
8b6c1d56 8502 bio = btrfs_bio_clone(dio_bio);
9be3395b 8503
c1dc0896 8504 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8505 if (!dip) {
8506 ret = -ENOMEM;
61de718f 8507 goto free_ordered;
4b46fce2 8508 }
4b46fce2 8509
9be3395b 8510 dip->private = dio_bio->bi_private;
4b46fce2
JB
8511 dip->inode = inode;
8512 dip->logical_offset = file_offset;
4f024f37
KO
8513 dip->bytes = dio_bio->bi_iter.bi_size;
8514 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8515 bio->bi_private = dip;
8516 dip->orig_bio = bio;
9be3395b 8517 dip->dio_bio = dio_bio;
e65e1535 8518 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8519 io_bio = btrfs_io_bio(bio);
8520 io_bio->logical = file_offset;
4b46fce2 8521
c1dc0896 8522 if (write) {
3892ac90 8523 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8524 } else {
3892ac90 8525 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8526 dip->subio_endio = btrfs_subio_endio_read;
8527 }
4b46fce2 8528
f28a4928
FM
8529 /*
8530 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8531 * even if we fail to submit a bio, because in such case we do the
8532 * corresponding error handling below and it must not be done a second
8533 * time by btrfs_direct_IO().
8534 */
8535 if (write) {
8536 struct btrfs_dio_data *dio_data = current->journal_info;
8537
8538 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8539 dip->bytes;
8540 dio_data->unsubmitted_oe_range_start =
8541 dio_data->unsubmitted_oe_range_end;
8542 }
8543
e6961cac 8544 ret = btrfs_submit_direct_hook(dip);
e65e1535 8545 if (!ret)
eaf25d93 8546 return;
9be3395b 8547
3892ac90
LB
8548 if (io_bio->end_io)
8549 io_bio->end_io(io_bio, ret);
9be3395b 8550
4b46fce2
JB
8551free_ordered:
8552 /*
61de718f
FM
8553 * If we arrived here it means either we failed to submit the dip
8554 * or we either failed to clone the dio_bio or failed to allocate the
8555 * dip. If we cloned the dio_bio and allocated the dip, we can just
8556 * call bio_endio against our io_bio so that we get proper resource
8557 * cleanup if we fail to submit the dip, otherwise, we must do the
8558 * same as btrfs_endio_direct_[write|read] because we can't call these
8559 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8560 */
3892ac90 8561 if (bio && dip) {
054ec2f6 8562 bio_io_error(bio);
61de718f 8563 /*
3892ac90 8564 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8565 * and all the cleanup and final put for dio_bio (through
8566 * dio_end_io()).
8567 */
8568 dip = NULL;
3892ac90 8569 bio = NULL;
61de718f 8570 } else {
14543774 8571 if (write)
52427260 8572 __endio_write_update_ordered(inode,
14543774
FM
8573 file_offset,
8574 dio_bio->bi_iter.bi_size,
52427260 8575 false);
14543774 8576 else
61de718f
FM
8577 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8578 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8579
4e4cbee9 8580 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8581 /*
8582 * Releases and cleans up our dio_bio, no need to bio_put()
8583 * nor bio_endio()/bio_io_error() against dio_bio.
8584 */
4055351c 8585 dio_end_io(dio_bio);
4b46fce2 8586 }
3892ac90
LB
8587 if (bio)
8588 bio_put(bio);
61de718f 8589 kfree(dip);
4b46fce2
JB
8590}
8591
2ff7e61e 8592static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8593 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8594{
8595 int seg;
a1b75f7d 8596 int i;
0b246afa 8597 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8598 ssize_t retval = -EINVAL;
5a5f79b5
CM
8599
8600 if (offset & blocksize_mask)
8601 goto out;
8602
28060d5d
AV
8603 if (iov_iter_alignment(iter) & blocksize_mask)
8604 goto out;
a1b75f7d 8605
28060d5d 8606 /* If this is a write we don't need to check anymore */
cd27e455 8607 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8608 return 0;
8609 /*
8610 * Check to make sure we don't have duplicate iov_base's in this
8611 * iovec, if so return EINVAL, otherwise we'll get csum errors
8612 * when reading back.
8613 */
8614 for (seg = 0; seg < iter->nr_segs; seg++) {
8615 for (i = seg + 1; i < iter->nr_segs; i++) {
8616 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8617 goto out;
8618 }
5a5f79b5
CM
8619 }
8620 retval = 0;
8621out:
8622 return retval;
8623}
eb838e73 8624
c8b8e32d 8625static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8626{
4b46fce2
JB
8627 struct file *file = iocb->ki_filp;
8628 struct inode *inode = file->f_mapping->host;
0b246afa 8629 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8630 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8631 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8632 loff_t offset = iocb->ki_pos;
0934856d 8633 size_t count = 0;
2e60a51e 8634 int flags = 0;
38851cc1
MX
8635 bool wakeup = true;
8636 bool relock = false;
0934856d 8637 ssize_t ret;
4b46fce2 8638
8c70c9f8 8639 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8640 return 0;
3f7c579c 8641
fe0f07d0 8642 inode_dio_begin(inode);
38851cc1 8643
0e267c44 8644 /*
41bd9ca4
MX
8645 * The generic stuff only does filemap_write_and_wait_range, which
8646 * isn't enough if we've written compressed pages to this area, so
8647 * we need to flush the dirty pages again to make absolutely sure
8648 * that any outstanding dirty pages are on disk.
0e267c44 8649 */
a6cbcd4a 8650 count = iov_iter_count(iter);
41bd9ca4
MX
8651 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8652 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8653 filemap_fdatawrite_range(inode->i_mapping, offset,
8654 offset + count - 1);
0e267c44 8655
6f673763 8656 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8657 /*
8658 * If the write DIO is beyond the EOF, we need update
8659 * the isize, but it is protected by i_mutex. So we can
8660 * not unlock the i_mutex at this case.
8661 */
8662 if (offset + count <= inode->i_size) {
4aaedfb0 8663 dio_data.overwrite = 1;
5955102c 8664 inode_unlock(inode);
38851cc1 8665 relock = true;
edf064e7
GR
8666 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8667 ret = -EAGAIN;
8668 goto out;
38851cc1 8669 }
364ecf36
QW
8670 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8671 offset, count);
0934856d 8672 if (ret)
38851cc1 8673 goto out;
e1cbbfa5
JB
8674
8675 /*
8676 * We need to know how many extents we reserved so that we can
8677 * do the accounting properly if we go over the number we
8678 * originally calculated. Abuse current->journal_info for this.
8679 */
da17066c 8680 dio_data.reserve = round_up(count,
0b246afa 8681 fs_info->sectorsize);
f28a4928
FM
8682 dio_data.unsubmitted_oe_range_start = (u64)offset;
8683 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8684 current->journal_info = &dio_data;
97dcdea0 8685 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8686 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8687 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8688 inode_dio_end(inode);
38851cc1
MX
8689 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8690 wakeup = false;
0934856d
MX
8691 }
8692
17f8c842 8693 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8694 fs_info->fs_devices->latest_bdev,
c8b8e32d 8695 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8696 btrfs_submit_direct, flags);
6f673763 8697 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8698 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8699 current->journal_info = NULL;
ddba1bfc 8700 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8701 if (dio_data.reserve)
bc42bda2
QW
8702 btrfs_delalloc_release_space(inode, data_reserved,
8703 offset, dio_data.reserve);
f28a4928
FM
8704 /*
8705 * On error we might have left some ordered extents
8706 * without submitting corresponding bios for them, so
8707 * cleanup them up to avoid other tasks getting them
8708 * and waiting for them to complete forever.
8709 */
8710 if (dio_data.unsubmitted_oe_range_start <
8711 dio_data.unsubmitted_oe_range_end)
52427260 8712 __endio_write_update_ordered(inode,
f28a4928
FM
8713 dio_data.unsubmitted_oe_range_start,
8714 dio_data.unsubmitted_oe_range_end -
8715 dio_data.unsubmitted_oe_range_start,
52427260 8716 false);
ddba1bfc 8717 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2
QW
8718 btrfs_delalloc_release_space(inode, data_reserved,
8719 offset, count - (size_t)ret);
69fe2d75 8720 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
0934856d 8721 }
38851cc1 8722out:
2e60a51e 8723 if (wakeup)
fe0f07d0 8724 inode_dio_end(inode);
38851cc1 8725 if (relock)
5955102c 8726 inode_lock(inode);
0934856d 8727
364ecf36 8728 extent_changeset_free(data_reserved);
0934856d 8729 return ret;
16432985
CM
8730}
8731
05dadc09
TI
8732#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8733
1506fcc8
YS
8734static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8735 __u64 start, __u64 len)
8736{
05dadc09
TI
8737 int ret;
8738
8739 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8740 if (ret)
8741 return ret;
8742
2135fb9b 8743 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8744}
8745
a52d9a80 8746int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8747{
d1310b2e
CM
8748 struct extent_io_tree *tree;
8749 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8750 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8751}
1832a6d5 8752
a52d9a80 8753static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8754{
be7bd730
JB
8755 struct inode *inode = page->mapping->host;
8756 int ret;
b888db2b
CM
8757
8758 if (current->flags & PF_MEMALLOC) {
8759 redirty_page_for_writepage(wbc, page);
8760 unlock_page(page);
8761 return 0;
8762 }
be7bd730
JB
8763
8764 /*
8765 * If we are under memory pressure we will call this directly from the
8766 * VM, we need to make sure we have the inode referenced for the ordered
8767 * extent. If not just return like we didn't do anything.
8768 */
8769 if (!igrab(inode)) {
8770 redirty_page_for_writepage(wbc, page);
8771 return AOP_WRITEPAGE_ACTIVATE;
8772 }
0a9b0e53 8773 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8774 btrfs_add_delayed_iput(inode);
8775 return ret;
9ebefb18
CM
8776}
8777
48a3b636
ES
8778static int btrfs_writepages(struct address_space *mapping,
8779 struct writeback_control *wbc)
b293f02e 8780{
d1310b2e 8781 struct extent_io_tree *tree;
771ed689 8782
d1310b2e 8783 tree = &BTRFS_I(mapping->host)->io_tree;
43317599 8784 return extent_writepages(tree, mapping, wbc);
b293f02e
CM
8785}
8786
3ab2fb5a
CM
8787static int
8788btrfs_readpages(struct file *file, struct address_space *mapping,
8789 struct list_head *pages, unsigned nr_pages)
8790{
d1310b2e
CM
8791 struct extent_io_tree *tree;
8792 tree = &BTRFS_I(mapping->host)->io_tree;
0932584b 8793 return extent_readpages(tree, mapping, pages, nr_pages);
3ab2fb5a 8794}
e6dcd2dc 8795static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8796{
d1310b2e
CM
8797 struct extent_io_tree *tree;
8798 struct extent_map_tree *map;
a52d9a80 8799 int ret;
8c2383c3 8800
d1310b2e
CM
8801 tree = &BTRFS_I(page->mapping->host)->io_tree;
8802 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8803 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8804 if (ret == 1) {
8805 ClearPagePrivate(page);
8806 set_page_private(page, 0);
09cbfeaf 8807 put_page(page);
39279cc3 8808 }
a52d9a80 8809 return ret;
39279cc3
CM
8810}
8811
e6dcd2dc
CM
8812static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8813{
98509cfc
CM
8814 if (PageWriteback(page) || PageDirty(page))
8815 return 0;
3ba7ab22 8816 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8817}
8818
d47992f8
LC
8819static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8820 unsigned int length)
39279cc3 8821{
5fd02043 8822 struct inode *inode = page->mapping->host;
d1310b2e 8823 struct extent_io_tree *tree;
e6dcd2dc 8824 struct btrfs_ordered_extent *ordered;
2ac55d41 8825 struct extent_state *cached_state = NULL;
e6dcd2dc 8826 u64 page_start = page_offset(page);
09cbfeaf 8827 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8828 u64 start;
8829 u64 end;
131e404a 8830 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8831
8b62b72b
CM
8832 /*
8833 * we have the page locked, so new writeback can't start,
8834 * and the dirty bit won't be cleared while we are here.
8835 *
8836 * Wait for IO on this page so that we can safely clear
8837 * the PagePrivate2 bit and do ordered accounting
8838 */
e6dcd2dc 8839 wait_on_page_writeback(page);
8b62b72b 8840
5fd02043 8841 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8842 if (offset) {
8843 btrfs_releasepage(page, GFP_NOFS);
8844 return;
8845 }
131e404a
FDBM
8846
8847 if (!inode_evicting)
ff13db41 8848 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8849again:
8850 start = page_start;
a776c6fa 8851 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8852 page_end - start + 1);
e6dcd2dc 8853 if (ordered) {
dbfdb6d1 8854 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8855 /*
8856 * IO on this page will never be started, so we need
8857 * to account for any ordered extents now
8858 */
131e404a 8859 if (!inode_evicting)
dbfdb6d1 8860 clear_extent_bit(tree, start, end,
131e404a 8861 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8862 EXTENT_DELALLOC_NEW |
131e404a 8863 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8864 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8865 /*
8866 * whoever cleared the private bit is responsible
8867 * for the finish_ordered_io
8868 */
77cef2ec
JB
8869 if (TestClearPagePrivate2(page)) {
8870 struct btrfs_ordered_inode_tree *tree;
8871 u64 new_len;
8872
8873 tree = &BTRFS_I(inode)->ordered_tree;
8874
8875 spin_lock_irq(&tree->lock);
8876 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8877 new_len = start - ordered->file_offset;
77cef2ec
JB
8878 if (new_len < ordered->truncated_len)
8879 ordered->truncated_len = new_len;
8880 spin_unlock_irq(&tree->lock);
8881
8882 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8883 start,
8884 end - start + 1, 1))
77cef2ec 8885 btrfs_finish_ordered_io(ordered);
8b62b72b 8886 }
e6dcd2dc 8887 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8888 if (!inode_evicting) {
8889 cached_state = NULL;
dbfdb6d1 8890 lock_extent_bits(tree, start, end,
131e404a
FDBM
8891 &cached_state);
8892 }
dbfdb6d1
CR
8893
8894 start = end + 1;
8895 if (start < page_end)
8896 goto again;
131e404a
FDBM
8897 }
8898
b9d0b389
QW
8899 /*
8900 * Qgroup reserved space handler
8901 * Page here will be either
8902 * 1) Already written to disk
8903 * In this case, its reserved space is released from data rsv map
8904 * and will be freed by delayed_ref handler finally.
8905 * So even we call qgroup_free_data(), it won't decrease reserved
8906 * space.
8907 * 2) Not written to disk
0b34c261
GR
8908 * This means the reserved space should be freed here. However,
8909 * if a truncate invalidates the page (by clearing PageDirty)
8910 * and the page is accounted for while allocating extent
8911 * in btrfs_check_data_free_space() we let delayed_ref to
8912 * free the entire extent.
b9d0b389 8913 */
0b34c261 8914 if (PageDirty(page))
bc42bda2 8915 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
8916 if (!inode_evicting) {
8917 clear_extent_bit(tree, page_start, page_end,
8918 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
8919 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8920 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8921 &cached_state);
131e404a
FDBM
8922
8923 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8924 }
e6dcd2dc 8925
4a096752 8926 ClearPageChecked(page);
9ad6b7bc 8927 if (PagePrivate(page)) {
9ad6b7bc
CM
8928 ClearPagePrivate(page);
8929 set_page_private(page, 0);
09cbfeaf 8930 put_page(page);
9ad6b7bc 8931 }
39279cc3
CM
8932}
8933
9ebefb18
CM
8934/*
8935 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8936 * called from a page fault handler when a page is first dirtied. Hence we must
8937 * be careful to check for EOF conditions here. We set the page up correctly
8938 * for a written page which means we get ENOSPC checking when writing into
8939 * holes and correct delalloc and unwritten extent mapping on filesystems that
8940 * support these features.
8941 *
8942 * We are not allowed to take the i_mutex here so we have to play games to
8943 * protect against truncate races as the page could now be beyond EOF. Because
8944 * vmtruncate() writes the inode size before removing pages, once we have the
8945 * page lock we can determine safely if the page is beyond EOF. If it is not
8946 * beyond EOF, then the page is guaranteed safe against truncation until we
8947 * unlock the page.
8948 */
11bac800 8949int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8950{
c2ec175c 8951 struct page *page = vmf->page;
11bac800 8952 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8954 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8955 struct btrfs_ordered_extent *ordered;
2ac55d41 8956 struct extent_state *cached_state = NULL;
364ecf36 8957 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8958 char *kaddr;
8959 unsigned long zero_start;
9ebefb18 8960 loff_t size;
1832a6d5 8961 int ret;
9998eb70 8962 int reserved = 0;
d0b7da88 8963 u64 reserved_space;
a52d9a80 8964 u64 page_start;
e6dcd2dc 8965 u64 page_end;
d0b7da88
CR
8966 u64 end;
8967
09cbfeaf 8968 reserved_space = PAGE_SIZE;
9ebefb18 8969
b2b5ef5c 8970 sb_start_pagefault(inode->i_sb);
df480633 8971 page_start = page_offset(page);
09cbfeaf 8972 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8973 end = page_end;
df480633 8974
d0b7da88
CR
8975 /*
8976 * Reserving delalloc space after obtaining the page lock can lead to
8977 * deadlock. For example, if a dirty page is locked by this function
8978 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8979 * dirty page write out, then the btrfs_writepage() function could
8980 * end up waiting indefinitely to get a lock on the page currently
8981 * being processed by btrfs_page_mkwrite() function.
8982 */
364ecf36 8983 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8984 reserved_space);
9998eb70 8985 if (!ret) {
11bac800 8986 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8987 reserved = 1;
8988 }
56a76f82
NP
8989 if (ret) {
8990 if (ret == -ENOMEM)
8991 ret = VM_FAULT_OOM;
8992 else /* -ENOSPC, -EIO, etc */
8993 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8994 if (reserved)
8995 goto out;
8996 goto out_noreserve;
56a76f82 8997 }
1832a6d5 8998
56a76f82 8999 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9000again:
9ebefb18 9001 lock_page(page);
9ebefb18 9002 size = i_size_read(inode);
a52d9a80 9003
9ebefb18 9004 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9005 (page_start >= size)) {
9ebefb18
CM
9006 /* page got truncated out from underneath us */
9007 goto out_unlock;
9008 }
e6dcd2dc
CM
9009 wait_on_page_writeback(page);
9010
ff13db41 9011 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9012 set_page_extent_mapped(page);
9013
eb84ae03
CM
9014 /*
9015 * we can't set the delalloc bits if there are pending ordered
9016 * extents. Drop our locks and wait for them to finish
9017 */
a776c6fa
NB
9018 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9019 PAGE_SIZE);
e6dcd2dc 9020 if (ordered) {
2ac55d41 9021 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9022 &cached_state);
e6dcd2dc 9023 unlock_page(page);
eb84ae03 9024 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9025 btrfs_put_ordered_extent(ordered);
9026 goto again;
9027 }
9028
09cbfeaf 9029 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9030 reserved_space = round_up(size - page_start,
0b246afa 9031 fs_info->sectorsize);
09cbfeaf 9032 if (reserved_space < PAGE_SIZE) {
d0b7da88 9033 end = page_start + reserved_space - 1;
bc42bda2
QW
9034 btrfs_delalloc_release_space(inode, data_reserved,
9035 page_start, PAGE_SIZE - reserved_space);
d0b7da88
CR
9036 }
9037 }
9038
fbf19087 9039 /*
5416034f
LB
9040 * page_mkwrite gets called when the page is firstly dirtied after it's
9041 * faulted in, but write(2) could also dirty a page and set delalloc
9042 * bits, thus in this case for space account reason, we still need to
9043 * clear any delalloc bits within this page range since we have to
9044 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9045 */
d0b7da88 9046 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9047 EXTENT_DIRTY | EXTENT_DELALLOC |
9048 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 9049 0, 0, &cached_state);
fbf19087 9050
e3b8a485 9051 ret = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 9052 &cached_state, 0);
9ed74f2d 9053 if (ret) {
2ac55d41 9054 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 9055 &cached_state);
9ed74f2d
JB
9056 ret = VM_FAULT_SIGBUS;
9057 goto out_unlock;
9058 }
e6dcd2dc 9059 ret = 0;
9ebefb18
CM
9060
9061 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9062 if (page_start + PAGE_SIZE > size)
9063 zero_start = size & ~PAGE_MASK;
9ebefb18 9064 else
09cbfeaf 9065 zero_start = PAGE_SIZE;
9ebefb18 9066
09cbfeaf 9067 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9068 kaddr = kmap(page);
09cbfeaf 9069 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9070 flush_dcache_page(page);
9071 kunmap(page);
9072 }
247e743c 9073 ClearPageChecked(page);
e6dcd2dc 9074 set_page_dirty(page);
50a9b214 9075 SetPageUptodate(page);
5a3f23d5 9076
0b246afa 9077 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9078 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9079 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9080
e43bbe5e 9081 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18
CM
9082
9083out_unlock:
b2b5ef5c 9084 if (!ret) {
8b62f87b 9085 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
b2b5ef5c 9086 sb_end_pagefault(inode->i_sb);
364ecf36 9087 extent_changeset_free(data_reserved);
50a9b214 9088 return VM_FAULT_LOCKED;
b2b5ef5c 9089 }
9ebefb18 9090 unlock_page(page);
1832a6d5 9091out:
8b62f87b 9092 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
bc42bda2
QW
9093 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9094 reserved_space);
9998eb70 9095out_noreserve:
b2b5ef5c 9096 sb_end_pagefault(inode->i_sb);
364ecf36 9097 extent_changeset_free(data_reserved);
9ebefb18
CM
9098 return ret;
9099}
9100
a41ad394 9101static int btrfs_truncate(struct inode *inode)
39279cc3 9102{
0b246afa 9103 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9104 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9105 struct btrfs_block_rsv *rsv;
a71754fc 9106 int ret = 0;
3893e33b 9107 int err = 0;
39279cc3 9108 struct btrfs_trans_handle *trans;
0b246afa
JM
9109 u64 mask = fs_info->sectorsize - 1;
9110 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9111
0ef8b726
JB
9112 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9113 (u64)-1);
9114 if (ret)
9115 return ret;
39279cc3 9116
fcb80c2a 9117 /*
01327610 9118 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9119 * 3 things going on here
9120 *
9121 * 1) We need to reserve space for our orphan item and the space to
9122 * delete our orphan item. Lord knows we don't want to have a dangling
9123 * orphan item because we didn't reserve space to remove it.
9124 *
9125 * 2) We need to reserve space to update our inode.
9126 *
9127 * 3) We need to have something to cache all the space that is going to
9128 * be free'd up by the truncate operation, but also have some slack
9129 * space reserved in case it uses space during the truncate (thank you
9130 * very much snapshotting).
9131 *
01327610 9132 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9133 * space doing the truncate, and we have no earthly idea how much space
01327610 9134 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9135 * doesn't end up using space reserved for updating the inode or
9136 * removing the orphan item. We also need to be able to stop the
9137 * transaction and start a new one, which means we need to be able to
9138 * update the inode several times, and we have no idea of knowing how
9139 * many times that will be, so we can't just reserve 1 item for the
01327610 9140 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9141 * Then there is the orphan item, which does indeed need to be held on
9142 * to for the whole operation, and we need nobody to touch this reserved
9143 * space except the orphan code.
9144 *
9145 * So that leaves us with
9146 *
9147 * 1) root->orphan_block_rsv - for the orphan deletion.
9148 * 2) rsv - for the truncate reservation, which we will steal from the
9149 * transaction reservation.
9150 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9151 * updating the inode.
9152 */
2ff7e61e 9153 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9154 if (!rsv)
9155 return -ENOMEM;
4a338542 9156 rsv->size = min_size;
ca7e70f5 9157 rsv->failfast = 1;
f0cd846e 9158
907cbceb 9159 /*
07127184 9160 * 1 for the truncate slack space
907cbceb
JB
9161 * 1 for updating the inode.
9162 */
f3fe820c 9163 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9164 if (IS_ERR(trans)) {
9165 err = PTR_ERR(trans);
9166 goto out;
9167 }
f0cd846e 9168
907cbceb 9169 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9170 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9171 min_size, 0);
fcb80c2a 9172 BUG_ON(ret);
f0cd846e 9173
5dc562c5
JB
9174 /*
9175 * So if we truncate and then write and fsync we normally would just
9176 * write the extents that changed, which is a problem if we need to
9177 * first truncate that entire inode. So set this flag so we write out
9178 * all of the extents in the inode to the sync log so we're completely
9179 * safe.
9180 */
9181 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9182 trans->block_rsv = rsv;
907cbceb 9183
8082510e
YZ
9184 while (1) {
9185 ret = btrfs_truncate_inode_items(trans, root, inode,
9186 inode->i_size,
9187 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9188 trans->block_rsv = &fs_info->trans_block_rsv;
28ed1345 9189 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9190 err = ret;
8082510e 9191 break;
3893e33b 9192 }
39279cc3 9193
8082510e 9194 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9195 if (ret) {
9196 err = ret;
9197 break;
9198 }
ca7e70f5 9199
3a45bb20 9200 btrfs_end_transaction(trans);
2ff7e61e 9201 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9202
9203 trans = btrfs_start_transaction(root, 2);
9204 if (IS_ERR(trans)) {
9205 ret = err = PTR_ERR(trans);
9206 trans = NULL;
9207 break;
9208 }
9209
47b5d646 9210 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9211 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9212 rsv, min_size, 0);
ca7e70f5
JB
9213 BUG_ON(ret); /* shouldn't happen */
9214 trans->block_rsv = rsv;
8082510e
YZ
9215 }
9216
ddfae63c
JB
9217 /*
9218 * We can't call btrfs_truncate_block inside a trans handle as we could
9219 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9220 * we've truncated everything except the last little bit, and can do
9221 * btrfs_truncate_block and then update the disk_i_size.
9222 */
9223 if (ret == NEED_TRUNCATE_BLOCK) {
9224 btrfs_end_transaction(trans);
9225 btrfs_btree_balance_dirty(fs_info);
9226
9227 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9228 if (ret)
9229 goto out;
9230 trans = btrfs_start_transaction(root, 1);
9231 if (IS_ERR(trans)) {
9232 ret = PTR_ERR(trans);
9233 goto out;
9234 }
9235 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9236 }
9237
8082510e 9238 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9239 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9240 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9241 if (ret)
9242 err = ret;
8082510e
YZ
9243 }
9244
917c16b2 9245 if (trans) {
0b246afa 9246 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9247 ret = btrfs_update_inode(trans, root, inode);
9248 if (ret && !err)
9249 err = ret;
7b128766 9250
3a45bb20 9251 ret = btrfs_end_transaction(trans);
2ff7e61e 9252 btrfs_btree_balance_dirty(fs_info);
917c16b2 9253 }
fcb80c2a 9254out:
2ff7e61e 9255 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9256
3893e33b
JB
9257 if (ret && !err)
9258 err = ret;
a41ad394 9259
3893e33b 9260 return err;
39279cc3
CM
9261}
9262
d352ac68
CM
9263/*
9264 * create a new subvolume directory/inode (helper for the ioctl).
9265 */
d2fb3437 9266int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9267 struct btrfs_root *new_root,
9268 struct btrfs_root *parent_root,
9269 u64 new_dirid)
39279cc3 9270{
39279cc3 9271 struct inode *inode;
76dda93c 9272 int err;
00e4e6b3 9273 u64 index = 0;
39279cc3 9274
12fc9d09
FA
9275 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9276 new_dirid, new_dirid,
9277 S_IFDIR | (~current_umask() & S_IRWXUGO),
9278 &index);
54aa1f4d 9279 if (IS_ERR(inode))
f46b5a66 9280 return PTR_ERR(inode);
39279cc3
CM
9281 inode->i_op = &btrfs_dir_inode_operations;
9282 inode->i_fop = &btrfs_dir_file_operations;
9283
bfe86848 9284 set_nlink(inode, 1);
6ef06d27 9285 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9286 unlock_new_inode(inode);
3b96362c 9287
63541927
FDBM
9288 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9289 if (err)
9290 btrfs_err(new_root->fs_info,
351fd353 9291 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9292 new_root->root_key.objectid, err);
9293
76dda93c 9294 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9295
76dda93c 9296 iput(inode);
ce598979 9297 return err;
39279cc3
CM
9298}
9299
39279cc3
CM
9300struct inode *btrfs_alloc_inode(struct super_block *sb)
9301{
69fe2d75 9302 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9303 struct btrfs_inode *ei;
2ead6ae7 9304 struct inode *inode;
39279cc3 9305
712e36c5 9306 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9307 if (!ei)
9308 return NULL;
2ead6ae7
YZ
9309
9310 ei->root = NULL;
2ead6ae7 9311 ei->generation = 0;
15ee9bc7 9312 ei->last_trans = 0;
257c62e1 9313 ei->last_sub_trans = 0;
e02119d5 9314 ei->logged_trans = 0;
2ead6ae7 9315 ei->delalloc_bytes = 0;
a7e3b975 9316 ei->new_delalloc_bytes = 0;
47059d93 9317 ei->defrag_bytes = 0;
2ead6ae7
YZ
9318 ei->disk_i_size = 0;
9319 ei->flags = 0;
7709cde3 9320 ei->csum_bytes = 0;
2ead6ae7 9321 ei->index_cnt = (u64)-1;
67de1176 9322 ei->dir_index = 0;
2ead6ae7 9323 ei->last_unlink_trans = 0;
46d8bc34 9324 ei->last_log_commit = 0;
8089fe62 9325 ei->delayed_iput_count = 0;
2ead6ae7 9326
9e0baf60
JB
9327 spin_lock_init(&ei->lock);
9328 ei->outstanding_extents = 0;
69fe2d75
JB
9329 if (sb->s_magic != BTRFS_TEST_MAGIC)
9330 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9331 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9332 ei->runtime_flags = 0;
b52aa8c9 9333 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9334 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9335
16cdcec7
MX
9336 ei->delayed_node = NULL;
9337
9cc97d64 9338 ei->i_otime.tv_sec = 0;
9339 ei->i_otime.tv_nsec = 0;
9340
2ead6ae7 9341 inode = &ei->vfs_inode;
a8067e02 9342 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9343 extent_io_tree_init(&ei->io_tree, inode);
9344 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9345 ei->io_tree.track_uptodate = 1;
9346 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9347 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9348 mutex_init(&ei->log_mutex);
f248679e 9349 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9350 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9351 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9352 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9353 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9354 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9355
9356 return inode;
39279cc3
CM
9357}
9358
aaedb55b
JB
9359#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9360void btrfs_test_destroy_inode(struct inode *inode)
9361{
dcdbc059 9362 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9363 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9364}
9365#endif
9366
fa0d7e3d
NP
9367static void btrfs_i_callback(struct rcu_head *head)
9368{
9369 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9370 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9371}
9372
39279cc3
CM
9373void btrfs_destroy_inode(struct inode *inode)
9374{
0b246afa 9375 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9376 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9377 struct btrfs_root *root = BTRFS_I(inode)->root;
9378
b3d9b7a3 9379 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9380 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9381 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9382 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9383 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9384 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9385 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9386 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9387 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9388
a6dbd429
JB
9389 /*
9390 * This can happen where we create an inode, but somebody else also
9391 * created the same inode and we need to destroy the one we already
9392 * created.
9393 */
9394 if (!root)
9395 goto free;
9396
8a35d95f
JB
9397 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9398 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9399 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9400 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9401 atomic_dec(&root->orphan_inodes);
7b128766 9402 }
7b128766 9403
d397712b 9404 while (1) {
e6dcd2dc
CM
9405 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9406 if (!ordered)
9407 break;
9408 else {
0b246afa 9409 btrfs_err(fs_info,
5d163e0e
JM
9410 "found ordered extent %llu %llu on inode cleanup",
9411 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9412 btrfs_remove_ordered_extent(inode, ordered);
9413 btrfs_put_ordered_extent(ordered);
9414 btrfs_put_ordered_extent(ordered);
9415 }
9416 }
56fa9d07 9417 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9418 inode_tree_del(inode);
dcdbc059 9419 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9420free:
fa0d7e3d 9421 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9422}
9423
45321ac5 9424int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9425{
9426 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9427
6379ef9f
NA
9428 if (root == NULL)
9429 return 1;
9430
fa6ac876 9431 /* the snap/subvol tree is on deleting */
69e9c6c6 9432 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9433 return 1;
76dda93c 9434 else
45321ac5 9435 return generic_drop_inode(inode);
76dda93c
YZ
9436}
9437
0ee0fda0 9438static void init_once(void *foo)
39279cc3
CM
9439{
9440 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9441
9442 inode_init_once(&ei->vfs_inode);
9443}
9444
9445void btrfs_destroy_cachep(void)
9446{
8c0a8537
KS
9447 /*
9448 * Make sure all delayed rcu free inodes are flushed before we
9449 * destroy cache.
9450 */
9451 rcu_barrier();
5598e900
KM
9452 kmem_cache_destroy(btrfs_inode_cachep);
9453 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9454 kmem_cache_destroy(btrfs_path_cachep);
9455 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9456}
9457
f5c29bd9 9458int __init btrfs_init_cachep(void)
39279cc3 9459{
837e1972 9460 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9461 sizeof(struct btrfs_inode), 0,
5d097056
VD
9462 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9463 init_once);
39279cc3
CM
9464 if (!btrfs_inode_cachep)
9465 goto fail;
9601e3f6 9466
837e1972 9467 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9468 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9469 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9470 if (!btrfs_trans_handle_cachep)
9471 goto fail;
9601e3f6 9472
837e1972 9473 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9474 sizeof(struct btrfs_path), 0,
fba4b697 9475 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9476 if (!btrfs_path_cachep)
9477 goto fail;
9601e3f6 9478
837e1972 9479 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9480 sizeof(struct btrfs_free_space), 0,
fba4b697 9481 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9482 if (!btrfs_free_space_cachep)
9483 goto fail;
9484
39279cc3
CM
9485 return 0;
9486fail:
9487 btrfs_destroy_cachep();
9488 return -ENOMEM;
9489}
9490
a528d35e
DH
9491static int btrfs_getattr(const struct path *path, struct kstat *stat,
9492 u32 request_mask, unsigned int flags)
39279cc3 9493{
df0af1a5 9494 u64 delalloc_bytes;
a528d35e 9495 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9496 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9497 u32 bi_flags = BTRFS_I(inode)->flags;
9498
9499 stat->result_mask |= STATX_BTIME;
9500 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9501 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9502 if (bi_flags & BTRFS_INODE_APPEND)
9503 stat->attributes |= STATX_ATTR_APPEND;
9504 if (bi_flags & BTRFS_INODE_COMPRESS)
9505 stat->attributes |= STATX_ATTR_COMPRESSED;
9506 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9507 stat->attributes |= STATX_ATTR_IMMUTABLE;
9508 if (bi_flags & BTRFS_INODE_NODUMP)
9509 stat->attributes |= STATX_ATTR_NODUMP;
9510
9511 stat->attributes_mask |= (STATX_ATTR_APPEND |
9512 STATX_ATTR_COMPRESSED |
9513 STATX_ATTR_IMMUTABLE |
9514 STATX_ATTR_NODUMP);
fadc0d8b 9515
39279cc3 9516 generic_fillattr(inode, stat);
0ee5dc67 9517 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9518
9519 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9520 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9521 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9522 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9523 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9524 return 0;
9525}
9526
cdd1fedf
DF
9527static int btrfs_rename_exchange(struct inode *old_dir,
9528 struct dentry *old_dentry,
9529 struct inode *new_dir,
9530 struct dentry *new_dentry)
9531{
0b246afa 9532 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9533 struct btrfs_trans_handle *trans;
9534 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9535 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9536 struct inode *new_inode = new_dentry->d_inode;
9537 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9538 struct timespec ctime = current_time(old_inode);
cdd1fedf 9539 struct dentry *parent;
4a0cc7ca
NB
9540 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9541 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9542 u64 old_idx = 0;
9543 u64 new_idx = 0;
9544 u64 root_objectid;
9545 int ret;
86e8aa0e
FM
9546 bool root_log_pinned = false;
9547 bool dest_log_pinned = false;
cdd1fedf
DF
9548
9549 /* we only allow rename subvolume link between subvolumes */
9550 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9551 return -EXDEV;
9552
9553 /* close the race window with snapshot create/destroy ioctl */
9554 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9555 down_read(&fs_info->subvol_sem);
cdd1fedf 9556 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9557 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9558
9559 /*
9560 * We want to reserve the absolute worst case amount of items. So if
9561 * both inodes are subvols and we need to unlink them then that would
9562 * require 4 item modifications, but if they are both normal inodes it
9563 * would require 5 item modifications, so we'll assume their normal
9564 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9565 * should cover the worst case number of items we'll modify.
9566 */
9567 trans = btrfs_start_transaction(root, 12);
9568 if (IS_ERR(trans)) {
9569 ret = PTR_ERR(trans);
9570 goto out_notrans;
9571 }
9572
9573 /*
9574 * We need to find a free sequence number both in the source and
9575 * in the destination directory for the exchange.
9576 */
877574e2 9577 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9578 if (ret)
9579 goto out_fail;
877574e2 9580 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9581 if (ret)
9582 goto out_fail;
9583
9584 BTRFS_I(old_inode)->dir_index = 0ULL;
9585 BTRFS_I(new_inode)->dir_index = 0ULL;
9586
9587 /* Reference for the source. */
9588 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9589 /* force full log commit if subvolume involved. */
0b246afa 9590 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9591 } else {
376e5a57
FM
9592 btrfs_pin_log_trans(root);
9593 root_log_pinned = true;
cdd1fedf
DF
9594 ret = btrfs_insert_inode_ref(trans, dest,
9595 new_dentry->d_name.name,
9596 new_dentry->d_name.len,
9597 old_ino,
f85b7379
DS
9598 btrfs_ino(BTRFS_I(new_dir)),
9599 old_idx);
cdd1fedf
DF
9600 if (ret)
9601 goto out_fail;
cdd1fedf
DF
9602 }
9603
9604 /* And now for the dest. */
9605 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9606 /* force full log commit if subvolume involved. */
0b246afa 9607 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9608 } else {
376e5a57
FM
9609 btrfs_pin_log_trans(dest);
9610 dest_log_pinned = true;
cdd1fedf
DF
9611 ret = btrfs_insert_inode_ref(trans, root,
9612 old_dentry->d_name.name,
9613 old_dentry->d_name.len,
9614 new_ino,
f85b7379
DS
9615 btrfs_ino(BTRFS_I(old_dir)),
9616 new_idx);
cdd1fedf
DF
9617 if (ret)
9618 goto out_fail;
cdd1fedf
DF
9619 }
9620
9621 /* Update inode version and ctime/mtime. */
9622 inode_inc_iversion(old_dir);
9623 inode_inc_iversion(new_dir);
9624 inode_inc_iversion(old_inode);
9625 inode_inc_iversion(new_inode);
9626 old_dir->i_ctime = old_dir->i_mtime = ctime;
9627 new_dir->i_ctime = new_dir->i_mtime = ctime;
9628 old_inode->i_ctime = ctime;
9629 new_inode->i_ctime = ctime;
9630
9631 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9632 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9633 BTRFS_I(old_inode), 1);
9634 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9635 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9636 }
9637
9638 /* src is a subvolume */
9639 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9640 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9641 ret = btrfs_unlink_subvol(trans, root, old_dir,
9642 root_objectid,
9643 old_dentry->d_name.name,
9644 old_dentry->d_name.len);
9645 } else { /* src is an inode */
4ec5934e
NB
9646 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9647 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9648 old_dentry->d_name.name,
9649 old_dentry->d_name.len);
9650 if (!ret)
9651 ret = btrfs_update_inode(trans, root, old_inode);
9652 }
9653 if (ret) {
66642832 9654 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9655 goto out_fail;
9656 }
9657
9658 /* dest is a subvolume */
9659 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9660 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9661 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9662 root_objectid,
9663 new_dentry->d_name.name,
9664 new_dentry->d_name.len);
9665 } else { /* dest is an inode */
4ec5934e
NB
9666 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9667 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9668 new_dentry->d_name.name,
9669 new_dentry->d_name.len);
9670 if (!ret)
9671 ret = btrfs_update_inode(trans, dest, new_inode);
9672 }
9673 if (ret) {
66642832 9674 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9675 goto out_fail;
9676 }
9677
db0a669f 9678 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9679 new_dentry->d_name.name,
9680 new_dentry->d_name.len, 0, old_idx);
9681 if (ret) {
66642832 9682 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9683 goto out_fail;
9684 }
9685
db0a669f 9686 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9687 old_dentry->d_name.name,
9688 old_dentry->d_name.len, 0, new_idx);
9689 if (ret) {
66642832 9690 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9691 goto out_fail;
9692 }
9693
9694 if (old_inode->i_nlink == 1)
9695 BTRFS_I(old_inode)->dir_index = old_idx;
9696 if (new_inode->i_nlink == 1)
9697 BTRFS_I(new_inode)->dir_index = new_idx;
9698
86e8aa0e 9699 if (root_log_pinned) {
cdd1fedf 9700 parent = new_dentry->d_parent;
f85b7379
DS
9701 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9702 parent);
cdd1fedf 9703 btrfs_end_log_trans(root);
86e8aa0e 9704 root_log_pinned = false;
cdd1fedf 9705 }
86e8aa0e 9706 if (dest_log_pinned) {
cdd1fedf 9707 parent = old_dentry->d_parent;
f85b7379
DS
9708 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9709 parent);
cdd1fedf 9710 btrfs_end_log_trans(dest);
86e8aa0e 9711 dest_log_pinned = false;
cdd1fedf
DF
9712 }
9713out_fail:
86e8aa0e
FM
9714 /*
9715 * If we have pinned a log and an error happened, we unpin tasks
9716 * trying to sync the log and force them to fallback to a transaction
9717 * commit if the log currently contains any of the inodes involved in
9718 * this rename operation (to ensure we do not persist a log with an
9719 * inconsistent state for any of these inodes or leading to any
9720 * inconsistencies when replayed). If the transaction was aborted, the
9721 * abortion reason is propagated to userspace when attempting to commit
9722 * the transaction. If the log does not contain any of these inodes, we
9723 * allow the tasks to sync it.
9724 */
9725 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9726 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9727 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9728 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9729 (new_inode &&
0f8939b8 9730 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9731 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9732
9733 if (root_log_pinned) {
9734 btrfs_end_log_trans(root);
9735 root_log_pinned = false;
9736 }
9737 if (dest_log_pinned) {
9738 btrfs_end_log_trans(dest);
9739 dest_log_pinned = false;
9740 }
9741 }
3a45bb20 9742 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9743out_notrans:
9744 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9745 up_read(&fs_info->subvol_sem);
cdd1fedf 9746 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9747 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9748
9749 return ret;
9750}
9751
9752static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9753 struct btrfs_root *root,
9754 struct inode *dir,
9755 struct dentry *dentry)
9756{
9757 int ret;
9758 struct inode *inode;
9759 u64 objectid;
9760 u64 index;
9761
9762 ret = btrfs_find_free_ino(root, &objectid);
9763 if (ret)
9764 return ret;
9765
9766 inode = btrfs_new_inode(trans, root, dir,
9767 dentry->d_name.name,
9768 dentry->d_name.len,
4a0cc7ca 9769 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9770 objectid,
9771 S_IFCHR | WHITEOUT_MODE,
9772 &index);
9773
9774 if (IS_ERR(inode)) {
9775 ret = PTR_ERR(inode);
9776 return ret;
9777 }
9778
9779 inode->i_op = &btrfs_special_inode_operations;
9780 init_special_inode(inode, inode->i_mode,
9781 WHITEOUT_DEV);
9782
9783 ret = btrfs_init_inode_security(trans, inode, dir,
9784 &dentry->d_name);
9785 if (ret)
c9901618 9786 goto out;
cdd1fedf 9787
cef415af
NB
9788 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9789 BTRFS_I(inode), 0, index);
cdd1fedf 9790 if (ret)
c9901618 9791 goto out;
cdd1fedf
DF
9792
9793 ret = btrfs_update_inode(trans, root, inode);
c9901618 9794out:
cdd1fedf 9795 unlock_new_inode(inode);
c9901618
FM
9796 if (ret)
9797 inode_dec_link_count(inode);
cdd1fedf
DF
9798 iput(inode);
9799
c9901618 9800 return ret;
cdd1fedf
DF
9801}
9802
d397712b 9803static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9804 struct inode *new_dir, struct dentry *new_dentry,
9805 unsigned int flags)
39279cc3 9806{
0b246afa 9807 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9808 struct btrfs_trans_handle *trans;
5062af35 9809 unsigned int trans_num_items;
39279cc3 9810 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9811 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9812 struct inode *new_inode = d_inode(new_dentry);
9813 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9814 u64 index = 0;
4df27c4d 9815 u64 root_objectid;
39279cc3 9816 int ret;
4a0cc7ca 9817 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9818 bool log_pinned = false;
39279cc3 9819
4a0cc7ca 9820 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9821 return -EPERM;
9822
4df27c4d 9823 /* we only allow rename subvolume link between subvolumes */
33345d01 9824 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9825 return -EXDEV;
9826
33345d01 9827 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9828 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9829 return -ENOTEMPTY;
5f39d397 9830
4df27c4d
YZ
9831 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9832 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9833 return -ENOTEMPTY;
9c52057c
CM
9834
9835
9836 /* check for collisions, even if the name isn't there */
4871c158 9837 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9838 new_dentry->d_name.name,
9839 new_dentry->d_name.len);
9840
9841 if (ret) {
9842 if (ret == -EEXIST) {
9843 /* we shouldn't get
9844 * eexist without a new_inode */
fae7f21c 9845 if (WARN_ON(!new_inode)) {
9c52057c
CM
9846 return ret;
9847 }
9848 } else {
9849 /* maybe -EOVERFLOW */
9850 return ret;
9851 }
9852 }
9853 ret = 0;
9854
5a3f23d5 9855 /*
8d875f95
CM
9856 * we're using rename to replace one file with another. Start IO on it
9857 * now so we don't add too much work to the end of the transaction
5a3f23d5 9858 */
8d875f95 9859 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9860 filemap_flush(old_inode->i_mapping);
9861
76dda93c 9862 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9863 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9864 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9865 /*
9866 * We want to reserve the absolute worst case amount of items. So if
9867 * both inodes are subvols and we need to unlink them then that would
9868 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9869 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9870 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9871 * should cover the worst case number of items we'll modify.
5062af35
FM
9872 * If our rename has the whiteout flag, we need more 5 units for the
9873 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9874 * when selinux is enabled).
a22285a6 9875 */
5062af35
FM
9876 trans_num_items = 11;
9877 if (flags & RENAME_WHITEOUT)
9878 trans_num_items += 5;
9879 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9880 if (IS_ERR(trans)) {
cdd1fedf
DF
9881 ret = PTR_ERR(trans);
9882 goto out_notrans;
9883 }
76dda93c 9884
4df27c4d
YZ
9885 if (dest != root)
9886 btrfs_record_root_in_trans(trans, dest);
5f39d397 9887
877574e2 9888 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9889 if (ret)
9890 goto out_fail;
5a3f23d5 9891
67de1176 9892 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9893 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9894 /* force full log commit if subvolume involved. */
0b246afa 9895 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9896 } else {
c4aba954
FM
9897 btrfs_pin_log_trans(root);
9898 log_pinned = true;
a5719521
YZ
9899 ret = btrfs_insert_inode_ref(trans, dest,
9900 new_dentry->d_name.name,
9901 new_dentry->d_name.len,
33345d01 9902 old_ino,
4a0cc7ca 9903 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9904 if (ret)
9905 goto out_fail;
4df27c4d 9906 }
5a3f23d5 9907
0c4d2d95
JB
9908 inode_inc_iversion(old_dir);
9909 inode_inc_iversion(new_dir);
9910 inode_inc_iversion(old_inode);
04b285f3
DD
9911 old_dir->i_ctime = old_dir->i_mtime =
9912 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9913 old_inode->i_ctime = current_time(old_dir);
5f39d397 9914
12fcfd22 9915 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9916 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9917 BTRFS_I(old_inode), 1);
12fcfd22 9918
33345d01 9919 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9920 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9921 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9922 old_dentry->d_name.name,
9923 old_dentry->d_name.len);
9924 } else {
4ec5934e
NB
9925 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9926 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9927 old_dentry->d_name.name,
9928 old_dentry->d_name.len);
9929 if (!ret)
9930 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9931 }
79787eaa 9932 if (ret) {
66642832 9933 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9934 goto out_fail;
9935 }
39279cc3
CM
9936
9937 if (new_inode) {
0c4d2d95 9938 inode_inc_iversion(new_inode);
c2050a45 9939 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9940 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9941 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9942 root_objectid = BTRFS_I(new_inode)->location.objectid;
9943 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9944 root_objectid,
9945 new_dentry->d_name.name,
9946 new_dentry->d_name.len);
9947 BUG_ON(new_inode->i_nlink == 0);
9948 } else {
4ec5934e
NB
9949 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9950 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9951 new_dentry->d_name.name,
9952 new_dentry->d_name.len);
9953 }
4ef31a45 9954 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9955 ret = btrfs_orphan_add(trans,
9956 BTRFS_I(d_inode(new_dentry)));
79787eaa 9957 if (ret) {
66642832 9958 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9959 goto out_fail;
9960 }
39279cc3 9961 }
aec7477b 9962
db0a669f 9963 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9964 new_dentry->d_name.name,
a5719521 9965 new_dentry->d_name.len, 0, index);
79787eaa 9966 if (ret) {
66642832 9967 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9968 goto out_fail;
9969 }
39279cc3 9970
67de1176
MX
9971 if (old_inode->i_nlink == 1)
9972 BTRFS_I(old_inode)->dir_index = index;
9973
3dc9e8f7 9974 if (log_pinned) {
10d9f309 9975 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9976
f85b7379
DS
9977 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9978 parent);
4df27c4d 9979 btrfs_end_log_trans(root);
3dc9e8f7 9980 log_pinned = false;
4df27c4d 9981 }
cdd1fedf
DF
9982
9983 if (flags & RENAME_WHITEOUT) {
9984 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9985 old_dentry);
9986
9987 if (ret) {
66642832 9988 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9989 goto out_fail;
9990 }
4df27c4d 9991 }
39279cc3 9992out_fail:
3dc9e8f7
FM
9993 /*
9994 * If we have pinned the log and an error happened, we unpin tasks
9995 * trying to sync the log and force them to fallback to a transaction
9996 * commit if the log currently contains any of the inodes involved in
9997 * this rename operation (to ensure we do not persist a log with an
9998 * inconsistent state for any of these inodes or leading to any
9999 * inconsistencies when replayed). If the transaction was aborted, the
10000 * abortion reason is propagated to userspace when attempting to commit
10001 * the transaction. If the log does not contain any of these inodes, we
10002 * allow the tasks to sync it.
10003 */
10004 if (ret && log_pinned) {
0f8939b8
NB
10005 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10006 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10007 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10008 (new_inode &&
0f8939b8 10009 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 10010 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
10011
10012 btrfs_end_log_trans(root);
10013 log_pinned = false;
10014 }
3a45bb20 10015 btrfs_end_transaction(trans);
b44c59a8 10016out_notrans:
33345d01 10017 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10018 up_read(&fs_info->subvol_sem);
9ed74f2d 10019
39279cc3
CM
10020 return ret;
10021}
10022
80ace85c
MS
10023static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10024 struct inode *new_dir, struct dentry *new_dentry,
10025 unsigned int flags)
10026{
cdd1fedf 10027 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10028 return -EINVAL;
10029
cdd1fedf
DF
10030 if (flags & RENAME_EXCHANGE)
10031 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10032 new_dentry);
10033
10034 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10035}
10036
8ccf6f19
MX
10037static void btrfs_run_delalloc_work(struct btrfs_work *work)
10038{
10039 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10040 struct inode *inode;
8ccf6f19
MX
10041
10042 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10043 work);
9f23e289 10044 inode = delalloc_work->inode;
30424601
DS
10045 filemap_flush(inode->i_mapping);
10046 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10047 &BTRFS_I(inode)->runtime_flags))
9f23e289 10048 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10049
10050 if (delalloc_work->delay_iput)
9f23e289 10051 btrfs_add_delayed_iput(inode);
8ccf6f19 10052 else
9f23e289 10053 iput(inode);
8ccf6f19
MX
10054 complete(&delalloc_work->completion);
10055}
10056
10057struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10058 int delay_iput)
8ccf6f19
MX
10059{
10060 struct btrfs_delalloc_work *work;
10061
100d5702 10062 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10063 if (!work)
10064 return NULL;
10065
10066 init_completion(&work->completion);
10067 INIT_LIST_HEAD(&work->list);
10068 work->inode = inode;
8ccf6f19 10069 work->delay_iput = delay_iput;
9e0af237
LB
10070 WARN_ON_ONCE(!inode);
10071 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10072 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10073
10074 return work;
10075}
10076
10077void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10078{
10079 wait_for_completion(&work->completion);
100d5702 10080 kfree(work);
8ccf6f19
MX
10081}
10082
d352ac68
CM
10083/*
10084 * some fairly slow code that needs optimization. This walks the list
10085 * of all the inodes with pending delalloc and forces them to disk.
10086 */
6c255e67
MX
10087static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10088 int nr)
ea8c2819 10089{
ea8c2819 10090 struct btrfs_inode *binode;
5b21f2ed 10091 struct inode *inode;
8ccf6f19
MX
10092 struct btrfs_delalloc_work *work, *next;
10093 struct list_head works;
1eafa6c7 10094 struct list_head splice;
8ccf6f19 10095 int ret = 0;
ea8c2819 10096
8ccf6f19 10097 INIT_LIST_HEAD(&works);
1eafa6c7 10098 INIT_LIST_HEAD(&splice);
63607cc8 10099
573bfb72 10100 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10101 spin_lock(&root->delalloc_lock);
10102 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10103 while (!list_empty(&splice)) {
10104 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10105 delalloc_inodes);
1eafa6c7 10106
eb73c1b7
MX
10107 list_move_tail(&binode->delalloc_inodes,
10108 &root->delalloc_inodes);
5b21f2ed 10109 inode = igrab(&binode->vfs_inode);
df0af1a5 10110 if (!inode) {
eb73c1b7 10111 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10112 continue;
df0af1a5 10113 }
eb73c1b7 10114 spin_unlock(&root->delalloc_lock);
1eafa6c7 10115
651d494a 10116 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10117 if (!work) {
f4ab9ea7
JB
10118 if (delay_iput)
10119 btrfs_add_delayed_iput(inode);
10120 else
10121 iput(inode);
1eafa6c7 10122 ret = -ENOMEM;
a1ecaabb 10123 goto out;
5b21f2ed 10124 }
1eafa6c7 10125 list_add_tail(&work->list, &works);
a44903ab
QW
10126 btrfs_queue_work(root->fs_info->flush_workers,
10127 &work->work);
6c255e67
MX
10128 ret++;
10129 if (nr != -1 && ret >= nr)
a1ecaabb 10130 goto out;
5b21f2ed 10131 cond_resched();
eb73c1b7 10132 spin_lock(&root->delalloc_lock);
ea8c2819 10133 }
eb73c1b7 10134 spin_unlock(&root->delalloc_lock);
8c8bee1d 10135
a1ecaabb 10136out:
eb73c1b7
MX
10137 list_for_each_entry_safe(work, next, &works, list) {
10138 list_del_init(&work->list);
10139 btrfs_wait_and_free_delalloc_work(work);
10140 }
10141
10142 if (!list_empty_careful(&splice)) {
10143 spin_lock(&root->delalloc_lock);
10144 list_splice_tail(&splice, &root->delalloc_inodes);
10145 spin_unlock(&root->delalloc_lock);
10146 }
573bfb72 10147 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10148 return ret;
10149}
1eafa6c7 10150
eb73c1b7
MX
10151int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10152{
0b246afa 10153 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10154 int ret;
1eafa6c7 10155
0b246afa 10156 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10157 return -EROFS;
10158
6c255e67
MX
10159 ret = __start_delalloc_inodes(root, delay_iput, -1);
10160 if (ret > 0)
10161 ret = 0;
eb73c1b7
MX
10162 return ret;
10163}
10164
6c255e67
MX
10165int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10166 int nr)
eb73c1b7
MX
10167{
10168 struct btrfs_root *root;
10169 struct list_head splice;
10170 int ret;
10171
2c21b4d7 10172 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10173 return -EROFS;
10174
10175 INIT_LIST_HEAD(&splice);
10176
573bfb72 10177 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10178 spin_lock(&fs_info->delalloc_root_lock);
10179 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10180 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10181 root = list_first_entry(&splice, struct btrfs_root,
10182 delalloc_root);
10183 root = btrfs_grab_fs_root(root);
10184 BUG_ON(!root);
10185 list_move_tail(&root->delalloc_root,
10186 &fs_info->delalloc_roots);
10187 spin_unlock(&fs_info->delalloc_root_lock);
10188
6c255e67 10189 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10190 btrfs_put_fs_root(root);
6c255e67 10191 if (ret < 0)
eb73c1b7
MX
10192 goto out;
10193
6c255e67
MX
10194 if (nr != -1) {
10195 nr -= ret;
10196 WARN_ON(nr < 0);
10197 }
eb73c1b7 10198 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10199 }
eb73c1b7 10200 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10201
6c255e67 10202 ret = 0;
eb73c1b7 10203out:
1eafa6c7 10204 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10205 spin_lock(&fs_info->delalloc_root_lock);
10206 list_splice_tail(&splice, &fs_info->delalloc_roots);
10207 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10208 }
573bfb72 10209 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10210 return ret;
ea8c2819
CM
10211}
10212
39279cc3
CM
10213static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10214 const char *symname)
10215{
0b246afa 10216 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10217 struct btrfs_trans_handle *trans;
10218 struct btrfs_root *root = BTRFS_I(dir)->root;
10219 struct btrfs_path *path;
10220 struct btrfs_key key;
1832a6d5 10221 struct inode *inode = NULL;
39279cc3
CM
10222 int err;
10223 int drop_inode = 0;
10224 u64 objectid;
67871254 10225 u64 index = 0;
39279cc3
CM
10226 int name_len;
10227 int datasize;
5f39d397 10228 unsigned long ptr;
39279cc3 10229 struct btrfs_file_extent_item *ei;
5f39d397 10230 struct extent_buffer *leaf;
39279cc3 10231
f06becc4 10232 name_len = strlen(symname);
0b246afa 10233 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10234 return -ENAMETOOLONG;
1832a6d5 10235
9ed74f2d
JB
10236 /*
10237 * 2 items for inode item and ref
10238 * 2 items for dir items
9269d12b
FM
10239 * 1 item for updating parent inode item
10240 * 1 item for the inline extent item
9ed74f2d
JB
10241 * 1 item for xattr if selinux is on
10242 */
9269d12b 10243 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10244 if (IS_ERR(trans))
10245 return PTR_ERR(trans);
1832a6d5 10246
581bb050
LZ
10247 err = btrfs_find_free_ino(root, &objectid);
10248 if (err)
10249 goto out_unlock;
10250
aec7477b 10251 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10252 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10253 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10254 if (IS_ERR(inode)) {
10255 err = PTR_ERR(inode);
39279cc3 10256 goto out_unlock;
7cf96da3 10257 }
39279cc3 10258
ad19db71
CS
10259 /*
10260 * If the active LSM wants to access the inode during
10261 * d_instantiate it needs these. Smack checks to see
10262 * if the filesystem supports xattrs by looking at the
10263 * ops vector.
10264 */
10265 inode->i_fop = &btrfs_file_operations;
10266 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10267 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10268 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10269
10270 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10271 if (err)
10272 goto out_unlock_inode;
ad19db71 10273
39279cc3 10274 path = btrfs_alloc_path();
d8926bb3
MF
10275 if (!path) {
10276 err = -ENOMEM;
b0d5d10f 10277 goto out_unlock_inode;
d8926bb3 10278 }
4a0cc7ca 10279 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10280 key.offset = 0;
962a298f 10281 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10282 datasize = btrfs_file_extent_calc_inline_size(name_len);
10283 err = btrfs_insert_empty_item(trans, root, path, &key,
10284 datasize);
54aa1f4d 10285 if (err) {
b0839166 10286 btrfs_free_path(path);
b0d5d10f 10287 goto out_unlock_inode;
54aa1f4d 10288 }
5f39d397
CM
10289 leaf = path->nodes[0];
10290 ei = btrfs_item_ptr(leaf, path->slots[0],
10291 struct btrfs_file_extent_item);
10292 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10293 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10294 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10295 btrfs_set_file_extent_encryption(leaf, ei, 0);
10296 btrfs_set_file_extent_compression(leaf, ei, 0);
10297 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10298 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10299
39279cc3 10300 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10301 write_extent_buffer(leaf, symname, ptr, name_len);
10302 btrfs_mark_buffer_dirty(leaf);
39279cc3 10303 btrfs_free_path(path);
5f39d397 10304
39279cc3 10305 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10306 inode_nohighmem(inode);
39279cc3 10307 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10308 inode_set_bytes(inode, name_len);
6ef06d27 10309 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10310 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10311 /*
10312 * Last step, add directory indexes for our symlink inode. This is the
10313 * last step to avoid extra cleanup of these indexes if an error happens
10314 * elsewhere above.
10315 */
10316 if (!err)
cef415af
NB
10317 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10318 BTRFS_I(inode), 0, index);
b0d5d10f 10319 if (err) {
54aa1f4d 10320 drop_inode = 1;
b0d5d10f
CM
10321 goto out_unlock_inode;
10322 }
10323
10324 unlock_new_inode(inode);
10325 d_instantiate(dentry, inode);
39279cc3
CM
10326
10327out_unlock:
3a45bb20 10328 btrfs_end_transaction(trans);
39279cc3
CM
10329 if (drop_inode) {
10330 inode_dec_link_count(inode);
10331 iput(inode);
10332 }
2ff7e61e 10333 btrfs_btree_balance_dirty(fs_info);
39279cc3 10334 return err;
b0d5d10f
CM
10335
10336out_unlock_inode:
10337 drop_inode = 1;
10338 unlock_new_inode(inode);
10339 goto out_unlock;
39279cc3 10340}
16432985 10341
0af3d00b
JB
10342static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10343 u64 start, u64 num_bytes, u64 min_size,
10344 loff_t actual_len, u64 *alloc_hint,
10345 struct btrfs_trans_handle *trans)
d899e052 10346{
0b246afa 10347 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10348 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10349 struct extent_map *em;
d899e052
YZ
10350 struct btrfs_root *root = BTRFS_I(inode)->root;
10351 struct btrfs_key ins;
d899e052 10352 u64 cur_offset = start;
55a61d1d 10353 u64 i_size;
154ea289 10354 u64 cur_bytes;
0b670dc4 10355 u64 last_alloc = (u64)-1;
d899e052 10356 int ret = 0;
0af3d00b 10357 bool own_trans = true;
18513091 10358 u64 end = start + num_bytes - 1;
d899e052 10359
0af3d00b
JB
10360 if (trans)
10361 own_trans = false;
d899e052 10362 while (num_bytes > 0) {
0af3d00b
JB
10363 if (own_trans) {
10364 trans = btrfs_start_transaction(root, 3);
10365 if (IS_ERR(trans)) {
10366 ret = PTR_ERR(trans);
10367 break;
10368 }
5a303d5d
YZ
10369 }
10370
ee22184b 10371 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10372 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10373 /*
10374 * If we are severely fragmented we could end up with really
10375 * small allocations, so if the allocator is returning small
10376 * chunks lets make its job easier by only searching for those
10377 * sized chunks.
10378 */
10379 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10380 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10381 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10382 if (ret) {
0af3d00b 10383 if (own_trans)
3a45bb20 10384 btrfs_end_transaction(trans);
a22285a6 10385 break;
d899e052 10386 }
0b246afa 10387 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10388
0b670dc4 10389 last_alloc = ins.offset;
d899e052
YZ
10390 ret = insert_reserved_file_extent(trans, inode,
10391 cur_offset, ins.objectid,
10392 ins.offset, ins.offset,
920bbbfb 10393 ins.offset, 0, 0, 0,
d899e052 10394 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10395 if (ret) {
2ff7e61e 10396 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10397 ins.offset, 0);
66642832 10398 btrfs_abort_transaction(trans, ret);
79787eaa 10399 if (own_trans)
3a45bb20 10400 btrfs_end_transaction(trans);
79787eaa
JM
10401 break;
10402 }
31193213 10403
dcdbc059 10404 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10405 cur_offset + ins.offset -1, 0);
5a303d5d 10406
5dc562c5
JB
10407 em = alloc_extent_map();
10408 if (!em) {
10409 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10410 &BTRFS_I(inode)->runtime_flags);
10411 goto next;
10412 }
10413
10414 em->start = cur_offset;
10415 em->orig_start = cur_offset;
10416 em->len = ins.offset;
10417 em->block_start = ins.objectid;
10418 em->block_len = ins.offset;
b4939680 10419 em->orig_block_len = ins.offset;
cc95bef6 10420 em->ram_bytes = ins.offset;
0b246afa 10421 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10422 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10423 em->generation = trans->transid;
10424
10425 while (1) {
10426 write_lock(&em_tree->lock);
09a2a8f9 10427 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10428 write_unlock(&em_tree->lock);
10429 if (ret != -EEXIST)
10430 break;
dcdbc059 10431 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10432 cur_offset + ins.offset - 1,
10433 0);
10434 }
10435 free_extent_map(em);
10436next:
d899e052
YZ
10437 num_bytes -= ins.offset;
10438 cur_offset += ins.offset;
efa56464 10439 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10440
0c4d2d95 10441 inode_inc_iversion(inode);
c2050a45 10442 inode->i_ctime = current_time(inode);
6cbff00f 10443 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10444 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10445 (actual_len > inode->i_size) &&
10446 (cur_offset > inode->i_size)) {
d1ea6a61 10447 if (cur_offset > actual_len)
55a61d1d 10448 i_size = actual_len;
d1ea6a61 10449 else
55a61d1d
JB
10450 i_size = cur_offset;
10451 i_size_write(inode, i_size);
10452 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10453 }
10454
d899e052 10455 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10456
10457 if (ret) {
66642832 10458 btrfs_abort_transaction(trans, ret);
79787eaa 10459 if (own_trans)
3a45bb20 10460 btrfs_end_transaction(trans);
79787eaa
JM
10461 break;
10462 }
d899e052 10463
0af3d00b 10464 if (own_trans)
3a45bb20 10465 btrfs_end_transaction(trans);
5a303d5d 10466 }
18513091 10467 if (cur_offset < end)
bc42bda2 10468 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10469 end - cur_offset + 1);
d899e052
YZ
10470 return ret;
10471}
10472
0af3d00b
JB
10473int btrfs_prealloc_file_range(struct inode *inode, int mode,
10474 u64 start, u64 num_bytes, u64 min_size,
10475 loff_t actual_len, u64 *alloc_hint)
10476{
10477 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10478 min_size, actual_len, alloc_hint,
10479 NULL);
10480}
10481
10482int btrfs_prealloc_file_range_trans(struct inode *inode,
10483 struct btrfs_trans_handle *trans, int mode,
10484 u64 start, u64 num_bytes, u64 min_size,
10485 loff_t actual_len, u64 *alloc_hint)
10486{
10487 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10488 min_size, actual_len, alloc_hint, trans);
10489}
10490
e6dcd2dc
CM
10491static int btrfs_set_page_dirty(struct page *page)
10492{
e6dcd2dc
CM
10493 return __set_page_dirty_nobuffers(page);
10494}
10495
10556cb2 10496static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10497{
b83cc969 10498 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10499 umode_t mode = inode->i_mode;
b83cc969 10500
cb6db4e5
JM
10501 if (mask & MAY_WRITE &&
10502 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10503 if (btrfs_root_readonly(root))
10504 return -EROFS;
10505 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10506 return -EACCES;
10507 }
2830ba7f 10508 return generic_permission(inode, mask);
fdebe2bd 10509}
39279cc3 10510
ef3b9af5
FM
10511static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10512{
2ff7e61e 10513 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10514 struct btrfs_trans_handle *trans;
10515 struct btrfs_root *root = BTRFS_I(dir)->root;
10516 struct inode *inode = NULL;
10517 u64 objectid;
10518 u64 index;
10519 int ret = 0;
10520
10521 /*
10522 * 5 units required for adding orphan entry
10523 */
10524 trans = btrfs_start_transaction(root, 5);
10525 if (IS_ERR(trans))
10526 return PTR_ERR(trans);
10527
10528 ret = btrfs_find_free_ino(root, &objectid);
10529 if (ret)
10530 goto out;
10531
10532 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10533 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10534 if (IS_ERR(inode)) {
10535 ret = PTR_ERR(inode);
10536 inode = NULL;
10537 goto out;
10538 }
10539
ef3b9af5
FM
10540 inode->i_fop = &btrfs_file_operations;
10541 inode->i_op = &btrfs_file_inode_operations;
10542
10543 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10544 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10545
b0d5d10f
CM
10546 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10547 if (ret)
10548 goto out_inode;
10549
10550 ret = btrfs_update_inode(trans, root, inode);
10551 if (ret)
10552 goto out_inode;
73f2e545 10553 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10554 if (ret)
b0d5d10f 10555 goto out_inode;
ef3b9af5 10556
5762b5c9
FM
10557 /*
10558 * We set number of links to 0 in btrfs_new_inode(), and here we set
10559 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10560 * through:
10561 *
10562 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10563 */
10564 set_nlink(inode, 1);
b0d5d10f 10565 unlock_new_inode(inode);
ef3b9af5
FM
10566 d_tmpfile(dentry, inode);
10567 mark_inode_dirty(inode);
10568
10569out:
3a45bb20 10570 btrfs_end_transaction(trans);
ef3b9af5
FM
10571 if (ret)
10572 iput(inode);
2ff7e61e 10573 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10574 return ret;
b0d5d10f
CM
10575
10576out_inode:
10577 unlock_new_inode(inode);
10578 goto out;
10579
ef3b9af5
FM
10580}
10581
20a7db8a 10582__attribute__((const))
9d0d1c8b 10583static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10584{
9d0d1c8b 10585 return -EAGAIN;
20a7db8a
DS
10586}
10587
c6100a4b
JB
10588static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10589{
10590 struct inode *inode = private_data;
10591 return btrfs_sb(inode->i_sb);
10592}
10593
10594static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10595 u64 start, u64 end)
10596{
10597 struct inode *inode = private_data;
10598 u64 isize;
10599
10600 isize = i_size_read(inode);
10601 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10602 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10603 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10604 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10605 }
10606}
10607
10608void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10609{
10610 struct inode *inode = private_data;
10611 unsigned long index = start >> PAGE_SHIFT;
10612 unsigned long end_index = end >> PAGE_SHIFT;
10613 struct page *page;
10614
10615 while (index <= end_index) {
10616 page = find_get_page(inode->i_mapping, index);
10617 ASSERT(page); /* Pages should be in the extent_io_tree */
10618 set_page_writeback(page);
10619 put_page(page);
10620 index++;
10621 }
10622}
10623
6e1d5dcc 10624static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10625 .getattr = btrfs_getattr,
39279cc3
CM
10626 .lookup = btrfs_lookup,
10627 .create = btrfs_create,
10628 .unlink = btrfs_unlink,
10629 .link = btrfs_link,
10630 .mkdir = btrfs_mkdir,
10631 .rmdir = btrfs_rmdir,
2773bf00 10632 .rename = btrfs_rename2,
39279cc3
CM
10633 .symlink = btrfs_symlink,
10634 .setattr = btrfs_setattr,
618e21d5 10635 .mknod = btrfs_mknod,
5103e947 10636 .listxattr = btrfs_listxattr,
fdebe2bd 10637 .permission = btrfs_permission,
4e34e719 10638 .get_acl = btrfs_get_acl,
996a710d 10639 .set_acl = btrfs_set_acl,
93fd63c2 10640 .update_time = btrfs_update_time,
ef3b9af5 10641 .tmpfile = btrfs_tmpfile,
39279cc3 10642};
6e1d5dcc 10643static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10644 .lookup = btrfs_lookup,
fdebe2bd 10645 .permission = btrfs_permission,
93fd63c2 10646 .update_time = btrfs_update_time,
39279cc3 10647};
76dda93c 10648
828c0950 10649static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10650 .llseek = generic_file_llseek,
10651 .read = generic_read_dir,
02dbfc99 10652 .iterate_shared = btrfs_real_readdir,
23b5ec74 10653 .open = btrfs_opendir,
34287aa3 10654 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10655#ifdef CONFIG_COMPAT
4c63c245 10656 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10657#endif
6bf13c0c 10658 .release = btrfs_release_file,
e02119d5 10659 .fsync = btrfs_sync_file,
39279cc3
CM
10660};
10661
20e5506b 10662static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10663 /* mandatory callbacks */
065631f6 10664 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10665 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10666 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10667 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10668 .tree_fs_info = iotree_fs_info,
10669 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10670
10671 /* optional callbacks */
10672 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10673 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10674 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10675 .set_bit_hook = btrfs_set_bit_hook,
10676 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10677 .merge_extent_hook = btrfs_merge_extent_hook,
10678 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10679 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10680};
10681
35054394
CM
10682/*
10683 * btrfs doesn't support the bmap operation because swapfiles
10684 * use bmap to make a mapping of extents in the file. They assume
10685 * these extents won't change over the life of the file and they
10686 * use the bmap result to do IO directly to the drive.
10687 *
10688 * the btrfs bmap call would return logical addresses that aren't
10689 * suitable for IO and they also will change frequently as COW
10690 * operations happen. So, swapfile + btrfs == corruption.
10691 *
10692 * For now we're avoiding this by dropping bmap.
10693 */
7f09410b 10694static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10695 .readpage = btrfs_readpage,
10696 .writepage = btrfs_writepage,
b293f02e 10697 .writepages = btrfs_writepages,
3ab2fb5a 10698 .readpages = btrfs_readpages,
16432985 10699 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10700 .invalidatepage = btrfs_invalidatepage,
10701 .releasepage = btrfs_releasepage,
e6dcd2dc 10702 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10703 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10704};
10705
7f09410b 10706static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10707 .readpage = btrfs_readpage,
10708 .writepage = btrfs_writepage,
2bf5a725
CM
10709 .invalidatepage = btrfs_invalidatepage,
10710 .releasepage = btrfs_releasepage,
39279cc3
CM
10711};
10712
6e1d5dcc 10713static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10714 .getattr = btrfs_getattr,
10715 .setattr = btrfs_setattr,
5103e947 10716 .listxattr = btrfs_listxattr,
fdebe2bd 10717 .permission = btrfs_permission,
1506fcc8 10718 .fiemap = btrfs_fiemap,
4e34e719 10719 .get_acl = btrfs_get_acl,
996a710d 10720 .set_acl = btrfs_set_acl,
e41f941a 10721 .update_time = btrfs_update_time,
39279cc3 10722};
6e1d5dcc 10723static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10724 .getattr = btrfs_getattr,
10725 .setattr = btrfs_setattr,
fdebe2bd 10726 .permission = btrfs_permission,
33268eaf 10727 .listxattr = btrfs_listxattr,
4e34e719 10728 .get_acl = btrfs_get_acl,
996a710d 10729 .set_acl = btrfs_set_acl,
e41f941a 10730 .update_time = btrfs_update_time,
618e21d5 10731};
6e1d5dcc 10732static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10733 .get_link = page_get_link,
f209561a 10734 .getattr = btrfs_getattr,
22c44fe6 10735 .setattr = btrfs_setattr,
fdebe2bd 10736 .permission = btrfs_permission,
0279b4cd 10737 .listxattr = btrfs_listxattr,
e41f941a 10738 .update_time = btrfs_update_time,
39279cc3 10739};
76dda93c 10740
82d339d9 10741const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10742 .d_delete = btrfs_dentry_delete,
b4aff1f8 10743 .d_release = btrfs_dentry_release,
76dda93c 10744};