Btrfs: use the global reserve as a backup for deleting inodes
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
4b4e25f2 41#include "compat.h"
39279cc3
CM
42#include "ctree.h"
43#include "disk-io.h"
44#include "transaction.h"
45#include "btrfs_inode.h"
46#include "ioctl.h"
47#include "print-tree.h"
0b86a832 48#include "volumes.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
c8b97818 52#include "compression.h"
b4ce94de 53#include "locking.h"
dc89e982 54#include "free-space-cache.h"
581bb050 55#include "inode-map.h"
39279cc3
CM
56
57struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
60};
61
6e1d5dcc
AD
62static const struct inode_operations btrfs_dir_inode_operations;
63static const struct inode_operations btrfs_symlink_inode_operations;
64static const struct inode_operations btrfs_dir_ro_inode_operations;
65static const struct inode_operations btrfs_special_inode_operations;
66static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
67static const struct address_space_operations btrfs_aops;
68static const struct address_space_operations btrfs_symlink_aops;
828c0950 69static const struct file_operations btrfs_dir_file_operations;
d1310b2e 70static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
71
72static struct kmem_cache *btrfs_inode_cachep;
73struct kmem_cache *btrfs_trans_handle_cachep;
74struct kmem_cache *btrfs_transaction_cachep;
39279cc3 75struct kmem_cache *btrfs_path_cachep;
dc89e982 76struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
77
78#define S_SHIFT 12
79static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87};
88
a41ad394
JB
89static int btrfs_setsize(struct inode *inode, loff_t newsize);
90static int btrfs_truncate(struct inode *inode);
c8b97818 91static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
92static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
7b128766 96
f34f57a3 97static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
0279b4cd
JO
100{
101 int err;
102
f34f57a3 103 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 104 if (!err)
2a7dba39 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
106 return err;
107}
108
c8b97818
CM
109/*
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
113 */
d397712b 114static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
fe3f566c 117 int compress_type,
c8b97818
CM
118 struct page **compressed_pages)
119{
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
124 char *kaddr;
125 unsigned long ptr;
126 struct btrfs_file_extent_item *ei;
127 int err = 0;
128 int ret;
129 size_t cur_size = size;
130 size_t datasize;
131 unsigned long offset;
c8b97818 132
fe3f566c 133 if (compressed_size && compressed_pages)
c8b97818 134 cur_size = compressed_size;
c8b97818 135
d397712b
CM
136 path = btrfs_alloc_path();
137 if (!path)
c8b97818
CM
138 return -ENOMEM;
139
b9473439 140 path->leave_spinning = 1;
c8b97818 141
33345d01 142 key.objectid = btrfs_ino(inode);
c8b97818
CM
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
fe3f566c 223 size_t compressed_size, int compress_type,
c8b97818
CM
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
fe3f566c 256 compress_type, compressed_pages);
c8b97818 257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 293 BUG_ON(!async_extent);
771ed689
CM
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
261507a0 299 async_extent->compress_type = compress_type;
771ed689
CM
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
302}
303
d352ac68 304/*
771ed689
CM
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
c8b97818 308 *
771ed689
CM
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
c8b97818 314 *
771ed689
CM
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
d352ac68 319 */
771ed689
CM
320static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
b888db2b
CM
325{
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
db94535d 328 u64 num_bytes;
db94535d 329 u64 blocksize = root->sectorsize;
c8b97818 330 u64 actual_end;
42dc7bab 331 u64 isize = i_size_read(inode);
e6dcd2dc 332 int ret = 0;
c8b97818
CM
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
771ed689 339 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
340 int i;
341 int will_compress;
261507a0 342 int compress_type = root->fs_info->compress_type;
b888db2b 343
4cb5300b
CM
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL, inode);
347
42dc7bab 348 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
349again:
350 will_compress = 0;
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 353
f03d9301
CM
354 /*
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
360 *
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
363 */
364 if (actual_end <= start)
365 goto cleanup_and_bail_uncompressed;
366
c8b97818
CM
367 total_compressed = actual_end - start;
368
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
374 *
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
c8b97818
CM
378 */
379 total_compressed = min(total_compressed, max_uncompressed);
db94535d 380 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 381 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
382 total_in = 0;
383 ret = 0;
db94535d 384
771ed689
CM
385 /*
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
c8b97818 389 */
6cbff00f 390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 391 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
392 (BTRFS_I(inode)->force_compress) ||
393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 394 WARN_ON(pages);
cfbc246e 395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 396 BUG_ON(!pages);
c8b97818 397
261507a0
LZ
398 if (BTRFS_I(inode)->force_compress)
399 compress_type = BTRFS_I(inode)->force_compress;
400
401 ret = btrfs_compress_pages(compress_type,
402 inode->i_mapping, start,
403 total_compressed, pages,
404 nr_pages, &nr_pages_ret,
405 &total_in,
406 &total_compressed,
407 max_compressed);
c8b97818
CM
408
409 if (!ret) {
410 unsigned long offset = total_compressed &
411 (PAGE_CACHE_SIZE - 1);
412 struct page *page = pages[nr_pages_ret - 1];
413 char *kaddr;
414
415 /* zero the tail end of the last page, we might be
416 * sending it down to disk
417 */
418 if (offset) {
419 kaddr = kmap_atomic(page, KM_USER0);
420 memset(kaddr + offset, 0,
421 PAGE_CACHE_SIZE - offset);
422 kunmap_atomic(kaddr, KM_USER0);
423 }
424 will_compress = 1;
425 }
426 }
427 if (start == 0) {
7a7eaa40 428 trans = btrfs_join_transaction(root);
3612b495 429 BUG_ON(IS_ERR(trans));
0ca1f7ce 430 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 431
c8b97818 432 /* lets try to make an inline extent */
771ed689 433 if (ret || total_in < (actual_end - start)) {
c8b97818 434 /* we didn't compress the entire range, try
771ed689 435 * to make an uncompressed inline extent.
c8b97818
CM
436 */
437 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 438 start, end, 0, 0, NULL);
c8b97818 439 } else {
771ed689 440 /* try making a compressed inline extent */
c8b97818
CM
441 ret = cow_file_range_inline(trans, root, inode,
442 start, end,
fe3f566c
LZ
443 total_compressed,
444 compress_type, pages);
c8b97818
CM
445 }
446 if (ret == 0) {
771ed689
CM
447 /*
448 * inline extent creation worked, we don't need
449 * to create any more async work items. Unlock
450 * and free up our temp pages.
451 */
c8b97818 452 extent_clear_unlock_delalloc(inode,
a791e35e
CM
453 &BTRFS_I(inode)->io_tree,
454 start, end, NULL,
455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 456 EXTENT_CLEAR_DELALLOC |
a791e35e 457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
458
459 btrfs_end_transaction(trans, root);
c8b97818
CM
460 goto free_pages_out;
461 }
c2167754 462 btrfs_end_transaction(trans, root);
c8b97818
CM
463 }
464
465 if (will_compress) {
466 /*
467 * we aren't doing an inline extent round the compressed size
468 * up to a block size boundary so the allocator does sane
469 * things
470 */
471 total_compressed = (total_compressed + blocksize - 1) &
472 ~(blocksize - 1);
473
474 /*
475 * one last check to make sure the compression is really a
476 * win, compare the page count read with the blocks on disk
477 */
478 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 ~(PAGE_CACHE_SIZE - 1);
480 if (total_compressed >= total_in) {
481 will_compress = 0;
482 } else {
c8b97818
CM
483 num_bytes = total_in;
484 }
485 }
486 if (!will_compress && pages) {
487 /*
488 * the compression code ran but failed to make things smaller,
489 * free any pages it allocated and our page pointer array
490 */
491 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 492 WARN_ON(pages[i]->mapping);
c8b97818
CM
493 page_cache_release(pages[i]);
494 }
495 kfree(pages);
496 pages = NULL;
497 total_compressed = 0;
498 nr_pages_ret = 0;
499
500 /* flag the file so we don't compress in the future */
1e701a32
CM
501 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 !(BTRFS_I(inode)->force_compress)) {
a555f810 503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 504 }
c8b97818 505 }
771ed689
CM
506 if (will_compress) {
507 *num_added += 1;
c8b97818 508
771ed689
CM
509 /* the async work queues will take care of doing actual
510 * allocation on disk for these compressed pages,
511 * and will submit them to the elevator.
512 */
513 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
514 total_compressed, pages, nr_pages_ret,
515 compress_type);
179e29e4 516
24ae6365 517 if (start + num_bytes < end) {
771ed689
CM
518 start += num_bytes;
519 pages = NULL;
520 cond_resched();
521 goto again;
522 }
523 } else {
f03d9301 524cleanup_and_bail_uncompressed:
771ed689
CM
525 /*
526 * No compression, but we still need to write the pages in
527 * the file we've been given so far. redirty the locked
528 * page if it corresponds to our extent and set things up
529 * for the async work queue to run cow_file_range to do
530 * the normal delalloc dance
531 */
532 if (page_offset(locked_page) >= start &&
533 page_offset(locked_page) <= end) {
534 __set_page_dirty_nobuffers(locked_page);
535 /* unlocked later on in the async handlers */
536 }
261507a0
LZ
537 add_async_extent(async_cow, start, end - start + 1,
538 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
539 *num_added += 1;
540 }
3b951516 541
771ed689
CM
542out:
543 return 0;
544
545free_pages_out:
546 for (i = 0; i < nr_pages_ret; i++) {
547 WARN_ON(pages[i]->mapping);
548 page_cache_release(pages[i]);
549 }
d397712b 550 kfree(pages);
771ed689
CM
551
552 goto out;
553}
554
555/*
556 * phase two of compressed writeback. This is the ordered portion
557 * of the code, which only gets called in the order the work was
558 * queued. We walk all the async extents created by compress_file_range
559 * and send them down to the disk.
560 */
561static noinline int submit_compressed_extents(struct inode *inode,
562 struct async_cow *async_cow)
563{
564 struct async_extent *async_extent;
565 u64 alloc_hint = 0;
566 struct btrfs_trans_handle *trans;
567 struct btrfs_key ins;
568 struct extent_map *em;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 struct extent_io_tree *io_tree;
f5a84ee3 572 int ret = 0;
771ed689
CM
573
574 if (list_empty(&async_cow->extents))
575 return 0;
576
771ed689 577
d397712b 578 while (!list_empty(&async_cow->extents)) {
771ed689
CM
579 async_extent = list_entry(async_cow->extents.next,
580 struct async_extent, list);
581 list_del(&async_extent->list);
c8b97818 582
771ed689
CM
583 io_tree = &BTRFS_I(inode)->io_tree;
584
f5a84ee3 585retry:
771ed689
CM
586 /* did the compression code fall back to uncompressed IO? */
587 if (!async_extent->pages) {
588 int page_started = 0;
589 unsigned long nr_written = 0;
590
591 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
592 async_extent->start +
593 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
594
595 /* allocate blocks */
f5a84ee3
JB
596 ret = cow_file_range(inode, async_cow->locked_page,
597 async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1,
600 &page_started, &nr_written, 0);
771ed689
CM
601
602 /*
603 * if page_started, cow_file_range inserted an
604 * inline extent and took care of all the unlocking
605 * and IO for us. Otherwise, we need to submit
606 * all those pages down to the drive.
607 */
f5a84ee3 608 if (!page_started && !ret)
771ed689
CM
609 extent_write_locked_range(io_tree,
610 inode, async_extent->start,
d397712b 611 async_extent->start +
771ed689
CM
612 async_extent->ram_size - 1,
613 btrfs_get_extent,
614 WB_SYNC_ALL);
615 kfree(async_extent);
616 cond_resched();
617 continue;
618 }
619
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start + async_extent->ram_size - 1,
622 GFP_NOFS);
771ed689 623
7a7eaa40 624 trans = btrfs_join_transaction(root);
3612b495 625 BUG_ON(IS_ERR(trans));
74b21075 626 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
627 ret = btrfs_reserve_extent(trans, root,
628 async_extent->compressed_size,
629 async_extent->compressed_size,
630 0, alloc_hint,
631 (u64)-1, &ins, 1);
c2167754
YZ
632 btrfs_end_transaction(trans, root);
633
f5a84ee3
JB
634 if (ret) {
635 int i;
636 for (i = 0; i < async_extent->nr_pages; i++) {
637 WARN_ON(async_extent->pages[i]->mapping);
638 page_cache_release(async_extent->pages[i]);
639 }
640 kfree(async_extent->pages);
641 async_extent->nr_pages = 0;
642 async_extent->pages = NULL;
643 unlock_extent(io_tree, async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1, GFP_NOFS);
646 goto retry;
647 }
648
c2167754
YZ
649 /*
650 * here we're doing allocation and writeback of the
651 * compressed pages
652 */
653 btrfs_drop_extent_cache(inode, async_extent->start,
654 async_extent->start +
655 async_extent->ram_size - 1, 0);
656
172ddd60 657 em = alloc_extent_map();
c26a9203 658 BUG_ON(!em);
771ed689
CM
659 em->start = async_extent->start;
660 em->len = async_extent->ram_size;
445a6944 661 em->orig_start = em->start;
c8b97818 662
771ed689
CM
663 em->block_start = ins.objectid;
664 em->block_len = ins.offset;
665 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 666 em->compress_type = async_extent->compress_type;
771ed689
CM
667 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669
d397712b 670 while (1) {
890871be 671 write_lock(&em_tree->lock);
771ed689 672 ret = add_extent_mapping(em_tree, em);
890871be 673 write_unlock(&em_tree->lock);
771ed689
CM
674 if (ret != -EEXIST) {
675 free_extent_map(em);
676 break;
677 }
678 btrfs_drop_extent_cache(inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1, 0);
681 }
682
261507a0
LZ
683 ret = btrfs_add_ordered_extent_compress(inode,
684 async_extent->start,
685 ins.objectid,
686 async_extent->ram_size,
687 ins.offset,
688 BTRFS_ORDERED_COMPRESSED,
689 async_extent->compress_type);
771ed689
CM
690 BUG_ON(ret);
691
771ed689
CM
692 /*
693 * clear dirty, set writeback and unlock the pages.
694 */
695 extent_clear_unlock_delalloc(inode,
a791e35e
CM
696 &BTRFS_I(inode)->io_tree,
697 async_extent->start,
698 async_extent->start +
699 async_extent->ram_size - 1,
700 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 EXTENT_CLEAR_UNLOCK |
a3429ab7 702 EXTENT_CLEAR_DELALLOC |
a791e35e 703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
704
705 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
706 async_extent->start,
707 async_extent->ram_size,
708 ins.objectid,
709 ins.offset, async_extent->pages,
710 async_extent->nr_pages);
771ed689
CM
711
712 BUG_ON(ret);
771ed689
CM
713 alloc_hint = ins.objectid + ins.offset;
714 kfree(async_extent);
715 cond_resched();
716 }
717
771ed689
CM
718 return 0;
719}
720
4b46fce2
JB
721static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722 u64 num_bytes)
723{
724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 struct extent_map *em;
726 u64 alloc_hint = 0;
727
728 read_lock(&em_tree->lock);
729 em = search_extent_mapping(em_tree, start, num_bytes);
730 if (em) {
731 /*
732 * if block start isn't an actual block number then find the
733 * first block in this inode and use that as a hint. If that
734 * block is also bogus then just don't worry about it.
735 */
736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737 free_extent_map(em);
738 em = search_extent_mapping(em_tree, 0, 0);
739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 alloc_hint = em->block_start;
741 if (em)
742 free_extent_map(em);
743 } else {
744 alloc_hint = em->block_start;
745 free_extent_map(em);
746 }
747 }
748 read_unlock(&em_tree->lock);
749
750 return alloc_hint;
751}
752
771ed689
CM
753/*
754 * when extent_io.c finds a delayed allocation range in the file,
755 * the call backs end up in this code. The basic idea is to
756 * allocate extents on disk for the range, and create ordered data structs
757 * in ram to track those extents.
758 *
759 * locked_page is the page that writepage had locked already. We use
760 * it to make sure we don't do extra locks or unlocks.
761 *
762 * *page_started is set to one if we unlock locked_page and do everything
763 * required to start IO on it. It may be clean and already done with
764 * IO when we return.
765 */
766static noinline int cow_file_range(struct inode *inode,
767 struct page *locked_page,
768 u64 start, u64 end, int *page_started,
769 unsigned long *nr_written,
770 int unlock)
771{
772 struct btrfs_root *root = BTRFS_I(inode)->root;
773 struct btrfs_trans_handle *trans;
774 u64 alloc_hint = 0;
775 u64 num_bytes;
776 unsigned long ram_size;
777 u64 disk_num_bytes;
778 u64 cur_alloc_size;
779 u64 blocksize = root->sectorsize;
771ed689
CM
780 struct btrfs_key ins;
781 struct extent_map *em;
782 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
783 int ret = 0;
784
2cf8572d 785 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 786 trans = btrfs_join_transaction(root);
3612b495 787 BUG_ON(IS_ERR(trans));
0ca1f7ce 788 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 789
771ed689
CM
790 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
791 num_bytes = max(blocksize, num_bytes);
792 disk_num_bytes = num_bytes;
793 ret = 0;
794
4cb5300b
CM
795 /* if this is a small write inside eof, kick off defrag */
796 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
797 btrfs_add_inode_defrag(trans, inode);
798
771ed689
CM
799 if (start == 0) {
800 /* lets try to make an inline extent */
801 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 802 start, end, 0, 0, NULL);
771ed689
CM
803 if (ret == 0) {
804 extent_clear_unlock_delalloc(inode,
a791e35e
CM
805 &BTRFS_I(inode)->io_tree,
806 start, end, NULL,
807 EXTENT_CLEAR_UNLOCK_PAGE |
808 EXTENT_CLEAR_UNLOCK |
809 EXTENT_CLEAR_DELALLOC |
810 EXTENT_CLEAR_DIRTY |
811 EXTENT_SET_WRITEBACK |
812 EXTENT_END_WRITEBACK);
c2167754 813
771ed689
CM
814 *nr_written = *nr_written +
815 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
816 *page_started = 1;
817 ret = 0;
818 goto out;
819 }
820 }
821
822 BUG_ON(disk_num_bytes >
823 btrfs_super_total_bytes(&root->fs_info->super_copy));
824
4b46fce2 825 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
826 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
827
d397712b 828 while (disk_num_bytes > 0) {
a791e35e
CM
829 unsigned long op;
830
287a0ab9 831 cur_alloc_size = disk_num_bytes;
e6dcd2dc 832 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 833 root->sectorsize, 0, alloc_hint,
e6dcd2dc 834 (u64)-1, &ins, 1);
d397712b
CM
835 BUG_ON(ret);
836
172ddd60 837 em = alloc_extent_map();
c26a9203 838 BUG_ON(!em);
e6dcd2dc 839 em->start = start;
445a6944 840 em->orig_start = em->start;
771ed689
CM
841 ram_size = ins.offset;
842 em->len = ins.offset;
c8b97818 843
e6dcd2dc 844 em->block_start = ins.objectid;
c8b97818 845 em->block_len = ins.offset;
e6dcd2dc 846 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 847 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 848
d397712b 849 while (1) {
890871be 850 write_lock(&em_tree->lock);
e6dcd2dc 851 ret = add_extent_mapping(em_tree, em);
890871be 852 write_unlock(&em_tree->lock);
e6dcd2dc
CM
853 if (ret != -EEXIST) {
854 free_extent_map(em);
855 break;
856 }
857 btrfs_drop_extent_cache(inode, start,
c8b97818 858 start + ram_size - 1, 0);
e6dcd2dc
CM
859 }
860
98d20f67 861 cur_alloc_size = ins.offset;
e6dcd2dc 862 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 863 ram_size, cur_alloc_size, 0);
e6dcd2dc 864 BUG_ON(ret);
c8b97818 865
17d217fe
YZ
866 if (root->root_key.objectid ==
867 BTRFS_DATA_RELOC_TREE_OBJECTID) {
868 ret = btrfs_reloc_clone_csums(inode, start,
869 cur_alloc_size);
870 BUG_ON(ret);
871 }
872
d397712b 873 if (disk_num_bytes < cur_alloc_size)
3b951516 874 break;
d397712b 875
c8b97818
CM
876 /* we're not doing compressed IO, don't unlock the first
877 * page (which the caller expects to stay locked), don't
878 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
879 *
880 * Do set the Private2 bit so we know this page was properly
881 * setup for writepage
c8b97818 882 */
a791e35e
CM
883 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
884 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
885 EXTENT_SET_PRIVATE2;
886
c8b97818
CM
887 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
888 start, start + ram_size - 1,
a791e35e 889 locked_page, op);
c8b97818 890 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
891 num_bytes -= cur_alloc_size;
892 alloc_hint = ins.objectid + ins.offset;
893 start += cur_alloc_size;
b888db2b 894 }
b888db2b 895out:
771ed689 896 ret = 0;
b888db2b 897 btrfs_end_transaction(trans, root);
c8b97818 898
be20aa9d 899 return ret;
771ed689 900}
c8b97818 901
771ed689
CM
902/*
903 * work queue call back to started compression on a file and pages
904 */
905static noinline void async_cow_start(struct btrfs_work *work)
906{
907 struct async_cow *async_cow;
908 int num_added = 0;
909 async_cow = container_of(work, struct async_cow, work);
910
911 compress_file_range(async_cow->inode, async_cow->locked_page,
912 async_cow->start, async_cow->end, async_cow,
913 &num_added);
914 if (num_added == 0)
915 async_cow->inode = NULL;
916}
917
918/*
919 * work queue call back to submit previously compressed pages
920 */
921static noinline void async_cow_submit(struct btrfs_work *work)
922{
923 struct async_cow *async_cow;
924 struct btrfs_root *root;
925 unsigned long nr_pages;
926
927 async_cow = container_of(work, struct async_cow, work);
928
929 root = async_cow->root;
930 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
931 PAGE_CACHE_SHIFT;
932
933 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
934
935 if (atomic_read(&root->fs_info->async_delalloc_pages) <
936 5 * 1042 * 1024 &&
937 waitqueue_active(&root->fs_info->async_submit_wait))
938 wake_up(&root->fs_info->async_submit_wait);
939
d397712b 940 if (async_cow->inode)
771ed689 941 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 942}
c8b97818 943
771ed689
CM
944static noinline void async_cow_free(struct btrfs_work *work)
945{
946 struct async_cow *async_cow;
947 async_cow = container_of(work, struct async_cow, work);
948 kfree(async_cow);
949}
950
951static int cow_file_range_async(struct inode *inode, struct page *locked_page,
952 u64 start, u64 end, int *page_started,
953 unsigned long *nr_written)
954{
955 struct async_cow *async_cow;
956 struct btrfs_root *root = BTRFS_I(inode)->root;
957 unsigned long nr_pages;
958 u64 cur_end;
959 int limit = 10 * 1024 * 1042;
960
a3429ab7
CM
961 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
962 1, 0, NULL, GFP_NOFS);
d397712b 963 while (start < end) {
771ed689 964 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 965 BUG_ON(!async_cow);
771ed689
CM
966 async_cow->inode = inode;
967 async_cow->root = root;
968 async_cow->locked_page = locked_page;
969 async_cow->start = start;
970
6cbff00f 971 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
972 cur_end = end;
973 else
974 cur_end = min(end, start + 512 * 1024 - 1);
975
976 async_cow->end = cur_end;
977 INIT_LIST_HEAD(&async_cow->extents);
978
979 async_cow->work.func = async_cow_start;
980 async_cow->work.ordered_func = async_cow_submit;
981 async_cow->work.ordered_free = async_cow_free;
982 async_cow->work.flags = 0;
983
771ed689
CM
984 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
985 PAGE_CACHE_SHIFT;
986 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
987
988 btrfs_queue_worker(&root->fs_info->delalloc_workers,
989 &async_cow->work);
990
991 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
992 wait_event(root->fs_info->async_submit_wait,
993 (atomic_read(&root->fs_info->async_delalloc_pages) <
994 limit));
995 }
996
d397712b 997 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
998 atomic_read(&root->fs_info->async_delalloc_pages)) {
999 wait_event(root->fs_info->async_submit_wait,
1000 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1001 0));
1002 }
1003
1004 *nr_written += nr_pages;
1005 start = cur_end + 1;
1006 }
1007 *page_started = 1;
1008 return 0;
be20aa9d
CM
1009}
1010
d397712b 1011static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1012 u64 bytenr, u64 num_bytes)
1013{
1014 int ret;
1015 struct btrfs_ordered_sum *sums;
1016 LIST_HEAD(list);
1017
07d400a6 1018 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1019 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1020 if (ret == 0 && list_empty(&list))
1021 return 0;
1022
1023 while (!list_empty(&list)) {
1024 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1025 list_del(&sums->list);
1026 kfree(sums);
1027 }
1028 return 1;
1029}
1030
d352ac68
CM
1031/*
1032 * when nowcow writeback call back. This checks for snapshots or COW copies
1033 * of the extents that exist in the file, and COWs the file as required.
1034 *
1035 * If no cow copies or snapshots exist, we write directly to the existing
1036 * blocks on disk
1037 */
7f366cfe
CM
1038static noinline int run_delalloc_nocow(struct inode *inode,
1039 struct page *locked_page,
771ed689
CM
1040 u64 start, u64 end, int *page_started, int force,
1041 unsigned long *nr_written)
be20aa9d 1042{
be20aa9d 1043 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1044 struct btrfs_trans_handle *trans;
be20aa9d 1045 struct extent_buffer *leaf;
be20aa9d 1046 struct btrfs_path *path;
80ff3856 1047 struct btrfs_file_extent_item *fi;
be20aa9d 1048 struct btrfs_key found_key;
80ff3856
YZ
1049 u64 cow_start;
1050 u64 cur_offset;
1051 u64 extent_end;
5d4f98a2 1052 u64 extent_offset;
80ff3856
YZ
1053 u64 disk_bytenr;
1054 u64 num_bytes;
1055 int extent_type;
1056 int ret;
d899e052 1057 int type;
80ff3856
YZ
1058 int nocow;
1059 int check_prev = 1;
82d5902d 1060 bool nolock;
33345d01 1061 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1062
1063 path = btrfs_alloc_path();
d8926bb3
MF
1064 if (!path)
1065 return -ENOMEM;
82d5902d 1066
2cf8572d 1067 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1068
1069 if (nolock)
7a7eaa40 1070 trans = btrfs_join_transaction_nolock(root);
82d5902d 1071 else
7a7eaa40 1072 trans = btrfs_join_transaction(root);
ff5714cc 1073
3612b495 1074 BUG_ON(IS_ERR(trans));
74b21075 1075 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1076
80ff3856
YZ
1077 cow_start = (u64)-1;
1078 cur_offset = start;
1079 while (1) {
33345d01 1080 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1081 cur_offset, 0);
1082 BUG_ON(ret < 0);
1083 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1084 leaf = path->nodes[0];
1085 btrfs_item_key_to_cpu(leaf, &found_key,
1086 path->slots[0] - 1);
33345d01 1087 if (found_key.objectid == ino &&
80ff3856
YZ
1088 found_key.type == BTRFS_EXTENT_DATA_KEY)
1089 path->slots[0]--;
1090 }
1091 check_prev = 0;
1092next_slot:
1093 leaf = path->nodes[0];
1094 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095 ret = btrfs_next_leaf(root, path);
1096 if (ret < 0)
1097 BUG_ON(1);
1098 if (ret > 0)
1099 break;
1100 leaf = path->nodes[0];
1101 }
be20aa9d 1102
80ff3856
YZ
1103 nocow = 0;
1104 disk_bytenr = 0;
17d217fe 1105 num_bytes = 0;
80ff3856
YZ
1106 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1107
33345d01 1108 if (found_key.objectid > ino ||
80ff3856
YZ
1109 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1110 found_key.offset > end)
1111 break;
1112
1113 if (found_key.offset > cur_offset) {
1114 extent_end = found_key.offset;
e9061e21 1115 extent_type = 0;
80ff3856
YZ
1116 goto out_check;
1117 }
1118
1119 fi = btrfs_item_ptr(leaf, path->slots[0],
1120 struct btrfs_file_extent_item);
1121 extent_type = btrfs_file_extent_type(leaf, fi);
1122
d899e052
YZ
1123 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1124 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1125 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1126 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1127 extent_end = found_key.offset +
1128 btrfs_file_extent_num_bytes(leaf, fi);
1129 if (extent_end <= start) {
1130 path->slots[0]++;
1131 goto next_slot;
1132 }
17d217fe
YZ
1133 if (disk_bytenr == 0)
1134 goto out_check;
80ff3856
YZ
1135 if (btrfs_file_extent_compression(leaf, fi) ||
1136 btrfs_file_extent_encryption(leaf, fi) ||
1137 btrfs_file_extent_other_encoding(leaf, fi))
1138 goto out_check;
d899e052
YZ
1139 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1140 goto out_check;
d2fb3437 1141 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1142 goto out_check;
33345d01 1143 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1144 found_key.offset -
1145 extent_offset, disk_bytenr))
17d217fe 1146 goto out_check;
5d4f98a2 1147 disk_bytenr += extent_offset;
17d217fe
YZ
1148 disk_bytenr += cur_offset - found_key.offset;
1149 num_bytes = min(end + 1, extent_end) - cur_offset;
1150 /*
1151 * force cow if csum exists in the range.
1152 * this ensure that csum for a given extent are
1153 * either valid or do not exist.
1154 */
1155 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1156 goto out_check;
80ff3856
YZ
1157 nocow = 1;
1158 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1159 extent_end = found_key.offset +
1160 btrfs_file_extent_inline_len(leaf, fi);
1161 extent_end = ALIGN(extent_end, root->sectorsize);
1162 } else {
1163 BUG_ON(1);
1164 }
1165out_check:
1166 if (extent_end <= start) {
1167 path->slots[0]++;
1168 goto next_slot;
1169 }
1170 if (!nocow) {
1171 if (cow_start == (u64)-1)
1172 cow_start = cur_offset;
1173 cur_offset = extent_end;
1174 if (cur_offset > end)
1175 break;
1176 path->slots[0]++;
1177 goto next_slot;
7ea394f1
YZ
1178 }
1179
b3b4aa74 1180 btrfs_release_path(path);
80ff3856
YZ
1181 if (cow_start != (u64)-1) {
1182 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1183 found_key.offset - 1, page_started,
1184 nr_written, 1);
80ff3856
YZ
1185 BUG_ON(ret);
1186 cow_start = (u64)-1;
7ea394f1 1187 }
80ff3856 1188
d899e052
YZ
1189 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1190 struct extent_map *em;
1191 struct extent_map_tree *em_tree;
1192 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1193 em = alloc_extent_map();
c26a9203 1194 BUG_ON(!em);
d899e052 1195 em->start = cur_offset;
445a6944 1196 em->orig_start = em->start;
d899e052
YZ
1197 em->len = num_bytes;
1198 em->block_len = num_bytes;
1199 em->block_start = disk_bytenr;
1200 em->bdev = root->fs_info->fs_devices->latest_bdev;
1201 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1202 while (1) {
890871be 1203 write_lock(&em_tree->lock);
d899e052 1204 ret = add_extent_mapping(em_tree, em);
890871be 1205 write_unlock(&em_tree->lock);
d899e052
YZ
1206 if (ret != -EEXIST) {
1207 free_extent_map(em);
1208 break;
1209 }
1210 btrfs_drop_extent_cache(inode, em->start,
1211 em->start + em->len - 1, 0);
1212 }
1213 type = BTRFS_ORDERED_PREALLOC;
1214 } else {
1215 type = BTRFS_ORDERED_NOCOW;
1216 }
80ff3856
YZ
1217
1218 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1219 num_bytes, num_bytes, type);
1220 BUG_ON(ret);
771ed689 1221
efa56464
YZ
1222 if (root->root_key.objectid ==
1223 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1224 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1225 num_bytes);
1226 BUG_ON(ret);
1227 }
1228
d899e052 1229 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1230 cur_offset, cur_offset + num_bytes - 1,
1231 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1232 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1233 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1234 cur_offset = extent_end;
1235 if (cur_offset > end)
1236 break;
be20aa9d 1237 }
b3b4aa74 1238 btrfs_release_path(path);
80ff3856
YZ
1239
1240 if (cur_offset <= end && cow_start == (u64)-1)
1241 cow_start = cur_offset;
1242 if (cow_start != (u64)-1) {
1243 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1244 page_started, nr_written, 1);
80ff3856
YZ
1245 BUG_ON(ret);
1246 }
1247
0cb59c99
JB
1248 if (nolock) {
1249 ret = btrfs_end_transaction_nolock(trans, root);
1250 BUG_ON(ret);
1251 } else {
1252 ret = btrfs_end_transaction(trans, root);
1253 BUG_ON(ret);
1254 }
7ea394f1 1255 btrfs_free_path(path);
80ff3856 1256 return 0;
be20aa9d
CM
1257}
1258
d352ac68
CM
1259/*
1260 * extent_io.c call back to do delayed allocation processing
1261 */
c8b97818 1262static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1263 u64 start, u64 end, int *page_started,
1264 unsigned long *nr_written)
be20aa9d 1265{
be20aa9d 1266 int ret;
7f366cfe 1267 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1268
6cbff00f 1269 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1270 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1271 page_started, 1, nr_written);
6cbff00f 1272 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1273 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1274 page_started, 0, nr_written);
1e701a32 1275 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1276 !(BTRFS_I(inode)->force_compress) &&
1277 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1278 ret = cow_file_range(inode, locked_page, start, end,
1279 page_started, nr_written, 1);
be20aa9d 1280 else
771ed689 1281 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1282 page_started, nr_written);
b888db2b
CM
1283 return ret;
1284}
1285
1bf85046
JM
1286static void btrfs_split_extent_hook(struct inode *inode,
1287 struct extent_state *orig, u64 split)
9ed74f2d 1288{
0ca1f7ce 1289 /* not delalloc, ignore it */
9ed74f2d 1290 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1291 return;
9ed74f2d 1292
9e0baf60
JB
1293 spin_lock(&BTRFS_I(inode)->lock);
1294 BTRFS_I(inode)->outstanding_extents++;
1295 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1296}
1297
1298/*
1299 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1300 * extents so we can keep track of new extents that are just merged onto old
1301 * extents, such as when we are doing sequential writes, so we can properly
1302 * account for the metadata space we'll need.
1303 */
1bf85046
JM
1304static void btrfs_merge_extent_hook(struct inode *inode,
1305 struct extent_state *new,
1306 struct extent_state *other)
9ed74f2d 1307{
9ed74f2d
JB
1308 /* not delalloc, ignore it */
1309 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1310 return;
9ed74f2d 1311
9e0baf60
JB
1312 spin_lock(&BTRFS_I(inode)->lock);
1313 BTRFS_I(inode)->outstanding_extents--;
1314 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1315}
1316
d352ac68
CM
1317/*
1318 * extent_io.c set_bit_hook, used to track delayed allocation
1319 * bytes in this file, and to maintain the list of inodes that
1320 * have pending delalloc work to be done.
1321 */
1bf85046
JM
1322static void btrfs_set_bit_hook(struct inode *inode,
1323 struct extent_state *state, int *bits)
291d673e 1324{
9ed74f2d 1325
75eff68e
CM
1326 /*
1327 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1328 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1329 * bit, which is only set or cleared with irqs on
1330 */
0ca1f7ce 1331 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1332 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1333 u64 len = state->end + 1 - state->start;
2cf8572d 1334 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1335
9e0baf60 1336 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1337 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1338 } else {
1339 spin_lock(&BTRFS_I(inode)->lock);
1340 BTRFS_I(inode)->outstanding_extents++;
1341 spin_unlock(&BTRFS_I(inode)->lock);
1342 }
287a0ab9 1343
75eff68e 1344 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1345 BTRFS_I(inode)->delalloc_bytes += len;
1346 root->fs_info->delalloc_bytes += len;
0cb59c99 1347 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1348 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1349 &root->fs_info->delalloc_inodes);
1350 }
75eff68e 1351 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1352 }
291d673e
CM
1353}
1354
d352ac68
CM
1355/*
1356 * extent_io.c clear_bit_hook, see set_bit_hook for why
1357 */
1bf85046
JM
1358static void btrfs_clear_bit_hook(struct inode *inode,
1359 struct extent_state *state, int *bits)
291d673e 1360{
75eff68e
CM
1361 /*
1362 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1363 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1364 * bit, which is only set or cleared with irqs on
1365 */
0ca1f7ce 1366 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1367 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1368 u64 len = state->end + 1 - state->start;
2cf8572d 1369 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1370
9e0baf60 1371 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1372 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1373 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1374 spin_lock(&BTRFS_I(inode)->lock);
1375 BTRFS_I(inode)->outstanding_extents--;
1376 spin_unlock(&BTRFS_I(inode)->lock);
1377 }
0ca1f7ce
YZ
1378
1379 if (*bits & EXTENT_DO_ACCOUNTING)
1380 btrfs_delalloc_release_metadata(inode, len);
1381
0cb59c99
JB
1382 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1383 && do_list)
0ca1f7ce 1384 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1385
75eff68e 1386 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1387 root->fs_info->delalloc_bytes -= len;
1388 BTRFS_I(inode)->delalloc_bytes -= len;
1389
0cb59c99 1390 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1391 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1392 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1393 }
75eff68e 1394 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1395 }
291d673e
CM
1396}
1397
d352ac68
CM
1398/*
1399 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1400 * we don't create bios that span stripes or chunks
1401 */
239b14b3 1402int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1403 size_t size, struct bio *bio,
1404 unsigned long bio_flags)
239b14b3
CM
1405{
1406 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1407 struct btrfs_mapping_tree *map_tree;
a62b9401 1408 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1409 u64 length = 0;
1410 u64 map_length;
239b14b3
CM
1411 int ret;
1412
771ed689
CM
1413 if (bio_flags & EXTENT_BIO_COMPRESSED)
1414 return 0;
1415
f2d8d74d 1416 length = bio->bi_size;
239b14b3
CM
1417 map_tree = &root->fs_info->mapping_tree;
1418 map_length = length;
cea9e445 1419 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1420 &map_length, NULL, 0);
cea9e445 1421
d397712b 1422 if (map_length < length + size)
239b14b3 1423 return 1;
411fc6bc 1424 return ret;
239b14b3
CM
1425}
1426
d352ac68
CM
1427/*
1428 * in order to insert checksums into the metadata in large chunks,
1429 * we wait until bio submission time. All the pages in the bio are
1430 * checksummed and sums are attached onto the ordered extent record.
1431 *
1432 * At IO completion time the cums attached on the ordered extent record
1433 * are inserted into the btree
1434 */
d397712b
CM
1435static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1436 struct bio *bio, int mirror_num,
eaf25d93
CM
1437 unsigned long bio_flags,
1438 u64 bio_offset)
065631f6 1439{
065631f6 1440 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1441 int ret = 0;
e015640f 1442
d20f7043 1443 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1444 BUG_ON(ret);
4a69a410
CM
1445 return 0;
1446}
e015640f 1447
4a69a410
CM
1448/*
1449 * in order to insert checksums into the metadata in large chunks,
1450 * we wait until bio submission time. All the pages in the bio are
1451 * checksummed and sums are attached onto the ordered extent record.
1452 *
1453 * At IO completion time the cums attached on the ordered extent record
1454 * are inserted into the btree
1455 */
b2950863 1456static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1457 int mirror_num, unsigned long bio_flags,
1458 u64 bio_offset)
4a69a410
CM
1459{
1460 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1461 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1462}
1463
d352ac68 1464/*
cad321ad
CM
1465 * extent_io.c submission hook. This does the right thing for csum calculation
1466 * on write, or reading the csums from the tree before a read
d352ac68 1467 */
b2950863 1468static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1469 int mirror_num, unsigned long bio_flags,
1470 u64 bio_offset)
44b8bd7e
CM
1471{
1472 struct btrfs_root *root = BTRFS_I(inode)->root;
1473 int ret = 0;
19b9bdb0 1474 int skip_sum;
44b8bd7e 1475
6cbff00f 1476 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1477
2cf8572d 1478 if (btrfs_is_free_space_inode(root, inode))
0cb59c99
JB
1479 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1480 else
1481 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1482 BUG_ON(ret);
065631f6 1483
7b6d91da 1484 if (!(rw & REQ_WRITE)) {
d20f7043 1485 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1486 return btrfs_submit_compressed_read(inode, bio,
1487 mirror_num, bio_flags);
c2db1073
TI
1488 } else if (!skip_sum) {
1489 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1490 if (ret)
1491 return ret;
1492 }
4d1b5fb4 1493 goto mapit;
19b9bdb0 1494 } else if (!skip_sum) {
17d217fe
YZ
1495 /* csum items have already been cloned */
1496 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1497 goto mapit;
19b9bdb0
CM
1498 /* we're doing a write, do the async checksumming */
1499 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1500 inode, rw, bio, mirror_num,
eaf25d93
CM
1501 bio_flags, bio_offset,
1502 __btrfs_submit_bio_start,
4a69a410 1503 __btrfs_submit_bio_done);
19b9bdb0
CM
1504 }
1505
0b86a832 1506mapit:
8b712842 1507 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1508}
6885f308 1509
d352ac68
CM
1510/*
1511 * given a list of ordered sums record them in the inode. This happens
1512 * at IO completion time based on sums calculated at bio submission time.
1513 */
ba1da2f4 1514static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1515 struct inode *inode, u64 file_offset,
1516 struct list_head *list)
1517{
e6dcd2dc
CM
1518 struct btrfs_ordered_sum *sum;
1519
c6e30871 1520 list_for_each_entry(sum, list, list) {
d20f7043
CM
1521 btrfs_csum_file_blocks(trans,
1522 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1523 }
1524 return 0;
1525}
1526
2ac55d41
JB
1527int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1528 struct extent_state **cached_state)
ea8c2819 1529{
d397712b 1530 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1531 WARN_ON(1);
ea8c2819 1532 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1533 cached_state, GFP_NOFS);
ea8c2819
CM
1534}
1535
d352ac68 1536/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1537struct btrfs_writepage_fixup {
1538 struct page *page;
1539 struct btrfs_work work;
1540};
1541
b2950863 1542static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1543{
1544 struct btrfs_writepage_fixup *fixup;
1545 struct btrfs_ordered_extent *ordered;
2ac55d41 1546 struct extent_state *cached_state = NULL;
247e743c
CM
1547 struct page *page;
1548 struct inode *inode;
1549 u64 page_start;
1550 u64 page_end;
1551
1552 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1553 page = fixup->page;
4a096752 1554again:
247e743c
CM
1555 lock_page(page);
1556 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1557 ClearPageChecked(page);
1558 goto out_page;
1559 }
1560
1561 inode = page->mapping->host;
1562 page_start = page_offset(page);
1563 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1564
2ac55d41
JB
1565 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1566 &cached_state, GFP_NOFS);
4a096752
CM
1567
1568 /* already ordered? We're done */
8b62b72b 1569 if (PagePrivate2(page))
247e743c 1570 goto out;
4a096752
CM
1571
1572 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1573 if (ordered) {
2ac55d41
JB
1574 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1575 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1576 unlock_page(page);
1577 btrfs_start_ordered_extent(inode, ordered, 1);
1578 goto again;
1579 }
247e743c 1580
0ca1f7ce 1581 BUG();
2ac55d41 1582 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1583 ClearPageChecked(page);
1584out:
2ac55d41
JB
1585 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1586 &cached_state, GFP_NOFS);
247e743c
CM
1587out_page:
1588 unlock_page(page);
1589 page_cache_release(page);
b897abec 1590 kfree(fixup);
247e743c
CM
1591}
1592
1593/*
1594 * There are a few paths in the higher layers of the kernel that directly
1595 * set the page dirty bit without asking the filesystem if it is a
1596 * good idea. This causes problems because we want to make sure COW
1597 * properly happens and the data=ordered rules are followed.
1598 *
c8b97818 1599 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1600 * hasn't been properly setup for IO. We kick off an async process
1601 * to fix it up. The async helper will wait for ordered extents, set
1602 * the delalloc bit and make it safe to write the page.
1603 */
b2950863 1604static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1605{
1606 struct inode *inode = page->mapping->host;
1607 struct btrfs_writepage_fixup *fixup;
1608 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1609
8b62b72b
CM
1610 /* this page is properly in the ordered list */
1611 if (TestClearPagePrivate2(page))
247e743c
CM
1612 return 0;
1613
1614 if (PageChecked(page))
1615 return -EAGAIN;
1616
1617 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1618 if (!fixup)
1619 return -EAGAIN;
f421950f 1620
247e743c
CM
1621 SetPageChecked(page);
1622 page_cache_get(page);
1623 fixup->work.func = btrfs_writepage_fixup_worker;
1624 fixup->page = page;
1625 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1626 return -EAGAIN;
1627}
1628
d899e052
YZ
1629static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1630 struct inode *inode, u64 file_pos,
1631 u64 disk_bytenr, u64 disk_num_bytes,
1632 u64 num_bytes, u64 ram_bytes,
1633 u8 compression, u8 encryption,
1634 u16 other_encoding, int extent_type)
1635{
1636 struct btrfs_root *root = BTRFS_I(inode)->root;
1637 struct btrfs_file_extent_item *fi;
1638 struct btrfs_path *path;
1639 struct extent_buffer *leaf;
1640 struct btrfs_key ins;
1641 u64 hint;
1642 int ret;
1643
1644 path = btrfs_alloc_path();
d8926bb3
MF
1645 if (!path)
1646 return -ENOMEM;
d899e052 1647
b9473439 1648 path->leave_spinning = 1;
a1ed835e
CM
1649
1650 /*
1651 * we may be replacing one extent in the tree with another.
1652 * The new extent is pinned in the extent map, and we don't want
1653 * to drop it from the cache until it is completely in the btree.
1654 *
1655 * So, tell btrfs_drop_extents to leave this extent in the cache.
1656 * the caller is expected to unpin it and allow it to be merged
1657 * with the others.
1658 */
920bbbfb
YZ
1659 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1660 &hint, 0);
d899e052
YZ
1661 BUG_ON(ret);
1662
33345d01 1663 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1664 ins.offset = file_pos;
1665 ins.type = BTRFS_EXTENT_DATA_KEY;
1666 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1667 BUG_ON(ret);
1668 leaf = path->nodes[0];
1669 fi = btrfs_item_ptr(leaf, path->slots[0],
1670 struct btrfs_file_extent_item);
1671 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1672 btrfs_set_file_extent_type(leaf, fi, extent_type);
1673 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1674 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1675 btrfs_set_file_extent_offset(leaf, fi, 0);
1676 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1677 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1678 btrfs_set_file_extent_compression(leaf, fi, compression);
1679 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1680 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1681
1682 btrfs_unlock_up_safe(path, 1);
1683 btrfs_set_lock_blocking(leaf);
1684
d899e052
YZ
1685 btrfs_mark_buffer_dirty(leaf);
1686
1687 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1688
1689 ins.objectid = disk_bytenr;
1690 ins.offset = disk_num_bytes;
1691 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1692 ret = btrfs_alloc_reserved_file_extent(trans, root,
1693 root->root_key.objectid,
33345d01 1694 btrfs_ino(inode), file_pos, &ins);
d899e052 1695 BUG_ON(ret);
d899e052 1696 btrfs_free_path(path);
b9473439 1697
d899e052
YZ
1698 return 0;
1699}
1700
5d13a98f
CM
1701/*
1702 * helper function for btrfs_finish_ordered_io, this
1703 * just reads in some of the csum leaves to prime them into ram
1704 * before we start the transaction. It limits the amount of btree
1705 * reads required while inside the transaction.
1706 */
d352ac68
CM
1707/* as ordered data IO finishes, this gets called so we can finish
1708 * an ordered extent if the range of bytes in the file it covers are
1709 * fully written.
1710 */
211f90e6 1711static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1712{
e6dcd2dc 1713 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1714 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1715 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1716 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1717 struct extent_state *cached_state = NULL;
261507a0 1718 int compress_type = 0;
e6dcd2dc 1719 int ret;
82d5902d 1720 bool nolock;
e6dcd2dc 1721
5a1a3df1
JB
1722 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1723 end - start + 1);
ba1da2f4 1724 if (!ret)
e6dcd2dc 1725 return 0;
e6dcd2dc 1726 BUG_ON(!ordered_extent);
efd049fb 1727
2cf8572d 1728 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1729
c2167754
YZ
1730 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1731 BUG_ON(!list_empty(&ordered_extent->list));
1732 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1733 if (!ret) {
0cb59c99 1734 if (nolock)
7a7eaa40 1735 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1736 else
7a7eaa40 1737 trans = btrfs_join_transaction(root);
3612b495 1738 BUG_ON(IS_ERR(trans));
0ca1f7ce 1739 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1740 ret = btrfs_update_inode(trans, root, inode);
1741 BUG_ON(ret);
c2167754
YZ
1742 }
1743 goto out;
1744 }
e6dcd2dc 1745
2ac55d41
JB
1746 lock_extent_bits(io_tree, ordered_extent->file_offset,
1747 ordered_extent->file_offset + ordered_extent->len - 1,
1748 0, &cached_state, GFP_NOFS);
e6dcd2dc 1749
0cb59c99 1750 if (nolock)
7a7eaa40 1751 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1752 else
7a7eaa40 1753 trans = btrfs_join_transaction(root);
3612b495 1754 BUG_ON(IS_ERR(trans));
0ca1f7ce 1755 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1756
c8b97818 1757 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1758 compress_type = ordered_extent->compress_type;
d899e052 1759 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1760 BUG_ON(compress_type);
920bbbfb 1761 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1762 ordered_extent->file_offset,
1763 ordered_extent->file_offset +
1764 ordered_extent->len);
1765 BUG_ON(ret);
1766 } else {
0af3d00b 1767 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1768 ret = insert_reserved_file_extent(trans, inode,
1769 ordered_extent->file_offset,
1770 ordered_extent->start,
1771 ordered_extent->disk_len,
1772 ordered_extent->len,
1773 ordered_extent->len,
261507a0 1774 compress_type, 0, 0,
d899e052 1775 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1776 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1777 ordered_extent->file_offset,
1778 ordered_extent->len);
d899e052
YZ
1779 BUG_ON(ret);
1780 }
2ac55d41
JB
1781 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1782 ordered_extent->file_offset +
1783 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1784
e6dcd2dc
CM
1785 add_pending_csums(trans, inode, ordered_extent->file_offset,
1786 &ordered_extent->list);
1787
1ef30be1 1788 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1789 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1ef30be1
JB
1790 ret = btrfs_update_inode(trans, root, inode);
1791 BUG_ON(ret);
1792 }
1793 ret = 0;
c2167754 1794out:
c09544e0 1795 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
0cb59c99
JB
1796 if (nolock) {
1797 if (trans)
1798 btrfs_end_transaction_nolock(trans, root);
1799 } else {
0cb59c99
JB
1800 if (trans)
1801 btrfs_end_transaction(trans, root);
1802 }
1803
e6dcd2dc
CM
1804 /* once for us */
1805 btrfs_put_ordered_extent(ordered_extent);
1806 /* once for the tree */
1807 btrfs_put_ordered_extent(ordered_extent);
1808
e6dcd2dc
CM
1809 return 0;
1810}
1811
b2950863 1812static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1813 struct extent_state *state, int uptodate)
1814{
1abe9b8a 1815 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1816
8b62b72b 1817 ClearPagePrivate2(page);
211f90e6
CM
1818 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1819}
1820
d352ac68
CM
1821/*
1822 * When IO fails, either with EIO or csum verification fails, we
1823 * try other mirrors that might have a good copy of the data. This
1824 * io_failure_record is used to record state as we go through all the
1825 * mirrors. If another mirror has good data, the page is set up to date
1826 * and things continue. If a good mirror can't be found, the original
1827 * bio end_io callback is called to indicate things have failed.
1828 */
7e38326f
CM
1829struct io_failure_record {
1830 struct page *page;
1831 u64 start;
1832 u64 len;
1833 u64 logical;
d20f7043 1834 unsigned long bio_flags;
7e38326f
CM
1835 int last_mirror;
1836};
1837
b2950863 1838static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1839 struct page *page, u64 start, u64 end,
1840 struct extent_state *state)
7e38326f
CM
1841{
1842 struct io_failure_record *failrec = NULL;
1843 u64 private;
1844 struct extent_map *em;
1845 struct inode *inode = page->mapping->host;
1846 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1847 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1848 struct bio *bio;
1849 int num_copies;
1850 int ret;
1259ab75 1851 int rw;
7e38326f
CM
1852 u64 logical;
1853
1854 ret = get_state_private(failure_tree, start, &private);
1855 if (ret) {
7e38326f
CM
1856 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1857 if (!failrec)
1858 return -ENOMEM;
1859 failrec->start = start;
1860 failrec->len = end - start + 1;
1861 failrec->last_mirror = 0;
d20f7043 1862 failrec->bio_flags = 0;
7e38326f 1863
890871be 1864 read_lock(&em_tree->lock);
3b951516
CM
1865 em = lookup_extent_mapping(em_tree, start, failrec->len);
1866 if (em->start > start || em->start + em->len < start) {
1867 free_extent_map(em);
1868 em = NULL;
1869 }
890871be 1870 read_unlock(&em_tree->lock);
7e38326f 1871
c704005d 1872 if (IS_ERR_OR_NULL(em)) {
7e38326f
CM
1873 kfree(failrec);
1874 return -EIO;
1875 }
1876 logical = start - em->start;
1877 logical = em->block_start + logical;
d20f7043
CM
1878 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1879 logical = em->block_start;
1880 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1881 extent_set_compress_type(&failrec->bio_flags,
1882 em->compress_type);
d20f7043 1883 }
7e38326f
CM
1884 failrec->logical = logical;
1885 free_extent_map(em);
1886 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1887 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1888 set_state_private(failure_tree, start,
1889 (u64)(unsigned long)failrec);
7e38326f 1890 } else {
587f7704 1891 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1892 }
1893 num_copies = btrfs_num_copies(
1894 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1895 failrec->logical, failrec->len);
1896 failrec->last_mirror++;
1897 if (!state) {
cad321ad 1898 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1899 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1900 failrec->start,
1901 EXTENT_LOCKED);
1902 if (state && state->start != failrec->start)
1903 state = NULL;
cad321ad 1904 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1905 }
1906 if (!state || failrec->last_mirror > num_copies) {
1907 set_state_private(failure_tree, failrec->start, 0);
1908 clear_extent_bits(failure_tree, failrec->start,
1909 failrec->start + failrec->len - 1,
1910 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1911 kfree(failrec);
1912 return -EIO;
1913 }
1914 bio = bio_alloc(GFP_NOFS, 1);
1915 bio->bi_private = state;
1916 bio->bi_end_io = failed_bio->bi_end_io;
1917 bio->bi_sector = failrec->logical >> 9;
1918 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1919 bio->bi_size = 0;
d20f7043 1920
7e38326f 1921 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1922 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1923 rw = WRITE;
1924 else
1925 rw = READ;
1926
c2db1073 1927 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1928 failrec->last_mirror,
eaf25d93 1929 failrec->bio_flags, 0);
c2db1073 1930 return ret;
1259ab75
CM
1931}
1932
d352ac68
CM
1933/*
1934 * each time an IO finishes, we do a fast check in the IO failure tree
1935 * to see if we need to process or clean up an io_failure_record
1936 */
b2950863 1937static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1938{
1939 u64 private;
1940 u64 private_failure;
1941 struct io_failure_record *failure;
1942 int ret;
1943
1944 private = 0;
1945 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1946 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1947 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1948 start, &private_failure);
1949 if (ret == 0) {
1950 failure = (struct io_failure_record *)(unsigned long)
1951 private_failure;
1952 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1953 failure->start, 0);
1954 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1955 failure->start,
1956 failure->start + failure->len - 1,
1957 EXTENT_DIRTY | EXTENT_LOCKED,
1958 GFP_NOFS);
1959 kfree(failure);
1960 }
1961 }
7e38326f
CM
1962 return 0;
1963}
1964
d352ac68
CM
1965/*
1966 * when reads are done, we need to check csums to verify the data is correct
1967 * if there's a match, we allow the bio to finish. If not, we go through
1968 * the io_failure_record routines to find good copies
1969 */
b2950863 1970static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1971 struct extent_state *state)
07157aac 1972{
35ebb934 1973 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1974 struct inode *inode = page->mapping->host;
d1310b2e 1975 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1976 char *kaddr;
aadfeb6e 1977 u64 private = ~(u32)0;
07157aac 1978 int ret;
ff79f819
CM
1979 struct btrfs_root *root = BTRFS_I(inode)->root;
1980 u32 csum = ~(u32)0;
d1310b2e 1981
d20f7043
CM
1982 if (PageChecked(page)) {
1983 ClearPageChecked(page);
1984 goto good;
1985 }
6cbff00f
CH
1986
1987 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1988 goto good;
17d217fe
YZ
1989
1990 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1991 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1992 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1993 GFP_NOFS);
b6cda9bc 1994 return 0;
17d217fe 1995 }
d20f7043 1996
c2e639f0 1997 if (state && state->start == start) {
70dec807
CM
1998 private = state->private;
1999 ret = 0;
2000 } else {
2001 ret = get_state_private(io_tree, start, &private);
2002 }
9ab86c8e 2003 kaddr = kmap_atomic(page, KM_USER0);
d397712b 2004 if (ret)
07157aac 2005 goto zeroit;
d397712b 2006
ff79f819
CM
2007 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2008 btrfs_csum_final(csum, (char *)&csum);
d397712b 2009 if (csum != private)
07157aac 2010 goto zeroit;
d397712b 2011
9ab86c8e 2012 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2013good:
7e38326f
CM
2014 /* if the io failure tree for this inode is non-empty,
2015 * check to see if we've recovered from a failed IO
2016 */
1259ab75 2017 btrfs_clean_io_failures(inode, start);
07157aac
CM
2018 return 0;
2019
2020zeroit:
945d8962 2021 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2022 "private %llu\n",
2023 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2024 (unsigned long long)start, csum,
2025 (unsigned long long)private);
db94535d
CM
2026 memset(kaddr + offset, 1, end - start + 1);
2027 flush_dcache_page(page);
9ab86c8e 2028 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2029 if (private == 0)
2030 return 0;
7e38326f 2031 return -EIO;
07157aac 2032}
b888db2b 2033
24bbcf04
YZ
2034struct delayed_iput {
2035 struct list_head list;
2036 struct inode *inode;
2037};
2038
2039void btrfs_add_delayed_iput(struct inode *inode)
2040{
2041 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2042 struct delayed_iput *delayed;
2043
2044 if (atomic_add_unless(&inode->i_count, -1, 1))
2045 return;
2046
2047 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2048 delayed->inode = inode;
2049
2050 spin_lock(&fs_info->delayed_iput_lock);
2051 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2052 spin_unlock(&fs_info->delayed_iput_lock);
2053}
2054
2055void btrfs_run_delayed_iputs(struct btrfs_root *root)
2056{
2057 LIST_HEAD(list);
2058 struct btrfs_fs_info *fs_info = root->fs_info;
2059 struct delayed_iput *delayed;
2060 int empty;
2061
2062 spin_lock(&fs_info->delayed_iput_lock);
2063 empty = list_empty(&fs_info->delayed_iputs);
2064 spin_unlock(&fs_info->delayed_iput_lock);
2065 if (empty)
2066 return;
2067
2068 down_read(&root->fs_info->cleanup_work_sem);
2069 spin_lock(&fs_info->delayed_iput_lock);
2070 list_splice_init(&fs_info->delayed_iputs, &list);
2071 spin_unlock(&fs_info->delayed_iput_lock);
2072
2073 while (!list_empty(&list)) {
2074 delayed = list_entry(list.next, struct delayed_iput, list);
2075 list_del(&delayed->list);
2076 iput(delayed->inode);
2077 kfree(delayed);
2078 }
2079 up_read(&root->fs_info->cleanup_work_sem);
2080}
2081
d68fc57b
YZ
2082enum btrfs_orphan_cleanup_state {
2083 ORPHAN_CLEANUP_STARTED = 1,
2084 ORPHAN_CLEANUP_DONE = 2,
2085};
2086
2087/*
2088 * This is called in transaction commmit time. If there are no orphan
2089 * files in the subvolume, it removes orphan item and frees block_rsv
2090 * structure.
2091 */
2092void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2093 struct btrfs_root *root)
2094{
2095 int ret;
2096
2097 if (!list_empty(&root->orphan_list) ||
2098 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2099 return;
2100
2101 if (root->orphan_item_inserted &&
2102 btrfs_root_refs(&root->root_item) > 0) {
2103 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2104 root->root_key.objectid);
2105 BUG_ON(ret);
2106 root->orphan_item_inserted = 0;
2107 }
2108
2109 if (root->orphan_block_rsv) {
2110 WARN_ON(root->orphan_block_rsv->size > 0);
2111 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2112 root->orphan_block_rsv = NULL;
2113 }
2114}
2115
7b128766
JB
2116/*
2117 * This creates an orphan entry for the given inode in case something goes
2118 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2119 *
2120 * NOTE: caller of this function should reserve 5 units of metadata for
2121 * this function.
7b128766
JB
2122 */
2123int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2124{
2125 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2126 struct btrfs_block_rsv *block_rsv = NULL;
2127 int reserve = 0;
2128 int insert = 0;
2129 int ret;
7b128766 2130
d68fc57b
YZ
2131 if (!root->orphan_block_rsv) {
2132 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
2133 if (!block_rsv)
2134 return -ENOMEM;
d68fc57b 2135 }
7b128766 2136
d68fc57b
YZ
2137 spin_lock(&root->orphan_lock);
2138 if (!root->orphan_block_rsv) {
2139 root->orphan_block_rsv = block_rsv;
2140 } else if (block_rsv) {
2141 btrfs_free_block_rsv(root, block_rsv);
2142 block_rsv = NULL;
7b128766 2143 }
7b128766 2144
d68fc57b
YZ
2145 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2146 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2147#if 0
2148 /*
2149 * For proper ENOSPC handling, we should do orphan
2150 * cleanup when mounting. But this introduces backward
2151 * compatibility issue.
2152 */
2153 if (!xchg(&root->orphan_item_inserted, 1))
2154 insert = 2;
2155 else
2156 insert = 1;
2157#endif
2158 insert = 1;
7b128766
JB
2159 }
2160
d68fc57b
YZ
2161 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2162 BTRFS_I(inode)->orphan_meta_reserved = 1;
2163 reserve = 1;
2164 }
2165 spin_unlock(&root->orphan_lock);
7b128766 2166
d68fc57b
YZ
2167 /* grab metadata reservation from transaction handle */
2168 if (reserve) {
2169 ret = btrfs_orphan_reserve_metadata(trans, inode);
2170 BUG_ON(ret);
2171 }
7b128766 2172
d68fc57b
YZ
2173 /* insert an orphan item to track this unlinked/truncated file */
2174 if (insert >= 1) {
33345d01 2175 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2176 BUG_ON(ret);
2177 }
2178
2179 /* insert an orphan item to track subvolume contains orphan files */
2180 if (insert >= 2) {
2181 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2182 root->root_key.objectid);
2183 BUG_ON(ret);
2184 }
2185 return 0;
7b128766
JB
2186}
2187
2188/*
2189 * We have done the truncate/delete so we can go ahead and remove the orphan
2190 * item for this particular inode.
2191 */
2192int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2193{
2194 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2195 int delete_item = 0;
2196 int release_rsv = 0;
7b128766
JB
2197 int ret = 0;
2198
d68fc57b
YZ
2199 spin_lock(&root->orphan_lock);
2200 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2201 list_del_init(&BTRFS_I(inode)->i_orphan);
2202 delete_item = 1;
7b128766
JB
2203 }
2204
d68fc57b
YZ
2205 if (BTRFS_I(inode)->orphan_meta_reserved) {
2206 BTRFS_I(inode)->orphan_meta_reserved = 0;
2207 release_rsv = 1;
7b128766 2208 }
d68fc57b 2209 spin_unlock(&root->orphan_lock);
7b128766 2210
d68fc57b 2211 if (trans && delete_item) {
33345d01 2212 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2213 BUG_ON(ret);
2214 }
7b128766 2215
d68fc57b
YZ
2216 if (release_rsv)
2217 btrfs_orphan_release_metadata(inode);
7b128766 2218
d68fc57b 2219 return 0;
7b128766
JB
2220}
2221
2222/*
2223 * this cleans up any orphans that may be left on the list from the last use
2224 * of this root.
2225 */
66b4ffd1 2226int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2227{
2228 struct btrfs_path *path;
2229 struct extent_buffer *leaf;
7b128766
JB
2230 struct btrfs_key key, found_key;
2231 struct btrfs_trans_handle *trans;
2232 struct inode *inode;
2233 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2234
d68fc57b 2235 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2236 return 0;
c71bf099
YZ
2237
2238 path = btrfs_alloc_path();
66b4ffd1
JB
2239 if (!path) {
2240 ret = -ENOMEM;
2241 goto out;
2242 }
7b128766
JB
2243 path->reada = -1;
2244
2245 key.objectid = BTRFS_ORPHAN_OBJECTID;
2246 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2247 key.offset = (u64)-1;
2248
7b128766
JB
2249 while (1) {
2250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2251 if (ret < 0)
2252 goto out;
7b128766
JB
2253
2254 /*
2255 * if ret == 0 means we found what we were searching for, which
25985edc 2256 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2257 * find the key and see if we have stuff that matches
2258 */
2259 if (ret > 0) {
66b4ffd1 2260 ret = 0;
7b128766
JB
2261 if (path->slots[0] == 0)
2262 break;
2263 path->slots[0]--;
2264 }
2265
2266 /* pull out the item */
2267 leaf = path->nodes[0];
7b128766
JB
2268 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2269
2270 /* make sure the item matches what we want */
2271 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2272 break;
2273 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2274 break;
2275
2276 /* release the path since we're done with it */
b3b4aa74 2277 btrfs_release_path(path);
7b128766
JB
2278
2279 /*
2280 * this is where we are basically btrfs_lookup, without the
2281 * crossing root thing. we store the inode number in the
2282 * offset of the orphan item.
2283 */
5d4f98a2
YZ
2284 found_key.objectid = found_key.offset;
2285 found_key.type = BTRFS_INODE_ITEM_KEY;
2286 found_key.offset = 0;
73f73415 2287 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2288 ret = PTR_RET(inode);
2289 if (ret && ret != -ESTALE)
66b4ffd1 2290 goto out;
7b128766
JB
2291
2292 /*
a8c9e576
JB
2293 * Inode is already gone but the orphan item is still there,
2294 * kill the orphan item.
7b128766 2295 */
a8c9e576
JB
2296 if (ret == -ESTALE) {
2297 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2298 if (IS_ERR(trans)) {
2299 ret = PTR_ERR(trans);
2300 goto out;
2301 }
a8c9e576
JB
2302 ret = btrfs_del_orphan_item(trans, root,
2303 found_key.objectid);
2304 BUG_ON(ret);
5b21f2ed 2305 btrfs_end_transaction(trans, root);
7b128766
JB
2306 continue;
2307 }
2308
a8c9e576
JB
2309 /*
2310 * add this inode to the orphan list so btrfs_orphan_del does
2311 * the proper thing when we hit it
2312 */
2313 spin_lock(&root->orphan_lock);
2314 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2315 spin_unlock(&root->orphan_lock);
2316
7b128766
JB
2317 /* if we have links, this was a truncate, lets do that */
2318 if (inode->i_nlink) {
a41ad394
JB
2319 if (!S_ISREG(inode->i_mode)) {
2320 WARN_ON(1);
2321 iput(inode);
2322 continue;
2323 }
7b128766 2324 nr_truncate++;
66b4ffd1 2325 ret = btrfs_truncate(inode);
7b128766
JB
2326 } else {
2327 nr_unlink++;
2328 }
2329
2330 /* this will do delete_inode and everything for us */
2331 iput(inode);
66b4ffd1
JB
2332 if (ret)
2333 goto out;
7b128766 2334 }
d68fc57b
YZ
2335 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2336
2337 if (root->orphan_block_rsv)
2338 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2339 (u64)-1);
2340
2341 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2342 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2343 if (!IS_ERR(trans))
2344 btrfs_end_transaction(trans, root);
d68fc57b 2345 }
7b128766
JB
2346
2347 if (nr_unlink)
2348 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2349 if (nr_truncate)
2350 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2351
2352out:
2353 if (ret)
2354 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2355 btrfs_free_path(path);
2356 return ret;
7b128766
JB
2357}
2358
46a53cca
CM
2359/*
2360 * very simple check to peek ahead in the leaf looking for xattrs. If we
2361 * don't find any xattrs, we know there can't be any acls.
2362 *
2363 * slot is the slot the inode is in, objectid is the objectid of the inode
2364 */
2365static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2366 int slot, u64 objectid)
2367{
2368 u32 nritems = btrfs_header_nritems(leaf);
2369 struct btrfs_key found_key;
2370 int scanned = 0;
2371
2372 slot++;
2373 while (slot < nritems) {
2374 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2375
2376 /* we found a different objectid, there must not be acls */
2377 if (found_key.objectid != objectid)
2378 return 0;
2379
2380 /* we found an xattr, assume we've got an acl */
2381 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2382 return 1;
2383
2384 /*
2385 * we found a key greater than an xattr key, there can't
2386 * be any acls later on
2387 */
2388 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2389 return 0;
2390
2391 slot++;
2392 scanned++;
2393
2394 /*
2395 * it goes inode, inode backrefs, xattrs, extents,
2396 * so if there are a ton of hard links to an inode there can
2397 * be a lot of backrefs. Don't waste time searching too hard,
2398 * this is just an optimization
2399 */
2400 if (scanned >= 8)
2401 break;
2402 }
2403 /* we hit the end of the leaf before we found an xattr or
2404 * something larger than an xattr. We have to assume the inode
2405 * has acls
2406 */
2407 return 1;
2408}
2409
d352ac68
CM
2410/*
2411 * read an inode from the btree into the in-memory inode
2412 */
5d4f98a2 2413static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2414{
2415 struct btrfs_path *path;
5f39d397 2416 struct extent_buffer *leaf;
39279cc3 2417 struct btrfs_inode_item *inode_item;
0b86a832 2418 struct btrfs_timespec *tspec;
39279cc3
CM
2419 struct btrfs_root *root = BTRFS_I(inode)->root;
2420 struct btrfs_key location;
46a53cca 2421 int maybe_acls;
618e21d5 2422 u32 rdev;
39279cc3 2423 int ret;
2f7e33d4
MX
2424 bool filled = false;
2425
2426 ret = btrfs_fill_inode(inode, &rdev);
2427 if (!ret)
2428 filled = true;
39279cc3
CM
2429
2430 path = btrfs_alloc_path();
1748f843
MF
2431 if (!path)
2432 goto make_bad;
2433
d90c7321 2434 path->leave_spinning = 1;
39279cc3 2435 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2436
39279cc3 2437 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2438 if (ret)
39279cc3 2439 goto make_bad;
39279cc3 2440
5f39d397 2441 leaf = path->nodes[0];
2f7e33d4
MX
2442
2443 if (filled)
2444 goto cache_acl;
2445
5f39d397
CM
2446 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2447 struct btrfs_inode_item);
5f39d397
CM
2448 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2449 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2450 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2451 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2452 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2453
2454 tspec = btrfs_inode_atime(inode_item);
2455 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2456 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2457
2458 tspec = btrfs_inode_mtime(inode_item);
2459 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2460 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2461
2462 tspec = btrfs_inode_ctime(inode_item);
2463 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2464 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2465
a76a3cd4 2466 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2467 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2468 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2469 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2470 inode->i_rdev = 0;
5f39d397
CM
2471 rdev = btrfs_inode_rdev(leaf, inode_item);
2472
aec7477b 2473 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2474 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2475cache_acl:
46a53cca
CM
2476 /*
2477 * try to precache a NULL acl entry for files that don't have
2478 * any xattrs or acls
2479 */
33345d01
LZ
2480 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2481 btrfs_ino(inode));
72c04902
AV
2482 if (!maybe_acls)
2483 cache_no_acl(inode);
46a53cca 2484
39279cc3 2485 btrfs_free_path(path);
39279cc3 2486
39279cc3 2487 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2488 case S_IFREG:
2489 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2490 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2491 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2492 inode->i_fop = &btrfs_file_operations;
2493 inode->i_op = &btrfs_file_inode_operations;
2494 break;
2495 case S_IFDIR:
2496 inode->i_fop = &btrfs_dir_file_operations;
2497 if (root == root->fs_info->tree_root)
2498 inode->i_op = &btrfs_dir_ro_inode_operations;
2499 else
2500 inode->i_op = &btrfs_dir_inode_operations;
2501 break;
2502 case S_IFLNK:
2503 inode->i_op = &btrfs_symlink_inode_operations;
2504 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2505 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2506 break;
618e21d5 2507 default:
0279b4cd 2508 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2509 init_special_inode(inode, inode->i_mode, rdev);
2510 break;
39279cc3 2511 }
6cbff00f
CH
2512
2513 btrfs_update_iflags(inode);
39279cc3
CM
2514 return;
2515
2516make_bad:
39279cc3 2517 btrfs_free_path(path);
39279cc3
CM
2518 make_bad_inode(inode);
2519}
2520
d352ac68
CM
2521/*
2522 * given a leaf and an inode, copy the inode fields into the leaf
2523 */
e02119d5
CM
2524static void fill_inode_item(struct btrfs_trans_handle *trans,
2525 struct extent_buffer *leaf,
5f39d397 2526 struct btrfs_inode_item *item,
39279cc3
CM
2527 struct inode *inode)
2528{
5f39d397
CM
2529 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2530 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2531 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2532 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2533 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2534
2535 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2536 inode->i_atime.tv_sec);
2537 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2538 inode->i_atime.tv_nsec);
2539
2540 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2541 inode->i_mtime.tv_sec);
2542 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2543 inode->i_mtime.tv_nsec);
2544
2545 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2546 inode->i_ctime.tv_sec);
2547 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2548 inode->i_ctime.tv_nsec);
2549
a76a3cd4 2550 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2551 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2552 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2553 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2554 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2555 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2556 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2557}
2558
d352ac68
CM
2559/*
2560 * copy everything in the in-memory inode into the btree.
2561 */
d397712b
CM
2562noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2563 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2564{
2565 struct btrfs_inode_item *inode_item;
2566 struct btrfs_path *path;
5f39d397 2567 struct extent_buffer *leaf;
39279cc3
CM
2568 int ret;
2569
16cdcec7 2570 /*
149e2d76
MX
2571 * If the inode is a free space inode, we can deadlock during commit
2572 * if we put it into the delayed code.
2573 *
2574 * The data relocation inode should also be directly updated
2575 * without delay
16cdcec7 2576 */
2cf8572d 2577 if (!btrfs_is_free_space_inode(root, inode)
149e2d76 2578 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
16cdcec7
MX
2579 ret = btrfs_delayed_update_inode(trans, root, inode);
2580 if (!ret)
2581 btrfs_set_inode_last_trans(trans, inode);
2582 return ret;
2583 }
2584
39279cc3 2585 path = btrfs_alloc_path();
16cdcec7
MX
2586 if (!path)
2587 return -ENOMEM;
2588
b9473439 2589 path->leave_spinning = 1;
16cdcec7
MX
2590 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2591 1);
39279cc3
CM
2592 if (ret) {
2593 if (ret > 0)
2594 ret = -ENOENT;
2595 goto failed;
2596 }
2597
b4ce94de 2598 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2599 leaf = path->nodes[0];
2600 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2601 struct btrfs_inode_item);
39279cc3 2602
e02119d5 2603 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2604 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2605 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2606 ret = 0;
2607failed:
39279cc3
CM
2608 btrfs_free_path(path);
2609 return ret;
2610}
2611
d352ac68
CM
2612/*
2613 * unlink helper that gets used here in inode.c and in the tree logging
2614 * recovery code. It remove a link in a directory with a given name, and
2615 * also drops the back refs in the inode to the directory
2616 */
92986796
AV
2617static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2618 struct btrfs_root *root,
2619 struct inode *dir, struct inode *inode,
2620 const char *name, int name_len)
39279cc3
CM
2621{
2622 struct btrfs_path *path;
39279cc3 2623 int ret = 0;
5f39d397 2624 struct extent_buffer *leaf;
39279cc3 2625 struct btrfs_dir_item *di;
5f39d397 2626 struct btrfs_key key;
aec7477b 2627 u64 index;
33345d01
LZ
2628 u64 ino = btrfs_ino(inode);
2629 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2630
2631 path = btrfs_alloc_path();
54aa1f4d
CM
2632 if (!path) {
2633 ret = -ENOMEM;
554233a6 2634 goto out;
54aa1f4d
CM
2635 }
2636
b9473439 2637 path->leave_spinning = 1;
33345d01 2638 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2639 name, name_len, -1);
2640 if (IS_ERR(di)) {
2641 ret = PTR_ERR(di);
2642 goto err;
2643 }
2644 if (!di) {
2645 ret = -ENOENT;
2646 goto err;
2647 }
5f39d397
CM
2648 leaf = path->nodes[0];
2649 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2650 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2651 if (ret)
2652 goto err;
b3b4aa74 2653 btrfs_release_path(path);
39279cc3 2654
33345d01
LZ
2655 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2656 dir_ino, &index);
aec7477b 2657 if (ret) {
d397712b 2658 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2659 "inode %llu parent %llu\n", name_len, name,
2660 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2661 goto err;
2662 }
2663
16cdcec7
MX
2664 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2665 if (ret)
39279cc3 2666 goto err;
39279cc3 2667
e02119d5 2668 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2669 inode, dir_ino);
49eb7e46 2670 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2671
2672 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2673 dir, index);
6418c961
CM
2674 if (ret == -ENOENT)
2675 ret = 0;
39279cc3
CM
2676err:
2677 btrfs_free_path(path);
e02119d5
CM
2678 if (ret)
2679 goto out;
2680
2681 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2682 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2683 btrfs_update_inode(trans, root, dir);
e02119d5 2684out:
39279cc3
CM
2685 return ret;
2686}
2687
92986796
AV
2688int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2689 struct btrfs_root *root,
2690 struct inode *dir, struct inode *inode,
2691 const char *name, int name_len)
2692{
2693 int ret;
2694 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2695 if (!ret) {
2696 btrfs_drop_nlink(inode);
2697 ret = btrfs_update_inode(trans, root, inode);
2698 }
2699 return ret;
2700}
2701
2702
a22285a6
YZ
2703/* helper to check if there is any shared block in the path */
2704static int check_path_shared(struct btrfs_root *root,
2705 struct btrfs_path *path)
39279cc3 2706{
a22285a6
YZ
2707 struct extent_buffer *eb;
2708 int level;
0e4dcbef 2709 u64 refs = 1;
5df6a9f6 2710
a22285a6 2711 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2712 int ret;
2713
a22285a6
YZ
2714 if (!path->nodes[level])
2715 break;
2716 eb = path->nodes[level];
2717 if (!btrfs_block_can_be_shared(root, eb))
2718 continue;
2719 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2720 &refs, NULL);
2721 if (refs > 1)
2722 return 1;
5df6a9f6 2723 }
dedefd72 2724 return 0;
39279cc3
CM
2725}
2726
a22285a6
YZ
2727/*
2728 * helper to start transaction for unlink and rmdir.
2729 *
2730 * unlink and rmdir are special in btrfs, they do not always free space.
2731 * so in enospc case, we should make sure they will free space before
2732 * allowing them to use the global metadata reservation.
2733 */
2734static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2735 struct dentry *dentry)
4df27c4d 2736{
39279cc3 2737 struct btrfs_trans_handle *trans;
a22285a6 2738 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2739 struct btrfs_path *path;
a22285a6 2740 struct btrfs_inode_ref *ref;
4df27c4d 2741 struct btrfs_dir_item *di;
7b128766 2742 struct inode *inode = dentry->d_inode;
4df27c4d 2743 u64 index;
a22285a6
YZ
2744 int check_link = 1;
2745 int err = -ENOSPC;
4df27c4d 2746 int ret;
33345d01
LZ
2747 u64 ino = btrfs_ino(inode);
2748 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2749
a22285a6
YZ
2750 trans = btrfs_start_transaction(root, 10);
2751 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2752 return trans;
4df27c4d 2753
33345d01 2754 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2755 return ERR_PTR(-ENOSPC);
4df27c4d 2756
a22285a6
YZ
2757 /* check if there is someone else holds reference */
2758 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2759 return ERR_PTR(-ENOSPC);
4df27c4d 2760
a22285a6
YZ
2761 if (atomic_read(&inode->i_count) > 2)
2762 return ERR_PTR(-ENOSPC);
4df27c4d 2763
a22285a6
YZ
2764 if (xchg(&root->fs_info->enospc_unlink, 1))
2765 return ERR_PTR(-ENOSPC);
2766
2767 path = btrfs_alloc_path();
2768 if (!path) {
2769 root->fs_info->enospc_unlink = 0;
2770 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2771 }
2772
a22285a6 2773 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2774 if (IS_ERR(trans)) {
a22285a6
YZ
2775 btrfs_free_path(path);
2776 root->fs_info->enospc_unlink = 0;
2777 return trans;
2778 }
4df27c4d 2779
a22285a6
YZ
2780 path->skip_locking = 1;
2781 path->search_commit_root = 1;
4df27c4d 2782
a22285a6
YZ
2783 ret = btrfs_lookup_inode(trans, root, path,
2784 &BTRFS_I(dir)->location, 0);
2785 if (ret < 0) {
2786 err = ret;
2787 goto out;
2788 }
2789 if (ret == 0) {
2790 if (check_path_shared(root, path))
2791 goto out;
2792 } else {
2793 check_link = 0;
5df6a9f6 2794 }
b3b4aa74 2795 btrfs_release_path(path);
a22285a6
YZ
2796
2797 ret = btrfs_lookup_inode(trans, root, path,
2798 &BTRFS_I(inode)->location, 0);
2799 if (ret < 0) {
2800 err = ret;
2801 goto out;
2802 }
2803 if (ret == 0) {
2804 if (check_path_shared(root, path))
2805 goto out;
2806 } else {
2807 check_link = 0;
2808 }
b3b4aa74 2809 btrfs_release_path(path);
a22285a6
YZ
2810
2811 if (ret == 0 && S_ISREG(inode->i_mode)) {
2812 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2813 ino, (u64)-1, 0);
a22285a6
YZ
2814 if (ret < 0) {
2815 err = ret;
2816 goto out;
2817 }
2818 BUG_ON(ret == 0);
2819 if (check_path_shared(root, path))
2820 goto out;
b3b4aa74 2821 btrfs_release_path(path);
a22285a6
YZ
2822 }
2823
2824 if (!check_link) {
2825 err = 0;
2826 goto out;
2827 }
2828
33345d01 2829 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2830 dentry->d_name.name, dentry->d_name.len, 0);
2831 if (IS_ERR(di)) {
2832 err = PTR_ERR(di);
2833 goto out;
2834 }
2835 if (di) {
2836 if (check_path_shared(root, path))
2837 goto out;
2838 } else {
2839 err = 0;
2840 goto out;
2841 }
b3b4aa74 2842 btrfs_release_path(path);
a22285a6
YZ
2843
2844 ref = btrfs_lookup_inode_ref(trans, root, path,
2845 dentry->d_name.name, dentry->d_name.len,
33345d01 2846 ino, dir_ino, 0);
a22285a6
YZ
2847 if (IS_ERR(ref)) {
2848 err = PTR_ERR(ref);
2849 goto out;
2850 }
2851 BUG_ON(!ref);
2852 if (check_path_shared(root, path))
2853 goto out;
2854 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2855 btrfs_release_path(path);
a22285a6 2856
16cdcec7
MX
2857 /*
2858 * This is a commit root search, if we can lookup inode item and other
2859 * relative items in the commit root, it means the transaction of
2860 * dir/file creation has been committed, and the dir index item that we
2861 * delay to insert has also been inserted into the commit root. So
2862 * we needn't worry about the delayed insertion of the dir index item
2863 * here.
2864 */
33345d01 2865 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2866 dentry->d_name.name, dentry->d_name.len, 0);
2867 if (IS_ERR(di)) {
2868 err = PTR_ERR(di);
2869 goto out;
2870 }
2871 BUG_ON(ret == -ENOENT);
2872 if (check_path_shared(root, path))
2873 goto out;
2874
2875 err = 0;
2876out:
2877 btrfs_free_path(path);
2878 if (err) {
2879 btrfs_end_transaction(trans, root);
2880 root->fs_info->enospc_unlink = 0;
2881 return ERR_PTR(err);
2882 }
2883
2884 trans->block_rsv = &root->fs_info->global_block_rsv;
2885 return trans;
2886}
2887
2888static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2889 struct btrfs_root *root)
2890{
2891 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2892 BUG_ON(!root->fs_info->enospc_unlink);
2893 root->fs_info->enospc_unlink = 0;
2894 }
2895 btrfs_end_transaction_throttle(trans, root);
2896}
2897
2898static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2899{
2900 struct btrfs_root *root = BTRFS_I(dir)->root;
2901 struct btrfs_trans_handle *trans;
2902 struct inode *inode = dentry->d_inode;
2903 int ret;
2904 unsigned long nr = 0;
2905
2906 trans = __unlink_start_trans(dir, dentry);
2907 if (IS_ERR(trans))
2908 return PTR_ERR(trans);
5f39d397 2909
12fcfd22
CM
2910 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2911
e02119d5
CM
2912 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2913 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
2914 if (ret)
2915 goto out;
7b128766 2916
a22285a6 2917 if (inode->i_nlink == 0) {
7b128766 2918 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
2919 if (ret)
2920 goto out;
a22285a6 2921 }
7b128766 2922
b532402e 2923out:
d3c2fdcf 2924 nr = trans->blocks_used;
a22285a6 2925 __unlink_end_trans(trans, root);
d3c2fdcf 2926 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2927 return ret;
2928}
2929
4df27c4d
YZ
2930int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2931 struct btrfs_root *root,
2932 struct inode *dir, u64 objectid,
2933 const char *name, int name_len)
2934{
2935 struct btrfs_path *path;
2936 struct extent_buffer *leaf;
2937 struct btrfs_dir_item *di;
2938 struct btrfs_key key;
2939 u64 index;
2940 int ret;
33345d01 2941 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
2942
2943 path = btrfs_alloc_path();
2944 if (!path)
2945 return -ENOMEM;
2946
33345d01 2947 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 2948 name, name_len, -1);
c704005d 2949 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2950
2951 leaf = path->nodes[0];
2952 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2953 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2954 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2955 BUG_ON(ret);
b3b4aa74 2956 btrfs_release_path(path);
4df27c4d
YZ
2957
2958 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2959 objectid, root->root_key.objectid,
33345d01 2960 dir_ino, &index, name, name_len);
4df27c4d
YZ
2961 if (ret < 0) {
2962 BUG_ON(ret != -ENOENT);
33345d01 2963 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 2964 name, name_len);
c704005d 2965 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2966
2967 leaf = path->nodes[0];
2968 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2969 btrfs_release_path(path);
4df27c4d
YZ
2970 index = key.offset;
2971 }
945d8962 2972 btrfs_release_path(path);
4df27c4d 2973
16cdcec7 2974 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 2975 BUG_ON(ret);
4df27c4d
YZ
2976
2977 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2978 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2979 ret = btrfs_update_inode(trans, root, dir);
2980 BUG_ON(ret);
4df27c4d 2981
71d7aed0 2982 btrfs_free_path(path);
4df27c4d
YZ
2983 return 0;
2984}
2985
39279cc3
CM
2986static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2987{
2988 struct inode *inode = dentry->d_inode;
1832a6d5 2989 int err = 0;
39279cc3 2990 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2991 struct btrfs_trans_handle *trans;
1832a6d5 2992 unsigned long nr = 0;
39279cc3 2993
3394e160 2994 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 2995 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2996 return -ENOTEMPTY;
2997
a22285a6
YZ
2998 trans = __unlink_start_trans(dir, dentry);
2999 if (IS_ERR(trans))
5df6a9f6 3000 return PTR_ERR(trans);
5df6a9f6 3001
33345d01 3002 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3003 err = btrfs_unlink_subvol(trans, root, dir,
3004 BTRFS_I(inode)->location.objectid,
3005 dentry->d_name.name,
3006 dentry->d_name.len);
3007 goto out;
3008 }
3009
7b128766
JB
3010 err = btrfs_orphan_add(trans, inode);
3011 if (err)
4df27c4d 3012 goto out;
7b128766 3013
39279cc3 3014 /* now the directory is empty */
e02119d5
CM
3015 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3016 dentry->d_name.name, dentry->d_name.len);
d397712b 3017 if (!err)
dbe674a9 3018 btrfs_i_size_write(inode, 0);
4df27c4d 3019out:
d3c2fdcf 3020 nr = trans->blocks_used;
a22285a6 3021 __unlink_end_trans(trans, root);
d3c2fdcf 3022 btrfs_btree_balance_dirty(root, nr);
3954401f 3023
39279cc3
CM
3024 return err;
3025}
3026
39279cc3
CM
3027/*
3028 * this can truncate away extent items, csum items and directory items.
3029 * It starts at a high offset and removes keys until it can't find
d352ac68 3030 * any higher than new_size
39279cc3
CM
3031 *
3032 * csum items that cross the new i_size are truncated to the new size
3033 * as well.
7b128766
JB
3034 *
3035 * min_type is the minimum key type to truncate down to. If set to 0, this
3036 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3037 */
8082510e
YZ
3038int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3039 struct btrfs_root *root,
3040 struct inode *inode,
3041 u64 new_size, u32 min_type)
39279cc3 3042{
39279cc3 3043 struct btrfs_path *path;
5f39d397 3044 struct extent_buffer *leaf;
39279cc3 3045 struct btrfs_file_extent_item *fi;
8082510e
YZ
3046 struct btrfs_key key;
3047 struct btrfs_key found_key;
39279cc3 3048 u64 extent_start = 0;
db94535d 3049 u64 extent_num_bytes = 0;
5d4f98a2 3050 u64 extent_offset = 0;
39279cc3 3051 u64 item_end = 0;
8082510e
YZ
3052 u64 mask = root->sectorsize - 1;
3053 u32 found_type = (u8)-1;
39279cc3
CM
3054 int found_extent;
3055 int del_item;
85e21bac
CM
3056 int pending_del_nr = 0;
3057 int pending_del_slot = 0;
179e29e4 3058 int extent_type = -1;
771ed689 3059 int encoding;
8082510e
YZ
3060 int ret;
3061 int err = 0;
33345d01 3062 u64 ino = btrfs_ino(inode);
8082510e
YZ
3063
3064 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3065
0eb0e19c
MF
3066 path = btrfs_alloc_path();
3067 if (!path)
3068 return -ENOMEM;
3069 path->reada = -1;
3070
0af3d00b 3071 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3072 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3073
16cdcec7
MX
3074 /*
3075 * This function is also used to drop the items in the log tree before
3076 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3077 * it is used to drop the loged items. So we shouldn't kill the delayed
3078 * items.
3079 */
3080 if (min_type == 0 && root == BTRFS_I(inode)->root)
3081 btrfs_kill_delayed_inode_items(inode);
3082
33345d01 3083 key.objectid = ino;
39279cc3 3084 key.offset = (u64)-1;
5f39d397
CM
3085 key.type = (u8)-1;
3086
85e21bac 3087search_again:
b9473439 3088 path->leave_spinning = 1;
85e21bac 3089 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3090 if (ret < 0) {
3091 err = ret;
3092 goto out;
3093 }
d397712b 3094
85e21bac 3095 if (ret > 0) {
e02119d5
CM
3096 /* there are no items in the tree for us to truncate, we're
3097 * done
3098 */
8082510e
YZ
3099 if (path->slots[0] == 0)
3100 goto out;
85e21bac
CM
3101 path->slots[0]--;
3102 }
3103
d397712b 3104 while (1) {
39279cc3 3105 fi = NULL;
5f39d397
CM
3106 leaf = path->nodes[0];
3107 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3108 found_type = btrfs_key_type(&found_key);
771ed689 3109 encoding = 0;
39279cc3 3110
33345d01 3111 if (found_key.objectid != ino)
39279cc3 3112 break;
5f39d397 3113
85e21bac 3114 if (found_type < min_type)
39279cc3
CM
3115 break;
3116
5f39d397 3117 item_end = found_key.offset;
39279cc3 3118 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3119 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3120 struct btrfs_file_extent_item);
179e29e4 3121 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3122 encoding = btrfs_file_extent_compression(leaf, fi);
3123 encoding |= btrfs_file_extent_encryption(leaf, fi);
3124 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3125
179e29e4 3126 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3127 item_end +=
db94535d 3128 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3129 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3130 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3131 fi);
39279cc3 3132 }
008630c1 3133 item_end--;
39279cc3 3134 }
8082510e
YZ
3135 if (found_type > min_type) {
3136 del_item = 1;
3137 } else {
3138 if (item_end < new_size)
b888db2b 3139 break;
8082510e
YZ
3140 if (found_key.offset >= new_size)
3141 del_item = 1;
3142 else
3143 del_item = 0;
39279cc3 3144 }
39279cc3 3145 found_extent = 0;
39279cc3 3146 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3147 if (found_type != BTRFS_EXTENT_DATA_KEY)
3148 goto delete;
3149
3150 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3151 u64 num_dec;
db94535d 3152 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3153 if (!del_item && !encoding) {
db94535d
CM
3154 u64 orig_num_bytes =
3155 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3156 extent_num_bytes = new_size -
5f39d397 3157 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3158 extent_num_bytes = extent_num_bytes &
3159 ~((u64)root->sectorsize - 1);
db94535d
CM
3160 btrfs_set_file_extent_num_bytes(leaf, fi,
3161 extent_num_bytes);
3162 num_dec = (orig_num_bytes -
9069218d 3163 extent_num_bytes);
e02119d5 3164 if (root->ref_cows && extent_start != 0)
a76a3cd4 3165 inode_sub_bytes(inode, num_dec);
5f39d397 3166 btrfs_mark_buffer_dirty(leaf);
39279cc3 3167 } else {
db94535d
CM
3168 extent_num_bytes =
3169 btrfs_file_extent_disk_num_bytes(leaf,
3170 fi);
5d4f98a2
YZ
3171 extent_offset = found_key.offset -
3172 btrfs_file_extent_offset(leaf, fi);
3173
39279cc3 3174 /* FIXME blocksize != 4096 */
9069218d 3175 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3176 if (extent_start != 0) {
3177 found_extent = 1;
e02119d5 3178 if (root->ref_cows)
a76a3cd4 3179 inode_sub_bytes(inode, num_dec);
e02119d5 3180 }
39279cc3 3181 }
9069218d 3182 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3183 /*
3184 * we can't truncate inline items that have had
3185 * special encodings
3186 */
3187 if (!del_item &&
3188 btrfs_file_extent_compression(leaf, fi) == 0 &&
3189 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3190 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3191 u32 size = new_size - found_key.offset;
3192
3193 if (root->ref_cows) {
a76a3cd4
YZ
3194 inode_sub_bytes(inode, item_end + 1 -
3195 new_size);
e02119d5
CM
3196 }
3197 size =
3198 btrfs_file_extent_calc_inline_size(size);
9069218d 3199 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3200 size, 1);
e02119d5 3201 } else if (root->ref_cows) {
a76a3cd4
YZ
3202 inode_sub_bytes(inode, item_end + 1 -
3203 found_key.offset);
9069218d 3204 }
39279cc3 3205 }
179e29e4 3206delete:
39279cc3 3207 if (del_item) {
85e21bac
CM
3208 if (!pending_del_nr) {
3209 /* no pending yet, add ourselves */
3210 pending_del_slot = path->slots[0];
3211 pending_del_nr = 1;
3212 } else if (pending_del_nr &&
3213 path->slots[0] + 1 == pending_del_slot) {
3214 /* hop on the pending chunk */
3215 pending_del_nr++;
3216 pending_del_slot = path->slots[0];
3217 } else {
d397712b 3218 BUG();
85e21bac 3219 }
39279cc3
CM
3220 } else {
3221 break;
3222 }
0af3d00b
JB
3223 if (found_extent && (root->ref_cows ||
3224 root == root->fs_info->tree_root)) {
b9473439 3225 btrfs_set_path_blocking(path);
39279cc3 3226 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3227 extent_num_bytes, 0,
3228 btrfs_header_owner(leaf),
33345d01 3229 ino, extent_offset);
39279cc3
CM
3230 BUG_ON(ret);
3231 }
85e21bac 3232
8082510e
YZ
3233 if (found_type == BTRFS_INODE_ITEM_KEY)
3234 break;
3235
3236 if (path->slots[0] == 0 ||
3237 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3238 if (root->ref_cows &&
3239 BTRFS_I(inode)->location.objectid !=
3240 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3241 err = -EAGAIN;
3242 goto out;
3243 }
3244 if (pending_del_nr) {
3245 ret = btrfs_del_items(trans, root, path,
3246 pending_del_slot,
3247 pending_del_nr);
3248 BUG_ON(ret);
3249 pending_del_nr = 0;
3250 }
b3b4aa74 3251 btrfs_release_path(path);
85e21bac 3252 goto search_again;
8082510e
YZ
3253 } else {
3254 path->slots[0]--;
85e21bac 3255 }
39279cc3 3256 }
8082510e 3257out:
85e21bac
CM
3258 if (pending_del_nr) {
3259 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3260 pending_del_nr);
d68fc57b 3261 BUG_ON(ret);
85e21bac 3262 }
39279cc3 3263 btrfs_free_path(path);
8082510e 3264 return err;
39279cc3
CM
3265}
3266
3267/*
3268 * taken from block_truncate_page, but does cow as it zeros out
3269 * any bytes left in the last page in the file.
3270 */
3271static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3272{
3273 struct inode *inode = mapping->host;
db94535d 3274 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3275 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3276 struct btrfs_ordered_extent *ordered;
2ac55d41 3277 struct extent_state *cached_state = NULL;
e6dcd2dc 3278 char *kaddr;
db94535d 3279 u32 blocksize = root->sectorsize;
39279cc3
CM
3280 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3281 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3282 struct page *page;
3b16a4e3 3283 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3284 int ret = 0;
a52d9a80 3285 u64 page_start;
e6dcd2dc 3286 u64 page_end;
39279cc3
CM
3287
3288 if ((offset & (blocksize - 1)) == 0)
3289 goto out;
0ca1f7ce 3290 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3291 if (ret)
3292 goto out;
39279cc3
CM
3293
3294 ret = -ENOMEM;
211c17f5 3295again:
3b16a4e3 3296 page = find_or_create_page(mapping, index, mask);
5d5e103a 3297 if (!page) {
0ca1f7ce 3298 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3299 goto out;
5d5e103a 3300 }
e6dcd2dc
CM
3301
3302 page_start = page_offset(page);
3303 page_end = page_start + PAGE_CACHE_SIZE - 1;
3304
39279cc3 3305 if (!PageUptodate(page)) {
9ebefb18 3306 ret = btrfs_readpage(NULL, page);
39279cc3 3307 lock_page(page);
211c17f5
CM
3308 if (page->mapping != mapping) {
3309 unlock_page(page);
3310 page_cache_release(page);
3311 goto again;
3312 }
39279cc3
CM
3313 if (!PageUptodate(page)) {
3314 ret = -EIO;
89642229 3315 goto out_unlock;
39279cc3
CM
3316 }
3317 }
211c17f5 3318 wait_on_page_writeback(page);
e6dcd2dc 3319
2ac55d41
JB
3320 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3321 GFP_NOFS);
e6dcd2dc
CM
3322 set_page_extent_mapped(page);
3323
3324 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3325 if (ordered) {
2ac55d41
JB
3326 unlock_extent_cached(io_tree, page_start, page_end,
3327 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3328 unlock_page(page);
3329 page_cache_release(page);
eb84ae03 3330 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3331 btrfs_put_ordered_extent(ordered);
3332 goto again;
3333 }
3334
2ac55d41 3335 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3336 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3337 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3338
2ac55d41
JB
3339 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3340 &cached_state);
9ed74f2d 3341 if (ret) {
2ac55d41
JB
3342 unlock_extent_cached(io_tree, page_start, page_end,
3343 &cached_state, GFP_NOFS);
9ed74f2d
JB
3344 goto out_unlock;
3345 }
3346
e6dcd2dc
CM
3347 ret = 0;
3348 if (offset != PAGE_CACHE_SIZE) {
3349 kaddr = kmap(page);
3350 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3351 flush_dcache_page(page);
3352 kunmap(page);
3353 }
247e743c 3354 ClearPageChecked(page);
e6dcd2dc 3355 set_page_dirty(page);
2ac55d41
JB
3356 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3357 GFP_NOFS);
39279cc3 3358
89642229 3359out_unlock:
5d5e103a 3360 if (ret)
0ca1f7ce 3361 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3362 unlock_page(page);
3363 page_cache_release(page);
3364out:
3365 return ret;
3366}
3367
695a0d0d
JB
3368/*
3369 * This function puts in dummy file extents for the area we're creating a hole
3370 * for. So if we are truncating this file to a larger size we need to insert
3371 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3372 * the range between oldsize and size
3373 */
a41ad394 3374int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3375{
9036c102
YZ
3376 struct btrfs_trans_handle *trans;
3377 struct btrfs_root *root = BTRFS_I(inode)->root;
3378 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3379 struct extent_map *em = NULL;
2ac55d41 3380 struct extent_state *cached_state = NULL;
9036c102 3381 u64 mask = root->sectorsize - 1;
a41ad394 3382 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3383 u64 block_end = (size + mask) & ~mask;
3384 u64 last_byte;
3385 u64 cur_offset;
3386 u64 hole_size;
9ed74f2d 3387 int err = 0;
39279cc3 3388
9036c102
YZ
3389 if (size <= hole_start)
3390 return 0;
3391
9036c102
YZ
3392 while (1) {
3393 struct btrfs_ordered_extent *ordered;
3394 btrfs_wait_ordered_range(inode, hole_start,
3395 block_end - hole_start);
2ac55d41
JB
3396 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3397 &cached_state, GFP_NOFS);
9036c102
YZ
3398 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3399 if (!ordered)
3400 break;
2ac55d41
JB
3401 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3402 &cached_state, GFP_NOFS);
9036c102
YZ
3403 btrfs_put_ordered_extent(ordered);
3404 }
39279cc3 3405
9036c102
YZ
3406 cur_offset = hole_start;
3407 while (1) {
3408 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3409 block_end - cur_offset, 0);
c704005d 3410 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3411 last_byte = min(extent_map_end(em), block_end);
3412 last_byte = (last_byte + mask) & ~mask;
8082510e 3413 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3414 u64 hint_byte = 0;
9036c102 3415 hole_size = last_byte - cur_offset;
9ed74f2d 3416
a22285a6
YZ
3417 trans = btrfs_start_transaction(root, 2);
3418 if (IS_ERR(trans)) {
3419 err = PTR_ERR(trans);
9ed74f2d 3420 break;
a22285a6 3421 }
8082510e
YZ
3422
3423 err = btrfs_drop_extents(trans, inode, cur_offset,
3424 cur_offset + hole_size,
3425 &hint_byte, 1);
5b397377
MX
3426 if (err) {
3427 btrfs_end_transaction(trans, root);
3893e33b 3428 break;
5b397377 3429 }
8082510e 3430
9036c102 3431 err = btrfs_insert_file_extent(trans, root,
33345d01 3432 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3433 0, hole_size, 0, hole_size,
3434 0, 0, 0);
5b397377
MX
3435 if (err) {
3436 btrfs_end_transaction(trans, root);
3893e33b 3437 break;
5b397377 3438 }
8082510e 3439
9036c102
YZ
3440 btrfs_drop_extent_cache(inode, hole_start,
3441 last_byte - 1, 0);
8082510e
YZ
3442
3443 btrfs_end_transaction(trans, root);
9036c102
YZ
3444 }
3445 free_extent_map(em);
a22285a6 3446 em = NULL;
9036c102 3447 cur_offset = last_byte;
8082510e 3448 if (cur_offset >= block_end)
9036c102
YZ
3449 break;
3450 }
1832a6d5 3451
a22285a6 3452 free_extent_map(em);
2ac55d41
JB
3453 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3454 GFP_NOFS);
9036c102
YZ
3455 return err;
3456}
39279cc3 3457
a41ad394 3458static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3459{
a41ad394 3460 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3461 int ret;
3462
a41ad394 3463 if (newsize == oldsize)
8082510e
YZ
3464 return 0;
3465
a41ad394
JB
3466 if (newsize > oldsize) {
3467 i_size_write(inode, newsize);
3468 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3469 truncate_pagecache(inode, oldsize, newsize);
3470 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3471 if (ret) {
a41ad394 3472 btrfs_setsize(inode, oldsize);
8082510e
YZ
3473 return ret;
3474 }
3475
930f028a 3476 mark_inode_dirty(inode);
a41ad394 3477 } else {
8082510e 3478
a41ad394
JB
3479 /*
3480 * We're truncating a file that used to have good data down to
3481 * zero. Make sure it gets into the ordered flush list so that
3482 * any new writes get down to disk quickly.
3483 */
3484 if (newsize == 0)
3485 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3486
a41ad394
JB
3487 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3488 truncate_setsize(inode, newsize);
3489 ret = btrfs_truncate(inode);
8082510e
YZ
3490 }
3491
a41ad394 3492 return ret;
8082510e
YZ
3493}
3494
9036c102
YZ
3495static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3496{
3497 struct inode *inode = dentry->d_inode;
b83cc969 3498 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3499 int err;
39279cc3 3500
b83cc969
LZ
3501 if (btrfs_root_readonly(root))
3502 return -EROFS;
3503
9036c102
YZ
3504 err = inode_change_ok(inode, attr);
3505 if (err)
3506 return err;
2bf5a725 3507
5a3f23d5 3508 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3509 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3510 if (err)
3511 return err;
39279cc3 3512 }
9036c102 3513
1025774c
CH
3514 if (attr->ia_valid) {
3515 setattr_copy(inode, attr);
3516 mark_inode_dirty(inode);
3517
3518 if (attr->ia_valid & ATTR_MODE)
3519 err = btrfs_acl_chmod(inode);
3520 }
33268eaf 3521
39279cc3
CM
3522 return err;
3523}
61295eb8 3524
bd555975 3525void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3526{
3527 struct btrfs_trans_handle *trans;
3528 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3529 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3530 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
d3c2fdcf 3531 unsigned long nr;
39279cc3
CM
3532 int ret;
3533
1abe9b8a 3534 trace_btrfs_inode_evict(inode);
3535
39279cc3 3536 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3537 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3538 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3539 goto no_delete;
3540
39279cc3 3541 if (is_bad_inode(inode)) {
7b128766 3542 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3543 goto no_delete;
3544 }
bd555975 3545 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3546 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3547
c71bf099
YZ
3548 if (root->fs_info->log_root_recovering) {
3549 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3550 goto no_delete;
3551 }
3552
76dda93c
YZ
3553 if (inode->i_nlink > 0) {
3554 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3555 goto no_delete;
3556 }
3557
4289a667
JB
3558 rsv = btrfs_alloc_block_rsv(root);
3559 if (!rsv) {
3560 btrfs_orphan_del(NULL, inode);
3561 goto no_delete;
3562 }
4a338542 3563 rsv->size = min_size;
726c35fa 3564 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3565
dbe674a9 3566 btrfs_i_size_write(inode, 0);
5f39d397 3567
4289a667
JB
3568 /*
3569 * This is a bit simpler than btrfs_truncate since
3570 *
3571 * 1) We've already reserved our space for our orphan item in the
3572 * unlink.
3573 * 2) We're going to delete the inode item, so we don't need to update
3574 * it at all.
3575 *
3576 * So we just need to reserve some slack space in case we add bytes when
3577 * doing the truncate.
3578 */
8082510e 3579 while (1) {
4a92b1b8 3580 ret = btrfs_block_rsv_check(root, rsv, min_size, 0, 1);
726c35fa
JB
3581
3582 /*
3583 * Try and steal from the global reserve since we will
3584 * likely not use this space anyway, we want to try as
3585 * hard as possible to get this to work.
3586 */
3587 if (ret)
3588 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3589
d68fc57b 3590 if (ret) {
4289a667 3591 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3592 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3593 btrfs_orphan_del(NULL, inode);
3594 btrfs_free_block_rsv(root, rsv);
3595 goto no_delete;
3596 }
3597
3598 trans = btrfs_start_transaction(root, 0);
3599 if (IS_ERR(trans)) {
3600 btrfs_orphan_del(NULL, inode);
3601 btrfs_free_block_rsv(root, rsv);
3602 goto no_delete;
d68fc57b 3603 }
7b128766 3604
4289a667
JB
3605 trans->block_rsv = rsv;
3606
d68fc57b 3607 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3608 if (ret != -EAGAIN)
3609 break;
85e21bac 3610
8082510e
YZ
3611 nr = trans->blocks_used;
3612 btrfs_end_transaction(trans, root);
3613 trans = NULL;
3614 btrfs_btree_balance_dirty(root, nr);
3615 }
5f39d397 3616
4289a667
JB
3617 btrfs_free_block_rsv(root, rsv);
3618
8082510e 3619 if (ret == 0) {
4289a667 3620 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3621 ret = btrfs_orphan_del(trans, inode);
3622 BUG_ON(ret);
3623 }
54aa1f4d 3624
4289a667 3625 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3626 if (!(root == root->fs_info->tree_root ||
3627 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3628 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3629
d3c2fdcf 3630 nr = trans->blocks_used;
54aa1f4d 3631 btrfs_end_transaction(trans, root);
d3c2fdcf 3632 btrfs_btree_balance_dirty(root, nr);
39279cc3 3633no_delete:
bd555975 3634 end_writeback(inode);
8082510e 3635 return;
39279cc3
CM
3636}
3637
3638/*
3639 * this returns the key found in the dir entry in the location pointer.
3640 * If no dir entries were found, location->objectid is 0.
3641 */
3642static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3643 struct btrfs_key *location)
3644{
3645 const char *name = dentry->d_name.name;
3646 int namelen = dentry->d_name.len;
3647 struct btrfs_dir_item *di;
3648 struct btrfs_path *path;
3649 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3650 int ret = 0;
39279cc3
CM
3651
3652 path = btrfs_alloc_path();
d8926bb3
MF
3653 if (!path)
3654 return -ENOMEM;
3954401f 3655
33345d01 3656 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3657 namelen, 0);
0d9f7f3e
Y
3658 if (IS_ERR(di))
3659 ret = PTR_ERR(di);
d397712b 3660
c704005d 3661 if (IS_ERR_OR_NULL(di))
3954401f 3662 goto out_err;
d397712b 3663
5f39d397 3664 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3665out:
39279cc3
CM
3666 btrfs_free_path(path);
3667 return ret;
3954401f
CM
3668out_err:
3669 location->objectid = 0;
3670 goto out;
39279cc3
CM
3671}
3672
3673/*
3674 * when we hit a tree root in a directory, the btrfs part of the inode
3675 * needs to be changed to reflect the root directory of the tree root. This
3676 * is kind of like crossing a mount point.
3677 */
3678static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3679 struct inode *dir,
3680 struct dentry *dentry,
3681 struct btrfs_key *location,
3682 struct btrfs_root **sub_root)
39279cc3 3683{
4df27c4d
YZ
3684 struct btrfs_path *path;
3685 struct btrfs_root *new_root;
3686 struct btrfs_root_ref *ref;
3687 struct extent_buffer *leaf;
3688 int ret;
3689 int err = 0;
39279cc3 3690
4df27c4d
YZ
3691 path = btrfs_alloc_path();
3692 if (!path) {
3693 err = -ENOMEM;
3694 goto out;
3695 }
39279cc3 3696
4df27c4d
YZ
3697 err = -ENOENT;
3698 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3699 BTRFS_I(dir)->root->root_key.objectid,
3700 location->objectid);
3701 if (ret) {
3702 if (ret < 0)
3703 err = ret;
3704 goto out;
3705 }
39279cc3 3706
4df27c4d
YZ
3707 leaf = path->nodes[0];
3708 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3709 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3710 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3711 goto out;
39279cc3 3712
4df27c4d
YZ
3713 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3714 (unsigned long)(ref + 1),
3715 dentry->d_name.len);
3716 if (ret)
3717 goto out;
3718
b3b4aa74 3719 btrfs_release_path(path);
4df27c4d
YZ
3720
3721 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3722 if (IS_ERR(new_root)) {
3723 err = PTR_ERR(new_root);
3724 goto out;
3725 }
3726
3727 if (btrfs_root_refs(&new_root->root_item) == 0) {
3728 err = -ENOENT;
3729 goto out;
3730 }
3731
3732 *sub_root = new_root;
3733 location->objectid = btrfs_root_dirid(&new_root->root_item);
3734 location->type = BTRFS_INODE_ITEM_KEY;
3735 location->offset = 0;
3736 err = 0;
3737out:
3738 btrfs_free_path(path);
3739 return err;
39279cc3
CM
3740}
3741
5d4f98a2
YZ
3742static void inode_tree_add(struct inode *inode)
3743{
3744 struct btrfs_root *root = BTRFS_I(inode)->root;
3745 struct btrfs_inode *entry;
03e860bd
FNP
3746 struct rb_node **p;
3747 struct rb_node *parent;
33345d01 3748 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3749again:
3750 p = &root->inode_tree.rb_node;
3751 parent = NULL;
5d4f98a2 3752
1d3382cb 3753 if (inode_unhashed(inode))
76dda93c
YZ
3754 return;
3755
5d4f98a2
YZ
3756 spin_lock(&root->inode_lock);
3757 while (*p) {
3758 parent = *p;
3759 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3760
33345d01 3761 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3762 p = &parent->rb_left;
33345d01 3763 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3764 p = &parent->rb_right;
5d4f98a2
YZ
3765 else {
3766 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3767 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3768 rb_erase(parent, &root->inode_tree);
3769 RB_CLEAR_NODE(parent);
3770 spin_unlock(&root->inode_lock);
3771 goto again;
5d4f98a2
YZ
3772 }
3773 }
3774 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3775 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3776 spin_unlock(&root->inode_lock);
3777}
3778
3779static void inode_tree_del(struct inode *inode)
3780{
3781 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3782 int empty = 0;
5d4f98a2 3783
03e860bd 3784 spin_lock(&root->inode_lock);
5d4f98a2 3785 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3786 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3787 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3788 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3789 }
03e860bd 3790 spin_unlock(&root->inode_lock);
76dda93c 3791
0af3d00b
JB
3792 /*
3793 * Free space cache has inodes in the tree root, but the tree root has a
3794 * root_refs of 0, so this could end up dropping the tree root as a
3795 * snapshot, so we need the extra !root->fs_info->tree_root check to
3796 * make sure we don't drop it.
3797 */
3798 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3799 root != root->fs_info->tree_root) {
76dda93c
YZ
3800 synchronize_srcu(&root->fs_info->subvol_srcu);
3801 spin_lock(&root->inode_lock);
3802 empty = RB_EMPTY_ROOT(&root->inode_tree);
3803 spin_unlock(&root->inode_lock);
3804 if (empty)
3805 btrfs_add_dead_root(root);
3806 }
3807}
3808
3809int btrfs_invalidate_inodes(struct btrfs_root *root)
3810{
3811 struct rb_node *node;
3812 struct rb_node *prev;
3813 struct btrfs_inode *entry;
3814 struct inode *inode;
3815 u64 objectid = 0;
3816
3817 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3818
3819 spin_lock(&root->inode_lock);
3820again:
3821 node = root->inode_tree.rb_node;
3822 prev = NULL;
3823 while (node) {
3824 prev = node;
3825 entry = rb_entry(node, struct btrfs_inode, rb_node);
3826
33345d01 3827 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3828 node = node->rb_left;
33345d01 3829 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3830 node = node->rb_right;
3831 else
3832 break;
3833 }
3834 if (!node) {
3835 while (prev) {
3836 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3837 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3838 node = prev;
3839 break;
3840 }
3841 prev = rb_next(prev);
3842 }
3843 }
3844 while (node) {
3845 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3846 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3847 inode = igrab(&entry->vfs_inode);
3848 if (inode) {
3849 spin_unlock(&root->inode_lock);
3850 if (atomic_read(&inode->i_count) > 1)
3851 d_prune_aliases(inode);
3852 /*
45321ac5 3853 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3854 * the inode cache when its usage count
3855 * hits zero.
3856 */
3857 iput(inode);
3858 cond_resched();
3859 spin_lock(&root->inode_lock);
3860 goto again;
3861 }
3862
3863 if (cond_resched_lock(&root->inode_lock))
3864 goto again;
3865
3866 node = rb_next(node);
3867 }
3868 spin_unlock(&root->inode_lock);
3869 return 0;
5d4f98a2
YZ
3870}
3871
e02119d5
CM
3872static int btrfs_init_locked_inode(struct inode *inode, void *p)
3873{
3874 struct btrfs_iget_args *args = p;
3875 inode->i_ino = args->ino;
e02119d5 3876 BTRFS_I(inode)->root = args->root;
6a63209f 3877 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3878 return 0;
3879}
3880
3881static int btrfs_find_actor(struct inode *inode, void *opaque)
3882{
3883 struct btrfs_iget_args *args = opaque;
33345d01 3884 return args->ino == btrfs_ino(inode) &&
d397712b 3885 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3886}
3887
5d4f98a2
YZ
3888static struct inode *btrfs_iget_locked(struct super_block *s,
3889 u64 objectid,
3890 struct btrfs_root *root)
39279cc3
CM
3891{
3892 struct inode *inode;
3893 struct btrfs_iget_args args;
3894 args.ino = objectid;
3895 args.root = root;
3896
3897 inode = iget5_locked(s, objectid, btrfs_find_actor,
3898 btrfs_init_locked_inode,
3899 (void *)&args);
3900 return inode;
3901}
3902
1a54ef8c
BR
3903/* Get an inode object given its location and corresponding root.
3904 * Returns in *is_new if the inode was read from disk
3905 */
3906struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3907 struct btrfs_root *root, int *new)
1a54ef8c
BR
3908{
3909 struct inode *inode;
3910
3911 inode = btrfs_iget_locked(s, location->objectid, root);
3912 if (!inode)
5d4f98a2 3913 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3914
3915 if (inode->i_state & I_NEW) {
3916 BTRFS_I(inode)->root = root;
3917 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3918 btrfs_read_locked_inode(inode);
1748f843
MF
3919 if (!is_bad_inode(inode)) {
3920 inode_tree_add(inode);
3921 unlock_new_inode(inode);
3922 if (new)
3923 *new = 1;
3924 } else {
e0b6d65b
ST
3925 unlock_new_inode(inode);
3926 iput(inode);
3927 inode = ERR_PTR(-ESTALE);
1748f843
MF
3928 }
3929 }
3930
1a54ef8c
BR
3931 return inode;
3932}
3933
4df27c4d
YZ
3934static struct inode *new_simple_dir(struct super_block *s,
3935 struct btrfs_key *key,
3936 struct btrfs_root *root)
3937{
3938 struct inode *inode = new_inode(s);
3939
3940 if (!inode)
3941 return ERR_PTR(-ENOMEM);
3942
4df27c4d
YZ
3943 BTRFS_I(inode)->root = root;
3944 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3945 BTRFS_I(inode)->dummy_inode = 1;
3946
3947 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3948 inode->i_op = &simple_dir_inode_operations;
3949 inode->i_fop = &simple_dir_operations;
3950 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3951 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3952
3953 return inode;
3954}
3955
3de4586c 3956struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3957{
d397712b 3958 struct inode *inode;
4df27c4d 3959 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3960 struct btrfs_root *sub_root = root;
3961 struct btrfs_key location;
76dda93c 3962 int index;
b4aff1f8 3963 int ret = 0;
39279cc3
CM
3964
3965 if (dentry->d_name.len > BTRFS_NAME_LEN)
3966 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3967
b4aff1f8
JB
3968 if (unlikely(d_need_lookup(dentry))) {
3969 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3970 kfree(dentry->d_fsdata);
3971 dentry->d_fsdata = NULL;
a66e7cc6
JB
3972 /* This thing is hashed, drop it for now */
3973 d_drop(dentry);
b4aff1f8
JB
3974 } else {
3975 ret = btrfs_inode_by_name(dir, dentry, &location);
3976 }
5f39d397 3977
39279cc3
CM
3978 if (ret < 0)
3979 return ERR_PTR(ret);
5f39d397 3980
4df27c4d
YZ
3981 if (location.objectid == 0)
3982 return NULL;
3983
3984 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 3985 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
3986 return inode;
3987 }
3988
3989 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3990
76dda93c 3991 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3992 ret = fixup_tree_root_location(root, dir, dentry,
3993 &location, &sub_root);
3994 if (ret < 0) {
3995 if (ret != -ENOENT)
3996 inode = ERR_PTR(ret);
3997 else
3998 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3999 } else {
73f73415 4000 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4001 }
76dda93c
YZ
4002 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4003
34d19bad 4004 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4005 down_read(&root->fs_info->cleanup_work_sem);
4006 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4007 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4008 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4009 if (ret)
4010 inode = ERR_PTR(ret);
c71bf099
YZ
4011 }
4012
3de4586c
CM
4013 return inode;
4014}
4015
fe15ce44 4016static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4017{
4018 struct btrfs_root *root;
4019
efefb143
YZ
4020 if (!dentry->d_inode && !IS_ROOT(dentry))
4021 dentry = dentry->d_parent;
76dda93c 4022
efefb143
YZ
4023 if (dentry->d_inode) {
4024 root = BTRFS_I(dentry->d_inode)->root;
4025 if (btrfs_root_refs(&root->root_item) == 0)
4026 return 1;
4027 }
76dda93c
YZ
4028 return 0;
4029}
4030
b4aff1f8
JB
4031static void btrfs_dentry_release(struct dentry *dentry)
4032{
4033 if (dentry->d_fsdata)
4034 kfree(dentry->d_fsdata);
4035}
4036
3de4586c
CM
4037static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4038 struct nameidata *nd)
4039{
a66e7cc6
JB
4040 struct dentry *ret;
4041
4042 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4043 if (unlikely(d_need_lookup(dentry))) {
4044 spin_lock(&dentry->d_lock);
4045 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4046 spin_unlock(&dentry->d_lock);
4047 }
4048 return ret;
39279cc3
CM
4049}
4050
16cdcec7 4051unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4052 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4053};
4054
cbdf5a24
DW
4055static int btrfs_real_readdir(struct file *filp, void *dirent,
4056 filldir_t filldir)
39279cc3 4057{
6da6abae 4058 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4059 struct btrfs_root *root = BTRFS_I(inode)->root;
4060 struct btrfs_item *item;
4061 struct btrfs_dir_item *di;
4062 struct btrfs_key key;
5f39d397 4063 struct btrfs_key found_key;
39279cc3 4064 struct btrfs_path *path;
16cdcec7
MX
4065 struct list_head ins_list;
4066 struct list_head del_list;
b4aff1f8 4067 struct qstr q;
39279cc3 4068 int ret;
5f39d397 4069 struct extent_buffer *leaf;
39279cc3 4070 int slot;
39279cc3
CM
4071 unsigned char d_type;
4072 int over = 0;
4073 u32 di_cur;
4074 u32 di_total;
4075 u32 di_len;
4076 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4077 char tmp_name[32];
4078 char *name_ptr;
4079 int name_len;
16cdcec7 4080 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4081
4082 /* FIXME, use a real flag for deciding about the key type */
4083 if (root->fs_info->tree_root == root)
4084 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4085
3954401f
CM
4086 /* special case for "." */
4087 if (filp->f_pos == 0) {
3765fefa
HS
4088 over = filldir(dirent, ".", 1,
4089 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4090 if (over)
4091 return 0;
4092 filp->f_pos = 1;
4093 }
3954401f
CM
4094 /* special case for .., just use the back ref */
4095 if (filp->f_pos == 1) {
5ecc7e5d 4096 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4097 over = filldir(dirent, "..", 2,
3765fefa 4098 filp->f_pos, pino, DT_DIR);
3954401f 4099 if (over)
49593bfa 4100 return 0;
3954401f
CM
4101 filp->f_pos = 2;
4102 }
49593bfa 4103 path = btrfs_alloc_path();
16cdcec7
MX
4104 if (!path)
4105 return -ENOMEM;
ff5714cc 4106
026fd317 4107 path->reada = 1;
49593bfa 4108
16cdcec7
MX
4109 if (key_type == BTRFS_DIR_INDEX_KEY) {
4110 INIT_LIST_HEAD(&ins_list);
4111 INIT_LIST_HEAD(&del_list);
4112 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4113 }
4114
39279cc3
CM
4115 btrfs_set_key_type(&key, key_type);
4116 key.offset = filp->f_pos;
33345d01 4117 key.objectid = btrfs_ino(inode);
5f39d397 4118
39279cc3
CM
4119 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4120 if (ret < 0)
4121 goto err;
49593bfa
DW
4122
4123 while (1) {
5f39d397 4124 leaf = path->nodes[0];
39279cc3 4125 slot = path->slots[0];
b9e03af0
LZ
4126 if (slot >= btrfs_header_nritems(leaf)) {
4127 ret = btrfs_next_leaf(root, path);
4128 if (ret < 0)
4129 goto err;
4130 else if (ret > 0)
4131 break;
4132 continue;
39279cc3 4133 }
3de4586c 4134
5f39d397
CM
4135 item = btrfs_item_nr(leaf, slot);
4136 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4137
4138 if (found_key.objectid != key.objectid)
39279cc3 4139 break;
5f39d397 4140 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4141 break;
5f39d397 4142 if (found_key.offset < filp->f_pos)
b9e03af0 4143 goto next;
16cdcec7
MX
4144 if (key_type == BTRFS_DIR_INDEX_KEY &&
4145 btrfs_should_delete_dir_index(&del_list,
4146 found_key.offset))
4147 goto next;
5f39d397
CM
4148
4149 filp->f_pos = found_key.offset;
16cdcec7 4150 is_curr = 1;
49593bfa 4151
39279cc3
CM
4152 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4153 di_cur = 0;
5f39d397 4154 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4155
4156 while (di_cur < di_total) {
5f39d397 4157 struct btrfs_key location;
b4aff1f8 4158 struct dentry *tmp;
5f39d397 4159
22a94d44
JB
4160 if (verify_dir_item(root, leaf, di))
4161 break;
4162
5f39d397 4163 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4164 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4165 name_ptr = tmp_name;
4166 } else {
4167 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4168 if (!name_ptr) {
4169 ret = -ENOMEM;
4170 goto err;
4171 }
5f39d397
CM
4172 }
4173 read_extent_buffer(leaf, name_ptr,
4174 (unsigned long)(di + 1), name_len);
4175
4176 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4177 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4178
b4aff1f8
JB
4179 q.name = name_ptr;
4180 q.len = name_len;
4181 q.hash = full_name_hash(q.name, q.len);
4182 tmp = d_lookup(filp->f_dentry, &q);
4183 if (!tmp) {
4184 struct btrfs_key *newkey;
4185
4186 newkey = kzalloc(sizeof(struct btrfs_key),
4187 GFP_NOFS);
4188 if (!newkey)
4189 goto no_dentry;
4190 tmp = d_alloc(filp->f_dentry, &q);
4191 if (!tmp) {
4192 kfree(newkey);
4193 dput(tmp);
4194 goto no_dentry;
4195 }
4196 memcpy(newkey, &location,
4197 sizeof(struct btrfs_key));
4198 tmp->d_fsdata = newkey;
4199 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4200 d_rehash(tmp);
4201 dput(tmp);
4202 } else {
4203 dput(tmp);
4204 }
4205no_dentry:
3de4586c
CM
4206 /* is this a reference to our own snapshot? If so
4207 * skip it
4208 */
4209 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4210 location.objectid == root->root_key.objectid) {
4211 over = 0;
4212 goto skip;
4213 }
5f39d397 4214 over = filldir(dirent, name_ptr, name_len,
49593bfa 4215 found_key.offset, location.objectid,
39279cc3 4216 d_type);
5f39d397 4217
3de4586c 4218skip:
5f39d397
CM
4219 if (name_ptr != tmp_name)
4220 kfree(name_ptr);
4221
39279cc3
CM
4222 if (over)
4223 goto nopos;
5103e947 4224 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4225 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4226 di_cur += di_len;
4227 di = (struct btrfs_dir_item *)((char *)di + di_len);
4228 }
b9e03af0
LZ
4229next:
4230 path->slots[0]++;
39279cc3 4231 }
49593bfa 4232
16cdcec7
MX
4233 if (key_type == BTRFS_DIR_INDEX_KEY) {
4234 if (is_curr)
4235 filp->f_pos++;
4236 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4237 &ins_list);
4238 if (ret)
4239 goto nopos;
4240 }
4241
49593bfa 4242 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4243 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4244 /*
4245 * 32-bit glibc will use getdents64, but then strtol -
4246 * so the last number we can serve is this.
4247 */
4248 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4249 else
4250 filp->f_pos++;
39279cc3
CM
4251nopos:
4252 ret = 0;
4253err:
16cdcec7
MX
4254 if (key_type == BTRFS_DIR_INDEX_KEY)
4255 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4256 btrfs_free_path(path);
39279cc3
CM
4257 return ret;
4258}
4259
a9185b41 4260int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4261{
4262 struct btrfs_root *root = BTRFS_I(inode)->root;
4263 struct btrfs_trans_handle *trans;
4264 int ret = 0;
0af3d00b 4265 bool nolock = false;
39279cc3 4266
8929ecfa 4267 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4268 return 0;
4269
2cf8572d 4270 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4271 nolock = true;
0af3d00b 4272
a9185b41 4273 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4274 if (nolock)
7a7eaa40 4275 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4276 else
7a7eaa40 4277 trans = btrfs_join_transaction(root);
3612b495
TI
4278 if (IS_ERR(trans))
4279 return PTR_ERR(trans);
0af3d00b
JB
4280 if (nolock)
4281 ret = btrfs_end_transaction_nolock(trans, root);
4282 else
4283 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4284 }
4285 return ret;
4286}
4287
4288/*
54aa1f4d 4289 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4290 * inode changes. But, it is most likely to find the inode in cache.
4291 * FIXME, needs more benchmarking...there are no reasons other than performance
4292 * to keep or drop this code.
4293 */
aa385729 4294void btrfs_dirty_inode(struct inode *inode, int flags)
39279cc3
CM
4295{
4296 struct btrfs_root *root = BTRFS_I(inode)->root;
4297 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4298 int ret;
4299
4300 if (BTRFS_I(inode)->dummy_inode)
4301 return;
39279cc3 4302
7a7eaa40 4303 trans = btrfs_join_transaction(root);
3612b495 4304 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
4305
4306 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4307 if (ret && ret == -ENOSPC) {
4308 /* whoops, lets try again with the full transaction */
4309 btrfs_end_transaction(trans, root);
4310 trans = btrfs_start_transaction(root, 1);
9aeead73 4311 if (IS_ERR(trans)) {
7a36ddec 4312 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4313 "dirty inode %llu error %ld\n",
4314 (unsigned long long)btrfs_ino(inode),
4315 PTR_ERR(trans));
9aeead73
CM
4316 return;
4317 }
8929ecfa 4318
94b60442
CM
4319 ret = btrfs_update_inode(trans, root, inode);
4320 if (ret) {
7a36ddec 4321 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4322 "dirty inode %llu error %d\n",
4323 (unsigned long long)btrfs_ino(inode),
4324 ret);
94b60442
CM
4325 }
4326 }
39279cc3 4327 btrfs_end_transaction(trans, root);
16cdcec7
MX
4328 if (BTRFS_I(inode)->delayed_node)
4329 btrfs_balance_delayed_items(root);
39279cc3
CM
4330}
4331
d352ac68
CM
4332/*
4333 * find the highest existing sequence number in a directory
4334 * and then set the in-memory index_cnt variable to reflect
4335 * free sequence numbers
4336 */
aec7477b
JB
4337static int btrfs_set_inode_index_count(struct inode *inode)
4338{
4339 struct btrfs_root *root = BTRFS_I(inode)->root;
4340 struct btrfs_key key, found_key;
4341 struct btrfs_path *path;
4342 struct extent_buffer *leaf;
4343 int ret;
4344
33345d01 4345 key.objectid = btrfs_ino(inode);
aec7477b
JB
4346 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4347 key.offset = (u64)-1;
4348
4349 path = btrfs_alloc_path();
4350 if (!path)
4351 return -ENOMEM;
4352
4353 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4354 if (ret < 0)
4355 goto out;
4356 /* FIXME: we should be able to handle this */
4357 if (ret == 0)
4358 goto out;
4359 ret = 0;
4360
4361 /*
4362 * MAGIC NUMBER EXPLANATION:
4363 * since we search a directory based on f_pos we have to start at 2
4364 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4365 * else has to start at 2
4366 */
4367 if (path->slots[0] == 0) {
4368 BTRFS_I(inode)->index_cnt = 2;
4369 goto out;
4370 }
4371
4372 path->slots[0]--;
4373
4374 leaf = path->nodes[0];
4375 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4376
33345d01 4377 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4378 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4379 BTRFS_I(inode)->index_cnt = 2;
4380 goto out;
4381 }
4382
4383 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4384out:
4385 btrfs_free_path(path);
4386 return ret;
4387}
4388
d352ac68
CM
4389/*
4390 * helper to find a free sequence number in a given directory. This current
4391 * code is very simple, later versions will do smarter things in the btree
4392 */
3de4586c 4393int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4394{
4395 int ret = 0;
4396
4397 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4398 ret = btrfs_inode_delayed_dir_index_count(dir);
4399 if (ret) {
4400 ret = btrfs_set_inode_index_count(dir);
4401 if (ret)
4402 return ret;
4403 }
aec7477b
JB
4404 }
4405
00e4e6b3 4406 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4407 BTRFS_I(dir)->index_cnt++;
4408
4409 return ret;
4410}
4411
39279cc3
CM
4412static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4413 struct btrfs_root *root,
aec7477b 4414 struct inode *dir,
9c58309d 4415 const char *name, int name_len,
d82a6f1d
JB
4416 u64 ref_objectid, u64 objectid, int mode,
4417 u64 *index)
39279cc3
CM
4418{
4419 struct inode *inode;
5f39d397 4420 struct btrfs_inode_item *inode_item;
39279cc3 4421 struct btrfs_key *location;
5f39d397 4422 struct btrfs_path *path;
9c58309d
CM
4423 struct btrfs_inode_ref *ref;
4424 struct btrfs_key key[2];
4425 u32 sizes[2];
4426 unsigned long ptr;
39279cc3
CM
4427 int ret;
4428 int owner;
4429
5f39d397 4430 path = btrfs_alloc_path();
d8926bb3
MF
4431 if (!path)
4432 return ERR_PTR(-ENOMEM);
5f39d397 4433
39279cc3 4434 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4435 if (!inode) {
4436 btrfs_free_path(path);
39279cc3 4437 return ERR_PTR(-ENOMEM);
8fb27640 4438 }
39279cc3 4439
581bb050
LZ
4440 /*
4441 * we have to initialize this early, so we can reclaim the inode
4442 * number if we fail afterwards in this function.
4443 */
4444 inode->i_ino = objectid;
4445
aec7477b 4446 if (dir) {
1abe9b8a 4447 trace_btrfs_inode_request(dir);
4448
3de4586c 4449 ret = btrfs_set_inode_index(dir, index);
09771430 4450 if (ret) {
8fb27640 4451 btrfs_free_path(path);
09771430 4452 iput(inode);
aec7477b 4453 return ERR_PTR(ret);
09771430 4454 }
aec7477b
JB
4455 }
4456 /*
4457 * index_cnt is ignored for everything but a dir,
4458 * btrfs_get_inode_index_count has an explanation for the magic
4459 * number
4460 */
4461 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4462 BTRFS_I(inode)->root = root;
e02119d5 4463 BTRFS_I(inode)->generation = trans->transid;
76195853 4464 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4465 btrfs_set_inode_space_info(root, inode);
b888db2b 4466
569254b0 4467 if (S_ISDIR(mode))
39279cc3
CM
4468 owner = 0;
4469 else
4470 owner = 1;
9c58309d
CM
4471
4472 key[0].objectid = objectid;
4473 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4474 key[0].offset = 0;
4475
4476 key[1].objectid = objectid;
4477 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4478 key[1].offset = ref_objectid;
4479
4480 sizes[0] = sizeof(struct btrfs_inode_item);
4481 sizes[1] = name_len + sizeof(*ref);
4482
b9473439 4483 path->leave_spinning = 1;
9c58309d
CM
4484 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4485 if (ret != 0)
5f39d397
CM
4486 goto fail;
4487
ecc11fab 4488 inode_init_owner(inode, dir, mode);
a76a3cd4 4489 inode_set_bytes(inode, 0);
39279cc3 4490 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4491 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4492 struct btrfs_inode_item);
e02119d5 4493 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4494
4495 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4496 struct btrfs_inode_ref);
4497 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4498 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4499 ptr = (unsigned long)(ref + 1);
4500 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4501
5f39d397
CM
4502 btrfs_mark_buffer_dirty(path->nodes[0]);
4503 btrfs_free_path(path);
4504
39279cc3
CM
4505 location = &BTRFS_I(inode)->location;
4506 location->objectid = objectid;
39279cc3
CM
4507 location->offset = 0;
4508 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4509
6cbff00f
CH
4510 btrfs_inherit_iflags(inode, dir);
4511
569254b0 4512 if (S_ISREG(mode)) {
94272164
CM
4513 if (btrfs_test_opt(root, NODATASUM))
4514 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4515 if (btrfs_test_opt(root, NODATACOW) ||
4516 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4517 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4518 }
4519
39279cc3 4520 insert_inode_hash(inode);
5d4f98a2 4521 inode_tree_add(inode);
1abe9b8a 4522
4523 trace_btrfs_inode_new(inode);
1973f0fa 4524 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4525
39279cc3 4526 return inode;
5f39d397 4527fail:
aec7477b
JB
4528 if (dir)
4529 BTRFS_I(dir)->index_cnt--;
5f39d397 4530 btrfs_free_path(path);
09771430 4531 iput(inode);
5f39d397 4532 return ERR_PTR(ret);
39279cc3
CM
4533}
4534
4535static inline u8 btrfs_inode_type(struct inode *inode)
4536{
4537 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4538}
4539
d352ac68
CM
4540/*
4541 * utility function to add 'inode' into 'parent_inode' with
4542 * a give name and a given sequence number.
4543 * if 'add_backref' is true, also insert a backref from the
4544 * inode to the parent directory.
4545 */
e02119d5
CM
4546int btrfs_add_link(struct btrfs_trans_handle *trans,
4547 struct inode *parent_inode, struct inode *inode,
4548 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4549{
4df27c4d 4550 int ret = 0;
39279cc3 4551 struct btrfs_key key;
e02119d5 4552 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4553 u64 ino = btrfs_ino(inode);
4554 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4555
33345d01 4556 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4557 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4558 } else {
33345d01 4559 key.objectid = ino;
4df27c4d
YZ
4560 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4561 key.offset = 0;
4562 }
4563
33345d01 4564 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4565 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4566 key.objectid, root->root_key.objectid,
33345d01 4567 parent_ino, index, name, name_len);
4df27c4d 4568 } else if (add_backref) {
33345d01
LZ
4569 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4570 parent_ino, index);
4df27c4d 4571 }
39279cc3 4572
39279cc3 4573 if (ret == 0) {
4df27c4d 4574 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4575 parent_inode, &key,
4df27c4d
YZ
4576 btrfs_inode_type(inode), index);
4577 BUG_ON(ret);
4578
dbe674a9 4579 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4580 name_len * 2);
79c44584 4581 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4582 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4583 }
4584 return ret;
4585}
4586
4587static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4588 struct inode *dir, struct dentry *dentry,
4589 struct inode *inode, int backref, u64 index)
39279cc3 4590{
a1b075d2
JB
4591 int err = btrfs_add_link(trans, dir, inode,
4592 dentry->d_name.name, dentry->d_name.len,
4593 backref, index);
39279cc3
CM
4594 if (!err) {
4595 d_instantiate(dentry, inode);
4596 return 0;
4597 }
4598 if (err > 0)
4599 err = -EEXIST;
4600 return err;
4601}
4602
618e21d5
JB
4603static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4604 int mode, dev_t rdev)
4605{
4606 struct btrfs_trans_handle *trans;
4607 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4608 struct inode *inode = NULL;
618e21d5
JB
4609 int err;
4610 int drop_inode = 0;
4611 u64 objectid;
1832a6d5 4612 unsigned long nr = 0;
00e4e6b3 4613 u64 index = 0;
618e21d5
JB
4614
4615 if (!new_valid_dev(rdev))
4616 return -EINVAL;
4617
9ed74f2d
JB
4618 /*
4619 * 2 for inode item and ref
4620 * 2 for dir items
4621 * 1 for xattr if selinux is on
4622 */
a22285a6
YZ
4623 trans = btrfs_start_transaction(root, 5);
4624 if (IS_ERR(trans))
4625 return PTR_ERR(trans);
1832a6d5 4626
581bb050
LZ
4627 err = btrfs_find_free_ino(root, &objectid);
4628 if (err)
4629 goto out_unlock;
4630
aec7477b 4631 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4632 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4633 mode, &index);
7cf96da3
TI
4634 if (IS_ERR(inode)) {
4635 err = PTR_ERR(inode);
618e21d5 4636 goto out_unlock;
7cf96da3 4637 }
618e21d5 4638
2a7dba39 4639 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4640 if (err) {
4641 drop_inode = 1;
4642 goto out_unlock;
4643 }
4644
a1b075d2 4645 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4646 if (err)
4647 drop_inode = 1;
4648 else {
4649 inode->i_op = &btrfs_special_inode_operations;
4650 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4651 btrfs_update_inode(trans, root, inode);
618e21d5 4652 }
618e21d5 4653out_unlock:
d3c2fdcf 4654 nr = trans->blocks_used;
89ce8a63 4655 btrfs_end_transaction_throttle(trans, root);
a22285a6 4656 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4657 if (drop_inode) {
4658 inode_dec_link_count(inode);
4659 iput(inode);
4660 }
618e21d5
JB
4661 return err;
4662}
4663
39279cc3
CM
4664static int btrfs_create(struct inode *dir, struct dentry *dentry,
4665 int mode, struct nameidata *nd)
4666{
4667 struct btrfs_trans_handle *trans;
4668 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4669 struct inode *inode = NULL;
39279cc3 4670 int drop_inode = 0;
a22285a6 4671 int err;
1832a6d5 4672 unsigned long nr = 0;
39279cc3 4673 u64 objectid;
00e4e6b3 4674 u64 index = 0;
39279cc3 4675
9ed74f2d
JB
4676 /*
4677 * 2 for inode item and ref
4678 * 2 for dir items
4679 * 1 for xattr if selinux is on
4680 */
a22285a6
YZ
4681 trans = btrfs_start_transaction(root, 5);
4682 if (IS_ERR(trans))
4683 return PTR_ERR(trans);
9ed74f2d 4684
581bb050
LZ
4685 err = btrfs_find_free_ino(root, &objectid);
4686 if (err)
4687 goto out_unlock;
4688
aec7477b 4689 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4690 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4691 mode, &index);
7cf96da3
TI
4692 if (IS_ERR(inode)) {
4693 err = PTR_ERR(inode);
39279cc3 4694 goto out_unlock;
7cf96da3 4695 }
39279cc3 4696
2a7dba39 4697 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4698 if (err) {
4699 drop_inode = 1;
4700 goto out_unlock;
4701 }
4702
a1b075d2 4703 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4704 if (err)
4705 drop_inode = 1;
4706 else {
4707 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4708 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4709 inode->i_fop = &btrfs_file_operations;
4710 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4711 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4712 }
39279cc3 4713out_unlock:
d3c2fdcf 4714 nr = trans->blocks_used;
ab78c84d 4715 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4716 if (drop_inode) {
4717 inode_dec_link_count(inode);
4718 iput(inode);
4719 }
d3c2fdcf 4720 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4721 return err;
4722}
4723
4724static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4725 struct dentry *dentry)
4726{
4727 struct btrfs_trans_handle *trans;
4728 struct btrfs_root *root = BTRFS_I(dir)->root;
4729 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4730 u64 index;
1832a6d5 4731 unsigned long nr = 0;
39279cc3
CM
4732 int err;
4733 int drop_inode = 0;
4734
4a8be425
TH
4735 /* do not allow sys_link's with other subvols of the same device */
4736 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4737 return -EXDEV;
4a8be425 4738
c055e99e
AV
4739 if (inode->i_nlink == ~0U)
4740 return -EMLINK;
4a8be425 4741
3de4586c 4742 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4743 if (err)
4744 goto fail;
4745
a22285a6 4746 /*
7e6b6465 4747 * 2 items for inode and inode ref
a22285a6 4748 * 2 items for dir items
7e6b6465 4749 * 1 item for parent inode
a22285a6 4750 */
7e6b6465 4751 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4752 if (IS_ERR(trans)) {
4753 err = PTR_ERR(trans);
4754 goto fail;
4755 }
5f39d397 4756
3153495d
MX
4757 btrfs_inc_nlink(inode);
4758 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4759 ihold(inode);
aec7477b 4760
a1b075d2 4761 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4762
a5719521 4763 if (err) {
54aa1f4d 4764 drop_inode = 1;
a5719521 4765 } else {
10d9f309 4766 struct dentry *parent = dentry->d_parent;
a5719521
YZ
4767 err = btrfs_update_inode(trans, root, inode);
4768 BUG_ON(err);
6a912213 4769 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 4770 }
39279cc3 4771
d3c2fdcf 4772 nr = trans->blocks_used;
ab78c84d 4773 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4774fail:
39279cc3
CM
4775 if (drop_inode) {
4776 inode_dec_link_count(inode);
4777 iput(inode);
4778 }
d3c2fdcf 4779 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4780 return err;
4781}
4782
39279cc3
CM
4783static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4784{
b9d86667 4785 struct inode *inode = NULL;
39279cc3
CM
4786 struct btrfs_trans_handle *trans;
4787 struct btrfs_root *root = BTRFS_I(dir)->root;
4788 int err = 0;
4789 int drop_on_err = 0;
b9d86667 4790 u64 objectid = 0;
00e4e6b3 4791 u64 index = 0;
d3c2fdcf 4792 unsigned long nr = 1;
39279cc3 4793
9ed74f2d
JB
4794 /*
4795 * 2 items for inode and ref
4796 * 2 items for dir items
4797 * 1 for xattr if selinux is on
4798 */
a22285a6
YZ
4799 trans = btrfs_start_transaction(root, 5);
4800 if (IS_ERR(trans))
4801 return PTR_ERR(trans);
39279cc3 4802
581bb050
LZ
4803 err = btrfs_find_free_ino(root, &objectid);
4804 if (err)
4805 goto out_fail;
4806
aec7477b 4807 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4808 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4809 S_IFDIR | mode, &index);
39279cc3
CM
4810 if (IS_ERR(inode)) {
4811 err = PTR_ERR(inode);
4812 goto out_fail;
4813 }
5f39d397 4814
39279cc3 4815 drop_on_err = 1;
33268eaf 4816
2a7dba39 4817 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4818 if (err)
4819 goto out_fail;
4820
39279cc3
CM
4821 inode->i_op = &btrfs_dir_inode_operations;
4822 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4823
dbe674a9 4824 btrfs_i_size_write(inode, 0);
39279cc3
CM
4825 err = btrfs_update_inode(trans, root, inode);
4826 if (err)
4827 goto out_fail;
5f39d397 4828
a1b075d2
JB
4829 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4830 dentry->d_name.len, 0, index);
39279cc3
CM
4831 if (err)
4832 goto out_fail;
5f39d397 4833
39279cc3
CM
4834 d_instantiate(dentry, inode);
4835 drop_on_err = 0;
39279cc3
CM
4836
4837out_fail:
d3c2fdcf 4838 nr = trans->blocks_used;
ab78c84d 4839 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4840 if (drop_on_err)
4841 iput(inode);
d3c2fdcf 4842 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4843 return err;
4844}
4845
d352ac68
CM
4846/* helper for btfs_get_extent. Given an existing extent in the tree,
4847 * and an extent that you want to insert, deal with overlap and insert
4848 * the new extent into the tree.
4849 */
3b951516
CM
4850static int merge_extent_mapping(struct extent_map_tree *em_tree,
4851 struct extent_map *existing,
e6dcd2dc
CM
4852 struct extent_map *em,
4853 u64 map_start, u64 map_len)
3b951516
CM
4854{
4855 u64 start_diff;
3b951516 4856
e6dcd2dc
CM
4857 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4858 start_diff = map_start - em->start;
4859 em->start = map_start;
4860 em->len = map_len;
c8b97818
CM
4861 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4862 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4863 em->block_start += start_diff;
c8b97818
CM
4864 em->block_len -= start_diff;
4865 }
e6dcd2dc 4866 return add_extent_mapping(em_tree, em);
3b951516
CM
4867}
4868
c8b97818
CM
4869static noinline int uncompress_inline(struct btrfs_path *path,
4870 struct inode *inode, struct page *page,
4871 size_t pg_offset, u64 extent_offset,
4872 struct btrfs_file_extent_item *item)
4873{
4874 int ret;
4875 struct extent_buffer *leaf = path->nodes[0];
4876 char *tmp;
4877 size_t max_size;
4878 unsigned long inline_size;
4879 unsigned long ptr;
261507a0 4880 int compress_type;
c8b97818
CM
4881
4882 WARN_ON(pg_offset != 0);
261507a0 4883 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4884 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4885 inline_size = btrfs_file_extent_inline_item_len(leaf,
4886 btrfs_item_nr(leaf, path->slots[0]));
4887 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4888 if (!tmp)
4889 return -ENOMEM;
c8b97818
CM
4890 ptr = btrfs_file_extent_inline_start(item);
4891
4892 read_extent_buffer(leaf, tmp, ptr, inline_size);
4893
5b050f04 4894 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4895 ret = btrfs_decompress(compress_type, tmp, page,
4896 extent_offset, inline_size, max_size);
c8b97818
CM
4897 if (ret) {
4898 char *kaddr = kmap_atomic(page, KM_USER0);
4899 unsigned long copy_size = min_t(u64,
4900 PAGE_CACHE_SIZE - pg_offset,
4901 max_size - extent_offset);
4902 memset(kaddr + pg_offset, 0, copy_size);
4903 kunmap_atomic(kaddr, KM_USER0);
4904 }
4905 kfree(tmp);
4906 return 0;
4907}
4908
d352ac68
CM
4909/*
4910 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4911 * the ugly parts come from merging extents from the disk with the in-ram
4912 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4913 * where the in-ram extents might be locked pending data=ordered completion.
4914 *
4915 * This also copies inline extents directly into the page.
4916 */
d397712b 4917
a52d9a80 4918struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4919 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4920 int create)
4921{
4922 int ret;
4923 int err = 0;
db94535d 4924 u64 bytenr;
a52d9a80
CM
4925 u64 extent_start = 0;
4926 u64 extent_end = 0;
33345d01 4927 u64 objectid = btrfs_ino(inode);
a52d9a80 4928 u32 found_type;
f421950f 4929 struct btrfs_path *path = NULL;
a52d9a80
CM
4930 struct btrfs_root *root = BTRFS_I(inode)->root;
4931 struct btrfs_file_extent_item *item;
5f39d397
CM
4932 struct extent_buffer *leaf;
4933 struct btrfs_key found_key;
a52d9a80
CM
4934 struct extent_map *em = NULL;
4935 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4936 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4937 struct btrfs_trans_handle *trans = NULL;
261507a0 4938 int compress_type;
a52d9a80 4939
a52d9a80 4940again:
890871be 4941 read_lock(&em_tree->lock);
d1310b2e 4942 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4943 if (em)
4944 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4945 read_unlock(&em_tree->lock);
d1310b2e 4946
a52d9a80 4947 if (em) {
e1c4b745
CM
4948 if (em->start > start || em->start + em->len <= start)
4949 free_extent_map(em);
4950 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4951 free_extent_map(em);
4952 else
4953 goto out;
a52d9a80 4954 }
172ddd60 4955 em = alloc_extent_map();
a52d9a80 4956 if (!em) {
d1310b2e
CM
4957 err = -ENOMEM;
4958 goto out;
a52d9a80 4959 }
e6dcd2dc 4960 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4961 em->start = EXTENT_MAP_HOLE;
445a6944 4962 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4963 em->len = (u64)-1;
c8b97818 4964 em->block_len = (u64)-1;
f421950f
CM
4965
4966 if (!path) {
4967 path = btrfs_alloc_path();
026fd317
JB
4968 if (!path) {
4969 err = -ENOMEM;
4970 goto out;
4971 }
4972 /*
4973 * Chances are we'll be called again, so go ahead and do
4974 * readahead
4975 */
4976 path->reada = 1;
f421950f
CM
4977 }
4978
179e29e4
CM
4979 ret = btrfs_lookup_file_extent(trans, root, path,
4980 objectid, start, trans != NULL);
a52d9a80
CM
4981 if (ret < 0) {
4982 err = ret;
4983 goto out;
4984 }
4985
4986 if (ret != 0) {
4987 if (path->slots[0] == 0)
4988 goto not_found;
4989 path->slots[0]--;
4990 }
4991
5f39d397
CM
4992 leaf = path->nodes[0];
4993 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4994 struct btrfs_file_extent_item);
a52d9a80 4995 /* are we inside the extent that was found? */
5f39d397
CM
4996 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4997 found_type = btrfs_key_type(&found_key);
4998 if (found_key.objectid != objectid ||
a52d9a80
CM
4999 found_type != BTRFS_EXTENT_DATA_KEY) {
5000 goto not_found;
5001 }
5002
5f39d397
CM
5003 found_type = btrfs_file_extent_type(leaf, item);
5004 extent_start = found_key.offset;
261507a0 5005 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5006 if (found_type == BTRFS_FILE_EXTENT_REG ||
5007 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5008 extent_end = extent_start +
db94535d 5009 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5010 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5011 size_t size;
5012 size = btrfs_file_extent_inline_len(leaf, item);
5013 extent_end = (extent_start + size + root->sectorsize - 1) &
5014 ~((u64)root->sectorsize - 1);
5015 }
5016
5017 if (start >= extent_end) {
5018 path->slots[0]++;
5019 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5020 ret = btrfs_next_leaf(root, path);
5021 if (ret < 0) {
5022 err = ret;
5023 goto out;
a52d9a80 5024 }
9036c102
YZ
5025 if (ret > 0)
5026 goto not_found;
5027 leaf = path->nodes[0];
a52d9a80 5028 }
9036c102
YZ
5029 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5030 if (found_key.objectid != objectid ||
5031 found_key.type != BTRFS_EXTENT_DATA_KEY)
5032 goto not_found;
5033 if (start + len <= found_key.offset)
5034 goto not_found;
5035 em->start = start;
5036 em->len = found_key.offset - start;
5037 goto not_found_em;
5038 }
5039
d899e052
YZ
5040 if (found_type == BTRFS_FILE_EXTENT_REG ||
5041 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5042 em->start = extent_start;
5043 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5044 em->orig_start = extent_start -
5045 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5046 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5047 if (bytenr == 0) {
5f39d397 5048 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5049 goto insert;
5050 }
261507a0 5051 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5052 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5053 em->compress_type = compress_type;
c8b97818
CM
5054 em->block_start = bytenr;
5055 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5056 item);
5057 } else {
5058 bytenr += btrfs_file_extent_offset(leaf, item);
5059 em->block_start = bytenr;
5060 em->block_len = em->len;
d899e052
YZ
5061 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5062 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5063 }
a52d9a80
CM
5064 goto insert;
5065 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5066 unsigned long ptr;
a52d9a80 5067 char *map;
3326d1b0
CM
5068 size_t size;
5069 size_t extent_offset;
5070 size_t copy_size;
a52d9a80 5071
689f9346 5072 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5073 if (!page || create) {
689f9346 5074 em->start = extent_start;
9036c102 5075 em->len = extent_end - extent_start;
689f9346
Y
5076 goto out;
5077 }
5f39d397 5078
9036c102
YZ
5079 size = btrfs_file_extent_inline_len(leaf, item);
5080 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5081 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5082 size - extent_offset);
3326d1b0 5083 em->start = extent_start + extent_offset;
70dec807
CM
5084 em->len = (copy_size + root->sectorsize - 1) &
5085 ~((u64)root->sectorsize - 1);
ff5b7ee3 5086 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5087 if (compress_type) {
c8b97818 5088 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5089 em->compress_type = compress_type;
5090 }
689f9346 5091 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5092 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5093 if (btrfs_file_extent_compression(leaf, item) !=
5094 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5095 ret = uncompress_inline(path, inode, page,
5096 pg_offset,
5097 extent_offset, item);
5098 BUG_ON(ret);
5099 } else {
5100 map = kmap(page);
5101 read_extent_buffer(leaf, map + pg_offset, ptr,
5102 copy_size);
93c82d57
CM
5103 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5104 memset(map + pg_offset + copy_size, 0,
5105 PAGE_CACHE_SIZE - pg_offset -
5106 copy_size);
5107 }
c8b97818
CM
5108 kunmap(page);
5109 }
179e29e4
CM
5110 flush_dcache_page(page);
5111 } else if (create && PageUptodate(page)) {
0ca1f7ce 5112 WARN_ON(1);
179e29e4
CM
5113 if (!trans) {
5114 kunmap(page);
5115 free_extent_map(em);
5116 em = NULL;
ff5714cc 5117
b3b4aa74 5118 btrfs_release_path(path);
7a7eaa40 5119 trans = btrfs_join_transaction(root);
ff5714cc 5120
3612b495
TI
5121 if (IS_ERR(trans))
5122 return ERR_CAST(trans);
179e29e4
CM
5123 goto again;
5124 }
c8b97818 5125 map = kmap(page);
70dec807 5126 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5127 copy_size);
c8b97818 5128 kunmap(page);
179e29e4 5129 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5130 }
d1310b2e 5131 set_extent_uptodate(io_tree, em->start,
507903b8 5132 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5133 goto insert;
5134 } else {
d397712b 5135 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5136 WARN_ON(1);
5137 }
5138not_found:
5139 em->start = start;
d1310b2e 5140 em->len = len;
a52d9a80 5141not_found_em:
5f39d397 5142 em->block_start = EXTENT_MAP_HOLE;
9036c102 5143 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5144insert:
b3b4aa74 5145 btrfs_release_path(path);
d1310b2e 5146 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5147 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5148 "[%llu %llu]\n", (unsigned long long)em->start,
5149 (unsigned long long)em->len,
5150 (unsigned long long)start,
5151 (unsigned long long)len);
a52d9a80
CM
5152 err = -EIO;
5153 goto out;
5154 }
d1310b2e
CM
5155
5156 err = 0;
890871be 5157 write_lock(&em_tree->lock);
a52d9a80 5158 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5159 /* it is possible that someone inserted the extent into the tree
5160 * while we had the lock dropped. It is also possible that
5161 * an overlapping map exists in the tree
5162 */
a52d9a80 5163 if (ret == -EEXIST) {
3b951516 5164 struct extent_map *existing;
e6dcd2dc
CM
5165
5166 ret = 0;
5167
3b951516 5168 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5169 if (existing && (existing->start > start ||
5170 existing->start + existing->len <= start)) {
5171 free_extent_map(existing);
5172 existing = NULL;
5173 }
3b951516
CM
5174 if (!existing) {
5175 existing = lookup_extent_mapping(em_tree, em->start,
5176 em->len);
5177 if (existing) {
5178 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5179 em, start,
5180 root->sectorsize);
3b951516
CM
5181 free_extent_map(existing);
5182 if (err) {
5183 free_extent_map(em);
5184 em = NULL;
5185 }
5186 } else {
5187 err = -EIO;
3b951516
CM
5188 free_extent_map(em);
5189 em = NULL;
5190 }
5191 } else {
5192 free_extent_map(em);
5193 em = existing;
e6dcd2dc 5194 err = 0;
a52d9a80 5195 }
a52d9a80 5196 }
890871be 5197 write_unlock(&em_tree->lock);
a52d9a80 5198out:
1abe9b8a 5199
5200 trace_btrfs_get_extent(root, em);
5201
f421950f
CM
5202 if (path)
5203 btrfs_free_path(path);
a52d9a80
CM
5204 if (trans) {
5205 ret = btrfs_end_transaction(trans, root);
d397712b 5206 if (!err)
a52d9a80
CM
5207 err = ret;
5208 }
a52d9a80
CM
5209 if (err) {
5210 free_extent_map(em);
a52d9a80
CM
5211 return ERR_PTR(err);
5212 }
5213 return em;
5214}
5215
ec29ed5b
CM
5216struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5217 size_t pg_offset, u64 start, u64 len,
5218 int create)
5219{
5220 struct extent_map *em;
5221 struct extent_map *hole_em = NULL;
5222 u64 range_start = start;
5223 u64 end;
5224 u64 found;
5225 u64 found_end;
5226 int err = 0;
5227
5228 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5229 if (IS_ERR(em))
5230 return em;
5231 if (em) {
5232 /*
5233 * if our em maps to a hole, there might
5234 * actually be delalloc bytes behind it
5235 */
5236 if (em->block_start != EXTENT_MAP_HOLE)
5237 return em;
5238 else
5239 hole_em = em;
5240 }
5241
5242 /* check to see if we've wrapped (len == -1 or similar) */
5243 end = start + len;
5244 if (end < start)
5245 end = (u64)-1;
5246 else
5247 end -= 1;
5248
5249 em = NULL;
5250
5251 /* ok, we didn't find anything, lets look for delalloc */
5252 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5253 end, len, EXTENT_DELALLOC, 1);
5254 found_end = range_start + found;
5255 if (found_end < range_start)
5256 found_end = (u64)-1;
5257
5258 /*
5259 * we didn't find anything useful, return
5260 * the original results from get_extent()
5261 */
5262 if (range_start > end || found_end <= start) {
5263 em = hole_em;
5264 hole_em = NULL;
5265 goto out;
5266 }
5267
5268 /* adjust the range_start to make sure it doesn't
5269 * go backwards from the start they passed in
5270 */
5271 range_start = max(start,range_start);
5272 found = found_end - range_start;
5273
5274 if (found > 0) {
5275 u64 hole_start = start;
5276 u64 hole_len = len;
5277
172ddd60 5278 em = alloc_extent_map();
ec29ed5b
CM
5279 if (!em) {
5280 err = -ENOMEM;
5281 goto out;
5282 }
5283 /*
5284 * when btrfs_get_extent can't find anything it
5285 * returns one huge hole
5286 *
5287 * make sure what it found really fits our range, and
5288 * adjust to make sure it is based on the start from
5289 * the caller
5290 */
5291 if (hole_em) {
5292 u64 calc_end = extent_map_end(hole_em);
5293
5294 if (calc_end <= start || (hole_em->start > end)) {
5295 free_extent_map(hole_em);
5296 hole_em = NULL;
5297 } else {
5298 hole_start = max(hole_em->start, start);
5299 hole_len = calc_end - hole_start;
5300 }
5301 }
5302 em->bdev = NULL;
5303 if (hole_em && range_start > hole_start) {
5304 /* our hole starts before our delalloc, so we
5305 * have to return just the parts of the hole
5306 * that go until the delalloc starts
5307 */
5308 em->len = min(hole_len,
5309 range_start - hole_start);
5310 em->start = hole_start;
5311 em->orig_start = hole_start;
5312 /*
5313 * don't adjust block start at all,
5314 * it is fixed at EXTENT_MAP_HOLE
5315 */
5316 em->block_start = hole_em->block_start;
5317 em->block_len = hole_len;
5318 } else {
5319 em->start = range_start;
5320 em->len = found;
5321 em->orig_start = range_start;
5322 em->block_start = EXTENT_MAP_DELALLOC;
5323 em->block_len = found;
5324 }
5325 } else if (hole_em) {
5326 return hole_em;
5327 }
5328out:
5329
5330 free_extent_map(hole_em);
5331 if (err) {
5332 free_extent_map(em);
5333 return ERR_PTR(err);
5334 }
5335 return em;
5336}
5337
4b46fce2 5338static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5339 struct extent_map *em,
4b46fce2
JB
5340 u64 start, u64 len)
5341{
5342 struct btrfs_root *root = BTRFS_I(inode)->root;
5343 struct btrfs_trans_handle *trans;
4b46fce2
JB
5344 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5345 struct btrfs_key ins;
5346 u64 alloc_hint;
5347 int ret;
16d299ac 5348 bool insert = false;
4b46fce2 5349
16d299ac
JB
5350 /*
5351 * Ok if the extent map we looked up is a hole and is for the exact
5352 * range we want, there is no reason to allocate a new one, however if
5353 * it is not right then we need to free this one and drop the cache for
5354 * our range.
5355 */
5356 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5357 em->len != len) {
5358 free_extent_map(em);
5359 em = NULL;
5360 insert = true;
5361 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5362 }
4b46fce2 5363
7a7eaa40 5364 trans = btrfs_join_transaction(root);
3612b495
TI
5365 if (IS_ERR(trans))
5366 return ERR_CAST(trans);
4b46fce2 5367
4cb5300b
CM
5368 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5369 btrfs_add_inode_defrag(trans, inode);
5370
4b46fce2
JB
5371 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5372
5373 alloc_hint = get_extent_allocation_hint(inode, start, len);
5374 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5375 alloc_hint, (u64)-1, &ins, 1);
5376 if (ret) {
5377 em = ERR_PTR(ret);
5378 goto out;
5379 }
5380
4b46fce2 5381 if (!em) {
172ddd60 5382 em = alloc_extent_map();
16d299ac
JB
5383 if (!em) {
5384 em = ERR_PTR(-ENOMEM);
5385 goto out;
5386 }
4b46fce2
JB
5387 }
5388
5389 em->start = start;
5390 em->orig_start = em->start;
5391 em->len = ins.offset;
5392
5393 em->block_start = ins.objectid;
5394 em->block_len = ins.offset;
5395 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5396
5397 /*
5398 * We need to do this because if we're using the original em we searched
5399 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5400 */
5401 em->flags = 0;
4b46fce2
JB
5402 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5403
16d299ac 5404 while (insert) {
4b46fce2
JB
5405 write_lock(&em_tree->lock);
5406 ret = add_extent_mapping(em_tree, em);
5407 write_unlock(&em_tree->lock);
5408 if (ret != -EEXIST)
5409 break;
5410 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5411 }
5412
5413 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5414 ins.offset, ins.offset, 0);
5415 if (ret) {
5416 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5417 em = ERR_PTR(ret);
5418 }
5419out:
5420 btrfs_end_transaction(trans, root);
5421 return em;
5422}
5423
46bfbb5c
CM
5424/*
5425 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5426 * block must be cow'd
5427 */
5428static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5429 struct inode *inode, u64 offset, u64 len)
5430{
5431 struct btrfs_path *path;
5432 int ret;
5433 struct extent_buffer *leaf;
5434 struct btrfs_root *root = BTRFS_I(inode)->root;
5435 struct btrfs_file_extent_item *fi;
5436 struct btrfs_key key;
5437 u64 disk_bytenr;
5438 u64 backref_offset;
5439 u64 extent_end;
5440 u64 num_bytes;
5441 int slot;
5442 int found_type;
5443
5444 path = btrfs_alloc_path();
5445 if (!path)
5446 return -ENOMEM;
5447
33345d01 5448 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5449 offset, 0);
5450 if (ret < 0)
5451 goto out;
5452
5453 slot = path->slots[0];
5454 if (ret == 1) {
5455 if (slot == 0) {
5456 /* can't find the item, must cow */
5457 ret = 0;
5458 goto out;
5459 }
5460 slot--;
5461 }
5462 ret = 0;
5463 leaf = path->nodes[0];
5464 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5465 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5466 key.type != BTRFS_EXTENT_DATA_KEY) {
5467 /* not our file or wrong item type, must cow */
5468 goto out;
5469 }
5470
5471 if (key.offset > offset) {
5472 /* Wrong offset, must cow */
5473 goto out;
5474 }
5475
5476 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5477 found_type = btrfs_file_extent_type(leaf, fi);
5478 if (found_type != BTRFS_FILE_EXTENT_REG &&
5479 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5480 /* not a regular extent, must cow */
5481 goto out;
5482 }
5483 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5484 backref_offset = btrfs_file_extent_offset(leaf, fi);
5485
5486 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5487 if (extent_end < offset + len) {
5488 /* extent doesn't include our full range, must cow */
5489 goto out;
5490 }
5491
5492 if (btrfs_extent_readonly(root, disk_bytenr))
5493 goto out;
5494
5495 /*
5496 * look for other files referencing this extent, if we
5497 * find any we must cow
5498 */
33345d01 5499 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5500 key.offset - backref_offset, disk_bytenr))
5501 goto out;
5502
5503 /*
5504 * adjust disk_bytenr and num_bytes to cover just the bytes
5505 * in this extent we are about to write. If there
5506 * are any csums in that range we have to cow in order
5507 * to keep the csums correct
5508 */
5509 disk_bytenr += backref_offset;
5510 disk_bytenr += offset - key.offset;
5511 num_bytes = min(offset + len, extent_end) - offset;
5512 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5513 goto out;
5514 /*
5515 * all of the above have passed, it is safe to overwrite this extent
5516 * without cow
5517 */
5518 ret = 1;
5519out:
5520 btrfs_free_path(path);
5521 return ret;
5522}
5523
4b46fce2
JB
5524static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5525 struct buffer_head *bh_result, int create)
5526{
5527 struct extent_map *em;
5528 struct btrfs_root *root = BTRFS_I(inode)->root;
5529 u64 start = iblock << inode->i_blkbits;
5530 u64 len = bh_result->b_size;
46bfbb5c 5531 struct btrfs_trans_handle *trans;
4b46fce2
JB
5532
5533 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5534 if (IS_ERR(em))
5535 return PTR_ERR(em);
5536
5537 /*
5538 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5539 * io. INLINE is special, and we could probably kludge it in here, but
5540 * it's still buffered so for safety lets just fall back to the generic
5541 * buffered path.
5542 *
5543 * For COMPRESSED we _have_ to read the entire extent in so we can
5544 * decompress it, so there will be buffering required no matter what we
5545 * do, so go ahead and fallback to buffered.
5546 *
5547 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5548 * to buffered IO. Don't blame me, this is the price we pay for using
5549 * the generic code.
5550 */
5551 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5552 em->block_start == EXTENT_MAP_INLINE) {
5553 free_extent_map(em);
5554 return -ENOTBLK;
5555 }
5556
5557 /* Just a good old fashioned hole, return */
5558 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5559 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5560 free_extent_map(em);
5561 /* DIO will do one hole at a time, so just unlock a sector */
5562 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5563 start + root->sectorsize - 1, GFP_NOFS);
5564 return 0;
5565 }
5566
5567 /*
5568 * We don't allocate a new extent in the following cases
5569 *
5570 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5571 * existing extent.
5572 * 2) The extent is marked as PREALLOC. We're good to go here and can
5573 * just use the extent.
5574 *
5575 */
46bfbb5c
CM
5576 if (!create) {
5577 len = em->len - (start - em->start);
4b46fce2 5578 goto map;
46bfbb5c 5579 }
4b46fce2
JB
5580
5581 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5582 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5583 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5584 int type;
5585 int ret;
46bfbb5c 5586 u64 block_start;
4b46fce2
JB
5587
5588 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5589 type = BTRFS_ORDERED_PREALLOC;
5590 else
5591 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5592 len = min(len, em->len - (start - em->start));
4b46fce2 5593 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5594
5595 /*
5596 * we're not going to log anything, but we do need
5597 * to make sure the current transaction stays open
5598 * while we look for nocow cross refs
5599 */
7a7eaa40 5600 trans = btrfs_join_transaction(root);
3612b495 5601 if (IS_ERR(trans))
46bfbb5c
CM
5602 goto must_cow;
5603
5604 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5605 ret = btrfs_add_ordered_extent_dio(inode, start,
5606 block_start, len, len, type);
5607 btrfs_end_transaction(trans, root);
5608 if (ret) {
5609 free_extent_map(em);
5610 return ret;
5611 }
5612 goto unlock;
4b46fce2 5613 }
46bfbb5c 5614 btrfs_end_transaction(trans, root);
4b46fce2 5615 }
46bfbb5c
CM
5616must_cow:
5617 /*
5618 * this will cow the extent, reset the len in case we changed
5619 * it above
5620 */
5621 len = bh_result->b_size;
16d299ac 5622 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5623 if (IS_ERR(em))
5624 return PTR_ERR(em);
5625 len = min(len, em->len - (start - em->start));
5626unlock:
4845e44f
CM
5627 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5628 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5629 0, NULL, GFP_NOFS);
4b46fce2
JB
5630map:
5631 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5632 inode->i_blkbits;
46bfbb5c 5633 bh_result->b_size = len;
4b46fce2
JB
5634 bh_result->b_bdev = em->bdev;
5635 set_buffer_mapped(bh_result);
5636 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5637 set_buffer_new(bh_result);
5638
5639 free_extent_map(em);
5640
5641 return 0;
5642}
5643
5644struct btrfs_dio_private {
5645 struct inode *inode;
5646 u64 logical_offset;
5647 u64 disk_bytenr;
5648 u64 bytes;
5649 u32 *csums;
5650 void *private;
e65e1535
MX
5651
5652 /* number of bios pending for this dio */
5653 atomic_t pending_bios;
5654
5655 /* IO errors */
5656 int errors;
5657
5658 struct bio *orig_bio;
4b46fce2
JB
5659};
5660
5661static void btrfs_endio_direct_read(struct bio *bio, int err)
5662{
e65e1535 5663 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5664 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5665 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5666 struct inode *inode = dip->inode;
5667 struct btrfs_root *root = BTRFS_I(inode)->root;
5668 u64 start;
5669 u32 *private = dip->csums;
5670
5671 start = dip->logical_offset;
5672 do {
5673 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5674 struct page *page = bvec->bv_page;
5675 char *kaddr;
5676 u32 csum = ~(u32)0;
5677 unsigned long flags;
5678
5679 local_irq_save(flags);
5680 kaddr = kmap_atomic(page, KM_IRQ0);
5681 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5682 csum, bvec->bv_len);
5683 btrfs_csum_final(csum, (char *)&csum);
5684 kunmap_atomic(kaddr, KM_IRQ0);
5685 local_irq_restore(flags);
5686
5687 flush_dcache_page(bvec->bv_page);
5688 if (csum != *private) {
33345d01 5689 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5690 " %llu csum %u private %u\n",
33345d01
LZ
5691 (unsigned long long)btrfs_ino(inode),
5692 (unsigned long long)start,
4b46fce2
JB
5693 csum, *private);
5694 err = -EIO;
5695 }
5696 }
5697
5698 start += bvec->bv_len;
5699 private++;
5700 bvec++;
5701 } while (bvec <= bvec_end);
5702
5703 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5704 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5705 bio->bi_private = dip->private;
5706
5707 kfree(dip->csums);
5708 kfree(dip);
c0da7aa1
JB
5709
5710 /* If we had a csum failure make sure to clear the uptodate flag */
5711 if (err)
5712 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5713 dio_end_io(bio, err);
5714}
5715
5716static void btrfs_endio_direct_write(struct bio *bio, int err)
5717{
5718 struct btrfs_dio_private *dip = bio->bi_private;
5719 struct inode *inode = dip->inode;
5720 struct btrfs_root *root = BTRFS_I(inode)->root;
5721 struct btrfs_trans_handle *trans;
5722 struct btrfs_ordered_extent *ordered = NULL;
5723 struct extent_state *cached_state = NULL;
163cf09c
CM
5724 u64 ordered_offset = dip->logical_offset;
5725 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5726 int ret;
5727
5728 if (err)
5729 goto out_done;
163cf09c
CM
5730again:
5731 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5732 &ordered_offset,
5733 ordered_bytes);
4b46fce2 5734 if (!ret)
163cf09c 5735 goto out_test;
4b46fce2
JB
5736
5737 BUG_ON(!ordered);
5738
7a7eaa40 5739 trans = btrfs_join_transaction(root);
3612b495 5740 if (IS_ERR(trans)) {
4b46fce2
JB
5741 err = -ENOMEM;
5742 goto out;
5743 }
5744 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5745
5746 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5747 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5748 if (!ret)
5749 ret = btrfs_update_inode(trans, root, inode);
5750 err = ret;
5751 goto out;
5752 }
5753
5754 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5755 ordered->file_offset + ordered->len - 1, 0,
5756 &cached_state, GFP_NOFS);
5757
5758 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5759 ret = btrfs_mark_extent_written(trans, inode,
5760 ordered->file_offset,
5761 ordered->file_offset +
5762 ordered->len);
5763 if (ret) {
5764 err = ret;
5765 goto out_unlock;
5766 }
5767 } else {
5768 ret = insert_reserved_file_extent(trans, inode,
5769 ordered->file_offset,
5770 ordered->start,
5771 ordered->disk_len,
5772 ordered->len,
5773 ordered->len,
5774 0, 0, 0,
5775 BTRFS_FILE_EXTENT_REG);
5776 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5777 ordered->file_offset, ordered->len);
5778 if (ret) {
5779 err = ret;
5780 WARN_ON(1);
5781 goto out_unlock;
5782 }
5783 }
5784
5785 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1 5786 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
a39f7521 5787 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1ef30be1
JB
5788 btrfs_update_inode(trans, root, inode);
5789 ret = 0;
4b46fce2
JB
5790out_unlock:
5791 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5792 ordered->file_offset + ordered->len - 1,
5793 &cached_state, GFP_NOFS);
5794out:
5795 btrfs_delalloc_release_metadata(inode, ordered->len);
5796 btrfs_end_transaction(trans, root);
163cf09c 5797 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5798 btrfs_put_ordered_extent(ordered);
5799 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5800
5801out_test:
5802 /*
5803 * our bio might span multiple ordered extents. If we haven't
5804 * completed the accounting for the whole dio, go back and try again
5805 */
5806 if (ordered_offset < dip->logical_offset + dip->bytes) {
5807 ordered_bytes = dip->logical_offset + dip->bytes -
5808 ordered_offset;
5809 goto again;
5810 }
4b46fce2
JB
5811out_done:
5812 bio->bi_private = dip->private;
5813
5814 kfree(dip->csums);
5815 kfree(dip);
c0da7aa1
JB
5816
5817 /* If we had an error make sure to clear the uptodate flag */
5818 if (err)
5819 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5820 dio_end_io(bio, err);
5821}
5822
eaf25d93
CM
5823static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5824 struct bio *bio, int mirror_num,
5825 unsigned long bio_flags, u64 offset)
5826{
5827 int ret;
5828 struct btrfs_root *root = BTRFS_I(inode)->root;
5829 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5830 BUG_ON(ret);
5831 return 0;
5832}
5833
e65e1535
MX
5834static void btrfs_end_dio_bio(struct bio *bio, int err)
5835{
5836 struct btrfs_dio_private *dip = bio->bi_private;
5837
5838 if (err) {
33345d01 5839 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5840 "sector %#Lx len %u err no %d\n",
33345d01 5841 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5842 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5843 dip->errors = 1;
5844
5845 /*
5846 * before atomic variable goto zero, we must make sure
5847 * dip->errors is perceived to be set.
5848 */
5849 smp_mb__before_atomic_dec();
5850 }
5851
5852 /* if there are more bios still pending for this dio, just exit */
5853 if (!atomic_dec_and_test(&dip->pending_bios))
5854 goto out;
5855
5856 if (dip->errors)
5857 bio_io_error(dip->orig_bio);
5858 else {
5859 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5860 bio_endio(dip->orig_bio, 0);
5861 }
5862out:
5863 bio_put(bio);
5864}
5865
5866static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5867 u64 first_sector, gfp_t gfp_flags)
5868{
5869 int nr_vecs = bio_get_nr_vecs(bdev);
5870 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5871}
5872
5873static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5874 int rw, u64 file_offset, int skip_sum,
1ae39938 5875 u32 *csums, int async_submit)
e65e1535
MX
5876{
5877 int write = rw & REQ_WRITE;
5878 struct btrfs_root *root = BTRFS_I(inode)->root;
5879 int ret;
5880
5881 bio_get(bio);
5882 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5883 if (ret)
5884 goto err;
5885
1ae39938
JB
5886 if (skip_sum)
5887 goto map;
5888
5889 if (write && async_submit) {
e65e1535
MX
5890 ret = btrfs_wq_submit_bio(root->fs_info,
5891 inode, rw, bio, 0, 0,
5892 file_offset,
5893 __btrfs_submit_bio_start_direct_io,
5894 __btrfs_submit_bio_done);
5895 goto err;
1ae39938
JB
5896 } else if (write) {
5897 /*
5898 * If we aren't doing async submit, calculate the csum of the
5899 * bio now.
5900 */
5901 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5902 if (ret)
5903 goto err;
c2db1073
TI
5904 } else if (!skip_sum) {
5905 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5906 file_offset, csums);
c2db1073
TI
5907 if (ret)
5908 goto err;
5909 }
e65e1535 5910
1ae39938
JB
5911map:
5912 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5913err:
5914 bio_put(bio);
5915 return ret;
5916}
5917
5918static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5919 int skip_sum)
5920{
5921 struct inode *inode = dip->inode;
5922 struct btrfs_root *root = BTRFS_I(inode)->root;
5923 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5924 struct bio *bio;
5925 struct bio *orig_bio = dip->orig_bio;
5926 struct bio_vec *bvec = orig_bio->bi_io_vec;
5927 u64 start_sector = orig_bio->bi_sector;
5928 u64 file_offset = dip->logical_offset;
5929 u64 submit_len = 0;
5930 u64 map_length;
5931 int nr_pages = 0;
5932 u32 *csums = dip->csums;
5933 int ret = 0;
1ae39938 5934 int async_submit = 0;
98bc3149 5935 int write = rw & REQ_WRITE;
e65e1535 5936
e65e1535
MX
5937 map_length = orig_bio->bi_size;
5938 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5939 &map_length, NULL, 0);
5940 if (ret) {
64728bbb 5941 bio_put(orig_bio);
e65e1535
MX
5942 return -EIO;
5943 }
5944
02f57c7a
JB
5945 if (map_length >= orig_bio->bi_size) {
5946 bio = orig_bio;
5947 goto submit;
5948 }
5949
1ae39938 5950 async_submit = 1;
02f57c7a
JB
5951 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5952 if (!bio)
5953 return -ENOMEM;
5954 bio->bi_private = dip;
5955 bio->bi_end_io = btrfs_end_dio_bio;
5956 atomic_inc(&dip->pending_bios);
5957
e65e1535
MX
5958 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5959 if (unlikely(map_length < submit_len + bvec->bv_len ||
5960 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5961 bvec->bv_offset) < bvec->bv_len)) {
5962 /*
5963 * inc the count before we submit the bio so
5964 * we know the end IO handler won't happen before
5965 * we inc the count. Otherwise, the dip might get freed
5966 * before we're done setting it up
5967 */
5968 atomic_inc(&dip->pending_bios);
5969 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5970 file_offset, skip_sum,
1ae39938 5971 csums, async_submit);
e65e1535
MX
5972 if (ret) {
5973 bio_put(bio);
5974 atomic_dec(&dip->pending_bios);
5975 goto out_err;
5976 }
5977
98bc3149
JB
5978 /* Write's use the ordered csums */
5979 if (!write && !skip_sum)
e65e1535
MX
5980 csums = csums + nr_pages;
5981 start_sector += submit_len >> 9;
5982 file_offset += submit_len;
5983
5984 submit_len = 0;
5985 nr_pages = 0;
5986
5987 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5988 start_sector, GFP_NOFS);
5989 if (!bio)
5990 goto out_err;
5991 bio->bi_private = dip;
5992 bio->bi_end_io = btrfs_end_dio_bio;
5993
5994 map_length = orig_bio->bi_size;
5995 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5996 &map_length, NULL, 0);
5997 if (ret) {
5998 bio_put(bio);
5999 goto out_err;
6000 }
6001 } else {
6002 submit_len += bvec->bv_len;
6003 nr_pages ++;
6004 bvec++;
6005 }
6006 }
6007
02f57c7a 6008submit:
e65e1535 6009 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6010 csums, async_submit);
e65e1535
MX
6011 if (!ret)
6012 return 0;
6013
6014 bio_put(bio);
6015out_err:
6016 dip->errors = 1;
6017 /*
6018 * before atomic variable goto zero, we must
6019 * make sure dip->errors is perceived to be set.
6020 */
6021 smp_mb__before_atomic_dec();
6022 if (atomic_dec_and_test(&dip->pending_bios))
6023 bio_io_error(dip->orig_bio);
6024
6025 /* bio_end_io() will handle error, so we needn't return it */
6026 return 0;
6027}
6028
4b46fce2
JB
6029static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6030 loff_t file_offset)
6031{
6032 struct btrfs_root *root = BTRFS_I(inode)->root;
6033 struct btrfs_dio_private *dip;
6034 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6035 int skip_sum;
7b6d91da 6036 int write = rw & REQ_WRITE;
4b46fce2
JB
6037 int ret = 0;
6038
6039 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6040
6041 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6042 if (!dip) {
6043 ret = -ENOMEM;
6044 goto free_ordered;
6045 }
6046 dip->csums = NULL;
6047
98bc3149
JB
6048 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6049 if (!write && !skip_sum) {
4b46fce2
JB
6050 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6051 if (!dip->csums) {
b4966b77 6052 kfree(dip);
4b46fce2
JB
6053 ret = -ENOMEM;
6054 goto free_ordered;
6055 }
6056 }
6057
6058 dip->private = bio->bi_private;
6059 dip->inode = inode;
6060 dip->logical_offset = file_offset;
6061
4b46fce2
JB
6062 dip->bytes = 0;
6063 do {
6064 dip->bytes += bvec->bv_len;
6065 bvec++;
6066 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6067
46bfbb5c 6068 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6069 bio->bi_private = dip;
e65e1535
MX
6070 dip->errors = 0;
6071 dip->orig_bio = bio;
6072 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6073
6074 if (write)
6075 bio->bi_end_io = btrfs_endio_direct_write;
6076 else
6077 bio->bi_end_io = btrfs_endio_direct_read;
6078
e65e1535
MX
6079 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6080 if (!ret)
eaf25d93 6081 return;
4b46fce2
JB
6082free_ordered:
6083 /*
6084 * If this is a write, we need to clean up the reserved space and kill
6085 * the ordered extent.
6086 */
6087 if (write) {
6088 struct btrfs_ordered_extent *ordered;
955256f2 6089 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6090 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6091 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6092 btrfs_free_reserved_extent(root, ordered->start,
6093 ordered->disk_len);
6094 btrfs_put_ordered_extent(ordered);
6095 btrfs_put_ordered_extent(ordered);
6096 }
6097 bio_endio(bio, ret);
6098}
6099
5a5f79b5
CM
6100static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6101 const struct iovec *iov, loff_t offset,
6102 unsigned long nr_segs)
6103{
6104 int seg;
a1b75f7d 6105 int i;
5a5f79b5
CM
6106 size_t size;
6107 unsigned long addr;
6108 unsigned blocksize_mask = root->sectorsize - 1;
6109 ssize_t retval = -EINVAL;
6110 loff_t end = offset;
6111
6112 if (offset & blocksize_mask)
6113 goto out;
6114
6115 /* Check the memory alignment. Blocks cannot straddle pages */
6116 for (seg = 0; seg < nr_segs; seg++) {
6117 addr = (unsigned long)iov[seg].iov_base;
6118 size = iov[seg].iov_len;
6119 end += size;
a1b75f7d 6120 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6121 goto out;
a1b75f7d
JB
6122
6123 /* If this is a write we don't need to check anymore */
6124 if (rw & WRITE)
6125 continue;
6126
6127 /*
6128 * Check to make sure we don't have duplicate iov_base's in this
6129 * iovec, if so return EINVAL, otherwise we'll get csum errors
6130 * when reading back.
6131 */
6132 for (i = seg + 1; i < nr_segs; i++) {
6133 if (iov[seg].iov_base == iov[i].iov_base)
6134 goto out;
6135 }
5a5f79b5
CM
6136 }
6137 retval = 0;
6138out:
6139 return retval;
6140}
16432985
CM
6141static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6142 const struct iovec *iov, loff_t offset,
6143 unsigned long nr_segs)
6144{
4b46fce2
JB
6145 struct file *file = iocb->ki_filp;
6146 struct inode *inode = file->f_mapping->host;
6147 struct btrfs_ordered_extent *ordered;
4845e44f 6148 struct extent_state *cached_state = NULL;
4b46fce2
JB
6149 u64 lockstart, lockend;
6150 ssize_t ret;
4845e44f
CM
6151 int writing = rw & WRITE;
6152 int write_bits = 0;
3f7c579c 6153 size_t count = iov_length(iov, nr_segs);
4b46fce2 6154
5a5f79b5
CM
6155 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6156 offset, nr_segs)) {
6157 return 0;
6158 }
6159
4b46fce2 6160 lockstart = offset;
3f7c579c
CM
6161 lockend = offset + count - 1;
6162
6163 if (writing) {
6164 ret = btrfs_delalloc_reserve_space(inode, count);
6165 if (ret)
6166 goto out;
6167 }
4845e44f 6168
4b46fce2 6169 while (1) {
4845e44f
CM
6170 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6171 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6172 /*
6173 * We're concerned with the entire range that we're going to be
6174 * doing DIO to, so we need to make sure theres no ordered
6175 * extents in this range.
6176 */
6177 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6178 lockend - lockstart + 1);
6179 if (!ordered)
6180 break;
4845e44f
CM
6181 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6182 &cached_state, GFP_NOFS);
4b46fce2
JB
6183 btrfs_start_ordered_extent(inode, ordered, 1);
6184 btrfs_put_ordered_extent(ordered);
6185 cond_resched();
6186 }
6187
4845e44f
CM
6188 /*
6189 * we don't use btrfs_set_extent_delalloc because we don't want
6190 * the dirty or uptodate bits
6191 */
6192 if (writing) {
6193 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6194 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6195 EXTENT_DELALLOC, 0, NULL, &cached_state,
6196 GFP_NOFS);
6197 if (ret) {
6198 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6199 lockend, EXTENT_LOCKED | write_bits,
6200 1, 0, &cached_state, GFP_NOFS);
6201 goto out;
6202 }
6203 }
6204
6205 free_extent_state(cached_state);
6206 cached_state = NULL;
6207
5a5f79b5
CM
6208 ret = __blockdev_direct_IO(rw, iocb, inode,
6209 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6210 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6211 btrfs_submit_direct, 0);
4b46fce2
JB
6212
6213 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6214 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6215 offset + iov_length(iov, nr_segs) - 1,
6216 EXTENT_LOCKED | write_bits, 1, 0,
6217 &cached_state, GFP_NOFS);
4b46fce2
JB
6218 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6219 /*
6220 * We're falling back to buffered, unlock the section we didn't
6221 * do IO on.
6222 */
4845e44f
CM
6223 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6224 offset + iov_length(iov, nr_segs) - 1,
6225 EXTENT_LOCKED | write_bits, 1, 0,
6226 &cached_state, GFP_NOFS);
4b46fce2 6227 }
4845e44f
CM
6228out:
6229 free_extent_state(cached_state);
4b46fce2 6230 return ret;
16432985
CM
6231}
6232
1506fcc8
YS
6233static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6234 __u64 start, __u64 len)
6235{
ec29ed5b 6236 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6237}
6238
a52d9a80 6239int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6240{
d1310b2e
CM
6241 struct extent_io_tree *tree;
6242 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6243 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6244}
1832a6d5 6245
a52d9a80 6246static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6247{
d1310b2e 6248 struct extent_io_tree *tree;
b888db2b
CM
6249
6250
6251 if (current->flags & PF_MEMALLOC) {
6252 redirty_page_for_writepage(wbc, page);
6253 unlock_page(page);
6254 return 0;
6255 }
d1310b2e 6256 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6257 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6258}
6259
f421950f
CM
6260int btrfs_writepages(struct address_space *mapping,
6261 struct writeback_control *wbc)
b293f02e 6262{
d1310b2e 6263 struct extent_io_tree *tree;
771ed689 6264
d1310b2e 6265 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6266 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6267}
6268
3ab2fb5a
CM
6269static int
6270btrfs_readpages(struct file *file, struct address_space *mapping,
6271 struct list_head *pages, unsigned nr_pages)
6272{
d1310b2e
CM
6273 struct extent_io_tree *tree;
6274 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6275 return extent_readpages(tree, mapping, pages, nr_pages,
6276 btrfs_get_extent);
6277}
e6dcd2dc 6278static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6279{
d1310b2e
CM
6280 struct extent_io_tree *tree;
6281 struct extent_map_tree *map;
a52d9a80 6282 int ret;
8c2383c3 6283
d1310b2e
CM
6284 tree = &BTRFS_I(page->mapping->host)->io_tree;
6285 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6286 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6287 if (ret == 1) {
6288 ClearPagePrivate(page);
6289 set_page_private(page, 0);
6290 page_cache_release(page);
39279cc3 6291 }
a52d9a80 6292 return ret;
39279cc3
CM
6293}
6294
e6dcd2dc
CM
6295static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6296{
98509cfc
CM
6297 if (PageWriteback(page) || PageDirty(page))
6298 return 0;
b335b003 6299 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6300}
6301
a52d9a80 6302static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6303{
d1310b2e 6304 struct extent_io_tree *tree;
e6dcd2dc 6305 struct btrfs_ordered_extent *ordered;
2ac55d41 6306 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6307 u64 page_start = page_offset(page);
6308 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6309
8b62b72b
CM
6310
6311 /*
6312 * we have the page locked, so new writeback can't start,
6313 * and the dirty bit won't be cleared while we are here.
6314 *
6315 * Wait for IO on this page so that we can safely clear
6316 * the PagePrivate2 bit and do ordered accounting
6317 */
e6dcd2dc 6318 wait_on_page_writeback(page);
8b62b72b 6319
d1310b2e 6320 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6321 if (offset) {
6322 btrfs_releasepage(page, GFP_NOFS);
6323 return;
6324 }
2ac55d41
JB
6325 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6326 GFP_NOFS);
e6dcd2dc
CM
6327 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6328 page_offset(page));
6329 if (ordered) {
eb84ae03
CM
6330 /*
6331 * IO on this page will never be started, so we need
6332 * to account for any ordered extents now
6333 */
e6dcd2dc
CM
6334 clear_extent_bit(tree, page_start, page_end,
6335 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6336 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6337 &cached_state, GFP_NOFS);
8b62b72b
CM
6338 /*
6339 * whoever cleared the private bit is responsible
6340 * for the finish_ordered_io
6341 */
6342 if (TestClearPagePrivate2(page)) {
6343 btrfs_finish_ordered_io(page->mapping->host,
6344 page_start, page_end);
6345 }
e6dcd2dc 6346 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6347 cached_state = NULL;
6348 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6349 GFP_NOFS);
e6dcd2dc
CM
6350 }
6351 clear_extent_bit(tree, page_start, page_end,
32c00aff 6352 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6353 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6354 __btrfs_releasepage(page, GFP_NOFS);
6355
4a096752 6356 ClearPageChecked(page);
9ad6b7bc 6357 if (PagePrivate(page)) {
9ad6b7bc
CM
6358 ClearPagePrivate(page);
6359 set_page_private(page, 0);
6360 page_cache_release(page);
6361 }
39279cc3
CM
6362}
6363
9ebefb18
CM
6364/*
6365 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6366 * called from a page fault handler when a page is first dirtied. Hence we must
6367 * be careful to check for EOF conditions here. We set the page up correctly
6368 * for a written page which means we get ENOSPC checking when writing into
6369 * holes and correct delalloc and unwritten extent mapping on filesystems that
6370 * support these features.
6371 *
6372 * We are not allowed to take the i_mutex here so we have to play games to
6373 * protect against truncate races as the page could now be beyond EOF. Because
6374 * vmtruncate() writes the inode size before removing pages, once we have the
6375 * page lock we can determine safely if the page is beyond EOF. If it is not
6376 * beyond EOF, then the page is guaranteed safe against truncation until we
6377 * unlock the page.
6378 */
c2ec175c 6379int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6380{
c2ec175c 6381 struct page *page = vmf->page;
6da6abae 6382 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6383 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6384 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6385 struct btrfs_ordered_extent *ordered;
2ac55d41 6386 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6387 char *kaddr;
6388 unsigned long zero_start;
9ebefb18 6389 loff_t size;
1832a6d5 6390 int ret;
a52d9a80 6391 u64 page_start;
e6dcd2dc 6392 u64 page_end;
9ebefb18 6393
0ca1f7ce 6394 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6395 if (ret) {
6396 if (ret == -ENOMEM)
6397 ret = VM_FAULT_OOM;
6398 else /* -ENOSPC, -EIO, etc */
6399 ret = VM_FAULT_SIGBUS;
1832a6d5 6400 goto out;
56a76f82 6401 }
1832a6d5 6402
56a76f82 6403 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6404again:
9ebefb18 6405 lock_page(page);
9ebefb18 6406 size = i_size_read(inode);
e6dcd2dc
CM
6407 page_start = page_offset(page);
6408 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6409
9ebefb18 6410 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6411 (page_start >= size)) {
9ebefb18
CM
6412 /* page got truncated out from underneath us */
6413 goto out_unlock;
6414 }
e6dcd2dc
CM
6415 wait_on_page_writeback(page);
6416
2ac55d41
JB
6417 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6418 GFP_NOFS);
e6dcd2dc
CM
6419 set_page_extent_mapped(page);
6420
eb84ae03
CM
6421 /*
6422 * we can't set the delalloc bits if there are pending ordered
6423 * extents. Drop our locks and wait for them to finish
6424 */
e6dcd2dc
CM
6425 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6426 if (ordered) {
2ac55d41
JB
6427 unlock_extent_cached(io_tree, page_start, page_end,
6428 &cached_state, GFP_NOFS);
e6dcd2dc 6429 unlock_page(page);
eb84ae03 6430 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6431 btrfs_put_ordered_extent(ordered);
6432 goto again;
6433 }
6434
fbf19087
JB
6435 /*
6436 * XXX - page_mkwrite gets called every time the page is dirtied, even
6437 * if it was already dirty, so for space accounting reasons we need to
6438 * clear any delalloc bits for the range we are fixing to save. There
6439 * is probably a better way to do this, but for now keep consistent with
6440 * prepare_pages in the normal write path.
6441 */
2ac55d41 6442 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6443 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6444 0, 0, &cached_state, GFP_NOFS);
fbf19087 6445
2ac55d41
JB
6446 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6447 &cached_state);
9ed74f2d 6448 if (ret) {
2ac55d41
JB
6449 unlock_extent_cached(io_tree, page_start, page_end,
6450 &cached_state, GFP_NOFS);
9ed74f2d
JB
6451 ret = VM_FAULT_SIGBUS;
6452 goto out_unlock;
6453 }
e6dcd2dc 6454 ret = 0;
9ebefb18
CM
6455
6456 /* page is wholly or partially inside EOF */
a52d9a80 6457 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6458 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6459 else
e6dcd2dc 6460 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6461
e6dcd2dc
CM
6462 if (zero_start != PAGE_CACHE_SIZE) {
6463 kaddr = kmap(page);
6464 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6465 flush_dcache_page(page);
6466 kunmap(page);
6467 }
247e743c 6468 ClearPageChecked(page);
e6dcd2dc 6469 set_page_dirty(page);
50a9b214 6470 SetPageUptodate(page);
5a3f23d5 6471
257c62e1
CM
6472 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6473 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6474
2ac55d41 6475 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6476
6477out_unlock:
50a9b214
CM
6478 if (!ret)
6479 return VM_FAULT_LOCKED;
9ebefb18 6480 unlock_page(page);
0ca1f7ce 6481 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6482out:
9ebefb18
CM
6483 return ret;
6484}
6485
a41ad394 6486static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6487{
6488 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6489 struct btrfs_block_rsv *rsv;
39279cc3 6490 int ret;
3893e33b 6491 int err = 0;
39279cc3 6492 struct btrfs_trans_handle *trans;
d3c2fdcf 6493 unsigned long nr;
dbe674a9 6494 u64 mask = root->sectorsize - 1;
07127184 6495 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6496
5d5e103a
JB
6497 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6498 if (ret)
a41ad394 6499 return ret;
8082510e 6500
4a096752 6501 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6502 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6503
fcb80c2a
JB
6504 /*
6505 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6506 * 3 things going on here
6507 *
6508 * 1) We need to reserve space for our orphan item and the space to
6509 * delete our orphan item. Lord knows we don't want to have a dangling
6510 * orphan item because we didn't reserve space to remove it.
6511 *
6512 * 2) We need to reserve space to update our inode.
6513 *
6514 * 3) We need to have something to cache all the space that is going to
6515 * be free'd up by the truncate operation, but also have some slack
6516 * space reserved in case it uses space during the truncate (thank you
6517 * very much snapshotting).
6518 *
6519 * And we need these to all be seperate. The fact is we can use alot of
6520 * space doing the truncate, and we have no earthly idea how much space
6521 * we will use, so we need the truncate reservation to be seperate so it
6522 * doesn't end up using space reserved for updating the inode or
6523 * removing the orphan item. We also need to be able to stop the
6524 * transaction and start a new one, which means we need to be able to
6525 * update the inode several times, and we have no idea of knowing how
6526 * many times that will be, so we can't just reserve 1 item for the
6527 * entirety of the opration, so that has to be done seperately as well.
6528 * Then there is the orphan item, which does indeed need to be held on
6529 * to for the whole operation, and we need nobody to touch this reserved
6530 * space except the orphan code.
6531 *
6532 * So that leaves us with
6533 *
6534 * 1) root->orphan_block_rsv - for the orphan deletion.
6535 * 2) rsv - for the truncate reservation, which we will steal from the
6536 * transaction reservation.
6537 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6538 * updating the inode.
6539 */
6540 rsv = btrfs_alloc_block_rsv(root);
6541 if (!rsv)
6542 return -ENOMEM;
4a338542 6543 rsv->size = min_size;
f0cd846e 6544
907cbceb 6545 /*
07127184 6546 * 1 for the truncate slack space
907cbceb
JB
6547 * 1 for the orphan item we're going to add
6548 * 1 for the orphan item deletion
6549 * 1 for updating the inode.
6550 */
07127184 6551 trans = btrfs_start_transaction(root, 4);
fcb80c2a
JB
6552 if (IS_ERR(trans)) {
6553 err = PTR_ERR(trans);
6554 goto out;
6555 }
f0cd846e 6556
907cbceb
JB
6557 /* Migrate the slack space for the truncate to our reserve */
6558 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6559 min_size);
fcb80c2a 6560 BUG_ON(ret);
f0cd846e
JB
6561
6562 ret = btrfs_orphan_add(trans, inode);
6563 if (ret) {
6564 btrfs_end_transaction(trans, root);
fcb80c2a 6565 goto out;
f0cd846e
JB
6566 }
6567
5a3f23d5
CM
6568 /*
6569 * setattr is responsible for setting the ordered_data_close flag,
6570 * but that is only tested during the last file release. That
6571 * could happen well after the next commit, leaving a great big
6572 * window where new writes may get lost if someone chooses to write
6573 * to this file after truncating to zero
6574 *
6575 * The inode doesn't have any dirty data here, and so if we commit
6576 * this is a noop. If someone immediately starts writing to the inode
6577 * it is very likely we'll catch some of their writes in this
6578 * transaction, and the commit will find this file on the ordered
6579 * data list with good things to send down.
6580 *
6581 * This is a best effort solution, there is still a window where
6582 * using truncate to replace the contents of the file will
6583 * end up with a zero length file after a crash.
6584 */
6585 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6586 btrfs_add_ordered_operation(trans, root, inode);
6587
8082510e 6588 while (1) {
4a92b1b8 6589 ret = btrfs_block_rsv_check(root, rsv, min_size, 0, 1);
907cbceb
JB
6590 if (ret) {
6591 /*
6592 * This can only happen with the original transaction we
6593 * started above, every other time we shouldn't have a
6594 * transaction started yet.
6595 */
6596 if (ret == -EAGAIN)
6597 goto end_trans;
6598 err = ret;
6599 break;
6600 }
6601
d68fc57b 6602 if (!trans) {
907cbceb
JB
6603 /* Just need the 1 for updating the inode */
6604 trans = btrfs_start_transaction(root, 1);
fcb80c2a
JB
6605 if (IS_ERR(trans)) {
6606 err = PTR_ERR(trans);
6607 goto out;
6608 }
d68fc57b
YZ
6609 }
6610
907cbceb
JB
6611 trans->block_rsv = rsv;
6612
8082510e
YZ
6613 ret = btrfs_truncate_inode_items(trans, root, inode,
6614 inode->i_size,
6615 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6616 if (ret != -EAGAIN) {
6617 err = ret;
8082510e 6618 break;
3893e33b 6619 }
39279cc3 6620
fcb80c2a 6621 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6622 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6623 if (ret) {
6624 err = ret;
6625 break;
6626 }
907cbceb 6627end_trans:
8082510e
YZ
6628 nr = trans->blocks_used;
6629 btrfs_end_transaction(trans, root);
d68fc57b 6630 trans = NULL;
8082510e 6631 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6632 }
6633
6634 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6635 trans->block_rsv = root->orphan_block_rsv;
8082510e 6636 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6637 if (ret)
6638 err = ret;
ded5db9d
JB
6639 } else if (ret && inode->i_nlink > 0) {
6640 /*
6641 * Failed to do the truncate, remove us from the in memory
6642 * orphan list.
6643 */
6644 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6645 }
6646
fcb80c2a 6647 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6648 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6649 if (ret && !err)
6650 err = ret;
7b128766 6651
7b128766 6652 nr = trans->blocks_used;
89ce8a63 6653 ret = btrfs_end_transaction_throttle(trans, root);
fcb80c2a
JB
6654 btrfs_btree_balance_dirty(root, nr);
6655
6656out:
6657 btrfs_free_block_rsv(root, rsv);
6658
3893e33b
JB
6659 if (ret && !err)
6660 err = ret;
a41ad394 6661
3893e33b 6662 return err;
39279cc3
CM
6663}
6664
d352ac68
CM
6665/*
6666 * create a new subvolume directory/inode (helper for the ioctl).
6667 */
d2fb3437 6668int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6669 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6670{
39279cc3 6671 struct inode *inode;
76dda93c 6672 int err;
00e4e6b3 6673 u64 index = 0;
39279cc3 6674
aec7477b 6675 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d82a6f1d 6676 new_dirid, S_IFDIR | 0700, &index);
54aa1f4d 6677 if (IS_ERR(inode))
f46b5a66 6678 return PTR_ERR(inode);
39279cc3
CM
6679 inode->i_op = &btrfs_dir_inode_operations;
6680 inode->i_fop = &btrfs_dir_file_operations;
6681
39279cc3 6682 inode->i_nlink = 1;
dbe674a9 6683 btrfs_i_size_write(inode, 0);
3b96362c 6684
76dda93c
YZ
6685 err = btrfs_update_inode(trans, new_root, inode);
6686 BUG_ON(err);
cb8e7090 6687
76dda93c 6688 iput(inode);
cb8e7090 6689 return 0;
39279cc3
CM
6690}
6691
39279cc3
CM
6692struct inode *btrfs_alloc_inode(struct super_block *sb)
6693{
6694 struct btrfs_inode *ei;
2ead6ae7 6695 struct inode *inode;
39279cc3
CM
6696
6697 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6698 if (!ei)
6699 return NULL;
2ead6ae7
YZ
6700
6701 ei->root = NULL;
6702 ei->space_info = NULL;
6703 ei->generation = 0;
6704 ei->sequence = 0;
15ee9bc7 6705 ei->last_trans = 0;
257c62e1 6706 ei->last_sub_trans = 0;
e02119d5 6707 ei->logged_trans = 0;
2ead6ae7 6708 ei->delalloc_bytes = 0;
2ead6ae7
YZ
6709 ei->disk_i_size = 0;
6710 ei->flags = 0;
7709cde3 6711 ei->csum_bytes = 0;
2ead6ae7
YZ
6712 ei->index_cnt = (u64)-1;
6713 ei->last_unlink_trans = 0;
6714
9e0baf60
JB
6715 spin_lock_init(&ei->lock);
6716 ei->outstanding_extents = 0;
6717 ei->reserved_extents = 0;
2ead6ae7
YZ
6718
6719 ei->ordered_data_close = 0;
d68fc57b 6720 ei->orphan_meta_reserved = 0;
2ead6ae7 6721 ei->dummy_inode = 0;
4cb5300b 6722 ei->in_defrag = 0;
261507a0 6723 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6724
16cdcec7
MX
6725 ei->delayed_node = NULL;
6726
2ead6ae7 6727 inode = &ei->vfs_inode;
a8067e02 6728 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6729 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6730 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6731 mutex_init(&ei->log_mutex);
e6dcd2dc 6732 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6733 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6734 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6735 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6736 RB_CLEAR_NODE(&ei->rb_node);
6737
6738 return inode;
39279cc3
CM
6739}
6740
fa0d7e3d
NP
6741static void btrfs_i_callback(struct rcu_head *head)
6742{
6743 struct inode *inode = container_of(head, struct inode, i_rcu);
6744 INIT_LIST_HEAD(&inode->i_dentry);
6745 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6746}
6747
39279cc3
CM
6748void btrfs_destroy_inode(struct inode *inode)
6749{
e6dcd2dc 6750 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6751 struct btrfs_root *root = BTRFS_I(inode)->root;
6752
39279cc3
CM
6753 WARN_ON(!list_empty(&inode->i_dentry));
6754 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6755 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6756 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
6757 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6758 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 6759
a6dbd429
JB
6760 /*
6761 * This can happen where we create an inode, but somebody else also
6762 * created the same inode and we need to destroy the one we already
6763 * created.
6764 */
6765 if (!root)
6766 goto free;
6767
5a3f23d5
CM
6768 /*
6769 * Make sure we're properly removed from the ordered operation
6770 * lists.
6771 */
6772 smp_mb();
6773 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6774 spin_lock(&root->fs_info->ordered_extent_lock);
6775 list_del_init(&BTRFS_I(inode)->ordered_operations);
6776 spin_unlock(&root->fs_info->ordered_extent_lock);
6777 }
6778
d68fc57b 6779 spin_lock(&root->orphan_lock);
7b128766 6780 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6781 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6782 (unsigned long long)btrfs_ino(inode));
8082510e 6783 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6784 }
d68fc57b 6785 spin_unlock(&root->orphan_lock);
7b128766 6786
d397712b 6787 while (1) {
e6dcd2dc
CM
6788 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6789 if (!ordered)
6790 break;
6791 else {
d397712b
CM
6792 printk(KERN_ERR "btrfs found ordered "
6793 "extent %llu %llu on inode cleanup\n",
6794 (unsigned long long)ordered->file_offset,
6795 (unsigned long long)ordered->len);
e6dcd2dc
CM
6796 btrfs_remove_ordered_extent(inode, ordered);
6797 btrfs_put_ordered_extent(ordered);
6798 btrfs_put_ordered_extent(ordered);
6799 }
6800 }
5d4f98a2 6801 inode_tree_del(inode);
5b21f2ed 6802 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6803free:
16cdcec7 6804 btrfs_remove_delayed_node(inode);
fa0d7e3d 6805 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6806}
6807
45321ac5 6808int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6809{
6810 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6811
0af3d00b 6812 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 6813 !btrfs_is_free_space_inode(root, inode))
45321ac5 6814 return 1;
76dda93c 6815 else
45321ac5 6816 return generic_drop_inode(inode);
76dda93c
YZ
6817}
6818
0ee0fda0 6819static void init_once(void *foo)
39279cc3
CM
6820{
6821 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6822
6823 inode_init_once(&ei->vfs_inode);
6824}
6825
6826void btrfs_destroy_cachep(void)
6827{
6828 if (btrfs_inode_cachep)
6829 kmem_cache_destroy(btrfs_inode_cachep);
6830 if (btrfs_trans_handle_cachep)
6831 kmem_cache_destroy(btrfs_trans_handle_cachep);
6832 if (btrfs_transaction_cachep)
6833 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6834 if (btrfs_path_cachep)
6835 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6836 if (btrfs_free_space_cachep)
6837 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6838}
6839
6840int btrfs_init_cachep(void)
6841{
9601e3f6
CH
6842 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6843 sizeof(struct btrfs_inode), 0,
6844 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6845 if (!btrfs_inode_cachep)
6846 goto fail;
9601e3f6
CH
6847
6848 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6849 sizeof(struct btrfs_trans_handle), 0,
6850 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6851 if (!btrfs_trans_handle_cachep)
6852 goto fail;
9601e3f6
CH
6853
6854 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6855 sizeof(struct btrfs_transaction), 0,
6856 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6857 if (!btrfs_transaction_cachep)
6858 goto fail;
9601e3f6
CH
6859
6860 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6861 sizeof(struct btrfs_path), 0,
6862 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6863 if (!btrfs_path_cachep)
6864 goto fail;
9601e3f6 6865
dc89e982
JB
6866 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6867 sizeof(struct btrfs_free_space), 0,
6868 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6869 if (!btrfs_free_space_cachep)
6870 goto fail;
6871
39279cc3
CM
6872 return 0;
6873fail:
6874 btrfs_destroy_cachep();
6875 return -ENOMEM;
6876}
6877
6878static int btrfs_getattr(struct vfsmount *mnt,
6879 struct dentry *dentry, struct kstat *stat)
6880{
6881 struct inode *inode = dentry->d_inode;
6882 generic_fillattr(inode, stat);
0ee5dc67 6883 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 6884 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6885 stat->blocks = (inode_get_bytes(inode) +
6886 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6887 return 0;
6888}
6889
75e7cb7f
LB
6890/*
6891 * If a file is moved, it will inherit the cow and compression flags of the new
6892 * directory.
6893 */
6894static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6895{
6896 struct btrfs_inode *b_dir = BTRFS_I(dir);
6897 struct btrfs_inode *b_inode = BTRFS_I(inode);
6898
6899 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6900 b_inode->flags |= BTRFS_INODE_NODATACOW;
6901 else
6902 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6903
6904 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6905 b_inode->flags |= BTRFS_INODE_COMPRESS;
6906 else
6907 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6908}
6909
d397712b
CM
6910static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6911 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6912{
6913 struct btrfs_trans_handle *trans;
6914 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6915 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6916 struct inode *new_inode = new_dentry->d_inode;
6917 struct inode *old_inode = old_dentry->d_inode;
6918 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6919 u64 index = 0;
4df27c4d 6920 u64 root_objectid;
39279cc3 6921 int ret;
33345d01 6922 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6923
33345d01 6924 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6925 return -EPERM;
6926
4df27c4d 6927 /* we only allow rename subvolume link between subvolumes */
33345d01 6928 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6929 return -EXDEV;
6930
33345d01
LZ
6931 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6932 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6933 return -ENOTEMPTY;
5f39d397 6934
4df27c4d
YZ
6935 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6936 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6937 return -ENOTEMPTY;
5a3f23d5
CM
6938 /*
6939 * we're using rename to replace one file with another.
6940 * and the replacement file is large. Start IO on it now so
6941 * we don't add too much work to the end of the transaction
6942 */
4baf8c92 6943 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6944 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6945 filemap_flush(old_inode->i_mapping);
6946
76dda93c 6947 /* close the racy window with snapshot create/destroy ioctl */
33345d01 6948 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 6949 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6950 /*
6951 * We want to reserve the absolute worst case amount of items. So if
6952 * both inodes are subvols and we need to unlink them then that would
6953 * require 4 item modifications, but if they are both normal inodes it
6954 * would require 5 item modifications, so we'll assume their normal
6955 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6956 * should cover the worst case number of items we'll modify.
6957 */
6958 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
6959 if (IS_ERR(trans)) {
6960 ret = PTR_ERR(trans);
6961 goto out_notrans;
6962 }
76dda93c 6963
4df27c4d
YZ
6964 if (dest != root)
6965 btrfs_record_root_in_trans(trans, dest);
5f39d397 6966
a5719521
YZ
6967 ret = btrfs_set_inode_index(new_dir, &index);
6968 if (ret)
6969 goto out_fail;
5a3f23d5 6970
33345d01 6971 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6972 /* force full log commit if subvolume involved. */
6973 root->fs_info->last_trans_log_full_commit = trans->transid;
6974 } else {
a5719521
YZ
6975 ret = btrfs_insert_inode_ref(trans, dest,
6976 new_dentry->d_name.name,
6977 new_dentry->d_name.len,
33345d01
LZ
6978 old_ino,
6979 btrfs_ino(new_dir), index);
a5719521
YZ
6980 if (ret)
6981 goto out_fail;
4df27c4d
YZ
6982 /*
6983 * this is an ugly little race, but the rename is required
6984 * to make sure that if we crash, the inode is either at the
6985 * old name or the new one. pinning the log transaction lets
6986 * us make sure we don't allow a log commit to come in after
6987 * we unlink the name but before we add the new name back in.
6988 */
6989 btrfs_pin_log_trans(root);
6990 }
5a3f23d5
CM
6991 /*
6992 * make sure the inode gets flushed if it is replacing
6993 * something.
6994 */
33345d01 6995 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 6996 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 6997
39279cc3
CM
6998 old_dir->i_ctime = old_dir->i_mtime = ctime;
6999 new_dir->i_ctime = new_dir->i_mtime = ctime;
7000 old_inode->i_ctime = ctime;
5f39d397 7001
12fcfd22
CM
7002 if (old_dentry->d_parent != new_dentry->d_parent)
7003 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7004
33345d01 7005 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7006 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7007 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7008 old_dentry->d_name.name,
7009 old_dentry->d_name.len);
7010 } else {
92986796
AV
7011 ret = __btrfs_unlink_inode(trans, root, old_dir,
7012 old_dentry->d_inode,
7013 old_dentry->d_name.name,
7014 old_dentry->d_name.len);
7015 if (!ret)
7016 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7017 }
7018 BUG_ON(ret);
39279cc3
CM
7019
7020 if (new_inode) {
7021 new_inode->i_ctime = CURRENT_TIME;
33345d01 7022 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7023 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7024 root_objectid = BTRFS_I(new_inode)->location.objectid;
7025 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7026 root_objectid,
7027 new_dentry->d_name.name,
7028 new_dentry->d_name.len);
7029 BUG_ON(new_inode->i_nlink == 0);
7030 } else {
7031 ret = btrfs_unlink_inode(trans, dest, new_dir,
7032 new_dentry->d_inode,
7033 new_dentry->d_name.name,
7034 new_dentry->d_name.len);
7035 }
7036 BUG_ON(ret);
7b128766 7037 if (new_inode->i_nlink == 0) {
e02119d5 7038 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7039 BUG_ON(ret);
7b128766 7040 }
39279cc3 7041 }
aec7477b 7042
75e7cb7f
LB
7043 fixup_inode_flags(new_dir, old_inode);
7044
4df27c4d
YZ
7045 ret = btrfs_add_link(trans, new_dir, old_inode,
7046 new_dentry->d_name.name,
a5719521 7047 new_dentry->d_name.len, 0, index);
4df27c4d 7048 BUG_ON(ret);
39279cc3 7049
33345d01 7050 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7051 struct dentry *parent = new_dentry->d_parent;
6a912213 7052 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7053 btrfs_end_log_trans(root);
7054 }
39279cc3 7055out_fail:
ab78c84d 7056 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7057out_notrans:
33345d01 7058 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7059 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7060
39279cc3
CM
7061 return ret;
7062}
7063
d352ac68
CM
7064/*
7065 * some fairly slow code that needs optimization. This walks the list
7066 * of all the inodes with pending delalloc and forces them to disk.
7067 */
24bbcf04 7068int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7069{
7070 struct list_head *head = &root->fs_info->delalloc_inodes;
7071 struct btrfs_inode *binode;
5b21f2ed 7072 struct inode *inode;
ea8c2819 7073
c146afad
YZ
7074 if (root->fs_info->sb->s_flags & MS_RDONLY)
7075 return -EROFS;
7076
75eff68e 7077 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7078 while (!list_empty(head)) {
ea8c2819
CM
7079 binode = list_entry(head->next, struct btrfs_inode,
7080 delalloc_inodes);
5b21f2ed
ZY
7081 inode = igrab(&binode->vfs_inode);
7082 if (!inode)
7083 list_del_init(&binode->delalloc_inodes);
75eff68e 7084 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7085 if (inode) {
8c8bee1d 7086 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7087 if (delay_iput)
7088 btrfs_add_delayed_iput(inode);
7089 else
7090 iput(inode);
5b21f2ed
ZY
7091 }
7092 cond_resched();
75eff68e 7093 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7094 }
75eff68e 7095 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7096
7097 /* the filemap_flush will queue IO into the worker threads, but
7098 * we have to make sure the IO is actually started and that
7099 * ordered extents get created before we return
7100 */
7101 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7102 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7103 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7104 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7105 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7106 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7107 }
7108 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7109 return 0;
7110}
7111
39279cc3
CM
7112static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7113 const char *symname)
7114{
7115 struct btrfs_trans_handle *trans;
7116 struct btrfs_root *root = BTRFS_I(dir)->root;
7117 struct btrfs_path *path;
7118 struct btrfs_key key;
1832a6d5 7119 struct inode *inode = NULL;
39279cc3
CM
7120 int err;
7121 int drop_inode = 0;
7122 u64 objectid;
00e4e6b3 7123 u64 index = 0 ;
39279cc3
CM
7124 int name_len;
7125 int datasize;
5f39d397 7126 unsigned long ptr;
39279cc3 7127 struct btrfs_file_extent_item *ei;
5f39d397 7128 struct extent_buffer *leaf;
1832a6d5 7129 unsigned long nr = 0;
39279cc3
CM
7130
7131 name_len = strlen(symname) + 1;
7132 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7133 return -ENAMETOOLONG;
1832a6d5 7134
9ed74f2d
JB
7135 /*
7136 * 2 items for inode item and ref
7137 * 2 items for dir items
7138 * 1 item for xattr if selinux is on
7139 */
a22285a6
YZ
7140 trans = btrfs_start_transaction(root, 5);
7141 if (IS_ERR(trans))
7142 return PTR_ERR(trans);
1832a6d5 7143
581bb050
LZ
7144 err = btrfs_find_free_ino(root, &objectid);
7145 if (err)
7146 goto out_unlock;
7147
aec7477b 7148 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7149 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7150 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7151 if (IS_ERR(inode)) {
7152 err = PTR_ERR(inode);
39279cc3 7153 goto out_unlock;
7cf96da3 7154 }
39279cc3 7155
2a7dba39 7156 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7157 if (err) {
7158 drop_inode = 1;
7159 goto out_unlock;
7160 }
7161
a1b075d2 7162 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7163 if (err)
7164 drop_inode = 1;
7165 else {
7166 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7167 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7168 inode->i_fop = &btrfs_file_operations;
7169 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7170 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7171 }
39279cc3
CM
7172 if (drop_inode)
7173 goto out_unlock;
7174
7175 path = btrfs_alloc_path();
d8926bb3
MF
7176 if (!path) {
7177 err = -ENOMEM;
7178 drop_inode = 1;
7179 goto out_unlock;
7180 }
33345d01 7181 key.objectid = btrfs_ino(inode);
39279cc3 7182 key.offset = 0;
39279cc3
CM
7183 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7184 datasize = btrfs_file_extent_calc_inline_size(name_len);
7185 err = btrfs_insert_empty_item(trans, root, path, &key,
7186 datasize);
54aa1f4d
CM
7187 if (err) {
7188 drop_inode = 1;
b0839166 7189 btrfs_free_path(path);
54aa1f4d
CM
7190 goto out_unlock;
7191 }
5f39d397
CM
7192 leaf = path->nodes[0];
7193 ei = btrfs_item_ptr(leaf, path->slots[0],
7194 struct btrfs_file_extent_item);
7195 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7196 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7197 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7198 btrfs_set_file_extent_encryption(leaf, ei, 0);
7199 btrfs_set_file_extent_compression(leaf, ei, 0);
7200 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7201 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7202
39279cc3 7203 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7204 write_extent_buffer(leaf, symname, ptr, name_len);
7205 btrfs_mark_buffer_dirty(leaf);
39279cc3 7206 btrfs_free_path(path);
5f39d397 7207
39279cc3
CM
7208 inode->i_op = &btrfs_symlink_inode_operations;
7209 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7210 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7211 inode_set_bytes(inode, name_len);
dbe674a9 7212 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7213 err = btrfs_update_inode(trans, root, inode);
7214 if (err)
7215 drop_inode = 1;
39279cc3
CM
7216
7217out_unlock:
d3c2fdcf 7218 nr = trans->blocks_used;
ab78c84d 7219 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7220 if (drop_inode) {
7221 inode_dec_link_count(inode);
7222 iput(inode);
7223 }
d3c2fdcf 7224 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7225 return err;
7226}
16432985 7227
0af3d00b
JB
7228static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7229 u64 start, u64 num_bytes, u64 min_size,
7230 loff_t actual_len, u64 *alloc_hint,
7231 struct btrfs_trans_handle *trans)
d899e052 7232{
d899e052
YZ
7233 struct btrfs_root *root = BTRFS_I(inode)->root;
7234 struct btrfs_key ins;
d899e052 7235 u64 cur_offset = start;
55a61d1d 7236 u64 i_size;
d899e052 7237 int ret = 0;
0af3d00b 7238 bool own_trans = true;
d899e052 7239
0af3d00b
JB
7240 if (trans)
7241 own_trans = false;
d899e052 7242 while (num_bytes > 0) {
0af3d00b
JB
7243 if (own_trans) {
7244 trans = btrfs_start_transaction(root, 3);
7245 if (IS_ERR(trans)) {
7246 ret = PTR_ERR(trans);
7247 break;
7248 }
5a303d5d
YZ
7249 }
7250
efa56464
YZ
7251 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7252 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7253 if (ret) {
0af3d00b
JB
7254 if (own_trans)
7255 btrfs_end_transaction(trans, root);
a22285a6 7256 break;
d899e052 7257 }
5a303d5d 7258
d899e052
YZ
7259 ret = insert_reserved_file_extent(trans, inode,
7260 cur_offset, ins.objectid,
7261 ins.offset, ins.offset,
920bbbfb 7262 ins.offset, 0, 0, 0,
d899e052
YZ
7263 BTRFS_FILE_EXTENT_PREALLOC);
7264 BUG_ON(ret);
a1ed835e
CM
7265 btrfs_drop_extent_cache(inode, cur_offset,
7266 cur_offset + ins.offset -1, 0);
5a303d5d 7267
d899e052
YZ
7268 num_bytes -= ins.offset;
7269 cur_offset += ins.offset;
efa56464 7270 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7271
d899e052 7272 inode->i_ctime = CURRENT_TIME;
6cbff00f 7273 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7274 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7275 (actual_len > inode->i_size) &&
7276 (cur_offset > inode->i_size)) {
d1ea6a61 7277 if (cur_offset > actual_len)
55a61d1d 7278 i_size = actual_len;
d1ea6a61 7279 else
55a61d1d
JB
7280 i_size = cur_offset;
7281 i_size_write(inode, i_size);
7282 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7283 }
7284
d899e052
YZ
7285 ret = btrfs_update_inode(trans, root, inode);
7286 BUG_ON(ret);
d899e052 7287
0af3d00b
JB
7288 if (own_trans)
7289 btrfs_end_transaction(trans, root);
5a303d5d 7290 }
d899e052
YZ
7291 return ret;
7292}
7293
0af3d00b
JB
7294int btrfs_prealloc_file_range(struct inode *inode, int mode,
7295 u64 start, u64 num_bytes, u64 min_size,
7296 loff_t actual_len, u64 *alloc_hint)
7297{
7298 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7299 min_size, actual_len, alloc_hint,
7300 NULL);
7301}
7302
7303int btrfs_prealloc_file_range_trans(struct inode *inode,
7304 struct btrfs_trans_handle *trans, int mode,
7305 u64 start, u64 num_bytes, u64 min_size,
7306 loff_t actual_len, u64 *alloc_hint)
7307{
7308 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7309 min_size, actual_len, alloc_hint, trans);
7310}
7311
e6dcd2dc
CM
7312static int btrfs_set_page_dirty(struct page *page)
7313{
e6dcd2dc
CM
7314 return __set_page_dirty_nobuffers(page);
7315}
7316
10556cb2 7317static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7318{
b83cc969 7319 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7320 umode_t mode = inode->i_mode;
b83cc969 7321
cb6db4e5
JM
7322 if (mask & MAY_WRITE &&
7323 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7324 if (btrfs_root_readonly(root))
7325 return -EROFS;
7326 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7327 return -EACCES;
7328 }
2830ba7f 7329 return generic_permission(inode, mask);
fdebe2bd 7330}
39279cc3 7331
6e1d5dcc 7332static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7333 .getattr = btrfs_getattr,
39279cc3
CM
7334 .lookup = btrfs_lookup,
7335 .create = btrfs_create,
7336 .unlink = btrfs_unlink,
7337 .link = btrfs_link,
7338 .mkdir = btrfs_mkdir,
7339 .rmdir = btrfs_rmdir,
7340 .rename = btrfs_rename,
7341 .symlink = btrfs_symlink,
7342 .setattr = btrfs_setattr,
618e21d5 7343 .mknod = btrfs_mknod,
95819c05
CH
7344 .setxattr = btrfs_setxattr,
7345 .getxattr = btrfs_getxattr,
5103e947 7346 .listxattr = btrfs_listxattr,
95819c05 7347 .removexattr = btrfs_removexattr,
fdebe2bd 7348 .permission = btrfs_permission,
4e34e719 7349 .get_acl = btrfs_get_acl,
39279cc3 7350};
6e1d5dcc 7351static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7352 .lookup = btrfs_lookup,
fdebe2bd 7353 .permission = btrfs_permission,
4e34e719 7354 .get_acl = btrfs_get_acl,
39279cc3 7355};
76dda93c 7356
828c0950 7357static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7358 .llseek = generic_file_llseek,
7359 .read = generic_read_dir,
cbdf5a24 7360 .readdir = btrfs_real_readdir,
34287aa3 7361 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7362#ifdef CONFIG_COMPAT
34287aa3 7363 .compat_ioctl = btrfs_ioctl,
39279cc3 7364#endif
6bf13c0c 7365 .release = btrfs_release_file,
e02119d5 7366 .fsync = btrfs_sync_file,
39279cc3
CM
7367};
7368
d1310b2e 7369static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7370 .fill_delalloc = run_delalloc_range,
065631f6 7371 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7372 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7373 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7374 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7375 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7376 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7377 .set_bit_hook = btrfs_set_bit_hook,
7378 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7379 .merge_extent_hook = btrfs_merge_extent_hook,
7380 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7381};
7382
35054394
CM
7383/*
7384 * btrfs doesn't support the bmap operation because swapfiles
7385 * use bmap to make a mapping of extents in the file. They assume
7386 * these extents won't change over the life of the file and they
7387 * use the bmap result to do IO directly to the drive.
7388 *
7389 * the btrfs bmap call would return logical addresses that aren't
7390 * suitable for IO and they also will change frequently as COW
7391 * operations happen. So, swapfile + btrfs == corruption.
7392 *
7393 * For now we're avoiding this by dropping bmap.
7394 */
7f09410b 7395static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7396 .readpage = btrfs_readpage,
7397 .writepage = btrfs_writepage,
b293f02e 7398 .writepages = btrfs_writepages,
3ab2fb5a 7399 .readpages = btrfs_readpages,
16432985 7400 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7401 .invalidatepage = btrfs_invalidatepage,
7402 .releasepage = btrfs_releasepage,
e6dcd2dc 7403 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7404 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7405};
7406
7f09410b 7407static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7408 .readpage = btrfs_readpage,
7409 .writepage = btrfs_writepage,
2bf5a725
CM
7410 .invalidatepage = btrfs_invalidatepage,
7411 .releasepage = btrfs_releasepage,
39279cc3
CM
7412};
7413
6e1d5dcc 7414static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7415 .getattr = btrfs_getattr,
7416 .setattr = btrfs_setattr,
95819c05
CH
7417 .setxattr = btrfs_setxattr,
7418 .getxattr = btrfs_getxattr,
5103e947 7419 .listxattr = btrfs_listxattr,
95819c05 7420 .removexattr = btrfs_removexattr,
fdebe2bd 7421 .permission = btrfs_permission,
1506fcc8 7422 .fiemap = btrfs_fiemap,
4e34e719 7423 .get_acl = btrfs_get_acl,
39279cc3 7424};
6e1d5dcc 7425static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7426 .getattr = btrfs_getattr,
7427 .setattr = btrfs_setattr,
fdebe2bd 7428 .permission = btrfs_permission,
95819c05
CH
7429 .setxattr = btrfs_setxattr,
7430 .getxattr = btrfs_getxattr,
33268eaf 7431 .listxattr = btrfs_listxattr,
95819c05 7432 .removexattr = btrfs_removexattr,
4e34e719 7433 .get_acl = btrfs_get_acl,
618e21d5 7434};
6e1d5dcc 7435static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7436 .readlink = generic_readlink,
7437 .follow_link = page_follow_link_light,
7438 .put_link = page_put_link,
f209561a 7439 .getattr = btrfs_getattr,
fdebe2bd 7440 .permission = btrfs_permission,
0279b4cd
JO
7441 .setxattr = btrfs_setxattr,
7442 .getxattr = btrfs_getxattr,
7443 .listxattr = btrfs_listxattr,
7444 .removexattr = btrfs_removexattr,
4e34e719 7445 .get_acl = btrfs_get_acl,
39279cc3 7446};
76dda93c 7447
82d339d9 7448const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7449 .d_delete = btrfs_dentry_delete,
b4aff1f8 7450 .d_release = btrfs_dentry_release,
76dda93c 7451};