btrfs: tests, require fs_info for root
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
55e301fd 42#include <linux/btrfs.h>
53b381b3 43#include <linux/blkdev.h>
f23b5a59 44#include <linux/posix_acl_xattr.h>
e2e40f2c 45#include <linux/uio.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
dda3245e 63#include "dedupe.h"
39279cc3
CM
64
65struct btrfs_iget_args {
90d3e592 66 struct btrfs_key *location;
39279cc3
CM
67 struct btrfs_root *root;
68};
69
f28a4928
FM
70struct btrfs_dio_data {
71 u64 outstanding_extents;
72 u64 reserve;
73 u64 unsubmitted_oe_range_start;
74 u64 unsubmitted_oe_range_end;
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
89struct kmem_cache *btrfs_transaction_cachep;
39279cc3 90struct kmem_cache *btrfs_path_cachep;
dc89e982 91struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
92
93#define S_SHIFT 12
4d4ab6d6 94static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
102};
103
3972f260 104static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 105static int btrfs_truncate(struct inode *inode);
5fd02043 106static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
107static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
dda3245e
WX
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
70c8a91c
JB
112static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 u64 len, u64 orig_start,
114 u64 block_start, u64 block_len,
cc95bef6
JB
115 u64 orig_block_len, u64 ram_bytes,
116 int type);
7b128766 117
48a3b636 118static int btrfs_dirty_inode(struct inode *inode);
7b128766 119
6a3891c5
JB
120#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121void btrfs_test_inode_set_ops(struct inode *inode)
122{
123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
124}
125#endif
126
f34f57a3 127static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
128 struct inode *inode, struct inode *dir,
129 const struct qstr *qstr)
0279b4cd
JO
130{
131 int err;
132
f34f57a3 133 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 134 if (!err)
2a7dba39 135 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
136 return err;
137}
138
c8b97818
CM
139/*
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
143 */
40f76580 144static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 145 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
146 struct btrfs_root *root, struct inode *inode,
147 u64 start, size_t size, size_t compressed_size,
fe3f566c 148 int compress_type,
c8b97818
CM
149 struct page **compressed_pages)
150{
c8b97818
CM
151 struct extent_buffer *leaf;
152 struct page *page = NULL;
153 char *kaddr;
154 unsigned long ptr;
155 struct btrfs_file_extent_item *ei;
156 int err = 0;
157 int ret;
158 size_t cur_size = size;
c8b97818 159 unsigned long offset;
c8b97818 160
fe3f566c 161 if (compressed_size && compressed_pages)
c8b97818 162 cur_size = compressed_size;
c8b97818 163
1acae57b 164 inode_add_bytes(inode, size);
c8b97818 165
1acae57b
FDBM
166 if (!extent_inserted) {
167 struct btrfs_key key;
168 size_t datasize;
c8b97818 169
1acae57b
FDBM
170 key.objectid = btrfs_ino(inode);
171 key.offset = start;
962a298f 172 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 173
1acae57b
FDBM
174 datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 path->leave_spinning = 1;
176 ret = btrfs_insert_empty_item(trans, root, path, &key,
177 datasize);
178 if (ret) {
179 err = ret;
180 goto fail;
181 }
c8b97818
CM
182 }
183 leaf = path->nodes[0];
184 ei = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 btrfs_set_file_extent_encryption(leaf, ei, 0);
189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 ptr = btrfs_file_extent_inline_start(ei);
192
261507a0 193 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
194 struct page *cpage;
195 int i = 0;
d397712b 196 while (compressed_size > 0) {
c8b97818 197 cpage = compressed_pages[i];
5b050f04 198 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 199 PAGE_SIZE);
c8b97818 200
7ac687d9 201 kaddr = kmap_atomic(cpage);
c8b97818 202 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204
205 i++;
206 ptr += cur_size;
207 compressed_size -= cur_size;
208 }
209 btrfs_set_file_extent_compression(leaf, ei,
261507a0 210 compress_type);
c8b97818
CM
211 } else {
212 page = find_get_page(inode->i_mapping,
09cbfeaf 213 start >> PAGE_SHIFT);
c8b97818 214 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 215 kaddr = kmap_atomic(page);
09cbfeaf 216 offset = start & (PAGE_SIZE - 1);
c8b97818 217 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 218 kunmap_atomic(kaddr);
09cbfeaf 219 put_page(page);
c8b97818
CM
220 }
221 btrfs_mark_buffer_dirty(leaf);
1acae57b 222 btrfs_release_path(path);
c8b97818 223
c2167754
YZ
224 /*
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
228 *
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
232 */
c8b97818 233 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 234 ret = btrfs_update_inode(trans, root, inode);
c2167754 235
79787eaa 236 return ret;
c8b97818 237fail:
c8b97818
CM
238 return err;
239}
240
241
242/*
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
246 */
00361589
JB
247static noinline int cow_file_range_inline(struct btrfs_root *root,
248 struct inode *inode, u64 start,
249 u64 end, size_t compressed_size,
250 int compress_type,
251 struct page **compressed_pages)
c8b97818 252{
00361589 253 struct btrfs_trans_handle *trans;
c8b97818
CM
254 u64 isize = i_size_read(inode);
255 u64 actual_end = min(end + 1, isize);
256 u64 inline_len = actual_end - start;
fda2832f 257 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
258 u64 data_len = inline_len;
259 int ret;
1acae57b
FDBM
260 struct btrfs_path *path;
261 int extent_inserted = 0;
262 u32 extent_item_size;
c8b97818
CM
263
264 if (compressed_size)
265 data_len = compressed_size;
266
267 if (start > 0 ||
0c29ba99 268 actual_end > root->sectorsize ||
354877be 269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
270 (!compressed_size &&
271 (actual_end & (root->sectorsize - 1)) == 0) ||
272 end + 1 < isize ||
273 data_len > root->fs_info->max_inline) {
274 return 1;
275 }
276
1acae57b
FDBM
277 path = btrfs_alloc_path();
278 if (!path)
279 return -ENOMEM;
280
00361589 281 trans = btrfs_join_transaction(root);
1acae57b
FDBM
282 if (IS_ERR(trans)) {
283 btrfs_free_path(path);
00361589 284 return PTR_ERR(trans);
1acae57b 285 }
00361589
JB
286 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
287
1acae57b
FDBM
288 if (compressed_size && compressed_pages)
289 extent_item_size = btrfs_file_extent_calc_inline_size(
290 compressed_size);
291 else
292 extent_item_size = btrfs_file_extent_calc_inline_size(
293 inline_len);
294
295 ret = __btrfs_drop_extents(trans, root, inode, path,
296 start, aligned_end, NULL,
297 1, 1, extent_item_size, &extent_inserted);
00361589
JB
298 if (ret) {
299 btrfs_abort_transaction(trans, root, ret);
300 goto out;
301 }
c8b97818
CM
302
303 if (isize > actual_end)
304 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
305 ret = insert_inline_extent(trans, path, extent_inserted,
306 root, inode, start,
c8b97818 307 inline_len, compressed_size,
fe3f566c 308 compress_type, compressed_pages);
2adcac1a 309 if (ret && ret != -ENOSPC) {
79787eaa 310 btrfs_abort_transaction(trans, root, ret);
00361589 311 goto out;
2adcac1a 312 } else if (ret == -ENOSPC) {
00361589
JB
313 ret = 1;
314 goto out;
79787eaa 315 }
2adcac1a 316
bdc20e67 317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 318 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 320out:
94ed938a
QW
321 /*
322 * Don't forget to free the reserved space, as for inlined extent
323 * it won't count as data extent, free them directly here.
324 * And at reserve time, it's always aligned to page size, so
325 * just free one page here.
326 */
09cbfeaf 327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
1acae57b 328 btrfs_free_path(path);
00361589
JB
329 btrfs_end_transaction(trans, root);
330 return ret;
c8b97818
CM
331}
332
771ed689
CM
333struct async_extent {
334 u64 start;
335 u64 ram_size;
336 u64 compressed_size;
337 struct page **pages;
338 unsigned long nr_pages;
261507a0 339 int compress_type;
771ed689
CM
340 struct list_head list;
341};
342
343struct async_cow {
344 struct inode *inode;
345 struct btrfs_root *root;
346 struct page *locked_page;
347 u64 start;
348 u64 end;
349 struct list_head extents;
350 struct btrfs_work work;
351};
352
353static noinline int add_async_extent(struct async_cow *cow,
354 u64 start, u64 ram_size,
355 u64 compressed_size,
356 struct page **pages,
261507a0
LZ
357 unsigned long nr_pages,
358 int compress_type)
771ed689
CM
359{
360 struct async_extent *async_extent;
361
362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 363 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
364 async_extent->start = start;
365 async_extent->ram_size = ram_size;
366 async_extent->compressed_size = compressed_size;
367 async_extent->pages = pages;
368 async_extent->nr_pages = nr_pages;
261507a0 369 async_extent->compress_type = compress_type;
771ed689
CM
370 list_add_tail(&async_extent->list, &cow->extents);
371 return 0;
372}
373
f79707b0
WS
374static inline int inode_need_compress(struct inode *inode)
375{
376 struct btrfs_root *root = BTRFS_I(inode)->root;
377
378 /* force compress */
3cdde224 379 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
f79707b0
WS
380 return 1;
381 /* bad compression ratios */
382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
383 return 0;
3cdde224 384 if (btrfs_test_opt(root->fs_info, COMPRESS) ||
f79707b0
WS
385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 BTRFS_I(inode)->force_compress)
387 return 1;
388 return 0;
389}
390
d352ac68 391/*
771ed689
CM
392 * we create compressed extents in two phases. The first
393 * phase compresses a range of pages that have already been
394 * locked (both pages and state bits are locked).
c8b97818 395 *
771ed689
CM
396 * This is done inside an ordered work queue, and the compression
397 * is spread across many cpus. The actual IO submission is step
398 * two, and the ordered work queue takes care of making sure that
399 * happens in the same order things were put onto the queue by
400 * writepages and friends.
c8b97818 401 *
771ed689
CM
402 * If this code finds it can't get good compression, it puts an
403 * entry onto the work queue to write the uncompressed bytes. This
404 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
405 * are written in the same order that the flusher thread sent them
406 * down.
d352ac68 407 */
c44f649e 408static noinline void compress_file_range(struct inode *inode,
771ed689
CM
409 struct page *locked_page,
410 u64 start, u64 end,
411 struct async_cow *async_cow,
412 int *num_added)
b888db2b
CM
413{
414 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 415 u64 num_bytes;
db94535d 416 u64 blocksize = root->sectorsize;
c8b97818 417 u64 actual_end;
42dc7bab 418 u64 isize = i_size_read(inode);
e6dcd2dc 419 int ret = 0;
c8b97818
CM
420 struct page **pages = NULL;
421 unsigned long nr_pages;
422 unsigned long nr_pages_ret = 0;
423 unsigned long total_compressed = 0;
424 unsigned long total_in = 0;
ee22184b
BL
425 unsigned long max_compressed = SZ_128K;
426 unsigned long max_uncompressed = SZ_128K;
c8b97818
CM
427 int i;
428 int will_compress;
261507a0 429 int compress_type = root->fs_info->compress_type;
4adaa611 430 int redirty = 0;
b888db2b 431
4cb13e5d 432 /* if this is a small write inside eof, kick off a defrag */
ee22184b 433 if ((end - start + 1) < SZ_16K &&
4cb13e5d 434 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
435 btrfs_add_inode_defrag(NULL, inode);
436
42dc7bab 437 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
438again:
439 will_compress = 0;
09cbfeaf
KS
440 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
be20aa9d 442
f03d9301
CM
443 /*
444 * we don't want to send crud past the end of i_size through
445 * compression, that's just a waste of CPU time. So, if the
446 * end of the file is before the start of our current
447 * requested range of bytes, we bail out to the uncompressed
448 * cleanup code that can deal with all of this.
449 *
450 * It isn't really the fastest way to fix things, but this is a
451 * very uncommon corner.
452 */
453 if (actual_end <= start)
454 goto cleanup_and_bail_uncompressed;
455
c8b97818
CM
456 total_compressed = actual_end - start;
457
4bcbb332
SW
458 /*
459 * skip compression for a small file range(<=blocksize) that
01327610 460 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
461 */
462 if (total_compressed <= blocksize &&
463 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 goto cleanup_and_bail_uncompressed;
465
c8b97818
CM
466 /* we want to make sure that amount of ram required to uncompress
467 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
468 * of a compressed extent to 128k. This is a crucial number
469 * because it also controls how easily we can spread reads across
470 * cpus for decompression.
471 *
472 * We also want to make sure the amount of IO required to do
473 * a random read is reasonably small, so we limit the size of
474 * a compressed extent to 128k.
c8b97818
CM
475 */
476 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 477 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 478 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
479 total_in = 0;
480 ret = 0;
db94535d 481
771ed689
CM
482 /*
483 * we do compression for mount -o compress and when the
484 * inode has not been flagged as nocompress. This flag can
485 * change at any time if we discover bad compression ratios.
c8b97818 486 */
f79707b0 487 if (inode_need_compress(inode)) {
c8b97818 488 WARN_ON(pages);
31e818fe 489 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
490 if (!pages) {
491 /* just bail out to the uncompressed code */
492 goto cont;
493 }
c8b97818 494
261507a0
LZ
495 if (BTRFS_I(inode)->force_compress)
496 compress_type = BTRFS_I(inode)->force_compress;
497
4adaa611
CM
498 /*
499 * we need to call clear_page_dirty_for_io on each
500 * page in the range. Otherwise applications with the file
501 * mmap'd can wander in and change the page contents while
502 * we are compressing them.
503 *
504 * If the compression fails for any reason, we set the pages
505 * dirty again later on.
506 */
507 extent_range_clear_dirty_for_io(inode, start, end);
508 redirty = 1;
261507a0
LZ
509 ret = btrfs_compress_pages(compress_type,
510 inode->i_mapping, start,
511 total_compressed, pages,
512 nr_pages, &nr_pages_ret,
513 &total_in,
514 &total_compressed,
515 max_compressed);
c8b97818
CM
516
517 if (!ret) {
518 unsigned long offset = total_compressed &
09cbfeaf 519 (PAGE_SIZE - 1);
c8b97818
CM
520 struct page *page = pages[nr_pages_ret - 1];
521 char *kaddr;
522
523 /* zero the tail end of the last page, we might be
524 * sending it down to disk
525 */
526 if (offset) {
7ac687d9 527 kaddr = kmap_atomic(page);
c8b97818 528 memset(kaddr + offset, 0,
09cbfeaf 529 PAGE_SIZE - offset);
7ac687d9 530 kunmap_atomic(kaddr);
c8b97818
CM
531 }
532 will_compress = 1;
533 }
534 }
560f7d75 535cont:
c8b97818
CM
536 if (start == 0) {
537 /* lets try to make an inline extent */
771ed689 538 if (ret || total_in < (actual_end - start)) {
c8b97818 539 /* we didn't compress the entire range, try
771ed689 540 * to make an uncompressed inline extent.
c8b97818 541 */
00361589
JB
542 ret = cow_file_range_inline(root, inode, start, end,
543 0, 0, NULL);
c8b97818 544 } else {
771ed689 545 /* try making a compressed inline extent */
00361589 546 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
547 total_compressed,
548 compress_type, pages);
c8b97818 549 }
79787eaa 550 if (ret <= 0) {
151a41bc
JB
551 unsigned long clear_flags = EXTENT_DELALLOC |
552 EXTENT_DEFRAG;
e6eb4314
FM
553 unsigned long page_error_op;
554
151a41bc 555 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 556 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 557
771ed689 558 /*
79787eaa
JM
559 * inline extent creation worked or returned error,
560 * we don't need to create any more async work items.
561 * Unlock and free up our temp pages.
771ed689 562 */
c2790a2e 563 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 564 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
565 PAGE_CLEAR_DIRTY |
566 PAGE_SET_WRITEBACK |
e6eb4314 567 page_error_op |
c2790a2e 568 PAGE_END_WRITEBACK);
c8b97818
CM
569 goto free_pages_out;
570 }
571 }
572
573 if (will_compress) {
574 /*
575 * we aren't doing an inline extent round the compressed size
576 * up to a block size boundary so the allocator does sane
577 * things
578 */
fda2832f 579 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
580
581 /*
582 * one last check to make sure the compression is really a
583 * win, compare the page count read with the blocks on disk
584 */
09cbfeaf 585 total_in = ALIGN(total_in, PAGE_SIZE);
c8b97818
CM
586 if (total_compressed >= total_in) {
587 will_compress = 0;
588 } else {
c8b97818 589 num_bytes = total_in;
c8bb0c8b
AS
590 *num_added += 1;
591
592 /*
593 * The async work queues will take care of doing actual
594 * allocation on disk for these compressed pages, and
595 * will submit them to the elevator.
596 */
597 add_async_extent(async_cow, start, num_bytes,
598 total_compressed, pages, nr_pages_ret,
599 compress_type);
600
601 if (start + num_bytes < end) {
602 start += num_bytes;
603 pages = NULL;
604 cond_resched();
605 goto again;
606 }
607 return;
c8b97818
CM
608 }
609 }
c8bb0c8b 610 if (pages) {
c8b97818
CM
611 /*
612 * the compression code ran but failed to make things smaller,
613 * free any pages it allocated and our page pointer array
614 */
615 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 616 WARN_ON(pages[i]->mapping);
09cbfeaf 617 put_page(pages[i]);
c8b97818
CM
618 }
619 kfree(pages);
620 pages = NULL;
621 total_compressed = 0;
622 nr_pages_ret = 0;
623
624 /* flag the file so we don't compress in the future */
3cdde224 625 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
1e701a32 626 !(BTRFS_I(inode)->force_compress)) {
a555f810 627 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 628 }
c8b97818 629 }
f03d9301 630cleanup_and_bail_uncompressed:
c8bb0c8b
AS
631 /*
632 * No compression, but we still need to write the pages in the file
633 * we've been given so far. redirty the locked page if it corresponds
634 * to our extent and set things up for the async work queue to run
635 * cow_file_range to do the normal delalloc dance.
636 */
637 if (page_offset(locked_page) >= start &&
638 page_offset(locked_page) <= end)
639 __set_page_dirty_nobuffers(locked_page);
640 /* unlocked later on in the async handlers */
641
642 if (redirty)
643 extent_range_redirty_for_io(inode, start, end);
644 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
645 BTRFS_COMPRESS_NONE);
646 *num_added += 1;
3b951516 647
c44f649e 648 return;
771ed689
CM
649
650free_pages_out:
651 for (i = 0; i < nr_pages_ret; i++) {
652 WARN_ON(pages[i]->mapping);
09cbfeaf 653 put_page(pages[i]);
771ed689 654 }
d397712b 655 kfree(pages);
771ed689 656}
771ed689 657
40ae837b
FM
658static void free_async_extent_pages(struct async_extent *async_extent)
659{
660 int i;
661
662 if (!async_extent->pages)
663 return;
664
665 for (i = 0; i < async_extent->nr_pages; i++) {
666 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 667 put_page(async_extent->pages[i]);
40ae837b
FM
668 }
669 kfree(async_extent->pages);
670 async_extent->nr_pages = 0;
671 async_extent->pages = NULL;
771ed689
CM
672}
673
674/*
675 * phase two of compressed writeback. This is the ordered portion
676 * of the code, which only gets called in the order the work was
677 * queued. We walk all the async extents created by compress_file_range
678 * and send them down to the disk.
679 */
dec8f175 680static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
681 struct async_cow *async_cow)
682{
683 struct async_extent *async_extent;
684 u64 alloc_hint = 0;
771ed689
CM
685 struct btrfs_key ins;
686 struct extent_map *em;
687 struct btrfs_root *root = BTRFS_I(inode)->root;
688 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
689 struct extent_io_tree *io_tree;
f5a84ee3 690 int ret = 0;
771ed689 691
3e04e7f1 692again:
d397712b 693 while (!list_empty(&async_cow->extents)) {
771ed689
CM
694 async_extent = list_entry(async_cow->extents.next,
695 struct async_extent, list);
696 list_del(&async_extent->list);
c8b97818 697
771ed689
CM
698 io_tree = &BTRFS_I(inode)->io_tree;
699
f5a84ee3 700retry:
771ed689
CM
701 /* did the compression code fall back to uncompressed IO? */
702 if (!async_extent->pages) {
703 int page_started = 0;
704 unsigned long nr_written = 0;
705
706 lock_extent(io_tree, async_extent->start,
2ac55d41 707 async_extent->start +
d0082371 708 async_extent->ram_size - 1);
771ed689
CM
709
710 /* allocate blocks */
f5a84ee3
JB
711 ret = cow_file_range(inode, async_cow->locked_page,
712 async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1,
dda3245e
WX
715 async_extent->start +
716 async_extent->ram_size - 1,
717 &page_started, &nr_written, 0,
718 NULL);
771ed689 719
79787eaa
JM
720 /* JDM XXX */
721
771ed689
CM
722 /*
723 * if page_started, cow_file_range inserted an
724 * inline extent and took care of all the unlocking
725 * and IO for us. Otherwise, we need to submit
726 * all those pages down to the drive.
727 */
f5a84ee3 728 if (!page_started && !ret)
771ed689
CM
729 extent_write_locked_range(io_tree,
730 inode, async_extent->start,
d397712b 731 async_extent->start +
771ed689
CM
732 async_extent->ram_size - 1,
733 btrfs_get_extent,
734 WB_SYNC_ALL);
3e04e7f1
JB
735 else if (ret)
736 unlock_page(async_cow->locked_page);
771ed689
CM
737 kfree(async_extent);
738 cond_resched();
739 continue;
740 }
741
742 lock_extent(io_tree, async_extent->start,
d0082371 743 async_extent->start + async_extent->ram_size - 1);
771ed689 744
00361589 745 ret = btrfs_reserve_extent(root,
771ed689
CM
746 async_extent->compressed_size,
747 async_extent->compressed_size,
e570fd27 748 0, alloc_hint, &ins, 1, 1);
f5a84ee3 749 if (ret) {
40ae837b 750 free_async_extent_pages(async_extent);
3e04e7f1 751
fdf8e2ea
JB
752 if (ret == -ENOSPC) {
753 unlock_extent(io_tree, async_extent->start,
754 async_extent->start +
755 async_extent->ram_size - 1);
ce62003f
LB
756
757 /*
758 * we need to redirty the pages if we decide to
759 * fallback to uncompressed IO, otherwise we
760 * will not submit these pages down to lower
761 * layers.
762 */
763 extent_range_redirty_for_io(inode,
764 async_extent->start,
765 async_extent->start +
766 async_extent->ram_size - 1);
767
79787eaa 768 goto retry;
fdf8e2ea 769 }
3e04e7f1 770 goto out_free;
f5a84ee3 771 }
c2167754
YZ
772 /*
773 * here we're doing allocation and writeback of the
774 * compressed pages
775 */
776 btrfs_drop_extent_cache(inode, async_extent->start,
777 async_extent->start +
778 async_extent->ram_size - 1, 0);
779
172ddd60 780 em = alloc_extent_map();
b9aa55be
LB
781 if (!em) {
782 ret = -ENOMEM;
3e04e7f1 783 goto out_free_reserve;
b9aa55be 784 }
771ed689
CM
785 em->start = async_extent->start;
786 em->len = async_extent->ram_size;
445a6944 787 em->orig_start = em->start;
2ab28f32
JB
788 em->mod_start = em->start;
789 em->mod_len = em->len;
c8b97818 790
771ed689
CM
791 em->block_start = ins.objectid;
792 em->block_len = ins.offset;
b4939680 793 em->orig_block_len = ins.offset;
cc95bef6 794 em->ram_bytes = async_extent->ram_size;
771ed689 795 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 796 em->compress_type = async_extent->compress_type;
771ed689
CM
797 set_bit(EXTENT_FLAG_PINNED, &em->flags);
798 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 799 em->generation = -1;
771ed689 800
d397712b 801 while (1) {
890871be 802 write_lock(&em_tree->lock);
09a2a8f9 803 ret = add_extent_mapping(em_tree, em, 1);
890871be 804 write_unlock(&em_tree->lock);
771ed689
CM
805 if (ret != -EEXIST) {
806 free_extent_map(em);
807 break;
808 }
809 btrfs_drop_extent_cache(inode, async_extent->start,
810 async_extent->start +
811 async_extent->ram_size - 1, 0);
812 }
813
3e04e7f1
JB
814 if (ret)
815 goto out_free_reserve;
816
261507a0
LZ
817 ret = btrfs_add_ordered_extent_compress(inode,
818 async_extent->start,
819 ins.objectid,
820 async_extent->ram_size,
821 ins.offset,
822 BTRFS_ORDERED_COMPRESSED,
823 async_extent->compress_type);
d9f85963
FM
824 if (ret) {
825 btrfs_drop_extent_cache(inode, async_extent->start,
826 async_extent->start +
827 async_extent->ram_size - 1, 0);
3e04e7f1 828 goto out_free_reserve;
d9f85963 829 }
9cfa3e34 830 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
771ed689 831
771ed689
CM
832 /*
833 * clear dirty, set writeback and unlock the pages.
834 */
c2790a2e 835 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
836 async_extent->start +
837 async_extent->ram_size - 1,
151a41bc
JB
838 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
839 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 840 PAGE_SET_WRITEBACK);
771ed689 841 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
842 async_extent->start,
843 async_extent->ram_size,
844 ins.objectid,
845 ins.offset, async_extent->pages,
846 async_extent->nr_pages);
fce2a4e6
FM
847 if (ret) {
848 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
849 struct page *p = async_extent->pages[0];
850 const u64 start = async_extent->start;
851 const u64 end = start + async_extent->ram_size - 1;
852
853 p->mapping = inode->i_mapping;
854 tree->ops->writepage_end_io_hook(p, start, end,
855 NULL, 0);
856 p->mapping = NULL;
857 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
858 PAGE_END_WRITEBACK |
859 PAGE_SET_ERROR);
40ae837b 860 free_async_extent_pages(async_extent);
fce2a4e6 861 }
771ed689
CM
862 alloc_hint = ins.objectid + ins.offset;
863 kfree(async_extent);
864 cond_resched();
865 }
dec8f175 866 return;
3e04e7f1 867out_free_reserve:
9cfa3e34 868 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 869 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 870out_free:
c2790a2e 871 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
872 async_extent->start +
873 async_extent->ram_size - 1,
c2790a2e 874 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
875 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
876 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
877 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
878 PAGE_SET_ERROR);
40ae837b 879 free_async_extent_pages(async_extent);
79787eaa 880 kfree(async_extent);
3e04e7f1 881 goto again;
771ed689
CM
882}
883
4b46fce2
JB
884static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
885 u64 num_bytes)
886{
887 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
888 struct extent_map *em;
889 u64 alloc_hint = 0;
890
891 read_lock(&em_tree->lock);
892 em = search_extent_mapping(em_tree, start, num_bytes);
893 if (em) {
894 /*
895 * if block start isn't an actual block number then find the
896 * first block in this inode and use that as a hint. If that
897 * block is also bogus then just don't worry about it.
898 */
899 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
900 free_extent_map(em);
901 em = search_extent_mapping(em_tree, 0, 0);
902 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
903 alloc_hint = em->block_start;
904 if (em)
905 free_extent_map(em);
906 } else {
907 alloc_hint = em->block_start;
908 free_extent_map(em);
909 }
910 }
911 read_unlock(&em_tree->lock);
912
913 return alloc_hint;
914}
915
771ed689
CM
916/*
917 * when extent_io.c finds a delayed allocation range in the file,
918 * the call backs end up in this code. The basic idea is to
919 * allocate extents on disk for the range, and create ordered data structs
920 * in ram to track those extents.
921 *
922 * locked_page is the page that writepage had locked already. We use
923 * it to make sure we don't do extra locks or unlocks.
924 *
925 * *page_started is set to one if we unlock locked_page and do everything
926 * required to start IO on it. It may be clean and already done with
927 * IO when we return.
928 */
00361589
JB
929static noinline int cow_file_range(struct inode *inode,
930 struct page *locked_page,
dda3245e
WX
931 u64 start, u64 end, u64 delalloc_end,
932 int *page_started, unsigned long *nr_written,
933 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 934{
00361589 935 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
936 u64 alloc_hint = 0;
937 u64 num_bytes;
938 unsigned long ram_size;
939 u64 disk_num_bytes;
940 u64 cur_alloc_size;
941 u64 blocksize = root->sectorsize;
771ed689
CM
942 struct btrfs_key ins;
943 struct extent_map *em;
944 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
945 int ret = 0;
946
02ecd2c2
JB
947 if (btrfs_is_free_space_inode(inode)) {
948 WARN_ON_ONCE(1);
29bce2f3
JB
949 ret = -EINVAL;
950 goto out_unlock;
02ecd2c2 951 }
771ed689 952
fda2832f 953 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
954 num_bytes = max(blocksize, num_bytes);
955 disk_num_bytes = num_bytes;
771ed689 956
4cb5300b 957 /* if this is a small write inside eof, kick off defrag */
ee22184b 958 if (num_bytes < SZ_64K &&
4cb13e5d 959 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 960 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 961
771ed689
CM
962 if (start == 0) {
963 /* lets try to make an inline extent */
00361589
JB
964 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
965 NULL);
771ed689 966 if (ret == 0) {
c2790a2e
JB
967 extent_clear_unlock_delalloc(inode, start, end, NULL,
968 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 969 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
970 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
971 PAGE_END_WRITEBACK);
c2167754 972
771ed689 973 *nr_written = *nr_written +
09cbfeaf 974 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 975 *page_started = 1;
771ed689 976 goto out;
79787eaa 977 } else if (ret < 0) {
79787eaa 978 goto out_unlock;
771ed689
CM
979 }
980 }
981
982 BUG_ON(disk_num_bytes >
6c41761f 983 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 984
4b46fce2 985 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
986 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
987
d397712b 988 while (disk_num_bytes > 0) {
a791e35e
CM
989 unsigned long op;
990
287a0ab9 991 cur_alloc_size = disk_num_bytes;
00361589 992 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 993 root->sectorsize, 0, alloc_hint,
e570fd27 994 &ins, 1, 1);
00361589 995 if (ret < 0)
79787eaa 996 goto out_unlock;
d397712b 997
172ddd60 998 em = alloc_extent_map();
b9aa55be
LB
999 if (!em) {
1000 ret = -ENOMEM;
ace68bac 1001 goto out_reserve;
b9aa55be 1002 }
e6dcd2dc 1003 em->start = start;
445a6944 1004 em->orig_start = em->start;
771ed689
CM
1005 ram_size = ins.offset;
1006 em->len = ins.offset;
2ab28f32
JB
1007 em->mod_start = em->start;
1008 em->mod_len = em->len;
c8b97818 1009
e6dcd2dc 1010 em->block_start = ins.objectid;
c8b97818 1011 em->block_len = ins.offset;
b4939680 1012 em->orig_block_len = ins.offset;
cc95bef6 1013 em->ram_bytes = ram_size;
e6dcd2dc 1014 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 1015 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 1016 em->generation = -1;
c8b97818 1017
d397712b 1018 while (1) {
890871be 1019 write_lock(&em_tree->lock);
09a2a8f9 1020 ret = add_extent_mapping(em_tree, em, 1);
890871be 1021 write_unlock(&em_tree->lock);
e6dcd2dc
CM
1022 if (ret != -EEXIST) {
1023 free_extent_map(em);
1024 break;
1025 }
1026 btrfs_drop_extent_cache(inode, start,
c8b97818 1027 start + ram_size - 1, 0);
e6dcd2dc 1028 }
ace68bac
LB
1029 if (ret)
1030 goto out_reserve;
e6dcd2dc 1031
98d20f67 1032 cur_alloc_size = ins.offset;
e6dcd2dc 1033 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1034 ram_size, cur_alloc_size, 0);
ace68bac 1035 if (ret)
d9f85963 1036 goto out_drop_extent_cache;
c8b97818 1037
17d217fe
YZ
1038 if (root->root_key.objectid ==
1039 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1040 ret = btrfs_reloc_clone_csums(inode, start,
1041 cur_alloc_size);
00361589 1042 if (ret)
d9f85963 1043 goto out_drop_extent_cache;
17d217fe
YZ
1044 }
1045
9cfa3e34
FM
1046 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1047
d397712b 1048 if (disk_num_bytes < cur_alloc_size)
3b951516 1049 break;
d397712b 1050
c8b97818
CM
1051 /* we're not doing compressed IO, don't unlock the first
1052 * page (which the caller expects to stay locked), don't
1053 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1054 *
1055 * Do set the Private2 bit so we know this page was properly
1056 * setup for writepage
c8b97818 1057 */
c2790a2e
JB
1058 op = unlock ? PAGE_UNLOCK : 0;
1059 op |= PAGE_SET_PRIVATE2;
a791e35e 1060
c2790a2e
JB
1061 extent_clear_unlock_delalloc(inode, start,
1062 start + ram_size - 1, locked_page,
1063 EXTENT_LOCKED | EXTENT_DELALLOC,
1064 op);
c8b97818 1065 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1066 num_bytes -= cur_alloc_size;
1067 alloc_hint = ins.objectid + ins.offset;
1068 start += cur_alloc_size;
b888db2b 1069 }
79787eaa 1070out:
be20aa9d 1071 return ret;
b7d5b0a8 1072
d9f85963
FM
1073out_drop_extent_cache:
1074 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1075out_reserve:
9cfa3e34 1076 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
e570fd27 1077 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1078out_unlock:
c2790a2e 1079 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1080 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1081 EXTENT_DELALLOC | EXTENT_DEFRAG,
1082 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1083 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1084 goto out;
771ed689 1085}
c8b97818 1086
771ed689
CM
1087/*
1088 * work queue call back to started compression on a file and pages
1089 */
1090static noinline void async_cow_start(struct btrfs_work *work)
1091{
1092 struct async_cow *async_cow;
1093 int num_added = 0;
1094 async_cow = container_of(work, struct async_cow, work);
1095
1096 compress_file_range(async_cow->inode, async_cow->locked_page,
1097 async_cow->start, async_cow->end, async_cow,
1098 &num_added);
8180ef88 1099 if (num_added == 0) {
cb77fcd8 1100 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1101 async_cow->inode = NULL;
8180ef88 1102 }
771ed689
CM
1103}
1104
1105/*
1106 * work queue call back to submit previously compressed pages
1107 */
1108static noinline void async_cow_submit(struct btrfs_work *work)
1109{
1110 struct async_cow *async_cow;
1111 struct btrfs_root *root;
1112 unsigned long nr_pages;
1113
1114 async_cow = container_of(work, struct async_cow, work);
1115
1116 root = async_cow->root;
09cbfeaf
KS
1117 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1118 PAGE_SHIFT;
771ed689 1119
ee863954
DS
1120 /*
1121 * atomic_sub_return implies a barrier for waitqueue_active
1122 */
66657b31 1123 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
ee22184b 1124 5 * SZ_1M &&
771ed689
CM
1125 waitqueue_active(&root->fs_info->async_submit_wait))
1126 wake_up(&root->fs_info->async_submit_wait);
1127
d397712b 1128 if (async_cow->inode)
771ed689 1129 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1130}
c8b97818 1131
771ed689
CM
1132static noinline void async_cow_free(struct btrfs_work *work)
1133{
1134 struct async_cow *async_cow;
1135 async_cow = container_of(work, struct async_cow, work);
8180ef88 1136 if (async_cow->inode)
cb77fcd8 1137 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1138 kfree(async_cow);
1139}
1140
1141static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1142 u64 start, u64 end, int *page_started,
1143 unsigned long *nr_written)
1144{
1145 struct async_cow *async_cow;
1146 struct btrfs_root *root = BTRFS_I(inode)->root;
1147 unsigned long nr_pages;
1148 u64 cur_end;
ee22184b 1149 int limit = 10 * SZ_1M;
771ed689 1150
a3429ab7
CM
1151 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1152 1, 0, NULL, GFP_NOFS);
d397712b 1153 while (start < end) {
771ed689 1154 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1155 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1156 async_cow->inode = igrab(inode);
771ed689
CM
1157 async_cow->root = root;
1158 async_cow->locked_page = locked_page;
1159 async_cow->start = start;
1160
f79707b0 1161 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
3cdde224 1162 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
771ed689
CM
1163 cur_end = end;
1164 else
ee22184b 1165 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1166
1167 async_cow->end = cur_end;
1168 INIT_LIST_HEAD(&async_cow->extents);
1169
9e0af237
LB
1170 btrfs_init_work(&async_cow->work,
1171 btrfs_delalloc_helper,
1172 async_cow_start, async_cow_submit,
1173 async_cow_free);
771ed689 1174
09cbfeaf
KS
1175 nr_pages = (cur_end - start + PAGE_SIZE) >>
1176 PAGE_SHIFT;
771ed689
CM
1177 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1178
afe3d242
QW
1179 btrfs_queue_work(root->fs_info->delalloc_workers,
1180 &async_cow->work);
771ed689
CM
1181
1182 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1183 wait_event(root->fs_info->async_submit_wait,
1184 (atomic_read(&root->fs_info->async_delalloc_pages) <
1185 limit));
1186 }
1187
d397712b 1188 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1189 atomic_read(&root->fs_info->async_delalloc_pages)) {
1190 wait_event(root->fs_info->async_submit_wait,
1191 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1192 0));
1193 }
1194
1195 *nr_written += nr_pages;
1196 start = cur_end + 1;
1197 }
1198 *page_started = 1;
1199 return 0;
be20aa9d
CM
1200}
1201
d397712b 1202static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1203 u64 bytenr, u64 num_bytes)
1204{
1205 int ret;
1206 struct btrfs_ordered_sum *sums;
1207 LIST_HEAD(list);
1208
07d400a6 1209 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1210 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1211 if (ret == 0 && list_empty(&list))
1212 return 0;
1213
1214 while (!list_empty(&list)) {
1215 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1216 list_del(&sums->list);
1217 kfree(sums);
1218 }
1219 return 1;
1220}
1221
d352ac68
CM
1222/*
1223 * when nowcow writeback call back. This checks for snapshots or COW copies
1224 * of the extents that exist in the file, and COWs the file as required.
1225 *
1226 * If no cow copies or snapshots exist, we write directly to the existing
1227 * blocks on disk
1228 */
7f366cfe
CM
1229static noinline int run_delalloc_nocow(struct inode *inode,
1230 struct page *locked_page,
771ed689
CM
1231 u64 start, u64 end, int *page_started, int force,
1232 unsigned long *nr_written)
be20aa9d 1233{
be20aa9d 1234 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1235 struct btrfs_trans_handle *trans;
be20aa9d 1236 struct extent_buffer *leaf;
be20aa9d 1237 struct btrfs_path *path;
80ff3856 1238 struct btrfs_file_extent_item *fi;
be20aa9d 1239 struct btrfs_key found_key;
80ff3856
YZ
1240 u64 cow_start;
1241 u64 cur_offset;
1242 u64 extent_end;
5d4f98a2 1243 u64 extent_offset;
80ff3856
YZ
1244 u64 disk_bytenr;
1245 u64 num_bytes;
b4939680 1246 u64 disk_num_bytes;
cc95bef6 1247 u64 ram_bytes;
80ff3856 1248 int extent_type;
79787eaa 1249 int ret, err;
d899e052 1250 int type;
80ff3856
YZ
1251 int nocow;
1252 int check_prev = 1;
82d5902d 1253 bool nolock;
33345d01 1254 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1255
1256 path = btrfs_alloc_path();
17ca04af 1257 if (!path) {
c2790a2e
JB
1258 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1259 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1260 EXTENT_DO_ACCOUNTING |
1261 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1262 PAGE_CLEAR_DIRTY |
1263 PAGE_SET_WRITEBACK |
1264 PAGE_END_WRITEBACK);
d8926bb3 1265 return -ENOMEM;
17ca04af 1266 }
82d5902d 1267
83eea1f1 1268 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1269
1270 if (nolock)
7a7eaa40 1271 trans = btrfs_join_transaction_nolock(root);
82d5902d 1272 else
7a7eaa40 1273 trans = btrfs_join_transaction(root);
ff5714cc 1274
79787eaa 1275 if (IS_ERR(trans)) {
c2790a2e
JB
1276 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1277 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1278 EXTENT_DO_ACCOUNTING |
1279 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1280 PAGE_CLEAR_DIRTY |
1281 PAGE_SET_WRITEBACK |
1282 PAGE_END_WRITEBACK);
79787eaa
JM
1283 btrfs_free_path(path);
1284 return PTR_ERR(trans);
1285 }
1286
74b21075 1287 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1288
80ff3856
YZ
1289 cow_start = (u64)-1;
1290 cur_offset = start;
1291 while (1) {
33345d01 1292 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1293 cur_offset, 0);
d788a349 1294 if (ret < 0)
79787eaa 1295 goto error;
80ff3856
YZ
1296 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1297 leaf = path->nodes[0];
1298 btrfs_item_key_to_cpu(leaf, &found_key,
1299 path->slots[0] - 1);
33345d01 1300 if (found_key.objectid == ino &&
80ff3856
YZ
1301 found_key.type == BTRFS_EXTENT_DATA_KEY)
1302 path->slots[0]--;
1303 }
1304 check_prev = 0;
1305next_slot:
1306 leaf = path->nodes[0];
1307 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1308 ret = btrfs_next_leaf(root, path);
d788a349 1309 if (ret < 0)
79787eaa 1310 goto error;
80ff3856
YZ
1311 if (ret > 0)
1312 break;
1313 leaf = path->nodes[0];
1314 }
be20aa9d 1315
80ff3856
YZ
1316 nocow = 0;
1317 disk_bytenr = 0;
17d217fe 1318 num_bytes = 0;
80ff3856
YZ
1319 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1320
1d512cb7
FM
1321 if (found_key.objectid > ino)
1322 break;
1323 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1324 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1325 path->slots[0]++;
1326 goto next_slot;
1327 }
1328 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1329 found_key.offset > end)
1330 break;
1331
1332 if (found_key.offset > cur_offset) {
1333 extent_end = found_key.offset;
e9061e21 1334 extent_type = 0;
80ff3856
YZ
1335 goto out_check;
1336 }
1337
1338 fi = btrfs_item_ptr(leaf, path->slots[0],
1339 struct btrfs_file_extent_item);
1340 extent_type = btrfs_file_extent_type(leaf, fi);
1341
cc95bef6 1342 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1343 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1344 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1345 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1346 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1347 extent_end = found_key.offset +
1348 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1349 disk_num_bytes =
1350 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1351 if (extent_end <= start) {
1352 path->slots[0]++;
1353 goto next_slot;
1354 }
17d217fe
YZ
1355 if (disk_bytenr == 0)
1356 goto out_check;
80ff3856
YZ
1357 if (btrfs_file_extent_compression(leaf, fi) ||
1358 btrfs_file_extent_encryption(leaf, fi) ||
1359 btrfs_file_extent_other_encoding(leaf, fi))
1360 goto out_check;
d899e052
YZ
1361 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1362 goto out_check;
d2fb3437 1363 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1364 goto out_check;
33345d01 1365 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1366 found_key.offset -
1367 extent_offset, disk_bytenr))
17d217fe 1368 goto out_check;
5d4f98a2 1369 disk_bytenr += extent_offset;
17d217fe
YZ
1370 disk_bytenr += cur_offset - found_key.offset;
1371 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1372 /*
1373 * if there are pending snapshots for this root,
1374 * we fall into common COW way.
1375 */
1376 if (!nolock) {
9ea24bbe 1377 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1378 if (!err)
1379 goto out_check;
1380 }
17d217fe
YZ
1381 /*
1382 * force cow if csum exists in the range.
1383 * this ensure that csum for a given extent are
1384 * either valid or do not exist.
1385 */
1386 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1387 goto out_check;
f78c436c
FM
1388 if (!btrfs_inc_nocow_writers(root->fs_info,
1389 disk_bytenr))
1390 goto out_check;
80ff3856
YZ
1391 nocow = 1;
1392 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1393 extent_end = found_key.offset +
514ac8ad
CM
1394 btrfs_file_extent_inline_len(leaf,
1395 path->slots[0], fi);
80ff3856
YZ
1396 extent_end = ALIGN(extent_end, root->sectorsize);
1397 } else {
1398 BUG_ON(1);
1399 }
1400out_check:
1401 if (extent_end <= start) {
1402 path->slots[0]++;
e9894fd3 1403 if (!nolock && nocow)
9ea24bbe 1404 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1405 if (nocow)
1406 btrfs_dec_nocow_writers(root->fs_info,
1407 disk_bytenr);
80ff3856
YZ
1408 goto next_slot;
1409 }
1410 if (!nocow) {
1411 if (cow_start == (u64)-1)
1412 cow_start = cur_offset;
1413 cur_offset = extent_end;
1414 if (cur_offset > end)
1415 break;
1416 path->slots[0]++;
1417 goto next_slot;
7ea394f1
YZ
1418 }
1419
b3b4aa74 1420 btrfs_release_path(path);
80ff3856 1421 if (cow_start != (u64)-1) {
00361589
JB
1422 ret = cow_file_range(inode, locked_page,
1423 cow_start, found_key.offset - 1,
dda3245e
WX
1424 end, page_started, nr_written, 1,
1425 NULL);
e9894fd3
WS
1426 if (ret) {
1427 if (!nolock && nocow)
9ea24bbe 1428 btrfs_end_write_no_snapshoting(root);
f78c436c
FM
1429 if (nocow)
1430 btrfs_dec_nocow_writers(root->fs_info,
1431 disk_bytenr);
79787eaa 1432 goto error;
e9894fd3 1433 }
80ff3856 1434 cow_start = (u64)-1;
7ea394f1 1435 }
80ff3856 1436
d899e052
YZ
1437 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1438 struct extent_map *em;
1439 struct extent_map_tree *em_tree;
1440 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1441 em = alloc_extent_map();
79787eaa 1442 BUG_ON(!em); /* -ENOMEM */
d899e052 1443 em->start = cur_offset;
70c8a91c 1444 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1445 em->len = num_bytes;
1446 em->block_len = num_bytes;
1447 em->block_start = disk_bytenr;
b4939680 1448 em->orig_block_len = disk_num_bytes;
cc95bef6 1449 em->ram_bytes = ram_bytes;
d899e052 1450 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1451 em->mod_start = em->start;
1452 em->mod_len = em->len;
d899e052 1453 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1454 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1455 em->generation = -1;
d899e052 1456 while (1) {
890871be 1457 write_lock(&em_tree->lock);
09a2a8f9 1458 ret = add_extent_mapping(em_tree, em, 1);
890871be 1459 write_unlock(&em_tree->lock);
d899e052
YZ
1460 if (ret != -EEXIST) {
1461 free_extent_map(em);
1462 break;
1463 }
1464 btrfs_drop_extent_cache(inode, em->start,
1465 em->start + em->len - 1, 0);
1466 }
1467 type = BTRFS_ORDERED_PREALLOC;
1468 } else {
1469 type = BTRFS_ORDERED_NOCOW;
1470 }
80ff3856
YZ
1471
1472 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1473 num_bytes, num_bytes, type);
f78c436c
FM
1474 if (nocow)
1475 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
79787eaa 1476 BUG_ON(ret); /* -ENOMEM */
771ed689 1477
efa56464
YZ
1478 if (root->root_key.objectid ==
1479 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1480 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1481 num_bytes);
e9894fd3
WS
1482 if (ret) {
1483 if (!nolock && nocow)
9ea24bbe 1484 btrfs_end_write_no_snapshoting(root);
79787eaa 1485 goto error;
e9894fd3 1486 }
efa56464
YZ
1487 }
1488
c2790a2e
JB
1489 extent_clear_unlock_delalloc(inode, cur_offset,
1490 cur_offset + num_bytes - 1,
1491 locked_page, EXTENT_LOCKED |
1492 EXTENT_DELALLOC, PAGE_UNLOCK |
1493 PAGE_SET_PRIVATE2);
e9894fd3 1494 if (!nolock && nocow)
9ea24bbe 1495 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1496 cur_offset = extent_end;
1497 if (cur_offset > end)
1498 break;
be20aa9d 1499 }
b3b4aa74 1500 btrfs_release_path(path);
80ff3856 1501
17ca04af 1502 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1503 cow_start = cur_offset;
17ca04af
JB
1504 cur_offset = end;
1505 }
1506
80ff3856 1507 if (cow_start != (u64)-1) {
dda3245e
WX
1508 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1509 page_started, nr_written, 1, NULL);
d788a349 1510 if (ret)
79787eaa 1511 goto error;
80ff3856
YZ
1512 }
1513
79787eaa 1514error:
a698d075 1515 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1516 if (!ret)
1517 ret = err;
1518
17ca04af 1519 if (ret && cur_offset < end)
c2790a2e
JB
1520 extent_clear_unlock_delalloc(inode, cur_offset, end,
1521 locked_page, EXTENT_LOCKED |
151a41bc
JB
1522 EXTENT_DELALLOC | EXTENT_DEFRAG |
1523 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1524 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1525 PAGE_SET_WRITEBACK |
1526 PAGE_END_WRITEBACK);
7ea394f1 1527 btrfs_free_path(path);
79787eaa 1528 return ret;
be20aa9d
CM
1529}
1530
47059d93
WS
1531static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1532{
1533
1534 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1535 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1536 return 0;
1537
1538 /*
1539 * @defrag_bytes is a hint value, no spinlock held here,
1540 * if is not zero, it means the file is defragging.
1541 * Force cow if given extent needs to be defragged.
1542 */
1543 if (BTRFS_I(inode)->defrag_bytes &&
1544 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1545 EXTENT_DEFRAG, 0, NULL))
1546 return 1;
1547
1548 return 0;
1549}
1550
d352ac68
CM
1551/*
1552 * extent_io.c call back to do delayed allocation processing
1553 */
c8b97818 1554static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1555 u64 start, u64 end, int *page_started,
1556 unsigned long *nr_written)
be20aa9d 1557{
be20aa9d 1558 int ret;
47059d93 1559 int force_cow = need_force_cow(inode, start, end);
a2135011 1560
47059d93 1561 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1562 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1563 page_started, 1, nr_written);
47059d93 1564 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1565 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1566 page_started, 0, nr_written);
7816030e 1567 } else if (!inode_need_compress(inode)) {
dda3245e
WX
1568 ret = cow_file_range(inode, locked_page, start, end, end,
1569 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1570 } else {
1571 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1572 &BTRFS_I(inode)->runtime_flags);
771ed689 1573 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1574 page_started, nr_written);
7ddf5a42 1575 }
b888db2b
CM
1576 return ret;
1577}
1578
1bf85046
JM
1579static void btrfs_split_extent_hook(struct inode *inode,
1580 struct extent_state *orig, u64 split)
9ed74f2d 1581{
dcab6a3b
JB
1582 u64 size;
1583
0ca1f7ce 1584 /* not delalloc, ignore it */
9ed74f2d 1585 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1586 return;
9ed74f2d 1587
dcab6a3b
JB
1588 size = orig->end - orig->start + 1;
1589 if (size > BTRFS_MAX_EXTENT_SIZE) {
1590 u64 num_extents;
1591 u64 new_size;
1592
1593 /*
ba117213
JB
1594 * See the explanation in btrfs_merge_extent_hook, the same
1595 * applies here, just in reverse.
dcab6a3b
JB
1596 */
1597 new_size = orig->end - split + 1;
ba117213 1598 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
dcab6a3b 1599 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1600 new_size = split - orig->start;
1601 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1602 BTRFS_MAX_EXTENT_SIZE);
1603 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1604 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1605 return;
1606 }
1607
9e0baf60
JB
1608 spin_lock(&BTRFS_I(inode)->lock);
1609 BTRFS_I(inode)->outstanding_extents++;
1610 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1611}
1612
1613/*
1614 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1615 * extents so we can keep track of new extents that are just merged onto old
1616 * extents, such as when we are doing sequential writes, so we can properly
1617 * account for the metadata space we'll need.
1618 */
1bf85046
JM
1619static void btrfs_merge_extent_hook(struct inode *inode,
1620 struct extent_state *new,
1621 struct extent_state *other)
9ed74f2d 1622{
dcab6a3b
JB
1623 u64 new_size, old_size;
1624 u64 num_extents;
1625
9ed74f2d
JB
1626 /* not delalloc, ignore it */
1627 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1628 return;
9ed74f2d 1629
8461a3de
JB
1630 if (new->start > other->start)
1631 new_size = new->end - other->start + 1;
1632 else
1633 new_size = other->end - new->start + 1;
dcab6a3b
JB
1634
1635 /* we're not bigger than the max, unreserve the space and go */
1636 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1637 spin_lock(&BTRFS_I(inode)->lock);
1638 BTRFS_I(inode)->outstanding_extents--;
1639 spin_unlock(&BTRFS_I(inode)->lock);
1640 return;
1641 }
1642
1643 /*
ba117213
JB
1644 * We have to add up either side to figure out how many extents were
1645 * accounted for before we merged into one big extent. If the number of
1646 * extents we accounted for is <= the amount we need for the new range
1647 * then we can return, otherwise drop. Think of it like this
1648 *
1649 * [ 4k][MAX_SIZE]
1650 *
1651 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1652 * need 2 outstanding extents, on one side we have 1 and the other side
1653 * we have 1 so they are == and we can return. But in this case
1654 *
1655 * [MAX_SIZE+4k][MAX_SIZE+4k]
1656 *
1657 * Each range on their own accounts for 2 extents, but merged together
1658 * they are only 3 extents worth of accounting, so we need to drop in
1659 * this case.
dcab6a3b 1660 */
ba117213 1661 old_size = other->end - other->start + 1;
dcab6a3b
JB
1662 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1663 BTRFS_MAX_EXTENT_SIZE);
ba117213
JB
1664 old_size = new->end - new->start + 1;
1665 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1666 BTRFS_MAX_EXTENT_SIZE);
1667
dcab6a3b 1668 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
ba117213 1669 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
dcab6a3b
JB
1670 return;
1671
9e0baf60
JB
1672 spin_lock(&BTRFS_I(inode)->lock);
1673 BTRFS_I(inode)->outstanding_extents--;
1674 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1675}
1676
eb73c1b7
MX
1677static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1678 struct inode *inode)
1679{
1680 spin_lock(&root->delalloc_lock);
1681 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1682 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1683 &root->delalloc_inodes);
1684 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1685 &BTRFS_I(inode)->runtime_flags);
1686 root->nr_delalloc_inodes++;
1687 if (root->nr_delalloc_inodes == 1) {
1688 spin_lock(&root->fs_info->delalloc_root_lock);
1689 BUG_ON(!list_empty(&root->delalloc_root));
1690 list_add_tail(&root->delalloc_root,
1691 &root->fs_info->delalloc_roots);
1692 spin_unlock(&root->fs_info->delalloc_root_lock);
1693 }
1694 }
1695 spin_unlock(&root->delalloc_lock);
1696}
1697
1698static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1699 struct inode *inode)
1700{
1701 spin_lock(&root->delalloc_lock);
1702 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1703 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1704 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1705 &BTRFS_I(inode)->runtime_flags);
1706 root->nr_delalloc_inodes--;
1707 if (!root->nr_delalloc_inodes) {
1708 spin_lock(&root->fs_info->delalloc_root_lock);
1709 BUG_ON(list_empty(&root->delalloc_root));
1710 list_del_init(&root->delalloc_root);
1711 spin_unlock(&root->fs_info->delalloc_root_lock);
1712 }
1713 }
1714 spin_unlock(&root->delalloc_lock);
1715}
1716
d352ac68
CM
1717/*
1718 * extent_io.c set_bit_hook, used to track delayed allocation
1719 * bytes in this file, and to maintain the list of inodes that
1720 * have pending delalloc work to be done.
1721 */
1bf85046 1722static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1723 struct extent_state *state, unsigned *bits)
291d673e 1724{
9ed74f2d 1725
47059d93
WS
1726 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1727 WARN_ON(1);
75eff68e
CM
1728 /*
1729 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1730 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1731 * bit, which is only set or cleared with irqs on
1732 */
0ca1f7ce 1733 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1734 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1735 u64 len = state->end + 1 - state->start;
83eea1f1 1736 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1737
9e0baf60 1738 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1739 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1740 } else {
1741 spin_lock(&BTRFS_I(inode)->lock);
1742 BTRFS_I(inode)->outstanding_extents++;
1743 spin_unlock(&BTRFS_I(inode)->lock);
1744 }
287a0ab9 1745
6a3891c5
JB
1746 /* For sanity tests */
1747 if (btrfs_test_is_dummy_root(root))
1748 return;
1749
963d678b
MX
1750 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1751 root->fs_info->delalloc_batch);
df0af1a5 1752 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1753 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1754 if (*bits & EXTENT_DEFRAG)
1755 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1756 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1757 &BTRFS_I(inode)->runtime_flags))
1758 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1759 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1760 }
291d673e
CM
1761}
1762
d352ac68
CM
1763/*
1764 * extent_io.c clear_bit_hook, see set_bit_hook for why
1765 */
1bf85046 1766static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1767 struct extent_state *state,
9ee49a04 1768 unsigned *bits)
291d673e 1769{
47059d93 1770 u64 len = state->end + 1 - state->start;
dcab6a3b
JB
1771 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1772 BTRFS_MAX_EXTENT_SIZE);
47059d93
WS
1773
1774 spin_lock(&BTRFS_I(inode)->lock);
1775 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1776 BTRFS_I(inode)->defrag_bytes -= len;
1777 spin_unlock(&BTRFS_I(inode)->lock);
1778
75eff68e
CM
1779 /*
1780 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1781 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1782 * bit, which is only set or cleared with irqs on
1783 */
0ca1f7ce 1784 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1785 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1786 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1787
9e0baf60 1788 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1789 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1790 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1791 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 1792 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60
JB
1793 spin_unlock(&BTRFS_I(inode)->lock);
1794 }
0ca1f7ce 1795
b6d08f06
JB
1796 /*
1797 * We don't reserve metadata space for space cache inodes so we
1798 * don't need to call dellalloc_release_metadata if there is an
1799 * error.
1800 */
1801 if (*bits & EXTENT_DO_ACCOUNTING &&
1802 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1803 btrfs_delalloc_release_metadata(inode, len);
1804
6a3891c5
JB
1805 /* For sanity tests. */
1806 if (btrfs_test_is_dummy_root(root))
1807 return;
1808
0cb59c99 1809 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1810 && do_list && !(state->state & EXTENT_NORESERVE))
51773bec
QW
1811 btrfs_free_reserved_data_space_noquota(inode,
1812 state->start, len);
9ed74f2d 1813
963d678b
MX
1814 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1815 root->fs_info->delalloc_batch);
df0af1a5 1816 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1817 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1818 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1819 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1820 &BTRFS_I(inode)->runtime_flags))
1821 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1822 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1823 }
291d673e
CM
1824}
1825
d352ac68
CM
1826/*
1827 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1828 * we don't create bios that span stripes or chunks
6f034ece
LB
1829 *
1830 * return 1 if page cannot be merged to bio
1831 * return 0 if page can be merged to bio
1832 * return error otherwise
d352ac68 1833 */
64a16701 1834int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1835 size_t size, struct bio *bio,
1836 unsigned long bio_flags)
239b14b3
CM
1837{
1838 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1839 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1840 u64 length = 0;
1841 u64 map_length;
239b14b3
CM
1842 int ret;
1843
771ed689
CM
1844 if (bio_flags & EXTENT_BIO_COMPRESSED)
1845 return 0;
1846
4f024f37 1847 length = bio->bi_iter.bi_size;
239b14b3 1848 map_length = length;
64a16701 1849 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1850 &map_length, NULL, 0);
6f034ece
LB
1851 if (ret < 0)
1852 return ret;
d397712b 1853 if (map_length < length + size)
239b14b3 1854 return 1;
3444a972 1855 return 0;
239b14b3
CM
1856}
1857
d352ac68
CM
1858/*
1859 * in order to insert checksums into the metadata in large chunks,
1860 * we wait until bio submission time. All the pages in the bio are
1861 * checksummed and sums are attached onto the ordered extent record.
1862 *
1863 * At IO completion time the cums attached on the ordered extent record
1864 * are inserted into the btree
1865 */
d397712b
CM
1866static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1867 struct bio *bio, int mirror_num,
eaf25d93
CM
1868 unsigned long bio_flags,
1869 u64 bio_offset)
065631f6 1870{
065631f6 1871 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1872 int ret = 0;
e015640f 1873
d20f7043 1874 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1875 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1876 return 0;
1877}
e015640f 1878
4a69a410
CM
1879/*
1880 * in order to insert checksums into the metadata in large chunks,
1881 * we wait until bio submission time. All the pages in the bio are
1882 * checksummed and sums are attached onto the ordered extent record.
1883 *
1884 * At IO completion time the cums attached on the ordered extent record
1885 * are inserted into the btree
1886 */
b2950863 1887static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1888 int mirror_num, unsigned long bio_flags,
1889 u64 bio_offset)
4a69a410
CM
1890{
1891 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1892 int ret;
1893
1894 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
4246a0b6
CH
1895 if (ret) {
1896 bio->bi_error = ret;
1897 bio_endio(bio);
1898 }
61891923 1899 return ret;
44b8bd7e
CM
1900}
1901
d352ac68 1902/*
cad321ad
CM
1903 * extent_io.c submission hook. This does the right thing for csum calculation
1904 * on write, or reading the csums from the tree before a read
d352ac68 1905 */
b2950863 1906static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1907 int mirror_num, unsigned long bio_flags,
1908 u64 bio_offset)
44b8bd7e
CM
1909{
1910 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1911 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
44b8bd7e 1912 int ret = 0;
19b9bdb0 1913 int skip_sum;
b812ce28 1914 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1915
6cbff00f 1916 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1917
83eea1f1 1918 if (btrfs_is_free_space_inode(inode))
0d51e28a 1919 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1920
7b6d91da 1921 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1922 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1923 if (ret)
61891923 1924 goto out;
5fd02043 1925
d20f7043 1926 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1927 ret = btrfs_submit_compressed_read(inode, bio,
1928 mirror_num,
1929 bio_flags);
1930 goto out;
c2db1073
TI
1931 } else if (!skip_sum) {
1932 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1933 if (ret)
61891923 1934 goto out;
c2db1073 1935 }
4d1b5fb4 1936 goto mapit;
b812ce28 1937 } else if (async && !skip_sum) {
17d217fe
YZ
1938 /* csum items have already been cloned */
1939 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1940 goto mapit;
19b9bdb0 1941 /* we're doing a write, do the async checksumming */
61891923 1942 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1943 inode, rw, bio, mirror_num,
eaf25d93
CM
1944 bio_flags, bio_offset,
1945 __btrfs_submit_bio_start,
4a69a410 1946 __btrfs_submit_bio_done);
61891923 1947 goto out;
b812ce28
JB
1948 } else if (!skip_sum) {
1949 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1950 if (ret)
1951 goto out;
19b9bdb0
CM
1952 }
1953
0b86a832 1954mapit:
61891923
SB
1955 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1956
1957out:
4246a0b6
CH
1958 if (ret < 0) {
1959 bio->bi_error = ret;
1960 bio_endio(bio);
1961 }
61891923 1962 return ret;
065631f6 1963}
6885f308 1964
d352ac68
CM
1965/*
1966 * given a list of ordered sums record them in the inode. This happens
1967 * at IO completion time based on sums calculated at bio submission time.
1968 */
ba1da2f4 1969static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1970 struct inode *inode, u64 file_offset,
1971 struct list_head *list)
1972{
e6dcd2dc
CM
1973 struct btrfs_ordered_sum *sum;
1974
c6e30871 1975 list_for_each_entry(sum, list, list) {
39847c4d 1976 trans->adding_csums = 1;
d20f7043
CM
1977 btrfs_csum_file_blocks(trans,
1978 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1979 trans->adding_csums = 0;
e6dcd2dc
CM
1980 }
1981 return 0;
1982}
1983
2ac55d41
JB
1984int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1985 struct extent_state **cached_state)
ea8c2819 1986{
09cbfeaf 1987 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 1988 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 1989 cached_state);
ea8c2819
CM
1990}
1991
d352ac68 1992/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1993struct btrfs_writepage_fixup {
1994 struct page *page;
1995 struct btrfs_work work;
1996};
1997
b2950863 1998static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1999{
2000 struct btrfs_writepage_fixup *fixup;
2001 struct btrfs_ordered_extent *ordered;
2ac55d41 2002 struct extent_state *cached_state = NULL;
247e743c
CM
2003 struct page *page;
2004 struct inode *inode;
2005 u64 page_start;
2006 u64 page_end;
87826df0 2007 int ret;
247e743c
CM
2008
2009 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2010 page = fixup->page;
4a096752 2011again:
247e743c
CM
2012 lock_page(page);
2013 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2014 ClearPageChecked(page);
2015 goto out_page;
2016 }
2017
2018 inode = page->mapping->host;
2019 page_start = page_offset(page);
09cbfeaf 2020 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2021
ff13db41 2022 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2023 &cached_state);
4a096752
CM
2024
2025 /* already ordered? We're done */
8b62b72b 2026 if (PagePrivate2(page))
247e743c 2027 goto out;
4a096752 2028
dbfdb6d1 2029 ordered = btrfs_lookup_ordered_range(inode, page_start,
09cbfeaf 2030 PAGE_SIZE);
4a096752 2031 if (ordered) {
2ac55d41
JB
2032 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2033 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2034 unlock_page(page);
2035 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2036 btrfs_put_ordered_extent(ordered);
4a096752
CM
2037 goto again;
2038 }
247e743c 2039
7cf5b976 2040 ret = btrfs_delalloc_reserve_space(inode, page_start,
09cbfeaf 2041 PAGE_SIZE);
87826df0
JM
2042 if (ret) {
2043 mapping_set_error(page->mapping, ret);
2044 end_extent_writepage(page, ret, page_start, page_end);
2045 ClearPageChecked(page);
2046 goto out;
2047 }
2048
2ac55d41 2049 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 2050 ClearPageChecked(page);
87826df0 2051 set_page_dirty(page);
247e743c 2052out:
2ac55d41
JB
2053 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2054 &cached_state, GFP_NOFS);
247e743c
CM
2055out_page:
2056 unlock_page(page);
09cbfeaf 2057 put_page(page);
b897abec 2058 kfree(fixup);
247e743c
CM
2059}
2060
2061/*
2062 * There are a few paths in the higher layers of the kernel that directly
2063 * set the page dirty bit without asking the filesystem if it is a
2064 * good idea. This causes problems because we want to make sure COW
2065 * properly happens and the data=ordered rules are followed.
2066 *
c8b97818 2067 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2068 * hasn't been properly setup for IO. We kick off an async process
2069 * to fix it up. The async helper will wait for ordered extents, set
2070 * the delalloc bit and make it safe to write the page.
2071 */
b2950863 2072static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2073{
2074 struct inode *inode = page->mapping->host;
2075 struct btrfs_writepage_fixup *fixup;
2076 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 2077
8b62b72b
CM
2078 /* this page is properly in the ordered list */
2079 if (TestClearPagePrivate2(page))
247e743c
CM
2080 return 0;
2081
2082 if (PageChecked(page))
2083 return -EAGAIN;
2084
2085 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2086 if (!fixup)
2087 return -EAGAIN;
f421950f 2088
247e743c 2089 SetPageChecked(page);
09cbfeaf 2090 get_page(page);
9e0af237
LB
2091 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2092 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2093 fixup->page = page;
dc6e3209 2094 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 2095 return -EBUSY;
247e743c
CM
2096}
2097
d899e052
YZ
2098static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2099 struct inode *inode, u64 file_pos,
2100 u64 disk_bytenr, u64 disk_num_bytes,
2101 u64 num_bytes, u64 ram_bytes,
2102 u8 compression, u8 encryption,
2103 u16 other_encoding, int extent_type)
2104{
2105 struct btrfs_root *root = BTRFS_I(inode)->root;
2106 struct btrfs_file_extent_item *fi;
2107 struct btrfs_path *path;
2108 struct extent_buffer *leaf;
2109 struct btrfs_key ins;
1acae57b 2110 int extent_inserted = 0;
d899e052
YZ
2111 int ret;
2112
2113 path = btrfs_alloc_path();
d8926bb3
MF
2114 if (!path)
2115 return -ENOMEM;
d899e052 2116
a1ed835e
CM
2117 /*
2118 * we may be replacing one extent in the tree with another.
2119 * The new extent is pinned in the extent map, and we don't want
2120 * to drop it from the cache until it is completely in the btree.
2121 *
2122 * So, tell btrfs_drop_extents to leave this extent in the cache.
2123 * the caller is expected to unpin it and allow it to be merged
2124 * with the others.
2125 */
1acae57b
FDBM
2126 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2127 file_pos + num_bytes, NULL, 0,
2128 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2129 if (ret)
2130 goto out;
d899e052 2131
1acae57b
FDBM
2132 if (!extent_inserted) {
2133 ins.objectid = btrfs_ino(inode);
2134 ins.offset = file_pos;
2135 ins.type = BTRFS_EXTENT_DATA_KEY;
2136
2137 path->leave_spinning = 1;
2138 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2139 sizeof(*fi));
2140 if (ret)
2141 goto out;
2142 }
d899e052
YZ
2143 leaf = path->nodes[0];
2144 fi = btrfs_item_ptr(leaf, path->slots[0],
2145 struct btrfs_file_extent_item);
2146 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2147 btrfs_set_file_extent_type(leaf, fi, extent_type);
2148 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2149 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2150 btrfs_set_file_extent_offset(leaf, fi, 0);
2151 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2152 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2153 btrfs_set_file_extent_compression(leaf, fi, compression);
2154 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2155 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2156
d899e052 2157 btrfs_mark_buffer_dirty(leaf);
ce195332 2158 btrfs_release_path(path);
d899e052
YZ
2159
2160 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2161
2162 ins.objectid = disk_bytenr;
2163 ins.offset = disk_num_bytes;
2164 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2165 ret = btrfs_alloc_reserved_file_extent(trans, root,
2166 root->root_key.objectid,
5846a3c2
QW
2167 btrfs_ino(inode), file_pos,
2168 ram_bytes, &ins);
297d750b 2169 /*
5846a3c2
QW
2170 * Release the reserved range from inode dirty range map, as it is
2171 * already moved into delayed_ref_head
297d750b
QW
2172 */
2173 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
79787eaa 2174out:
d899e052 2175 btrfs_free_path(path);
b9473439 2176
79787eaa 2177 return ret;
d899e052
YZ
2178}
2179
38c227d8
LB
2180/* snapshot-aware defrag */
2181struct sa_defrag_extent_backref {
2182 struct rb_node node;
2183 struct old_sa_defrag_extent *old;
2184 u64 root_id;
2185 u64 inum;
2186 u64 file_pos;
2187 u64 extent_offset;
2188 u64 num_bytes;
2189 u64 generation;
2190};
2191
2192struct old_sa_defrag_extent {
2193 struct list_head list;
2194 struct new_sa_defrag_extent *new;
2195
2196 u64 extent_offset;
2197 u64 bytenr;
2198 u64 offset;
2199 u64 len;
2200 int count;
2201};
2202
2203struct new_sa_defrag_extent {
2204 struct rb_root root;
2205 struct list_head head;
2206 struct btrfs_path *path;
2207 struct inode *inode;
2208 u64 file_pos;
2209 u64 len;
2210 u64 bytenr;
2211 u64 disk_len;
2212 u8 compress_type;
2213};
2214
2215static int backref_comp(struct sa_defrag_extent_backref *b1,
2216 struct sa_defrag_extent_backref *b2)
2217{
2218 if (b1->root_id < b2->root_id)
2219 return -1;
2220 else if (b1->root_id > b2->root_id)
2221 return 1;
2222
2223 if (b1->inum < b2->inum)
2224 return -1;
2225 else if (b1->inum > b2->inum)
2226 return 1;
2227
2228 if (b1->file_pos < b2->file_pos)
2229 return -1;
2230 else if (b1->file_pos > b2->file_pos)
2231 return 1;
2232
2233 /*
2234 * [------------------------------] ===> (a range of space)
2235 * |<--->| |<---->| =============> (fs/file tree A)
2236 * |<---------------------------->| ===> (fs/file tree B)
2237 *
2238 * A range of space can refer to two file extents in one tree while
2239 * refer to only one file extent in another tree.
2240 *
2241 * So we may process a disk offset more than one time(two extents in A)
2242 * and locate at the same extent(one extent in B), then insert two same
2243 * backrefs(both refer to the extent in B).
2244 */
2245 return 0;
2246}
2247
2248static void backref_insert(struct rb_root *root,
2249 struct sa_defrag_extent_backref *backref)
2250{
2251 struct rb_node **p = &root->rb_node;
2252 struct rb_node *parent = NULL;
2253 struct sa_defrag_extent_backref *entry;
2254 int ret;
2255
2256 while (*p) {
2257 parent = *p;
2258 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2259
2260 ret = backref_comp(backref, entry);
2261 if (ret < 0)
2262 p = &(*p)->rb_left;
2263 else
2264 p = &(*p)->rb_right;
2265 }
2266
2267 rb_link_node(&backref->node, parent, p);
2268 rb_insert_color(&backref->node, root);
2269}
2270
2271/*
2272 * Note the backref might has changed, and in this case we just return 0.
2273 */
2274static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2275 void *ctx)
2276{
2277 struct btrfs_file_extent_item *extent;
2278 struct btrfs_fs_info *fs_info;
2279 struct old_sa_defrag_extent *old = ctx;
2280 struct new_sa_defrag_extent *new = old->new;
2281 struct btrfs_path *path = new->path;
2282 struct btrfs_key key;
2283 struct btrfs_root *root;
2284 struct sa_defrag_extent_backref *backref;
2285 struct extent_buffer *leaf;
2286 struct inode *inode = new->inode;
2287 int slot;
2288 int ret;
2289 u64 extent_offset;
2290 u64 num_bytes;
2291
2292 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2293 inum == btrfs_ino(inode))
2294 return 0;
2295
2296 key.objectid = root_id;
2297 key.type = BTRFS_ROOT_ITEM_KEY;
2298 key.offset = (u64)-1;
2299
2300 fs_info = BTRFS_I(inode)->root->fs_info;
2301 root = btrfs_read_fs_root_no_name(fs_info, &key);
2302 if (IS_ERR(root)) {
2303 if (PTR_ERR(root) == -ENOENT)
2304 return 0;
2305 WARN_ON(1);
2306 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2307 inum, offset, root_id);
2308 return PTR_ERR(root);
2309 }
2310
2311 key.objectid = inum;
2312 key.type = BTRFS_EXTENT_DATA_KEY;
2313 if (offset > (u64)-1 << 32)
2314 key.offset = 0;
2315 else
2316 key.offset = offset;
2317
2318 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2319 if (WARN_ON(ret < 0))
38c227d8 2320 return ret;
50f1319c 2321 ret = 0;
38c227d8
LB
2322
2323 while (1) {
2324 cond_resched();
2325
2326 leaf = path->nodes[0];
2327 slot = path->slots[0];
2328
2329 if (slot >= btrfs_header_nritems(leaf)) {
2330 ret = btrfs_next_leaf(root, path);
2331 if (ret < 0) {
2332 goto out;
2333 } else if (ret > 0) {
2334 ret = 0;
2335 goto out;
2336 }
2337 continue;
2338 }
2339
2340 path->slots[0]++;
2341
2342 btrfs_item_key_to_cpu(leaf, &key, slot);
2343
2344 if (key.objectid > inum)
2345 goto out;
2346
2347 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2348 continue;
2349
2350 extent = btrfs_item_ptr(leaf, slot,
2351 struct btrfs_file_extent_item);
2352
2353 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2354 continue;
2355
e68afa49
LB
2356 /*
2357 * 'offset' refers to the exact key.offset,
2358 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2359 * (key.offset - extent_offset).
2360 */
2361 if (key.offset != offset)
38c227d8
LB
2362 continue;
2363
e68afa49 2364 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2365 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2366
38c227d8
LB
2367 if (extent_offset >= old->extent_offset + old->offset +
2368 old->len || extent_offset + num_bytes <=
2369 old->extent_offset + old->offset)
2370 continue;
38c227d8
LB
2371 break;
2372 }
2373
2374 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2375 if (!backref) {
2376 ret = -ENOENT;
2377 goto out;
2378 }
2379
2380 backref->root_id = root_id;
2381 backref->inum = inum;
e68afa49 2382 backref->file_pos = offset;
38c227d8
LB
2383 backref->num_bytes = num_bytes;
2384 backref->extent_offset = extent_offset;
2385 backref->generation = btrfs_file_extent_generation(leaf, extent);
2386 backref->old = old;
2387 backref_insert(&new->root, backref);
2388 old->count++;
2389out:
2390 btrfs_release_path(path);
2391 WARN_ON(ret);
2392 return ret;
2393}
2394
2395static noinline bool record_extent_backrefs(struct btrfs_path *path,
2396 struct new_sa_defrag_extent *new)
2397{
2398 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2399 struct old_sa_defrag_extent *old, *tmp;
2400 int ret;
2401
2402 new->path = path;
2403
2404 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2405 ret = iterate_inodes_from_logical(old->bytenr +
2406 old->extent_offset, fs_info,
38c227d8
LB
2407 path, record_one_backref,
2408 old);
4724b106
JB
2409 if (ret < 0 && ret != -ENOENT)
2410 return false;
38c227d8
LB
2411
2412 /* no backref to be processed for this extent */
2413 if (!old->count) {
2414 list_del(&old->list);
2415 kfree(old);
2416 }
2417 }
2418
2419 if (list_empty(&new->head))
2420 return false;
2421
2422 return true;
2423}
2424
2425static int relink_is_mergable(struct extent_buffer *leaf,
2426 struct btrfs_file_extent_item *fi,
116e0024 2427 struct new_sa_defrag_extent *new)
38c227d8 2428{
116e0024 2429 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2430 return 0;
2431
2432 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2433 return 0;
2434
116e0024
LB
2435 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2436 return 0;
2437
2438 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2439 btrfs_file_extent_other_encoding(leaf, fi))
2440 return 0;
2441
2442 return 1;
2443}
2444
2445/*
2446 * Note the backref might has changed, and in this case we just return 0.
2447 */
2448static noinline int relink_extent_backref(struct btrfs_path *path,
2449 struct sa_defrag_extent_backref *prev,
2450 struct sa_defrag_extent_backref *backref)
2451{
2452 struct btrfs_file_extent_item *extent;
2453 struct btrfs_file_extent_item *item;
2454 struct btrfs_ordered_extent *ordered;
2455 struct btrfs_trans_handle *trans;
2456 struct btrfs_fs_info *fs_info;
2457 struct btrfs_root *root;
2458 struct btrfs_key key;
2459 struct extent_buffer *leaf;
2460 struct old_sa_defrag_extent *old = backref->old;
2461 struct new_sa_defrag_extent *new = old->new;
2462 struct inode *src_inode = new->inode;
2463 struct inode *inode;
2464 struct extent_state *cached = NULL;
2465 int ret = 0;
2466 u64 start;
2467 u64 len;
2468 u64 lock_start;
2469 u64 lock_end;
2470 bool merge = false;
2471 int index;
2472
2473 if (prev && prev->root_id == backref->root_id &&
2474 prev->inum == backref->inum &&
2475 prev->file_pos + prev->num_bytes == backref->file_pos)
2476 merge = true;
2477
2478 /* step 1: get root */
2479 key.objectid = backref->root_id;
2480 key.type = BTRFS_ROOT_ITEM_KEY;
2481 key.offset = (u64)-1;
2482
2483 fs_info = BTRFS_I(src_inode)->root->fs_info;
2484 index = srcu_read_lock(&fs_info->subvol_srcu);
2485
2486 root = btrfs_read_fs_root_no_name(fs_info, &key);
2487 if (IS_ERR(root)) {
2488 srcu_read_unlock(&fs_info->subvol_srcu, index);
2489 if (PTR_ERR(root) == -ENOENT)
2490 return 0;
2491 return PTR_ERR(root);
2492 }
38c227d8 2493
bcbba5e6
WS
2494 if (btrfs_root_readonly(root)) {
2495 srcu_read_unlock(&fs_info->subvol_srcu, index);
2496 return 0;
2497 }
2498
38c227d8
LB
2499 /* step 2: get inode */
2500 key.objectid = backref->inum;
2501 key.type = BTRFS_INODE_ITEM_KEY;
2502 key.offset = 0;
2503
2504 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2505 if (IS_ERR(inode)) {
2506 srcu_read_unlock(&fs_info->subvol_srcu, index);
2507 return 0;
2508 }
2509
2510 srcu_read_unlock(&fs_info->subvol_srcu, index);
2511
2512 /* step 3: relink backref */
2513 lock_start = backref->file_pos;
2514 lock_end = backref->file_pos + backref->num_bytes - 1;
2515 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2516 &cached);
38c227d8
LB
2517
2518 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2519 if (ordered) {
2520 btrfs_put_ordered_extent(ordered);
2521 goto out_unlock;
2522 }
2523
2524 trans = btrfs_join_transaction(root);
2525 if (IS_ERR(trans)) {
2526 ret = PTR_ERR(trans);
2527 goto out_unlock;
2528 }
2529
2530 key.objectid = backref->inum;
2531 key.type = BTRFS_EXTENT_DATA_KEY;
2532 key.offset = backref->file_pos;
2533
2534 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2535 if (ret < 0) {
2536 goto out_free_path;
2537 } else if (ret > 0) {
2538 ret = 0;
2539 goto out_free_path;
2540 }
2541
2542 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2543 struct btrfs_file_extent_item);
2544
2545 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2546 backref->generation)
2547 goto out_free_path;
2548
2549 btrfs_release_path(path);
2550
2551 start = backref->file_pos;
2552 if (backref->extent_offset < old->extent_offset + old->offset)
2553 start += old->extent_offset + old->offset -
2554 backref->extent_offset;
2555
2556 len = min(backref->extent_offset + backref->num_bytes,
2557 old->extent_offset + old->offset + old->len);
2558 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2559
2560 ret = btrfs_drop_extents(trans, root, inode, start,
2561 start + len, 1);
2562 if (ret)
2563 goto out_free_path;
2564again:
2565 key.objectid = btrfs_ino(inode);
2566 key.type = BTRFS_EXTENT_DATA_KEY;
2567 key.offset = start;
2568
a09a0a70 2569 path->leave_spinning = 1;
38c227d8
LB
2570 if (merge) {
2571 struct btrfs_file_extent_item *fi;
2572 u64 extent_len;
2573 struct btrfs_key found_key;
2574
3c9665df 2575 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2576 if (ret < 0)
2577 goto out_free_path;
2578
2579 path->slots[0]--;
2580 leaf = path->nodes[0];
2581 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2582
2583 fi = btrfs_item_ptr(leaf, path->slots[0],
2584 struct btrfs_file_extent_item);
2585 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2586
116e0024
LB
2587 if (extent_len + found_key.offset == start &&
2588 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2589 btrfs_set_file_extent_num_bytes(leaf, fi,
2590 extent_len + len);
2591 btrfs_mark_buffer_dirty(leaf);
2592 inode_add_bytes(inode, len);
2593
2594 ret = 1;
2595 goto out_free_path;
2596 } else {
2597 merge = false;
2598 btrfs_release_path(path);
2599 goto again;
2600 }
2601 }
2602
2603 ret = btrfs_insert_empty_item(trans, root, path, &key,
2604 sizeof(*extent));
2605 if (ret) {
2606 btrfs_abort_transaction(trans, root, ret);
2607 goto out_free_path;
2608 }
2609
2610 leaf = path->nodes[0];
2611 item = btrfs_item_ptr(leaf, path->slots[0],
2612 struct btrfs_file_extent_item);
2613 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2614 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2615 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2616 btrfs_set_file_extent_num_bytes(leaf, item, len);
2617 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2618 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2619 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2620 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2621 btrfs_set_file_extent_encryption(leaf, item, 0);
2622 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2623
2624 btrfs_mark_buffer_dirty(leaf);
2625 inode_add_bytes(inode, len);
a09a0a70 2626 btrfs_release_path(path);
38c227d8
LB
2627
2628 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2629 new->disk_len, 0,
2630 backref->root_id, backref->inum,
b06c4bf5 2631 new->file_pos); /* start - extent_offset */
38c227d8
LB
2632 if (ret) {
2633 btrfs_abort_transaction(trans, root, ret);
2634 goto out_free_path;
2635 }
2636
2637 ret = 1;
2638out_free_path:
2639 btrfs_release_path(path);
a09a0a70 2640 path->leave_spinning = 0;
38c227d8
LB
2641 btrfs_end_transaction(trans, root);
2642out_unlock:
2643 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2644 &cached, GFP_NOFS);
2645 iput(inode);
2646 return ret;
2647}
2648
6f519564
LB
2649static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2650{
2651 struct old_sa_defrag_extent *old, *tmp;
2652
2653 if (!new)
2654 return;
2655
2656 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2657 kfree(old);
2658 }
2659 kfree(new);
2660}
2661
38c227d8
LB
2662static void relink_file_extents(struct new_sa_defrag_extent *new)
2663{
2664 struct btrfs_path *path;
38c227d8
LB
2665 struct sa_defrag_extent_backref *backref;
2666 struct sa_defrag_extent_backref *prev = NULL;
2667 struct inode *inode;
2668 struct btrfs_root *root;
2669 struct rb_node *node;
2670 int ret;
2671
2672 inode = new->inode;
2673 root = BTRFS_I(inode)->root;
2674
2675 path = btrfs_alloc_path();
2676 if (!path)
2677 return;
2678
2679 if (!record_extent_backrefs(path, new)) {
2680 btrfs_free_path(path);
2681 goto out;
2682 }
2683 btrfs_release_path(path);
2684
2685 while (1) {
2686 node = rb_first(&new->root);
2687 if (!node)
2688 break;
2689 rb_erase(node, &new->root);
2690
2691 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2692
2693 ret = relink_extent_backref(path, prev, backref);
2694 WARN_ON(ret < 0);
2695
2696 kfree(prev);
2697
2698 if (ret == 1)
2699 prev = backref;
2700 else
2701 prev = NULL;
2702 cond_resched();
2703 }
2704 kfree(prev);
2705
2706 btrfs_free_path(path);
38c227d8 2707out:
6f519564
LB
2708 free_sa_defrag_extent(new);
2709
38c227d8
LB
2710 atomic_dec(&root->fs_info->defrag_running);
2711 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2712}
2713
2714static struct new_sa_defrag_extent *
2715record_old_file_extents(struct inode *inode,
2716 struct btrfs_ordered_extent *ordered)
2717{
2718 struct btrfs_root *root = BTRFS_I(inode)->root;
2719 struct btrfs_path *path;
2720 struct btrfs_key key;
6f519564 2721 struct old_sa_defrag_extent *old;
38c227d8
LB
2722 struct new_sa_defrag_extent *new;
2723 int ret;
2724
2725 new = kmalloc(sizeof(*new), GFP_NOFS);
2726 if (!new)
2727 return NULL;
2728
2729 new->inode = inode;
2730 new->file_pos = ordered->file_offset;
2731 new->len = ordered->len;
2732 new->bytenr = ordered->start;
2733 new->disk_len = ordered->disk_len;
2734 new->compress_type = ordered->compress_type;
2735 new->root = RB_ROOT;
2736 INIT_LIST_HEAD(&new->head);
2737
2738 path = btrfs_alloc_path();
2739 if (!path)
2740 goto out_kfree;
2741
2742 key.objectid = btrfs_ino(inode);
2743 key.type = BTRFS_EXTENT_DATA_KEY;
2744 key.offset = new->file_pos;
2745
2746 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2747 if (ret < 0)
2748 goto out_free_path;
2749 if (ret > 0 && path->slots[0] > 0)
2750 path->slots[0]--;
2751
2752 /* find out all the old extents for the file range */
2753 while (1) {
2754 struct btrfs_file_extent_item *extent;
2755 struct extent_buffer *l;
2756 int slot;
2757 u64 num_bytes;
2758 u64 offset;
2759 u64 end;
2760 u64 disk_bytenr;
2761 u64 extent_offset;
2762
2763 l = path->nodes[0];
2764 slot = path->slots[0];
2765
2766 if (slot >= btrfs_header_nritems(l)) {
2767 ret = btrfs_next_leaf(root, path);
2768 if (ret < 0)
6f519564 2769 goto out_free_path;
38c227d8
LB
2770 else if (ret > 0)
2771 break;
2772 continue;
2773 }
2774
2775 btrfs_item_key_to_cpu(l, &key, slot);
2776
2777 if (key.objectid != btrfs_ino(inode))
2778 break;
2779 if (key.type != BTRFS_EXTENT_DATA_KEY)
2780 break;
2781 if (key.offset >= new->file_pos + new->len)
2782 break;
2783
2784 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2785
2786 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2787 if (key.offset + num_bytes < new->file_pos)
2788 goto next;
2789
2790 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2791 if (!disk_bytenr)
2792 goto next;
2793
2794 extent_offset = btrfs_file_extent_offset(l, extent);
2795
2796 old = kmalloc(sizeof(*old), GFP_NOFS);
2797 if (!old)
6f519564 2798 goto out_free_path;
38c227d8
LB
2799
2800 offset = max(new->file_pos, key.offset);
2801 end = min(new->file_pos + new->len, key.offset + num_bytes);
2802
2803 old->bytenr = disk_bytenr;
2804 old->extent_offset = extent_offset;
2805 old->offset = offset - key.offset;
2806 old->len = end - offset;
2807 old->new = new;
2808 old->count = 0;
2809 list_add_tail(&old->list, &new->head);
2810next:
2811 path->slots[0]++;
2812 cond_resched();
2813 }
2814
2815 btrfs_free_path(path);
2816 atomic_inc(&root->fs_info->defrag_running);
2817
2818 return new;
2819
38c227d8
LB
2820out_free_path:
2821 btrfs_free_path(path);
2822out_kfree:
6f519564 2823 free_sa_defrag_extent(new);
38c227d8
LB
2824 return NULL;
2825}
2826
e570fd27
MX
2827static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2828 u64 start, u64 len)
2829{
2830 struct btrfs_block_group_cache *cache;
2831
2832 cache = btrfs_lookup_block_group(root->fs_info, start);
2833 ASSERT(cache);
2834
2835 spin_lock(&cache->lock);
2836 cache->delalloc_bytes -= len;
2837 spin_unlock(&cache->lock);
2838
2839 btrfs_put_block_group(cache);
2840}
2841
d352ac68
CM
2842/* as ordered data IO finishes, this gets called so we can finish
2843 * an ordered extent if the range of bytes in the file it covers are
2844 * fully written.
2845 */
5fd02043 2846static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2847{
5fd02043 2848 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2849 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2850 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2851 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2852 struct extent_state *cached_state = NULL;
38c227d8 2853 struct new_sa_defrag_extent *new = NULL;
261507a0 2854 int compress_type = 0;
77cef2ec
JB
2855 int ret = 0;
2856 u64 logical_len = ordered_extent->len;
82d5902d 2857 bool nolock;
77cef2ec 2858 bool truncated = false;
e6dcd2dc 2859
83eea1f1 2860 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2861
5fd02043
JB
2862 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2863 ret = -EIO;
2864 goto out;
2865 }
2866
f612496b
MX
2867 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2868 ordered_extent->file_offset +
2869 ordered_extent->len - 1);
2870
77cef2ec
JB
2871 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2872 truncated = true;
2873 logical_len = ordered_extent->truncated_len;
2874 /* Truncated the entire extent, don't bother adding */
2875 if (!logical_len)
2876 goto out;
2877 }
2878
c2167754 2879 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2880 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2881
2882 /*
2883 * For mwrite(mmap + memset to write) case, we still reserve
2884 * space for NOCOW range.
2885 * As NOCOW won't cause a new delayed ref, just free the space
2886 */
2887 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2888 ordered_extent->len);
6c760c07
JB
2889 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2890 if (nolock)
2891 trans = btrfs_join_transaction_nolock(root);
2892 else
2893 trans = btrfs_join_transaction(root);
2894 if (IS_ERR(trans)) {
2895 ret = PTR_ERR(trans);
2896 trans = NULL;
2897 goto out;
c2167754 2898 }
6c760c07
JB
2899 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2900 ret = btrfs_update_inode_fallback(trans, root, inode);
2901 if (ret) /* -ENOMEM or corruption */
2902 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2903 goto out;
2904 }
e6dcd2dc 2905
2ac55d41
JB
2906 lock_extent_bits(io_tree, ordered_extent->file_offset,
2907 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2908 &cached_state);
e6dcd2dc 2909
38c227d8
LB
2910 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2911 ordered_extent->file_offset + ordered_extent->len - 1,
2912 EXTENT_DEFRAG, 1, cached_state);
2913 if (ret) {
2914 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2915 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2916 /* the inode is shared */
2917 new = record_old_file_extents(inode, ordered_extent);
2918
2919 clear_extent_bit(io_tree, ordered_extent->file_offset,
2920 ordered_extent->file_offset + ordered_extent->len - 1,
2921 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2922 }
2923
0cb59c99 2924 if (nolock)
7a7eaa40 2925 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2926 else
7a7eaa40 2927 trans = btrfs_join_transaction(root);
79787eaa
JM
2928 if (IS_ERR(trans)) {
2929 ret = PTR_ERR(trans);
2930 trans = NULL;
2931 goto out_unlock;
2932 }
a79b7d4b 2933
0ca1f7ce 2934 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2935
c8b97818 2936 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2937 compress_type = ordered_extent->compress_type;
d899e052 2938 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2939 BUG_ON(compress_type);
920bbbfb 2940 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2941 ordered_extent->file_offset,
2942 ordered_extent->file_offset +
77cef2ec 2943 logical_len);
d899e052 2944 } else {
0af3d00b 2945 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2946 ret = insert_reserved_file_extent(trans, inode,
2947 ordered_extent->file_offset,
2948 ordered_extent->start,
2949 ordered_extent->disk_len,
77cef2ec 2950 logical_len, logical_len,
261507a0 2951 compress_type, 0, 0,
d899e052 2952 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2953 if (!ret)
2954 btrfs_release_delalloc_bytes(root,
2955 ordered_extent->start,
2956 ordered_extent->disk_len);
d899e052 2957 }
5dc562c5
JB
2958 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2959 ordered_extent->file_offset, ordered_extent->len,
2960 trans->transid);
79787eaa
JM
2961 if (ret < 0) {
2962 btrfs_abort_transaction(trans, root, ret);
5fd02043 2963 goto out_unlock;
79787eaa 2964 }
2ac55d41 2965
e6dcd2dc
CM
2966 add_pending_csums(trans, inode, ordered_extent->file_offset,
2967 &ordered_extent->list);
2968
6c760c07
JB
2969 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2970 ret = btrfs_update_inode_fallback(trans, root, inode);
2971 if (ret) { /* -ENOMEM or corruption */
2972 btrfs_abort_transaction(trans, root, ret);
2973 goto out_unlock;
1ef30be1
JB
2974 }
2975 ret = 0;
5fd02043
JB
2976out_unlock:
2977 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2978 ordered_extent->file_offset +
2979 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2980out:
5b0e95bf 2981 if (root != root->fs_info->tree_root)
0cb59c99 2982 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2983 if (trans)
2984 btrfs_end_transaction(trans, root);
0cb59c99 2985
77cef2ec
JB
2986 if (ret || truncated) {
2987 u64 start, end;
2988
2989 if (truncated)
2990 start = ordered_extent->file_offset + logical_len;
2991 else
2992 start = ordered_extent->file_offset;
2993 end = ordered_extent->file_offset + ordered_extent->len - 1;
2994 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2995
2996 /* Drop the cache for the part of the extent we didn't write. */
2997 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2998
0bec9ef5
JB
2999 /*
3000 * If the ordered extent had an IOERR or something else went
3001 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3002 * back to the allocator. We only free the extent in the
3003 * truncated case if we didn't write out the extent at all.
0bec9ef5 3004 */
77cef2ec
JB
3005 if ((ret || !logical_len) &&
3006 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
3007 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3008 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 3009 ordered_extent->disk_len, 1);
0bec9ef5
JB
3010 }
3011
3012
5fd02043 3013 /*
8bad3c02
LB
3014 * This needs to be done to make sure anybody waiting knows we are done
3015 * updating everything for this ordered extent.
5fd02043
JB
3016 */
3017 btrfs_remove_ordered_extent(inode, ordered_extent);
3018
38c227d8 3019 /* for snapshot-aware defrag */
6f519564
LB
3020 if (new) {
3021 if (ret) {
3022 free_sa_defrag_extent(new);
3023 atomic_dec(&root->fs_info->defrag_running);
3024 } else {
3025 relink_file_extents(new);
3026 }
3027 }
38c227d8 3028
e6dcd2dc
CM
3029 /* once for us */
3030 btrfs_put_ordered_extent(ordered_extent);
3031 /* once for the tree */
3032 btrfs_put_ordered_extent(ordered_extent);
3033
5fd02043
JB
3034 return ret;
3035}
3036
3037static void finish_ordered_fn(struct btrfs_work *work)
3038{
3039 struct btrfs_ordered_extent *ordered_extent;
3040 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3041 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3042}
3043
b2950863 3044static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3045 struct extent_state *state, int uptodate)
3046{
5fd02043
JB
3047 struct inode *inode = page->mapping->host;
3048 struct btrfs_root *root = BTRFS_I(inode)->root;
3049 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3050 struct btrfs_workqueue *wq;
3051 btrfs_work_func_t func;
5fd02043 3052
1abe9b8a 3053 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3054
8b62b72b 3055 ClearPagePrivate2(page);
5fd02043
JB
3056 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3057 end - start + 1, uptodate))
3058 return 0;
3059
9e0af237
LB
3060 if (btrfs_is_free_space_inode(inode)) {
3061 wq = root->fs_info->endio_freespace_worker;
3062 func = btrfs_freespace_write_helper;
3063 } else {
3064 wq = root->fs_info->endio_write_workers;
3065 func = btrfs_endio_write_helper;
3066 }
5fd02043 3067
9e0af237
LB
3068 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3069 NULL);
3070 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
3071
3072 return 0;
211f90e6
CM
3073}
3074
dc380aea
MX
3075static int __readpage_endio_check(struct inode *inode,
3076 struct btrfs_io_bio *io_bio,
3077 int icsum, struct page *page,
3078 int pgoff, u64 start, size_t len)
3079{
3080 char *kaddr;
3081 u32 csum_expected;
3082 u32 csum = ~(u32)0;
dc380aea
MX
3083
3084 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3085
3086 kaddr = kmap_atomic(page);
3087 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3088 btrfs_csum_final(csum, (char *)&csum);
3089 if (csum != csum_expected)
3090 goto zeroit;
3091
3092 kunmap_atomic(kaddr);
3093 return 0;
3094zeroit:
94647322
DS
3095 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3096 "csum failed ino %llu off %llu csum %u expected csum %u",
dc380aea
MX
3097 btrfs_ino(inode), start, csum, csum_expected);
3098 memset(kaddr + pgoff, 1, len);
3099 flush_dcache_page(page);
3100 kunmap_atomic(kaddr);
3101 if (csum_expected == 0)
3102 return 0;
3103 return -EIO;
3104}
3105
d352ac68
CM
3106/*
3107 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3108 * if there's a match, we allow the bio to finish. If not, the code in
3109 * extent_io.c will try to find good copies for us.
d352ac68 3110 */
facc8a22
MX
3111static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3112 u64 phy_offset, struct page *page,
3113 u64 start, u64 end, int mirror)
07157aac 3114{
4eee4fa4 3115 size_t offset = start - page_offset(page);
07157aac 3116 struct inode *inode = page->mapping->host;
d1310b2e 3117 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3118 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3119
d20f7043
CM
3120 if (PageChecked(page)) {
3121 ClearPageChecked(page);
dc380aea 3122 return 0;
d20f7043 3123 }
6cbff00f
CH
3124
3125 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3126 return 0;
17d217fe
YZ
3127
3128 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3129 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3130 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3131 return 0;
17d217fe 3132 }
d20f7043 3133
facc8a22 3134 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3135 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3136 start, (size_t)(end - start + 1));
07157aac 3137}
b888db2b 3138
24bbcf04
YZ
3139void btrfs_add_delayed_iput(struct inode *inode)
3140{
3141 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
8089fe62 3142 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3143
3144 if (atomic_add_unless(&inode->i_count, -1, 1))
3145 return;
3146
24bbcf04 3147 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3148 if (binode->delayed_iput_count == 0) {
3149 ASSERT(list_empty(&binode->delayed_iput));
3150 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3151 } else {
3152 binode->delayed_iput_count++;
3153 }
24bbcf04
YZ
3154 spin_unlock(&fs_info->delayed_iput_lock);
3155}
3156
3157void btrfs_run_delayed_iputs(struct btrfs_root *root)
3158{
24bbcf04 3159 struct btrfs_fs_info *fs_info = root->fs_info;
24bbcf04 3160
24bbcf04 3161 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3162 while (!list_empty(&fs_info->delayed_iputs)) {
3163 struct btrfs_inode *inode;
3164
3165 inode = list_first_entry(&fs_info->delayed_iputs,
3166 struct btrfs_inode, delayed_iput);
3167 if (inode->delayed_iput_count) {
3168 inode->delayed_iput_count--;
3169 list_move_tail(&inode->delayed_iput,
3170 &fs_info->delayed_iputs);
3171 } else {
3172 list_del_init(&inode->delayed_iput);
3173 }
3174 spin_unlock(&fs_info->delayed_iput_lock);
3175 iput(&inode->vfs_inode);
3176 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3177 }
8089fe62 3178 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3179}
3180
d68fc57b 3181/*
42b2aa86 3182 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3183 * files in the subvolume, it removes orphan item and frees block_rsv
3184 * structure.
3185 */
3186void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3187 struct btrfs_root *root)
3188{
90290e19 3189 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3190 int ret;
3191
8a35d95f 3192 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3193 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3194 return;
3195
90290e19 3196 spin_lock(&root->orphan_lock);
8a35d95f 3197 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3198 spin_unlock(&root->orphan_lock);
3199 return;
3200 }
3201
3202 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3203 spin_unlock(&root->orphan_lock);
3204 return;
3205 }
3206
3207 block_rsv = root->orphan_block_rsv;
3208 root->orphan_block_rsv = NULL;
3209 spin_unlock(&root->orphan_lock);
3210
27cdeb70 3211 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3212 btrfs_root_refs(&root->root_item) > 0) {
3213 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3214 root->root_key.objectid);
4ef31a45
JB
3215 if (ret)
3216 btrfs_abort_transaction(trans, root, ret);
3217 else
27cdeb70
MX
3218 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3219 &root->state);
d68fc57b
YZ
3220 }
3221
90290e19
JB
3222 if (block_rsv) {
3223 WARN_ON(block_rsv->size > 0);
3224 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3225 }
3226}
3227
7b128766
JB
3228/*
3229 * This creates an orphan entry for the given inode in case something goes
3230 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3231 *
3232 * NOTE: caller of this function should reserve 5 units of metadata for
3233 * this function.
7b128766
JB
3234 */
3235int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3236{
3237 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3238 struct btrfs_block_rsv *block_rsv = NULL;
3239 int reserve = 0;
3240 int insert = 0;
3241 int ret;
7b128766 3242
d68fc57b 3243 if (!root->orphan_block_rsv) {
66d8f3dd 3244 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3245 if (!block_rsv)
3246 return -ENOMEM;
d68fc57b 3247 }
7b128766 3248
d68fc57b
YZ
3249 spin_lock(&root->orphan_lock);
3250 if (!root->orphan_block_rsv) {
3251 root->orphan_block_rsv = block_rsv;
3252 } else if (block_rsv) {
3253 btrfs_free_block_rsv(root, block_rsv);
3254 block_rsv = NULL;
7b128766 3255 }
7b128766 3256
8a35d95f
JB
3257 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3258 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3259#if 0
3260 /*
3261 * For proper ENOSPC handling, we should do orphan
3262 * cleanup when mounting. But this introduces backward
3263 * compatibility issue.
3264 */
3265 if (!xchg(&root->orphan_item_inserted, 1))
3266 insert = 2;
3267 else
3268 insert = 1;
3269#endif
3270 insert = 1;
321f0e70 3271 atomic_inc(&root->orphan_inodes);
7b128766
JB
3272 }
3273
72ac3c0d
JB
3274 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3275 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3276 reserve = 1;
d68fc57b 3277 spin_unlock(&root->orphan_lock);
7b128766 3278
d68fc57b
YZ
3279 /* grab metadata reservation from transaction handle */
3280 if (reserve) {
3281 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3282 ASSERT(!ret);
3283 if (ret) {
3284 atomic_dec(&root->orphan_inodes);
3285 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3286 &BTRFS_I(inode)->runtime_flags);
3287 if (insert)
3288 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3289 &BTRFS_I(inode)->runtime_flags);
3290 return ret;
3291 }
d68fc57b 3292 }
7b128766 3293
d68fc57b
YZ
3294 /* insert an orphan item to track this unlinked/truncated file */
3295 if (insert >= 1) {
33345d01 3296 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3297 if (ret) {
703c88e0 3298 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3299 if (reserve) {
3300 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3301 &BTRFS_I(inode)->runtime_flags);
3302 btrfs_orphan_release_metadata(inode);
3303 }
3304 if (ret != -EEXIST) {
e8e7cff6
JB
3305 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3306 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3307 btrfs_abort_transaction(trans, root, ret);
3308 return ret;
3309 }
79787eaa
JM
3310 }
3311 ret = 0;
d68fc57b
YZ
3312 }
3313
3314 /* insert an orphan item to track subvolume contains orphan files */
3315 if (insert >= 2) {
3316 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3317 root->root_key.objectid);
79787eaa
JM
3318 if (ret && ret != -EEXIST) {
3319 btrfs_abort_transaction(trans, root, ret);
3320 return ret;
3321 }
d68fc57b
YZ
3322 }
3323 return 0;
7b128766
JB
3324}
3325
3326/*
3327 * We have done the truncate/delete so we can go ahead and remove the orphan
3328 * item for this particular inode.
3329 */
48a3b636
ES
3330static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3331 struct inode *inode)
7b128766
JB
3332{
3333 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3334 int delete_item = 0;
3335 int release_rsv = 0;
7b128766
JB
3336 int ret = 0;
3337
d68fc57b 3338 spin_lock(&root->orphan_lock);
8a35d95f
JB
3339 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3340 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3341 delete_item = 1;
7b128766 3342
72ac3c0d
JB
3343 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3344 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3345 release_rsv = 1;
d68fc57b 3346 spin_unlock(&root->orphan_lock);
7b128766 3347
703c88e0 3348 if (delete_item) {
8a35d95f 3349 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3350 if (trans)
3351 ret = btrfs_del_orphan_item(trans, root,
3352 btrfs_ino(inode));
8a35d95f 3353 }
7b128766 3354
703c88e0
FDBM
3355 if (release_rsv)
3356 btrfs_orphan_release_metadata(inode);
3357
4ef31a45 3358 return ret;
7b128766
JB
3359}
3360
3361/*
3362 * this cleans up any orphans that may be left on the list from the last use
3363 * of this root.
3364 */
66b4ffd1 3365int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3366{
3367 struct btrfs_path *path;
3368 struct extent_buffer *leaf;
7b128766
JB
3369 struct btrfs_key key, found_key;
3370 struct btrfs_trans_handle *trans;
3371 struct inode *inode;
8f6d7f4f 3372 u64 last_objectid = 0;
7b128766
JB
3373 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3374
d68fc57b 3375 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3376 return 0;
c71bf099
YZ
3377
3378 path = btrfs_alloc_path();
66b4ffd1
JB
3379 if (!path) {
3380 ret = -ENOMEM;
3381 goto out;
3382 }
e4058b54 3383 path->reada = READA_BACK;
7b128766
JB
3384
3385 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3386 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3387 key.offset = (u64)-1;
3388
7b128766
JB
3389 while (1) {
3390 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3391 if (ret < 0)
3392 goto out;
7b128766
JB
3393
3394 /*
3395 * if ret == 0 means we found what we were searching for, which
25985edc 3396 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3397 * find the key and see if we have stuff that matches
3398 */
3399 if (ret > 0) {
66b4ffd1 3400 ret = 0;
7b128766
JB
3401 if (path->slots[0] == 0)
3402 break;
3403 path->slots[0]--;
3404 }
3405
3406 /* pull out the item */
3407 leaf = path->nodes[0];
7b128766
JB
3408 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3409
3410 /* make sure the item matches what we want */
3411 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3412 break;
962a298f 3413 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3414 break;
3415
3416 /* release the path since we're done with it */
b3b4aa74 3417 btrfs_release_path(path);
7b128766
JB
3418
3419 /*
3420 * this is where we are basically btrfs_lookup, without the
3421 * crossing root thing. we store the inode number in the
3422 * offset of the orphan item.
3423 */
8f6d7f4f
JB
3424
3425 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3426 btrfs_err(root->fs_info,
3427 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3428 ret = -EINVAL;
3429 goto out;
3430 }
3431
3432 last_objectid = found_key.offset;
3433
5d4f98a2
YZ
3434 found_key.objectid = found_key.offset;
3435 found_key.type = BTRFS_INODE_ITEM_KEY;
3436 found_key.offset = 0;
73f73415 3437 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3438 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3439 if (ret && ret != -ESTALE)
66b4ffd1 3440 goto out;
7b128766 3441
f8e9e0b0
AJ
3442 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3443 struct btrfs_root *dead_root;
3444 struct btrfs_fs_info *fs_info = root->fs_info;
3445 int is_dead_root = 0;
3446
3447 /*
3448 * this is an orphan in the tree root. Currently these
3449 * could come from 2 sources:
3450 * a) a snapshot deletion in progress
3451 * b) a free space cache inode
3452 * We need to distinguish those two, as the snapshot
3453 * orphan must not get deleted.
3454 * find_dead_roots already ran before us, so if this
3455 * is a snapshot deletion, we should find the root
3456 * in the dead_roots list
3457 */
3458 spin_lock(&fs_info->trans_lock);
3459 list_for_each_entry(dead_root, &fs_info->dead_roots,
3460 root_list) {
3461 if (dead_root->root_key.objectid ==
3462 found_key.objectid) {
3463 is_dead_root = 1;
3464 break;
3465 }
3466 }
3467 spin_unlock(&fs_info->trans_lock);
3468 if (is_dead_root) {
3469 /* prevent this orphan from being found again */
3470 key.offset = found_key.objectid - 1;
3471 continue;
3472 }
3473 }
7b128766 3474 /*
a8c9e576
JB
3475 * Inode is already gone but the orphan item is still there,
3476 * kill the orphan item.
7b128766 3477 */
a8c9e576
JB
3478 if (ret == -ESTALE) {
3479 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3480 if (IS_ERR(trans)) {
3481 ret = PTR_ERR(trans);
3482 goto out;
3483 }
c2cf52eb
SK
3484 btrfs_debug(root->fs_info, "auto deleting %Lu",
3485 found_key.objectid);
a8c9e576
JB
3486 ret = btrfs_del_orphan_item(trans, root,
3487 found_key.objectid);
5b21f2ed 3488 btrfs_end_transaction(trans, root);
4ef31a45
JB
3489 if (ret)
3490 goto out;
7b128766
JB
3491 continue;
3492 }
3493
a8c9e576
JB
3494 /*
3495 * add this inode to the orphan list so btrfs_orphan_del does
3496 * the proper thing when we hit it
3497 */
8a35d95f
JB
3498 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3499 &BTRFS_I(inode)->runtime_flags);
925396ec 3500 atomic_inc(&root->orphan_inodes);
a8c9e576 3501
7b128766
JB
3502 /* if we have links, this was a truncate, lets do that */
3503 if (inode->i_nlink) {
fae7f21c 3504 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3505 iput(inode);
3506 continue;
3507 }
7b128766 3508 nr_truncate++;
f3fe820c
JB
3509
3510 /* 1 for the orphan item deletion. */
3511 trans = btrfs_start_transaction(root, 1);
3512 if (IS_ERR(trans)) {
c69b26b0 3513 iput(inode);
f3fe820c
JB
3514 ret = PTR_ERR(trans);
3515 goto out;
3516 }
3517 ret = btrfs_orphan_add(trans, inode);
3518 btrfs_end_transaction(trans, root);
c69b26b0
JB
3519 if (ret) {
3520 iput(inode);
f3fe820c 3521 goto out;
c69b26b0 3522 }
f3fe820c 3523
66b4ffd1 3524 ret = btrfs_truncate(inode);
4a7d0f68
JB
3525 if (ret)
3526 btrfs_orphan_del(NULL, inode);
7b128766
JB
3527 } else {
3528 nr_unlink++;
3529 }
3530
3531 /* this will do delete_inode and everything for us */
3532 iput(inode);
66b4ffd1
JB
3533 if (ret)
3534 goto out;
7b128766 3535 }
3254c876
MX
3536 /* release the path since we're done with it */
3537 btrfs_release_path(path);
3538
d68fc57b
YZ
3539 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3540
3541 if (root->orphan_block_rsv)
3542 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3543 (u64)-1);
3544
27cdeb70
MX
3545 if (root->orphan_block_rsv ||
3546 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3547 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3548 if (!IS_ERR(trans))
3549 btrfs_end_transaction(trans, root);
d68fc57b 3550 }
7b128766
JB
3551
3552 if (nr_unlink)
4884b476 3553 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3554 if (nr_truncate)
4884b476 3555 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3556
3557out:
3558 if (ret)
68b663d1 3559 btrfs_err(root->fs_info,
c2cf52eb 3560 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3561 btrfs_free_path(path);
3562 return ret;
7b128766
JB
3563}
3564
46a53cca
CM
3565/*
3566 * very simple check to peek ahead in the leaf looking for xattrs. If we
3567 * don't find any xattrs, we know there can't be any acls.
3568 *
3569 * slot is the slot the inode is in, objectid is the objectid of the inode
3570 */
3571static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3572 int slot, u64 objectid,
3573 int *first_xattr_slot)
46a53cca
CM
3574{
3575 u32 nritems = btrfs_header_nritems(leaf);
3576 struct btrfs_key found_key;
f23b5a59
JB
3577 static u64 xattr_access = 0;
3578 static u64 xattr_default = 0;
46a53cca
CM
3579 int scanned = 0;
3580
f23b5a59 3581 if (!xattr_access) {
97d79299
AG
3582 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3583 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3584 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3585 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3586 }
3587
46a53cca 3588 slot++;
63541927 3589 *first_xattr_slot = -1;
46a53cca
CM
3590 while (slot < nritems) {
3591 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3592
3593 /* we found a different objectid, there must not be acls */
3594 if (found_key.objectid != objectid)
3595 return 0;
3596
3597 /* we found an xattr, assume we've got an acl */
f23b5a59 3598 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3599 if (*first_xattr_slot == -1)
3600 *first_xattr_slot = slot;
f23b5a59
JB
3601 if (found_key.offset == xattr_access ||
3602 found_key.offset == xattr_default)
3603 return 1;
3604 }
46a53cca
CM
3605
3606 /*
3607 * we found a key greater than an xattr key, there can't
3608 * be any acls later on
3609 */
3610 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3611 return 0;
3612
3613 slot++;
3614 scanned++;
3615
3616 /*
3617 * it goes inode, inode backrefs, xattrs, extents,
3618 * so if there are a ton of hard links to an inode there can
3619 * be a lot of backrefs. Don't waste time searching too hard,
3620 * this is just an optimization
3621 */
3622 if (scanned >= 8)
3623 break;
3624 }
3625 /* we hit the end of the leaf before we found an xattr or
3626 * something larger than an xattr. We have to assume the inode
3627 * has acls
3628 */
63541927
FDBM
3629 if (*first_xattr_slot == -1)
3630 *first_xattr_slot = slot;
46a53cca
CM
3631 return 1;
3632}
3633
d352ac68
CM
3634/*
3635 * read an inode from the btree into the in-memory inode
3636 */
5d4f98a2 3637static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3638{
3639 struct btrfs_path *path;
5f39d397 3640 struct extent_buffer *leaf;
39279cc3
CM
3641 struct btrfs_inode_item *inode_item;
3642 struct btrfs_root *root = BTRFS_I(inode)->root;
3643 struct btrfs_key location;
67de1176 3644 unsigned long ptr;
46a53cca 3645 int maybe_acls;
618e21d5 3646 u32 rdev;
39279cc3 3647 int ret;
2f7e33d4 3648 bool filled = false;
63541927 3649 int first_xattr_slot;
2f7e33d4
MX
3650
3651 ret = btrfs_fill_inode(inode, &rdev);
3652 if (!ret)
3653 filled = true;
39279cc3
CM
3654
3655 path = btrfs_alloc_path();
1748f843
MF
3656 if (!path)
3657 goto make_bad;
3658
39279cc3 3659 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3660
39279cc3 3661 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3662 if (ret)
39279cc3 3663 goto make_bad;
39279cc3 3664
5f39d397 3665 leaf = path->nodes[0];
2f7e33d4
MX
3666
3667 if (filled)
67de1176 3668 goto cache_index;
2f7e33d4 3669
5f39d397
CM
3670 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3671 struct btrfs_inode_item);
5f39d397 3672 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3673 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3674 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3675 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3676 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3677
a937b979
DS
3678 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3679 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3680
a937b979
DS
3681 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3682 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3683
a937b979
DS
3684 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3685 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3686
9cc97d64 3687 BTRFS_I(inode)->i_otime.tv_sec =
3688 btrfs_timespec_sec(leaf, &inode_item->otime);
3689 BTRFS_I(inode)->i_otime.tv_nsec =
3690 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3691
a76a3cd4 3692 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3693 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3694 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3695
6e17d30b
YD
3696 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3697 inode->i_generation = BTRFS_I(inode)->generation;
3698 inode->i_rdev = 0;
3699 rdev = btrfs_inode_rdev(leaf, inode_item);
3700
3701 BTRFS_I(inode)->index_cnt = (u64)-1;
3702 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3703
3704cache_index:
5dc562c5
JB
3705 /*
3706 * If we were modified in the current generation and evicted from memory
3707 * and then re-read we need to do a full sync since we don't have any
3708 * idea about which extents were modified before we were evicted from
3709 * cache.
6e17d30b
YD
3710 *
3711 * This is required for both inode re-read from disk and delayed inode
3712 * in delayed_nodes_tree.
5dc562c5
JB
3713 */
3714 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3715 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3716 &BTRFS_I(inode)->runtime_flags);
3717
bde6c242
FM
3718 /*
3719 * We don't persist the id of the transaction where an unlink operation
3720 * against the inode was last made. So here we assume the inode might
3721 * have been evicted, and therefore the exact value of last_unlink_trans
3722 * lost, and set it to last_trans to avoid metadata inconsistencies
3723 * between the inode and its parent if the inode is fsync'ed and the log
3724 * replayed. For example, in the scenario:
3725 *
3726 * touch mydir/foo
3727 * ln mydir/foo mydir/bar
3728 * sync
3729 * unlink mydir/bar
3730 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3731 * xfs_io -c fsync mydir/foo
3732 * <power failure>
3733 * mount fs, triggers fsync log replay
3734 *
3735 * We must make sure that when we fsync our inode foo we also log its
3736 * parent inode, otherwise after log replay the parent still has the
3737 * dentry with the "bar" name but our inode foo has a link count of 1
3738 * and doesn't have an inode ref with the name "bar" anymore.
3739 *
3740 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3741 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3742 * transaction commits on fsync if our inode is a directory, or if our
3743 * inode is not a directory, logging its parent unnecessarily.
3744 */
3745 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3746
67de1176
MX
3747 path->slots[0]++;
3748 if (inode->i_nlink != 1 ||
3749 path->slots[0] >= btrfs_header_nritems(leaf))
3750 goto cache_acl;
3751
3752 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3753 if (location.objectid != btrfs_ino(inode))
3754 goto cache_acl;
3755
3756 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3757 if (location.type == BTRFS_INODE_REF_KEY) {
3758 struct btrfs_inode_ref *ref;
3759
3760 ref = (struct btrfs_inode_ref *)ptr;
3761 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3762 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3763 struct btrfs_inode_extref *extref;
3764
3765 extref = (struct btrfs_inode_extref *)ptr;
3766 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3767 extref);
3768 }
2f7e33d4 3769cache_acl:
46a53cca
CM
3770 /*
3771 * try to precache a NULL acl entry for files that don't have
3772 * any xattrs or acls
3773 */
33345d01 3774 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3775 btrfs_ino(inode), &first_xattr_slot);
3776 if (first_xattr_slot != -1) {
3777 path->slots[0] = first_xattr_slot;
3778 ret = btrfs_load_inode_props(inode, path);
3779 if (ret)
3780 btrfs_err(root->fs_info,
351fd353 3781 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3782 btrfs_ino(inode),
3783 root->root_key.objectid, ret);
3784 }
3785 btrfs_free_path(path);
3786
72c04902
AV
3787 if (!maybe_acls)
3788 cache_no_acl(inode);
46a53cca 3789
39279cc3 3790 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3791 case S_IFREG:
3792 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3793 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3794 inode->i_fop = &btrfs_file_operations;
3795 inode->i_op = &btrfs_file_inode_operations;
3796 break;
3797 case S_IFDIR:
3798 inode->i_fop = &btrfs_dir_file_operations;
3799 if (root == root->fs_info->tree_root)
3800 inode->i_op = &btrfs_dir_ro_inode_operations;
3801 else
3802 inode->i_op = &btrfs_dir_inode_operations;
3803 break;
3804 case S_IFLNK:
3805 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3806 inode_nohighmem(inode);
39279cc3
CM
3807 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3808 break;
618e21d5 3809 default:
0279b4cd 3810 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3811 init_special_inode(inode, inode->i_mode, rdev);
3812 break;
39279cc3 3813 }
6cbff00f
CH
3814
3815 btrfs_update_iflags(inode);
39279cc3
CM
3816 return;
3817
3818make_bad:
39279cc3 3819 btrfs_free_path(path);
39279cc3
CM
3820 make_bad_inode(inode);
3821}
3822
d352ac68
CM
3823/*
3824 * given a leaf and an inode, copy the inode fields into the leaf
3825 */
e02119d5
CM
3826static void fill_inode_item(struct btrfs_trans_handle *trans,
3827 struct extent_buffer *leaf,
5f39d397 3828 struct btrfs_inode_item *item,
39279cc3
CM
3829 struct inode *inode)
3830{
51fab693
LB
3831 struct btrfs_map_token token;
3832
3833 btrfs_init_map_token(&token);
5f39d397 3834
51fab693
LB
3835 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3836 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3837 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3838 &token);
3839 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3840 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3841
a937b979 3842 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3843 inode->i_atime.tv_sec, &token);
a937b979 3844 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3845 inode->i_atime.tv_nsec, &token);
5f39d397 3846
a937b979 3847 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3848 inode->i_mtime.tv_sec, &token);
a937b979 3849 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3850 inode->i_mtime.tv_nsec, &token);
5f39d397 3851
a937b979 3852 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3853 inode->i_ctime.tv_sec, &token);
a937b979 3854 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3855 inode->i_ctime.tv_nsec, &token);
5f39d397 3856
9cc97d64 3857 btrfs_set_token_timespec_sec(leaf, &item->otime,
3858 BTRFS_I(inode)->i_otime.tv_sec, &token);
3859 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3860 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3861
51fab693
LB
3862 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3863 &token);
3864 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3865 &token);
3866 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3867 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3868 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3869 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3870 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3871}
3872
d352ac68
CM
3873/*
3874 * copy everything in the in-memory inode into the btree.
3875 */
2115133f 3876static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3877 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3878{
3879 struct btrfs_inode_item *inode_item;
3880 struct btrfs_path *path;
5f39d397 3881 struct extent_buffer *leaf;
39279cc3
CM
3882 int ret;
3883
3884 path = btrfs_alloc_path();
16cdcec7
MX
3885 if (!path)
3886 return -ENOMEM;
3887
b9473439 3888 path->leave_spinning = 1;
16cdcec7
MX
3889 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3890 1);
39279cc3
CM
3891 if (ret) {
3892 if (ret > 0)
3893 ret = -ENOENT;
3894 goto failed;
3895 }
3896
5f39d397
CM
3897 leaf = path->nodes[0];
3898 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3899 struct btrfs_inode_item);
39279cc3 3900
e02119d5 3901 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3902 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3903 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3904 ret = 0;
3905failed:
39279cc3
CM
3906 btrfs_free_path(path);
3907 return ret;
3908}
3909
2115133f
CM
3910/*
3911 * copy everything in the in-memory inode into the btree.
3912 */
3913noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3914 struct btrfs_root *root, struct inode *inode)
3915{
3916 int ret;
3917
3918 /*
3919 * If the inode is a free space inode, we can deadlock during commit
3920 * if we put it into the delayed code.
3921 *
3922 * The data relocation inode should also be directly updated
3923 * without delay
3924 */
83eea1f1 3925 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3926 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3927 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3928 btrfs_update_root_times(trans, root);
3929
2115133f
CM
3930 ret = btrfs_delayed_update_inode(trans, root, inode);
3931 if (!ret)
3932 btrfs_set_inode_last_trans(trans, inode);
3933 return ret;
3934 }
3935
3936 return btrfs_update_inode_item(trans, root, inode);
3937}
3938
be6aef60
JB
3939noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3940 struct btrfs_root *root,
3941 struct inode *inode)
2115133f
CM
3942{
3943 int ret;
3944
3945 ret = btrfs_update_inode(trans, root, inode);
3946 if (ret == -ENOSPC)
3947 return btrfs_update_inode_item(trans, root, inode);
3948 return ret;
3949}
3950
d352ac68
CM
3951/*
3952 * unlink helper that gets used here in inode.c and in the tree logging
3953 * recovery code. It remove a link in a directory with a given name, and
3954 * also drops the back refs in the inode to the directory
3955 */
92986796
AV
3956static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3957 struct btrfs_root *root,
3958 struct inode *dir, struct inode *inode,
3959 const char *name, int name_len)
39279cc3
CM
3960{
3961 struct btrfs_path *path;
39279cc3 3962 int ret = 0;
5f39d397 3963 struct extent_buffer *leaf;
39279cc3 3964 struct btrfs_dir_item *di;
5f39d397 3965 struct btrfs_key key;
aec7477b 3966 u64 index;
33345d01
LZ
3967 u64 ino = btrfs_ino(inode);
3968 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3969
3970 path = btrfs_alloc_path();
54aa1f4d
CM
3971 if (!path) {
3972 ret = -ENOMEM;
554233a6 3973 goto out;
54aa1f4d
CM
3974 }
3975
b9473439 3976 path->leave_spinning = 1;
33345d01 3977 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3978 name, name_len, -1);
3979 if (IS_ERR(di)) {
3980 ret = PTR_ERR(di);
3981 goto err;
3982 }
3983 if (!di) {
3984 ret = -ENOENT;
3985 goto err;
3986 }
5f39d397
CM
3987 leaf = path->nodes[0];
3988 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3989 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3990 if (ret)
3991 goto err;
b3b4aa74 3992 btrfs_release_path(path);
39279cc3 3993
67de1176
MX
3994 /*
3995 * If we don't have dir index, we have to get it by looking up
3996 * the inode ref, since we get the inode ref, remove it directly,
3997 * it is unnecessary to do delayed deletion.
3998 *
3999 * But if we have dir index, needn't search inode ref to get it.
4000 * Since the inode ref is close to the inode item, it is better
4001 * that we delay to delete it, and just do this deletion when
4002 * we update the inode item.
4003 */
4004 if (BTRFS_I(inode)->dir_index) {
4005 ret = btrfs_delayed_delete_inode_ref(inode);
4006 if (!ret) {
4007 index = BTRFS_I(inode)->dir_index;
4008 goto skip_backref;
4009 }
4010 }
4011
33345d01
LZ
4012 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4013 dir_ino, &index);
aec7477b 4014 if (ret) {
c2cf52eb
SK
4015 btrfs_info(root->fs_info,
4016 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4017 name_len, name, ino, dir_ino);
79787eaa 4018 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
4019 goto err;
4020 }
67de1176 4021skip_backref:
16cdcec7 4022 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4023 if (ret) {
4024 btrfs_abort_transaction(trans, root, ret);
39279cc3 4025 goto err;
79787eaa 4026 }
39279cc3 4027
e02119d5 4028 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 4029 inode, dir_ino);
79787eaa
JM
4030 if (ret != 0 && ret != -ENOENT) {
4031 btrfs_abort_transaction(trans, root, ret);
4032 goto err;
4033 }
e02119d5
CM
4034
4035 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4036 dir, index);
6418c961
CM
4037 if (ret == -ENOENT)
4038 ret = 0;
d4e3991b
ZB
4039 else if (ret)
4040 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
4041err:
4042 btrfs_free_path(path);
e02119d5
CM
4043 if (ret)
4044 goto out;
4045
4046 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
4047 inode_inc_iversion(inode);
4048 inode_inc_iversion(dir);
04b285f3
DD
4049 inode->i_ctime = dir->i_mtime =
4050 dir->i_ctime = current_fs_time(inode->i_sb);
b9959295 4051 ret = btrfs_update_inode(trans, root, dir);
e02119d5 4052out:
39279cc3
CM
4053 return ret;
4054}
4055
92986796
AV
4056int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4057 struct btrfs_root *root,
4058 struct inode *dir, struct inode *inode,
4059 const char *name, int name_len)
4060{
4061 int ret;
4062 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4063 if (!ret) {
8b558c5f 4064 drop_nlink(inode);
92986796
AV
4065 ret = btrfs_update_inode(trans, root, inode);
4066 }
4067 return ret;
4068}
39279cc3 4069
a22285a6
YZ
4070/*
4071 * helper to start transaction for unlink and rmdir.
4072 *
d52be818
JB
4073 * unlink and rmdir are special in btrfs, they do not always free space, so
4074 * if we cannot make our reservations the normal way try and see if there is
4075 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4076 * allow the unlink to occur.
a22285a6 4077 */
d52be818 4078static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4079{
a22285a6 4080 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4081
e70bea5f
JB
4082 /*
4083 * 1 for the possible orphan item
4084 * 1 for the dir item
4085 * 1 for the dir index
4086 * 1 for the inode ref
e70bea5f
JB
4087 * 1 for the inode
4088 */
8eab77ff 4089 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4090}
4091
4092static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4093{
4094 struct btrfs_root *root = BTRFS_I(dir)->root;
4095 struct btrfs_trans_handle *trans;
2b0143b5 4096 struct inode *inode = d_inode(dentry);
a22285a6 4097 int ret;
a22285a6 4098
d52be818 4099 trans = __unlink_start_trans(dir);
a22285a6
YZ
4100 if (IS_ERR(trans))
4101 return PTR_ERR(trans);
5f39d397 4102
2b0143b5 4103 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
12fcfd22 4104
2b0143b5 4105 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4106 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
4107 if (ret)
4108 goto out;
7b128766 4109
a22285a6 4110 if (inode->i_nlink == 0) {
7b128766 4111 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
4112 if (ret)
4113 goto out;
a22285a6 4114 }
7b128766 4115
b532402e 4116out:
d52be818 4117 btrfs_end_transaction(trans, root);
b53d3f5d 4118 btrfs_btree_balance_dirty(root);
39279cc3
CM
4119 return ret;
4120}
4121
4df27c4d
YZ
4122int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4123 struct btrfs_root *root,
4124 struct inode *dir, u64 objectid,
4125 const char *name, int name_len)
4126{
4127 struct btrfs_path *path;
4128 struct extent_buffer *leaf;
4129 struct btrfs_dir_item *di;
4130 struct btrfs_key key;
4131 u64 index;
4132 int ret;
33345d01 4133 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
4134
4135 path = btrfs_alloc_path();
4136 if (!path)
4137 return -ENOMEM;
4138
33345d01 4139 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4140 name, name_len, -1);
79787eaa
JM
4141 if (IS_ERR_OR_NULL(di)) {
4142 if (!di)
4143 ret = -ENOENT;
4144 else
4145 ret = PTR_ERR(di);
4146 goto out;
4147 }
4df27c4d
YZ
4148
4149 leaf = path->nodes[0];
4150 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4151 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4152 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
4153 if (ret) {
4154 btrfs_abort_transaction(trans, root, ret);
4155 goto out;
4156 }
b3b4aa74 4157 btrfs_release_path(path);
4df27c4d
YZ
4158
4159 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4160 objectid, root->root_key.objectid,
33345d01 4161 dir_ino, &index, name, name_len);
4df27c4d 4162 if (ret < 0) {
79787eaa
JM
4163 if (ret != -ENOENT) {
4164 btrfs_abort_transaction(trans, root, ret);
4165 goto out;
4166 }
33345d01 4167 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4168 name, name_len);
79787eaa
JM
4169 if (IS_ERR_OR_NULL(di)) {
4170 if (!di)
4171 ret = -ENOENT;
4172 else
4173 ret = PTR_ERR(di);
4174 btrfs_abort_transaction(trans, root, ret);
4175 goto out;
4176 }
4df27c4d
YZ
4177
4178 leaf = path->nodes[0];
4179 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4180 btrfs_release_path(path);
4df27c4d
YZ
4181 index = key.offset;
4182 }
945d8962 4183 btrfs_release_path(path);
4df27c4d 4184
16cdcec7 4185 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4186 if (ret) {
4187 btrfs_abort_transaction(trans, root, ret);
4188 goto out;
4189 }
4df27c4d
YZ
4190
4191 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4192 inode_inc_iversion(dir);
04b285f3 4193 dir->i_mtime = dir->i_ctime = current_fs_time(dir->i_sb);
5a24e84c 4194 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4195 if (ret)
4196 btrfs_abort_transaction(trans, root, ret);
4197out:
71d7aed0 4198 btrfs_free_path(path);
79787eaa 4199 return ret;
4df27c4d
YZ
4200}
4201
39279cc3
CM
4202static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4203{
2b0143b5 4204 struct inode *inode = d_inode(dentry);
1832a6d5 4205 int err = 0;
39279cc3 4206 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4207 struct btrfs_trans_handle *trans;
39279cc3 4208
b3ae244e 4209 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4210 return -ENOTEMPTY;
b3ae244e
DS
4211 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4212 return -EPERM;
134d4512 4213
d52be818 4214 trans = __unlink_start_trans(dir);
a22285a6 4215 if (IS_ERR(trans))
5df6a9f6 4216 return PTR_ERR(trans);
5df6a9f6 4217
33345d01 4218 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4219 err = btrfs_unlink_subvol(trans, root, dir,
4220 BTRFS_I(inode)->location.objectid,
4221 dentry->d_name.name,
4222 dentry->d_name.len);
4223 goto out;
4224 }
4225
7b128766
JB
4226 err = btrfs_orphan_add(trans, inode);
4227 if (err)
4df27c4d 4228 goto out;
7b128766 4229
39279cc3 4230 /* now the directory is empty */
2b0143b5 4231 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
e02119d5 4232 dentry->d_name.name, dentry->d_name.len);
d397712b 4233 if (!err)
dbe674a9 4234 btrfs_i_size_write(inode, 0);
4df27c4d 4235out:
d52be818 4236 btrfs_end_transaction(trans, root);
b53d3f5d 4237 btrfs_btree_balance_dirty(root);
3954401f 4238
39279cc3
CM
4239 return err;
4240}
4241
28f75a0e
CM
4242static int truncate_space_check(struct btrfs_trans_handle *trans,
4243 struct btrfs_root *root,
4244 u64 bytes_deleted)
4245{
4246 int ret;
4247
dc95f7bf
JB
4248 /*
4249 * This is only used to apply pressure to the enospc system, we don't
4250 * intend to use this reservation at all.
4251 */
28f75a0e 4252 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
dc95f7bf 4253 bytes_deleted *= root->nodesize;
28f75a0e
CM
4254 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4255 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf
JB
4256 if (!ret) {
4257 trace_btrfs_space_reservation(root->fs_info, "transaction",
4258 trans->transid,
4259 bytes_deleted, 1);
28f75a0e 4260 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4261 }
28f75a0e
CM
4262 return ret;
4263
4264}
4265
0305cd5f
FM
4266static int truncate_inline_extent(struct inode *inode,
4267 struct btrfs_path *path,
4268 struct btrfs_key *found_key,
4269 const u64 item_end,
4270 const u64 new_size)
4271{
4272 struct extent_buffer *leaf = path->nodes[0];
4273 int slot = path->slots[0];
4274 struct btrfs_file_extent_item *fi;
4275 u32 size = (u32)(new_size - found_key->offset);
4276 struct btrfs_root *root = BTRFS_I(inode)->root;
4277
4278 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4279
4280 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4281 loff_t offset = new_size;
09cbfeaf 4282 loff_t page_end = ALIGN(offset, PAGE_SIZE);
0305cd5f
FM
4283
4284 /*
4285 * Zero out the remaining of the last page of our inline extent,
4286 * instead of directly truncating our inline extent here - that
4287 * would be much more complex (decompressing all the data, then
4288 * compressing the truncated data, which might be bigger than
4289 * the size of the inline extent, resize the extent, etc).
4290 * We release the path because to get the page we might need to
4291 * read the extent item from disk (data not in the page cache).
4292 */
4293 btrfs_release_path(path);
9703fefe
CR
4294 return btrfs_truncate_block(inode, offset, page_end - offset,
4295 0);
0305cd5f
FM
4296 }
4297
4298 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4299 size = btrfs_file_extent_calc_inline_size(size);
4300 btrfs_truncate_item(root, path, size, 1);
4301
4302 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4303 inode_sub_bytes(inode, item_end + 1 - new_size);
4304
4305 return 0;
4306}
4307
39279cc3
CM
4308/*
4309 * this can truncate away extent items, csum items and directory items.
4310 * It starts at a high offset and removes keys until it can't find
d352ac68 4311 * any higher than new_size
39279cc3
CM
4312 *
4313 * csum items that cross the new i_size are truncated to the new size
4314 * as well.
7b128766
JB
4315 *
4316 * min_type is the minimum key type to truncate down to. If set to 0, this
4317 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4318 */
8082510e
YZ
4319int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4320 struct btrfs_root *root,
4321 struct inode *inode,
4322 u64 new_size, u32 min_type)
39279cc3 4323{
39279cc3 4324 struct btrfs_path *path;
5f39d397 4325 struct extent_buffer *leaf;
39279cc3 4326 struct btrfs_file_extent_item *fi;
8082510e
YZ
4327 struct btrfs_key key;
4328 struct btrfs_key found_key;
39279cc3 4329 u64 extent_start = 0;
db94535d 4330 u64 extent_num_bytes = 0;
5d4f98a2 4331 u64 extent_offset = 0;
39279cc3 4332 u64 item_end = 0;
c1aa4575 4333 u64 last_size = new_size;
8082510e 4334 u32 found_type = (u8)-1;
39279cc3
CM
4335 int found_extent;
4336 int del_item;
85e21bac
CM
4337 int pending_del_nr = 0;
4338 int pending_del_slot = 0;
179e29e4 4339 int extent_type = -1;
8082510e
YZ
4340 int ret;
4341 int err = 0;
33345d01 4342 u64 ino = btrfs_ino(inode);
28ed1345 4343 u64 bytes_deleted = 0;
1262133b
JB
4344 bool be_nice = 0;
4345 bool should_throttle = 0;
28f75a0e 4346 bool should_end = 0;
8082510e
YZ
4347
4348 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4349
28ed1345
CM
4350 /*
4351 * for non-free space inodes and ref cows, we want to back off from
4352 * time to time
4353 */
4354 if (!btrfs_is_free_space_inode(inode) &&
4355 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4356 be_nice = 1;
4357
0eb0e19c
MF
4358 path = btrfs_alloc_path();
4359 if (!path)
4360 return -ENOMEM;
e4058b54 4361 path->reada = READA_BACK;
0eb0e19c 4362
5dc562c5
JB
4363 /*
4364 * We want to drop from the next block forward in case this new size is
4365 * not block aligned since we will be keeping the last block of the
4366 * extent just the way it is.
4367 */
27cdeb70
MX
4368 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4369 root == root->fs_info->tree_root)
fda2832f
QW
4370 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4371 root->sectorsize), (u64)-1, 0);
8082510e 4372
16cdcec7
MX
4373 /*
4374 * This function is also used to drop the items in the log tree before
4375 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4376 * it is used to drop the loged items. So we shouldn't kill the delayed
4377 * items.
4378 */
4379 if (min_type == 0 && root == BTRFS_I(inode)->root)
4380 btrfs_kill_delayed_inode_items(inode);
4381
33345d01 4382 key.objectid = ino;
39279cc3 4383 key.offset = (u64)-1;
5f39d397
CM
4384 key.type = (u8)-1;
4385
85e21bac 4386search_again:
28ed1345
CM
4387 /*
4388 * with a 16K leaf size and 128MB extents, you can actually queue
4389 * up a huge file in a single leaf. Most of the time that
4390 * bytes_deleted is > 0, it will be huge by the time we get here
4391 */
ee22184b 4392 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4393 if (btrfs_should_end_transaction(trans, root)) {
4394 err = -EAGAIN;
4395 goto error;
4396 }
4397 }
4398
4399
b9473439 4400 path->leave_spinning = 1;
85e21bac 4401 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4402 if (ret < 0) {
4403 err = ret;
4404 goto out;
4405 }
d397712b 4406
85e21bac 4407 if (ret > 0) {
e02119d5
CM
4408 /* there are no items in the tree for us to truncate, we're
4409 * done
4410 */
8082510e
YZ
4411 if (path->slots[0] == 0)
4412 goto out;
85e21bac
CM
4413 path->slots[0]--;
4414 }
4415
d397712b 4416 while (1) {
39279cc3 4417 fi = NULL;
5f39d397
CM
4418 leaf = path->nodes[0];
4419 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4420 found_type = found_key.type;
39279cc3 4421
33345d01 4422 if (found_key.objectid != ino)
39279cc3 4423 break;
5f39d397 4424
85e21bac 4425 if (found_type < min_type)
39279cc3
CM
4426 break;
4427
5f39d397 4428 item_end = found_key.offset;
39279cc3 4429 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4430 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4431 struct btrfs_file_extent_item);
179e29e4
CM
4432 extent_type = btrfs_file_extent_type(leaf, fi);
4433 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4434 item_end +=
db94535d 4435 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4436 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4437 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4438 path->slots[0], fi);
39279cc3 4439 }
008630c1 4440 item_end--;
39279cc3 4441 }
8082510e
YZ
4442 if (found_type > min_type) {
4443 del_item = 1;
4444 } else {
4445 if (item_end < new_size)
b888db2b 4446 break;
8082510e
YZ
4447 if (found_key.offset >= new_size)
4448 del_item = 1;
4449 else
4450 del_item = 0;
39279cc3 4451 }
39279cc3 4452 found_extent = 0;
39279cc3 4453 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4454 if (found_type != BTRFS_EXTENT_DATA_KEY)
4455 goto delete;
4456
7f4f6e0a
JB
4457 if (del_item)
4458 last_size = found_key.offset;
4459 else
4460 last_size = new_size;
4461
179e29e4 4462 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4463 u64 num_dec;
db94535d 4464 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4465 if (!del_item) {
db94535d
CM
4466 u64 orig_num_bytes =
4467 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4468 extent_num_bytes = ALIGN(new_size -
4469 found_key.offset,
4470 root->sectorsize);
db94535d
CM
4471 btrfs_set_file_extent_num_bytes(leaf, fi,
4472 extent_num_bytes);
4473 num_dec = (orig_num_bytes -
9069218d 4474 extent_num_bytes);
27cdeb70
MX
4475 if (test_bit(BTRFS_ROOT_REF_COWS,
4476 &root->state) &&
4477 extent_start != 0)
a76a3cd4 4478 inode_sub_bytes(inode, num_dec);
5f39d397 4479 btrfs_mark_buffer_dirty(leaf);
39279cc3 4480 } else {
db94535d
CM
4481 extent_num_bytes =
4482 btrfs_file_extent_disk_num_bytes(leaf,
4483 fi);
5d4f98a2
YZ
4484 extent_offset = found_key.offset -
4485 btrfs_file_extent_offset(leaf, fi);
4486
39279cc3 4487 /* FIXME blocksize != 4096 */
9069218d 4488 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4489 if (extent_start != 0) {
4490 found_extent = 1;
27cdeb70
MX
4491 if (test_bit(BTRFS_ROOT_REF_COWS,
4492 &root->state))
a76a3cd4 4493 inode_sub_bytes(inode, num_dec);
e02119d5 4494 }
39279cc3 4495 }
9069218d 4496 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4497 /*
4498 * we can't truncate inline items that have had
4499 * special encodings
4500 */
4501 if (!del_item &&
c8b97818
CM
4502 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4503 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
514ac8ad
CM
4504
4505 /*
0305cd5f
FM
4506 * Need to release path in order to truncate a
4507 * compressed extent. So delete any accumulated
4508 * extent items so far.
514ac8ad 4509 */
0305cd5f
FM
4510 if (btrfs_file_extent_compression(leaf, fi) !=
4511 BTRFS_COMPRESS_NONE && pending_del_nr) {
4512 err = btrfs_del_items(trans, root, path,
4513 pending_del_slot,
4514 pending_del_nr);
4515 if (err) {
4516 btrfs_abort_transaction(trans,
4517 root,
4518 err);
4519 goto error;
4520 }
4521 pending_del_nr = 0;
4522 }
4523
4524 err = truncate_inline_extent(inode, path,
4525 &found_key,
4526 item_end,
4527 new_size);
4528 if (err) {
4529 btrfs_abort_transaction(trans,
4530 root, err);
4531 goto error;
4532 }
27cdeb70
MX
4533 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4534 &root->state)) {
0305cd5f 4535 inode_sub_bytes(inode, item_end + 1 - new_size);
9069218d 4536 }
39279cc3 4537 }
179e29e4 4538delete:
39279cc3 4539 if (del_item) {
85e21bac
CM
4540 if (!pending_del_nr) {
4541 /* no pending yet, add ourselves */
4542 pending_del_slot = path->slots[0];
4543 pending_del_nr = 1;
4544 } else if (pending_del_nr &&
4545 path->slots[0] + 1 == pending_del_slot) {
4546 /* hop on the pending chunk */
4547 pending_del_nr++;
4548 pending_del_slot = path->slots[0];
4549 } else {
d397712b 4550 BUG();
85e21bac 4551 }
39279cc3
CM
4552 } else {
4553 break;
4554 }
28f75a0e
CM
4555 should_throttle = 0;
4556
27cdeb70
MX
4557 if (found_extent &&
4558 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4559 root == root->fs_info->tree_root)) {
b9473439 4560 btrfs_set_path_blocking(path);
28ed1345 4561 bytes_deleted += extent_num_bytes;
39279cc3 4562 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4563 extent_num_bytes, 0,
4564 btrfs_header_owner(leaf),
b06c4bf5 4565 ino, extent_offset);
39279cc3 4566 BUG_ON(ret);
1262133b 4567 if (btrfs_should_throttle_delayed_refs(trans, root))
28ed1345 4568 btrfs_async_run_delayed_refs(root,
31b9655f 4569 trans->transid,
28ed1345 4570 trans->delayed_ref_updates * 2, 0);
28f75a0e
CM
4571 if (be_nice) {
4572 if (truncate_space_check(trans, root,
4573 extent_num_bytes)) {
4574 should_end = 1;
4575 }
4576 if (btrfs_should_throttle_delayed_refs(trans,
4577 root)) {
4578 should_throttle = 1;
4579 }
4580 }
39279cc3 4581 }
85e21bac 4582
8082510e
YZ
4583 if (found_type == BTRFS_INODE_ITEM_KEY)
4584 break;
4585
4586 if (path->slots[0] == 0 ||
1262133b 4587 path->slots[0] != pending_del_slot ||
28f75a0e 4588 should_throttle || should_end) {
8082510e
YZ
4589 if (pending_del_nr) {
4590 ret = btrfs_del_items(trans, root, path,
4591 pending_del_slot,
4592 pending_del_nr);
79787eaa
JM
4593 if (ret) {
4594 btrfs_abort_transaction(trans,
4595 root, ret);
4596 goto error;
4597 }
8082510e
YZ
4598 pending_del_nr = 0;
4599 }
b3b4aa74 4600 btrfs_release_path(path);
28f75a0e 4601 if (should_throttle) {
1262133b
JB
4602 unsigned long updates = trans->delayed_ref_updates;
4603 if (updates) {
4604 trans->delayed_ref_updates = 0;
4605 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4606 if (ret && !err)
4607 err = ret;
4608 }
4609 }
28f75a0e
CM
4610 /*
4611 * if we failed to refill our space rsv, bail out
4612 * and let the transaction restart
4613 */
4614 if (should_end) {
4615 err = -EAGAIN;
4616 goto error;
4617 }
85e21bac 4618 goto search_again;
8082510e
YZ
4619 } else {
4620 path->slots[0]--;
85e21bac 4621 }
39279cc3 4622 }
8082510e 4623out:
85e21bac
CM
4624 if (pending_del_nr) {
4625 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4626 pending_del_nr);
79787eaa
JM
4627 if (ret)
4628 btrfs_abort_transaction(trans, root, ret);
85e21bac 4629 }
79787eaa 4630error:
c1aa4575 4631 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4632 btrfs_ordered_update_i_size(inode, last_size, NULL);
28ed1345 4633
39279cc3 4634 btrfs_free_path(path);
28ed1345 4635
ee22184b 4636 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4637 unsigned long updates = trans->delayed_ref_updates;
4638 if (updates) {
4639 trans->delayed_ref_updates = 0;
4640 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4641 if (ret && !err)
4642 err = ret;
4643 }
4644 }
8082510e 4645 return err;
39279cc3
CM
4646}
4647
4648/*
9703fefe 4649 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4650 * @inode - inode that we're zeroing
4651 * @from - the offset to start zeroing
4652 * @len - the length to zero, 0 to zero the entire range respective to the
4653 * offset
4654 * @front - zero up to the offset instead of from the offset on
4655 *
9703fefe 4656 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4657 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4658 */
9703fefe 4659int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4660 int front)
39279cc3 4661{
2aaa6655 4662 struct address_space *mapping = inode->i_mapping;
db94535d 4663 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4664 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4665 struct btrfs_ordered_extent *ordered;
2ac55d41 4666 struct extent_state *cached_state = NULL;
e6dcd2dc 4667 char *kaddr;
db94535d 4668 u32 blocksize = root->sectorsize;
09cbfeaf 4669 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4670 unsigned offset = from & (blocksize - 1);
39279cc3 4671 struct page *page;
3b16a4e3 4672 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4673 int ret = 0;
9703fefe
CR
4674 u64 block_start;
4675 u64 block_end;
39279cc3 4676
2aaa6655
JB
4677 if ((offset & (blocksize - 1)) == 0 &&
4678 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4679 goto out;
9703fefe 4680
7cf5b976 4681 ret = btrfs_delalloc_reserve_space(inode,
9703fefe 4682 round_down(from, blocksize), blocksize);
5d5e103a
JB
4683 if (ret)
4684 goto out;
39279cc3 4685
211c17f5 4686again:
3b16a4e3 4687 page = find_or_create_page(mapping, index, mask);
5d5e103a 4688 if (!page) {
7cf5b976 4689 btrfs_delalloc_release_space(inode,
9703fefe
CR
4690 round_down(from, blocksize),
4691 blocksize);
ac6a2b36 4692 ret = -ENOMEM;
39279cc3 4693 goto out;
5d5e103a 4694 }
e6dcd2dc 4695
9703fefe
CR
4696 block_start = round_down(from, blocksize);
4697 block_end = block_start + blocksize - 1;
e6dcd2dc 4698
39279cc3 4699 if (!PageUptodate(page)) {
9ebefb18 4700 ret = btrfs_readpage(NULL, page);
39279cc3 4701 lock_page(page);
211c17f5
CM
4702 if (page->mapping != mapping) {
4703 unlock_page(page);
09cbfeaf 4704 put_page(page);
211c17f5
CM
4705 goto again;
4706 }
39279cc3
CM
4707 if (!PageUptodate(page)) {
4708 ret = -EIO;
89642229 4709 goto out_unlock;
39279cc3
CM
4710 }
4711 }
211c17f5 4712 wait_on_page_writeback(page);
e6dcd2dc 4713
9703fefe 4714 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4715 set_page_extent_mapped(page);
4716
9703fefe 4717 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4718 if (ordered) {
9703fefe 4719 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4720 &cached_state, GFP_NOFS);
e6dcd2dc 4721 unlock_page(page);
09cbfeaf 4722 put_page(page);
eb84ae03 4723 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4724 btrfs_put_ordered_extent(ordered);
4725 goto again;
4726 }
4727
9703fefe 4728 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4729 EXTENT_DIRTY | EXTENT_DELALLOC |
4730 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4731 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4732
9703fefe 4733 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
2ac55d41 4734 &cached_state);
9ed74f2d 4735 if (ret) {
9703fefe 4736 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4737 &cached_state, GFP_NOFS);
9ed74f2d
JB
4738 goto out_unlock;
4739 }
4740
9703fefe 4741 if (offset != blocksize) {
2aaa6655 4742 if (!len)
9703fefe 4743 len = blocksize - offset;
e6dcd2dc 4744 kaddr = kmap(page);
2aaa6655 4745 if (front)
9703fefe
CR
4746 memset(kaddr + (block_start - page_offset(page)),
4747 0, offset);
2aaa6655 4748 else
9703fefe
CR
4749 memset(kaddr + (block_start - page_offset(page)) + offset,
4750 0, len);
e6dcd2dc
CM
4751 flush_dcache_page(page);
4752 kunmap(page);
4753 }
247e743c 4754 ClearPageChecked(page);
e6dcd2dc 4755 set_page_dirty(page);
9703fefe 4756 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4757 GFP_NOFS);
39279cc3 4758
89642229 4759out_unlock:
5d5e103a 4760 if (ret)
9703fefe
CR
4761 btrfs_delalloc_release_space(inode, block_start,
4762 blocksize);
39279cc3 4763 unlock_page(page);
09cbfeaf 4764 put_page(page);
39279cc3
CM
4765out:
4766 return ret;
4767}
4768
16e7549f
JB
4769static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4770 u64 offset, u64 len)
4771{
4772 struct btrfs_trans_handle *trans;
4773 int ret;
4774
4775 /*
4776 * Still need to make sure the inode looks like it's been updated so
4777 * that any holes get logged if we fsync.
4778 */
4779 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4780 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4781 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4782 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4783 return 0;
4784 }
4785
4786 /*
4787 * 1 - for the one we're dropping
4788 * 1 - for the one we're adding
4789 * 1 - for updating the inode.
4790 */
4791 trans = btrfs_start_transaction(root, 3);
4792 if (IS_ERR(trans))
4793 return PTR_ERR(trans);
4794
4795 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4796 if (ret) {
4797 btrfs_abort_transaction(trans, root, ret);
4798 btrfs_end_transaction(trans, root);
4799 return ret;
4800 }
4801
4802 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4803 0, 0, len, 0, len, 0, 0, 0);
4804 if (ret)
4805 btrfs_abort_transaction(trans, root, ret);
4806 else
4807 btrfs_update_inode(trans, root, inode);
4808 btrfs_end_transaction(trans, root);
4809 return ret;
4810}
4811
695a0d0d
JB
4812/*
4813 * This function puts in dummy file extents for the area we're creating a hole
4814 * for. So if we are truncating this file to a larger size we need to insert
4815 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4816 * the range between oldsize and size
4817 */
a41ad394 4818int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4819{
9036c102
YZ
4820 struct btrfs_root *root = BTRFS_I(inode)->root;
4821 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4822 struct extent_map *em = NULL;
2ac55d41 4823 struct extent_state *cached_state = NULL;
5dc562c5 4824 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4825 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4826 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4827 u64 last_byte;
4828 u64 cur_offset;
4829 u64 hole_size;
9ed74f2d 4830 int err = 0;
39279cc3 4831
a71754fc 4832 /*
9703fefe
CR
4833 * If our size started in the middle of a block we need to zero out the
4834 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4835 * expose stale data.
4836 */
9703fefe 4837 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4838 if (err)
4839 return err;
4840
9036c102
YZ
4841 if (size <= hole_start)
4842 return 0;
4843
9036c102
YZ
4844 while (1) {
4845 struct btrfs_ordered_extent *ordered;
fa7c1494 4846
ff13db41 4847 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4848 &cached_state);
fa7c1494
MX
4849 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4850 block_end - hole_start);
9036c102
YZ
4851 if (!ordered)
4852 break;
2ac55d41
JB
4853 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4854 &cached_state, GFP_NOFS);
fa7c1494 4855 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4856 btrfs_put_ordered_extent(ordered);
4857 }
39279cc3 4858
9036c102
YZ
4859 cur_offset = hole_start;
4860 while (1) {
4861 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4862 block_end - cur_offset, 0);
79787eaa
JM
4863 if (IS_ERR(em)) {
4864 err = PTR_ERR(em);
f2767956 4865 em = NULL;
79787eaa
JM
4866 break;
4867 }
9036c102 4868 last_byte = min(extent_map_end(em), block_end);
fda2832f 4869 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4870 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4871 struct extent_map *hole_em;
9036c102 4872 hole_size = last_byte - cur_offset;
9ed74f2d 4873
16e7549f
JB
4874 err = maybe_insert_hole(root, inode, cur_offset,
4875 hole_size);
4876 if (err)
3893e33b 4877 break;
5dc562c5
JB
4878 btrfs_drop_extent_cache(inode, cur_offset,
4879 cur_offset + hole_size - 1, 0);
4880 hole_em = alloc_extent_map();
4881 if (!hole_em) {
4882 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4883 &BTRFS_I(inode)->runtime_flags);
4884 goto next;
4885 }
4886 hole_em->start = cur_offset;
4887 hole_em->len = hole_size;
4888 hole_em->orig_start = cur_offset;
8082510e 4889
5dc562c5
JB
4890 hole_em->block_start = EXTENT_MAP_HOLE;
4891 hole_em->block_len = 0;
b4939680 4892 hole_em->orig_block_len = 0;
cc95bef6 4893 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4894 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4895 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4896 hole_em->generation = root->fs_info->generation;
8082510e 4897
5dc562c5
JB
4898 while (1) {
4899 write_lock(&em_tree->lock);
09a2a8f9 4900 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4901 write_unlock(&em_tree->lock);
4902 if (err != -EEXIST)
4903 break;
4904 btrfs_drop_extent_cache(inode, cur_offset,
4905 cur_offset +
4906 hole_size - 1, 0);
4907 }
4908 free_extent_map(hole_em);
9036c102 4909 }
16e7549f 4910next:
9036c102 4911 free_extent_map(em);
a22285a6 4912 em = NULL;
9036c102 4913 cur_offset = last_byte;
8082510e 4914 if (cur_offset >= block_end)
9036c102
YZ
4915 break;
4916 }
a22285a6 4917 free_extent_map(em);
2ac55d41
JB
4918 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4919 GFP_NOFS);
9036c102
YZ
4920 return err;
4921}
39279cc3 4922
3972f260 4923static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4924{
f4a2f4c5
MX
4925 struct btrfs_root *root = BTRFS_I(inode)->root;
4926 struct btrfs_trans_handle *trans;
a41ad394 4927 loff_t oldsize = i_size_read(inode);
3972f260
ES
4928 loff_t newsize = attr->ia_size;
4929 int mask = attr->ia_valid;
8082510e
YZ
4930 int ret;
4931
3972f260
ES
4932 /*
4933 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4934 * special case where we need to update the times despite not having
4935 * these flags set. For all other operations the VFS set these flags
4936 * explicitly if it wants a timestamp update.
4937 */
dff6efc3
CH
4938 if (newsize != oldsize) {
4939 inode_inc_iversion(inode);
4940 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4941 inode->i_ctime = inode->i_mtime =
4942 current_fs_time(inode->i_sb);
4943 }
3972f260 4944
a41ad394 4945 if (newsize > oldsize) {
9ea24bbe
FM
4946 /*
4947 * Don't do an expanding truncate while snapshoting is ongoing.
4948 * This is to ensure the snapshot captures a fully consistent
4949 * state of this file - if the snapshot captures this expanding
4950 * truncation, it must capture all writes that happened before
4951 * this truncation.
4952 */
0bc19f90 4953 btrfs_wait_for_snapshot_creation(root);
a41ad394 4954 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4955 if (ret) {
4956 btrfs_end_write_no_snapshoting(root);
8082510e 4957 return ret;
9ea24bbe 4958 }
8082510e 4959
f4a2f4c5 4960 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4961 if (IS_ERR(trans)) {
4962 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4963 return PTR_ERR(trans);
9ea24bbe 4964 }
f4a2f4c5
MX
4965
4966 i_size_write(inode, newsize);
4967 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 4968 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 4969 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4970 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4971 btrfs_end_transaction(trans, root);
a41ad394 4972 } else {
8082510e 4973
a41ad394
JB
4974 /*
4975 * We're truncating a file that used to have good data down to
4976 * zero. Make sure it gets into the ordered flush list so that
4977 * any new writes get down to disk quickly.
4978 */
4979 if (newsize == 0)
72ac3c0d
JB
4980 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4981 &BTRFS_I(inode)->runtime_flags);
8082510e 4982
f3fe820c
JB
4983 /*
4984 * 1 for the orphan item we're going to add
4985 * 1 for the orphan item deletion.
4986 */
4987 trans = btrfs_start_transaction(root, 2);
4988 if (IS_ERR(trans))
4989 return PTR_ERR(trans);
4990
4991 /*
4992 * We need to do this in case we fail at _any_ point during the
4993 * actual truncate. Once we do the truncate_setsize we could
4994 * invalidate pages which forces any outstanding ordered io to
4995 * be instantly completed which will give us extents that need
4996 * to be truncated. If we fail to get an orphan inode down we
4997 * could have left over extents that were never meant to live,
01327610 4998 * so we need to guarantee from this point on that everything
f3fe820c
JB
4999 * will be consistent.
5000 */
5001 ret = btrfs_orphan_add(trans, inode);
5002 btrfs_end_transaction(trans, root);
5003 if (ret)
5004 return ret;
5005
a41ad394
JB
5006 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5007 truncate_setsize(inode, newsize);
2e60a51e
MX
5008
5009 /* Disable nonlocked read DIO to avoid the end less truncate */
5010 btrfs_inode_block_unlocked_dio(inode);
5011 inode_dio_wait(inode);
5012 btrfs_inode_resume_unlocked_dio(inode);
5013
a41ad394 5014 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5015 if (ret && inode->i_nlink) {
5016 int err;
5017
5018 /*
5019 * failed to truncate, disk_i_size is only adjusted down
5020 * as we remove extents, so it should represent the true
5021 * size of the inode, so reset the in memory size and
5022 * delete our orphan entry.
5023 */
5024 trans = btrfs_join_transaction(root);
5025 if (IS_ERR(trans)) {
5026 btrfs_orphan_del(NULL, inode);
5027 return ret;
5028 }
5029 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5030 err = btrfs_orphan_del(trans, inode);
5031 if (err)
5032 btrfs_abort_transaction(trans, root, err);
5033 btrfs_end_transaction(trans, root);
5034 }
8082510e
YZ
5035 }
5036
a41ad394 5037 return ret;
8082510e
YZ
5038}
5039
9036c102
YZ
5040static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5041{
2b0143b5 5042 struct inode *inode = d_inode(dentry);
b83cc969 5043 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5044 int err;
39279cc3 5045
b83cc969
LZ
5046 if (btrfs_root_readonly(root))
5047 return -EROFS;
5048
9036c102
YZ
5049 err = inode_change_ok(inode, attr);
5050 if (err)
5051 return err;
2bf5a725 5052
5a3f23d5 5053 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5054 err = btrfs_setsize(inode, attr);
8082510e
YZ
5055 if (err)
5056 return err;
39279cc3 5057 }
9036c102 5058
1025774c
CH
5059 if (attr->ia_valid) {
5060 setattr_copy(inode, attr);
0c4d2d95 5061 inode_inc_iversion(inode);
22c44fe6 5062 err = btrfs_dirty_inode(inode);
1025774c 5063
22c44fe6 5064 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5065 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5066 }
33268eaf 5067
39279cc3
CM
5068 return err;
5069}
61295eb8 5070
131e404a
FDBM
5071/*
5072 * While truncating the inode pages during eviction, we get the VFS calling
5073 * btrfs_invalidatepage() against each page of the inode. This is slow because
5074 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5075 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5076 * extent_state structures over and over, wasting lots of time.
5077 *
5078 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5079 * those expensive operations on a per page basis and do only the ordered io
5080 * finishing, while we release here the extent_map and extent_state structures,
5081 * without the excessive merging and splitting.
5082 */
5083static void evict_inode_truncate_pages(struct inode *inode)
5084{
5085 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5086 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5087 struct rb_node *node;
5088
5089 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5090 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5091
5092 write_lock(&map_tree->lock);
5093 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5094 struct extent_map *em;
5095
5096 node = rb_first(&map_tree->map);
5097 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5098 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5099 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5100 remove_extent_mapping(map_tree, em);
5101 free_extent_map(em);
7064dd5c
FM
5102 if (need_resched()) {
5103 write_unlock(&map_tree->lock);
5104 cond_resched();
5105 write_lock(&map_tree->lock);
5106 }
131e404a
FDBM
5107 }
5108 write_unlock(&map_tree->lock);
5109
6ca07097
FM
5110 /*
5111 * Keep looping until we have no more ranges in the io tree.
5112 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5113 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5114 * still in progress (unlocked the pages in the bio but did not yet
5115 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5116 * ranges can still be locked and eviction started because before
5117 * submitting those bios, which are executed by a separate task (work
5118 * queue kthread), inode references (inode->i_count) were not taken
5119 * (which would be dropped in the end io callback of each bio).
5120 * Therefore here we effectively end up waiting for those bios and
5121 * anyone else holding locked ranges without having bumped the inode's
5122 * reference count - if we don't do it, when they access the inode's
5123 * io_tree to unlock a range it may be too late, leading to an
5124 * use-after-free issue.
5125 */
131e404a
FDBM
5126 spin_lock(&io_tree->lock);
5127 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5128 struct extent_state *state;
5129 struct extent_state *cached_state = NULL;
6ca07097
FM
5130 u64 start;
5131 u64 end;
131e404a
FDBM
5132
5133 node = rb_first(&io_tree->state);
5134 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5135 start = state->start;
5136 end = state->end;
131e404a
FDBM
5137 spin_unlock(&io_tree->lock);
5138
ff13db41 5139 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5140
5141 /*
5142 * If still has DELALLOC flag, the extent didn't reach disk,
5143 * and its reserved space won't be freed by delayed_ref.
5144 * So we need to free its reserved space here.
5145 * (Refer to comment in btrfs_invalidatepage, case 2)
5146 *
5147 * Note, end is the bytenr of last byte, so we need + 1 here.
5148 */
5149 if (state->state & EXTENT_DELALLOC)
5150 btrfs_qgroup_free_data(inode, start, end - start + 1);
5151
6ca07097 5152 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5153 EXTENT_LOCKED | EXTENT_DIRTY |
5154 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5155 EXTENT_DEFRAG, 1, 1,
5156 &cached_state, GFP_NOFS);
131e404a 5157
7064dd5c 5158 cond_resched();
131e404a
FDBM
5159 spin_lock(&io_tree->lock);
5160 }
5161 spin_unlock(&io_tree->lock);
5162}
5163
bd555975 5164void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
5165{
5166 struct btrfs_trans_handle *trans;
5167 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5168 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5169 int steal_from_global = 0;
3d48d981 5170 u64 min_size;
39279cc3
CM
5171 int ret;
5172
1abe9b8a 5173 trace_btrfs_inode_evict(inode);
5174
3d48d981
NB
5175 if (!root) {
5176 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5177 return;
5178 }
5179
5180 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5181
131e404a
FDBM
5182 evict_inode_truncate_pages(inode);
5183
69e9c6c6
SB
5184 if (inode->i_nlink &&
5185 ((btrfs_root_refs(&root->root_item) != 0 &&
5186 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5187 btrfs_is_free_space_inode(inode)))
bd555975
AV
5188 goto no_delete;
5189
39279cc3 5190 if (is_bad_inode(inode)) {
7b128766 5191 btrfs_orphan_del(NULL, inode);
39279cc3
CM
5192 goto no_delete;
5193 }
bd555975 5194 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5195 if (!special_file(inode->i_mode))
5196 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5197
f612496b
MX
5198 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5199
c71bf099 5200 if (root->fs_info->log_root_recovering) {
6bf02314 5201 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5202 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5203 goto no_delete;
5204 }
5205
76dda93c 5206 if (inode->i_nlink > 0) {
69e9c6c6
SB
5207 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5208 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5209 goto no_delete;
5210 }
5211
0e8c36a9
MX
5212 ret = btrfs_commit_inode_delayed_inode(inode);
5213 if (ret) {
5214 btrfs_orphan_del(NULL, inode);
5215 goto no_delete;
5216 }
5217
66d8f3dd 5218 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
5219 if (!rsv) {
5220 btrfs_orphan_del(NULL, inode);
5221 goto no_delete;
5222 }
4a338542 5223 rsv->size = min_size;
ca7e70f5 5224 rsv->failfast = 1;
726c35fa 5225 global_rsv = &root->fs_info->global_block_rsv;
4289a667 5226
dbe674a9 5227 btrfs_i_size_write(inode, 0);
5f39d397 5228
4289a667 5229 /*
8407aa46
MX
5230 * This is a bit simpler than btrfs_truncate since we've already
5231 * reserved our space for our orphan item in the unlink, so we just
5232 * need to reserve some slack space in case we add bytes and update
5233 * inode item when doing the truncate.
4289a667 5234 */
8082510e 5235 while (1) {
08e007d2
MX
5236 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5237 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5238
5239 /*
5240 * Try and steal from the global reserve since we will
5241 * likely not use this space anyway, we want to try as
5242 * hard as possible to get this to work.
5243 */
5244 if (ret)
3bce876f
JB
5245 steal_from_global++;
5246 else
5247 steal_from_global = 0;
5248 ret = 0;
d68fc57b 5249
3bce876f
JB
5250 /*
5251 * steal_from_global == 0: we reserved stuff, hooray!
5252 * steal_from_global == 1: we didn't reserve stuff, boo!
5253 * steal_from_global == 2: we've committed, still not a lot of
5254 * room but maybe we'll have room in the global reserve this
5255 * time.
5256 * steal_from_global == 3: abandon all hope!
5257 */
5258 if (steal_from_global > 2) {
c2cf52eb
SK
5259 btrfs_warn(root->fs_info,
5260 "Could not get space for a delete, will truncate on mount %d",
5261 ret);
4289a667
JB
5262 btrfs_orphan_del(NULL, inode);
5263 btrfs_free_block_rsv(root, rsv);
5264 goto no_delete;
d68fc57b 5265 }
7b128766 5266
0e8c36a9 5267 trans = btrfs_join_transaction(root);
4289a667
JB
5268 if (IS_ERR(trans)) {
5269 btrfs_orphan_del(NULL, inode);
5270 btrfs_free_block_rsv(root, rsv);
5271 goto no_delete;
d68fc57b 5272 }
7b128766 5273
3bce876f 5274 /*
01327610 5275 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5276 * sure there is room to do it, if not we need to commit and try
5277 * again.
5278 */
5279 if (steal_from_global) {
5280 if (!btrfs_check_space_for_delayed_refs(trans, root))
5281 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5282 min_size, 0);
3bce876f
JB
5283 else
5284 ret = -ENOSPC;
5285 }
5286
5287 /*
5288 * Couldn't steal from the global reserve, we have too much
5289 * pending stuff built up, commit the transaction and try it
5290 * again.
5291 */
5292 if (ret) {
5293 ret = btrfs_commit_transaction(trans, root);
5294 if (ret) {
5295 btrfs_orphan_del(NULL, inode);
5296 btrfs_free_block_rsv(root, rsv);
5297 goto no_delete;
5298 }
5299 continue;
5300 } else {
5301 steal_from_global = 0;
5302 }
5303
4289a667
JB
5304 trans->block_rsv = rsv;
5305
d68fc57b 5306 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5307 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5308 break;
85e21bac 5309
8407aa46 5310 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
5311 btrfs_end_transaction(trans, root);
5312 trans = NULL;
b53d3f5d 5313 btrfs_btree_balance_dirty(root);
8082510e 5314 }
5f39d397 5315
4289a667
JB
5316 btrfs_free_block_rsv(root, rsv);
5317
4ef31a45
JB
5318 /*
5319 * Errors here aren't a big deal, it just means we leave orphan items
5320 * in the tree. They will be cleaned up on the next mount.
5321 */
8082510e 5322 if (ret == 0) {
4289a667 5323 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
5324 btrfs_orphan_del(trans, inode);
5325 } else {
5326 btrfs_orphan_del(NULL, inode);
8082510e 5327 }
54aa1f4d 5328
4289a667 5329 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
5330 if (!(root == root->fs_info->tree_root ||
5331 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 5332 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 5333
54aa1f4d 5334 btrfs_end_transaction(trans, root);
b53d3f5d 5335 btrfs_btree_balance_dirty(root);
39279cc3 5336no_delete:
89042e5a 5337 btrfs_remove_delayed_node(inode);
dbd5768f 5338 clear_inode(inode);
39279cc3
CM
5339}
5340
5341/*
5342 * this returns the key found in the dir entry in the location pointer.
5343 * If no dir entries were found, location->objectid is 0.
5344 */
5345static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5346 struct btrfs_key *location)
5347{
5348 const char *name = dentry->d_name.name;
5349 int namelen = dentry->d_name.len;
5350 struct btrfs_dir_item *di;
5351 struct btrfs_path *path;
5352 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5353 int ret = 0;
39279cc3
CM
5354
5355 path = btrfs_alloc_path();
d8926bb3
MF
5356 if (!path)
5357 return -ENOMEM;
3954401f 5358
33345d01 5359 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 5360 namelen, 0);
0d9f7f3e
Y
5361 if (IS_ERR(di))
5362 ret = PTR_ERR(di);
d397712b 5363
c704005d 5364 if (IS_ERR_OR_NULL(di))
3954401f 5365 goto out_err;
d397712b 5366
5f39d397 5367 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5368out:
39279cc3
CM
5369 btrfs_free_path(path);
5370 return ret;
3954401f
CM
5371out_err:
5372 location->objectid = 0;
5373 goto out;
39279cc3
CM
5374}
5375
5376/*
5377 * when we hit a tree root in a directory, the btrfs part of the inode
5378 * needs to be changed to reflect the root directory of the tree root. This
5379 * is kind of like crossing a mount point.
5380 */
5381static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5382 struct inode *dir,
5383 struct dentry *dentry,
5384 struct btrfs_key *location,
5385 struct btrfs_root **sub_root)
39279cc3 5386{
4df27c4d
YZ
5387 struct btrfs_path *path;
5388 struct btrfs_root *new_root;
5389 struct btrfs_root_ref *ref;
5390 struct extent_buffer *leaf;
1d4c08e0 5391 struct btrfs_key key;
4df27c4d
YZ
5392 int ret;
5393 int err = 0;
39279cc3 5394
4df27c4d
YZ
5395 path = btrfs_alloc_path();
5396 if (!path) {
5397 err = -ENOMEM;
5398 goto out;
5399 }
39279cc3 5400
4df27c4d 5401 err = -ENOENT;
1d4c08e0
DS
5402 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5403 key.type = BTRFS_ROOT_REF_KEY;
5404 key.offset = location->objectid;
5405
5406 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5407 0, 0);
4df27c4d
YZ
5408 if (ret) {
5409 if (ret < 0)
5410 err = ret;
5411 goto out;
5412 }
39279cc3 5413
4df27c4d
YZ
5414 leaf = path->nodes[0];
5415 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5416 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5417 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5418 goto out;
39279cc3 5419
4df27c4d
YZ
5420 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5421 (unsigned long)(ref + 1),
5422 dentry->d_name.len);
5423 if (ret)
5424 goto out;
5425
b3b4aa74 5426 btrfs_release_path(path);
4df27c4d
YZ
5427
5428 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5429 if (IS_ERR(new_root)) {
5430 err = PTR_ERR(new_root);
5431 goto out;
5432 }
5433
4df27c4d
YZ
5434 *sub_root = new_root;
5435 location->objectid = btrfs_root_dirid(&new_root->root_item);
5436 location->type = BTRFS_INODE_ITEM_KEY;
5437 location->offset = 0;
5438 err = 0;
5439out:
5440 btrfs_free_path(path);
5441 return err;
39279cc3
CM
5442}
5443
5d4f98a2
YZ
5444static void inode_tree_add(struct inode *inode)
5445{
5446 struct btrfs_root *root = BTRFS_I(inode)->root;
5447 struct btrfs_inode *entry;
03e860bd
FNP
5448 struct rb_node **p;
5449 struct rb_node *parent;
cef21937 5450 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5451 u64 ino = btrfs_ino(inode);
5d4f98a2 5452
1d3382cb 5453 if (inode_unhashed(inode))
76dda93c 5454 return;
e1409cef 5455 parent = NULL;
5d4f98a2 5456 spin_lock(&root->inode_lock);
e1409cef 5457 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5458 while (*p) {
5459 parent = *p;
5460 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5461
33345d01 5462 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5463 p = &parent->rb_left;
33345d01 5464 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5465 p = &parent->rb_right;
5d4f98a2
YZ
5466 else {
5467 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5468 (I_WILL_FREE | I_FREEING)));
cef21937 5469 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5470 RB_CLEAR_NODE(parent);
5471 spin_unlock(&root->inode_lock);
cef21937 5472 return;
5d4f98a2
YZ
5473 }
5474 }
cef21937
FDBM
5475 rb_link_node(new, parent, p);
5476 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5477 spin_unlock(&root->inode_lock);
5478}
5479
5480static void inode_tree_del(struct inode *inode)
5481{
5482 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5483 int empty = 0;
5d4f98a2 5484
03e860bd 5485 spin_lock(&root->inode_lock);
5d4f98a2 5486 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5487 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5488 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5489 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5490 }
03e860bd 5491 spin_unlock(&root->inode_lock);
76dda93c 5492
69e9c6c6 5493 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5494 synchronize_srcu(&root->fs_info->subvol_srcu);
5495 spin_lock(&root->inode_lock);
5496 empty = RB_EMPTY_ROOT(&root->inode_tree);
5497 spin_unlock(&root->inode_lock);
5498 if (empty)
5499 btrfs_add_dead_root(root);
5500 }
5501}
5502
143bede5 5503void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5504{
5505 struct rb_node *node;
5506 struct rb_node *prev;
5507 struct btrfs_inode *entry;
5508 struct inode *inode;
5509 u64 objectid = 0;
5510
7813b3db
LB
5511 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5512 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5513
5514 spin_lock(&root->inode_lock);
5515again:
5516 node = root->inode_tree.rb_node;
5517 prev = NULL;
5518 while (node) {
5519 prev = node;
5520 entry = rb_entry(node, struct btrfs_inode, rb_node);
5521
33345d01 5522 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5523 node = node->rb_left;
33345d01 5524 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5525 node = node->rb_right;
5526 else
5527 break;
5528 }
5529 if (!node) {
5530 while (prev) {
5531 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5532 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5533 node = prev;
5534 break;
5535 }
5536 prev = rb_next(prev);
5537 }
5538 }
5539 while (node) {
5540 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5541 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5542 inode = igrab(&entry->vfs_inode);
5543 if (inode) {
5544 spin_unlock(&root->inode_lock);
5545 if (atomic_read(&inode->i_count) > 1)
5546 d_prune_aliases(inode);
5547 /*
45321ac5 5548 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5549 * the inode cache when its usage count
5550 * hits zero.
5551 */
5552 iput(inode);
5553 cond_resched();
5554 spin_lock(&root->inode_lock);
5555 goto again;
5556 }
5557
5558 if (cond_resched_lock(&root->inode_lock))
5559 goto again;
5560
5561 node = rb_next(node);
5562 }
5563 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5564}
5565
e02119d5
CM
5566static int btrfs_init_locked_inode(struct inode *inode, void *p)
5567{
5568 struct btrfs_iget_args *args = p;
90d3e592
CM
5569 inode->i_ino = args->location->objectid;
5570 memcpy(&BTRFS_I(inode)->location, args->location,
5571 sizeof(*args->location));
e02119d5 5572 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5573 return 0;
5574}
5575
5576static int btrfs_find_actor(struct inode *inode, void *opaque)
5577{
5578 struct btrfs_iget_args *args = opaque;
90d3e592 5579 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5580 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5581}
5582
5d4f98a2 5583static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5584 struct btrfs_key *location,
5d4f98a2 5585 struct btrfs_root *root)
39279cc3
CM
5586{
5587 struct inode *inode;
5588 struct btrfs_iget_args args;
90d3e592 5589 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5590
90d3e592 5591 args.location = location;
39279cc3
CM
5592 args.root = root;
5593
778ba82b 5594 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5595 btrfs_init_locked_inode,
5596 (void *)&args);
5597 return inode;
5598}
5599
1a54ef8c
BR
5600/* Get an inode object given its location and corresponding root.
5601 * Returns in *is_new if the inode was read from disk
5602 */
5603struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5604 struct btrfs_root *root, int *new)
1a54ef8c
BR
5605{
5606 struct inode *inode;
5607
90d3e592 5608 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5609 if (!inode)
5d4f98a2 5610 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5611
5612 if (inode->i_state & I_NEW) {
1a54ef8c 5613 btrfs_read_locked_inode(inode);
1748f843
MF
5614 if (!is_bad_inode(inode)) {
5615 inode_tree_add(inode);
5616 unlock_new_inode(inode);
5617 if (new)
5618 *new = 1;
5619 } else {
e0b6d65b
ST
5620 unlock_new_inode(inode);
5621 iput(inode);
5622 inode = ERR_PTR(-ESTALE);
1748f843
MF
5623 }
5624 }
5625
1a54ef8c
BR
5626 return inode;
5627}
5628
4df27c4d
YZ
5629static struct inode *new_simple_dir(struct super_block *s,
5630 struct btrfs_key *key,
5631 struct btrfs_root *root)
5632{
5633 struct inode *inode = new_inode(s);
5634
5635 if (!inode)
5636 return ERR_PTR(-ENOMEM);
5637
4df27c4d
YZ
5638 BTRFS_I(inode)->root = root;
5639 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5640 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5641
5642 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5643 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5644 inode->i_fop = &simple_dir_operations;
5645 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
04b285f3 5646 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 5647 inode->i_atime = inode->i_mtime;
5648 inode->i_ctime = inode->i_mtime;
5649 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5650
5651 return inode;
5652}
5653
3de4586c 5654struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5655{
d397712b 5656 struct inode *inode;
4df27c4d 5657 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5658 struct btrfs_root *sub_root = root;
5659 struct btrfs_key location;
76dda93c 5660 int index;
b4aff1f8 5661 int ret = 0;
39279cc3
CM
5662
5663 if (dentry->d_name.len > BTRFS_NAME_LEN)
5664 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5665
39e3c955 5666 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5667 if (ret < 0)
5668 return ERR_PTR(ret);
5f39d397 5669
4df27c4d 5670 if (location.objectid == 0)
5662344b 5671 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5672
5673 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5674 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5675 return inode;
5676 }
5677
5678 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5679
76dda93c 5680 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5681 ret = fixup_tree_root_location(root, dir, dentry,
5682 &location, &sub_root);
5683 if (ret < 0) {
5684 if (ret != -ENOENT)
5685 inode = ERR_PTR(ret);
5686 else
5687 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5688 } else {
73f73415 5689 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5690 }
76dda93c
YZ
5691 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5692
34d19bad 5693 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5694 down_read(&root->fs_info->cleanup_work_sem);
5695 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5696 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5697 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5698 if (ret) {
5699 iput(inode);
66b4ffd1 5700 inode = ERR_PTR(ret);
01cd3367 5701 }
c71bf099
YZ
5702 }
5703
3de4586c
CM
5704 return inode;
5705}
5706
fe15ce44 5707static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5708{
5709 struct btrfs_root *root;
2b0143b5 5710 struct inode *inode = d_inode(dentry);
76dda93c 5711
848cce0d 5712 if (!inode && !IS_ROOT(dentry))
2b0143b5 5713 inode = d_inode(dentry->d_parent);
76dda93c 5714
848cce0d
LZ
5715 if (inode) {
5716 root = BTRFS_I(inode)->root;
efefb143
YZ
5717 if (btrfs_root_refs(&root->root_item) == 0)
5718 return 1;
848cce0d
LZ
5719
5720 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5721 return 1;
efefb143 5722 }
76dda93c
YZ
5723 return 0;
5724}
5725
b4aff1f8
JB
5726static void btrfs_dentry_release(struct dentry *dentry)
5727{
944a4515 5728 kfree(dentry->d_fsdata);
b4aff1f8
JB
5729}
5730
3de4586c 5731static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5732 unsigned int flags)
3de4586c 5733{
5662344b 5734 struct inode *inode;
a66e7cc6 5735
5662344b
TI
5736 inode = btrfs_lookup_dentry(dir, dentry);
5737 if (IS_ERR(inode)) {
5738 if (PTR_ERR(inode) == -ENOENT)
5739 inode = NULL;
5740 else
5741 return ERR_CAST(inode);
5742 }
5743
41d28bca 5744 return d_splice_alias(inode, dentry);
39279cc3
CM
5745}
5746
16cdcec7 5747unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5748 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5749};
5750
9cdda8d3 5751static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5752{
9cdda8d3 5753 struct inode *inode = file_inode(file);
39279cc3
CM
5754 struct btrfs_root *root = BTRFS_I(inode)->root;
5755 struct btrfs_item *item;
5756 struct btrfs_dir_item *di;
5757 struct btrfs_key key;
5f39d397 5758 struct btrfs_key found_key;
39279cc3 5759 struct btrfs_path *path;
16cdcec7
MX
5760 struct list_head ins_list;
5761 struct list_head del_list;
39279cc3 5762 int ret;
5f39d397 5763 struct extent_buffer *leaf;
39279cc3 5764 int slot;
39279cc3
CM
5765 unsigned char d_type;
5766 int over = 0;
5767 u32 di_cur;
5768 u32 di_total;
5769 u32 di_len;
5770 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5771 char tmp_name[32];
5772 char *name_ptr;
5773 int name_len;
9cdda8d3 5774 int is_curr = 0; /* ctx->pos points to the current index? */
bc4ef759 5775 bool emitted;
02dbfc99 5776 bool put = false;
39279cc3
CM
5777
5778 /* FIXME, use a real flag for deciding about the key type */
5779 if (root->fs_info->tree_root == root)
5780 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5781
9cdda8d3
AV
5782 if (!dir_emit_dots(file, ctx))
5783 return 0;
5784
49593bfa 5785 path = btrfs_alloc_path();
16cdcec7
MX
5786 if (!path)
5787 return -ENOMEM;
ff5714cc 5788
e4058b54 5789 path->reada = READA_FORWARD;
49593bfa 5790
16cdcec7
MX
5791 if (key_type == BTRFS_DIR_INDEX_KEY) {
5792 INIT_LIST_HEAD(&ins_list);
5793 INIT_LIST_HEAD(&del_list);
02dbfc99
OS
5794 put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5795 &del_list);
16cdcec7
MX
5796 }
5797
962a298f 5798 key.type = key_type;
9cdda8d3 5799 key.offset = ctx->pos;
33345d01 5800 key.objectid = btrfs_ino(inode);
5f39d397 5801
39279cc3
CM
5802 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5803 if (ret < 0)
5804 goto err;
49593bfa 5805
bc4ef759 5806 emitted = false;
49593bfa 5807 while (1) {
5f39d397 5808 leaf = path->nodes[0];
39279cc3 5809 slot = path->slots[0];
b9e03af0
LZ
5810 if (slot >= btrfs_header_nritems(leaf)) {
5811 ret = btrfs_next_leaf(root, path);
5812 if (ret < 0)
5813 goto err;
5814 else if (ret > 0)
5815 break;
5816 continue;
39279cc3 5817 }
3de4586c 5818
dd3cc16b 5819 item = btrfs_item_nr(slot);
5f39d397
CM
5820 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5821
5822 if (found_key.objectid != key.objectid)
39279cc3 5823 break;
962a298f 5824 if (found_key.type != key_type)
39279cc3 5825 break;
9cdda8d3 5826 if (found_key.offset < ctx->pos)
b9e03af0 5827 goto next;
16cdcec7
MX
5828 if (key_type == BTRFS_DIR_INDEX_KEY &&
5829 btrfs_should_delete_dir_index(&del_list,
5830 found_key.offset))
5831 goto next;
5f39d397 5832
9cdda8d3 5833 ctx->pos = found_key.offset;
16cdcec7 5834 is_curr = 1;
49593bfa 5835
39279cc3
CM
5836 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5837 di_cur = 0;
5f39d397 5838 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5839
5840 while (di_cur < di_total) {
5f39d397
CM
5841 struct btrfs_key location;
5842
22a94d44
JB
5843 if (verify_dir_item(root, leaf, di))
5844 break;
5845
5f39d397 5846 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5847 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5848 name_ptr = tmp_name;
5849 } else {
49e350a4 5850 name_ptr = kmalloc(name_len, GFP_KERNEL);
49593bfa
DW
5851 if (!name_ptr) {
5852 ret = -ENOMEM;
5853 goto err;
5854 }
5f39d397
CM
5855 }
5856 read_extent_buffer(leaf, name_ptr,
5857 (unsigned long)(di + 1), name_len);
5858
5859 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5860 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5861
fede766f 5862
3de4586c 5863 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5864 * skip it.
5865 *
5866 * In contrast to old kernels, we insert the snapshot's
5867 * dir item and dir index after it has been created, so
5868 * we won't find a reference to our own snapshot. We
5869 * still keep the following code for backward
5870 * compatibility.
3de4586c
CM
5871 */
5872 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5873 location.objectid == root->root_key.objectid) {
5874 over = 0;
5875 goto skip;
5876 }
9cdda8d3
AV
5877 over = !dir_emit(ctx, name_ptr, name_len,
5878 location.objectid, d_type);
5f39d397 5879
3de4586c 5880skip:
5f39d397
CM
5881 if (name_ptr != tmp_name)
5882 kfree(name_ptr);
5883
39279cc3
CM
5884 if (over)
5885 goto nopos;
bc4ef759 5886 emitted = true;
5103e947 5887 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5888 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5889 di_cur += di_len;
5890 di = (struct btrfs_dir_item *)((char *)di + di_len);
5891 }
b9e03af0
LZ
5892next:
5893 path->slots[0]++;
39279cc3 5894 }
49593bfa 5895
16cdcec7
MX
5896 if (key_type == BTRFS_DIR_INDEX_KEY) {
5897 if (is_curr)
9cdda8d3 5898 ctx->pos++;
bc4ef759 5899 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
16cdcec7
MX
5900 if (ret)
5901 goto nopos;
5902 }
5903
bc4ef759
DS
5904 /*
5905 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5906 * it was was set to the termination value in previous call. We assume
5907 * that "." and ".." were emitted if we reach this point and set the
5908 * termination value as well for an empty directory.
5909 */
5910 if (ctx->pos > 2 && !emitted)
5911 goto nopos;
5912
49593bfa 5913 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5914 ctx->pos++;
5915
5916 /*
5917 * Stop new entries from being returned after we return the last
5918 * entry.
5919 *
5920 * New directory entries are assigned a strictly increasing
5921 * offset. This means that new entries created during readdir
5922 * are *guaranteed* to be seen in the future by that readdir.
5923 * This has broken buggy programs which operate on names as
5924 * they're returned by readdir. Until we re-use freed offsets
5925 * we have this hack to stop new entries from being returned
5926 * under the assumption that they'll never reach this huge
5927 * offset.
5928 *
5929 * This is being careful not to overflow 32bit loff_t unless the
5930 * last entry requires it because doing so has broken 32bit apps
5931 * in the past.
5932 */
5933 if (key_type == BTRFS_DIR_INDEX_KEY) {
5934 if (ctx->pos >= INT_MAX)
5935 ctx->pos = LLONG_MAX;
5936 else
5937 ctx->pos = INT_MAX;
5938 }
39279cc3
CM
5939nopos:
5940 ret = 0;
5941err:
02dbfc99
OS
5942 if (put)
5943 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5944 btrfs_free_path(path);
39279cc3
CM
5945 return ret;
5946}
5947
a9185b41 5948int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5949{
5950 struct btrfs_root *root = BTRFS_I(inode)->root;
5951 struct btrfs_trans_handle *trans;
5952 int ret = 0;
0af3d00b 5953 bool nolock = false;
39279cc3 5954
72ac3c0d 5955 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5956 return 0;
5957
83eea1f1 5958 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5959 nolock = true;
0af3d00b 5960
a9185b41 5961 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5962 if (nolock)
7a7eaa40 5963 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5964 else
7a7eaa40 5965 trans = btrfs_join_transaction(root);
3612b495
TI
5966 if (IS_ERR(trans))
5967 return PTR_ERR(trans);
a698d075 5968 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5969 }
5970 return ret;
5971}
5972
5973/*
54aa1f4d 5974 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5975 * inode changes. But, it is most likely to find the inode in cache.
5976 * FIXME, needs more benchmarking...there are no reasons other than performance
5977 * to keep or drop this code.
5978 */
48a3b636 5979static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5980{
5981 struct btrfs_root *root = BTRFS_I(inode)->root;
5982 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5983 int ret;
5984
72ac3c0d 5985 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5986 return 0;
39279cc3 5987
7a7eaa40 5988 trans = btrfs_join_transaction(root);
22c44fe6
JB
5989 if (IS_ERR(trans))
5990 return PTR_ERR(trans);
8929ecfa
YZ
5991
5992 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5993 if (ret && ret == -ENOSPC) {
5994 /* whoops, lets try again with the full transaction */
5995 btrfs_end_transaction(trans, root);
5996 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5997 if (IS_ERR(trans))
5998 return PTR_ERR(trans);
8929ecfa 5999
94b60442 6000 ret = btrfs_update_inode(trans, root, inode);
94b60442 6001 }
39279cc3 6002 btrfs_end_transaction(trans, root);
16cdcec7
MX
6003 if (BTRFS_I(inode)->delayed_node)
6004 btrfs_balance_delayed_items(root);
22c44fe6
JB
6005
6006 return ret;
6007}
6008
6009/*
6010 * This is a copy of file_update_time. We need this so we can return error on
6011 * ENOSPC for updating the inode in the case of file write and mmap writes.
6012 */
e41f941a
JB
6013static int btrfs_update_time(struct inode *inode, struct timespec *now,
6014 int flags)
22c44fe6 6015{
2bc55652
AB
6016 struct btrfs_root *root = BTRFS_I(inode)->root;
6017
6018 if (btrfs_root_readonly(root))
6019 return -EROFS;
6020
e41f941a 6021 if (flags & S_VERSION)
22c44fe6 6022 inode_inc_iversion(inode);
e41f941a
JB
6023 if (flags & S_CTIME)
6024 inode->i_ctime = *now;
6025 if (flags & S_MTIME)
6026 inode->i_mtime = *now;
6027 if (flags & S_ATIME)
6028 inode->i_atime = *now;
6029 return btrfs_dirty_inode(inode);
39279cc3
CM
6030}
6031
d352ac68
CM
6032/*
6033 * find the highest existing sequence number in a directory
6034 * and then set the in-memory index_cnt variable to reflect
6035 * free sequence numbers
6036 */
aec7477b
JB
6037static int btrfs_set_inode_index_count(struct inode *inode)
6038{
6039 struct btrfs_root *root = BTRFS_I(inode)->root;
6040 struct btrfs_key key, found_key;
6041 struct btrfs_path *path;
6042 struct extent_buffer *leaf;
6043 int ret;
6044
33345d01 6045 key.objectid = btrfs_ino(inode);
962a298f 6046 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6047 key.offset = (u64)-1;
6048
6049 path = btrfs_alloc_path();
6050 if (!path)
6051 return -ENOMEM;
6052
6053 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6054 if (ret < 0)
6055 goto out;
6056 /* FIXME: we should be able to handle this */
6057 if (ret == 0)
6058 goto out;
6059 ret = 0;
6060
6061 /*
6062 * MAGIC NUMBER EXPLANATION:
6063 * since we search a directory based on f_pos we have to start at 2
6064 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6065 * else has to start at 2
6066 */
6067 if (path->slots[0] == 0) {
6068 BTRFS_I(inode)->index_cnt = 2;
6069 goto out;
6070 }
6071
6072 path->slots[0]--;
6073
6074 leaf = path->nodes[0];
6075 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6076
33345d01 6077 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6078 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
6079 BTRFS_I(inode)->index_cnt = 2;
6080 goto out;
6081 }
6082
6083 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6084out:
6085 btrfs_free_path(path);
6086 return ret;
6087}
6088
d352ac68
CM
6089/*
6090 * helper to find a free sequence number in a given directory. This current
6091 * code is very simple, later versions will do smarter things in the btree
6092 */
3de4586c 6093int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
6094{
6095 int ret = 0;
6096
6097 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
6098 ret = btrfs_inode_delayed_dir_index_count(dir);
6099 if (ret) {
6100 ret = btrfs_set_inode_index_count(dir);
6101 if (ret)
6102 return ret;
6103 }
aec7477b
JB
6104 }
6105
00e4e6b3 6106 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
6107 BTRFS_I(dir)->index_cnt++;
6108
6109 return ret;
6110}
6111
b0d5d10f
CM
6112static int btrfs_insert_inode_locked(struct inode *inode)
6113{
6114 struct btrfs_iget_args args;
6115 args.location = &BTRFS_I(inode)->location;
6116 args.root = BTRFS_I(inode)->root;
6117
6118 return insert_inode_locked4(inode,
6119 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6120 btrfs_find_actor, &args);
6121}
6122
39279cc3
CM
6123static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6124 struct btrfs_root *root,
aec7477b 6125 struct inode *dir,
9c58309d 6126 const char *name, int name_len,
175a4eb7
AV
6127 u64 ref_objectid, u64 objectid,
6128 umode_t mode, u64 *index)
39279cc3
CM
6129{
6130 struct inode *inode;
5f39d397 6131 struct btrfs_inode_item *inode_item;
39279cc3 6132 struct btrfs_key *location;
5f39d397 6133 struct btrfs_path *path;
9c58309d
CM
6134 struct btrfs_inode_ref *ref;
6135 struct btrfs_key key[2];
6136 u32 sizes[2];
ef3b9af5 6137 int nitems = name ? 2 : 1;
9c58309d 6138 unsigned long ptr;
39279cc3 6139 int ret;
39279cc3 6140
5f39d397 6141 path = btrfs_alloc_path();
d8926bb3
MF
6142 if (!path)
6143 return ERR_PTR(-ENOMEM);
5f39d397 6144
39279cc3 6145 inode = new_inode(root->fs_info->sb);
8fb27640
YS
6146 if (!inode) {
6147 btrfs_free_path(path);
39279cc3 6148 return ERR_PTR(-ENOMEM);
8fb27640 6149 }
39279cc3 6150
5762b5c9
FM
6151 /*
6152 * O_TMPFILE, set link count to 0, so that after this point,
6153 * we fill in an inode item with the correct link count.
6154 */
6155 if (!name)
6156 set_nlink(inode, 0);
6157
581bb050
LZ
6158 /*
6159 * we have to initialize this early, so we can reclaim the inode
6160 * number if we fail afterwards in this function.
6161 */
6162 inode->i_ino = objectid;
6163
ef3b9af5 6164 if (dir && name) {
1abe9b8a 6165 trace_btrfs_inode_request(dir);
6166
3de4586c 6167 ret = btrfs_set_inode_index(dir, index);
09771430 6168 if (ret) {
8fb27640 6169 btrfs_free_path(path);
09771430 6170 iput(inode);
aec7477b 6171 return ERR_PTR(ret);
09771430 6172 }
ef3b9af5
FM
6173 } else if (dir) {
6174 *index = 0;
aec7477b
JB
6175 }
6176 /*
6177 * index_cnt is ignored for everything but a dir,
6178 * btrfs_get_inode_index_count has an explanation for the magic
6179 * number
6180 */
6181 BTRFS_I(inode)->index_cnt = 2;
67de1176 6182 BTRFS_I(inode)->dir_index = *index;
39279cc3 6183 BTRFS_I(inode)->root = root;
e02119d5 6184 BTRFS_I(inode)->generation = trans->transid;
76195853 6185 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6186
5dc562c5
JB
6187 /*
6188 * We could have gotten an inode number from somebody who was fsynced
6189 * and then removed in this same transaction, so let's just set full
6190 * sync since it will be a full sync anyway and this will blow away the
6191 * old info in the log.
6192 */
6193 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6194
9c58309d 6195 key[0].objectid = objectid;
962a298f 6196 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6197 key[0].offset = 0;
6198
9c58309d 6199 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6200
6201 if (name) {
6202 /*
6203 * Start new inodes with an inode_ref. This is slightly more
6204 * efficient for small numbers of hard links since they will
6205 * be packed into one item. Extended refs will kick in if we
6206 * add more hard links than can fit in the ref item.
6207 */
6208 key[1].objectid = objectid;
962a298f 6209 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6210 key[1].offset = ref_objectid;
6211
6212 sizes[1] = name_len + sizeof(*ref);
6213 }
9c58309d 6214
b0d5d10f
CM
6215 location = &BTRFS_I(inode)->location;
6216 location->objectid = objectid;
6217 location->offset = 0;
962a298f 6218 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6219
6220 ret = btrfs_insert_inode_locked(inode);
6221 if (ret < 0)
6222 goto fail;
6223
b9473439 6224 path->leave_spinning = 1;
ef3b9af5 6225 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6226 if (ret != 0)
b0d5d10f 6227 goto fail_unlock;
5f39d397 6228
ecc11fab 6229 inode_init_owner(inode, dir, mode);
a76a3cd4 6230 inode_set_bytes(inode, 0);
9cc97d64 6231
04b285f3 6232 inode->i_mtime = current_fs_time(inode->i_sb);
9cc97d64 6233 inode->i_atime = inode->i_mtime;
6234 inode->i_ctime = inode->i_mtime;
6235 BTRFS_I(inode)->i_otime = inode->i_mtime;
6236
5f39d397
CM
6237 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6238 struct btrfs_inode_item);
293f7e07
LZ
6239 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6240 sizeof(*inode_item));
e02119d5 6241 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6242
ef3b9af5
FM
6243 if (name) {
6244 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6245 struct btrfs_inode_ref);
6246 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6247 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6248 ptr = (unsigned long)(ref + 1);
6249 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6250 }
9c58309d 6251
5f39d397
CM
6252 btrfs_mark_buffer_dirty(path->nodes[0]);
6253 btrfs_free_path(path);
6254
6cbff00f
CH
6255 btrfs_inherit_iflags(inode, dir);
6256
569254b0 6257 if (S_ISREG(mode)) {
3cdde224 6258 if (btrfs_test_opt(root->fs_info, NODATASUM))
94272164 6259 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
3cdde224 6260 if (btrfs_test_opt(root->fs_info, NODATACOW))
f2bdf9a8
JB
6261 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6262 BTRFS_INODE_NODATASUM;
94272164
CM
6263 }
6264
5d4f98a2 6265 inode_tree_add(inode);
1abe9b8a 6266
6267 trace_btrfs_inode_new(inode);
1973f0fa 6268 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6269
8ea05e3a
AB
6270 btrfs_update_root_times(trans, root);
6271
63541927
FDBM
6272 ret = btrfs_inode_inherit_props(trans, inode, dir);
6273 if (ret)
6274 btrfs_err(root->fs_info,
6275 "error inheriting props for ino %llu (root %llu): %d",
6276 btrfs_ino(inode), root->root_key.objectid, ret);
6277
39279cc3 6278 return inode;
b0d5d10f
CM
6279
6280fail_unlock:
6281 unlock_new_inode(inode);
5f39d397 6282fail:
ef3b9af5 6283 if (dir && name)
aec7477b 6284 BTRFS_I(dir)->index_cnt--;
5f39d397 6285 btrfs_free_path(path);
09771430 6286 iput(inode);
5f39d397 6287 return ERR_PTR(ret);
39279cc3
CM
6288}
6289
6290static inline u8 btrfs_inode_type(struct inode *inode)
6291{
6292 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6293}
6294
d352ac68
CM
6295/*
6296 * utility function to add 'inode' into 'parent_inode' with
6297 * a give name and a given sequence number.
6298 * if 'add_backref' is true, also insert a backref from the
6299 * inode to the parent directory.
6300 */
e02119d5
CM
6301int btrfs_add_link(struct btrfs_trans_handle *trans,
6302 struct inode *parent_inode, struct inode *inode,
6303 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6304{
4df27c4d 6305 int ret = 0;
39279cc3 6306 struct btrfs_key key;
e02119d5 6307 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
6308 u64 ino = btrfs_ino(inode);
6309 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6310
33345d01 6311 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6312 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6313 } else {
33345d01 6314 key.objectid = ino;
962a298f 6315 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6316 key.offset = 0;
6317 }
6318
33345d01 6319 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6320 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6321 key.objectid, root->root_key.objectid,
33345d01 6322 parent_ino, index, name, name_len);
4df27c4d 6323 } else if (add_backref) {
33345d01
LZ
6324 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6325 parent_ino, index);
4df27c4d 6326 }
39279cc3 6327
79787eaa
JM
6328 /* Nothing to clean up yet */
6329 if (ret)
6330 return ret;
4df27c4d 6331
79787eaa
JM
6332 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6333 parent_inode, &key,
6334 btrfs_inode_type(inode), index);
9c52057c 6335 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6336 goto fail_dir_item;
6337 else if (ret) {
6338 btrfs_abort_transaction(trans, root, ret);
6339 return ret;
39279cc3 6340 }
79787eaa
JM
6341
6342 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6343 name_len * 2);
0c4d2d95 6344 inode_inc_iversion(parent_inode);
04b285f3
DD
6345 parent_inode->i_mtime = parent_inode->i_ctime =
6346 current_fs_time(parent_inode->i_sb);
79787eaa
JM
6347 ret = btrfs_update_inode(trans, root, parent_inode);
6348 if (ret)
6349 btrfs_abort_transaction(trans, root, ret);
39279cc3 6350 return ret;
fe66a05a
CM
6351
6352fail_dir_item:
6353 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6354 u64 local_index;
6355 int err;
6356 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6357 key.objectid, root->root_key.objectid,
6358 parent_ino, &local_index, name, name_len);
6359
6360 } else if (add_backref) {
6361 u64 local_index;
6362 int err;
6363
6364 err = btrfs_del_inode_ref(trans, root, name, name_len,
6365 ino, parent_ino, &local_index);
6366 }
6367 return ret;
39279cc3
CM
6368}
6369
6370static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
6371 struct inode *dir, struct dentry *dentry,
6372 struct inode *inode, int backref, u64 index)
39279cc3 6373{
a1b075d2
JB
6374 int err = btrfs_add_link(trans, dir, inode,
6375 dentry->d_name.name, dentry->d_name.len,
6376 backref, index);
39279cc3
CM
6377 if (err > 0)
6378 err = -EEXIST;
6379 return err;
6380}
6381
618e21d5 6382static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6383 umode_t mode, dev_t rdev)
618e21d5
JB
6384{
6385 struct btrfs_trans_handle *trans;
6386 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6387 struct inode *inode = NULL;
618e21d5
JB
6388 int err;
6389 int drop_inode = 0;
6390 u64 objectid;
00e4e6b3 6391 u64 index = 0;
618e21d5 6392
9ed74f2d
JB
6393 /*
6394 * 2 for inode item and ref
6395 * 2 for dir items
6396 * 1 for xattr if selinux is on
6397 */
a22285a6
YZ
6398 trans = btrfs_start_transaction(root, 5);
6399 if (IS_ERR(trans))
6400 return PTR_ERR(trans);
1832a6d5 6401
581bb050
LZ
6402 err = btrfs_find_free_ino(root, &objectid);
6403 if (err)
6404 goto out_unlock;
6405
aec7477b 6406 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6407 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6408 mode, &index);
7cf96da3
TI
6409 if (IS_ERR(inode)) {
6410 err = PTR_ERR(inode);
618e21d5 6411 goto out_unlock;
7cf96da3 6412 }
618e21d5 6413
ad19db71
CS
6414 /*
6415 * If the active LSM wants to access the inode during
6416 * d_instantiate it needs these. Smack checks to see
6417 * if the filesystem supports xattrs by looking at the
6418 * ops vector.
6419 */
ad19db71 6420 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6421 init_special_inode(inode, inode->i_mode, rdev);
6422
6423 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6424 if (err)
b0d5d10f
CM
6425 goto out_unlock_inode;
6426
6427 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6428 if (err) {
6429 goto out_unlock_inode;
6430 } else {
1b4ab1bb 6431 btrfs_update_inode(trans, root, inode);
b0d5d10f 6432 unlock_new_inode(inode);
08c422c2 6433 d_instantiate(dentry, inode);
618e21d5 6434 }
b0d5d10f 6435
618e21d5 6436out_unlock:
7ad85bb7 6437 btrfs_end_transaction(trans, root);
c581afc8 6438 btrfs_balance_delayed_items(root);
b53d3f5d 6439 btrfs_btree_balance_dirty(root);
618e21d5
JB
6440 if (drop_inode) {
6441 inode_dec_link_count(inode);
6442 iput(inode);
6443 }
618e21d5 6444 return err;
b0d5d10f
CM
6445
6446out_unlock_inode:
6447 drop_inode = 1;
6448 unlock_new_inode(inode);
6449 goto out_unlock;
6450
618e21d5
JB
6451}
6452
39279cc3 6453static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6454 umode_t mode, bool excl)
39279cc3
CM
6455{
6456 struct btrfs_trans_handle *trans;
6457 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6458 struct inode *inode = NULL;
43baa579 6459 int drop_inode_on_err = 0;
a22285a6 6460 int err;
39279cc3 6461 u64 objectid;
00e4e6b3 6462 u64 index = 0;
39279cc3 6463
9ed74f2d
JB
6464 /*
6465 * 2 for inode item and ref
6466 * 2 for dir items
6467 * 1 for xattr if selinux is on
6468 */
a22285a6
YZ
6469 trans = btrfs_start_transaction(root, 5);
6470 if (IS_ERR(trans))
6471 return PTR_ERR(trans);
9ed74f2d 6472
581bb050
LZ
6473 err = btrfs_find_free_ino(root, &objectid);
6474 if (err)
6475 goto out_unlock;
6476
aec7477b 6477 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6478 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6479 mode, &index);
7cf96da3
TI
6480 if (IS_ERR(inode)) {
6481 err = PTR_ERR(inode);
39279cc3 6482 goto out_unlock;
7cf96da3 6483 }
43baa579 6484 drop_inode_on_err = 1;
ad19db71
CS
6485 /*
6486 * If the active LSM wants to access the inode during
6487 * d_instantiate it needs these. Smack checks to see
6488 * if the filesystem supports xattrs by looking at the
6489 * ops vector.
6490 */
6491 inode->i_fop = &btrfs_file_operations;
6492 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6493 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6494
6495 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6496 if (err)
6497 goto out_unlock_inode;
6498
6499 err = btrfs_update_inode(trans, root, inode);
6500 if (err)
6501 goto out_unlock_inode;
ad19db71 6502
a1b075d2 6503 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6504 if (err)
b0d5d10f 6505 goto out_unlock_inode;
43baa579 6506
43baa579 6507 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6508 unlock_new_inode(inode);
43baa579
FB
6509 d_instantiate(dentry, inode);
6510
39279cc3 6511out_unlock:
7ad85bb7 6512 btrfs_end_transaction(trans, root);
43baa579 6513 if (err && drop_inode_on_err) {
39279cc3
CM
6514 inode_dec_link_count(inode);
6515 iput(inode);
6516 }
c581afc8 6517 btrfs_balance_delayed_items(root);
b53d3f5d 6518 btrfs_btree_balance_dirty(root);
39279cc3 6519 return err;
b0d5d10f
CM
6520
6521out_unlock_inode:
6522 unlock_new_inode(inode);
6523 goto out_unlock;
6524
39279cc3
CM
6525}
6526
6527static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6528 struct dentry *dentry)
6529{
271dba45 6530 struct btrfs_trans_handle *trans = NULL;
39279cc3 6531 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6532 struct inode *inode = d_inode(old_dentry);
00e4e6b3 6533 u64 index;
39279cc3
CM
6534 int err;
6535 int drop_inode = 0;
6536
4a8be425
TH
6537 /* do not allow sys_link's with other subvols of the same device */
6538 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6539 return -EXDEV;
4a8be425 6540
f186373f 6541 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6542 return -EMLINK;
4a8be425 6543
3de4586c 6544 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6545 if (err)
6546 goto fail;
6547
a22285a6 6548 /*
7e6b6465 6549 * 2 items for inode and inode ref
a22285a6 6550 * 2 items for dir items
7e6b6465 6551 * 1 item for parent inode
a22285a6 6552 */
7e6b6465 6553 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6554 if (IS_ERR(trans)) {
6555 err = PTR_ERR(trans);
271dba45 6556 trans = NULL;
a22285a6
YZ
6557 goto fail;
6558 }
5f39d397 6559
67de1176
MX
6560 /* There are several dir indexes for this inode, clear the cache. */
6561 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6562 inc_nlink(inode);
0c4d2d95 6563 inode_inc_iversion(inode);
04b285f3 6564 inode->i_ctime = current_fs_time(inode->i_sb);
7de9c6ee 6565 ihold(inode);
e9976151 6566 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6567
a1b075d2 6568 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6569
a5719521 6570 if (err) {
54aa1f4d 6571 drop_inode = 1;
a5719521 6572 } else {
10d9f309 6573 struct dentry *parent = dentry->d_parent;
a5719521 6574 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6575 if (err)
6576 goto fail;
ef3b9af5
FM
6577 if (inode->i_nlink == 1) {
6578 /*
6579 * If new hard link count is 1, it's a file created
6580 * with open(2) O_TMPFILE flag.
6581 */
6582 err = btrfs_orphan_del(trans, inode);
6583 if (err)
6584 goto fail;
6585 }
08c422c2 6586 d_instantiate(dentry, inode);
6a912213 6587 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6588 }
39279cc3 6589
c581afc8 6590 btrfs_balance_delayed_items(root);
1832a6d5 6591fail:
271dba45
FM
6592 if (trans)
6593 btrfs_end_transaction(trans, root);
39279cc3
CM
6594 if (drop_inode) {
6595 inode_dec_link_count(inode);
6596 iput(inode);
6597 }
b53d3f5d 6598 btrfs_btree_balance_dirty(root);
39279cc3
CM
6599 return err;
6600}
6601
18bb1db3 6602static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6603{
b9d86667 6604 struct inode *inode = NULL;
39279cc3
CM
6605 struct btrfs_trans_handle *trans;
6606 struct btrfs_root *root = BTRFS_I(dir)->root;
6607 int err = 0;
6608 int drop_on_err = 0;
b9d86667 6609 u64 objectid = 0;
00e4e6b3 6610 u64 index = 0;
39279cc3 6611
9ed74f2d
JB
6612 /*
6613 * 2 items for inode and ref
6614 * 2 items for dir items
6615 * 1 for xattr if selinux is on
6616 */
a22285a6
YZ
6617 trans = btrfs_start_transaction(root, 5);
6618 if (IS_ERR(trans))
6619 return PTR_ERR(trans);
39279cc3 6620
581bb050
LZ
6621 err = btrfs_find_free_ino(root, &objectid);
6622 if (err)
6623 goto out_fail;
6624
aec7477b 6625 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6626 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6627 S_IFDIR | mode, &index);
39279cc3
CM
6628 if (IS_ERR(inode)) {
6629 err = PTR_ERR(inode);
6630 goto out_fail;
6631 }
5f39d397 6632
39279cc3 6633 drop_on_err = 1;
b0d5d10f
CM
6634 /* these must be set before we unlock the inode */
6635 inode->i_op = &btrfs_dir_inode_operations;
6636 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6637
2a7dba39 6638 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6639 if (err)
b0d5d10f 6640 goto out_fail_inode;
39279cc3 6641
dbe674a9 6642 btrfs_i_size_write(inode, 0);
39279cc3
CM
6643 err = btrfs_update_inode(trans, root, inode);
6644 if (err)
b0d5d10f 6645 goto out_fail_inode;
5f39d397 6646
a1b075d2
JB
6647 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6648 dentry->d_name.len, 0, index);
39279cc3 6649 if (err)
b0d5d10f 6650 goto out_fail_inode;
5f39d397 6651
39279cc3 6652 d_instantiate(dentry, inode);
b0d5d10f
CM
6653 /*
6654 * mkdir is special. We're unlocking after we call d_instantiate
6655 * to avoid a race with nfsd calling d_instantiate.
6656 */
6657 unlock_new_inode(inode);
39279cc3 6658 drop_on_err = 0;
39279cc3
CM
6659
6660out_fail:
7ad85bb7 6661 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6662 if (drop_on_err) {
6663 inode_dec_link_count(inode);
39279cc3 6664 iput(inode);
c7cfb8a5 6665 }
c581afc8 6666 btrfs_balance_delayed_items(root);
b53d3f5d 6667 btrfs_btree_balance_dirty(root);
39279cc3 6668 return err;
b0d5d10f
CM
6669
6670out_fail_inode:
6671 unlock_new_inode(inode);
6672 goto out_fail;
39279cc3
CM
6673}
6674
e6c4efd8
QW
6675/* Find next extent map of a given extent map, caller needs to ensure locks */
6676static struct extent_map *next_extent_map(struct extent_map *em)
6677{
6678 struct rb_node *next;
6679
6680 next = rb_next(&em->rb_node);
6681 if (!next)
6682 return NULL;
6683 return container_of(next, struct extent_map, rb_node);
6684}
6685
6686static struct extent_map *prev_extent_map(struct extent_map *em)
6687{
6688 struct rb_node *prev;
6689
6690 prev = rb_prev(&em->rb_node);
6691 if (!prev)
6692 return NULL;
6693 return container_of(prev, struct extent_map, rb_node);
6694}
6695
d352ac68 6696/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6697 * the existing extent is the nearest extent to map_start,
d352ac68 6698 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6699 * the best fitted new extent into the tree.
d352ac68 6700 */
3b951516
CM
6701static int merge_extent_mapping(struct extent_map_tree *em_tree,
6702 struct extent_map *existing,
e6dcd2dc 6703 struct extent_map *em,
51f395ad 6704 u64 map_start)
3b951516 6705{
e6c4efd8
QW
6706 struct extent_map *prev;
6707 struct extent_map *next;
6708 u64 start;
6709 u64 end;
3b951516 6710 u64 start_diff;
3b951516 6711
e6dcd2dc 6712 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6713
6714 if (existing->start > map_start) {
6715 next = existing;
6716 prev = prev_extent_map(next);
6717 } else {
6718 prev = existing;
6719 next = next_extent_map(prev);
6720 }
6721
6722 start = prev ? extent_map_end(prev) : em->start;
6723 start = max_t(u64, start, em->start);
6724 end = next ? next->start : extent_map_end(em);
6725 end = min_t(u64, end, extent_map_end(em));
6726 start_diff = start - em->start;
6727 em->start = start;
6728 em->len = end - start;
c8b97818
CM
6729 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6730 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6731 em->block_start += start_diff;
c8b97818
CM
6732 em->block_len -= start_diff;
6733 }
09a2a8f9 6734 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6735}
6736
c8b97818 6737static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6738 struct page *page,
c8b97818
CM
6739 size_t pg_offset, u64 extent_offset,
6740 struct btrfs_file_extent_item *item)
6741{
6742 int ret;
6743 struct extent_buffer *leaf = path->nodes[0];
6744 char *tmp;
6745 size_t max_size;
6746 unsigned long inline_size;
6747 unsigned long ptr;
261507a0 6748 int compress_type;
c8b97818
CM
6749
6750 WARN_ON(pg_offset != 0);
261507a0 6751 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6752 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6753 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6754 btrfs_item_nr(path->slots[0]));
c8b97818 6755 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6756 if (!tmp)
6757 return -ENOMEM;
c8b97818
CM
6758 ptr = btrfs_file_extent_inline_start(item);
6759
6760 read_extent_buffer(leaf, tmp, ptr, inline_size);
6761
09cbfeaf 6762 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6763 ret = btrfs_decompress(compress_type, tmp, page,
6764 extent_offset, inline_size, max_size);
c8b97818 6765 kfree(tmp);
166ae5a4 6766 return ret;
c8b97818
CM
6767}
6768
d352ac68
CM
6769/*
6770 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6771 * the ugly parts come from merging extents from the disk with the in-ram
6772 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6773 * where the in-ram extents might be locked pending data=ordered completion.
6774 *
6775 * This also copies inline extents directly into the page.
6776 */
d397712b 6777
a52d9a80 6778struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6779 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6780 int create)
6781{
6782 int ret;
6783 int err = 0;
a52d9a80
CM
6784 u64 extent_start = 0;
6785 u64 extent_end = 0;
33345d01 6786 u64 objectid = btrfs_ino(inode);
a52d9a80 6787 u32 found_type;
f421950f 6788 struct btrfs_path *path = NULL;
a52d9a80
CM
6789 struct btrfs_root *root = BTRFS_I(inode)->root;
6790 struct btrfs_file_extent_item *item;
5f39d397
CM
6791 struct extent_buffer *leaf;
6792 struct btrfs_key found_key;
a52d9a80
CM
6793 struct extent_map *em = NULL;
6794 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6795 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6796 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6797 const bool new_inline = !page || create;
a52d9a80 6798
a52d9a80 6799again:
890871be 6800 read_lock(&em_tree->lock);
d1310b2e 6801 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6802 if (em)
6803 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6804 read_unlock(&em_tree->lock);
d1310b2e 6805
a52d9a80 6806 if (em) {
e1c4b745
CM
6807 if (em->start > start || em->start + em->len <= start)
6808 free_extent_map(em);
6809 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6810 free_extent_map(em);
6811 else
6812 goto out;
a52d9a80 6813 }
172ddd60 6814 em = alloc_extent_map();
a52d9a80 6815 if (!em) {
d1310b2e
CM
6816 err = -ENOMEM;
6817 goto out;
a52d9a80 6818 }
e6dcd2dc 6819 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6820 em->start = EXTENT_MAP_HOLE;
445a6944 6821 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6822 em->len = (u64)-1;
c8b97818 6823 em->block_len = (u64)-1;
f421950f
CM
6824
6825 if (!path) {
6826 path = btrfs_alloc_path();
026fd317
JB
6827 if (!path) {
6828 err = -ENOMEM;
6829 goto out;
6830 }
6831 /*
6832 * Chances are we'll be called again, so go ahead and do
6833 * readahead
6834 */
e4058b54 6835 path->reada = READA_FORWARD;
f421950f
CM
6836 }
6837
179e29e4
CM
6838 ret = btrfs_lookup_file_extent(trans, root, path,
6839 objectid, start, trans != NULL);
a52d9a80
CM
6840 if (ret < 0) {
6841 err = ret;
6842 goto out;
6843 }
6844
6845 if (ret != 0) {
6846 if (path->slots[0] == 0)
6847 goto not_found;
6848 path->slots[0]--;
6849 }
6850
5f39d397
CM
6851 leaf = path->nodes[0];
6852 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6853 struct btrfs_file_extent_item);
a52d9a80 6854 /* are we inside the extent that was found? */
5f39d397 6855 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6856 found_type = found_key.type;
5f39d397 6857 if (found_key.objectid != objectid ||
a52d9a80 6858 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6859 /*
6860 * If we backup past the first extent we want to move forward
6861 * and see if there is an extent in front of us, otherwise we'll
6862 * say there is a hole for our whole search range which can
6863 * cause problems.
6864 */
6865 extent_end = start;
6866 goto next;
a52d9a80
CM
6867 }
6868
5f39d397
CM
6869 found_type = btrfs_file_extent_type(leaf, item);
6870 extent_start = found_key.offset;
d899e052
YZ
6871 if (found_type == BTRFS_FILE_EXTENT_REG ||
6872 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6873 extent_end = extent_start +
db94535d 6874 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6875 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6876 size_t size;
514ac8ad 6877 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6878 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6879 }
25a50341 6880next:
9036c102
YZ
6881 if (start >= extent_end) {
6882 path->slots[0]++;
6883 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6884 ret = btrfs_next_leaf(root, path);
6885 if (ret < 0) {
6886 err = ret;
6887 goto out;
a52d9a80 6888 }
9036c102
YZ
6889 if (ret > 0)
6890 goto not_found;
6891 leaf = path->nodes[0];
a52d9a80 6892 }
9036c102
YZ
6893 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6894 if (found_key.objectid != objectid ||
6895 found_key.type != BTRFS_EXTENT_DATA_KEY)
6896 goto not_found;
6897 if (start + len <= found_key.offset)
6898 goto not_found;
e2eca69d
WS
6899 if (start > found_key.offset)
6900 goto next;
9036c102 6901 em->start = start;
70c8a91c 6902 em->orig_start = start;
9036c102
YZ
6903 em->len = found_key.offset - start;
6904 goto not_found_em;
6905 }
6906
7ffbb598
FM
6907 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6908
d899e052
YZ
6909 if (found_type == BTRFS_FILE_EXTENT_REG ||
6910 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6911 goto insert;
6912 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6913 unsigned long ptr;
a52d9a80 6914 char *map;
3326d1b0
CM
6915 size_t size;
6916 size_t extent_offset;
6917 size_t copy_size;
a52d9a80 6918
7ffbb598 6919 if (new_inline)
689f9346 6920 goto out;
5f39d397 6921
514ac8ad 6922 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6923 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6924 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6925 size - extent_offset);
3326d1b0 6926 em->start = extent_start + extent_offset;
fda2832f 6927 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6928 em->orig_block_len = em->len;
70c8a91c 6929 em->orig_start = em->start;
689f9346 6930 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6931 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6932 if (btrfs_file_extent_compression(leaf, item) !=
6933 BTRFS_COMPRESS_NONE) {
e40da0e5 6934 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6935 extent_offset, item);
166ae5a4
ZB
6936 if (ret) {
6937 err = ret;
6938 goto out;
6939 }
c8b97818
CM
6940 } else {
6941 map = kmap(page);
6942 read_extent_buffer(leaf, map + pg_offset, ptr,
6943 copy_size);
09cbfeaf 6944 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6945 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6946 PAGE_SIZE - pg_offset -
93c82d57
CM
6947 copy_size);
6948 }
c8b97818
CM
6949 kunmap(page);
6950 }
179e29e4
CM
6951 flush_dcache_page(page);
6952 } else if (create && PageUptodate(page)) {
6bf7e080 6953 BUG();
179e29e4
CM
6954 if (!trans) {
6955 kunmap(page);
6956 free_extent_map(em);
6957 em = NULL;
ff5714cc 6958
b3b4aa74 6959 btrfs_release_path(path);
7a7eaa40 6960 trans = btrfs_join_transaction(root);
ff5714cc 6961
3612b495
TI
6962 if (IS_ERR(trans))
6963 return ERR_CAST(trans);
179e29e4
CM
6964 goto again;
6965 }
c8b97818 6966 map = kmap(page);
70dec807 6967 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6968 copy_size);
c8b97818 6969 kunmap(page);
179e29e4 6970 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6971 }
d1310b2e 6972 set_extent_uptodate(io_tree, em->start,
507903b8 6973 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6974 goto insert;
a52d9a80
CM
6975 }
6976not_found:
6977 em->start = start;
70c8a91c 6978 em->orig_start = start;
d1310b2e 6979 em->len = len;
a52d9a80 6980not_found_em:
5f39d397 6981 em->block_start = EXTENT_MAP_HOLE;
9036c102 6982 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6983insert:
b3b4aa74 6984 btrfs_release_path(path);
d1310b2e 6985 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6986 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6987 em->start, em->len, start, len);
a52d9a80
CM
6988 err = -EIO;
6989 goto out;
6990 }
d1310b2e
CM
6991
6992 err = 0;
890871be 6993 write_lock(&em_tree->lock);
09a2a8f9 6994 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6995 /* it is possible that someone inserted the extent into the tree
6996 * while we had the lock dropped. It is also possible that
6997 * an overlapping map exists in the tree
6998 */
a52d9a80 6999 if (ret == -EEXIST) {
3b951516 7000 struct extent_map *existing;
e6dcd2dc
CM
7001
7002 ret = 0;
7003
e6c4efd8
QW
7004 existing = search_extent_mapping(em_tree, start, len);
7005 /*
7006 * existing will always be non-NULL, since there must be
7007 * extent causing the -EEXIST.
7008 */
8dff9c85
CM
7009 if (existing->start == em->start &&
7010 extent_map_end(existing) == extent_map_end(em) &&
7011 em->block_start == existing->block_start) {
7012 /*
7013 * these two extents are the same, it happens
7014 * with inlines especially
7015 */
7016 free_extent_map(em);
7017 em = existing;
7018 err = 0;
7019
7020 } else if (start >= extent_map_end(existing) ||
32be3a1a 7021 start <= existing->start) {
e6c4efd8
QW
7022 /*
7023 * The existing extent map is the one nearest to
7024 * the [start, start + len) range which overlaps
7025 */
7026 err = merge_extent_mapping(em_tree, existing,
7027 em, start);
e1c4b745 7028 free_extent_map(existing);
e6c4efd8 7029 if (err) {
3b951516
CM
7030 free_extent_map(em);
7031 em = NULL;
7032 }
7033 } else {
7034 free_extent_map(em);
7035 em = existing;
e6dcd2dc 7036 err = 0;
a52d9a80 7037 }
a52d9a80 7038 }
890871be 7039 write_unlock(&em_tree->lock);
a52d9a80 7040out:
1abe9b8a 7041
4cd8587c 7042 trace_btrfs_get_extent(root, em);
1abe9b8a 7043
527afb44 7044 btrfs_free_path(path);
a52d9a80
CM
7045 if (trans) {
7046 ret = btrfs_end_transaction(trans, root);
d397712b 7047 if (!err)
a52d9a80
CM
7048 err = ret;
7049 }
a52d9a80
CM
7050 if (err) {
7051 free_extent_map(em);
a52d9a80
CM
7052 return ERR_PTR(err);
7053 }
79787eaa 7054 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7055 return em;
7056}
7057
ec29ed5b
CM
7058struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7059 size_t pg_offset, u64 start, u64 len,
7060 int create)
7061{
7062 struct extent_map *em;
7063 struct extent_map *hole_em = NULL;
7064 u64 range_start = start;
7065 u64 end;
7066 u64 found;
7067 u64 found_end;
7068 int err = 0;
7069
7070 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7071 if (IS_ERR(em))
7072 return em;
7073 if (em) {
7074 /*
f9e4fb53
LB
7075 * if our em maps to
7076 * - a hole or
7077 * - a pre-alloc extent,
7078 * there might actually be delalloc bytes behind it.
ec29ed5b 7079 */
f9e4fb53
LB
7080 if (em->block_start != EXTENT_MAP_HOLE &&
7081 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
7082 return em;
7083 else
7084 hole_em = em;
7085 }
7086
7087 /* check to see if we've wrapped (len == -1 or similar) */
7088 end = start + len;
7089 if (end < start)
7090 end = (u64)-1;
7091 else
7092 end -= 1;
7093
7094 em = NULL;
7095
7096 /* ok, we didn't find anything, lets look for delalloc */
7097 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7098 end, len, EXTENT_DELALLOC, 1);
7099 found_end = range_start + found;
7100 if (found_end < range_start)
7101 found_end = (u64)-1;
7102
7103 /*
7104 * we didn't find anything useful, return
7105 * the original results from get_extent()
7106 */
7107 if (range_start > end || found_end <= start) {
7108 em = hole_em;
7109 hole_em = NULL;
7110 goto out;
7111 }
7112
7113 /* adjust the range_start to make sure it doesn't
7114 * go backwards from the start they passed in
7115 */
67871254 7116 range_start = max(start, range_start);
ec29ed5b
CM
7117 found = found_end - range_start;
7118
7119 if (found > 0) {
7120 u64 hole_start = start;
7121 u64 hole_len = len;
7122
172ddd60 7123 em = alloc_extent_map();
ec29ed5b
CM
7124 if (!em) {
7125 err = -ENOMEM;
7126 goto out;
7127 }
7128 /*
7129 * when btrfs_get_extent can't find anything it
7130 * returns one huge hole
7131 *
7132 * make sure what it found really fits our range, and
7133 * adjust to make sure it is based on the start from
7134 * the caller
7135 */
7136 if (hole_em) {
7137 u64 calc_end = extent_map_end(hole_em);
7138
7139 if (calc_end <= start || (hole_em->start > end)) {
7140 free_extent_map(hole_em);
7141 hole_em = NULL;
7142 } else {
7143 hole_start = max(hole_em->start, start);
7144 hole_len = calc_end - hole_start;
7145 }
7146 }
7147 em->bdev = NULL;
7148 if (hole_em && range_start > hole_start) {
7149 /* our hole starts before our delalloc, so we
7150 * have to return just the parts of the hole
7151 * that go until the delalloc starts
7152 */
7153 em->len = min(hole_len,
7154 range_start - hole_start);
7155 em->start = hole_start;
7156 em->orig_start = hole_start;
7157 /*
7158 * don't adjust block start at all,
7159 * it is fixed at EXTENT_MAP_HOLE
7160 */
7161 em->block_start = hole_em->block_start;
7162 em->block_len = hole_len;
f9e4fb53
LB
7163 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7164 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7165 } else {
7166 em->start = range_start;
7167 em->len = found;
7168 em->orig_start = range_start;
7169 em->block_start = EXTENT_MAP_DELALLOC;
7170 em->block_len = found;
7171 }
7172 } else if (hole_em) {
7173 return hole_em;
7174 }
7175out:
7176
7177 free_extent_map(hole_em);
7178 if (err) {
7179 free_extent_map(em);
7180 return ERR_PTR(err);
7181 }
7182 return em;
7183}
7184
5f9a8a51
FM
7185static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7186 const u64 start,
7187 const u64 len,
7188 const u64 orig_start,
7189 const u64 block_start,
7190 const u64 block_len,
7191 const u64 orig_block_len,
7192 const u64 ram_bytes,
7193 const int type)
7194{
7195 struct extent_map *em = NULL;
7196 int ret;
7197
7198 down_read(&BTRFS_I(inode)->dio_sem);
7199 if (type != BTRFS_ORDERED_NOCOW) {
7200 em = create_pinned_em(inode, start, len, orig_start,
7201 block_start, block_len, orig_block_len,
7202 ram_bytes, type);
7203 if (IS_ERR(em))
7204 goto out;
7205 }
7206 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7207 len, block_len, type);
7208 if (ret) {
7209 if (em) {
7210 free_extent_map(em);
7211 btrfs_drop_extent_cache(inode, start,
7212 start + len - 1, 0);
7213 }
7214 em = ERR_PTR(ret);
7215 }
7216 out:
7217 up_read(&BTRFS_I(inode)->dio_sem);
7218
7219 return em;
7220}
7221
4b46fce2
JB
7222static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7223 u64 start, u64 len)
7224{
7225 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7226 struct extent_map *em;
4b46fce2
JB
7227 struct btrfs_key ins;
7228 u64 alloc_hint;
7229 int ret;
4b46fce2 7230
4b46fce2 7231 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 7232 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 7233 alloc_hint, &ins, 1, 1);
00361589
JB
7234 if (ret)
7235 return ERR_PTR(ret);
4b46fce2 7236
5f9a8a51
FM
7237 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7238 ins.objectid, ins.offset, ins.offset,
7239 ins.offset, 0);
9cfa3e34 7240 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5f9a8a51 7241 if (IS_ERR(em))
e570fd27 7242 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
de0ee0ed 7243
4b46fce2
JB
7244 return em;
7245}
7246
46bfbb5c
CM
7247/*
7248 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7249 * block must be cow'd
7250 */
00361589 7251noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7252 u64 *orig_start, u64 *orig_block_len,
7253 u64 *ram_bytes)
46bfbb5c 7254{
00361589 7255 struct btrfs_trans_handle *trans;
46bfbb5c
CM
7256 struct btrfs_path *path;
7257 int ret;
7258 struct extent_buffer *leaf;
7259 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7260 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7261 struct btrfs_file_extent_item *fi;
7262 struct btrfs_key key;
7263 u64 disk_bytenr;
7264 u64 backref_offset;
7265 u64 extent_end;
7266 u64 num_bytes;
7267 int slot;
7268 int found_type;
7ee9e440 7269 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7270
46bfbb5c
CM
7271 path = btrfs_alloc_path();
7272 if (!path)
7273 return -ENOMEM;
7274
00361589 7275 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
7276 offset, 0);
7277 if (ret < 0)
7278 goto out;
7279
7280 slot = path->slots[0];
7281 if (ret == 1) {
7282 if (slot == 0) {
7283 /* can't find the item, must cow */
7284 ret = 0;
7285 goto out;
7286 }
7287 slot--;
7288 }
7289 ret = 0;
7290 leaf = path->nodes[0];
7291 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 7292 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
7293 key.type != BTRFS_EXTENT_DATA_KEY) {
7294 /* not our file or wrong item type, must cow */
7295 goto out;
7296 }
7297
7298 if (key.offset > offset) {
7299 /* Wrong offset, must cow */
7300 goto out;
7301 }
7302
7303 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7304 found_type = btrfs_file_extent_type(leaf, fi);
7305 if (found_type != BTRFS_FILE_EXTENT_REG &&
7306 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7307 /* not a regular extent, must cow */
7308 goto out;
7309 }
7ee9e440
JB
7310
7311 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7312 goto out;
7313
e77751aa
MX
7314 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7315 if (extent_end <= offset)
7316 goto out;
7317
46bfbb5c 7318 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7319 if (disk_bytenr == 0)
7320 goto out;
7321
7322 if (btrfs_file_extent_compression(leaf, fi) ||
7323 btrfs_file_extent_encryption(leaf, fi) ||
7324 btrfs_file_extent_other_encoding(leaf, fi))
7325 goto out;
7326
46bfbb5c
CM
7327 backref_offset = btrfs_file_extent_offset(leaf, fi);
7328
7ee9e440
JB
7329 if (orig_start) {
7330 *orig_start = key.offset - backref_offset;
7331 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7332 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7333 }
eb384b55 7334
46bfbb5c
CM
7335 if (btrfs_extent_readonly(root, disk_bytenr))
7336 goto out;
7b2b7085
MX
7337
7338 num_bytes = min(offset + *len, extent_end) - offset;
7339 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7340 u64 range_end;
7341
7342 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7343 ret = test_range_bit(io_tree, offset, range_end,
7344 EXTENT_DELALLOC, 0, NULL);
7345 if (ret) {
7346 ret = -EAGAIN;
7347 goto out;
7348 }
7349 }
7350
1bda19eb 7351 btrfs_release_path(path);
46bfbb5c
CM
7352
7353 /*
7354 * look for other files referencing this extent, if we
7355 * find any we must cow
7356 */
00361589
JB
7357 trans = btrfs_join_transaction(root);
7358 if (IS_ERR(trans)) {
7359 ret = 0;
46bfbb5c 7360 goto out;
00361589
JB
7361 }
7362
7363 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7364 key.offset - backref_offset, disk_bytenr);
7365 btrfs_end_transaction(trans, root);
7366 if (ret) {
7367 ret = 0;
7368 goto out;
7369 }
46bfbb5c
CM
7370
7371 /*
7372 * adjust disk_bytenr and num_bytes to cover just the bytes
7373 * in this extent we are about to write. If there
7374 * are any csums in that range we have to cow in order
7375 * to keep the csums correct
7376 */
7377 disk_bytenr += backref_offset;
7378 disk_bytenr += offset - key.offset;
46bfbb5c
CM
7379 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7380 goto out;
7381 /*
7382 * all of the above have passed, it is safe to overwrite this extent
7383 * without cow
7384 */
eb384b55 7385 *len = num_bytes;
46bfbb5c
CM
7386 ret = 1;
7387out:
7388 btrfs_free_path(path);
7389 return ret;
7390}
7391
fc4adbff
AG
7392bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7393{
7394 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7395 int found = false;
7396 void **pagep = NULL;
7397 struct page *page = NULL;
7398 int start_idx;
7399 int end_idx;
7400
09cbfeaf 7401 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7402
7403 /*
7404 * end is the last byte in the last page. end == start is legal
7405 */
09cbfeaf 7406 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7407
7408 rcu_read_lock();
7409
7410 /* Most of the code in this while loop is lifted from
7411 * find_get_page. It's been modified to begin searching from a
7412 * page and return just the first page found in that range. If the
7413 * found idx is less than or equal to the end idx then we know that
7414 * a page exists. If no pages are found or if those pages are
7415 * outside of the range then we're fine (yay!) */
7416 while (page == NULL &&
7417 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7418 page = radix_tree_deref_slot(pagep);
7419 if (unlikely(!page))
7420 break;
7421
7422 if (radix_tree_exception(page)) {
809f9016
FM
7423 if (radix_tree_deref_retry(page)) {
7424 page = NULL;
fc4adbff 7425 continue;
809f9016 7426 }
fc4adbff
AG
7427 /*
7428 * Otherwise, shmem/tmpfs must be storing a swap entry
7429 * here as an exceptional entry: so return it without
7430 * attempting to raise page count.
7431 */
6fdef6d4 7432 page = NULL;
fc4adbff
AG
7433 break; /* TODO: Is this relevant for this use case? */
7434 }
7435
91405151
FM
7436 if (!page_cache_get_speculative(page)) {
7437 page = NULL;
fc4adbff 7438 continue;
91405151 7439 }
fc4adbff
AG
7440
7441 /*
7442 * Has the page moved?
7443 * This is part of the lockless pagecache protocol. See
7444 * include/linux/pagemap.h for details.
7445 */
7446 if (unlikely(page != *pagep)) {
09cbfeaf 7447 put_page(page);
fc4adbff
AG
7448 page = NULL;
7449 }
7450 }
7451
7452 if (page) {
7453 if (page->index <= end_idx)
7454 found = true;
09cbfeaf 7455 put_page(page);
fc4adbff
AG
7456 }
7457
7458 rcu_read_unlock();
7459 return found;
7460}
7461
eb838e73
JB
7462static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7463 struct extent_state **cached_state, int writing)
7464{
7465 struct btrfs_ordered_extent *ordered;
7466 int ret = 0;
7467
7468 while (1) {
7469 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7470 cached_state);
eb838e73
JB
7471 /*
7472 * We're concerned with the entire range that we're going to be
01327610 7473 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7474 * extents in this range.
7475 */
7476 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7477 lockend - lockstart + 1);
7478
7479 /*
7480 * We need to make sure there are no buffered pages in this
7481 * range either, we could have raced between the invalidate in
7482 * generic_file_direct_write and locking the extent. The
7483 * invalidate needs to happen so that reads after a write do not
7484 * get stale data.
7485 */
fc4adbff
AG
7486 if (!ordered &&
7487 (!writing ||
7488 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7489 break;
7490
7491 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7492 cached_state, GFP_NOFS);
7493
7494 if (ordered) {
ade77029
FM
7495 /*
7496 * If we are doing a DIO read and the ordered extent we
7497 * found is for a buffered write, we can not wait for it
7498 * to complete and retry, because if we do so we can
7499 * deadlock with concurrent buffered writes on page
7500 * locks. This happens only if our DIO read covers more
7501 * than one extent map, if at this point has already
7502 * created an ordered extent for a previous extent map
7503 * and locked its range in the inode's io tree, and a
7504 * concurrent write against that previous extent map's
7505 * range and this range started (we unlock the ranges
7506 * in the io tree only when the bios complete and
7507 * buffered writes always lock pages before attempting
7508 * to lock range in the io tree).
7509 */
7510 if (writing ||
7511 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7512 btrfs_start_ordered_extent(inode, ordered, 1);
7513 else
7514 ret = -ENOTBLK;
eb838e73
JB
7515 btrfs_put_ordered_extent(ordered);
7516 } else {
eb838e73 7517 /*
b850ae14
FM
7518 * We could trigger writeback for this range (and wait
7519 * for it to complete) and then invalidate the pages for
7520 * this range (through invalidate_inode_pages2_range()),
7521 * but that can lead us to a deadlock with a concurrent
7522 * call to readpages() (a buffered read or a defrag call
7523 * triggered a readahead) on a page lock due to an
7524 * ordered dio extent we created before but did not have
7525 * yet a corresponding bio submitted (whence it can not
7526 * complete), which makes readpages() wait for that
7527 * ordered extent to complete while holding a lock on
7528 * that page.
eb838e73 7529 */
b850ae14 7530 ret = -ENOTBLK;
eb838e73
JB
7531 }
7532
ade77029
FM
7533 if (ret)
7534 break;
7535
eb838e73
JB
7536 cond_resched();
7537 }
7538
7539 return ret;
7540}
7541
69ffb543
JB
7542static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7543 u64 len, u64 orig_start,
7544 u64 block_start, u64 block_len,
cc95bef6
JB
7545 u64 orig_block_len, u64 ram_bytes,
7546 int type)
69ffb543
JB
7547{
7548 struct extent_map_tree *em_tree;
7549 struct extent_map *em;
7550 struct btrfs_root *root = BTRFS_I(inode)->root;
7551 int ret;
7552
7553 em_tree = &BTRFS_I(inode)->extent_tree;
7554 em = alloc_extent_map();
7555 if (!em)
7556 return ERR_PTR(-ENOMEM);
7557
7558 em->start = start;
7559 em->orig_start = orig_start;
2ab28f32
JB
7560 em->mod_start = start;
7561 em->mod_len = len;
69ffb543
JB
7562 em->len = len;
7563 em->block_len = block_len;
7564 em->block_start = block_start;
7565 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7566 em->orig_block_len = orig_block_len;
cc95bef6 7567 em->ram_bytes = ram_bytes;
70c8a91c 7568 em->generation = -1;
69ffb543
JB
7569 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7570 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7571 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7572
7573 do {
7574 btrfs_drop_extent_cache(inode, em->start,
7575 em->start + em->len - 1, 0);
7576 write_lock(&em_tree->lock);
09a2a8f9 7577 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7578 write_unlock(&em_tree->lock);
7579 } while (ret == -EEXIST);
7580
7581 if (ret) {
7582 free_extent_map(em);
7583 return ERR_PTR(ret);
7584 }
7585
7586 return em;
7587}
7588
9c9464cc
FM
7589static void adjust_dio_outstanding_extents(struct inode *inode,
7590 struct btrfs_dio_data *dio_data,
7591 const u64 len)
7592{
7593 unsigned num_extents;
7594
7595 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7596 BTRFS_MAX_EXTENT_SIZE);
7597 /*
7598 * If we have an outstanding_extents count still set then we're
7599 * within our reservation, otherwise we need to adjust our inode
7600 * counter appropriately.
7601 */
7602 if (dio_data->outstanding_extents) {
7603 dio_data->outstanding_extents -= num_extents;
7604 } else {
7605 spin_lock(&BTRFS_I(inode)->lock);
7606 BTRFS_I(inode)->outstanding_extents += num_extents;
7607 spin_unlock(&BTRFS_I(inode)->lock);
7608 }
7609}
7610
4b46fce2
JB
7611static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7612 struct buffer_head *bh_result, int create)
7613{
7614 struct extent_map *em;
7615 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7616 struct extent_state *cached_state = NULL;
50745b0a 7617 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7618 u64 start = iblock << inode->i_blkbits;
eb838e73 7619 u64 lockstart, lockend;
4b46fce2 7620 u64 len = bh_result->b_size;
eb838e73 7621 int unlock_bits = EXTENT_LOCKED;
0934856d 7622 int ret = 0;
eb838e73 7623
172a5049 7624 if (create)
3266789f 7625 unlock_bits |= EXTENT_DIRTY;
172a5049 7626 else
c329861d 7627 len = min_t(u64, len, root->sectorsize);
eb838e73 7628
c329861d
JB
7629 lockstart = start;
7630 lockend = start + len - 1;
7631
e1cbbfa5
JB
7632 if (current->journal_info) {
7633 /*
7634 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7635 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7636 * confused.
7637 */
50745b0a 7638 dio_data = current->journal_info;
e1cbbfa5
JB
7639 current->journal_info = NULL;
7640 }
7641
eb838e73
JB
7642 /*
7643 * If this errors out it's because we couldn't invalidate pagecache for
7644 * this range and we need to fallback to buffered.
7645 */
9c9464cc
FM
7646 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7647 create)) {
7648 ret = -ENOTBLK;
7649 goto err;
7650 }
eb838e73 7651
4b46fce2 7652 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7653 if (IS_ERR(em)) {
7654 ret = PTR_ERR(em);
7655 goto unlock_err;
7656 }
4b46fce2
JB
7657
7658 /*
7659 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7660 * io. INLINE is special, and we could probably kludge it in here, but
7661 * it's still buffered so for safety lets just fall back to the generic
7662 * buffered path.
7663 *
7664 * For COMPRESSED we _have_ to read the entire extent in so we can
7665 * decompress it, so there will be buffering required no matter what we
7666 * do, so go ahead and fallback to buffered.
7667 *
01327610 7668 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7669 * to buffered IO. Don't blame me, this is the price we pay for using
7670 * the generic code.
7671 */
7672 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7673 em->block_start == EXTENT_MAP_INLINE) {
7674 free_extent_map(em);
eb838e73
JB
7675 ret = -ENOTBLK;
7676 goto unlock_err;
4b46fce2
JB
7677 }
7678
7679 /* Just a good old fashioned hole, return */
7680 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7681 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7682 free_extent_map(em);
eb838e73 7683 goto unlock_err;
4b46fce2
JB
7684 }
7685
7686 /*
7687 * We don't allocate a new extent in the following cases
7688 *
7689 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7690 * existing extent.
7691 * 2) The extent is marked as PREALLOC. We're good to go here and can
7692 * just use the extent.
7693 *
7694 */
46bfbb5c 7695 if (!create) {
eb838e73
JB
7696 len = min(len, em->len - (start - em->start));
7697 lockstart = start + len;
7698 goto unlock;
46bfbb5c 7699 }
4b46fce2
JB
7700
7701 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7702 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7703 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7704 int type;
eb384b55 7705 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7706
7707 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7708 type = BTRFS_ORDERED_PREALLOC;
7709 else
7710 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7711 len = min(len, em->len - (start - em->start));
4b46fce2 7712 block_start = em->block_start + (start - em->start);
46bfbb5c 7713
00361589 7714 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c
FM
7715 &orig_block_len, &ram_bytes) == 1 &&
7716 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
5f9a8a51 7717 struct extent_map *em2;
0b901916 7718
5f9a8a51
FM
7719 em2 = btrfs_create_dio_extent(inode, start, len,
7720 orig_start, block_start,
7721 len, orig_block_len,
7722 ram_bytes, type);
f78c436c 7723 btrfs_dec_nocow_writers(root->fs_info, block_start);
69ffb543
JB
7724 if (type == BTRFS_ORDERED_PREALLOC) {
7725 free_extent_map(em);
5f9a8a51 7726 em = em2;
69ffb543 7727 }
5f9a8a51
FM
7728 if (em2 && IS_ERR(em2)) {
7729 ret = PTR_ERR(em2);
eb838e73 7730 goto unlock_err;
46bfbb5c
CM
7731 }
7732 goto unlock;
4b46fce2 7733 }
4b46fce2 7734 }
00361589 7735
46bfbb5c
CM
7736 /*
7737 * this will cow the extent, reset the len in case we changed
7738 * it above
7739 */
7740 len = bh_result->b_size;
70c8a91c
JB
7741 free_extent_map(em);
7742 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7743 if (IS_ERR(em)) {
7744 ret = PTR_ERR(em);
7745 goto unlock_err;
7746 }
46bfbb5c
CM
7747 len = min(len, em->len - (start - em->start));
7748unlock:
4b46fce2
JB
7749 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7750 inode->i_blkbits;
46bfbb5c 7751 bh_result->b_size = len;
4b46fce2
JB
7752 bh_result->b_bdev = em->bdev;
7753 set_buffer_mapped(bh_result);
c3473e83
JB
7754 if (create) {
7755 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7756 set_buffer_new(bh_result);
7757
7758 /*
7759 * Need to update the i_size under the extent lock so buffered
7760 * readers will get the updated i_size when we unlock.
7761 */
7762 if (start + len > i_size_read(inode))
7763 i_size_write(inode, start + len);
0934856d 7764
9c9464cc 7765 adjust_dio_outstanding_extents(inode, dio_data, len);
7cf5b976 7766 btrfs_free_reserved_data_space(inode, start, len);
50745b0a 7767 WARN_ON(dio_data->reserve < len);
7768 dio_data->reserve -= len;
f28a4928 7769 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7770 current->journal_info = dio_data;
c3473e83 7771 }
4b46fce2 7772
eb838e73
JB
7773 /*
7774 * In the case of write we need to clear and unlock the entire range,
7775 * in the case of read we need to unlock only the end area that we
7776 * aren't using if there is any left over space.
7777 */
24c03fa5 7778 if (lockstart < lockend) {
0934856d
MX
7779 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7780 lockend, unlock_bits, 1, 0,
7781 &cached_state, GFP_NOFS);
24c03fa5 7782 } else {
eb838e73 7783 free_extent_state(cached_state);
24c03fa5 7784 }
eb838e73 7785
4b46fce2
JB
7786 free_extent_map(em);
7787
7788 return 0;
eb838e73
JB
7789
7790unlock_err:
eb838e73
JB
7791 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7792 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7793err:
50745b0a 7794 if (dio_data)
7795 current->journal_info = dio_data;
9c9464cc
FM
7796 /*
7797 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7798 * write less data then expected, so that we don't underflow our inode's
7799 * outstanding extents counter.
7800 */
7801 if (create && dio_data)
7802 adjust_dio_outstanding_extents(inode, dio_data, len);
7803
eb838e73 7804 return ret;
4b46fce2
JB
7805}
7806
8b110e39
MX
7807static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7808 int rw, int mirror_num)
7809{
7810 struct btrfs_root *root = BTRFS_I(inode)->root;
7811 int ret;
7812
7813 BUG_ON(rw & REQ_WRITE);
7814
7815 bio_get(bio);
7816
7817 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7818 BTRFS_WQ_ENDIO_DIO_REPAIR);
7819 if (ret)
7820 goto err;
7821
7822 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7823err:
7824 bio_put(bio);
7825 return ret;
7826}
7827
7828static int btrfs_check_dio_repairable(struct inode *inode,
7829 struct bio *failed_bio,
7830 struct io_failure_record *failrec,
7831 int failed_mirror)
7832{
7833 int num_copies;
7834
7835 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7836 failrec->logical, failrec->len);
7837 if (num_copies == 1) {
7838 /*
7839 * we only have a single copy of the data, so don't bother with
7840 * all the retry and error correction code that follows. no
7841 * matter what the error is, it is very likely to persist.
7842 */
7843 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7844 num_copies, failrec->this_mirror, failed_mirror);
7845 return 0;
7846 }
7847
7848 failrec->failed_mirror = failed_mirror;
7849 failrec->this_mirror++;
7850 if (failrec->this_mirror == failed_mirror)
7851 failrec->this_mirror++;
7852
7853 if (failrec->this_mirror > num_copies) {
7854 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7855 num_copies, failrec->this_mirror, failed_mirror);
7856 return 0;
7857 }
7858
7859 return 1;
7860}
7861
7862static int dio_read_error(struct inode *inode, struct bio *failed_bio,
2dabb324
CR
7863 struct page *page, unsigned int pgoff,
7864 u64 start, u64 end, int failed_mirror,
7865 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7866{
7867 struct io_failure_record *failrec;
7868 struct bio *bio;
7869 int isector;
7870 int read_mode;
7871 int ret;
7872
7873 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7874
7875 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7876 if (ret)
7877 return ret;
7878
7879 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7880 failed_mirror);
7881 if (!ret) {
7882 free_io_failure(inode, failrec);
7883 return -EIO;
7884 }
7885
2dabb324
CR
7886 if ((failed_bio->bi_vcnt > 1)
7887 || (failed_bio->bi_io_vec->bv_len
7888 > BTRFS_I(inode)->root->sectorsize))
8b110e39
MX
7889 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7890 else
7891 read_mode = READ_SYNC;
7892
7893 isector = start - btrfs_io_bio(failed_bio)->logical;
7894 isector >>= inode->i_sb->s_blocksize_bits;
7895 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7896 pgoff, isector, repair_endio, repair_arg);
8b110e39
MX
7897 if (!bio) {
7898 free_io_failure(inode, failrec);
7899 return -EIO;
7900 }
7901
7902 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7903 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7904 read_mode, failrec->this_mirror, failrec->in_validation);
7905
7906 ret = submit_dio_repair_bio(inode, bio, read_mode,
7907 failrec->this_mirror);
7908 if (ret) {
7909 free_io_failure(inode, failrec);
7910 bio_put(bio);
7911 }
7912
7913 return ret;
7914}
7915
7916struct btrfs_retry_complete {
7917 struct completion done;
7918 struct inode *inode;
7919 u64 start;
7920 int uptodate;
7921};
7922
4246a0b6 7923static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7924{
7925 struct btrfs_retry_complete *done = bio->bi_private;
2dabb324 7926 struct inode *inode;
8b110e39
MX
7927 struct bio_vec *bvec;
7928 int i;
7929
4246a0b6 7930 if (bio->bi_error)
8b110e39
MX
7931 goto end;
7932
2dabb324
CR
7933 ASSERT(bio->bi_vcnt == 1);
7934 inode = bio->bi_io_vec->bv_page->mapping->host;
7935 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7936
8b110e39
MX
7937 done->uptodate = 1;
7938 bio_for_each_segment_all(bvec, bio, i)
7939 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7940end:
7941 complete(&done->done);
7942 bio_put(bio);
7943}
7944
7945static int __btrfs_correct_data_nocsum(struct inode *inode,
7946 struct btrfs_io_bio *io_bio)
4b46fce2 7947{
2dabb324 7948 struct btrfs_fs_info *fs_info;
2c30c71b 7949 struct bio_vec *bvec;
8b110e39 7950 struct btrfs_retry_complete done;
4b46fce2 7951 u64 start;
2dabb324
CR
7952 unsigned int pgoff;
7953 u32 sectorsize;
7954 int nr_sectors;
2c30c71b 7955 int i;
c1dc0896 7956 int ret;
4b46fce2 7957
2dabb324
CR
7958 fs_info = BTRFS_I(inode)->root->fs_info;
7959 sectorsize = BTRFS_I(inode)->root->sectorsize;
7960
8b110e39
MX
7961 start = io_bio->logical;
7962 done.inode = inode;
7963
7964 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
7965 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
7966 pgoff = bvec->bv_offset;
7967
7968next_block_or_try_again:
8b110e39
MX
7969 done.uptodate = 0;
7970 done.start = start;
7971 init_completion(&done.done);
7972
2dabb324
CR
7973 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
7974 pgoff, start, start + sectorsize - 1,
7975 io_bio->mirror_num,
7976 btrfs_retry_endio_nocsum, &done);
8b110e39
MX
7977 if (ret)
7978 return ret;
7979
7980 wait_for_completion(&done.done);
7981
7982 if (!done.uptodate) {
7983 /* We might have another mirror, so try again */
2dabb324 7984 goto next_block_or_try_again;
8b110e39
MX
7985 }
7986
2dabb324
CR
7987 start += sectorsize;
7988
7989 if (nr_sectors--) {
7990 pgoff += sectorsize;
7991 goto next_block_or_try_again;
7992 }
8b110e39
MX
7993 }
7994
7995 return 0;
7996}
7997
4246a0b6 7998static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7999{
8000 struct btrfs_retry_complete *done = bio->bi_private;
8001 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2dabb324 8002 struct inode *inode;
8b110e39 8003 struct bio_vec *bvec;
2dabb324 8004 u64 start;
8b110e39
MX
8005 int uptodate;
8006 int ret;
8007 int i;
8008
4246a0b6 8009 if (bio->bi_error)
8b110e39
MX
8010 goto end;
8011
8012 uptodate = 1;
2dabb324
CR
8013
8014 start = done->start;
8015
8016 ASSERT(bio->bi_vcnt == 1);
8017 inode = bio->bi_io_vec->bv_page->mapping->host;
8018 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8019
8b110e39
MX
8020 bio_for_each_segment_all(bvec, bio, i) {
8021 ret = __readpage_endio_check(done->inode, io_bio, i,
2dabb324
CR
8022 bvec->bv_page, bvec->bv_offset,
8023 done->start, bvec->bv_len);
8b110e39
MX
8024 if (!ret)
8025 clean_io_failure(done->inode, done->start,
2dabb324 8026 bvec->bv_page, bvec->bv_offset);
8b110e39
MX
8027 else
8028 uptodate = 0;
8029 }
8030
8031 done->uptodate = uptodate;
8032end:
8033 complete(&done->done);
8034 bio_put(bio);
8035}
8036
8037static int __btrfs_subio_endio_read(struct inode *inode,
8038 struct btrfs_io_bio *io_bio, int err)
8039{
2dabb324 8040 struct btrfs_fs_info *fs_info;
8b110e39
MX
8041 struct bio_vec *bvec;
8042 struct btrfs_retry_complete done;
8043 u64 start;
8044 u64 offset = 0;
2dabb324
CR
8045 u32 sectorsize;
8046 int nr_sectors;
8047 unsigned int pgoff;
8048 int csum_pos;
8b110e39
MX
8049 int i;
8050 int ret;
dc380aea 8051
2dabb324
CR
8052 fs_info = BTRFS_I(inode)->root->fs_info;
8053 sectorsize = BTRFS_I(inode)->root->sectorsize;
8054
8b110e39 8055 err = 0;
c1dc0896 8056 start = io_bio->logical;
8b110e39
MX
8057 done.inode = inode;
8058
c1dc0896 8059 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
2dabb324
CR
8060 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8061
8062 pgoff = bvec->bv_offset;
8063next_block:
8064 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8065 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8066 bvec->bv_page, pgoff, start,
8067 sectorsize);
8b110e39
MX
8068 if (likely(!ret))
8069 goto next;
8070try_again:
8071 done.uptodate = 0;
8072 done.start = start;
8073 init_completion(&done.done);
8074
2dabb324
CR
8075 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8076 pgoff, start, start + sectorsize - 1,
8077 io_bio->mirror_num,
8078 btrfs_retry_endio, &done);
8b110e39
MX
8079 if (ret) {
8080 err = ret;
8081 goto next;
8082 }
8083
8084 wait_for_completion(&done.done);
8085
8086 if (!done.uptodate) {
8087 /* We might have another mirror, so try again */
8088 goto try_again;
8089 }
8090next:
2dabb324
CR
8091 offset += sectorsize;
8092 start += sectorsize;
8093
8094 ASSERT(nr_sectors);
8095
8096 if (--nr_sectors) {
8097 pgoff += sectorsize;
8098 goto next_block;
8099 }
2c30c71b 8100 }
c1dc0896
MX
8101
8102 return err;
8103}
8104
8b110e39
MX
8105static int btrfs_subio_endio_read(struct inode *inode,
8106 struct btrfs_io_bio *io_bio, int err)
8107{
8108 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8109
8110 if (skip_csum) {
8111 if (unlikely(err))
8112 return __btrfs_correct_data_nocsum(inode, io_bio);
8113 else
8114 return 0;
8115 } else {
8116 return __btrfs_subio_endio_read(inode, io_bio, err);
8117 }
8118}
8119
4246a0b6 8120static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8121{
8122 struct btrfs_dio_private *dip = bio->bi_private;
8123 struct inode *inode = dip->inode;
8124 struct bio *dio_bio;
8125 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4246a0b6 8126 int err = bio->bi_error;
c1dc0896 8127
8b110e39
MX
8128 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8129 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8130
4b46fce2 8131 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8132 dip->logical_offset + dip->bytes - 1);
9be3395b 8133 dio_bio = dip->dio_bio;
4b46fce2 8134
4b46fce2 8135 kfree(dip);
c0da7aa1 8136
1636d1d7 8137 dio_bio->bi_error = bio->bi_error;
4246a0b6 8138 dio_end_io(dio_bio, bio->bi_error);
23ea8e5a
MX
8139
8140 if (io_bio->end_io)
8141 io_bio->end_io(io_bio, err);
9be3395b 8142 bio_put(bio);
4b46fce2
JB
8143}
8144
14543774
FM
8145static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8146 const u64 offset,
8147 const u64 bytes,
8148 const int uptodate)
4b46fce2 8149{
4b46fce2 8150 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 8151 struct btrfs_ordered_extent *ordered = NULL;
14543774
FM
8152 u64 ordered_offset = offset;
8153 u64 ordered_bytes = bytes;
4b46fce2
JB
8154 int ret;
8155
163cf09c
CM
8156again:
8157 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8158 &ordered_offset,
4246a0b6 8159 ordered_bytes,
14543774 8160 uptodate);
4b46fce2 8161 if (!ret)
163cf09c 8162 goto out_test;
4b46fce2 8163
9e0af237
LB
8164 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8165 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
8166 btrfs_queue_work(root->fs_info->endio_write_workers,
8167 &ordered->work);
163cf09c
CM
8168out_test:
8169 /*
8170 * our bio might span multiple ordered extents. If we haven't
8171 * completed the accounting for the whole dio, go back and try again
8172 */
14543774
FM
8173 if (ordered_offset < offset + bytes) {
8174 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8175 ordered = NULL;
163cf09c
CM
8176 goto again;
8177 }
14543774
FM
8178}
8179
8180static void btrfs_endio_direct_write(struct bio *bio)
8181{
8182 struct btrfs_dio_private *dip = bio->bi_private;
8183 struct bio *dio_bio = dip->dio_bio;
8184
8185 btrfs_endio_direct_write_update_ordered(dip->inode,
8186 dip->logical_offset,
8187 dip->bytes,
8188 !bio->bi_error);
4b46fce2 8189
4b46fce2 8190 kfree(dip);
c0da7aa1 8191
1636d1d7 8192 dio_bio->bi_error = bio->bi_error;
4246a0b6 8193 dio_end_io(dio_bio, bio->bi_error);
9be3395b 8194 bio_put(bio);
4b46fce2
JB
8195}
8196
eaf25d93
CM
8197static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
8198 struct bio *bio, int mirror_num,
8199 unsigned long bio_flags, u64 offset)
8200{
8201 int ret;
8202 struct btrfs_root *root = BTRFS_I(inode)->root;
8203 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 8204 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8205 return 0;
8206}
8207
4246a0b6 8208static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8209{
8210 struct btrfs_dio_private *dip = bio->bi_private;
4246a0b6 8211 int err = bio->bi_error;
e65e1535 8212
8b110e39
MX
8213 if (err)
8214 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8215 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
8216 btrfs_ino(dip->inode), bio->bi_rw,
8217 (unsigned long long)bio->bi_iter.bi_sector,
8218 bio->bi_iter.bi_size, err);
8219
8220 if (dip->subio_endio)
8221 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8222
8223 if (err) {
e65e1535
MX
8224 dip->errors = 1;
8225
8226 /*
8227 * before atomic variable goto zero, we must make sure
8228 * dip->errors is perceived to be set.
8229 */
4e857c58 8230 smp_mb__before_atomic();
e65e1535
MX
8231 }
8232
8233 /* if there are more bios still pending for this dio, just exit */
8234 if (!atomic_dec_and_test(&dip->pending_bios))
8235 goto out;
8236
9be3395b 8237 if (dip->errors) {
e65e1535 8238 bio_io_error(dip->orig_bio);
9be3395b 8239 } else {
4246a0b6
CH
8240 dip->dio_bio->bi_error = 0;
8241 bio_endio(dip->orig_bio);
e65e1535
MX
8242 }
8243out:
8244 bio_put(bio);
8245}
8246
8247static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8248 u64 first_sector, gfp_t gfp_flags)
8249{
da2f0f74 8250 struct bio *bio;
22365979 8251 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
da2f0f74
CM
8252 if (bio)
8253 bio_associate_current(bio);
8254 return bio;
e65e1535
MX
8255}
8256
c1dc0896
MX
8257static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8258 struct inode *inode,
8259 struct btrfs_dio_private *dip,
8260 struct bio *bio,
8261 u64 file_offset)
8262{
8263 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8264 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8265 int ret;
8266
8267 /*
8268 * We load all the csum data we need when we submit
8269 * the first bio to reduce the csum tree search and
8270 * contention.
8271 */
8272 if (dip->logical_offset == file_offset) {
8273 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8274 file_offset);
8275 if (ret)
8276 return ret;
8277 }
8278
8279 if (bio == dip->orig_bio)
8280 return 0;
8281
8282 file_offset -= dip->logical_offset;
8283 file_offset >>= inode->i_sb->s_blocksize_bits;
8284 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8285
8286 return 0;
8287}
8288
e65e1535
MX
8289static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8290 int rw, u64 file_offset, int skip_sum,
c329861d 8291 int async_submit)
e65e1535 8292{
facc8a22 8293 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
8294 int write = rw & REQ_WRITE;
8295 struct btrfs_root *root = BTRFS_I(inode)->root;
8296 int ret;
8297
b812ce28
JB
8298 if (async_submit)
8299 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8300
e65e1535 8301 bio_get(bio);
5fd02043
JB
8302
8303 if (!write) {
bfebd8b5
DS
8304 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8305 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8306 if (ret)
8307 goto err;
8308 }
e65e1535 8309
1ae39938
JB
8310 if (skip_sum)
8311 goto map;
8312
8313 if (write && async_submit) {
e65e1535
MX
8314 ret = btrfs_wq_submit_bio(root->fs_info,
8315 inode, rw, bio, 0, 0,
8316 file_offset,
8317 __btrfs_submit_bio_start_direct_io,
8318 __btrfs_submit_bio_done);
8319 goto err;
1ae39938
JB
8320 } else if (write) {
8321 /*
8322 * If we aren't doing async submit, calculate the csum of the
8323 * bio now.
8324 */
8325 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8326 if (ret)
8327 goto err;
23ea8e5a 8328 } else {
c1dc0896
MX
8329 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8330 file_offset);
c2db1073
TI
8331 if (ret)
8332 goto err;
8333 }
1ae39938
JB
8334map:
8335 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
8336err:
8337 bio_put(bio);
8338 return ret;
8339}
8340
8341static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8342 int skip_sum)
8343{
8344 struct inode *inode = dip->inode;
8345 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
8346 struct bio *bio;
8347 struct bio *orig_bio = dip->orig_bio;
8348 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 8349 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
8350 u64 file_offset = dip->logical_offset;
8351 u64 submit_len = 0;
8352 u64 map_length;
5f4dc8fc 8353 u32 blocksize = root->sectorsize;
1ae39938 8354 int async_submit = 0;
5f4dc8fc
CR
8355 int nr_sectors;
8356 int ret;
8357 int i;
e65e1535 8358
4f024f37 8359 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8360 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 8361 &map_length, NULL, 0);
7a5c3c9b 8362 if (ret)
e65e1535 8363 return -EIO;
facc8a22 8364
4f024f37 8365 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 8366 bio = orig_bio;
c1dc0896 8367 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8368 goto submit;
8369 }
8370
53b381b3 8371 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 8372 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8373 async_submit = 0;
8374 else
8375 async_submit = 1;
8376
02f57c7a
JB
8377 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8378 if (!bio)
8379 return -ENOMEM;
7a5c3c9b 8380
02f57c7a
JB
8381 bio->bi_private = dip;
8382 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8383 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
8384 atomic_inc(&dip->pending_bios);
8385
e65e1535 8386 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5f4dc8fc
CR
8387 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8388 i = 0;
8389next_block:
8390 if (unlikely(map_length < submit_len + blocksize ||
8391 bio_add_page(bio, bvec->bv_page, blocksize,
8392 bvec->bv_offset + (i * blocksize)) < blocksize)) {
e65e1535
MX
8393 /*
8394 * inc the count before we submit the bio so
8395 * we know the end IO handler won't happen before
8396 * we inc the count. Otherwise, the dip might get freed
8397 * before we're done setting it up
8398 */
8399 atomic_inc(&dip->pending_bios);
8400 ret = __btrfs_submit_dio_bio(bio, inode, rw,
8401 file_offset, skip_sum,
c329861d 8402 async_submit);
e65e1535
MX
8403 if (ret) {
8404 bio_put(bio);
8405 atomic_dec(&dip->pending_bios);
8406 goto out_err;
8407 }
8408
e65e1535
MX
8409 start_sector += submit_len >> 9;
8410 file_offset += submit_len;
8411
8412 submit_len = 0;
e65e1535
MX
8413
8414 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8415 start_sector, GFP_NOFS);
8416 if (!bio)
8417 goto out_err;
8418 bio->bi_private = dip;
8419 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 8420 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 8421
4f024f37 8422 map_length = orig_bio->bi_iter.bi_size;
53b381b3 8423 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 8424 start_sector << 9,
e65e1535
MX
8425 &map_length, NULL, 0);
8426 if (ret) {
8427 bio_put(bio);
8428 goto out_err;
8429 }
5f4dc8fc
CR
8430
8431 goto next_block;
e65e1535 8432 } else {
5f4dc8fc
CR
8433 submit_len += blocksize;
8434 if (--nr_sectors) {
8435 i++;
8436 goto next_block;
8437 }
e65e1535
MX
8438 bvec++;
8439 }
8440 }
8441
02f57c7a 8442submit:
e65e1535 8443 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 8444 async_submit);
e65e1535
MX
8445 if (!ret)
8446 return 0;
8447
8448 bio_put(bio);
8449out_err:
8450 dip->errors = 1;
8451 /*
8452 * before atomic variable goto zero, we must
8453 * make sure dip->errors is perceived to be set.
8454 */
4e857c58 8455 smp_mb__before_atomic();
e65e1535
MX
8456 if (atomic_dec_and_test(&dip->pending_bios))
8457 bio_io_error(dip->orig_bio);
8458
8459 /* bio_end_io() will handle error, so we needn't return it */
8460 return 0;
8461}
8462
9be3395b
CM
8463static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8464 struct inode *inode, loff_t file_offset)
4b46fce2 8465{
61de718f
FM
8466 struct btrfs_dio_private *dip = NULL;
8467 struct bio *io_bio = NULL;
23ea8e5a 8468 struct btrfs_io_bio *btrfs_bio;
4b46fce2 8469 int skip_sum;
7b6d91da 8470 int write = rw & REQ_WRITE;
4b46fce2
JB
8471 int ret = 0;
8472
8473 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8474
9be3395b 8475 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
8476 if (!io_bio) {
8477 ret = -ENOMEM;
8478 goto free_ordered;
8479 }
8480
c1dc0896 8481 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8482 if (!dip) {
8483 ret = -ENOMEM;
61de718f 8484 goto free_ordered;
4b46fce2 8485 }
4b46fce2 8486
9be3395b 8487 dip->private = dio_bio->bi_private;
4b46fce2
JB
8488 dip->inode = inode;
8489 dip->logical_offset = file_offset;
4f024f37
KO
8490 dip->bytes = dio_bio->bi_iter.bi_size;
8491 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 8492 io_bio->bi_private = dip;
9be3395b
CM
8493 dip->orig_bio = io_bio;
8494 dip->dio_bio = dio_bio;
e65e1535 8495 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
8496 btrfs_bio = btrfs_io_bio(io_bio);
8497 btrfs_bio->logical = file_offset;
4b46fce2 8498
c1dc0896 8499 if (write) {
9be3395b 8500 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8501 } else {
9be3395b 8502 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8503 dip->subio_endio = btrfs_subio_endio_read;
8504 }
4b46fce2 8505
f28a4928
FM
8506 /*
8507 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8508 * even if we fail to submit a bio, because in such case we do the
8509 * corresponding error handling below and it must not be done a second
8510 * time by btrfs_direct_IO().
8511 */
8512 if (write) {
8513 struct btrfs_dio_data *dio_data = current->journal_info;
8514
8515 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8516 dip->bytes;
8517 dio_data->unsubmitted_oe_range_start =
8518 dio_data->unsubmitted_oe_range_end;
8519 }
8520
e65e1535
MX
8521 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8522 if (!ret)
eaf25d93 8523 return;
9be3395b 8524
23ea8e5a
MX
8525 if (btrfs_bio->end_io)
8526 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b 8527
4b46fce2
JB
8528free_ordered:
8529 /*
61de718f
FM
8530 * If we arrived here it means either we failed to submit the dip
8531 * or we either failed to clone the dio_bio or failed to allocate the
8532 * dip. If we cloned the dio_bio and allocated the dip, we can just
8533 * call bio_endio against our io_bio so that we get proper resource
8534 * cleanup if we fail to submit the dip, otherwise, we must do the
8535 * same as btrfs_endio_direct_[write|read] because we can't call these
8536 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8537 */
61de718f 8538 if (io_bio && dip) {
4246a0b6
CH
8539 io_bio->bi_error = -EIO;
8540 bio_endio(io_bio);
61de718f
FM
8541 /*
8542 * The end io callbacks free our dip, do the final put on io_bio
8543 * and all the cleanup and final put for dio_bio (through
8544 * dio_end_io()).
8545 */
8546 dip = NULL;
8547 io_bio = NULL;
8548 } else {
14543774
FM
8549 if (write)
8550 btrfs_endio_direct_write_update_ordered(inode,
8551 file_offset,
8552 dio_bio->bi_iter.bi_size,
8553 0);
8554 else
61de718f
FM
8555 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8556 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8557
4246a0b6 8558 dio_bio->bi_error = -EIO;
61de718f
FM
8559 /*
8560 * Releases and cleans up our dio_bio, no need to bio_put()
8561 * nor bio_endio()/bio_io_error() against dio_bio.
8562 */
8563 dio_end_io(dio_bio, ret);
4b46fce2 8564 }
61de718f
FM
8565 if (io_bio)
8566 bio_put(io_bio);
8567 kfree(dip);
4b46fce2
JB
8568}
8569
6f673763 8570static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
28060d5d 8571 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8572{
8573 int seg;
a1b75f7d 8574 int i;
5a5f79b5
CM
8575 unsigned blocksize_mask = root->sectorsize - 1;
8576 ssize_t retval = -EINVAL;
5a5f79b5
CM
8577
8578 if (offset & blocksize_mask)
8579 goto out;
8580
28060d5d
AV
8581 if (iov_iter_alignment(iter) & blocksize_mask)
8582 goto out;
a1b75f7d 8583
28060d5d 8584 /* If this is a write we don't need to check anymore */
6f673763 8585 if (iov_iter_rw(iter) == WRITE)
28060d5d
AV
8586 return 0;
8587 /*
8588 * Check to make sure we don't have duplicate iov_base's in this
8589 * iovec, if so return EINVAL, otherwise we'll get csum errors
8590 * when reading back.
8591 */
8592 for (seg = 0; seg < iter->nr_segs; seg++) {
8593 for (i = seg + 1; i < iter->nr_segs; i++) {
8594 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8595 goto out;
8596 }
5a5f79b5
CM
8597 }
8598 retval = 0;
8599out:
8600 return retval;
8601}
eb838e73 8602
c8b8e32d 8603static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8604{
4b46fce2
JB
8605 struct file *file = iocb->ki_filp;
8606 struct inode *inode = file->f_mapping->host;
50745b0a 8607 struct btrfs_root *root = BTRFS_I(inode)->root;
8608 struct btrfs_dio_data dio_data = { 0 };
c8b8e32d 8609 loff_t offset = iocb->ki_pos;
0934856d 8610 size_t count = 0;
2e60a51e 8611 int flags = 0;
38851cc1
MX
8612 bool wakeup = true;
8613 bool relock = false;
0934856d 8614 ssize_t ret;
4b46fce2 8615
6f673763 8616 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
5a5f79b5 8617 return 0;
3f7c579c 8618
fe0f07d0 8619 inode_dio_begin(inode);
4e857c58 8620 smp_mb__after_atomic();
38851cc1 8621
0e267c44 8622 /*
41bd9ca4
MX
8623 * The generic stuff only does filemap_write_and_wait_range, which
8624 * isn't enough if we've written compressed pages to this area, so
8625 * we need to flush the dirty pages again to make absolutely sure
8626 * that any outstanding dirty pages are on disk.
0e267c44 8627 */
a6cbcd4a 8628 count = iov_iter_count(iter);
41bd9ca4
MX
8629 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8630 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8631 filemap_fdatawrite_range(inode->i_mapping, offset,
8632 offset + count - 1);
0e267c44 8633
6f673763 8634 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8635 /*
8636 * If the write DIO is beyond the EOF, we need update
8637 * the isize, but it is protected by i_mutex. So we can
8638 * not unlock the i_mutex at this case.
8639 */
8640 if (offset + count <= inode->i_size) {
5955102c 8641 inode_unlock(inode);
38851cc1
MX
8642 relock = true;
8643 }
7cf5b976 8644 ret = btrfs_delalloc_reserve_space(inode, offset, count);
0934856d 8645 if (ret)
38851cc1 8646 goto out;
50745b0a 8647 dio_data.outstanding_extents = div64_u64(count +
e1cbbfa5
JB
8648 BTRFS_MAX_EXTENT_SIZE - 1,
8649 BTRFS_MAX_EXTENT_SIZE);
8650
8651 /*
8652 * We need to know how many extents we reserved so that we can
8653 * do the accounting properly if we go over the number we
8654 * originally calculated. Abuse current->journal_info for this.
8655 */
50745b0a 8656 dio_data.reserve = round_up(count, root->sectorsize);
f28a4928
FM
8657 dio_data.unsubmitted_oe_range_start = (u64)offset;
8658 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8659 current->journal_info = &dio_data;
ee39b432
DS
8660 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8661 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8662 inode_dio_end(inode);
38851cc1
MX
8663 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8664 wakeup = false;
0934856d
MX
8665 }
8666
17f8c842
OS
8667 ret = __blockdev_direct_IO(iocb, inode,
8668 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
c8b8e32d 8669 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8670 btrfs_submit_direct, flags);
6f673763 8671 if (iov_iter_rw(iter) == WRITE) {
e1cbbfa5 8672 current->journal_info = NULL;
ddba1bfc 8673 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8674 if (dio_data.reserve)
7cf5b976
QW
8675 btrfs_delalloc_release_space(inode, offset,
8676 dio_data.reserve);
f28a4928
FM
8677 /*
8678 * On error we might have left some ordered extents
8679 * without submitting corresponding bios for them, so
8680 * cleanup them up to avoid other tasks getting them
8681 * and waiting for them to complete forever.
8682 */
8683 if (dio_data.unsubmitted_oe_range_start <
8684 dio_data.unsubmitted_oe_range_end)
8685 btrfs_endio_direct_write_update_ordered(inode,
8686 dio_data.unsubmitted_oe_range_start,
8687 dio_data.unsubmitted_oe_range_end -
8688 dio_data.unsubmitted_oe_range_start,
8689 0);
ddba1bfc 8690 } else if (ret >= 0 && (size_t)ret < count)
7cf5b976
QW
8691 btrfs_delalloc_release_space(inode, offset,
8692 count - (size_t)ret);
0934856d 8693 }
38851cc1 8694out:
2e60a51e 8695 if (wakeup)
fe0f07d0 8696 inode_dio_end(inode);
38851cc1 8697 if (relock)
5955102c 8698 inode_lock(inode);
0934856d
MX
8699
8700 return ret;
16432985
CM
8701}
8702
05dadc09
TI
8703#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8704
1506fcc8
YS
8705static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8706 __u64 start, __u64 len)
8707{
05dadc09
TI
8708 int ret;
8709
8710 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8711 if (ret)
8712 return ret;
8713
ec29ed5b 8714 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8715}
8716
a52d9a80 8717int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8718{
d1310b2e
CM
8719 struct extent_io_tree *tree;
8720 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8721 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8722}
1832a6d5 8723
a52d9a80 8724static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8725{
d1310b2e 8726 struct extent_io_tree *tree;
be7bd730
JB
8727 struct inode *inode = page->mapping->host;
8728 int ret;
b888db2b
CM
8729
8730 if (current->flags & PF_MEMALLOC) {
8731 redirty_page_for_writepage(wbc, page);
8732 unlock_page(page);
8733 return 0;
8734 }
be7bd730
JB
8735
8736 /*
8737 * If we are under memory pressure we will call this directly from the
8738 * VM, we need to make sure we have the inode referenced for the ordered
8739 * extent. If not just return like we didn't do anything.
8740 */
8741 if (!igrab(inode)) {
8742 redirty_page_for_writepage(wbc, page);
8743 return AOP_WRITEPAGE_ACTIVATE;
8744 }
d1310b2e 8745 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8746 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8747 btrfs_add_delayed_iput(inode);
8748 return ret;
9ebefb18
CM
8749}
8750
48a3b636
ES
8751static int btrfs_writepages(struct address_space *mapping,
8752 struct writeback_control *wbc)
b293f02e 8753{
d1310b2e 8754 struct extent_io_tree *tree;
771ed689 8755
d1310b2e 8756 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8757 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8758}
8759
3ab2fb5a
CM
8760static int
8761btrfs_readpages(struct file *file, struct address_space *mapping,
8762 struct list_head *pages, unsigned nr_pages)
8763{
d1310b2e
CM
8764 struct extent_io_tree *tree;
8765 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8766 return extent_readpages(tree, mapping, pages, nr_pages,
8767 btrfs_get_extent);
8768}
e6dcd2dc 8769static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8770{
d1310b2e
CM
8771 struct extent_io_tree *tree;
8772 struct extent_map_tree *map;
a52d9a80 8773 int ret;
8c2383c3 8774
d1310b2e
CM
8775 tree = &BTRFS_I(page->mapping->host)->io_tree;
8776 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8777 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8778 if (ret == 1) {
8779 ClearPagePrivate(page);
8780 set_page_private(page, 0);
09cbfeaf 8781 put_page(page);
39279cc3 8782 }
a52d9a80 8783 return ret;
39279cc3
CM
8784}
8785
e6dcd2dc
CM
8786static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8787{
98509cfc
CM
8788 if (PageWriteback(page) || PageDirty(page))
8789 return 0;
b335b003 8790 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8791}
8792
d47992f8
LC
8793static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8794 unsigned int length)
39279cc3 8795{
5fd02043 8796 struct inode *inode = page->mapping->host;
d1310b2e 8797 struct extent_io_tree *tree;
e6dcd2dc 8798 struct btrfs_ordered_extent *ordered;
2ac55d41 8799 struct extent_state *cached_state = NULL;
e6dcd2dc 8800 u64 page_start = page_offset(page);
09cbfeaf 8801 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8802 u64 start;
8803 u64 end;
131e404a 8804 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8805
8b62b72b
CM
8806 /*
8807 * we have the page locked, so new writeback can't start,
8808 * and the dirty bit won't be cleared while we are here.
8809 *
8810 * Wait for IO on this page so that we can safely clear
8811 * the PagePrivate2 bit and do ordered accounting
8812 */
e6dcd2dc 8813 wait_on_page_writeback(page);
8b62b72b 8814
5fd02043 8815 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8816 if (offset) {
8817 btrfs_releasepage(page, GFP_NOFS);
8818 return;
8819 }
131e404a
FDBM
8820
8821 if (!inode_evicting)
ff13db41 8822 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8823again:
8824 start = page_start;
8825 ordered = btrfs_lookup_ordered_range(inode, start,
8826 page_end - start + 1);
e6dcd2dc 8827 if (ordered) {
dbfdb6d1 8828 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8829 /*
8830 * IO on this page will never be started, so we need
8831 * to account for any ordered extents now
8832 */
131e404a 8833 if (!inode_evicting)
dbfdb6d1 8834 clear_extent_bit(tree, start, end,
131e404a
FDBM
8835 EXTENT_DIRTY | EXTENT_DELALLOC |
8836 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8837 EXTENT_DEFRAG, 1, 0, &cached_state,
8838 GFP_NOFS);
8b62b72b
CM
8839 /*
8840 * whoever cleared the private bit is responsible
8841 * for the finish_ordered_io
8842 */
77cef2ec
JB
8843 if (TestClearPagePrivate2(page)) {
8844 struct btrfs_ordered_inode_tree *tree;
8845 u64 new_len;
8846
8847 tree = &BTRFS_I(inode)->ordered_tree;
8848
8849 spin_lock_irq(&tree->lock);
8850 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8851 new_len = start - ordered->file_offset;
77cef2ec
JB
8852 if (new_len < ordered->truncated_len)
8853 ordered->truncated_len = new_len;
8854 spin_unlock_irq(&tree->lock);
8855
8856 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8857 start,
8858 end - start + 1, 1))
77cef2ec 8859 btrfs_finish_ordered_io(ordered);
8b62b72b 8860 }
e6dcd2dc 8861 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8862 if (!inode_evicting) {
8863 cached_state = NULL;
dbfdb6d1 8864 lock_extent_bits(tree, start, end,
131e404a
FDBM
8865 &cached_state);
8866 }
dbfdb6d1
CR
8867
8868 start = end + 1;
8869 if (start < page_end)
8870 goto again;
131e404a
FDBM
8871 }
8872
b9d0b389
QW
8873 /*
8874 * Qgroup reserved space handler
8875 * Page here will be either
8876 * 1) Already written to disk
8877 * In this case, its reserved space is released from data rsv map
8878 * and will be freed by delayed_ref handler finally.
8879 * So even we call qgroup_free_data(), it won't decrease reserved
8880 * space.
8881 * 2) Not written to disk
8882 * This means the reserved space should be freed here.
8883 */
09cbfeaf 8884 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
131e404a
FDBM
8885 if (!inode_evicting) {
8886 clear_extent_bit(tree, page_start, page_end,
8887 EXTENT_LOCKED | EXTENT_DIRTY |
8888 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8889 EXTENT_DEFRAG, 1, 1,
8890 &cached_state, GFP_NOFS);
8891
8892 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8893 }
e6dcd2dc 8894
4a096752 8895 ClearPageChecked(page);
9ad6b7bc 8896 if (PagePrivate(page)) {
9ad6b7bc
CM
8897 ClearPagePrivate(page);
8898 set_page_private(page, 0);
09cbfeaf 8899 put_page(page);
9ad6b7bc 8900 }
39279cc3
CM
8901}
8902
9ebefb18
CM
8903/*
8904 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8905 * called from a page fault handler when a page is first dirtied. Hence we must
8906 * be careful to check for EOF conditions here. We set the page up correctly
8907 * for a written page which means we get ENOSPC checking when writing into
8908 * holes and correct delalloc and unwritten extent mapping on filesystems that
8909 * support these features.
8910 *
8911 * We are not allowed to take the i_mutex here so we have to play games to
8912 * protect against truncate races as the page could now be beyond EOF. Because
8913 * vmtruncate() writes the inode size before removing pages, once we have the
8914 * page lock we can determine safely if the page is beyond EOF. If it is not
8915 * beyond EOF, then the page is guaranteed safe against truncation until we
8916 * unlock the page.
8917 */
c2ec175c 8918int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8919{
c2ec175c 8920 struct page *page = vmf->page;
496ad9aa 8921 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8922 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8923 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8924 struct btrfs_ordered_extent *ordered;
2ac55d41 8925 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8926 char *kaddr;
8927 unsigned long zero_start;
9ebefb18 8928 loff_t size;
1832a6d5 8929 int ret;
9998eb70 8930 int reserved = 0;
d0b7da88 8931 u64 reserved_space;
a52d9a80 8932 u64 page_start;
e6dcd2dc 8933 u64 page_end;
d0b7da88
CR
8934 u64 end;
8935
09cbfeaf 8936 reserved_space = PAGE_SIZE;
9ebefb18 8937
b2b5ef5c 8938 sb_start_pagefault(inode->i_sb);
df480633 8939 page_start = page_offset(page);
09cbfeaf 8940 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8941 end = page_end;
df480633 8942
d0b7da88
CR
8943 /*
8944 * Reserving delalloc space after obtaining the page lock can lead to
8945 * deadlock. For example, if a dirty page is locked by this function
8946 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8947 * dirty page write out, then the btrfs_writepage() function could
8948 * end up waiting indefinitely to get a lock on the page currently
8949 * being processed by btrfs_page_mkwrite() function.
8950 */
7cf5b976 8951 ret = btrfs_delalloc_reserve_space(inode, page_start,
d0b7da88 8952 reserved_space);
9998eb70 8953 if (!ret) {
e41f941a 8954 ret = file_update_time(vma->vm_file);
9998eb70
CM
8955 reserved = 1;
8956 }
56a76f82
NP
8957 if (ret) {
8958 if (ret == -ENOMEM)
8959 ret = VM_FAULT_OOM;
8960 else /* -ENOSPC, -EIO, etc */
8961 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8962 if (reserved)
8963 goto out;
8964 goto out_noreserve;
56a76f82 8965 }
1832a6d5 8966
56a76f82 8967 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8968again:
9ebefb18 8969 lock_page(page);
9ebefb18 8970 size = i_size_read(inode);
a52d9a80 8971
9ebefb18 8972 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8973 (page_start >= size)) {
9ebefb18
CM
8974 /* page got truncated out from underneath us */
8975 goto out_unlock;
8976 }
e6dcd2dc
CM
8977 wait_on_page_writeback(page);
8978
ff13db41 8979 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8980 set_page_extent_mapped(page);
8981
eb84ae03
CM
8982 /*
8983 * we can't set the delalloc bits if there are pending ordered
8984 * extents. Drop our locks and wait for them to finish
8985 */
d0b7da88 8986 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
e6dcd2dc 8987 if (ordered) {
2ac55d41
JB
8988 unlock_extent_cached(io_tree, page_start, page_end,
8989 &cached_state, GFP_NOFS);
e6dcd2dc 8990 unlock_page(page);
eb84ae03 8991 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8992 btrfs_put_ordered_extent(ordered);
8993 goto again;
8994 }
8995
09cbfeaf 8996 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
d0b7da88 8997 reserved_space = round_up(size - page_start, root->sectorsize);
09cbfeaf 8998 if (reserved_space < PAGE_SIZE) {
d0b7da88
CR
8999 end = page_start + reserved_space - 1;
9000 spin_lock(&BTRFS_I(inode)->lock);
9001 BTRFS_I(inode)->outstanding_extents++;
9002 spin_unlock(&BTRFS_I(inode)->lock);
9003 btrfs_delalloc_release_space(inode, page_start,
09cbfeaf 9004 PAGE_SIZE - reserved_space);
d0b7da88
CR
9005 }
9006 }
9007
fbf19087
JB
9008 /*
9009 * XXX - page_mkwrite gets called every time the page is dirtied, even
9010 * if it was already dirty, so for space accounting reasons we need to
9011 * clear any delalloc bits for the range we are fixing to save. There
9012 * is probably a better way to do this, but for now keep consistent with
9013 * prepare_pages in the normal write path.
9014 */
d0b7da88 9015 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9016 EXTENT_DIRTY | EXTENT_DELALLOC |
9017 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9018 0, 0, &cached_state, GFP_NOFS);
fbf19087 9019
d0b7da88 9020 ret = btrfs_set_extent_delalloc(inode, page_start, end,
2ac55d41 9021 &cached_state);
9ed74f2d 9022 if (ret) {
2ac55d41
JB
9023 unlock_extent_cached(io_tree, page_start, page_end,
9024 &cached_state, GFP_NOFS);
9ed74f2d
JB
9025 ret = VM_FAULT_SIGBUS;
9026 goto out_unlock;
9027 }
e6dcd2dc 9028 ret = 0;
9ebefb18
CM
9029
9030 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9031 if (page_start + PAGE_SIZE > size)
9032 zero_start = size & ~PAGE_MASK;
9ebefb18 9033 else
09cbfeaf 9034 zero_start = PAGE_SIZE;
9ebefb18 9035
09cbfeaf 9036 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9037 kaddr = kmap(page);
09cbfeaf 9038 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9039 flush_dcache_page(page);
9040 kunmap(page);
9041 }
247e743c 9042 ClearPageChecked(page);
e6dcd2dc 9043 set_page_dirty(page);
50a9b214 9044 SetPageUptodate(page);
5a3f23d5 9045
257c62e1
CM
9046 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9047 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9048 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9049
2ac55d41 9050 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9051
9052out_unlock:
b2b5ef5c
JK
9053 if (!ret) {
9054 sb_end_pagefault(inode->i_sb);
50a9b214 9055 return VM_FAULT_LOCKED;
b2b5ef5c 9056 }
9ebefb18 9057 unlock_page(page);
1832a6d5 9058out:
d0b7da88 9059 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9998eb70 9060out_noreserve:
b2b5ef5c 9061 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
9062 return ret;
9063}
9064
a41ad394 9065static int btrfs_truncate(struct inode *inode)
39279cc3
CM
9066{
9067 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9068 struct btrfs_block_rsv *rsv;
a71754fc 9069 int ret = 0;
3893e33b 9070 int err = 0;
39279cc3 9071 struct btrfs_trans_handle *trans;
dbe674a9 9072 u64 mask = root->sectorsize - 1;
07127184 9073 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 9074
0ef8b726
JB
9075 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9076 (u64)-1);
9077 if (ret)
9078 return ret;
39279cc3 9079
fcb80c2a 9080 /*
01327610 9081 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9082 * 3 things going on here
9083 *
9084 * 1) We need to reserve space for our orphan item and the space to
9085 * delete our orphan item. Lord knows we don't want to have a dangling
9086 * orphan item because we didn't reserve space to remove it.
9087 *
9088 * 2) We need to reserve space to update our inode.
9089 *
9090 * 3) We need to have something to cache all the space that is going to
9091 * be free'd up by the truncate operation, but also have some slack
9092 * space reserved in case it uses space during the truncate (thank you
9093 * very much snapshotting).
9094 *
01327610 9095 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9096 * space doing the truncate, and we have no earthly idea how much space
01327610 9097 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9098 * doesn't end up using space reserved for updating the inode or
9099 * removing the orphan item. We also need to be able to stop the
9100 * transaction and start a new one, which means we need to be able to
9101 * update the inode several times, and we have no idea of knowing how
9102 * many times that will be, so we can't just reserve 1 item for the
01327610 9103 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9104 * Then there is the orphan item, which does indeed need to be held on
9105 * to for the whole operation, and we need nobody to touch this reserved
9106 * space except the orphan code.
9107 *
9108 * So that leaves us with
9109 *
9110 * 1) root->orphan_block_rsv - for the orphan deletion.
9111 * 2) rsv - for the truncate reservation, which we will steal from the
9112 * transaction reservation.
9113 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9114 * updating the inode.
9115 */
66d8f3dd 9116 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9117 if (!rsv)
9118 return -ENOMEM;
4a338542 9119 rsv->size = min_size;
ca7e70f5 9120 rsv->failfast = 1;
f0cd846e 9121
907cbceb 9122 /*
07127184 9123 * 1 for the truncate slack space
907cbceb
JB
9124 * 1 for updating the inode.
9125 */
f3fe820c 9126 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9127 if (IS_ERR(trans)) {
9128 err = PTR_ERR(trans);
9129 goto out;
9130 }
f0cd846e 9131
907cbceb
JB
9132 /* Migrate the slack space for the truncate to our reserve */
9133 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
25d609f8 9134 min_size, 0);
fcb80c2a 9135 BUG_ON(ret);
f0cd846e 9136
5dc562c5
JB
9137 /*
9138 * So if we truncate and then write and fsync we normally would just
9139 * write the extents that changed, which is a problem if we need to
9140 * first truncate that entire inode. So set this flag so we write out
9141 * all of the extents in the inode to the sync log so we're completely
9142 * safe.
9143 */
9144 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9145 trans->block_rsv = rsv;
907cbceb 9146
8082510e
YZ
9147 while (1) {
9148 ret = btrfs_truncate_inode_items(trans, root, inode,
9149 inode->i_size,
9150 BTRFS_EXTENT_DATA_KEY);
28ed1345 9151 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9152 err = ret;
8082510e 9153 break;
3893e33b 9154 }
39279cc3 9155
fcb80c2a 9156 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 9157 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9158 if (ret) {
9159 err = ret;
9160 break;
9161 }
ca7e70f5 9162
8082510e 9163 btrfs_end_transaction(trans, root);
b53d3f5d 9164 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
9165
9166 trans = btrfs_start_transaction(root, 2);
9167 if (IS_ERR(trans)) {
9168 ret = err = PTR_ERR(trans);
9169 trans = NULL;
9170 break;
9171 }
9172
9173 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
25d609f8 9174 rsv, min_size, 0);
ca7e70f5
JB
9175 BUG_ON(ret); /* shouldn't happen */
9176 trans->block_rsv = rsv;
8082510e
YZ
9177 }
9178
9179 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9180 trans->block_rsv = root->orphan_block_rsv;
8082510e 9181 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
9182 if (ret)
9183 err = ret;
8082510e
YZ
9184 }
9185
917c16b2
CM
9186 if (trans) {
9187 trans->block_rsv = &root->fs_info->trans_block_rsv;
9188 ret = btrfs_update_inode(trans, root, inode);
9189 if (ret && !err)
9190 err = ret;
7b128766 9191
7ad85bb7 9192 ret = btrfs_end_transaction(trans, root);
b53d3f5d 9193 btrfs_btree_balance_dirty(root);
917c16b2 9194 }
fcb80c2a
JB
9195out:
9196 btrfs_free_block_rsv(root, rsv);
9197
3893e33b
JB
9198 if (ret && !err)
9199 err = ret;
a41ad394 9200
3893e33b 9201 return err;
39279cc3
CM
9202}
9203
d352ac68
CM
9204/*
9205 * create a new subvolume directory/inode (helper for the ioctl).
9206 */
d2fb3437 9207int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9208 struct btrfs_root *new_root,
9209 struct btrfs_root *parent_root,
9210 u64 new_dirid)
39279cc3 9211{
39279cc3 9212 struct inode *inode;
76dda93c 9213 int err;
00e4e6b3 9214 u64 index = 0;
39279cc3 9215
12fc9d09
FA
9216 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9217 new_dirid, new_dirid,
9218 S_IFDIR | (~current_umask() & S_IRWXUGO),
9219 &index);
54aa1f4d 9220 if (IS_ERR(inode))
f46b5a66 9221 return PTR_ERR(inode);
39279cc3
CM
9222 inode->i_op = &btrfs_dir_inode_operations;
9223 inode->i_fop = &btrfs_dir_file_operations;
9224
bfe86848 9225 set_nlink(inode, 1);
dbe674a9 9226 btrfs_i_size_write(inode, 0);
b0d5d10f 9227 unlock_new_inode(inode);
3b96362c 9228
63541927
FDBM
9229 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9230 if (err)
9231 btrfs_err(new_root->fs_info,
351fd353 9232 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9233 new_root->root_key.objectid, err);
9234
76dda93c 9235 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9236
76dda93c 9237 iput(inode);
ce598979 9238 return err;
39279cc3
CM
9239}
9240
39279cc3
CM
9241struct inode *btrfs_alloc_inode(struct super_block *sb)
9242{
9243 struct btrfs_inode *ei;
2ead6ae7 9244 struct inode *inode;
39279cc3
CM
9245
9246 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9247 if (!ei)
9248 return NULL;
2ead6ae7
YZ
9249
9250 ei->root = NULL;
2ead6ae7 9251 ei->generation = 0;
15ee9bc7 9252 ei->last_trans = 0;
257c62e1 9253 ei->last_sub_trans = 0;
e02119d5 9254 ei->logged_trans = 0;
2ead6ae7 9255 ei->delalloc_bytes = 0;
47059d93 9256 ei->defrag_bytes = 0;
2ead6ae7
YZ
9257 ei->disk_i_size = 0;
9258 ei->flags = 0;
7709cde3 9259 ei->csum_bytes = 0;
2ead6ae7 9260 ei->index_cnt = (u64)-1;
67de1176 9261 ei->dir_index = 0;
2ead6ae7 9262 ei->last_unlink_trans = 0;
46d8bc34 9263 ei->last_log_commit = 0;
8089fe62 9264 ei->delayed_iput_count = 0;
2ead6ae7 9265
9e0baf60
JB
9266 spin_lock_init(&ei->lock);
9267 ei->outstanding_extents = 0;
9268 ei->reserved_extents = 0;
2ead6ae7 9269
72ac3c0d 9270 ei->runtime_flags = 0;
261507a0 9271 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9272
16cdcec7
MX
9273 ei->delayed_node = NULL;
9274
9cc97d64 9275 ei->i_otime.tv_sec = 0;
9276 ei->i_otime.tv_nsec = 0;
9277
2ead6ae7 9278 inode = &ei->vfs_inode;
a8067e02 9279 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
9280 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9281 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
9282 ei->io_tree.track_uptodate = 1;
9283 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9284 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9285 mutex_init(&ei->log_mutex);
f248679e 9286 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9287 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9288 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9289 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9290 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9291 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9292
9293 return inode;
39279cc3
CM
9294}
9295
aaedb55b
JB
9296#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9297void btrfs_test_destroy_inode(struct inode *inode)
9298{
9299 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9300 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9301}
9302#endif
9303
fa0d7e3d
NP
9304static void btrfs_i_callback(struct rcu_head *head)
9305{
9306 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9307 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9308}
9309
39279cc3
CM
9310void btrfs_destroy_inode(struct inode *inode)
9311{
e6dcd2dc 9312 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9313 struct btrfs_root *root = BTRFS_I(inode)->root;
9314
b3d9b7a3 9315 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9316 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
9317 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9318 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
9319 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9320 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9321 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9322
a6dbd429
JB
9323 /*
9324 * This can happen where we create an inode, but somebody else also
9325 * created the same inode and we need to destroy the one we already
9326 * created.
9327 */
9328 if (!root)
9329 goto free;
9330
8a35d95f
JB
9331 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9332 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 9333 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 9334 btrfs_ino(inode));
8a35d95f 9335 atomic_dec(&root->orphan_inodes);
7b128766 9336 }
7b128766 9337
d397712b 9338 while (1) {
e6dcd2dc
CM
9339 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9340 if (!ordered)
9341 break;
9342 else {
c2cf52eb 9343 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 9344 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9345 btrfs_remove_ordered_extent(inode, ordered);
9346 btrfs_put_ordered_extent(ordered);
9347 btrfs_put_ordered_extent(ordered);
9348 }
9349 }
56fa9d07 9350 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9351 inode_tree_del(inode);
5b21f2ed 9352 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 9353free:
fa0d7e3d 9354 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9355}
9356
45321ac5 9357int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9358{
9359 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9360
6379ef9f
NA
9361 if (root == NULL)
9362 return 1;
9363
fa6ac876 9364 /* the snap/subvol tree is on deleting */
69e9c6c6 9365 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9366 return 1;
76dda93c 9367 else
45321ac5 9368 return generic_drop_inode(inode);
76dda93c
YZ
9369}
9370
0ee0fda0 9371static void init_once(void *foo)
39279cc3
CM
9372{
9373 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9374
9375 inode_init_once(&ei->vfs_inode);
9376}
9377
9378void btrfs_destroy_cachep(void)
9379{
8c0a8537
KS
9380 /*
9381 * Make sure all delayed rcu free inodes are flushed before we
9382 * destroy cache.
9383 */
9384 rcu_barrier();
5598e900
KM
9385 kmem_cache_destroy(btrfs_inode_cachep);
9386 kmem_cache_destroy(btrfs_trans_handle_cachep);
9387 kmem_cache_destroy(btrfs_transaction_cachep);
9388 kmem_cache_destroy(btrfs_path_cachep);
9389 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9390}
9391
9392int btrfs_init_cachep(void)
9393{
837e1972 9394 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9395 sizeof(struct btrfs_inode), 0,
5d097056
VD
9396 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9397 init_once);
39279cc3
CM
9398 if (!btrfs_inode_cachep)
9399 goto fail;
9601e3f6 9400
837e1972 9401 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9402 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9403 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9404 if (!btrfs_trans_handle_cachep)
9405 goto fail;
9601e3f6 9406
837e1972 9407 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6 9408 sizeof(struct btrfs_transaction), 0,
fba4b697 9409 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9410 if (!btrfs_transaction_cachep)
9411 goto fail;
9601e3f6 9412
837e1972 9413 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9414 sizeof(struct btrfs_path), 0,
fba4b697 9415 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9416 if (!btrfs_path_cachep)
9417 goto fail;
9601e3f6 9418
837e1972 9419 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9420 sizeof(struct btrfs_free_space), 0,
fba4b697 9421 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9422 if (!btrfs_free_space_cachep)
9423 goto fail;
9424
39279cc3
CM
9425 return 0;
9426fail:
9427 btrfs_destroy_cachep();
9428 return -ENOMEM;
9429}
9430
9431static int btrfs_getattr(struct vfsmount *mnt,
9432 struct dentry *dentry, struct kstat *stat)
9433{
df0af1a5 9434 u64 delalloc_bytes;
2b0143b5 9435 struct inode *inode = d_inode(dentry);
fadc0d8b
DS
9436 u32 blocksize = inode->i_sb->s_blocksize;
9437
39279cc3 9438 generic_fillattr(inode, stat);
0ee5dc67 9439 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9440
9441 spin_lock(&BTRFS_I(inode)->lock);
9442 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9443 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9444 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9445 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9446 return 0;
9447}
9448
cdd1fedf
DF
9449static int btrfs_rename_exchange(struct inode *old_dir,
9450 struct dentry *old_dentry,
9451 struct inode *new_dir,
9452 struct dentry *new_dentry)
9453{
9454 struct btrfs_trans_handle *trans;
9455 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9456 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9457 struct inode *new_inode = new_dentry->d_inode;
9458 struct inode *old_inode = old_dentry->d_inode;
9459 struct timespec ctime = CURRENT_TIME;
9460 struct dentry *parent;
9461 u64 old_ino = btrfs_ino(old_inode);
9462 u64 new_ino = btrfs_ino(new_inode);
9463 u64 old_idx = 0;
9464 u64 new_idx = 0;
9465 u64 root_objectid;
9466 int ret;
86e8aa0e
FM
9467 bool root_log_pinned = false;
9468 bool dest_log_pinned = false;
cdd1fedf
DF
9469
9470 /* we only allow rename subvolume link between subvolumes */
9471 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9472 return -EXDEV;
9473
9474 /* close the race window with snapshot create/destroy ioctl */
9475 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9476 down_read(&root->fs_info->subvol_sem);
9477 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9478 down_read(&dest->fs_info->subvol_sem);
9479
9480 /*
9481 * We want to reserve the absolute worst case amount of items. So if
9482 * both inodes are subvols and we need to unlink them then that would
9483 * require 4 item modifications, but if they are both normal inodes it
9484 * would require 5 item modifications, so we'll assume their normal
9485 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9486 * should cover the worst case number of items we'll modify.
9487 */
9488 trans = btrfs_start_transaction(root, 12);
9489 if (IS_ERR(trans)) {
9490 ret = PTR_ERR(trans);
9491 goto out_notrans;
9492 }
9493
9494 /*
9495 * We need to find a free sequence number both in the source and
9496 * in the destination directory for the exchange.
9497 */
9498 ret = btrfs_set_inode_index(new_dir, &old_idx);
9499 if (ret)
9500 goto out_fail;
9501 ret = btrfs_set_inode_index(old_dir, &new_idx);
9502 if (ret)
9503 goto out_fail;
9504
9505 BTRFS_I(old_inode)->dir_index = 0ULL;
9506 BTRFS_I(new_inode)->dir_index = 0ULL;
9507
9508 /* Reference for the source. */
9509 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9510 /* force full log commit if subvolume involved. */
9511 btrfs_set_log_full_commit(root->fs_info, trans);
9512 } else {
376e5a57
FM
9513 btrfs_pin_log_trans(root);
9514 root_log_pinned = true;
cdd1fedf
DF
9515 ret = btrfs_insert_inode_ref(trans, dest,
9516 new_dentry->d_name.name,
9517 new_dentry->d_name.len,
9518 old_ino,
9519 btrfs_ino(new_dir), old_idx);
9520 if (ret)
9521 goto out_fail;
cdd1fedf
DF
9522 }
9523
9524 /* And now for the dest. */
9525 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9526 /* force full log commit if subvolume involved. */
9527 btrfs_set_log_full_commit(dest->fs_info, trans);
9528 } else {
376e5a57
FM
9529 btrfs_pin_log_trans(dest);
9530 dest_log_pinned = true;
cdd1fedf
DF
9531 ret = btrfs_insert_inode_ref(trans, root,
9532 old_dentry->d_name.name,
9533 old_dentry->d_name.len,
9534 new_ino,
9535 btrfs_ino(old_dir), new_idx);
9536 if (ret)
9537 goto out_fail;
cdd1fedf
DF
9538 }
9539
9540 /* Update inode version and ctime/mtime. */
9541 inode_inc_iversion(old_dir);
9542 inode_inc_iversion(new_dir);
9543 inode_inc_iversion(old_inode);
9544 inode_inc_iversion(new_inode);
9545 old_dir->i_ctime = old_dir->i_mtime = ctime;
9546 new_dir->i_ctime = new_dir->i_mtime = ctime;
9547 old_inode->i_ctime = ctime;
9548 new_inode->i_ctime = ctime;
9549
9550 if (old_dentry->d_parent != new_dentry->d_parent) {
9551 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9552 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9553 }
9554
9555 /* src is a subvolume */
9556 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9557 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9558 ret = btrfs_unlink_subvol(trans, root, old_dir,
9559 root_objectid,
9560 old_dentry->d_name.name,
9561 old_dentry->d_name.len);
9562 } else { /* src is an inode */
9563 ret = __btrfs_unlink_inode(trans, root, old_dir,
9564 old_dentry->d_inode,
9565 old_dentry->d_name.name,
9566 old_dentry->d_name.len);
9567 if (!ret)
9568 ret = btrfs_update_inode(trans, root, old_inode);
9569 }
9570 if (ret) {
9571 btrfs_abort_transaction(trans, root, ret);
9572 goto out_fail;
9573 }
9574
9575 /* dest is a subvolume */
9576 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9577 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9578 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9579 root_objectid,
9580 new_dentry->d_name.name,
9581 new_dentry->d_name.len);
9582 } else { /* dest is an inode */
9583 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9584 new_dentry->d_inode,
9585 new_dentry->d_name.name,
9586 new_dentry->d_name.len);
9587 if (!ret)
9588 ret = btrfs_update_inode(trans, dest, new_inode);
9589 }
9590 if (ret) {
9591 btrfs_abort_transaction(trans, root, ret);
9592 goto out_fail;
9593 }
9594
9595 ret = btrfs_add_link(trans, new_dir, old_inode,
9596 new_dentry->d_name.name,
9597 new_dentry->d_name.len, 0, old_idx);
9598 if (ret) {
9599 btrfs_abort_transaction(trans, root, ret);
9600 goto out_fail;
9601 }
9602
9603 ret = btrfs_add_link(trans, old_dir, new_inode,
9604 old_dentry->d_name.name,
9605 old_dentry->d_name.len, 0, new_idx);
9606 if (ret) {
9607 btrfs_abort_transaction(trans, root, ret);
9608 goto out_fail;
9609 }
9610
9611 if (old_inode->i_nlink == 1)
9612 BTRFS_I(old_inode)->dir_index = old_idx;
9613 if (new_inode->i_nlink == 1)
9614 BTRFS_I(new_inode)->dir_index = new_idx;
9615
86e8aa0e 9616 if (root_log_pinned) {
cdd1fedf
DF
9617 parent = new_dentry->d_parent;
9618 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9619 btrfs_end_log_trans(root);
86e8aa0e 9620 root_log_pinned = false;
cdd1fedf 9621 }
86e8aa0e 9622 if (dest_log_pinned) {
cdd1fedf
DF
9623 parent = old_dentry->d_parent;
9624 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9625 btrfs_end_log_trans(dest);
86e8aa0e 9626 dest_log_pinned = false;
cdd1fedf
DF
9627 }
9628out_fail:
86e8aa0e
FM
9629 /*
9630 * If we have pinned a log and an error happened, we unpin tasks
9631 * trying to sync the log and force them to fallback to a transaction
9632 * commit if the log currently contains any of the inodes involved in
9633 * this rename operation (to ensure we do not persist a log with an
9634 * inconsistent state for any of these inodes or leading to any
9635 * inconsistencies when replayed). If the transaction was aborted, the
9636 * abortion reason is propagated to userspace when attempting to commit
9637 * the transaction. If the log does not contain any of these inodes, we
9638 * allow the tasks to sync it.
9639 */
9640 if (ret && (root_log_pinned || dest_log_pinned)) {
9641 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9642 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9643 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9644 (new_inode &&
9645 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9646 btrfs_set_log_full_commit(root->fs_info, trans);
9647
9648 if (root_log_pinned) {
9649 btrfs_end_log_trans(root);
9650 root_log_pinned = false;
9651 }
9652 if (dest_log_pinned) {
9653 btrfs_end_log_trans(dest);
9654 dest_log_pinned = false;
9655 }
9656 }
cdd1fedf
DF
9657 ret = btrfs_end_transaction(trans, root);
9658out_notrans:
9659 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9660 up_read(&dest->fs_info->subvol_sem);
9661 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9662 up_read(&root->fs_info->subvol_sem);
9663
9664 return ret;
9665}
9666
9667static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9668 struct btrfs_root *root,
9669 struct inode *dir,
9670 struct dentry *dentry)
9671{
9672 int ret;
9673 struct inode *inode;
9674 u64 objectid;
9675 u64 index;
9676
9677 ret = btrfs_find_free_ino(root, &objectid);
9678 if (ret)
9679 return ret;
9680
9681 inode = btrfs_new_inode(trans, root, dir,
9682 dentry->d_name.name,
9683 dentry->d_name.len,
9684 btrfs_ino(dir),
9685 objectid,
9686 S_IFCHR | WHITEOUT_MODE,
9687 &index);
9688
9689 if (IS_ERR(inode)) {
9690 ret = PTR_ERR(inode);
9691 return ret;
9692 }
9693
9694 inode->i_op = &btrfs_special_inode_operations;
9695 init_special_inode(inode, inode->i_mode,
9696 WHITEOUT_DEV);
9697
9698 ret = btrfs_init_inode_security(trans, inode, dir,
9699 &dentry->d_name);
9700 if (ret)
c9901618 9701 goto out;
cdd1fedf
DF
9702
9703 ret = btrfs_add_nondir(trans, dir, dentry,
9704 inode, 0, index);
9705 if (ret)
c9901618 9706 goto out;
cdd1fedf
DF
9707
9708 ret = btrfs_update_inode(trans, root, inode);
c9901618 9709out:
cdd1fedf 9710 unlock_new_inode(inode);
c9901618
FM
9711 if (ret)
9712 inode_dec_link_count(inode);
cdd1fedf
DF
9713 iput(inode);
9714
c9901618 9715 return ret;
cdd1fedf
DF
9716}
9717
d397712b 9718static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9719 struct inode *new_dir, struct dentry *new_dentry,
9720 unsigned int flags)
39279cc3
CM
9721{
9722 struct btrfs_trans_handle *trans;
5062af35 9723 unsigned int trans_num_items;
39279cc3 9724 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9725 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9726 struct inode *new_inode = d_inode(new_dentry);
9727 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9728 u64 index = 0;
4df27c4d 9729 u64 root_objectid;
39279cc3 9730 int ret;
33345d01 9731 u64 old_ino = btrfs_ino(old_inode);
3dc9e8f7 9732 bool log_pinned = false;
39279cc3 9733
33345d01 9734 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9735 return -EPERM;
9736
4df27c4d 9737 /* we only allow rename subvolume link between subvolumes */
33345d01 9738 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9739 return -EXDEV;
9740
33345d01
LZ
9741 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9742 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9743 return -ENOTEMPTY;
5f39d397 9744
4df27c4d
YZ
9745 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9746 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9747 return -ENOTEMPTY;
9c52057c
CM
9748
9749
9750 /* check for collisions, even if the name isn't there */
4871c158 9751 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9752 new_dentry->d_name.name,
9753 new_dentry->d_name.len);
9754
9755 if (ret) {
9756 if (ret == -EEXIST) {
9757 /* we shouldn't get
9758 * eexist without a new_inode */
fae7f21c 9759 if (WARN_ON(!new_inode)) {
9c52057c
CM
9760 return ret;
9761 }
9762 } else {
9763 /* maybe -EOVERFLOW */
9764 return ret;
9765 }
9766 }
9767 ret = 0;
9768
5a3f23d5 9769 /*
8d875f95
CM
9770 * we're using rename to replace one file with another. Start IO on it
9771 * now so we don't add too much work to the end of the transaction
5a3f23d5 9772 */
8d875f95 9773 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9774 filemap_flush(old_inode->i_mapping);
9775
76dda93c 9776 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9777 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9778 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
9779 /*
9780 * We want to reserve the absolute worst case amount of items. So if
9781 * both inodes are subvols and we need to unlink them then that would
9782 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9783 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9784 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9785 * should cover the worst case number of items we'll modify.
5062af35
FM
9786 * If our rename has the whiteout flag, we need more 5 units for the
9787 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9788 * when selinux is enabled).
a22285a6 9789 */
5062af35
FM
9790 trans_num_items = 11;
9791 if (flags & RENAME_WHITEOUT)
9792 trans_num_items += 5;
9793 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9794 if (IS_ERR(trans)) {
cdd1fedf
DF
9795 ret = PTR_ERR(trans);
9796 goto out_notrans;
9797 }
76dda93c 9798
4df27c4d
YZ
9799 if (dest != root)
9800 btrfs_record_root_in_trans(trans, dest);
5f39d397 9801
a5719521
YZ
9802 ret = btrfs_set_inode_index(new_dir, &index);
9803 if (ret)
9804 goto out_fail;
5a3f23d5 9805
67de1176 9806 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9807 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9808 /* force full log commit if subvolume involved. */
995946dd 9809 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 9810 } else {
c4aba954
FM
9811 btrfs_pin_log_trans(root);
9812 log_pinned = true;
a5719521
YZ
9813 ret = btrfs_insert_inode_ref(trans, dest,
9814 new_dentry->d_name.name,
9815 new_dentry->d_name.len,
33345d01
LZ
9816 old_ino,
9817 btrfs_ino(new_dir), index);
a5719521
YZ
9818 if (ret)
9819 goto out_fail;
4df27c4d 9820 }
5a3f23d5 9821
0c4d2d95
JB
9822 inode_inc_iversion(old_dir);
9823 inode_inc_iversion(new_dir);
9824 inode_inc_iversion(old_inode);
04b285f3
DD
9825 old_dir->i_ctime = old_dir->i_mtime =
9826 new_dir->i_ctime = new_dir->i_mtime =
9827 old_inode->i_ctime = current_fs_time(old_dir->i_sb);
5f39d397 9828
12fcfd22
CM
9829 if (old_dentry->d_parent != new_dentry->d_parent)
9830 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9831
33345d01 9832 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
9833 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9834 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9835 old_dentry->d_name.name,
9836 old_dentry->d_name.len);
9837 } else {
92986796 9838 ret = __btrfs_unlink_inode(trans, root, old_dir,
2b0143b5 9839 d_inode(old_dentry),
92986796
AV
9840 old_dentry->d_name.name,
9841 old_dentry->d_name.len);
9842 if (!ret)
9843 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9844 }
79787eaa
JM
9845 if (ret) {
9846 btrfs_abort_transaction(trans, root, ret);
9847 goto out_fail;
9848 }
39279cc3
CM
9849
9850 if (new_inode) {
0c4d2d95 9851 inode_inc_iversion(new_inode);
04b285f3 9852 new_inode->i_ctime = current_fs_time(new_inode->i_sb);
33345d01 9853 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
9854 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9855 root_objectid = BTRFS_I(new_inode)->location.objectid;
9856 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9857 root_objectid,
9858 new_dentry->d_name.name,
9859 new_dentry->d_name.len);
9860 BUG_ON(new_inode->i_nlink == 0);
9861 } else {
9862 ret = btrfs_unlink_inode(trans, dest, new_dir,
2b0143b5 9863 d_inode(new_dentry),
4df27c4d
YZ
9864 new_dentry->d_name.name,
9865 new_dentry->d_name.len);
9866 }
4ef31a45 9867 if (!ret && new_inode->i_nlink == 0)
2b0143b5 9868 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
79787eaa
JM
9869 if (ret) {
9870 btrfs_abort_transaction(trans, root, ret);
9871 goto out_fail;
9872 }
39279cc3 9873 }
aec7477b 9874
4df27c4d
YZ
9875 ret = btrfs_add_link(trans, new_dir, old_inode,
9876 new_dentry->d_name.name,
a5719521 9877 new_dentry->d_name.len, 0, index);
79787eaa
JM
9878 if (ret) {
9879 btrfs_abort_transaction(trans, root, ret);
9880 goto out_fail;
9881 }
39279cc3 9882
67de1176
MX
9883 if (old_inode->i_nlink == 1)
9884 BTRFS_I(old_inode)->dir_index = index;
9885
3dc9e8f7 9886 if (log_pinned) {
10d9f309 9887 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9888
6a912213 9889 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d 9890 btrfs_end_log_trans(root);
3dc9e8f7 9891 log_pinned = false;
4df27c4d 9892 }
cdd1fedf
DF
9893
9894 if (flags & RENAME_WHITEOUT) {
9895 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9896 old_dentry);
9897
9898 if (ret) {
9899 btrfs_abort_transaction(trans, root, ret);
9900 goto out_fail;
9901 }
4df27c4d 9902 }
39279cc3 9903out_fail:
3dc9e8f7
FM
9904 /*
9905 * If we have pinned the log and an error happened, we unpin tasks
9906 * trying to sync the log and force them to fallback to a transaction
9907 * commit if the log currently contains any of the inodes involved in
9908 * this rename operation (to ensure we do not persist a log with an
9909 * inconsistent state for any of these inodes or leading to any
9910 * inconsistencies when replayed). If the transaction was aborted, the
9911 * abortion reason is propagated to userspace when attempting to commit
9912 * the transaction. If the log does not contain any of these inodes, we
9913 * allow the tasks to sync it.
9914 */
9915 if (ret && log_pinned) {
9916 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9917 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9918 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9919 (new_inode &&
9920 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9921 btrfs_set_log_full_commit(root->fs_info, trans);
9922
9923 btrfs_end_log_trans(root);
9924 log_pinned = false;
9925 }
7ad85bb7 9926 btrfs_end_transaction(trans, root);
b44c59a8 9927out_notrans:
33345d01 9928 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 9929 up_read(&root->fs_info->subvol_sem);
9ed74f2d 9930
39279cc3
CM
9931 return ret;
9932}
9933
80ace85c
MS
9934static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9935 struct inode *new_dir, struct dentry *new_dentry,
9936 unsigned int flags)
9937{
cdd1fedf 9938 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9939 return -EINVAL;
9940
cdd1fedf
DF
9941 if (flags & RENAME_EXCHANGE)
9942 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9943 new_dentry);
9944
9945 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9946}
9947
8ccf6f19
MX
9948static void btrfs_run_delalloc_work(struct btrfs_work *work)
9949{
9950 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9951 struct inode *inode;
8ccf6f19
MX
9952
9953 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9954 work);
9f23e289 9955 inode = delalloc_work->inode;
30424601
DS
9956 filemap_flush(inode->i_mapping);
9957 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9958 &BTRFS_I(inode)->runtime_flags))
9f23e289 9959 filemap_flush(inode->i_mapping);
8ccf6f19
MX
9960
9961 if (delalloc_work->delay_iput)
9f23e289 9962 btrfs_add_delayed_iput(inode);
8ccf6f19 9963 else
9f23e289 9964 iput(inode);
8ccf6f19
MX
9965 complete(&delalloc_work->completion);
9966}
9967
9968struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 9969 int delay_iput)
8ccf6f19
MX
9970{
9971 struct btrfs_delalloc_work *work;
9972
100d5702 9973 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9974 if (!work)
9975 return NULL;
9976
9977 init_completion(&work->completion);
9978 INIT_LIST_HEAD(&work->list);
9979 work->inode = inode;
8ccf6f19 9980 work->delay_iput = delay_iput;
9e0af237
LB
9981 WARN_ON_ONCE(!inode);
9982 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9983 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9984
9985 return work;
9986}
9987
9988void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9989{
9990 wait_for_completion(&work->completion);
100d5702 9991 kfree(work);
8ccf6f19
MX
9992}
9993
d352ac68
CM
9994/*
9995 * some fairly slow code that needs optimization. This walks the list
9996 * of all the inodes with pending delalloc and forces them to disk.
9997 */
6c255e67
MX
9998static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9999 int nr)
ea8c2819 10000{
ea8c2819 10001 struct btrfs_inode *binode;
5b21f2ed 10002 struct inode *inode;
8ccf6f19
MX
10003 struct btrfs_delalloc_work *work, *next;
10004 struct list_head works;
1eafa6c7 10005 struct list_head splice;
8ccf6f19 10006 int ret = 0;
ea8c2819 10007
8ccf6f19 10008 INIT_LIST_HEAD(&works);
1eafa6c7 10009 INIT_LIST_HEAD(&splice);
63607cc8 10010
573bfb72 10011 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10012 spin_lock(&root->delalloc_lock);
10013 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10014 while (!list_empty(&splice)) {
10015 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10016 delalloc_inodes);
1eafa6c7 10017
eb73c1b7
MX
10018 list_move_tail(&binode->delalloc_inodes,
10019 &root->delalloc_inodes);
5b21f2ed 10020 inode = igrab(&binode->vfs_inode);
df0af1a5 10021 if (!inode) {
eb73c1b7 10022 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10023 continue;
df0af1a5 10024 }
eb73c1b7 10025 spin_unlock(&root->delalloc_lock);
1eafa6c7 10026
651d494a 10027 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10028 if (!work) {
f4ab9ea7
JB
10029 if (delay_iput)
10030 btrfs_add_delayed_iput(inode);
10031 else
10032 iput(inode);
1eafa6c7 10033 ret = -ENOMEM;
a1ecaabb 10034 goto out;
5b21f2ed 10035 }
1eafa6c7 10036 list_add_tail(&work->list, &works);
a44903ab
QW
10037 btrfs_queue_work(root->fs_info->flush_workers,
10038 &work->work);
6c255e67
MX
10039 ret++;
10040 if (nr != -1 && ret >= nr)
a1ecaabb 10041 goto out;
5b21f2ed 10042 cond_resched();
eb73c1b7 10043 spin_lock(&root->delalloc_lock);
ea8c2819 10044 }
eb73c1b7 10045 spin_unlock(&root->delalloc_lock);
8c8bee1d 10046
a1ecaabb 10047out:
eb73c1b7
MX
10048 list_for_each_entry_safe(work, next, &works, list) {
10049 list_del_init(&work->list);
10050 btrfs_wait_and_free_delalloc_work(work);
10051 }
10052
10053 if (!list_empty_careful(&splice)) {
10054 spin_lock(&root->delalloc_lock);
10055 list_splice_tail(&splice, &root->delalloc_inodes);
10056 spin_unlock(&root->delalloc_lock);
10057 }
573bfb72 10058 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10059 return ret;
10060}
1eafa6c7 10061
eb73c1b7
MX
10062int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10063{
10064 int ret;
1eafa6c7 10065
2c21b4d7 10066 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
10067 return -EROFS;
10068
6c255e67
MX
10069 ret = __start_delalloc_inodes(root, delay_iput, -1);
10070 if (ret > 0)
10071 ret = 0;
eb73c1b7
MX
10072 /*
10073 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
10074 * we have to make sure the IO is actually started and that
10075 * ordered extents get created before we return
10076 */
10077 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 10078 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 10079 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 10080 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
10081 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10082 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
10083 }
10084 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
10085 return ret;
10086}
10087
6c255e67
MX
10088int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10089 int nr)
eb73c1b7
MX
10090{
10091 struct btrfs_root *root;
10092 struct list_head splice;
10093 int ret;
10094
2c21b4d7 10095 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10096 return -EROFS;
10097
10098 INIT_LIST_HEAD(&splice);
10099
573bfb72 10100 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10101 spin_lock(&fs_info->delalloc_root_lock);
10102 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10103 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10104 root = list_first_entry(&splice, struct btrfs_root,
10105 delalloc_root);
10106 root = btrfs_grab_fs_root(root);
10107 BUG_ON(!root);
10108 list_move_tail(&root->delalloc_root,
10109 &fs_info->delalloc_roots);
10110 spin_unlock(&fs_info->delalloc_root_lock);
10111
6c255e67 10112 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10113 btrfs_put_fs_root(root);
6c255e67 10114 if (ret < 0)
eb73c1b7
MX
10115 goto out;
10116
6c255e67
MX
10117 if (nr != -1) {
10118 nr -= ret;
10119 WARN_ON(nr < 0);
10120 }
eb73c1b7 10121 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10122 }
eb73c1b7 10123 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10124
6c255e67 10125 ret = 0;
eb73c1b7
MX
10126 atomic_inc(&fs_info->async_submit_draining);
10127 while (atomic_read(&fs_info->nr_async_submits) ||
10128 atomic_read(&fs_info->async_delalloc_pages)) {
10129 wait_event(fs_info->async_submit_wait,
10130 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10131 atomic_read(&fs_info->async_delalloc_pages) == 0));
10132 }
10133 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 10134out:
1eafa6c7 10135 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10136 spin_lock(&fs_info->delalloc_root_lock);
10137 list_splice_tail(&splice, &fs_info->delalloc_roots);
10138 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10139 }
573bfb72 10140 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10141 return ret;
ea8c2819
CM
10142}
10143
39279cc3
CM
10144static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10145 const char *symname)
10146{
10147 struct btrfs_trans_handle *trans;
10148 struct btrfs_root *root = BTRFS_I(dir)->root;
10149 struct btrfs_path *path;
10150 struct btrfs_key key;
1832a6d5 10151 struct inode *inode = NULL;
39279cc3
CM
10152 int err;
10153 int drop_inode = 0;
10154 u64 objectid;
67871254 10155 u64 index = 0;
39279cc3
CM
10156 int name_len;
10157 int datasize;
5f39d397 10158 unsigned long ptr;
39279cc3 10159 struct btrfs_file_extent_item *ei;
5f39d397 10160 struct extent_buffer *leaf;
39279cc3 10161
f06becc4 10162 name_len = strlen(symname);
39279cc3
CM
10163 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10164 return -ENAMETOOLONG;
1832a6d5 10165
9ed74f2d
JB
10166 /*
10167 * 2 items for inode item and ref
10168 * 2 items for dir items
9269d12b
FM
10169 * 1 item for updating parent inode item
10170 * 1 item for the inline extent item
9ed74f2d
JB
10171 * 1 item for xattr if selinux is on
10172 */
9269d12b 10173 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10174 if (IS_ERR(trans))
10175 return PTR_ERR(trans);
1832a6d5 10176
581bb050
LZ
10177 err = btrfs_find_free_ino(root, &objectid);
10178 if (err)
10179 goto out_unlock;
10180
aec7477b 10181 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 10182 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 10183 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10184 if (IS_ERR(inode)) {
10185 err = PTR_ERR(inode);
39279cc3 10186 goto out_unlock;
7cf96da3 10187 }
39279cc3 10188
ad19db71
CS
10189 /*
10190 * If the active LSM wants to access the inode during
10191 * d_instantiate it needs these. Smack checks to see
10192 * if the filesystem supports xattrs by looking at the
10193 * ops vector.
10194 */
10195 inode->i_fop = &btrfs_file_operations;
10196 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10197 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10198 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10199
10200 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10201 if (err)
10202 goto out_unlock_inode;
ad19db71 10203
39279cc3 10204 path = btrfs_alloc_path();
d8926bb3
MF
10205 if (!path) {
10206 err = -ENOMEM;
b0d5d10f 10207 goto out_unlock_inode;
d8926bb3 10208 }
33345d01 10209 key.objectid = btrfs_ino(inode);
39279cc3 10210 key.offset = 0;
962a298f 10211 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10212 datasize = btrfs_file_extent_calc_inline_size(name_len);
10213 err = btrfs_insert_empty_item(trans, root, path, &key,
10214 datasize);
54aa1f4d 10215 if (err) {
b0839166 10216 btrfs_free_path(path);
b0d5d10f 10217 goto out_unlock_inode;
54aa1f4d 10218 }
5f39d397
CM
10219 leaf = path->nodes[0];
10220 ei = btrfs_item_ptr(leaf, path->slots[0],
10221 struct btrfs_file_extent_item);
10222 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10223 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10224 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10225 btrfs_set_file_extent_encryption(leaf, ei, 0);
10226 btrfs_set_file_extent_compression(leaf, ei, 0);
10227 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10228 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10229
39279cc3 10230 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10231 write_extent_buffer(leaf, symname, ptr, name_len);
10232 btrfs_mark_buffer_dirty(leaf);
39279cc3 10233 btrfs_free_path(path);
5f39d397 10234
39279cc3 10235 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10236 inode_nohighmem(inode);
39279cc3 10237 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10238 inode_set_bytes(inode, name_len);
f06becc4 10239 btrfs_i_size_write(inode, name_len);
54aa1f4d 10240 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10241 /*
10242 * Last step, add directory indexes for our symlink inode. This is the
10243 * last step to avoid extra cleanup of these indexes if an error happens
10244 * elsewhere above.
10245 */
10246 if (!err)
10247 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
b0d5d10f 10248 if (err) {
54aa1f4d 10249 drop_inode = 1;
b0d5d10f
CM
10250 goto out_unlock_inode;
10251 }
10252
10253 unlock_new_inode(inode);
10254 d_instantiate(dentry, inode);
39279cc3
CM
10255
10256out_unlock:
7ad85bb7 10257 btrfs_end_transaction(trans, root);
39279cc3
CM
10258 if (drop_inode) {
10259 inode_dec_link_count(inode);
10260 iput(inode);
10261 }
b53d3f5d 10262 btrfs_btree_balance_dirty(root);
39279cc3 10263 return err;
b0d5d10f
CM
10264
10265out_unlock_inode:
10266 drop_inode = 1;
10267 unlock_new_inode(inode);
10268 goto out_unlock;
39279cc3 10269}
16432985 10270
0af3d00b
JB
10271static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10272 u64 start, u64 num_bytes, u64 min_size,
10273 loff_t actual_len, u64 *alloc_hint,
10274 struct btrfs_trans_handle *trans)
d899e052 10275{
5dc562c5
JB
10276 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10277 struct extent_map *em;
d899e052
YZ
10278 struct btrfs_root *root = BTRFS_I(inode)->root;
10279 struct btrfs_key ins;
d899e052 10280 u64 cur_offset = start;
55a61d1d 10281 u64 i_size;
154ea289 10282 u64 cur_bytes;
0b670dc4 10283 u64 last_alloc = (u64)-1;
d899e052 10284 int ret = 0;
0af3d00b 10285 bool own_trans = true;
d899e052 10286
0af3d00b
JB
10287 if (trans)
10288 own_trans = false;
d899e052 10289 while (num_bytes > 0) {
0af3d00b
JB
10290 if (own_trans) {
10291 trans = btrfs_start_transaction(root, 3);
10292 if (IS_ERR(trans)) {
10293 ret = PTR_ERR(trans);
10294 break;
10295 }
5a303d5d
YZ
10296 }
10297
ee22184b 10298 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10299 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10300 /*
10301 * If we are severely fragmented we could end up with really
10302 * small allocations, so if the allocator is returning small
10303 * chunks lets make its job easier by only searching for those
10304 * sized chunks.
10305 */
10306 cur_bytes = min(cur_bytes, last_alloc);
00361589 10307 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 10308 *alloc_hint, &ins, 1, 0);
5a303d5d 10309 if (ret) {
0af3d00b
JB
10310 if (own_trans)
10311 btrfs_end_transaction(trans, root);
a22285a6 10312 break;
d899e052 10313 }
9cfa3e34 10314 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
5a303d5d 10315
0b670dc4 10316 last_alloc = ins.offset;
d899e052
YZ
10317 ret = insert_reserved_file_extent(trans, inode,
10318 cur_offset, ins.objectid,
10319 ins.offset, ins.offset,
920bbbfb 10320 ins.offset, 0, 0, 0,
d899e052 10321 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10322 if (ret) {
857cc2fc 10323 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 10324 ins.offset, 0);
79787eaa
JM
10325 btrfs_abort_transaction(trans, root, ret);
10326 if (own_trans)
10327 btrfs_end_transaction(trans, root);
10328 break;
10329 }
31193213 10330
a1ed835e
CM
10331 btrfs_drop_extent_cache(inode, cur_offset,
10332 cur_offset + ins.offset -1, 0);
5a303d5d 10333
5dc562c5
JB
10334 em = alloc_extent_map();
10335 if (!em) {
10336 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10337 &BTRFS_I(inode)->runtime_flags);
10338 goto next;
10339 }
10340
10341 em->start = cur_offset;
10342 em->orig_start = cur_offset;
10343 em->len = ins.offset;
10344 em->block_start = ins.objectid;
10345 em->block_len = ins.offset;
b4939680 10346 em->orig_block_len = ins.offset;
cc95bef6 10347 em->ram_bytes = ins.offset;
5dc562c5
JB
10348 em->bdev = root->fs_info->fs_devices->latest_bdev;
10349 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10350 em->generation = trans->transid;
10351
10352 while (1) {
10353 write_lock(&em_tree->lock);
09a2a8f9 10354 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10355 write_unlock(&em_tree->lock);
10356 if (ret != -EEXIST)
10357 break;
10358 btrfs_drop_extent_cache(inode, cur_offset,
10359 cur_offset + ins.offset - 1,
10360 0);
10361 }
10362 free_extent_map(em);
10363next:
d899e052
YZ
10364 num_bytes -= ins.offset;
10365 cur_offset += ins.offset;
efa56464 10366 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10367
0c4d2d95 10368 inode_inc_iversion(inode);
04b285f3 10369 inode->i_ctime = current_fs_time(inode->i_sb);
6cbff00f 10370 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10371 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10372 (actual_len > inode->i_size) &&
10373 (cur_offset > inode->i_size)) {
d1ea6a61 10374 if (cur_offset > actual_len)
55a61d1d 10375 i_size = actual_len;
d1ea6a61 10376 else
55a61d1d
JB
10377 i_size = cur_offset;
10378 i_size_write(inode, i_size);
10379 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10380 }
10381
d899e052 10382 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10383
10384 if (ret) {
10385 btrfs_abort_transaction(trans, root, ret);
10386 if (own_trans)
10387 btrfs_end_transaction(trans, root);
10388 break;
10389 }
d899e052 10390
0af3d00b
JB
10391 if (own_trans)
10392 btrfs_end_transaction(trans, root);
5a303d5d 10393 }
d899e052
YZ
10394 return ret;
10395}
10396
0af3d00b
JB
10397int btrfs_prealloc_file_range(struct inode *inode, int mode,
10398 u64 start, u64 num_bytes, u64 min_size,
10399 loff_t actual_len, u64 *alloc_hint)
10400{
10401 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10402 min_size, actual_len, alloc_hint,
10403 NULL);
10404}
10405
10406int btrfs_prealloc_file_range_trans(struct inode *inode,
10407 struct btrfs_trans_handle *trans, int mode,
10408 u64 start, u64 num_bytes, u64 min_size,
10409 loff_t actual_len, u64 *alloc_hint)
10410{
10411 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10412 min_size, actual_len, alloc_hint, trans);
10413}
10414
e6dcd2dc
CM
10415static int btrfs_set_page_dirty(struct page *page)
10416{
e6dcd2dc
CM
10417 return __set_page_dirty_nobuffers(page);
10418}
10419
10556cb2 10420static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10421{
b83cc969 10422 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10423 umode_t mode = inode->i_mode;
b83cc969 10424
cb6db4e5
JM
10425 if (mask & MAY_WRITE &&
10426 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10427 if (btrfs_root_readonly(root))
10428 return -EROFS;
10429 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10430 return -EACCES;
10431 }
2830ba7f 10432 return generic_permission(inode, mask);
fdebe2bd 10433}
39279cc3 10434
ef3b9af5
FM
10435static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10436{
10437 struct btrfs_trans_handle *trans;
10438 struct btrfs_root *root = BTRFS_I(dir)->root;
10439 struct inode *inode = NULL;
10440 u64 objectid;
10441 u64 index;
10442 int ret = 0;
10443
10444 /*
10445 * 5 units required for adding orphan entry
10446 */
10447 trans = btrfs_start_transaction(root, 5);
10448 if (IS_ERR(trans))
10449 return PTR_ERR(trans);
10450
10451 ret = btrfs_find_free_ino(root, &objectid);
10452 if (ret)
10453 goto out;
10454
10455 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10456 btrfs_ino(dir), objectid, mode, &index);
10457 if (IS_ERR(inode)) {
10458 ret = PTR_ERR(inode);
10459 inode = NULL;
10460 goto out;
10461 }
10462
ef3b9af5
FM
10463 inode->i_fop = &btrfs_file_operations;
10464 inode->i_op = &btrfs_file_inode_operations;
10465
10466 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10467 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10468
b0d5d10f
CM
10469 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10470 if (ret)
10471 goto out_inode;
10472
10473 ret = btrfs_update_inode(trans, root, inode);
10474 if (ret)
10475 goto out_inode;
ef3b9af5
FM
10476 ret = btrfs_orphan_add(trans, inode);
10477 if (ret)
b0d5d10f 10478 goto out_inode;
ef3b9af5 10479
5762b5c9
FM
10480 /*
10481 * We set number of links to 0 in btrfs_new_inode(), and here we set
10482 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10483 * through:
10484 *
10485 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10486 */
10487 set_nlink(inode, 1);
b0d5d10f 10488 unlock_new_inode(inode);
ef3b9af5
FM
10489 d_tmpfile(dentry, inode);
10490 mark_inode_dirty(inode);
10491
10492out:
10493 btrfs_end_transaction(trans, root);
10494 if (ret)
10495 iput(inode);
10496 btrfs_balance_delayed_items(root);
10497 btrfs_btree_balance_dirty(root);
ef3b9af5 10498 return ret;
b0d5d10f
CM
10499
10500out_inode:
10501 unlock_new_inode(inode);
10502 goto out;
10503
ef3b9af5
FM
10504}
10505
b38ef71c
FM
10506/* Inspired by filemap_check_errors() */
10507int btrfs_inode_check_errors(struct inode *inode)
10508{
10509 int ret = 0;
10510
10511 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
10512 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
10513 ret = -ENOSPC;
10514 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
10515 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
10516 ret = -EIO;
10517
10518 return ret;
10519}
10520
6e1d5dcc 10521static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10522 .getattr = btrfs_getattr,
39279cc3
CM
10523 .lookup = btrfs_lookup,
10524 .create = btrfs_create,
10525 .unlink = btrfs_unlink,
10526 .link = btrfs_link,
10527 .mkdir = btrfs_mkdir,
10528 .rmdir = btrfs_rmdir,
80ace85c 10529 .rename2 = btrfs_rename2,
39279cc3
CM
10530 .symlink = btrfs_symlink,
10531 .setattr = btrfs_setattr,
618e21d5 10532 .mknod = btrfs_mknod,
e0d46f5c 10533 .setxattr = generic_setxattr,
9172abbc 10534 .getxattr = generic_getxattr,
5103e947 10535 .listxattr = btrfs_listxattr,
e0d46f5c 10536 .removexattr = generic_removexattr,
fdebe2bd 10537 .permission = btrfs_permission,
4e34e719 10538 .get_acl = btrfs_get_acl,
996a710d 10539 .set_acl = btrfs_set_acl,
93fd63c2 10540 .update_time = btrfs_update_time,
ef3b9af5 10541 .tmpfile = btrfs_tmpfile,
39279cc3 10542};
6e1d5dcc 10543static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10544 .lookup = btrfs_lookup,
fdebe2bd 10545 .permission = btrfs_permission,
4e34e719 10546 .get_acl = btrfs_get_acl,
996a710d 10547 .set_acl = btrfs_set_acl,
93fd63c2 10548 .update_time = btrfs_update_time,
39279cc3 10549};
76dda93c 10550
828c0950 10551static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10552 .llseek = generic_file_llseek,
10553 .read = generic_read_dir,
02dbfc99 10554 .iterate_shared = btrfs_real_readdir,
34287aa3 10555 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10556#ifdef CONFIG_COMPAT
4c63c245 10557 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10558#endif
6bf13c0c 10559 .release = btrfs_release_file,
e02119d5 10560 .fsync = btrfs_sync_file,
39279cc3
CM
10561};
10562
20e5506b 10563static const struct extent_io_ops btrfs_extent_io_ops = {
07157aac 10564 .fill_delalloc = run_delalloc_range,
065631f6 10565 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 10566 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 10567 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 10568 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10569 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10570 .set_bit_hook = btrfs_set_bit_hook,
10571 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10572 .merge_extent_hook = btrfs_merge_extent_hook,
10573 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
10574};
10575
35054394
CM
10576/*
10577 * btrfs doesn't support the bmap operation because swapfiles
10578 * use bmap to make a mapping of extents in the file. They assume
10579 * these extents won't change over the life of the file and they
10580 * use the bmap result to do IO directly to the drive.
10581 *
10582 * the btrfs bmap call would return logical addresses that aren't
10583 * suitable for IO and they also will change frequently as COW
10584 * operations happen. So, swapfile + btrfs == corruption.
10585 *
10586 * For now we're avoiding this by dropping bmap.
10587 */
7f09410b 10588static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10589 .readpage = btrfs_readpage,
10590 .writepage = btrfs_writepage,
b293f02e 10591 .writepages = btrfs_writepages,
3ab2fb5a 10592 .readpages = btrfs_readpages,
16432985 10593 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10594 .invalidatepage = btrfs_invalidatepage,
10595 .releasepage = btrfs_releasepage,
e6dcd2dc 10596 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10597 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10598};
10599
7f09410b 10600static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10601 .readpage = btrfs_readpage,
10602 .writepage = btrfs_writepage,
2bf5a725
CM
10603 .invalidatepage = btrfs_invalidatepage,
10604 .releasepage = btrfs_releasepage,
39279cc3
CM
10605};
10606
6e1d5dcc 10607static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10608 .getattr = btrfs_getattr,
10609 .setattr = btrfs_setattr,
e0d46f5c 10610 .setxattr = generic_setxattr,
9172abbc 10611 .getxattr = generic_getxattr,
5103e947 10612 .listxattr = btrfs_listxattr,
e0d46f5c 10613 .removexattr = generic_removexattr,
fdebe2bd 10614 .permission = btrfs_permission,
1506fcc8 10615 .fiemap = btrfs_fiemap,
4e34e719 10616 .get_acl = btrfs_get_acl,
996a710d 10617 .set_acl = btrfs_set_acl,
e41f941a 10618 .update_time = btrfs_update_time,
39279cc3 10619};
6e1d5dcc 10620static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10621 .getattr = btrfs_getattr,
10622 .setattr = btrfs_setattr,
fdebe2bd 10623 .permission = btrfs_permission,
e0d46f5c 10624 .setxattr = generic_setxattr,
9172abbc 10625 .getxattr = generic_getxattr,
33268eaf 10626 .listxattr = btrfs_listxattr,
e0d46f5c 10627 .removexattr = generic_removexattr,
4e34e719 10628 .get_acl = btrfs_get_acl,
996a710d 10629 .set_acl = btrfs_set_acl,
e41f941a 10630 .update_time = btrfs_update_time,
618e21d5 10631};
6e1d5dcc 10632static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3 10633 .readlink = generic_readlink,
6b255391 10634 .get_link = page_get_link,
f209561a 10635 .getattr = btrfs_getattr,
22c44fe6 10636 .setattr = btrfs_setattr,
fdebe2bd 10637 .permission = btrfs_permission,
e0d46f5c 10638 .setxattr = generic_setxattr,
9172abbc 10639 .getxattr = generic_getxattr,
0279b4cd 10640 .listxattr = btrfs_listxattr,
e0d46f5c 10641 .removexattr = generic_removexattr,
e41f941a 10642 .update_time = btrfs_update_time,
39279cc3 10643};
76dda93c 10644
82d339d9 10645const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10646 .d_delete = btrfs_dentry_delete,
b4aff1f8 10647 .d_release = btrfs_dentry_release,
76dda93c 10648};