btrfs: use offset_in_page instead of open-coding it
[linux-block.git] / fs / btrfs / inode.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
8f18cf13 6#include <linux/kernel.h>
065631f6 7#include <linux/bio.h>
39279cc3 8#include <linux/buffer_head.h>
f2eb0a24 9#include <linux/file.h>
39279cc3
CM
10#include <linux/fs.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/init.h>
15#include <linux/string.h>
39279cc3 16#include <linux/backing-dev.h>
39279cc3 17#include <linux/writeback.h>
39279cc3 18#include <linux/compat.h>
5103e947 19#include <linux/xattr.h>
33268eaf 20#include <linux/posix_acl.h>
d899e052 21#include <linux/falloc.h>
5a0e3ad6 22#include <linux/slab.h>
7a36ddec 23#include <linux/ratelimit.h>
55e301fd 24#include <linux/btrfs.h>
53b381b3 25#include <linux/blkdev.h>
f23b5a59 26#include <linux/posix_acl_xattr.h>
e2e40f2c 27#include <linux/uio.h>
69fe2d75 28#include <linux/magic.h>
ae5e165d 29#include <linux/iversion.h>
ed46ff3d 30#include <linux/swap.h>
92d32170 31#include <asm/unaligned.h>
39279cc3
CM
32#include "ctree.h"
33#include "disk-io.h"
34#include "transaction.h"
35#include "btrfs_inode.h"
39279cc3 36#include "print-tree.h"
e6dcd2dc 37#include "ordered-data.h"
95819c05 38#include "xattr.h"
e02119d5 39#include "tree-log.h"
4a54c8c1 40#include "volumes.h"
c8b97818 41#include "compression.h"
b4ce94de 42#include "locking.h"
dc89e982 43#include "free-space-cache.h"
581bb050 44#include "inode-map.h"
38c227d8 45#include "backref.h"
63541927 46#include "props.h"
31193213 47#include "qgroup.h"
dda3245e 48#include "dedupe.h"
39279cc3
CM
49
50struct btrfs_iget_args {
90d3e592 51 struct btrfs_key *location;
39279cc3
CM
52 struct btrfs_root *root;
53};
54
f28a4928 55struct btrfs_dio_data {
f28a4928
FM
56 u64 reserve;
57 u64 unsubmitted_oe_range_start;
58 u64 unsubmitted_oe_range_end;
4aaedfb0 59 int overwrite;
f28a4928
FM
60};
61
6e1d5dcc
AD
62static const struct inode_operations btrfs_dir_inode_operations;
63static const struct inode_operations btrfs_symlink_inode_operations;
64static const struct inode_operations btrfs_dir_ro_inode_operations;
65static const struct inode_operations btrfs_special_inode_operations;
66static const struct inode_operations btrfs_file_inode_operations;
7f09410b 67static const struct address_space_operations btrfs_aops;
828c0950 68static const struct file_operations btrfs_dir_file_operations;
20e5506b 69static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
70
71static struct kmem_cache *btrfs_inode_cachep;
72struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 73struct kmem_cache *btrfs_path_cachep;
dc89e982 74struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
75
76#define S_SHIFT 12
4d4ab6d6 77static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
3972f260 87static int btrfs_setsize(struct inode *inode, struct iattr *attr);
213e8c55 88static int btrfs_truncate(struct inode *inode, bool skip_writeback);
5fd02043 89static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
90static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
dda3245e
WX
92 u64 start, u64 end, u64 delalloc_end,
93 int *page_started, unsigned long *nr_written,
94 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
95static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
96 u64 orig_start, u64 block_start,
97 u64 block_len, u64 orig_block_len,
98 u64 ram_bytes, int compress_type,
99 int type);
7b128766 100
52427260
QW
101static void __endio_write_update_ordered(struct inode *inode,
102 const u64 offset, const u64 bytes,
103 const bool uptodate);
104
105/*
106 * Cleanup all submitted ordered extents in specified range to handle errors
107 * from the fill_dellaloc() callback.
108 *
109 * NOTE: caller must ensure that when an error happens, it can not call
110 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
111 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
112 * to be released, which we want to happen only when finishing the ordered
d1051d6e 113 * extent (btrfs_finish_ordered_io()).
52427260
QW
114 */
115static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
d1051d6e
NB
116 struct page *locked_page,
117 u64 offset, u64 bytes)
52427260 118{
63d71450
NA
119 unsigned long index = offset >> PAGE_SHIFT;
120 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
d1051d6e
NB
121 u64 page_start = page_offset(locked_page);
122 u64 page_end = page_start + PAGE_SIZE - 1;
123
63d71450
NA
124 struct page *page;
125
126 while (index <= end_index) {
127 page = find_get_page(inode->i_mapping, index);
128 index++;
129 if (!page)
130 continue;
131 ClearPagePrivate2(page);
132 put_page(page);
133 }
d1051d6e
NB
134
135 /*
136 * In case this page belongs to the delalloc range being instantiated
137 * then skip it, since the first page of a range is going to be
138 * properly cleaned up by the caller of run_delalloc_range
139 */
140 if (page_start >= offset && page_end <= (offset + bytes - 1)) {
141 offset += PAGE_SIZE;
142 bytes -= PAGE_SIZE;
143 }
144
145 return __endio_write_update_ordered(inode, offset, bytes, false);
52427260
QW
146}
147
48a3b636 148static int btrfs_dirty_inode(struct inode *inode);
7b128766 149
6a3891c5
JB
150#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
151void btrfs_test_inode_set_ops(struct inode *inode)
152{
153 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
154}
155#endif
156
f34f57a3 157static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
158 struct inode *inode, struct inode *dir,
159 const struct qstr *qstr)
0279b4cd
JO
160{
161 int err;
162
f34f57a3 163 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 164 if (!err)
2a7dba39 165 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
166 return err;
167}
168
c8b97818
CM
169/*
170 * this does all the hard work for inserting an inline extent into
171 * the btree. The caller should have done a btrfs_drop_extents so that
172 * no overlapping inline items exist in the btree
173 */
40f76580 174static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 175 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
176 struct btrfs_root *root, struct inode *inode,
177 u64 start, size_t size, size_t compressed_size,
fe3f566c 178 int compress_type,
c8b97818
CM
179 struct page **compressed_pages)
180{
c8b97818
CM
181 struct extent_buffer *leaf;
182 struct page *page = NULL;
183 char *kaddr;
184 unsigned long ptr;
185 struct btrfs_file_extent_item *ei;
c8b97818
CM
186 int ret;
187 size_t cur_size = size;
c8b97818 188 unsigned long offset;
c8b97818 189
fe3f566c 190 if (compressed_size && compressed_pages)
c8b97818 191 cur_size = compressed_size;
c8b97818 192
1acae57b 193 inode_add_bytes(inode, size);
c8b97818 194
1acae57b
FDBM
195 if (!extent_inserted) {
196 struct btrfs_key key;
197 size_t datasize;
c8b97818 198
4a0cc7ca 199 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 200 key.offset = start;
962a298f 201 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 202
1acae57b
FDBM
203 datasize = btrfs_file_extent_calc_inline_size(cur_size);
204 path->leave_spinning = 1;
205 ret = btrfs_insert_empty_item(trans, root, path, &key,
206 datasize);
79b4f4c6 207 if (ret)
1acae57b 208 goto fail;
c8b97818
CM
209 }
210 leaf = path->nodes[0];
211 ei = btrfs_item_ptr(leaf, path->slots[0],
212 struct btrfs_file_extent_item);
213 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
214 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
215 btrfs_set_file_extent_encryption(leaf, ei, 0);
216 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
217 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
218 ptr = btrfs_file_extent_inline_start(ei);
219
261507a0 220 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
221 struct page *cpage;
222 int i = 0;
d397712b 223 while (compressed_size > 0) {
c8b97818 224 cpage = compressed_pages[i];
5b050f04 225 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 226 PAGE_SIZE);
c8b97818 227
7ac687d9 228 kaddr = kmap_atomic(cpage);
c8b97818 229 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 230 kunmap_atomic(kaddr);
c8b97818
CM
231
232 i++;
233 ptr += cur_size;
234 compressed_size -= cur_size;
235 }
236 btrfs_set_file_extent_compression(leaf, ei,
261507a0 237 compress_type);
c8b97818
CM
238 } else {
239 page = find_get_page(inode->i_mapping,
09cbfeaf 240 start >> PAGE_SHIFT);
c8b97818 241 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 242 kaddr = kmap_atomic(page);
7073017a 243 offset = offset_in_page(start);
c8b97818 244 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 245 kunmap_atomic(kaddr);
09cbfeaf 246 put_page(page);
c8b97818
CM
247 }
248 btrfs_mark_buffer_dirty(leaf);
1acae57b 249 btrfs_release_path(path);
c8b97818 250
c2167754
YZ
251 /*
252 * we're an inline extent, so nobody can
253 * extend the file past i_size without locking
254 * a page we already have locked.
255 *
256 * We must do any isize and inode updates
257 * before we unlock the pages. Otherwise we
258 * could end up racing with unlink.
259 */
c8b97818 260 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 261 ret = btrfs_update_inode(trans, root, inode);
c2167754 262
c8b97818 263fail:
79b4f4c6 264 return ret;
c8b97818
CM
265}
266
267
268/*
269 * conditionally insert an inline extent into the file. This
270 * does the checks required to make sure the data is small enough
271 * to fit as an inline extent.
272 */
d02c0e20 273static noinline int cow_file_range_inline(struct inode *inode, u64 start,
00361589
JB
274 u64 end, size_t compressed_size,
275 int compress_type,
276 struct page **compressed_pages)
c8b97818 277{
d02c0e20 278 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 279 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 280 struct btrfs_trans_handle *trans;
c8b97818
CM
281 u64 isize = i_size_read(inode);
282 u64 actual_end = min(end + 1, isize);
283 u64 inline_len = actual_end - start;
0b246afa 284 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
285 u64 data_len = inline_len;
286 int ret;
1acae57b
FDBM
287 struct btrfs_path *path;
288 int extent_inserted = 0;
289 u32 extent_item_size;
c8b97818
CM
290
291 if (compressed_size)
292 data_len = compressed_size;
293
294 if (start > 0 ||
0b246afa
JM
295 actual_end > fs_info->sectorsize ||
296 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 297 (!compressed_size &&
0b246afa 298 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 299 end + 1 < isize ||
0b246afa 300 data_len > fs_info->max_inline) {
c8b97818
CM
301 return 1;
302 }
303
1acae57b
FDBM
304 path = btrfs_alloc_path();
305 if (!path)
306 return -ENOMEM;
307
00361589 308 trans = btrfs_join_transaction(root);
1acae57b
FDBM
309 if (IS_ERR(trans)) {
310 btrfs_free_path(path);
00361589 311 return PTR_ERR(trans);
1acae57b 312 }
69fe2d75 313 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 314
1acae57b
FDBM
315 if (compressed_size && compressed_pages)
316 extent_item_size = btrfs_file_extent_calc_inline_size(
317 compressed_size);
318 else
319 extent_item_size = btrfs_file_extent_calc_inline_size(
320 inline_len);
321
322 ret = __btrfs_drop_extents(trans, root, inode, path,
323 start, aligned_end, NULL,
324 1, 1, extent_item_size, &extent_inserted);
00361589 325 if (ret) {
66642832 326 btrfs_abort_transaction(trans, ret);
00361589
JB
327 goto out;
328 }
c8b97818
CM
329
330 if (isize > actual_end)
331 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
332 ret = insert_inline_extent(trans, path, extent_inserted,
333 root, inode, start,
c8b97818 334 inline_len, compressed_size,
fe3f566c 335 compress_type, compressed_pages);
2adcac1a 336 if (ret && ret != -ENOSPC) {
66642832 337 btrfs_abort_transaction(trans, ret);
00361589 338 goto out;
2adcac1a 339 } else if (ret == -ENOSPC) {
00361589
JB
340 ret = 1;
341 goto out;
79787eaa 342 }
2adcac1a 343
bdc20e67 344 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 345 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 346out:
94ed938a
QW
347 /*
348 * Don't forget to free the reserved space, as for inlined extent
349 * it won't count as data extent, free them directly here.
350 * And at reserve time, it's always aligned to page size, so
351 * just free one page here.
352 */
bc42bda2 353 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 354 btrfs_free_path(path);
3a45bb20 355 btrfs_end_transaction(trans);
00361589 356 return ret;
c8b97818
CM
357}
358
771ed689
CM
359struct async_extent {
360 u64 start;
361 u64 ram_size;
362 u64 compressed_size;
363 struct page **pages;
364 unsigned long nr_pages;
261507a0 365 int compress_type;
771ed689
CM
366 struct list_head list;
367};
368
369struct async_cow {
370 struct inode *inode;
600b6cf4 371 struct btrfs_fs_info *fs_info;
771ed689
CM
372 struct page *locked_page;
373 u64 start;
374 u64 end;
f82b7359 375 unsigned int write_flags;
771ed689
CM
376 struct list_head extents;
377 struct btrfs_work work;
378};
379
380static noinline int add_async_extent(struct async_cow *cow,
381 u64 start, u64 ram_size,
382 u64 compressed_size,
383 struct page **pages,
261507a0
LZ
384 unsigned long nr_pages,
385 int compress_type)
771ed689
CM
386{
387 struct async_extent *async_extent;
388
389 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 390 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
391 async_extent->start = start;
392 async_extent->ram_size = ram_size;
393 async_extent->compressed_size = compressed_size;
394 async_extent->pages = pages;
395 async_extent->nr_pages = nr_pages;
261507a0 396 async_extent->compress_type = compress_type;
771ed689
CM
397 list_add_tail(&async_extent->list, &cow->extents);
398 return 0;
399}
400
c2fcdcdf 401static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 402{
0b246afa 403 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
404
405 /* force compress */
0b246afa 406 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 407 return 1;
eec63c65
DS
408 /* defrag ioctl */
409 if (BTRFS_I(inode)->defrag_compress)
410 return 1;
f79707b0
WS
411 /* bad compression ratios */
412 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
413 return 0;
0b246afa 414 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 415 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 416 BTRFS_I(inode)->prop_compress)
c2fcdcdf 417 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
418 return 0;
419}
420
6158e1ce 421static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
422 u64 start, u64 end, u64 num_bytes, u64 small_write)
423{
424 /* If this is a small write inside eof, kick off a defrag */
425 if (num_bytes < small_write &&
6158e1ce 426 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
427 btrfs_add_inode_defrag(NULL, inode);
428}
429
d352ac68 430/*
771ed689
CM
431 * we create compressed extents in two phases. The first
432 * phase compresses a range of pages that have already been
433 * locked (both pages and state bits are locked).
c8b97818 434 *
771ed689
CM
435 * This is done inside an ordered work queue, and the compression
436 * is spread across many cpus. The actual IO submission is step
437 * two, and the ordered work queue takes care of making sure that
438 * happens in the same order things were put onto the queue by
439 * writepages and friends.
c8b97818 440 *
771ed689
CM
441 * If this code finds it can't get good compression, it puts an
442 * entry onto the work queue to write the uncompressed bytes. This
443 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
444 * are written in the same order that the flusher thread sent them
445 * down.
d352ac68 446 */
c44f649e 447static noinline void compress_file_range(struct inode *inode,
771ed689
CM
448 struct page *locked_page,
449 u64 start, u64 end,
450 struct async_cow *async_cow,
451 int *num_added)
b888db2b 452{
0b246afa 453 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
0b246afa 454 u64 blocksize = fs_info->sectorsize;
c8b97818 455 u64 actual_end;
42dc7bab 456 u64 isize = i_size_read(inode);
e6dcd2dc 457 int ret = 0;
c8b97818
CM
458 struct page **pages = NULL;
459 unsigned long nr_pages;
c8b97818
CM
460 unsigned long total_compressed = 0;
461 unsigned long total_in = 0;
c8b97818
CM
462 int i;
463 int will_compress;
0b246afa 464 int compress_type = fs_info->compress_type;
4adaa611 465 int redirty = 0;
b888db2b 466
6158e1ce
NB
467 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
468 SZ_16K);
4cb5300b 469
42dc7bab 470 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
471again:
472 will_compress = 0;
09cbfeaf 473 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
474 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
475 nr_pages = min_t(unsigned long, nr_pages,
476 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 477
f03d9301
CM
478 /*
479 * we don't want to send crud past the end of i_size through
480 * compression, that's just a waste of CPU time. So, if the
481 * end of the file is before the start of our current
482 * requested range of bytes, we bail out to the uncompressed
483 * cleanup code that can deal with all of this.
484 *
485 * It isn't really the fastest way to fix things, but this is a
486 * very uncommon corner.
487 */
488 if (actual_end <= start)
489 goto cleanup_and_bail_uncompressed;
490
c8b97818
CM
491 total_compressed = actual_end - start;
492
4bcbb332
SW
493 /*
494 * skip compression for a small file range(<=blocksize) that
01327610 495 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
496 */
497 if (total_compressed <= blocksize &&
498 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
499 goto cleanup_and_bail_uncompressed;
500
069eac78
DS
501 total_compressed = min_t(unsigned long, total_compressed,
502 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
503 total_in = 0;
504 ret = 0;
db94535d 505
771ed689
CM
506 /*
507 * we do compression for mount -o compress and when the
508 * inode has not been flagged as nocompress. This flag can
509 * change at any time if we discover bad compression ratios.
c8b97818 510 */
c2fcdcdf 511 if (inode_need_compress(inode, start, end)) {
c8b97818 512 WARN_ON(pages);
31e818fe 513 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
514 if (!pages) {
515 /* just bail out to the uncompressed code */
3527a018 516 nr_pages = 0;
560f7d75
LZ
517 goto cont;
518 }
c8b97818 519
eec63c65
DS
520 if (BTRFS_I(inode)->defrag_compress)
521 compress_type = BTRFS_I(inode)->defrag_compress;
522 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 523 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 524
4adaa611
CM
525 /*
526 * we need to call clear_page_dirty_for_io on each
527 * page in the range. Otherwise applications with the file
528 * mmap'd can wander in and change the page contents while
529 * we are compressing them.
530 *
531 * If the compression fails for any reason, we set the pages
532 * dirty again later on.
e9679de3
TT
533 *
534 * Note that the remaining part is redirtied, the start pointer
535 * has moved, the end is the original one.
4adaa611 536 */
e9679de3
TT
537 if (!redirty) {
538 extent_range_clear_dirty_for_io(inode, start, end);
539 redirty = 1;
540 }
f51d2b59
DS
541
542 /* Compression level is applied here and only here */
543 ret = btrfs_compress_pages(
544 compress_type | (fs_info->compress_level << 4),
261507a0 545 inode->i_mapping, start,
38c31464 546 pages,
4d3a800e 547 &nr_pages,
261507a0 548 &total_in,
e5d74902 549 &total_compressed);
c8b97818
CM
550
551 if (!ret) {
7073017a 552 unsigned long offset = offset_in_page(total_compressed);
4d3a800e 553 struct page *page = pages[nr_pages - 1];
c8b97818
CM
554 char *kaddr;
555
556 /* zero the tail end of the last page, we might be
557 * sending it down to disk
558 */
559 if (offset) {
7ac687d9 560 kaddr = kmap_atomic(page);
c8b97818 561 memset(kaddr + offset, 0,
09cbfeaf 562 PAGE_SIZE - offset);
7ac687d9 563 kunmap_atomic(kaddr);
c8b97818
CM
564 }
565 will_compress = 1;
566 }
567 }
560f7d75 568cont:
c8b97818
CM
569 if (start == 0) {
570 /* lets try to make an inline extent */
6018ba0a 571 if (ret || total_in < actual_end) {
c8b97818 572 /* we didn't compress the entire range, try
771ed689 573 * to make an uncompressed inline extent.
c8b97818 574 */
d02c0e20
NB
575 ret = cow_file_range_inline(inode, start, end, 0,
576 BTRFS_COMPRESS_NONE, NULL);
c8b97818 577 } else {
771ed689 578 /* try making a compressed inline extent */
d02c0e20 579 ret = cow_file_range_inline(inode, start, end,
fe3f566c
LZ
580 total_compressed,
581 compress_type, pages);
c8b97818 582 }
79787eaa 583 if (ret <= 0) {
151a41bc 584 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
585 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
586 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
587 unsigned long page_error_op;
588
e6eb4314 589 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 590
771ed689 591 /*
79787eaa
JM
592 * inline extent creation worked or returned error,
593 * we don't need to create any more async work items.
594 * Unlock and free up our temp pages.
8b62f87b
JB
595 *
596 * We use DO_ACCOUNTING here because we need the
597 * delalloc_release_metadata to be done _after_ we drop
598 * our outstanding extent for clearing delalloc for this
599 * range.
771ed689 600 */
ba8b04c1
QW
601 extent_clear_unlock_delalloc(inode, start, end, end,
602 NULL, clear_flags,
603 PAGE_UNLOCK |
c2790a2e
JB
604 PAGE_CLEAR_DIRTY |
605 PAGE_SET_WRITEBACK |
e6eb4314 606 page_error_op |
c2790a2e 607 PAGE_END_WRITEBACK);
c8b97818
CM
608 goto free_pages_out;
609 }
610 }
611
612 if (will_compress) {
613 /*
614 * we aren't doing an inline extent round the compressed size
615 * up to a block size boundary so the allocator does sane
616 * things
617 */
fda2832f 618 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
619
620 /*
621 * one last check to make sure the compression is really a
170607eb
TT
622 * win, compare the page count read with the blocks on disk,
623 * compression must free at least one sector size
c8b97818 624 */
09cbfeaf 625 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 626 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
627 *num_added += 1;
628
629 /*
630 * The async work queues will take care of doing actual
631 * allocation on disk for these compressed pages, and
632 * will submit them to the elevator.
633 */
1170862d 634 add_async_extent(async_cow, start, total_in,
4d3a800e 635 total_compressed, pages, nr_pages,
c8bb0c8b
AS
636 compress_type);
637
1170862d
TT
638 if (start + total_in < end) {
639 start += total_in;
c8bb0c8b
AS
640 pages = NULL;
641 cond_resched();
642 goto again;
643 }
644 return;
c8b97818
CM
645 }
646 }
c8bb0c8b 647 if (pages) {
c8b97818
CM
648 /*
649 * the compression code ran but failed to make things smaller,
650 * free any pages it allocated and our page pointer array
651 */
4d3a800e 652 for (i = 0; i < nr_pages; i++) {
70b99e69 653 WARN_ON(pages[i]->mapping);
09cbfeaf 654 put_page(pages[i]);
c8b97818
CM
655 }
656 kfree(pages);
657 pages = NULL;
658 total_compressed = 0;
4d3a800e 659 nr_pages = 0;
c8b97818
CM
660
661 /* flag the file so we don't compress in the future */
0b246afa 662 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 663 !(BTRFS_I(inode)->prop_compress)) {
a555f810 664 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 665 }
c8b97818 666 }
f03d9301 667cleanup_and_bail_uncompressed:
c8bb0c8b
AS
668 /*
669 * No compression, but we still need to write the pages in the file
670 * we've been given so far. redirty the locked page if it corresponds
671 * to our extent and set things up for the async work queue to run
672 * cow_file_range to do the normal delalloc dance.
673 */
674 if (page_offset(locked_page) >= start &&
675 page_offset(locked_page) <= end)
676 __set_page_dirty_nobuffers(locked_page);
677 /* unlocked later on in the async handlers */
678
679 if (redirty)
680 extent_range_redirty_for_io(inode, start, end);
681 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
682 BTRFS_COMPRESS_NONE);
683 *num_added += 1;
3b951516 684
c44f649e 685 return;
771ed689
CM
686
687free_pages_out:
4d3a800e 688 for (i = 0; i < nr_pages; i++) {
771ed689 689 WARN_ON(pages[i]->mapping);
09cbfeaf 690 put_page(pages[i]);
771ed689 691 }
d397712b 692 kfree(pages);
771ed689 693}
771ed689 694
40ae837b
FM
695static void free_async_extent_pages(struct async_extent *async_extent)
696{
697 int i;
698
699 if (!async_extent->pages)
700 return;
701
702 for (i = 0; i < async_extent->nr_pages; i++) {
703 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 704 put_page(async_extent->pages[i]);
40ae837b
FM
705 }
706 kfree(async_extent->pages);
707 async_extent->nr_pages = 0;
708 async_extent->pages = NULL;
771ed689
CM
709}
710
711/*
712 * phase two of compressed writeback. This is the ordered portion
713 * of the code, which only gets called in the order the work was
714 * queued. We walk all the async extents created by compress_file_range
715 * and send them down to the disk.
716 */
dec8f175 717static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
718 struct async_cow *async_cow)
719{
0b246afa 720 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
721 struct async_extent *async_extent;
722 u64 alloc_hint = 0;
771ed689
CM
723 struct btrfs_key ins;
724 struct extent_map *em;
725 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 726 struct extent_io_tree *io_tree;
f5a84ee3 727 int ret = 0;
771ed689 728
3e04e7f1 729again:
d397712b 730 while (!list_empty(&async_cow->extents)) {
771ed689
CM
731 async_extent = list_entry(async_cow->extents.next,
732 struct async_extent, list);
733 list_del(&async_extent->list);
c8b97818 734
771ed689
CM
735 io_tree = &BTRFS_I(inode)->io_tree;
736
f5a84ee3 737retry:
771ed689
CM
738 /* did the compression code fall back to uncompressed IO? */
739 if (!async_extent->pages) {
740 int page_started = 0;
741 unsigned long nr_written = 0;
742
743 lock_extent(io_tree, async_extent->start,
2ac55d41 744 async_extent->start +
d0082371 745 async_extent->ram_size - 1);
771ed689
CM
746
747 /* allocate blocks */
f5a84ee3
JB
748 ret = cow_file_range(inode, async_cow->locked_page,
749 async_extent->start,
750 async_extent->start +
751 async_extent->ram_size - 1,
dda3245e
WX
752 async_extent->start +
753 async_extent->ram_size - 1,
754 &page_started, &nr_written, 0,
755 NULL);
771ed689 756
79787eaa
JM
757 /* JDM XXX */
758
771ed689
CM
759 /*
760 * if page_started, cow_file_range inserted an
761 * inline extent and took care of all the unlocking
762 * and IO for us. Otherwise, we need to submit
763 * all those pages down to the drive.
764 */
f5a84ee3 765 if (!page_started && !ret)
5e3ee236
NB
766 extent_write_locked_range(inode,
767 async_extent->start,
d397712b 768 async_extent->start +
771ed689 769 async_extent->ram_size - 1,
771ed689 770 WB_SYNC_ALL);
3e04e7f1
JB
771 else if (ret)
772 unlock_page(async_cow->locked_page);
771ed689
CM
773 kfree(async_extent);
774 cond_resched();
775 continue;
776 }
777
778 lock_extent(io_tree, async_extent->start,
d0082371 779 async_extent->start + async_extent->ram_size - 1);
771ed689 780
18513091 781 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
782 async_extent->compressed_size,
783 async_extent->compressed_size,
e570fd27 784 0, alloc_hint, &ins, 1, 1);
f5a84ee3 785 if (ret) {
40ae837b 786 free_async_extent_pages(async_extent);
3e04e7f1 787
fdf8e2ea
JB
788 if (ret == -ENOSPC) {
789 unlock_extent(io_tree, async_extent->start,
790 async_extent->start +
791 async_extent->ram_size - 1);
ce62003f
LB
792
793 /*
794 * we need to redirty the pages if we decide to
795 * fallback to uncompressed IO, otherwise we
796 * will not submit these pages down to lower
797 * layers.
798 */
799 extent_range_redirty_for_io(inode,
800 async_extent->start,
801 async_extent->start +
802 async_extent->ram_size - 1);
803
79787eaa 804 goto retry;
fdf8e2ea 805 }
3e04e7f1 806 goto out_free;
f5a84ee3 807 }
c2167754
YZ
808 /*
809 * here we're doing allocation and writeback of the
810 * compressed pages
811 */
6f9994db
LB
812 em = create_io_em(inode, async_extent->start,
813 async_extent->ram_size, /* len */
814 async_extent->start, /* orig_start */
815 ins.objectid, /* block_start */
816 ins.offset, /* block_len */
817 ins.offset, /* orig_block_len */
818 async_extent->ram_size, /* ram_bytes */
819 async_extent->compress_type,
820 BTRFS_ORDERED_COMPRESSED);
821 if (IS_ERR(em))
822 /* ret value is not necessary due to void function */
3e04e7f1 823 goto out_free_reserve;
6f9994db 824 free_extent_map(em);
3e04e7f1 825
261507a0
LZ
826 ret = btrfs_add_ordered_extent_compress(inode,
827 async_extent->start,
828 ins.objectid,
829 async_extent->ram_size,
830 ins.offset,
831 BTRFS_ORDERED_COMPRESSED,
832 async_extent->compress_type);
d9f85963 833 if (ret) {
dcdbc059
NB
834 btrfs_drop_extent_cache(BTRFS_I(inode),
835 async_extent->start,
d9f85963
FM
836 async_extent->start +
837 async_extent->ram_size - 1, 0);
3e04e7f1 838 goto out_free_reserve;
d9f85963 839 }
0b246afa 840 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 841
771ed689
CM
842 /*
843 * clear dirty, set writeback and unlock the pages.
844 */
c2790a2e 845 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
846 async_extent->start +
847 async_extent->ram_size - 1,
a791e35e
CM
848 async_extent->start +
849 async_extent->ram_size - 1,
151a41bc
JB
850 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
851 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 852 PAGE_SET_WRITEBACK);
4e4cbee9 853 if (btrfs_submit_compressed_write(inode,
d397712b
CM
854 async_extent->start,
855 async_extent->ram_size,
856 ins.objectid,
857 ins.offset, async_extent->pages,
f82b7359
LB
858 async_extent->nr_pages,
859 async_cow->write_flags)) {
fce2a4e6
FM
860 struct page *p = async_extent->pages[0];
861 const u64 start = async_extent->start;
862 const u64 end = start + async_extent->ram_size - 1;
863
864 p->mapping = inode->i_mapping;
c629732d 865 btrfs_writepage_endio_finish_ordered(p, start, end, 0);
7087a9d8 866
fce2a4e6 867 p->mapping = NULL;
ba8b04c1
QW
868 extent_clear_unlock_delalloc(inode, start, end, end,
869 NULL, 0,
fce2a4e6
FM
870 PAGE_END_WRITEBACK |
871 PAGE_SET_ERROR);
40ae837b 872 free_async_extent_pages(async_extent);
fce2a4e6 873 }
771ed689
CM
874 alloc_hint = ins.objectid + ins.offset;
875 kfree(async_extent);
876 cond_resched();
877 }
dec8f175 878 return;
3e04e7f1 879out_free_reserve:
0b246afa 880 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 881 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 882out_free:
c2790a2e 883 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
884 async_extent->start +
885 async_extent->ram_size - 1,
3e04e7f1
JB
886 async_extent->start +
887 async_extent->ram_size - 1,
c2790a2e 888 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 889 EXTENT_DELALLOC_NEW |
151a41bc
JB
890 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
891 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
892 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
893 PAGE_SET_ERROR);
40ae837b 894 free_async_extent_pages(async_extent);
79787eaa 895 kfree(async_extent);
3e04e7f1 896 goto again;
771ed689
CM
897}
898
4b46fce2
JB
899static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
900 u64 num_bytes)
901{
902 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
903 struct extent_map *em;
904 u64 alloc_hint = 0;
905
906 read_lock(&em_tree->lock);
907 em = search_extent_mapping(em_tree, start, num_bytes);
908 if (em) {
909 /*
910 * if block start isn't an actual block number then find the
911 * first block in this inode and use that as a hint. If that
912 * block is also bogus then just don't worry about it.
913 */
914 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
915 free_extent_map(em);
916 em = search_extent_mapping(em_tree, 0, 0);
917 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
918 alloc_hint = em->block_start;
919 if (em)
920 free_extent_map(em);
921 } else {
922 alloc_hint = em->block_start;
923 free_extent_map(em);
924 }
925 }
926 read_unlock(&em_tree->lock);
927
928 return alloc_hint;
929}
930
771ed689
CM
931/*
932 * when extent_io.c finds a delayed allocation range in the file,
933 * the call backs end up in this code. The basic idea is to
934 * allocate extents on disk for the range, and create ordered data structs
935 * in ram to track those extents.
936 *
937 * locked_page is the page that writepage had locked already. We use
938 * it to make sure we don't do extra locks or unlocks.
939 *
940 * *page_started is set to one if we unlock locked_page and do everything
941 * required to start IO on it. It may be clean and already done with
942 * IO when we return.
943 */
00361589
JB
944static noinline int cow_file_range(struct inode *inode,
945 struct page *locked_page,
dda3245e
WX
946 u64 start, u64 end, u64 delalloc_end,
947 int *page_started, unsigned long *nr_written,
948 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 949{
0b246afa 950 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 951 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
952 u64 alloc_hint = 0;
953 u64 num_bytes;
954 unsigned long ram_size;
a315e68f 955 u64 cur_alloc_size = 0;
0b246afa 956 u64 blocksize = fs_info->sectorsize;
771ed689
CM
957 struct btrfs_key ins;
958 struct extent_map *em;
a315e68f
FM
959 unsigned clear_bits;
960 unsigned long page_ops;
961 bool extent_reserved = false;
771ed689
CM
962 int ret = 0;
963
70ddc553 964 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 965 WARN_ON_ONCE(1);
29bce2f3
JB
966 ret = -EINVAL;
967 goto out_unlock;
02ecd2c2 968 }
771ed689 969
fda2832f 970 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689 971 num_bytes = max(blocksize, num_bytes);
566b1760 972 ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
771ed689 973
6158e1ce 974 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 975
771ed689
CM
976 if (start == 0) {
977 /* lets try to make an inline extent */
d02c0e20
NB
978 ret = cow_file_range_inline(inode, start, end, 0,
979 BTRFS_COMPRESS_NONE, NULL);
771ed689 980 if (ret == 0) {
8b62f87b
JB
981 /*
982 * We use DO_ACCOUNTING here because we need the
983 * delalloc_release_metadata to be run _after_ we drop
984 * our outstanding extent for clearing delalloc for this
985 * range.
986 */
ba8b04c1
QW
987 extent_clear_unlock_delalloc(inode, start, end,
988 delalloc_end, NULL,
c2790a2e 989 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
990 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
991 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
992 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
993 PAGE_END_WRITEBACK);
771ed689 994 *nr_written = *nr_written +
09cbfeaf 995 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 996 *page_started = 1;
771ed689 997 goto out;
79787eaa 998 } else if (ret < 0) {
79787eaa 999 goto out_unlock;
771ed689
CM
1000 }
1001 }
1002
4b46fce2 1003 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1004 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1005 start + num_bytes - 1, 0);
771ed689 1006
3752d22f
AJ
1007 while (num_bytes > 0) {
1008 cur_alloc_size = num_bytes;
18513091 1009 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1010 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1011 &ins, 1, 1);
00361589 1012 if (ret < 0)
79787eaa 1013 goto out_unlock;
a315e68f
FM
1014 cur_alloc_size = ins.offset;
1015 extent_reserved = true;
d397712b 1016
771ed689 1017 ram_size = ins.offset;
6f9994db
LB
1018 em = create_io_em(inode, start, ins.offset, /* len */
1019 start, /* orig_start */
1020 ins.objectid, /* block_start */
1021 ins.offset, /* block_len */
1022 ins.offset, /* orig_block_len */
1023 ram_size, /* ram_bytes */
1024 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1025 BTRFS_ORDERED_REGULAR /* type */);
090a127a
SY
1026 if (IS_ERR(em)) {
1027 ret = PTR_ERR(em);
ace68bac 1028 goto out_reserve;
090a127a 1029 }
6f9994db 1030 free_extent_map(em);
e6dcd2dc 1031
e6dcd2dc 1032 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1033 ram_size, cur_alloc_size, 0);
ace68bac 1034 if (ret)
d9f85963 1035 goto out_drop_extent_cache;
c8b97818 1036
17d217fe
YZ
1037 if (root->root_key.objectid ==
1038 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1039 ret = btrfs_reloc_clone_csums(inode, start,
1040 cur_alloc_size);
4dbd80fb
QW
1041 /*
1042 * Only drop cache here, and process as normal.
1043 *
1044 * We must not allow extent_clear_unlock_delalloc()
1045 * at out_unlock label to free meta of this ordered
1046 * extent, as its meta should be freed by
1047 * btrfs_finish_ordered_io().
1048 *
1049 * So we must continue until @start is increased to
1050 * skip current ordered extent.
1051 */
00361589 1052 if (ret)
4dbd80fb
QW
1053 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1054 start + ram_size - 1, 0);
17d217fe
YZ
1055 }
1056
0b246afa 1057 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1058
c8b97818
CM
1059 /* we're not doing compressed IO, don't unlock the first
1060 * page (which the caller expects to stay locked), don't
1061 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1062 *
1063 * Do set the Private2 bit so we know this page was properly
1064 * setup for writepage
c8b97818 1065 */
a315e68f
FM
1066 page_ops = unlock ? PAGE_UNLOCK : 0;
1067 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1068
c2790a2e 1069 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1070 start + ram_size - 1,
1071 delalloc_end, locked_page,
c2790a2e 1072 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1073 page_ops);
3752d22f
AJ
1074 if (num_bytes < cur_alloc_size)
1075 num_bytes = 0;
4dbd80fb 1076 else
3752d22f 1077 num_bytes -= cur_alloc_size;
c59f8951
CM
1078 alloc_hint = ins.objectid + ins.offset;
1079 start += cur_alloc_size;
a315e68f 1080 extent_reserved = false;
4dbd80fb
QW
1081
1082 /*
1083 * btrfs_reloc_clone_csums() error, since start is increased
1084 * extent_clear_unlock_delalloc() at out_unlock label won't
1085 * free metadata of current ordered extent, we're OK to exit.
1086 */
1087 if (ret)
1088 goto out_unlock;
b888db2b 1089 }
79787eaa 1090out:
be20aa9d 1091 return ret;
b7d5b0a8 1092
d9f85963 1093out_drop_extent_cache:
dcdbc059 1094 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1095out_reserve:
0b246afa 1096 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1097 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1098out_unlock:
a7e3b975
FM
1099 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1100 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1101 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1102 PAGE_END_WRITEBACK;
1103 /*
1104 * If we reserved an extent for our delalloc range (or a subrange) and
1105 * failed to create the respective ordered extent, then it means that
1106 * when we reserved the extent we decremented the extent's size from
1107 * the data space_info's bytes_may_use counter and incremented the
1108 * space_info's bytes_reserved counter by the same amount. We must make
1109 * sure extent_clear_unlock_delalloc() does not try to decrement again
1110 * the data space_info's bytes_may_use counter, therefore we do not pass
1111 * it the flag EXTENT_CLEAR_DATA_RESV.
1112 */
1113 if (extent_reserved) {
1114 extent_clear_unlock_delalloc(inode, start,
1115 start + cur_alloc_size,
1116 start + cur_alloc_size,
1117 locked_page,
1118 clear_bits,
1119 page_ops);
1120 start += cur_alloc_size;
1121 if (start >= end)
1122 goto out;
1123 }
ba8b04c1
QW
1124 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1125 locked_page,
a315e68f
FM
1126 clear_bits | EXTENT_CLEAR_DATA_RESV,
1127 page_ops);
79787eaa 1128 goto out;
771ed689 1129}
c8b97818 1130
771ed689
CM
1131/*
1132 * work queue call back to started compression on a file and pages
1133 */
1134static noinline void async_cow_start(struct btrfs_work *work)
1135{
1136 struct async_cow *async_cow;
1137 int num_added = 0;
1138 async_cow = container_of(work, struct async_cow, work);
1139
1140 compress_file_range(async_cow->inode, async_cow->locked_page,
1141 async_cow->start, async_cow->end, async_cow,
1142 &num_added);
8180ef88 1143 if (num_added == 0) {
cb77fcd8 1144 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1145 async_cow->inode = NULL;
8180ef88 1146 }
771ed689
CM
1147}
1148
1149/*
1150 * work queue call back to submit previously compressed pages
1151 */
1152static noinline void async_cow_submit(struct btrfs_work *work)
1153{
0b246afa 1154 struct btrfs_fs_info *fs_info;
771ed689 1155 struct async_cow *async_cow;
771ed689
CM
1156 unsigned long nr_pages;
1157
1158 async_cow = container_of(work, struct async_cow, work);
1159
600b6cf4 1160 fs_info = async_cow->fs_info;
09cbfeaf
KS
1161 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1162 PAGE_SHIFT;
771ed689 1163
093258e6 1164 /* atomic_sub_return implies a barrier */
0b246afa 1165 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
093258e6
DS
1166 5 * SZ_1M)
1167 cond_wake_up_nomb(&fs_info->async_submit_wait);
771ed689 1168
d397712b 1169 if (async_cow->inode)
771ed689 1170 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1171}
c8b97818 1172
771ed689
CM
1173static noinline void async_cow_free(struct btrfs_work *work)
1174{
1175 struct async_cow *async_cow;
1176 async_cow = container_of(work, struct async_cow, work);
8180ef88 1177 if (async_cow->inode)
cb77fcd8 1178 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1179 kfree(async_cow);
1180}
1181
1182static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1183 u64 start, u64 end, int *page_started,
f82b7359
LB
1184 unsigned long *nr_written,
1185 unsigned int write_flags)
771ed689 1186{
0b246afa 1187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689 1188 struct async_cow *async_cow;
771ed689
CM
1189 unsigned long nr_pages;
1190 u64 cur_end;
771ed689 1191
a3429ab7 1192 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
ae0f1625 1193 1, 0, NULL);
d397712b 1194 while (start < end) {
771ed689 1195 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1196 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1197 async_cow->inode = igrab(inode);
600b6cf4 1198 async_cow->fs_info = fs_info;
771ed689
CM
1199 async_cow->locked_page = locked_page;
1200 async_cow->start = start;
f82b7359 1201 async_cow->write_flags = write_flags;
771ed689 1202
f79707b0 1203 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1204 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1205 cur_end = end;
1206 else
ee22184b 1207 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1208
1209 async_cow->end = cur_end;
1210 INIT_LIST_HEAD(&async_cow->extents);
1211
9e0af237
LB
1212 btrfs_init_work(&async_cow->work,
1213 btrfs_delalloc_helper,
1214 async_cow_start, async_cow_submit,
1215 async_cow_free);
771ed689 1216
09cbfeaf
KS
1217 nr_pages = (cur_end - start + PAGE_SIZE) >>
1218 PAGE_SHIFT;
0b246afa 1219 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1220
0b246afa 1221 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1222
771ed689
CM
1223 *nr_written += nr_pages;
1224 start = cur_end + 1;
1225 }
1226 *page_started = 1;
1227 return 0;
be20aa9d
CM
1228}
1229
2ff7e61e 1230static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1231 u64 bytenr, u64 num_bytes)
1232{
1233 int ret;
1234 struct btrfs_ordered_sum *sums;
1235 LIST_HEAD(list);
1236
0b246afa 1237 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1238 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1239 if (ret == 0 && list_empty(&list))
1240 return 0;
1241
1242 while (!list_empty(&list)) {
1243 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1244 list_del(&sums->list);
1245 kfree(sums);
1246 }
58113753
LB
1247 if (ret < 0)
1248 return ret;
17d217fe
YZ
1249 return 1;
1250}
1251
d352ac68
CM
1252/*
1253 * when nowcow writeback call back. This checks for snapshots or COW copies
1254 * of the extents that exist in the file, and COWs the file as required.
1255 *
1256 * If no cow copies or snapshots exist, we write directly to the existing
1257 * blocks on disk
1258 */
7f366cfe
CM
1259static noinline int run_delalloc_nocow(struct inode *inode,
1260 struct page *locked_page,
771ed689
CM
1261 u64 start, u64 end, int *page_started, int force,
1262 unsigned long *nr_written)
be20aa9d 1263{
0b246afa 1264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1265 struct btrfs_root *root = BTRFS_I(inode)->root;
1266 struct extent_buffer *leaf;
be20aa9d 1267 struct btrfs_path *path;
80ff3856 1268 struct btrfs_file_extent_item *fi;
be20aa9d 1269 struct btrfs_key found_key;
6f9994db 1270 struct extent_map *em;
80ff3856
YZ
1271 u64 cow_start;
1272 u64 cur_offset;
1273 u64 extent_end;
5d4f98a2 1274 u64 extent_offset;
80ff3856
YZ
1275 u64 disk_bytenr;
1276 u64 num_bytes;
b4939680 1277 u64 disk_num_bytes;
cc95bef6 1278 u64 ram_bytes;
80ff3856 1279 int extent_type;
8ecebf4d 1280 int ret;
d899e052 1281 int type;
80ff3856
YZ
1282 int nocow;
1283 int check_prev = 1;
82d5902d 1284 bool nolock;
4a0cc7ca 1285 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1286
1287 path = btrfs_alloc_path();
17ca04af 1288 if (!path) {
ba8b04c1
QW
1289 extent_clear_unlock_delalloc(inode, start, end, end,
1290 locked_page,
c2790a2e 1291 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1292 EXTENT_DO_ACCOUNTING |
1293 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1294 PAGE_CLEAR_DIRTY |
1295 PAGE_SET_WRITEBACK |
1296 PAGE_END_WRITEBACK);
d8926bb3 1297 return -ENOMEM;
17ca04af 1298 }
82d5902d 1299
70ddc553 1300 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1301
80ff3856
YZ
1302 cow_start = (u64)-1;
1303 cur_offset = start;
1304 while (1) {
e4c3b2dc 1305 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1306 cur_offset, 0);
d788a349 1307 if (ret < 0)
79787eaa 1308 goto error;
80ff3856
YZ
1309 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1310 leaf = path->nodes[0];
1311 btrfs_item_key_to_cpu(leaf, &found_key,
1312 path->slots[0] - 1);
33345d01 1313 if (found_key.objectid == ino &&
80ff3856
YZ
1314 found_key.type == BTRFS_EXTENT_DATA_KEY)
1315 path->slots[0]--;
1316 }
1317 check_prev = 0;
1318next_slot:
1319 leaf = path->nodes[0];
1320 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1321 ret = btrfs_next_leaf(root, path);
e8916699
LB
1322 if (ret < 0) {
1323 if (cow_start != (u64)-1)
1324 cur_offset = cow_start;
79787eaa 1325 goto error;
e8916699 1326 }
80ff3856
YZ
1327 if (ret > 0)
1328 break;
1329 leaf = path->nodes[0];
1330 }
be20aa9d 1331
80ff3856
YZ
1332 nocow = 0;
1333 disk_bytenr = 0;
17d217fe 1334 num_bytes = 0;
80ff3856
YZ
1335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1336
1d512cb7
FM
1337 if (found_key.objectid > ino)
1338 break;
1339 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1340 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1341 path->slots[0]++;
1342 goto next_slot;
1343 }
1344 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1345 found_key.offset > end)
1346 break;
1347
1348 if (found_key.offset > cur_offset) {
1349 extent_end = found_key.offset;
e9061e21 1350 extent_type = 0;
80ff3856
YZ
1351 goto out_check;
1352 }
1353
1354 fi = btrfs_item_ptr(leaf, path->slots[0],
1355 struct btrfs_file_extent_item);
1356 extent_type = btrfs_file_extent_type(leaf, fi);
1357
cc95bef6 1358 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1359 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1360 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1361 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1362 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1363 extent_end = found_key.offset +
1364 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1365 disk_num_bytes =
1366 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1367 if (extent_end <= start) {
1368 path->slots[0]++;
1369 goto next_slot;
1370 }
17d217fe
YZ
1371 if (disk_bytenr == 0)
1372 goto out_check;
80ff3856
YZ
1373 if (btrfs_file_extent_compression(leaf, fi) ||
1374 btrfs_file_extent_encryption(leaf, fi) ||
1375 btrfs_file_extent_other_encoding(leaf, fi))
1376 goto out_check;
78d4295b
EL
1377 /*
1378 * Do the same check as in btrfs_cross_ref_exist but
1379 * without the unnecessary search.
1380 */
27a7ff55
LF
1381 if (!nolock &&
1382 btrfs_file_extent_generation(leaf, fi) <=
78d4295b
EL
1383 btrfs_root_last_snapshot(&root->root_item))
1384 goto out_check;
d899e052
YZ
1385 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1386 goto out_check;
2ff7e61e 1387 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1388 goto out_check;
58113753
LB
1389 ret = btrfs_cross_ref_exist(root, ino,
1390 found_key.offset -
1391 extent_offset, disk_bytenr);
1392 if (ret) {
1393 /*
1394 * ret could be -EIO if the above fails to read
1395 * metadata.
1396 */
1397 if (ret < 0) {
1398 if (cow_start != (u64)-1)
1399 cur_offset = cow_start;
1400 goto error;
1401 }
1402
1403 WARN_ON_ONCE(nolock);
17d217fe 1404 goto out_check;
58113753 1405 }
5d4f98a2 1406 disk_bytenr += extent_offset;
17d217fe
YZ
1407 disk_bytenr += cur_offset - found_key.offset;
1408 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1409 /*
1410 * if there are pending snapshots for this root,
1411 * we fall into common COW way.
1412 */
8ecebf4d
RK
1413 if (!nolock && atomic_read(&root->snapshot_force_cow))
1414 goto out_check;
17d217fe
YZ
1415 /*
1416 * force cow if csum exists in the range.
1417 * this ensure that csum for a given extent are
1418 * either valid or do not exist.
1419 */
58113753
LB
1420 ret = csum_exist_in_range(fs_info, disk_bytenr,
1421 num_bytes);
1422 if (ret) {
58113753
LB
1423 /*
1424 * ret could be -EIO if the above fails to read
1425 * metadata.
1426 */
1427 if (ret < 0) {
1428 if (cow_start != (u64)-1)
1429 cur_offset = cow_start;
1430 goto error;
1431 }
1432 WARN_ON_ONCE(nolock);
17d217fe 1433 goto out_check;
91e1f56a 1434 }
8ecebf4d 1435 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
f78c436c 1436 goto out_check;
80ff3856
YZ
1437 nocow = 1;
1438 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1439 extent_end = found_key.offset +
e41ca589 1440 btrfs_file_extent_ram_bytes(leaf, fi);
da17066c 1441 extent_end = ALIGN(extent_end,
0b246afa 1442 fs_info->sectorsize);
80ff3856
YZ
1443 } else {
1444 BUG_ON(1);
1445 }
1446out_check:
1447 if (extent_end <= start) {
1448 path->slots[0]++;
f78c436c 1449 if (nocow)
0b246afa 1450 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1451 goto next_slot;
1452 }
1453 if (!nocow) {
1454 if (cow_start == (u64)-1)
1455 cow_start = cur_offset;
1456 cur_offset = extent_end;
1457 if (cur_offset > end)
1458 break;
1459 path->slots[0]++;
1460 goto next_slot;
7ea394f1
YZ
1461 }
1462
b3b4aa74 1463 btrfs_release_path(path);
80ff3856 1464 if (cow_start != (u64)-1) {
00361589
JB
1465 ret = cow_file_range(inode, locked_page,
1466 cow_start, found_key.offset - 1,
dda3245e
WX
1467 end, page_started, nr_written, 1,
1468 NULL);
e9894fd3 1469 if (ret) {
f78c436c 1470 if (nocow)
0b246afa 1471 btrfs_dec_nocow_writers(fs_info,
f78c436c 1472 disk_bytenr);
79787eaa 1473 goto error;
e9894fd3 1474 }
80ff3856 1475 cow_start = (u64)-1;
7ea394f1 1476 }
80ff3856 1477
d899e052 1478 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1479 u64 orig_start = found_key.offset - extent_offset;
1480
1481 em = create_io_em(inode, cur_offset, num_bytes,
1482 orig_start,
1483 disk_bytenr, /* block_start */
1484 num_bytes, /* block_len */
1485 disk_num_bytes, /* orig_block_len */
1486 ram_bytes, BTRFS_COMPRESS_NONE,
1487 BTRFS_ORDERED_PREALLOC);
1488 if (IS_ERR(em)) {
6f9994db
LB
1489 if (nocow)
1490 btrfs_dec_nocow_writers(fs_info,
1491 disk_bytenr);
1492 ret = PTR_ERR(em);
1493 goto error;
d899e052 1494 }
6f9994db
LB
1495 free_extent_map(em);
1496 }
1497
1498 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1499 type = BTRFS_ORDERED_PREALLOC;
1500 } else {
1501 type = BTRFS_ORDERED_NOCOW;
1502 }
80ff3856
YZ
1503
1504 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1505 num_bytes, num_bytes, type);
f78c436c 1506 if (nocow)
0b246afa 1507 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1508 BUG_ON(ret); /* -ENOMEM */
771ed689 1509
efa56464 1510 if (root->root_key.objectid ==
4dbd80fb
QW
1511 BTRFS_DATA_RELOC_TREE_OBJECTID)
1512 /*
1513 * Error handled later, as we must prevent
1514 * extent_clear_unlock_delalloc() in error handler
1515 * from freeing metadata of created ordered extent.
1516 */
efa56464
YZ
1517 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1518 num_bytes);
efa56464 1519
c2790a2e 1520 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1521 cur_offset + num_bytes - 1, end,
c2790a2e 1522 locked_page, EXTENT_LOCKED |
18513091
WX
1523 EXTENT_DELALLOC |
1524 EXTENT_CLEAR_DATA_RESV,
1525 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1526
80ff3856 1527 cur_offset = extent_end;
4dbd80fb
QW
1528
1529 /*
1530 * btrfs_reloc_clone_csums() error, now we're OK to call error
1531 * handler, as metadata for created ordered extent will only
1532 * be freed by btrfs_finish_ordered_io().
1533 */
1534 if (ret)
1535 goto error;
80ff3856
YZ
1536 if (cur_offset > end)
1537 break;
be20aa9d 1538 }
b3b4aa74 1539 btrfs_release_path(path);
80ff3856 1540
506481b2 1541 if (cur_offset <= end && cow_start == (u64)-1)
80ff3856 1542 cow_start = cur_offset;
17ca04af 1543
80ff3856 1544 if (cow_start != (u64)-1) {
506481b2 1545 cur_offset = end;
dda3245e
WX
1546 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1547 page_started, nr_written, 1, NULL);
d788a349 1548 if (ret)
79787eaa 1549 goto error;
80ff3856
YZ
1550 }
1551
79787eaa 1552error:
17ca04af 1553 if (ret && cur_offset < end)
ba8b04c1 1554 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1555 locked_page, EXTENT_LOCKED |
151a41bc
JB
1556 EXTENT_DELALLOC | EXTENT_DEFRAG |
1557 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1558 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1559 PAGE_SET_WRITEBACK |
1560 PAGE_END_WRITEBACK);
7ea394f1 1561 btrfs_free_path(path);
79787eaa 1562 return ret;
be20aa9d
CM
1563}
1564
47059d93
WS
1565static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1566{
1567
1568 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1569 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1570 return 0;
1571
1572 /*
1573 * @defrag_bytes is a hint value, no spinlock held here,
1574 * if is not zero, it means the file is defragging.
1575 * Force cow if given extent needs to be defragged.
1576 */
1577 if (BTRFS_I(inode)->defrag_bytes &&
1578 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1579 EXTENT_DEFRAG, 0, NULL))
1580 return 1;
1581
1582 return 0;
1583}
1584
d352ac68 1585/*
5eaad97a
NB
1586 * Function to process delayed allocation (create CoW) for ranges which are
1587 * being touched for the first time.
d352ac68 1588 */
5eaad97a
NB
1589int btrfs_run_delalloc_range(void *private_data, struct page *locked_page,
1590 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1591 struct writeback_control *wbc)
be20aa9d 1592{
c6100a4b 1593 struct inode *inode = private_data;
be20aa9d 1594 int ret;
47059d93 1595 int force_cow = need_force_cow(inode, start, end);
f82b7359 1596 unsigned int write_flags = wbc_to_write_flags(wbc);
a2135011 1597
47059d93 1598 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1599 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1600 page_started, 1, nr_written);
47059d93 1601 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1602 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1603 page_started, 0, nr_written);
c2fcdcdf 1604 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1605 ret = cow_file_range(inode, locked_page, start, end, end,
1606 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1607 } else {
1608 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1609 &BTRFS_I(inode)->runtime_flags);
771ed689 1610 ret = cow_file_range_async(inode, locked_page, start, end,
f82b7359
LB
1611 page_started, nr_written,
1612 write_flags);
7ddf5a42 1613 }
52427260 1614 if (ret)
d1051d6e
NB
1615 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1616 end - start + 1);
b888db2b
CM
1617 return ret;
1618}
1619
abbb55f4
NB
1620void btrfs_split_delalloc_extent(struct inode *inode,
1621 struct extent_state *orig, u64 split)
9ed74f2d 1622{
dcab6a3b
JB
1623 u64 size;
1624
0ca1f7ce 1625 /* not delalloc, ignore it */
9ed74f2d 1626 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1627 return;
9ed74f2d 1628
dcab6a3b
JB
1629 size = orig->end - orig->start + 1;
1630 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1631 u32 num_extents;
dcab6a3b
JB
1632 u64 new_size;
1633
1634 /*
5c848198 1635 * See the explanation in btrfs_merge_delalloc_extent, the same
ba117213 1636 * applies here, just in reverse.
dcab6a3b
JB
1637 */
1638 new_size = orig->end - split + 1;
823bb20a 1639 num_extents = count_max_extents(new_size);
ba117213 1640 new_size = split - orig->start;
823bb20a
DS
1641 num_extents += count_max_extents(new_size);
1642 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1643 return;
1644 }
1645
9e0baf60 1646 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1647 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1648 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1649}
1650
1651/*
5c848198
NB
1652 * Handle merged delayed allocation extents so we can keep track of new extents
1653 * that are just merged onto old extents, such as when we are doing sequential
1654 * writes, so we can properly account for the metadata space we'll need.
9ed74f2d 1655 */
5c848198
NB
1656void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1657 struct extent_state *other)
9ed74f2d 1658{
dcab6a3b 1659 u64 new_size, old_size;
823bb20a 1660 u32 num_extents;
dcab6a3b 1661
9ed74f2d
JB
1662 /* not delalloc, ignore it */
1663 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1664 return;
9ed74f2d 1665
8461a3de
JB
1666 if (new->start > other->start)
1667 new_size = new->end - other->start + 1;
1668 else
1669 new_size = other->end - new->start + 1;
dcab6a3b
JB
1670
1671 /* we're not bigger than the max, unreserve the space and go */
1672 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1673 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1674 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1675 spin_unlock(&BTRFS_I(inode)->lock);
1676 return;
1677 }
1678
1679 /*
ba117213
JB
1680 * We have to add up either side to figure out how many extents were
1681 * accounted for before we merged into one big extent. If the number of
1682 * extents we accounted for is <= the amount we need for the new range
1683 * then we can return, otherwise drop. Think of it like this
1684 *
1685 * [ 4k][MAX_SIZE]
1686 *
1687 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1688 * need 2 outstanding extents, on one side we have 1 and the other side
1689 * we have 1 so they are == and we can return. But in this case
1690 *
1691 * [MAX_SIZE+4k][MAX_SIZE+4k]
1692 *
1693 * Each range on their own accounts for 2 extents, but merged together
1694 * they are only 3 extents worth of accounting, so we need to drop in
1695 * this case.
dcab6a3b 1696 */
ba117213 1697 old_size = other->end - other->start + 1;
823bb20a 1698 num_extents = count_max_extents(old_size);
ba117213 1699 old_size = new->end - new->start + 1;
823bb20a
DS
1700 num_extents += count_max_extents(old_size);
1701 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1702 return;
1703
9e0baf60 1704 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1705 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1706 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1707}
1708
eb73c1b7
MX
1709static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1710 struct inode *inode)
1711{
0b246afa
JM
1712 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1713
eb73c1b7
MX
1714 spin_lock(&root->delalloc_lock);
1715 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1716 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1717 &root->delalloc_inodes);
1718 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1719 &BTRFS_I(inode)->runtime_flags);
1720 root->nr_delalloc_inodes++;
1721 if (root->nr_delalloc_inodes == 1) {
0b246afa 1722 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1723 BUG_ON(!list_empty(&root->delalloc_root));
1724 list_add_tail(&root->delalloc_root,
0b246afa
JM
1725 &fs_info->delalloc_roots);
1726 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1727 }
1728 }
1729 spin_unlock(&root->delalloc_lock);
1730}
1731
2b877331
NB
1732
1733void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1734 struct btrfs_inode *inode)
eb73c1b7 1735{
3ffbd68c 1736 struct btrfs_fs_info *fs_info = root->fs_info;
0b246afa 1737
9e3e97f4
NB
1738 if (!list_empty(&inode->delalloc_inodes)) {
1739 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1740 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1741 &inode->runtime_flags);
eb73c1b7
MX
1742 root->nr_delalloc_inodes--;
1743 if (!root->nr_delalloc_inodes) {
7c8a0d36 1744 ASSERT(list_empty(&root->delalloc_inodes));
0b246afa 1745 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1746 BUG_ON(list_empty(&root->delalloc_root));
1747 list_del_init(&root->delalloc_root);
0b246afa 1748 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1749 }
1750 }
2b877331
NB
1751}
1752
1753static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1754 struct btrfs_inode *inode)
1755{
1756 spin_lock(&root->delalloc_lock);
1757 __btrfs_del_delalloc_inode(root, inode);
eb73c1b7
MX
1758 spin_unlock(&root->delalloc_lock);
1759}
1760
d352ac68 1761/*
e06a1fc9
NB
1762 * Properly track delayed allocation bytes in the inode and to maintain the
1763 * list of inodes that have pending delalloc work to be done.
d352ac68 1764 */
e06a1fc9
NB
1765void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
1766 unsigned *bits)
291d673e 1767{
0b246afa
JM
1768 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1769
47059d93
WS
1770 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1771 WARN_ON(1);
75eff68e
CM
1772 /*
1773 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1774 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1775 * bit, which is only set or cleared with irqs on
1776 */
0ca1f7ce 1777 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1778 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1779 u64 len = state->end + 1 - state->start;
8b62f87b 1780 u32 num_extents = count_max_extents(len);
70ddc553 1781 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1782
8b62f87b
JB
1783 spin_lock(&BTRFS_I(inode)->lock);
1784 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1785 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1786
6a3891c5 1787 /* For sanity tests */
0b246afa 1788 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1789 return;
1790
104b4e51
NB
1791 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1792 fs_info->delalloc_batch);
df0af1a5 1793 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1794 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1795 if (*bits & EXTENT_DEFRAG)
1796 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1797 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1798 &BTRFS_I(inode)->runtime_flags))
1799 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1800 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1801 }
a7e3b975
FM
1802
1803 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1804 (*bits & EXTENT_DELALLOC_NEW)) {
1805 spin_lock(&BTRFS_I(inode)->lock);
1806 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1807 state->start;
1808 spin_unlock(&BTRFS_I(inode)->lock);
1809 }
291d673e
CM
1810}
1811
d352ac68 1812/*
a36bb5f9
NB
1813 * Once a range is no longer delalloc this function ensures that proper
1814 * accounting happens.
d352ac68 1815 */
a36bb5f9
NB
1816void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
1817 struct extent_state *state, unsigned *bits)
291d673e 1818{
a36bb5f9
NB
1819 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
1820 struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
47059d93 1821 u64 len = state->end + 1 - state->start;
823bb20a 1822 u32 num_extents = count_max_extents(len);
47059d93 1823
4a4b964f
FM
1824 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1825 spin_lock(&inode->lock);
6fc0ef68 1826 inode->defrag_bytes -= len;
4a4b964f
FM
1827 spin_unlock(&inode->lock);
1828 }
47059d93 1829
75eff68e
CM
1830 /*
1831 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1832 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1833 * bit, which is only set or cleared with irqs on
1834 */
0ca1f7ce 1835 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1836 struct btrfs_root *root = inode->root;
83eea1f1 1837 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1838
8b62f87b
JB
1839 spin_lock(&inode->lock);
1840 btrfs_mod_outstanding_extents(inode, -num_extents);
1841 spin_unlock(&inode->lock);
0ca1f7ce 1842
b6d08f06
JB
1843 /*
1844 * We don't reserve metadata space for space cache inodes so we
1845 * don't need to call dellalloc_release_metadata if there is an
1846 * error.
1847 */
a315e68f 1848 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1849 root != fs_info->tree_root)
43b18595 1850 btrfs_delalloc_release_metadata(inode, len, false);
0ca1f7ce 1851
6a3891c5 1852 /* For sanity tests. */
0b246afa 1853 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1854 return;
1855
a315e68f
FM
1856 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1857 do_list && !(state->state & EXTENT_NORESERVE) &&
1858 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1859 btrfs_free_reserved_data_space_noquota(
1860 &inode->vfs_inode,
51773bec 1861 state->start, len);
9ed74f2d 1862
104b4e51
NB
1863 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1864 fs_info->delalloc_batch);
6fc0ef68
NB
1865 spin_lock(&inode->lock);
1866 inode->delalloc_bytes -= len;
1867 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1868 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1869 &inode->runtime_flags))
eb73c1b7 1870 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1871 spin_unlock(&inode->lock);
291d673e 1872 }
a7e3b975
FM
1873
1874 if ((state->state & EXTENT_DELALLOC_NEW) &&
1875 (*bits & EXTENT_DELALLOC_NEW)) {
1876 spin_lock(&inode->lock);
1877 ASSERT(inode->new_delalloc_bytes >= len);
1878 inode->new_delalloc_bytes -= len;
1879 spin_unlock(&inode->lock);
1880 }
291d673e
CM
1881}
1882
d352ac68 1883/*
da12fe54
NB
1884 * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
1885 * in a chunk's stripe. This function ensures that bios do not span a
1886 * stripe/chunk
6f034ece 1887 *
da12fe54
NB
1888 * @page - The page we are about to add to the bio
1889 * @size - size we want to add to the bio
1890 * @bio - bio we want to ensure is smaller than a stripe
1891 * @bio_flags - flags of the bio
1892 *
1893 * return 1 if page cannot be added to the bio
1894 * return 0 if page can be added to the bio
6f034ece 1895 * return error otherwise
d352ac68 1896 */
da12fe54
NB
1897int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
1898 unsigned long bio_flags)
239b14b3 1899{
0b246afa
JM
1900 struct inode *inode = page->mapping->host;
1901 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1902 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1903 u64 length = 0;
1904 u64 map_length;
239b14b3
CM
1905 int ret;
1906
771ed689
CM
1907 if (bio_flags & EXTENT_BIO_COMPRESSED)
1908 return 0;
1909
4f024f37 1910 length = bio->bi_iter.bi_size;
239b14b3 1911 map_length = length;
0b246afa
JM
1912 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1913 NULL, 0);
6f034ece
LB
1914 if (ret < 0)
1915 return ret;
d397712b 1916 if (map_length < length + size)
239b14b3 1917 return 1;
3444a972 1918 return 0;
239b14b3
CM
1919}
1920
d352ac68
CM
1921/*
1922 * in order to insert checksums into the metadata in large chunks,
1923 * we wait until bio submission time. All the pages in the bio are
1924 * checksummed and sums are attached onto the ordered extent record.
1925 *
1926 * At IO completion time the cums attached on the ordered extent record
1927 * are inserted into the btree
1928 */
d0ee3934 1929static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
eaf25d93 1930 u64 bio_offset)
065631f6 1931{
c6100a4b 1932 struct inode *inode = private_data;
4e4cbee9 1933 blk_status_t ret = 0;
e015640f 1934
2ff7e61e 1935 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1936 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1937 return 0;
1938}
e015640f 1939
d352ac68 1940/*
cad321ad 1941 * extent_io.c submission hook. This does the right thing for csum calculation
4c274bc6
LB
1942 * on write, or reading the csums from the tree before a read.
1943 *
1944 * Rules about async/sync submit,
1945 * a) read: sync submit
1946 *
1947 * b) write without checksum: sync submit
1948 *
1949 * c) write with checksum:
1950 * c-1) if bio is issued by fsync: sync submit
1951 * (sync_writers != 0)
1952 *
1953 * c-2) if root is reloc root: sync submit
1954 * (only in case of buffered IO)
1955 *
1956 * c-3) otherwise: async submit
d352ac68 1957 */
8c27cb35 1958static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1959 int mirror_num, unsigned long bio_flags,
1960 u64 bio_offset)
44b8bd7e 1961{
c6100a4b 1962 struct inode *inode = private_data;
0b246afa 1963 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1964 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1965 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1966 blk_status_t ret = 0;
19b9bdb0 1967 int skip_sum;
b812ce28 1968 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1969
6cbff00f 1970 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1971
70ddc553 1972 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1973 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1974
37226b21 1975 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1976 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1977 if (ret)
61891923 1978 goto out;
5fd02043 1979
d20f7043 1980 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1981 ret = btrfs_submit_compressed_read(inode, bio,
1982 mirror_num,
1983 bio_flags);
1984 goto out;
c2db1073 1985 } else if (!skip_sum) {
2ff7e61e 1986 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1987 if (ret)
61891923 1988 goto out;
c2db1073 1989 }
4d1b5fb4 1990 goto mapit;
b812ce28 1991 } else if (async && !skip_sum) {
17d217fe
YZ
1992 /* csum items have already been cloned */
1993 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1994 goto mapit;
19b9bdb0 1995 /* we're doing a write, do the async checksumming */
c6100a4b
JB
1996 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1997 bio_offset, inode,
e288c080 1998 btrfs_submit_bio_start);
61891923 1999 goto out;
b812ce28 2000 } else if (!skip_sum) {
2ff7e61e 2001 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
2002 if (ret)
2003 goto out;
19b9bdb0
CM
2004 }
2005
0b86a832 2006mapit:
2ff7e61e 2007 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2008
2009out:
4e4cbee9
CH
2010 if (ret) {
2011 bio->bi_status = ret;
4246a0b6
CH
2012 bio_endio(bio);
2013 }
61891923 2014 return ret;
065631f6 2015}
6885f308 2016
d352ac68
CM
2017/*
2018 * given a list of ordered sums record them in the inode. This happens
2019 * at IO completion time based on sums calculated at bio submission time.
2020 */
ba1da2f4 2021static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2022 struct inode *inode, struct list_head *list)
e6dcd2dc 2023{
e6dcd2dc 2024 struct btrfs_ordered_sum *sum;
ac01f26a 2025 int ret;
e6dcd2dc 2026
c6e30871 2027 list_for_each_entry(sum, list, list) {
7c2871a2 2028 trans->adding_csums = true;
ac01f26a 2029 ret = btrfs_csum_file_blocks(trans,
d20f7043 2030 BTRFS_I(inode)->root->fs_info->csum_root, sum);
7c2871a2 2031 trans->adding_csums = false;
ac01f26a
NB
2032 if (ret)
2033 return ret;
e6dcd2dc
CM
2034 }
2035 return 0;
2036}
2037
2ac55d41 2038int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
e3b8a485 2039 unsigned int extra_bits,
ba8b04c1 2040 struct extent_state **cached_state, int dedupe)
ea8c2819 2041{
09cbfeaf 2042 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2043 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
e3b8a485 2044 extra_bits, cached_state);
ea8c2819
CM
2045}
2046
d352ac68 2047/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2048struct btrfs_writepage_fixup {
2049 struct page *page;
2050 struct btrfs_work work;
2051};
2052
b2950863 2053static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2054{
2055 struct btrfs_writepage_fixup *fixup;
2056 struct btrfs_ordered_extent *ordered;
2ac55d41 2057 struct extent_state *cached_state = NULL;
364ecf36 2058 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2059 struct page *page;
2060 struct inode *inode;
2061 u64 page_start;
2062 u64 page_end;
87826df0 2063 int ret;
247e743c
CM
2064
2065 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2066 page = fixup->page;
4a096752 2067again:
247e743c
CM
2068 lock_page(page);
2069 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2070 ClearPageChecked(page);
2071 goto out_page;
2072 }
2073
2074 inode = page->mapping->host;
2075 page_start = page_offset(page);
09cbfeaf 2076 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2077
ff13db41 2078 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2079 &cached_state);
4a096752
CM
2080
2081 /* already ordered? We're done */
8b62b72b 2082 if (PagePrivate2(page))
247e743c 2083 goto out;
4a096752 2084
a776c6fa 2085 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2086 PAGE_SIZE);
4a096752 2087 if (ordered) {
2ac55d41 2088 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
e43bbe5e 2089 page_end, &cached_state);
4a096752
CM
2090 unlock_page(page);
2091 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2092 btrfs_put_ordered_extent(ordered);
4a096752
CM
2093 goto again;
2094 }
247e743c 2095
364ecf36 2096 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2097 PAGE_SIZE);
87826df0
JM
2098 if (ret) {
2099 mapping_set_error(page->mapping, ret);
2100 end_extent_writepage(page, ret, page_start, page_end);
2101 ClearPageChecked(page);
2102 goto out;
2103 }
2104
f3038ee3
NB
2105 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2106 &cached_state, 0);
2107 if (ret) {
2108 mapping_set_error(page->mapping, ret);
2109 end_extent_writepage(page, ret, page_start, page_end);
2110 ClearPageChecked(page);
2111 goto out;
2112 }
2113
247e743c 2114 ClearPageChecked(page);
87826df0 2115 set_page_dirty(page);
43b18595 2116 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, false);
247e743c 2117out:
2ac55d41 2118 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
e43bbe5e 2119 &cached_state);
247e743c
CM
2120out_page:
2121 unlock_page(page);
09cbfeaf 2122 put_page(page);
b897abec 2123 kfree(fixup);
364ecf36 2124 extent_changeset_free(data_reserved);
247e743c
CM
2125}
2126
2127/*
2128 * There are a few paths in the higher layers of the kernel that directly
2129 * set the page dirty bit without asking the filesystem if it is a
2130 * good idea. This causes problems because we want to make sure COW
2131 * properly happens and the data=ordered rules are followed.
2132 *
c8b97818 2133 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2134 * hasn't been properly setup for IO. We kick off an async process
2135 * to fix it up. The async helper will wait for ordered extents, set
2136 * the delalloc bit and make it safe to write the page.
2137 */
d75855b4 2138int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
247e743c
CM
2139{
2140 struct inode *inode = page->mapping->host;
0b246afa 2141 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2142 struct btrfs_writepage_fixup *fixup;
247e743c 2143
8b62b72b
CM
2144 /* this page is properly in the ordered list */
2145 if (TestClearPagePrivate2(page))
247e743c
CM
2146 return 0;
2147
2148 if (PageChecked(page))
2149 return -EAGAIN;
2150
2151 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2152 if (!fixup)
2153 return -EAGAIN;
f421950f 2154
247e743c 2155 SetPageChecked(page);
09cbfeaf 2156 get_page(page);
9e0af237
LB
2157 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2158 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2159 fixup->page = page;
0b246afa 2160 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2161 return -EBUSY;
247e743c
CM
2162}
2163
d899e052
YZ
2164static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2165 struct inode *inode, u64 file_pos,
2166 u64 disk_bytenr, u64 disk_num_bytes,
2167 u64 num_bytes, u64 ram_bytes,
2168 u8 compression, u8 encryption,
2169 u16 other_encoding, int extent_type)
2170{
2171 struct btrfs_root *root = BTRFS_I(inode)->root;
2172 struct btrfs_file_extent_item *fi;
2173 struct btrfs_path *path;
2174 struct extent_buffer *leaf;
2175 struct btrfs_key ins;
a12b877b 2176 u64 qg_released;
1acae57b 2177 int extent_inserted = 0;
d899e052
YZ
2178 int ret;
2179
2180 path = btrfs_alloc_path();
d8926bb3
MF
2181 if (!path)
2182 return -ENOMEM;
d899e052 2183
a1ed835e
CM
2184 /*
2185 * we may be replacing one extent in the tree with another.
2186 * The new extent is pinned in the extent map, and we don't want
2187 * to drop it from the cache until it is completely in the btree.
2188 *
2189 * So, tell btrfs_drop_extents to leave this extent in the cache.
2190 * the caller is expected to unpin it and allow it to be merged
2191 * with the others.
2192 */
1acae57b
FDBM
2193 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2194 file_pos + num_bytes, NULL, 0,
2195 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2196 if (ret)
2197 goto out;
d899e052 2198
1acae57b 2199 if (!extent_inserted) {
4a0cc7ca 2200 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2201 ins.offset = file_pos;
2202 ins.type = BTRFS_EXTENT_DATA_KEY;
2203
2204 path->leave_spinning = 1;
2205 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2206 sizeof(*fi));
2207 if (ret)
2208 goto out;
2209 }
d899e052
YZ
2210 leaf = path->nodes[0];
2211 fi = btrfs_item_ptr(leaf, path->slots[0],
2212 struct btrfs_file_extent_item);
2213 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2214 btrfs_set_file_extent_type(leaf, fi, extent_type);
2215 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2216 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2217 btrfs_set_file_extent_offset(leaf, fi, 0);
2218 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2219 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2220 btrfs_set_file_extent_compression(leaf, fi, compression);
2221 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2222 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2223
d899e052 2224 btrfs_mark_buffer_dirty(leaf);
ce195332 2225 btrfs_release_path(path);
d899e052
YZ
2226
2227 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2228
2229 ins.objectid = disk_bytenr;
2230 ins.offset = disk_num_bytes;
2231 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2232
297d750b 2233 /*
5846a3c2
QW
2234 * Release the reserved range from inode dirty range map, as it is
2235 * already moved into delayed_ref_head
297d750b 2236 */
a12b877b
QW
2237 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2238 if (ret < 0)
2239 goto out;
2240 qg_released = ret;
84f7d8e6
JB
2241 ret = btrfs_alloc_reserved_file_extent(trans, root,
2242 btrfs_ino(BTRFS_I(inode)),
2243 file_pos, qg_released, &ins);
79787eaa 2244out:
d899e052 2245 btrfs_free_path(path);
b9473439 2246
79787eaa 2247 return ret;
d899e052
YZ
2248}
2249
38c227d8
LB
2250/* snapshot-aware defrag */
2251struct sa_defrag_extent_backref {
2252 struct rb_node node;
2253 struct old_sa_defrag_extent *old;
2254 u64 root_id;
2255 u64 inum;
2256 u64 file_pos;
2257 u64 extent_offset;
2258 u64 num_bytes;
2259 u64 generation;
2260};
2261
2262struct old_sa_defrag_extent {
2263 struct list_head list;
2264 struct new_sa_defrag_extent *new;
2265
2266 u64 extent_offset;
2267 u64 bytenr;
2268 u64 offset;
2269 u64 len;
2270 int count;
2271};
2272
2273struct new_sa_defrag_extent {
2274 struct rb_root root;
2275 struct list_head head;
2276 struct btrfs_path *path;
2277 struct inode *inode;
2278 u64 file_pos;
2279 u64 len;
2280 u64 bytenr;
2281 u64 disk_len;
2282 u8 compress_type;
2283};
2284
2285static int backref_comp(struct sa_defrag_extent_backref *b1,
2286 struct sa_defrag_extent_backref *b2)
2287{
2288 if (b1->root_id < b2->root_id)
2289 return -1;
2290 else if (b1->root_id > b2->root_id)
2291 return 1;
2292
2293 if (b1->inum < b2->inum)
2294 return -1;
2295 else if (b1->inum > b2->inum)
2296 return 1;
2297
2298 if (b1->file_pos < b2->file_pos)
2299 return -1;
2300 else if (b1->file_pos > b2->file_pos)
2301 return 1;
2302
2303 /*
2304 * [------------------------------] ===> (a range of space)
2305 * |<--->| |<---->| =============> (fs/file tree A)
2306 * |<---------------------------->| ===> (fs/file tree B)
2307 *
2308 * A range of space can refer to two file extents in one tree while
2309 * refer to only one file extent in another tree.
2310 *
2311 * So we may process a disk offset more than one time(two extents in A)
2312 * and locate at the same extent(one extent in B), then insert two same
2313 * backrefs(both refer to the extent in B).
2314 */
2315 return 0;
2316}
2317
2318static void backref_insert(struct rb_root *root,
2319 struct sa_defrag_extent_backref *backref)
2320{
2321 struct rb_node **p = &root->rb_node;
2322 struct rb_node *parent = NULL;
2323 struct sa_defrag_extent_backref *entry;
2324 int ret;
2325
2326 while (*p) {
2327 parent = *p;
2328 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2329
2330 ret = backref_comp(backref, entry);
2331 if (ret < 0)
2332 p = &(*p)->rb_left;
2333 else
2334 p = &(*p)->rb_right;
2335 }
2336
2337 rb_link_node(&backref->node, parent, p);
2338 rb_insert_color(&backref->node, root);
2339}
2340
2341/*
2342 * Note the backref might has changed, and in this case we just return 0.
2343 */
2344static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2345 void *ctx)
2346{
2347 struct btrfs_file_extent_item *extent;
38c227d8
LB
2348 struct old_sa_defrag_extent *old = ctx;
2349 struct new_sa_defrag_extent *new = old->new;
2350 struct btrfs_path *path = new->path;
2351 struct btrfs_key key;
2352 struct btrfs_root *root;
2353 struct sa_defrag_extent_backref *backref;
2354 struct extent_buffer *leaf;
2355 struct inode *inode = new->inode;
0b246afa 2356 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2357 int slot;
2358 int ret;
2359 u64 extent_offset;
2360 u64 num_bytes;
2361
2362 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2363 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2364 return 0;
2365
2366 key.objectid = root_id;
2367 key.type = BTRFS_ROOT_ITEM_KEY;
2368 key.offset = (u64)-1;
2369
38c227d8
LB
2370 root = btrfs_read_fs_root_no_name(fs_info, &key);
2371 if (IS_ERR(root)) {
2372 if (PTR_ERR(root) == -ENOENT)
2373 return 0;
2374 WARN_ON(1);
ab8d0fc4 2375 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2376 inum, offset, root_id);
2377 return PTR_ERR(root);
2378 }
2379
2380 key.objectid = inum;
2381 key.type = BTRFS_EXTENT_DATA_KEY;
2382 if (offset > (u64)-1 << 32)
2383 key.offset = 0;
2384 else
2385 key.offset = offset;
2386
2387 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2388 if (WARN_ON(ret < 0))
38c227d8 2389 return ret;
50f1319c 2390 ret = 0;
38c227d8
LB
2391
2392 while (1) {
2393 cond_resched();
2394
2395 leaf = path->nodes[0];
2396 slot = path->slots[0];
2397
2398 if (slot >= btrfs_header_nritems(leaf)) {
2399 ret = btrfs_next_leaf(root, path);
2400 if (ret < 0) {
2401 goto out;
2402 } else if (ret > 0) {
2403 ret = 0;
2404 goto out;
2405 }
2406 continue;
2407 }
2408
2409 path->slots[0]++;
2410
2411 btrfs_item_key_to_cpu(leaf, &key, slot);
2412
2413 if (key.objectid > inum)
2414 goto out;
2415
2416 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2417 continue;
2418
2419 extent = btrfs_item_ptr(leaf, slot,
2420 struct btrfs_file_extent_item);
2421
2422 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2423 continue;
2424
e68afa49
LB
2425 /*
2426 * 'offset' refers to the exact key.offset,
2427 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2428 * (key.offset - extent_offset).
2429 */
2430 if (key.offset != offset)
38c227d8
LB
2431 continue;
2432
e68afa49 2433 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2434 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2435
38c227d8
LB
2436 if (extent_offset >= old->extent_offset + old->offset +
2437 old->len || extent_offset + num_bytes <=
2438 old->extent_offset + old->offset)
2439 continue;
38c227d8
LB
2440 break;
2441 }
2442
2443 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2444 if (!backref) {
2445 ret = -ENOENT;
2446 goto out;
2447 }
2448
2449 backref->root_id = root_id;
2450 backref->inum = inum;
e68afa49 2451 backref->file_pos = offset;
38c227d8
LB
2452 backref->num_bytes = num_bytes;
2453 backref->extent_offset = extent_offset;
2454 backref->generation = btrfs_file_extent_generation(leaf, extent);
2455 backref->old = old;
2456 backref_insert(&new->root, backref);
2457 old->count++;
2458out:
2459 btrfs_release_path(path);
2460 WARN_ON(ret);
2461 return ret;
2462}
2463
2464static noinline bool record_extent_backrefs(struct btrfs_path *path,
2465 struct new_sa_defrag_extent *new)
2466{
0b246afa 2467 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2468 struct old_sa_defrag_extent *old, *tmp;
2469 int ret;
2470
2471 new->path = path;
2472
2473 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2474 ret = iterate_inodes_from_logical(old->bytenr +
2475 old->extent_offset, fs_info,
38c227d8 2476 path, record_one_backref,
c995ab3c 2477 old, false);
4724b106
JB
2478 if (ret < 0 && ret != -ENOENT)
2479 return false;
38c227d8
LB
2480
2481 /* no backref to be processed for this extent */
2482 if (!old->count) {
2483 list_del(&old->list);
2484 kfree(old);
2485 }
2486 }
2487
2488 if (list_empty(&new->head))
2489 return false;
2490
2491 return true;
2492}
2493
2494static int relink_is_mergable(struct extent_buffer *leaf,
2495 struct btrfs_file_extent_item *fi,
116e0024 2496 struct new_sa_defrag_extent *new)
38c227d8 2497{
116e0024 2498 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2499 return 0;
2500
2501 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2502 return 0;
2503
116e0024
LB
2504 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2505 return 0;
2506
2507 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2508 btrfs_file_extent_other_encoding(leaf, fi))
2509 return 0;
2510
2511 return 1;
2512}
2513
2514/*
2515 * Note the backref might has changed, and in this case we just return 0.
2516 */
2517static noinline int relink_extent_backref(struct btrfs_path *path,
2518 struct sa_defrag_extent_backref *prev,
2519 struct sa_defrag_extent_backref *backref)
2520{
2521 struct btrfs_file_extent_item *extent;
2522 struct btrfs_file_extent_item *item;
2523 struct btrfs_ordered_extent *ordered;
2524 struct btrfs_trans_handle *trans;
38c227d8
LB
2525 struct btrfs_root *root;
2526 struct btrfs_key key;
2527 struct extent_buffer *leaf;
2528 struct old_sa_defrag_extent *old = backref->old;
2529 struct new_sa_defrag_extent *new = old->new;
0b246afa 2530 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2531 struct inode *inode;
2532 struct extent_state *cached = NULL;
2533 int ret = 0;
2534 u64 start;
2535 u64 len;
2536 u64 lock_start;
2537 u64 lock_end;
2538 bool merge = false;
2539 int index;
2540
2541 if (prev && prev->root_id == backref->root_id &&
2542 prev->inum == backref->inum &&
2543 prev->file_pos + prev->num_bytes == backref->file_pos)
2544 merge = true;
2545
2546 /* step 1: get root */
2547 key.objectid = backref->root_id;
2548 key.type = BTRFS_ROOT_ITEM_KEY;
2549 key.offset = (u64)-1;
2550
38c227d8
LB
2551 index = srcu_read_lock(&fs_info->subvol_srcu);
2552
2553 root = btrfs_read_fs_root_no_name(fs_info, &key);
2554 if (IS_ERR(root)) {
2555 srcu_read_unlock(&fs_info->subvol_srcu, index);
2556 if (PTR_ERR(root) == -ENOENT)
2557 return 0;
2558 return PTR_ERR(root);
2559 }
38c227d8 2560
bcbba5e6
WS
2561 if (btrfs_root_readonly(root)) {
2562 srcu_read_unlock(&fs_info->subvol_srcu, index);
2563 return 0;
2564 }
2565
38c227d8
LB
2566 /* step 2: get inode */
2567 key.objectid = backref->inum;
2568 key.type = BTRFS_INODE_ITEM_KEY;
2569 key.offset = 0;
2570
2571 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2572 if (IS_ERR(inode)) {
2573 srcu_read_unlock(&fs_info->subvol_srcu, index);
2574 return 0;
2575 }
2576
2577 srcu_read_unlock(&fs_info->subvol_srcu, index);
2578
2579 /* step 3: relink backref */
2580 lock_start = backref->file_pos;
2581 lock_end = backref->file_pos + backref->num_bytes - 1;
2582 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2583 &cached);
38c227d8
LB
2584
2585 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2586 if (ordered) {
2587 btrfs_put_ordered_extent(ordered);
2588 goto out_unlock;
2589 }
2590
2591 trans = btrfs_join_transaction(root);
2592 if (IS_ERR(trans)) {
2593 ret = PTR_ERR(trans);
2594 goto out_unlock;
2595 }
2596
2597 key.objectid = backref->inum;
2598 key.type = BTRFS_EXTENT_DATA_KEY;
2599 key.offset = backref->file_pos;
2600
2601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2602 if (ret < 0) {
2603 goto out_free_path;
2604 } else if (ret > 0) {
2605 ret = 0;
2606 goto out_free_path;
2607 }
2608
2609 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2610 struct btrfs_file_extent_item);
2611
2612 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2613 backref->generation)
2614 goto out_free_path;
2615
2616 btrfs_release_path(path);
2617
2618 start = backref->file_pos;
2619 if (backref->extent_offset < old->extent_offset + old->offset)
2620 start += old->extent_offset + old->offset -
2621 backref->extent_offset;
2622
2623 len = min(backref->extent_offset + backref->num_bytes,
2624 old->extent_offset + old->offset + old->len);
2625 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2626
2627 ret = btrfs_drop_extents(trans, root, inode, start,
2628 start + len, 1);
2629 if (ret)
2630 goto out_free_path;
2631again:
4a0cc7ca 2632 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2633 key.type = BTRFS_EXTENT_DATA_KEY;
2634 key.offset = start;
2635
a09a0a70 2636 path->leave_spinning = 1;
38c227d8
LB
2637 if (merge) {
2638 struct btrfs_file_extent_item *fi;
2639 u64 extent_len;
2640 struct btrfs_key found_key;
2641
3c9665df 2642 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2643 if (ret < 0)
2644 goto out_free_path;
2645
2646 path->slots[0]--;
2647 leaf = path->nodes[0];
2648 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2649
2650 fi = btrfs_item_ptr(leaf, path->slots[0],
2651 struct btrfs_file_extent_item);
2652 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2653
116e0024
LB
2654 if (extent_len + found_key.offset == start &&
2655 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2656 btrfs_set_file_extent_num_bytes(leaf, fi,
2657 extent_len + len);
2658 btrfs_mark_buffer_dirty(leaf);
2659 inode_add_bytes(inode, len);
2660
2661 ret = 1;
2662 goto out_free_path;
2663 } else {
2664 merge = false;
2665 btrfs_release_path(path);
2666 goto again;
2667 }
2668 }
2669
2670 ret = btrfs_insert_empty_item(trans, root, path, &key,
2671 sizeof(*extent));
2672 if (ret) {
66642832 2673 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2674 goto out_free_path;
2675 }
2676
2677 leaf = path->nodes[0];
2678 item = btrfs_item_ptr(leaf, path->slots[0],
2679 struct btrfs_file_extent_item);
2680 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2681 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2682 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2683 btrfs_set_file_extent_num_bytes(leaf, item, len);
2684 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2685 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2686 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2687 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2688 btrfs_set_file_extent_encryption(leaf, item, 0);
2689 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2690
2691 btrfs_mark_buffer_dirty(leaf);
2692 inode_add_bytes(inode, len);
a09a0a70 2693 btrfs_release_path(path);
38c227d8 2694
84f7d8e6 2695 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2696 new->disk_len, 0,
2697 backref->root_id, backref->inum,
b06c4bf5 2698 new->file_pos); /* start - extent_offset */
38c227d8 2699 if (ret) {
66642832 2700 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2701 goto out_free_path;
2702 }
2703
2704 ret = 1;
2705out_free_path:
2706 btrfs_release_path(path);
a09a0a70 2707 path->leave_spinning = 0;
3a45bb20 2708 btrfs_end_transaction(trans);
38c227d8
LB
2709out_unlock:
2710 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
e43bbe5e 2711 &cached);
38c227d8
LB
2712 iput(inode);
2713 return ret;
2714}
2715
6f519564
LB
2716static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2717{
2718 struct old_sa_defrag_extent *old, *tmp;
2719
2720 if (!new)
2721 return;
2722
2723 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2724 kfree(old);
2725 }
2726 kfree(new);
2727}
2728
38c227d8
LB
2729static void relink_file_extents(struct new_sa_defrag_extent *new)
2730{
0b246afa 2731 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2732 struct btrfs_path *path;
38c227d8
LB
2733 struct sa_defrag_extent_backref *backref;
2734 struct sa_defrag_extent_backref *prev = NULL;
38c227d8
LB
2735 struct rb_node *node;
2736 int ret;
2737
38c227d8
LB
2738 path = btrfs_alloc_path();
2739 if (!path)
2740 return;
2741
2742 if (!record_extent_backrefs(path, new)) {
2743 btrfs_free_path(path);
2744 goto out;
2745 }
2746 btrfs_release_path(path);
2747
2748 while (1) {
2749 node = rb_first(&new->root);
2750 if (!node)
2751 break;
2752 rb_erase(node, &new->root);
2753
2754 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2755
2756 ret = relink_extent_backref(path, prev, backref);
2757 WARN_ON(ret < 0);
2758
2759 kfree(prev);
2760
2761 if (ret == 1)
2762 prev = backref;
2763 else
2764 prev = NULL;
2765 cond_resched();
2766 }
2767 kfree(prev);
2768
2769 btrfs_free_path(path);
38c227d8 2770out:
6f519564
LB
2771 free_sa_defrag_extent(new);
2772
0b246afa
JM
2773 atomic_dec(&fs_info->defrag_running);
2774 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2775}
2776
2777static struct new_sa_defrag_extent *
2778record_old_file_extents(struct inode *inode,
2779 struct btrfs_ordered_extent *ordered)
2780{
0b246afa 2781 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2782 struct btrfs_root *root = BTRFS_I(inode)->root;
2783 struct btrfs_path *path;
2784 struct btrfs_key key;
6f519564 2785 struct old_sa_defrag_extent *old;
38c227d8
LB
2786 struct new_sa_defrag_extent *new;
2787 int ret;
2788
2789 new = kmalloc(sizeof(*new), GFP_NOFS);
2790 if (!new)
2791 return NULL;
2792
2793 new->inode = inode;
2794 new->file_pos = ordered->file_offset;
2795 new->len = ordered->len;
2796 new->bytenr = ordered->start;
2797 new->disk_len = ordered->disk_len;
2798 new->compress_type = ordered->compress_type;
2799 new->root = RB_ROOT;
2800 INIT_LIST_HEAD(&new->head);
2801
2802 path = btrfs_alloc_path();
2803 if (!path)
2804 goto out_kfree;
2805
4a0cc7ca 2806 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2807 key.type = BTRFS_EXTENT_DATA_KEY;
2808 key.offset = new->file_pos;
2809
2810 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2811 if (ret < 0)
2812 goto out_free_path;
2813 if (ret > 0 && path->slots[0] > 0)
2814 path->slots[0]--;
2815
2816 /* find out all the old extents for the file range */
2817 while (1) {
2818 struct btrfs_file_extent_item *extent;
2819 struct extent_buffer *l;
2820 int slot;
2821 u64 num_bytes;
2822 u64 offset;
2823 u64 end;
2824 u64 disk_bytenr;
2825 u64 extent_offset;
2826
2827 l = path->nodes[0];
2828 slot = path->slots[0];
2829
2830 if (slot >= btrfs_header_nritems(l)) {
2831 ret = btrfs_next_leaf(root, path);
2832 if (ret < 0)
6f519564 2833 goto out_free_path;
38c227d8
LB
2834 else if (ret > 0)
2835 break;
2836 continue;
2837 }
2838
2839 btrfs_item_key_to_cpu(l, &key, slot);
2840
4a0cc7ca 2841 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2842 break;
2843 if (key.type != BTRFS_EXTENT_DATA_KEY)
2844 break;
2845 if (key.offset >= new->file_pos + new->len)
2846 break;
2847
2848 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2849
2850 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2851 if (key.offset + num_bytes < new->file_pos)
2852 goto next;
2853
2854 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2855 if (!disk_bytenr)
2856 goto next;
2857
2858 extent_offset = btrfs_file_extent_offset(l, extent);
2859
2860 old = kmalloc(sizeof(*old), GFP_NOFS);
2861 if (!old)
6f519564 2862 goto out_free_path;
38c227d8
LB
2863
2864 offset = max(new->file_pos, key.offset);
2865 end = min(new->file_pos + new->len, key.offset + num_bytes);
2866
2867 old->bytenr = disk_bytenr;
2868 old->extent_offset = extent_offset;
2869 old->offset = offset - key.offset;
2870 old->len = end - offset;
2871 old->new = new;
2872 old->count = 0;
2873 list_add_tail(&old->list, &new->head);
2874next:
2875 path->slots[0]++;
2876 cond_resched();
2877 }
2878
2879 btrfs_free_path(path);
0b246afa 2880 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2881
2882 return new;
2883
38c227d8
LB
2884out_free_path:
2885 btrfs_free_path(path);
2886out_kfree:
6f519564 2887 free_sa_defrag_extent(new);
38c227d8
LB
2888 return NULL;
2889}
2890
2ff7e61e 2891static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2892 u64 start, u64 len)
2893{
2894 struct btrfs_block_group_cache *cache;
2895
0b246afa 2896 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2897 ASSERT(cache);
2898
2899 spin_lock(&cache->lock);
2900 cache->delalloc_bytes -= len;
2901 spin_unlock(&cache->lock);
2902
2903 btrfs_put_block_group(cache);
2904}
2905
d352ac68
CM
2906/* as ordered data IO finishes, this gets called so we can finish
2907 * an ordered extent if the range of bytes in the file it covers are
2908 * fully written.
2909 */
5fd02043 2910static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2911{
5fd02043 2912 struct inode *inode = ordered_extent->inode;
0b246afa 2913 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2914 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2915 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2916 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2917 struct extent_state *cached_state = NULL;
38c227d8 2918 struct new_sa_defrag_extent *new = NULL;
261507a0 2919 int compress_type = 0;
77cef2ec
JB
2920 int ret = 0;
2921 u64 logical_len = ordered_extent->len;
82d5902d 2922 bool nolock;
77cef2ec 2923 bool truncated = false;
a7e3b975
FM
2924 bool range_locked = false;
2925 bool clear_new_delalloc_bytes = false;
49940bdd 2926 bool clear_reserved_extent = true;
a7e3b975
FM
2927
2928 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2929 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2930 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2931 clear_new_delalloc_bytes = true;
e6dcd2dc 2932
70ddc553 2933 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2934
5fd02043
JB
2935 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2936 ret = -EIO;
2937 goto out;
2938 }
2939
7ab7956e
NB
2940 btrfs_free_io_failure_record(BTRFS_I(inode),
2941 ordered_extent->file_offset,
2942 ordered_extent->file_offset +
2943 ordered_extent->len - 1);
f612496b 2944
77cef2ec
JB
2945 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2946 truncated = true;
2947 logical_len = ordered_extent->truncated_len;
2948 /* Truncated the entire extent, don't bother adding */
2949 if (!logical_len)
2950 goto out;
2951 }
2952
c2167754 2953 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2954 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2955
2956 /*
2957 * For mwrite(mmap + memset to write) case, we still reserve
2958 * space for NOCOW range.
2959 * As NOCOW won't cause a new delayed ref, just free the space
2960 */
bc42bda2 2961 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2962 ordered_extent->len);
6c760c07
JB
2963 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2964 if (nolock)
2965 trans = btrfs_join_transaction_nolock(root);
2966 else
2967 trans = btrfs_join_transaction(root);
2968 if (IS_ERR(trans)) {
2969 ret = PTR_ERR(trans);
2970 trans = NULL;
2971 goto out;
c2167754 2972 }
69fe2d75 2973 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2974 ret = btrfs_update_inode_fallback(trans, root, inode);
2975 if (ret) /* -ENOMEM or corruption */
66642832 2976 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2977 goto out;
2978 }
e6dcd2dc 2979
a7e3b975 2980 range_locked = true;
2ac55d41
JB
2981 lock_extent_bits(io_tree, ordered_extent->file_offset,
2982 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2983 &cached_state);
e6dcd2dc 2984
38c227d8
LB
2985 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2986 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 2987 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
2988 if (ret) {
2989 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2990 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2991 /* the inode is shared */
2992 new = record_old_file_extents(inode, ordered_extent);
2993
2994 clear_extent_bit(io_tree, ordered_extent->file_offset,
2995 ordered_extent->file_offset + ordered_extent->len - 1,
ae0f1625 2996 EXTENT_DEFRAG, 0, 0, &cached_state);
38c227d8
LB
2997 }
2998
0cb59c99 2999 if (nolock)
7a7eaa40 3000 trans = btrfs_join_transaction_nolock(root);
0cb59c99 3001 else
7a7eaa40 3002 trans = btrfs_join_transaction(root);
79787eaa
JM
3003 if (IS_ERR(trans)) {
3004 ret = PTR_ERR(trans);
3005 trans = NULL;
a7e3b975 3006 goto out;
79787eaa 3007 }
a79b7d4b 3008
69fe2d75 3009 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 3010
c8b97818 3011 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 3012 compress_type = ordered_extent->compress_type;
d899e052 3013 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 3014 BUG_ON(compress_type);
b430b775
JM
3015 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
3016 ordered_extent->len);
7a6d7067 3017 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3018 ordered_extent->file_offset,
3019 ordered_extent->file_offset +
77cef2ec 3020 logical_len);
d899e052 3021 } else {
0b246afa 3022 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3023 ret = insert_reserved_file_extent(trans, inode,
3024 ordered_extent->file_offset,
3025 ordered_extent->start,
3026 ordered_extent->disk_len,
77cef2ec 3027 logical_len, logical_len,
261507a0 3028 compress_type, 0, 0,
d899e052 3029 BTRFS_FILE_EXTENT_REG);
49940bdd
JB
3030 if (!ret) {
3031 clear_reserved_extent = false;
2ff7e61e 3032 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3033 ordered_extent->start,
3034 ordered_extent->disk_len);
49940bdd 3035 }
d899e052 3036 }
5dc562c5
JB
3037 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3038 ordered_extent->file_offset, ordered_extent->len,
3039 trans->transid);
79787eaa 3040 if (ret < 0) {
66642832 3041 btrfs_abort_transaction(trans, ret);
a7e3b975 3042 goto out;
79787eaa 3043 }
2ac55d41 3044
ac01f26a
NB
3045 ret = add_pending_csums(trans, inode, &ordered_extent->list);
3046 if (ret) {
3047 btrfs_abort_transaction(trans, ret);
3048 goto out;
3049 }
e6dcd2dc 3050
6c760c07
JB
3051 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3052 ret = btrfs_update_inode_fallback(trans, root, inode);
3053 if (ret) { /* -ENOMEM or corruption */
66642832 3054 btrfs_abort_transaction(trans, ret);
a7e3b975 3055 goto out;
1ef30be1
JB
3056 }
3057 ret = 0;
c2167754 3058out:
a7e3b975
FM
3059 if (range_locked || clear_new_delalloc_bytes) {
3060 unsigned int clear_bits = 0;
3061
3062 if (range_locked)
3063 clear_bits |= EXTENT_LOCKED;
3064 if (clear_new_delalloc_bytes)
3065 clear_bits |= EXTENT_DELALLOC_NEW;
3066 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3067 ordered_extent->file_offset,
3068 ordered_extent->file_offset +
3069 ordered_extent->len - 1,
3070 clear_bits,
3071 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
ae0f1625 3072 0, &cached_state);
a7e3b975
FM
3073 }
3074
a698d075 3075 if (trans)
3a45bb20 3076 btrfs_end_transaction(trans);
0cb59c99 3077
77cef2ec
JB
3078 if (ret || truncated) {
3079 u64 start, end;
3080
3081 if (truncated)
3082 start = ordered_extent->file_offset + logical_len;
3083 else
3084 start = ordered_extent->file_offset;
3085 end = ordered_extent->file_offset + ordered_extent->len - 1;
f08dc36f 3086 clear_extent_uptodate(io_tree, start, end, NULL);
77cef2ec
JB
3087
3088 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3089 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3090
0bec9ef5
JB
3091 /*
3092 * If the ordered extent had an IOERR or something else went
3093 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3094 * back to the allocator. We only free the extent in the
3095 * truncated case if we didn't write out the extent at all.
49940bdd
JB
3096 *
3097 * If we made it past insert_reserved_file_extent before we
3098 * errored out then we don't need to do this as the accounting
3099 * has already been done.
0bec9ef5 3100 */
77cef2ec 3101 if ((ret || !logical_len) &&
49940bdd 3102 clear_reserved_extent &&
77cef2ec 3103 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3104 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3105 btrfs_free_reserved_extent(fs_info,
3106 ordered_extent->start,
e570fd27 3107 ordered_extent->disk_len, 1);
0bec9ef5
JB
3108 }
3109
3110
5fd02043 3111 /*
8bad3c02
LB
3112 * This needs to be done to make sure anybody waiting knows we are done
3113 * updating everything for this ordered extent.
5fd02043
JB
3114 */
3115 btrfs_remove_ordered_extent(inode, ordered_extent);
3116
38c227d8 3117 /* for snapshot-aware defrag */
6f519564
LB
3118 if (new) {
3119 if (ret) {
3120 free_sa_defrag_extent(new);
0b246afa 3121 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3122 } else {
3123 relink_file_extents(new);
3124 }
3125 }
38c227d8 3126
e6dcd2dc
CM
3127 /* once for us */
3128 btrfs_put_ordered_extent(ordered_extent);
3129 /* once for the tree */
3130 btrfs_put_ordered_extent(ordered_extent);
3131
e73e81b6
EL
3132 /* Try to release some metadata so we don't get an OOM but don't wait */
3133 btrfs_btree_balance_dirty_nodelay(fs_info);
3134
5fd02043
JB
3135 return ret;
3136}
3137
3138static void finish_ordered_fn(struct btrfs_work *work)
3139{
3140 struct btrfs_ordered_extent *ordered_extent;
3141 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3142 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3143}
3144
c629732d
NB
3145void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3146 u64 end, int uptodate)
211f90e6 3147{
5fd02043 3148 struct inode *inode = page->mapping->host;
0b246afa 3149 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3150 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3151 struct btrfs_workqueue *wq;
3152 btrfs_work_func_t func;
5fd02043 3153
1abe9b8a 3154 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3155
8b62b72b 3156 ClearPagePrivate2(page);
5fd02043
JB
3157 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3158 end - start + 1, uptodate))
c3988d63 3159 return;
5fd02043 3160
70ddc553 3161 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3162 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3163 func = btrfs_freespace_write_helper;
3164 } else {
0b246afa 3165 wq = fs_info->endio_write_workers;
9e0af237
LB
3166 func = btrfs_endio_write_helper;
3167 }
5fd02043 3168
9e0af237
LB
3169 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3170 NULL);
3171 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3172}
3173
dc380aea
MX
3174static int __readpage_endio_check(struct inode *inode,
3175 struct btrfs_io_bio *io_bio,
3176 int icsum, struct page *page,
3177 int pgoff, u64 start, size_t len)
3178{
3179 char *kaddr;
3180 u32 csum_expected;
3181 u32 csum = ~(u32)0;
dc380aea
MX
3182
3183 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3184
3185 kaddr = kmap_atomic(page);
3186 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3187 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3188 if (csum != csum_expected)
3189 goto zeroit;
3190
3191 kunmap_atomic(kaddr);
3192 return 0;
3193zeroit:
0970a22e 3194 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3195 io_bio->mirror_num);
dc380aea
MX
3196 memset(kaddr + pgoff, 1, len);
3197 flush_dcache_page(page);
3198 kunmap_atomic(kaddr);
dc380aea
MX
3199 return -EIO;
3200}
3201
d352ac68
CM
3202/*
3203 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3204 * if there's a match, we allow the bio to finish. If not, the code in
3205 * extent_io.c will try to find good copies for us.
d352ac68 3206 */
facc8a22
MX
3207static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3208 u64 phy_offset, struct page *page,
3209 u64 start, u64 end, int mirror)
07157aac 3210{
4eee4fa4 3211 size_t offset = start - page_offset(page);
07157aac 3212 struct inode *inode = page->mapping->host;
d1310b2e 3213 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3214 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3215
d20f7043
CM
3216 if (PageChecked(page)) {
3217 ClearPageChecked(page);
dc380aea 3218 return 0;
d20f7043 3219 }
6cbff00f
CH
3220
3221 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3222 return 0;
17d217fe
YZ
3223
3224 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3225 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3226 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3227 return 0;
17d217fe 3228 }
d20f7043 3229
facc8a22 3230 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3231 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3232 start, (size_t)(end - start + 1));
07157aac 3233}
b888db2b 3234
c1c3fac2
NB
3235/*
3236 * btrfs_add_delayed_iput - perform a delayed iput on @inode
3237 *
3238 * @inode: The inode we want to perform iput on
3239 *
3240 * This function uses the generic vfs_inode::i_count to track whether we should
3241 * just decrement it (in case it's > 1) or if this is the last iput then link
3242 * the inode to the delayed iput machinery. Delayed iputs are processed at
3243 * transaction commit time/superblock commit/cleaner kthread.
3244 */
24bbcf04
YZ
3245void btrfs_add_delayed_iput(struct inode *inode)
3246{
0b246afa 3247 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3248 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3249
3250 if (atomic_add_unless(&inode->i_count, -1, 1))
3251 return;
3252
24bbcf04 3253 spin_lock(&fs_info->delayed_iput_lock);
c1c3fac2
NB
3254 ASSERT(list_empty(&binode->delayed_iput));
3255 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
24bbcf04
YZ
3256 spin_unlock(&fs_info->delayed_iput_lock);
3257}
3258
2ff7e61e 3259void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3260{
24bbcf04 3261
24bbcf04 3262 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3263 while (!list_empty(&fs_info->delayed_iputs)) {
3264 struct btrfs_inode *inode;
3265
3266 inode = list_first_entry(&fs_info->delayed_iputs,
3267 struct btrfs_inode, delayed_iput);
c1c3fac2 3268 list_del_init(&inode->delayed_iput);
8089fe62
DS
3269 spin_unlock(&fs_info->delayed_iput_lock);
3270 iput(&inode->vfs_inode);
3271 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3272 }
8089fe62 3273 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3274}
3275
7b128766 3276/*
f7e9e8fc
OS
3277 * This creates an orphan entry for the given inode in case something goes wrong
3278 * in the middle of an unlink.
7b128766 3279 */
73f2e545 3280int btrfs_orphan_add(struct btrfs_trans_handle *trans,
27919067 3281 struct btrfs_inode *inode)
7b128766 3282{
d68fc57b 3283 int ret;
7b128766 3284
27919067
OS
3285 ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
3286 if (ret && ret != -EEXIST) {
3287 btrfs_abort_transaction(trans, ret);
3288 return ret;
d68fc57b
YZ
3289 }
3290
d68fc57b 3291 return 0;
7b128766
JB
3292}
3293
3294/*
f7e9e8fc
OS
3295 * We have done the delete so we can go ahead and remove the orphan item for
3296 * this particular inode.
7b128766 3297 */
48a3b636 3298static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3299 struct btrfs_inode *inode)
7b128766 3300{
27919067 3301 return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
7b128766
JB
3302}
3303
3304/*
3305 * this cleans up any orphans that may be left on the list from the last use
3306 * of this root.
3307 */
66b4ffd1 3308int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3309{
0b246afa 3310 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3311 struct btrfs_path *path;
3312 struct extent_buffer *leaf;
7b128766
JB
3313 struct btrfs_key key, found_key;
3314 struct btrfs_trans_handle *trans;
3315 struct inode *inode;
8f6d7f4f 3316 u64 last_objectid = 0;
f7e9e8fc 3317 int ret = 0, nr_unlink = 0;
7b128766 3318
d68fc57b 3319 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3320 return 0;
c71bf099
YZ
3321
3322 path = btrfs_alloc_path();
66b4ffd1
JB
3323 if (!path) {
3324 ret = -ENOMEM;
3325 goto out;
3326 }
e4058b54 3327 path->reada = READA_BACK;
7b128766
JB
3328
3329 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3330 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3331 key.offset = (u64)-1;
3332
7b128766
JB
3333 while (1) {
3334 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3335 if (ret < 0)
3336 goto out;
7b128766
JB
3337
3338 /*
3339 * if ret == 0 means we found what we were searching for, which
25985edc 3340 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3341 * find the key and see if we have stuff that matches
3342 */
3343 if (ret > 0) {
66b4ffd1 3344 ret = 0;
7b128766
JB
3345 if (path->slots[0] == 0)
3346 break;
3347 path->slots[0]--;
3348 }
3349
3350 /* pull out the item */
3351 leaf = path->nodes[0];
7b128766
JB
3352 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3353
3354 /* make sure the item matches what we want */
3355 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3356 break;
962a298f 3357 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3358 break;
3359
3360 /* release the path since we're done with it */
b3b4aa74 3361 btrfs_release_path(path);
7b128766
JB
3362
3363 /*
3364 * this is where we are basically btrfs_lookup, without the
3365 * crossing root thing. we store the inode number in the
3366 * offset of the orphan item.
3367 */
8f6d7f4f
JB
3368
3369 if (found_key.offset == last_objectid) {
0b246afa
JM
3370 btrfs_err(fs_info,
3371 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3372 ret = -EINVAL;
3373 goto out;
3374 }
3375
3376 last_objectid = found_key.offset;
3377
5d4f98a2
YZ
3378 found_key.objectid = found_key.offset;
3379 found_key.type = BTRFS_INODE_ITEM_KEY;
3380 found_key.offset = 0;
0b246afa 3381 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3382 ret = PTR_ERR_OR_ZERO(inode);
67710892 3383 if (ret && ret != -ENOENT)
66b4ffd1 3384 goto out;
7b128766 3385
0b246afa 3386 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3387 struct btrfs_root *dead_root;
3388 struct btrfs_fs_info *fs_info = root->fs_info;
3389 int is_dead_root = 0;
3390
3391 /*
3392 * this is an orphan in the tree root. Currently these
3393 * could come from 2 sources:
3394 * a) a snapshot deletion in progress
3395 * b) a free space cache inode
3396 * We need to distinguish those two, as the snapshot
3397 * orphan must not get deleted.
3398 * find_dead_roots already ran before us, so if this
3399 * is a snapshot deletion, we should find the root
3400 * in the dead_roots list
3401 */
3402 spin_lock(&fs_info->trans_lock);
3403 list_for_each_entry(dead_root, &fs_info->dead_roots,
3404 root_list) {
3405 if (dead_root->root_key.objectid ==
3406 found_key.objectid) {
3407 is_dead_root = 1;
3408 break;
3409 }
3410 }
3411 spin_unlock(&fs_info->trans_lock);
3412 if (is_dead_root) {
3413 /* prevent this orphan from being found again */
3414 key.offset = found_key.objectid - 1;
3415 continue;
3416 }
f7e9e8fc 3417
f8e9e0b0 3418 }
f7e9e8fc 3419
7b128766 3420 /*
f7e9e8fc
OS
3421 * If we have an inode with links, there are a couple of
3422 * possibilities. Old kernels (before v3.12) used to create an
3423 * orphan item for truncate indicating that there were possibly
3424 * extent items past i_size that needed to be deleted. In v3.12,
3425 * truncate was changed to update i_size in sync with the extent
3426 * items, but the (useless) orphan item was still created. Since
3427 * v4.18, we don't create the orphan item for truncate at all.
3428 *
3429 * So, this item could mean that we need to do a truncate, but
3430 * only if this filesystem was last used on a pre-v3.12 kernel
3431 * and was not cleanly unmounted. The odds of that are quite
3432 * slim, and it's a pain to do the truncate now, so just delete
3433 * the orphan item.
3434 *
3435 * It's also possible that this orphan item was supposed to be
3436 * deleted but wasn't. The inode number may have been reused,
3437 * but either way, we can delete the orphan item.
7b128766 3438 */
f7e9e8fc
OS
3439 if (ret == -ENOENT || inode->i_nlink) {
3440 if (!ret)
3441 iput(inode);
a8c9e576 3442 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3443 if (IS_ERR(trans)) {
3444 ret = PTR_ERR(trans);
3445 goto out;
3446 }
0b246afa
JM
3447 btrfs_debug(fs_info, "auto deleting %Lu",
3448 found_key.objectid);
a8c9e576
JB
3449 ret = btrfs_del_orphan_item(trans, root,
3450 found_key.objectid);
3a45bb20 3451 btrfs_end_transaction(trans);
4ef31a45
JB
3452 if (ret)
3453 goto out;
7b128766
JB
3454 continue;
3455 }
3456
f7e9e8fc 3457 nr_unlink++;
7b128766
JB
3458
3459 /* this will do delete_inode and everything for us */
3460 iput(inode);
3461 }
3254c876
MX
3462 /* release the path since we're done with it */
3463 btrfs_release_path(path);
3464
d68fc57b
YZ
3465 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3466
a575ceeb 3467 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3468 trans = btrfs_join_transaction(root);
66b4ffd1 3469 if (!IS_ERR(trans))
3a45bb20 3470 btrfs_end_transaction(trans);
d68fc57b 3471 }
7b128766
JB
3472
3473 if (nr_unlink)
0b246afa 3474 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
66b4ffd1
JB
3475
3476out:
3477 if (ret)
0b246afa 3478 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3479 btrfs_free_path(path);
3480 return ret;
7b128766
JB
3481}
3482
46a53cca
CM
3483/*
3484 * very simple check to peek ahead in the leaf looking for xattrs. If we
3485 * don't find any xattrs, we know there can't be any acls.
3486 *
3487 * slot is the slot the inode is in, objectid is the objectid of the inode
3488 */
3489static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3490 int slot, u64 objectid,
3491 int *first_xattr_slot)
46a53cca
CM
3492{
3493 u32 nritems = btrfs_header_nritems(leaf);
3494 struct btrfs_key found_key;
f23b5a59
JB
3495 static u64 xattr_access = 0;
3496 static u64 xattr_default = 0;
46a53cca
CM
3497 int scanned = 0;
3498
f23b5a59 3499 if (!xattr_access) {
97d79299
AG
3500 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3501 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3502 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3503 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3504 }
3505
46a53cca 3506 slot++;
63541927 3507 *first_xattr_slot = -1;
46a53cca
CM
3508 while (slot < nritems) {
3509 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3510
3511 /* we found a different objectid, there must not be acls */
3512 if (found_key.objectid != objectid)
3513 return 0;
3514
3515 /* we found an xattr, assume we've got an acl */
f23b5a59 3516 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3517 if (*first_xattr_slot == -1)
3518 *first_xattr_slot = slot;
f23b5a59
JB
3519 if (found_key.offset == xattr_access ||
3520 found_key.offset == xattr_default)
3521 return 1;
3522 }
46a53cca
CM
3523
3524 /*
3525 * we found a key greater than an xattr key, there can't
3526 * be any acls later on
3527 */
3528 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3529 return 0;
3530
3531 slot++;
3532 scanned++;
3533
3534 /*
3535 * it goes inode, inode backrefs, xattrs, extents,
3536 * so if there are a ton of hard links to an inode there can
3537 * be a lot of backrefs. Don't waste time searching too hard,
3538 * this is just an optimization
3539 */
3540 if (scanned >= 8)
3541 break;
3542 }
3543 /* we hit the end of the leaf before we found an xattr or
3544 * something larger than an xattr. We have to assume the inode
3545 * has acls
3546 */
63541927
FDBM
3547 if (*first_xattr_slot == -1)
3548 *first_xattr_slot = slot;
46a53cca
CM
3549 return 1;
3550}
3551
d352ac68
CM
3552/*
3553 * read an inode from the btree into the in-memory inode
3554 */
4222ea71
FM
3555static int btrfs_read_locked_inode(struct inode *inode,
3556 struct btrfs_path *in_path)
39279cc3 3557{
0b246afa 3558 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4222ea71 3559 struct btrfs_path *path = in_path;
5f39d397 3560 struct extent_buffer *leaf;
39279cc3
CM
3561 struct btrfs_inode_item *inode_item;
3562 struct btrfs_root *root = BTRFS_I(inode)->root;
3563 struct btrfs_key location;
67de1176 3564 unsigned long ptr;
46a53cca 3565 int maybe_acls;
618e21d5 3566 u32 rdev;
39279cc3 3567 int ret;
2f7e33d4 3568 bool filled = false;
63541927 3569 int first_xattr_slot;
2f7e33d4
MX
3570
3571 ret = btrfs_fill_inode(inode, &rdev);
3572 if (!ret)
3573 filled = true;
39279cc3 3574
4222ea71
FM
3575 if (!path) {
3576 path = btrfs_alloc_path();
3577 if (!path)
3578 return -ENOMEM;
3579 }
1748f843 3580
39279cc3 3581 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3582
39279cc3 3583 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892 3584 if (ret) {
4222ea71
FM
3585 if (path != in_path)
3586 btrfs_free_path(path);
f5b3a417 3587 return ret;
67710892 3588 }
39279cc3 3589
5f39d397 3590 leaf = path->nodes[0];
2f7e33d4
MX
3591
3592 if (filled)
67de1176 3593 goto cache_index;
2f7e33d4 3594
5f39d397
CM
3595 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3596 struct btrfs_inode_item);
5f39d397 3597 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3598 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3599 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3600 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3601 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3602
a937b979
DS
3603 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3604 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3605
a937b979
DS
3606 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3607 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3608
a937b979
DS
3609 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3610 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3611
9cc97d64 3612 BTRFS_I(inode)->i_otime.tv_sec =
3613 btrfs_timespec_sec(leaf, &inode_item->otime);
3614 BTRFS_I(inode)->i_otime.tv_nsec =
3615 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3616
a76a3cd4 3617 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3618 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3619 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3620
c7f88c4e
JL
3621 inode_set_iversion_queried(inode,
3622 btrfs_inode_sequence(leaf, inode_item));
6e17d30b
YD
3623 inode->i_generation = BTRFS_I(inode)->generation;
3624 inode->i_rdev = 0;
3625 rdev = btrfs_inode_rdev(leaf, inode_item);
3626
3627 BTRFS_I(inode)->index_cnt = (u64)-1;
3628 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3629
3630cache_index:
5dc562c5
JB
3631 /*
3632 * If we were modified in the current generation and evicted from memory
3633 * and then re-read we need to do a full sync since we don't have any
3634 * idea about which extents were modified before we were evicted from
3635 * cache.
6e17d30b
YD
3636 *
3637 * This is required for both inode re-read from disk and delayed inode
3638 * in delayed_nodes_tree.
5dc562c5 3639 */
0b246afa 3640 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3641 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3642 &BTRFS_I(inode)->runtime_flags);
3643
bde6c242
FM
3644 /*
3645 * We don't persist the id of the transaction where an unlink operation
3646 * against the inode was last made. So here we assume the inode might
3647 * have been evicted, and therefore the exact value of last_unlink_trans
3648 * lost, and set it to last_trans to avoid metadata inconsistencies
3649 * between the inode and its parent if the inode is fsync'ed and the log
3650 * replayed. For example, in the scenario:
3651 *
3652 * touch mydir/foo
3653 * ln mydir/foo mydir/bar
3654 * sync
3655 * unlink mydir/bar
3656 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3657 * xfs_io -c fsync mydir/foo
3658 * <power failure>
3659 * mount fs, triggers fsync log replay
3660 *
3661 * We must make sure that when we fsync our inode foo we also log its
3662 * parent inode, otherwise after log replay the parent still has the
3663 * dentry with the "bar" name but our inode foo has a link count of 1
3664 * and doesn't have an inode ref with the name "bar" anymore.
3665 *
3666 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3667 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3668 * transaction commits on fsync if our inode is a directory, or if our
3669 * inode is not a directory, logging its parent unnecessarily.
3670 */
3671 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
41bd6067
FM
3672 /*
3673 * Similar reasoning for last_link_trans, needs to be set otherwise
3674 * for a case like the following:
3675 *
3676 * mkdir A
3677 * touch foo
3678 * ln foo A/bar
3679 * echo 2 > /proc/sys/vm/drop_caches
3680 * fsync foo
3681 * <power failure>
3682 *
3683 * Would result in link bar and directory A not existing after the power
3684 * failure.
3685 */
3686 BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans;
bde6c242 3687
67de1176
MX
3688 path->slots[0]++;
3689 if (inode->i_nlink != 1 ||
3690 path->slots[0] >= btrfs_header_nritems(leaf))
3691 goto cache_acl;
3692
3693 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3694 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3695 goto cache_acl;
3696
3697 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3698 if (location.type == BTRFS_INODE_REF_KEY) {
3699 struct btrfs_inode_ref *ref;
3700
3701 ref = (struct btrfs_inode_ref *)ptr;
3702 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3703 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3704 struct btrfs_inode_extref *extref;
3705
3706 extref = (struct btrfs_inode_extref *)ptr;
3707 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3708 extref);
3709 }
2f7e33d4 3710cache_acl:
46a53cca
CM
3711 /*
3712 * try to precache a NULL acl entry for files that don't have
3713 * any xattrs or acls
3714 */
33345d01 3715 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3716 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3717 if (first_xattr_slot != -1) {
3718 path->slots[0] = first_xattr_slot;
3719 ret = btrfs_load_inode_props(inode, path);
3720 if (ret)
0b246afa 3721 btrfs_err(fs_info,
351fd353 3722 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3723 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3724 root->root_key.objectid, ret);
3725 }
4222ea71
FM
3726 if (path != in_path)
3727 btrfs_free_path(path);
63541927 3728
72c04902
AV
3729 if (!maybe_acls)
3730 cache_no_acl(inode);
46a53cca 3731
39279cc3 3732 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3733 case S_IFREG:
3734 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3735 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3736 inode->i_fop = &btrfs_file_operations;
3737 inode->i_op = &btrfs_file_inode_operations;
3738 break;
3739 case S_IFDIR:
3740 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3741 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3742 break;
3743 case S_IFLNK:
3744 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3745 inode_nohighmem(inode);
4779cc04 3746 inode->i_mapping->a_ops = &btrfs_aops;
39279cc3 3747 break;
618e21d5 3748 default:
0279b4cd 3749 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3750 init_special_inode(inode, inode->i_mode, rdev);
3751 break;
39279cc3 3752 }
6cbff00f 3753
7b6a221e 3754 btrfs_sync_inode_flags_to_i_flags(inode);
67710892 3755 return 0;
39279cc3
CM
3756}
3757
d352ac68
CM
3758/*
3759 * given a leaf and an inode, copy the inode fields into the leaf
3760 */
e02119d5
CM
3761static void fill_inode_item(struct btrfs_trans_handle *trans,
3762 struct extent_buffer *leaf,
5f39d397 3763 struct btrfs_inode_item *item,
39279cc3
CM
3764 struct inode *inode)
3765{
51fab693
LB
3766 struct btrfs_map_token token;
3767
3768 btrfs_init_map_token(&token);
5f39d397 3769
51fab693
LB
3770 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3771 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3772 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3773 &token);
3774 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3775 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3776
a937b979 3777 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3778 inode->i_atime.tv_sec, &token);
a937b979 3779 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3780 inode->i_atime.tv_nsec, &token);
5f39d397 3781
a937b979 3782 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3783 inode->i_mtime.tv_sec, &token);
a937b979 3784 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3785 inode->i_mtime.tv_nsec, &token);
5f39d397 3786
a937b979 3787 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3788 inode->i_ctime.tv_sec, &token);
a937b979 3789 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3790 inode->i_ctime.tv_nsec, &token);
5f39d397 3791
9cc97d64 3792 btrfs_set_token_timespec_sec(leaf, &item->otime,
3793 BTRFS_I(inode)->i_otime.tv_sec, &token);
3794 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3795 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3796
51fab693
LB
3797 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3798 &token);
3799 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3800 &token);
c7f88c4e
JL
3801 btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode),
3802 &token);
51fab693
LB
3803 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3804 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3805 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3806 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3807}
3808
d352ac68
CM
3809/*
3810 * copy everything in the in-memory inode into the btree.
3811 */
2115133f 3812static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3813 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3814{
3815 struct btrfs_inode_item *inode_item;
3816 struct btrfs_path *path;
5f39d397 3817 struct extent_buffer *leaf;
39279cc3
CM
3818 int ret;
3819
3820 path = btrfs_alloc_path();
16cdcec7
MX
3821 if (!path)
3822 return -ENOMEM;
3823
b9473439 3824 path->leave_spinning = 1;
16cdcec7
MX
3825 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3826 1);
39279cc3
CM
3827 if (ret) {
3828 if (ret > 0)
3829 ret = -ENOENT;
3830 goto failed;
3831 }
3832
5f39d397
CM
3833 leaf = path->nodes[0];
3834 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3835 struct btrfs_inode_item);
39279cc3 3836
e02119d5 3837 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3838 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3839 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3840 ret = 0;
3841failed:
39279cc3
CM
3842 btrfs_free_path(path);
3843 return ret;
3844}
3845
2115133f
CM
3846/*
3847 * copy everything in the in-memory inode into the btree.
3848 */
3849noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3850 struct btrfs_root *root, struct inode *inode)
3851{
0b246afa 3852 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3853 int ret;
3854
3855 /*
3856 * If the inode is a free space inode, we can deadlock during commit
3857 * if we put it into the delayed code.
3858 *
3859 * The data relocation inode should also be directly updated
3860 * without delay
3861 */
70ddc553 3862 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3863 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 3864 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
3865 btrfs_update_root_times(trans, root);
3866
2115133f
CM
3867 ret = btrfs_delayed_update_inode(trans, root, inode);
3868 if (!ret)
3869 btrfs_set_inode_last_trans(trans, inode);
3870 return ret;
3871 }
3872
3873 return btrfs_update_inode_item(trans, root, inode);
3874}
3875
be6aef60
JB
3876noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3877 struct btrfs_root *root,
3878 struct inode *inode)
2115133f
CM
3879{
3880 int ret;
3881
3882 ret = btrfs_update_inode(trans, root, inode);
3883 if (ret == -ENOSPC)
3884 return btrfs_update_inode_item(trans, root, inode);
3885 return ret;
3886}
3887
d352ac68
CM
3888/*
3889 * unlink helper that gets used here in inode.c and in the tree logging
3890 * recovery code. It remove a link in a directory with a given name, and
3891 * also drops the back refs in the inode to the directory
3892 */
92986796
AV
3893static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3894 struct btrfs_root *root,
4ec5934e
NB
3895 struct btrfs_inode *dir,
3896 struct btrfs_inode *inode,
92986796 3897 const char *name, int name_len)
39279cc3 3898{
0b246afa 3899 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 3900 struct btrfs_path *path;
39279cc3 3901 int ret = 0;
5f39d397 3902 struct extent_buffer *leaf;
39279cc3 3903 struct btrfs_dir_item *di;
5f39d397 3904 struct btrfs_key key;
aec7477b 3905 u64 index;
33345d01
LZ
3906 u64 ino = btrfs_ino(inode);
3907 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3908
3909 path = btrfs_alloc_path();
54aa1f4d
CM
3910 if (!path) {
3911 ret = -ENOMEM;
554233a6 3912 goto out;
54aa1f4d
CM
3913 }
3914
b9473439 3915 path->leave_spinning = 1;
33345d01 3916 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3 3917 name, name_len, -1);
3cf5068f
LB
3918 if (IS_ERR_OR_NULL(di)) {
3919 ret = di ? PTR_ERR(di) : -ENOENT;
39279cc3
CM
3920 goto err;
3921 }
5f39d397
CM
3922 leaf = path->nodes[0];
3923 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3924 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3925 if (ret)
3926 goto err;
b3b4aa74 3927 btrfs_release_path(path);
39279cc3 3928
67de1176
MX
3929 /*
3930 * If we don't have dir index, we have to get it by looking up
3931 * the inode ref, since we get the inode ref, remove it directly,
3932 * it is unnecessary to do delayed deletion.
3933 *
3934 * But if we have dir index, needn't search inode ref to get it.
3935 * Since the inode ref is close to the inode item, it is better
3936 * that we delay to delete it, and just do this deletion when
3937 * we update the inode item.
3938 */
4ec5934e 3939 if (inode->dir_index) {
67de1176
MX
3940 ret = btrfs_delayed_delete_inode_ref(inode);
3941 if (!ret) {
4ec5934e 3942 index = inode->dir_index;
67de1176
MX
3943 goto skip_backref;
3944 }
3945 }
3946
33345d01
LZ
3947 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3948 dir_ino, &index);
aec7477b 3949 if (ret) {
0b246afa 3950 btrfs_info(fs_info,
c2cf52eb 3951 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3952 name_len, name, ino, dir_ino);
66642832 3953 btrfs_abort_transaction(trans, ret);
aec7477b
JB
3954 goto err;
3955 }
67de1176 3956skip_backref:
9add2945 3957 ret = btrfs_delete_delayed_dir_index(trans, dir, index);
79787eaa 3958 if (ret) {
66642832 3959 btrfs_abort_transaction(trans, ret);
39279cc3 3960 goto err;
79787eaa 3961 }
39279cc3 3962
4ec5934e
NB
3963 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3964 dir_ino);
79787eaa 3965 if (ret != 0 && ret != -ENOENT) {
66642832 3966 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3967 goto err;
3968 }
e02119d5 3969
4ec5934e
NB
3970 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3971 index);
6418c961
CM
3972 if (ret == -ENOENT)
3973 ret = 0;
d4e3991b 3974 else if (ret)
66642832 3975 btrfs_abort_transaction(trans, ret);
39279cc3
CM
3976err:
3977 btrfs_free_path(path);
e02119d5
CM
3978 if (ret)
3979 goto out;
3980
6ef06d27 3981 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
3982 inode_inc_iversion(&inode->vfs_inode);
3983 inode_inc_iversion(&dir->vfs_inode);
3984 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3985 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3986 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 3987out:
39279cc3
CM
3988 return ret;
3989}
3990
92986796
AV
3991int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3992 struct btrfs_root *root,
4ec5934e 3993 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
3994 const char *name, int name_len)
3995{
3996 int ret;
3997 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3998 if (!ret) {
4ec5934e
NB
3999 drop_nlink(&inode->vfs_inode);
4000 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4001 }
4002 return ret;
4003}
39279cc3 4004
a22285a6
YZ
4005/*
4006 * helper to start transaction for unlink and rmdir.
4007 *
d52be818
JB
4008 * unlink and rmdir are special in btrfs, they do not always free space, so
4009 * if we cannot make our reservations the normal way try and see if there is
4010 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4011 * allow the unlink to occur.
a22285a6 4012 */
d52be818 4013static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4014{
a22285a6 4015 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4016
e70bea5f
JB
4017 /*
4018 * 1 for the possible orphan item
4019 * 1 for the dir item
4020 * 1 for the dir index
4021 * 1 for the inode ref
e70bea5f
JB
4022 * 1 for the inode
4023 */
8eab77ff 4024 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4025}
4026
4027static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4028{
4029 struct btrfs_root *root = BTRFS_I(dir)->root;
4030 struct btrfs_trans_handle *trans;
2b0143b5 4031 struct inode *inode = d_inode(dentry);
a22285a6 4032 int ret;
a22285a6 4033
d52be818 4034 trans = __unlink_start_trans(dir);
a22285a6
YZ
4035 if (IS_ERR(trans))
4036 return PTR_ERR(trans);
5f39d397 4037
4ec5934e
NB
4038 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4039 0);
12fcfd22 4040
4ec5934e
NB
4041 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4042 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4043 dentry->d_name.len);
b532402e
TI
4044 if (ret)
4045 goto out;
7b128766 4046
a22285a6 4047 if (inode->i_nlink == 0) {
73f2e545 4048 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4049 if (ret)
4050 goto out;
a22285a6 4051 }
7b128766 4052
b532402e 4053out:
3a45bb20 4054 btrfs_end_transaction(trans);
2ff7e61e 4055 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4056 return ret;
4057}
4058
f60a2364 4059static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
401b3b19
LF
4060 struct inode *dir, u64 objectid,
4061 const char *name, int name_len)
4df27c4d 4062{
401b3b19 4063 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
4064 struct btrfs_path *path;
4065 struct extent_buffer *leaf;
4066 struct btrfs_dir_item *di;
4067 struct btrfs_key key;
4068 u64 index;
4069 int ret;
4a0cc7ca 4070 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4071
4072 path = btrfs_alloc_path();
4073 if (!path)
4074 return -ENOMEM;
4075
33345d01 4076 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4077 name, name_len, -1);
79787eaa 4078 if (IS_ERR_OR_NULL(di)) {
3cf5068f 4079 ret = di ? PTR_ERR(di) : -ENOENT;
79787eaa
JM
4080 goto out;
4081 }
4df27c4d
YZ
4082
4083 leaf = path->nodes[0];
4084 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4085 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4086 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4087 if (ret) {
66642832 4088 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4089 goto out;
4090 }
b3b4aa74 4091 btrfs_release_path(path);
4df27c4d 4092
3ee1c553
LF
4093 ret = btrfs_del_root_ref(trans, objectid, root->root_key.objectid,
4094 dir_ino, &index, name, name_len);
4df27c4d 4095 if (ret < 0) {
79787eaa 4096 if (ret != -ENOENT) {
66642832 4097 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4098 goto out;
4099 }
33345d01 4100 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4101 name, name_len);
79787eaa
JM
4102 if (IS_ERR_OR_NULL(di)) {
4103 if (!di)
4104 ret = -ENOENT;
4105 else
4106 ret = PTR_ERR(di);
66642832 4107 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4108 goto out;
4109 }
4df27c4d
YZ
4110
4111 leaf = path->nodes[0];
4112 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4df27c4d
YZ
4113 index = key.offset;
4114 }
945d8962 4115 btrfs_release_path(path);
4df27c4d 4116
9add2945 4117 ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
79787eaa 4118 if (ret) {
66642832 4119 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4120 goto out;
4121 }
4df27c4d 4122
6ef06d27 4123 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4124 inode_inc_iversion(dir);
c2050a45 4125 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4126 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4127 if (ret)
66642832 4128 btrfs_abort_transaction(trans, ret);
79787eaa 4129out:
71d7aed0 4130 btrfs_free_path(path);
79787eaa 4131 return ret;
4df27c4d
YZ
4132}
4133
ec42f167
MT
4134/*
4135 * Helper to check if the subvolume references other subvolumes or if it's
4136 * default.
4137 */
f60a2364 4138static noinline int may_destroy_subvol(struct btrfs_root *root)
ec42f167
MT
4139{
4140 struct btrfs_fs_info *fs_info = root->fs_info;
4141 struct btrfs_path *path;
4142 struct btrfs_dir_item *di;
4143 struct btrfs_key key;
4144 u64 dir_id;
4145 int ret;
4146
4147 path = btrfs_alloc_path();
4148 if (!path)
4149 return -ENOMEM;
4150
4151 /* Make sure this root isn't set as the default subvol */
4152 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4153 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
4154 dir_id, "default", 7, 0);
4155 if (di && !IS_ERR(di)) {
4156 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
4157 if (key.objectid == root->root_key.objectid) {
4158 ret = -EPERM;
4159 btrfs_err(fs_info,
4160 "deleting default subvolume %llu is not allowed",
4161 key.objectid);
4162 goto out;
4163 }
4164 btrfs_release_path(path);
4165 }
4166
4167 key.objectid = root->root_key.objectid;
4168 key.type = BTRFS_ROOT_REF_KEY;
4169 key.offset = (u64)-1;
4170
4171 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4172 if (ret < 0)
4173 goto out;
4174 BUG_ON(ret == 0);
4175
4176 ret = 0;
4177 if (path->slots[0] > 0) {
4178 path->slots[0]--;
4179 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
4180 if (key.objectid == root->root_key.objectid &&
4181 key.type == BTRFS_ROOT_REF_KEY)
4182 ret = -ENOTEMPTY;
4183 }
4184out:
4185 btrfs_free_path(path);
4186 return ret;
4187}
4188
20a68004
NB
4189/* Delete all dentries for inodes belonging to the root */
4190static void btrfs_prune_dentries(struct btrfs_root *root)
4191{
4192 struct btrfs_fs_info *fs_info = root->fs_info;
4193 struct rb_node *node;
4194 struct rb_node *prev;
4195 struct btrfs_inode *entry;
4196 struct inode *inode;
4197 u64 objectid = 0;
4198
4199 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
4200 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4201
4202 spin_lock(&root->inode_lock);
4203again:
4204 node = root->inode_tree.rb_node;
4205 prev = NULL;
4206 while (node) {
4207 prev = node;
4208 entry = rb_entry(node, struct btrfs_inode, rb_node);
4209
37508515 4210 if (objectid < btrfs_ino(entry))
20a68004 4211 node = node->rb_left;
37508515 4212 else if (objectid > btrfs_ino(entry))
20a68004
NB
4213 node = node->rb_right;
4214 else
4215 break;
4216 }
4217 if (!node) {
4218 while (prev) {
4219 entry = rb_entry(prev, struct btrfs_inode, rb_node);
37508515 4220 if (objectid <= btrfs_ino(entry)) {
20a68004
NB
4221 node = prev;
4222 break;
4223 }
4224 prev = rb_next(prev);
4225 }
4226 }
4227 while (node) {
4228 entry = rb_entry(node, struct btrfs_inode, rb_node);
37508515 4229 objectid = btrfs_ino(entry) + 1;
20a68004
NB
4230 inode = igrab(&entry->vfs_inode);
4231 if (inode) {
4232 spin_unlock(&root->inode_lock);
4233 if (atomic_read(&inode->i_count) > 1)
4234 d_prune_aliases(inode);
4235 /*
4236 * btrfs_drop_inode will have it removed from the inode
4237 * cache when its usage count hits zero.
4238 */
4239 iput(inode);
4240 cond_resched();
4241 spin_lock(&root->inode_lock);
4242 goto again;
4243 }
4244
4245 if (cond_resched_lock(&root->inode_lock))
4246 goto again;
4247
4248 node = rb_next(node);
4249 }
4250 spin_unlock(&root->inode_lock);
4251}
4252
f60a2364
MT
4253int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
4254{
4255 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
4256 struct btrfs_root *root = BTRFS_I(dir)->root;
4257 struct inode *inode = d_inode(dentry);
4258 struct btrfs_root *dest = BTRFS_I(inode)->root;
4259 struct btrfs_trans_handle *trans;
4260 struct btrfs_block_rsv block_rsv;
4261 u64 root_flags;
f60a2364
MT
4262 int ret;
4263 int err;
4264
4265 /*
4266 * Don't allow to delete a subvolume with send in progress. This is
4267 * inside the inode lock so the error handling that has to drop the bit
4268 * again is not run concurrently.
4269 */
4270 spin_lock(&dest->root_item_lock);
a7176f74 4271 if (dest->send_in_progress) {
f60a2364
MT
4272 spin_unlock(&dest->root_item_lock);
4273 btrfs_warn(fs_info,
4274 "attempt to delete subvolume %llu during send",
4275 dest->root_key.objectid);
4276 return -EPERM;
4277 }
a7176f74
LF
4278 root_flags = btrfs_root_flags(&dest->root_item);
4279 btrfs_set_root_flags(&dest->root_item,
4280 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
4281 spin_unlock(&dest->root_item_lock);
f60a2364
MT
4282
4283 down_write(&fs_info->subvol_sem);
4284
4285 err = may_destroy_subvol(dest);
4286 if (err)
4287 goto out_up_write;
4288
4289 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
4290 /*
4291 * One for dir inode,
4292 * two for dir entries,
4293 * two for root ref/backref.
4294 */
c4c129db 4295 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
f60a2364
MT
4296 if (err)
4297 goto out_up_write;
4298
4299 trans = btrfs_start_transaction(root, 0);
4300 if (IS_ERR(trans)) {
4301 err = PTR_ERR(trans);
4302 goto out_release;
4303 }
4304 trans->block_rsv = &block_rsv;
4305 trans->bytes_reserved = block_rsv.size;
4306
4307 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4308
401b3b19
LF
4309 ret = btrfs_unlink_subvol(trans, dir, dest->root_key.objectid,
4310 dentry->d_name.name, dentry->d_name.len);
f60a2364
MT
4311 if (ret) {
4312 err = ret;
4313 btrfs_abort_transaction(trans, ret);
4314 goto out_end_trans;
4315 }
4316
4317 btrfs_record_root_in_trans(trans, dest);
4318
4319 memset(&dest->root_item.drop_progress, 0,
4320 sizeof(dest->root_item.drop_progress));
4321 dest->root_item.drop_level = 0;
4322 btrfs_set_root_refs(&dest->root_item, 0);
4323
4324 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4325 ret = btrfs_insert_orphan_item(trans,
4326 fs_info->tree_root,
4327 dest->root_key.objectid);
4328 if (ret) {
4329 btrfs_abort_transaction(trans, ret);
4330 err = ret;
4331 goto out_end_trans;
4332 }
4333 }
4334
d1957791 4335 ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
f60a2364
MT
4336 BTRFS_UUID_KEY_SUBVOL,
4337 dest->root_key.objectid);
4338 if (ret && ret != -ENOENT) {
4339 btrfs_abort_transaction(trans, ret);
4340 err = ret;
4341 goto out_end_trans;
4342 }
4343 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
d1957791 4344 ret = btrfs_uuid_tree_remove(trans,
f60a2364
MT
4345 dest->root_item.received_uuid,
4346 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4347 dest->root_key.objectid);
4348 if (ret && ret != -ENOENT) {
4349 btrfs_abort_transaction(trans, ret);
4350 err = ret;
4351 goto out_end_trans;
4352 }
4353 }
4354
4355out_end_trans:
4356 trans->block_rsv = NULL;
4357 trans->bytes_reserved = 0;
4358 ret = btrfs_end_transaction(trans);
4359 if (ret && !err)
4360 err = ret;
4361 inode->i_flags |= S_DEAD;
4362out_release:
4363 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4364out_up_write:
4365 up_write(&fs_info->subvol_sem);
4366 if (err) {
4367 spin_lock(&dest->root_item_lock);
4368 root_flags = btrfs_root_flags(&dest->root_item);
4369 btrfs_set_root_flags(&dest->root_item,
4370 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4371 spin_unlock(&dest->root_item_lock);
4372 } else {
4373 d_invalidate(dentry);
20a68004 4374 btrfs_prune_dentries(dest);
f60a2364
MT
4375 ASSERT(dest->send_in_progress == 0);
4376
4377 /* the last ref */
4378 if (dest->ino_cache_inode) {
4379 iput(dest->ino_cache_inode);
4380 dest->ino_cache_inode = NULL;
4381 }
4382 }
4383
4384 return err;
4385}
4386
39279cc3
CM
4387static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4388{
2b0143b5 4389 struct inode *inode = d_inode(dentry);
1832a6d5 4390 int err = 0;
39279cc3 4391 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4392 struct btrfs_trans_handle *trans;
44f714da 4393 u64 last_unlink_trans;
39279cc3 4394
b3ae244e 4395 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4396 return -ENOTEMPTY;
4a0cc7ca 4397 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
a79a464d 4398 return btrfs_delete_subvolume(dir, dentry);
134d4512 4399
d52be818 4400 trans = __unlink_start_trans(dir);
a22285a6 4401 if (IS_ERR(trans))
5df6a9f6 4402 return PTR_ERR(trans);
5df6a9f6 4403
4a0cc7ca 4404 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
401b3b19 4405 err = btrfs_unlink_subvol(trans, dir,
4df27c4d
YZ
4406 BTRFS_I(inode)->location.objectid,
4407 dentry->d_name.name,
4408 dentry->d_name.len);
4409 goto out;
4410 }
4411
73f2e545 4412 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4413 if (err)
4df27c4d 4414 goto out;
7b128766 4415
44f714da
FM
4416 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4417
39279cc3 4418 /* now the directory is empty */
4ec5934e
NB
4419 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4420 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4421 dentry->d_name.len);
44f714da 4422 if (!err) {
6ef06d27 4423 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4424 /*
4425 * Propagate the last_unlink_trans value of the deleted dir to
4426 * its parent directory. This is to prevent an unrecoverable
4427 * log tree in the case we do something like this:
4428 * 1) create dir foo
4429 * 2) create snapshot under dir foo
4430 * 3) delete the snapshot
4431 * 4) rmdir foo
4432 * 5) mkdir foo
4433 * 6) fsync foo or some file inside foo
4434 */
4435 if (last_unlink_trans >= trans->transid)
4436 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4437 }
4df27c4d 4438out:
3a45bb20 4439 btrfs_end_transaction(trans);
2ff7e61e 4440 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4441
39279cc3
CM
4442 return err;
4443}
4444
28f75a0e
CM
4445static int truncate_space_check(struct btrfs_trans_handle *trans,
4446 struct btrfs_root *root,
4447 u64 bytes_deleted)
4448{
0b246afa 4449 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4450 int ret;
4451
dc95f7bf
JB
4452 /*
4453 * This is only used to apply pressure to the enospc system, we don't
4454 * intend to use this reservation at all.
4455 */
2ff7e61e 4456 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4457 bytes_deleted *= fs_info->nodesize;
4458 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4459 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4460 if (!ret) {
0b246afa 4461 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4462 trans->transid,
4463 bytes_deleted, 1);
28f75a0e 4464 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4465 }
28f75a0e
CM
4466 return ret;
4467
4468}
4469
ddfae63c
JB
4470/*
4471 * Return this if we need to call truncate_block for the last bit of the
4472 * truncate.
4473 */
4474#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4475
39279cc3
CM
4476/*
4477 * this can truncate away extent items, csum items and directory items.
4478 * It starts at a high offset and removes keys until it can't find
d352ac68 4479 * any higher than new_size
39279cc3
CM
4480 *
4481 * csum items that cross the new i_size are truncated to the new size
4482 * as well.
7b128766
JB
4483 *
4484 * min_type is the minimum key type to truncate down to. If set to 0, this
4485 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4486 */
8082510e
YZ
4487int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4488 struct btrfs_root *root,
4489 struct inode *inode,
4490 u64 new_size, u32 min_type)
39279cc3 4491{
0b246afa 4492 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4493 struct btrfs_path *path;
5f39d397 4494 struct extent_buffer *leaf;
39279cc3 4495 struct btrfs_file_extent_item *fi;
8082510e
YZ
4496 struct btrfs_key key;
4497 struct btrfs_key found_key;
39279cc3 4498 u64 extent_start = 0;
db94535d 4499 u64 extent_num_bytes = 0;
5d4f98a2 4500 u64 extent_offset = 0;
39279cc3 4501 u64 item_end = 0;
c1aa4575 4502 u64 last_size = new_size;
8082510e 4503 u32 found_type = (u8)-1;
39279cc3
CM
4504 int found_extent;
4505 int del_item;
85e21bac
CM
4506 int pending_del_nr = 0;
4507 int pending_del_slot = 0;
179e29e4 4508 int extent_type = -1;
8082510e 4509 int ret;
4a0cc7ca 4510 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4511 u64 bytes_deleted = 0;
897ca819
TM
4512 bool be_nice = false;
4513 bool should_throttle = false;
4514 bool should_end = false;
8082510e
YZ
4515
4516 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4517
28ed1345
CM
4518 /*
4519 * for non-free space inodes and ref cows, we want to back off from
4520 * time to time
4521 */
70ddc553 4522 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4523 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4524 be_nice = true;
28ed1345 4525
0eb0e19c
MF
4526 path = btrfs_alloc_path();
4527 if (!path)
4528 return -ENOMEM;
e4058b54 4529 path->reada = READA_BACK;
0eb0e19c 4530
5dc562c5
JB
4531 /*
4532 * We want to drop from the next block forward in case this new size is
4533 * not block aligned since we will be keeping the last block of the
4534 * extent just the way it is.
4535 */
27cdeb70 4536 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4537 root == fs_info->tree_root)
dcdbc059 4538 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4539 fs_info->sectorsize),
da17066c 4540 (u64)-1, 0);
8082510e 4541
16cdcec7
MX
4542 /*
4543 * This function is also used to drop the items in the log tree before
4544 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4545 * it is used to drop the loged items. So we shouldn't kill the delayed
4546 * items.
4547 */
4548 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4549 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4550
33345d01 4551 key.objectid = ino;
39279cc3 4552 key.offset = (u64)-1;
5f39d397
CM
4553 key.type = (u8)-1;
4554
85e21bac 4555search_again:
28ed1345
CM
4556 /*
4557 * with a 16K leaf size and 128MB extents, you can actually queue
4558 * up a huge file in a single leaf. Most of the time that
4559 * bytes_deleted is > 0, it will be huge by the time we get here
4560 */
fd86a3a3
OS
4561 if (be_nice && bytes_deleted > SZ_32M &&
4562 btrfs_should_end_transaction(trans)) {
4563 ret = -EAGAIN;
4564 goto out;
28ed1345
CM
4565 }
4566
b9473439 4567 path->leave_spinning = 1;
85e21bac 4568 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
fd86a3a3 4569 if (ret < 0)
8082510e 4570 goto out;
d397712b 4571
85e21bac 4572 if (ret > 0) {
fd86a3a3 4573 ret = 0;
e02119d5
CM
4574 /* there are no items in the tree for us to truncate, we're
4575 * done
4576 */
8082510e
YZ
4577 if (path->slots[0] == 0)
4578 goto out;
85e21bac
CM
4579 path->slots[0]--;
4580 }
4581
d397712b 4582 while (1) {
39279cc3 4583 fi = NULL;
5f39d397
CM
4584 leaf = path->nodes[0];
4585 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4586 found_type = found_key.type;
39279cc3 4587
33345d01 4588 if (found_key.objectid != ino)
39279cc3 4589 break;
5f39d397 4590
85e21bac 4591 if (found_type < min_type)
39279cc3
CM
4592 break;
4593
5f39d397 4594 item_end = found_key.offset;
39279cc3 4595 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4596 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4597 struct btrfs_file_extent_item);
179e29e4
CM
4598 extent_type = btrfs_file_extent_type(leaf, fi);
4599 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4600 item_end +=
db94535d 4601 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4602
4603 trace_btrfs_truncate_show_fi_regular(
4604 BTRFS_I(inode), leaf, fi,
4605 found_key.offset);
179e29e4 4606 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
e41ca589
QW
4607 item_end += btrfs_file_extent_ram_bytes(leaf,
4608 fi);
09ed2f16
LB
4609
4610 trace_btrfs_truncate_show_fi_inline(
4611 BTRFS_I(inode), leaf, fi, path->slots[0],
4612 found_key.offset);
39279cc3 4613 }
008630c1 4614 item_end--;
39279cc3 4615 }
8082510e
YZ
4616 if (found_type > min_type) {
4617 del_item = 1;
4618 } else {
76b42abb 4619 if (item_end < new_size)
b888db2b 4620 break;
8082510e
YZ
4621 if (found_key.offset >= new_size)
4622 del_item = 1;
4623 else
4624 del_item = 0;
39279cc3 4625 }
39279cc3 4626 found_extent = 0;
39279cc3 4627 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4628 if (found_type != BTRFS_EXTENT_DATA_KEY)
4629 goto delete;
4630
4631 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4632 u64 num_dec;
db94535d 4633 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4634 if (!del_item) {
db94535d
CM
4635 u64 orig_num_bytes =
4636 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4637 extent_num_bytes = ALIGN(new_size -
4638 found_key.offset,
0b246afa 4639 fs_info->sectorsize);
db94535d
CM
4640 btrfs_set_file_extent_num_bytes(leaf, fi,
4641 extent_num_bytes);
4642 num_dec = (orig_num_bytes -
9069218d 4643 extent_num_bytes);
27cdeb70
MX
4644 if (test_bit(BTRFS_ROOT_REF_COWS,
4645 &root->state) &&
4646 extent_start != 0)
a76a3cd4 4647 inode_sub_bytes(inode, num_dec);
5f39d397 4648 btrfs_mark_buffer_dirty(leaf);
39279cc3 4649 } else {
db94535d
CM
4650 extent_num_bytes =
4651 btrfs_file_extent_disk_num_bytes(leaf,
4652 fi);
5d4f98a2
YZ
4653 extent_offset = found_key.offset -
4654 btrfs_file_extent_offset(leaf, fi);
4655
39279cc3 4656 /* FIXME blocksize != 4096 */
9069218d 4657 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4658 if (extent_start != 0) {
4659 found_extent = 1;
27cdeb70
MX
4660 if (test_bit(BTRFS_ROOT_REF_COWS,
4661 &root->state))
a76a3cd4 4662 inode_sub_bytes(inode, num_dec);
e02119d5 4663 }
39279cc3 4664 }
9069218d 4665 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4666 /*
4667 * we can't truncate inline items that have had
4668 * special encodings
4669 */
4670 if (!del_item &&
c8b97818 4671 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4672 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4673 btrfs_file_extent_compression(leaf, fi) == 0) {
4674 u32 size = (u32)(new_size - found_key.offset);
4675
4676 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4677 size = btrfs_file_extent_calc_inline_size(size);
4678 btrfs_truncate_item(root->fs_info, path, size, 1);
4679 } else if (!del_item) {
514ac8ad 4680 /*
ddfae63c
JB
4681 * We have to bail so the last_size is set to
4682 * just before this extent.
514ac8ad 4683 */
fd86a3a3 4684 ret = NEED_TRUNCATE_BLOCK;
ddfae63c
JB
4685 break;
4686 }
0305cd5f 4687
ddfae63c 4688 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4689 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4690 }
179e29e4 4691delete:
ddfae63c
JB
4692 if (del_item)
4693 last_size = found_key.offset;
4694 else
4695 last_size = new_size;
39279cc3 4696 if (del_item) {
85e21bac
CM
4697 if (!pending_del_nr) {
4698 /* no pending yet, add ourselves */
4699 pending_del_slot = path->slots[0];
4700 pending_del_nr = 1;
4701 } else if (pending_del_nr &&
4702 path->slots[0] + 1 == pending_del_slot) {
4703 /* hop on the pending chunk */
4704 pending_del_nr++;
4705 pending_del_slot = path->slots[0];
4706 } else {
d397712b 4707 BUG();
85e21bac 4708 }
39279cc3
CM
4709 } else {
4710 break;
4711 }
897ca819 4712 should_throttle = false;
28f75a0e 4713
27cdeb70
MX
4714 if (found_extent &&
4715 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4716 root == fs_info->tree_root)) {
b9473439 4717 btrfs_set_path_blocking(path);
28ed1345 4718 bytes_deleted += extent_num_bytes;
84f7d8e6 4719 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4720 extent_num_bytes, 0,
4721 btrfs_header_owner(leaf),
b06c4bf5 4722 ino, extent_offset);
05522109
OS
4723 if (ret) {
4724 btrfs_abort_transaction(trans, ret);
4725 break;
4726 }
7c861627 4727 if (btrfs_should_throttle_delayed_refs(trans))
2ff7e61e 4728 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4729 trans->delayed_ref_updates * 2,
4730 trans->transid, 0);
28f75a0e
CM
4731 if (be_nice) {
4732 if (truncate_space_check(trans, root,
4733 extent_num_bytes)) {
897ca819 4734 should_end = true;
28f75a0e 4735 }
7c861627 4736 if (btrfs_should_throttle_delayed_refs(trans))
897ca819 4737 should_throttle = true;
28f75a0e 4738 }
39279cc3 4739 }
85e21bac 4740
8082510e
YZ
4741 if (found_type == BTRFS_INODE_ITEM_KEY)
4742 break;
4743
4744 if (path->slots[0] == 0 ||
1262133b 4745 path->slots[0] != pending_del_slot ||
28f75a0e 4746 should_throttle || should_end) {
8082510e
YZ
4747 if (pending_del_nr) {
4748 ret = btrfs_del_items(trans, root, path,
4749 pending_del_slot,
4750 pending_del_nr);
79787eaa 4751 if (ret) {
66642832 4752 btrfs_abort_transaction(trans, ret);
fd86a3a3 4753 break;
79787eaa 4754 }
8082510e
YZ
4755 pending_del_nr = 0;
4756 }
b3b4aa74 4757 btrfs_release_path(path);
28f75a0e 4758 if (should_throttle) {
1262133b
JB
4759 unsigned long updates = trans->delayed_ref_updates;
4760 if (updates) {
4761 trans->delayed_ref_updates = 0;
2ff7e61e 4762 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 4763 updates * 2);
fd86a3a3
OS
4764 if (ret)
4765 break;
1262133b
JB
4766 }
4767 }
28f75a0e
CM
4768 /*
4769 * if we failed to refill our space rsv, bail out
4770 * and let the transaction restart
4771 */
4772 if (should_end) {
fd86a3a3
OS
4773 ret = -EAGAIN;
4774 break;
28f75a0e 4775 }
85e21bac 4776 goto search_again;
8082510e
YZ
4777 } else {
4778 path->slots[0]--;
85e21bac 4779 }
39279cc3 4780 }
8082510e 4781out:
fd86a3a3
OS
4782 if (ret >= 0 && pending_del_nr) {
4783 int err;
4784
4785 err = btrfs_del_items(trans, root, path, pending_del_slot,
85e21bac 4786 pending_del_nr);
fd86a3a3
OS
4787 if (err) {
4788 btrfs_abort_transaction(trans, err);
4789 ret = err;
4790 }
85e21bac 4791 }
76b42abb
FM
4792 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4793 ASSERT(last_size >= new_size);
fd86a3a3 4794 if (!ret && last_size > new_size)
76b42abb 4795 last_size = new_size;
7f4f6e0a 4796 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4797 }
28ed1345 4798
39279cc3 4799 btrfs_free_path(path);
28ed1345 4800
fd86a3a3 4801 if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) {
28ed1345 4802 unsigned long updates = trans->delayed_ref_updates;
fd86a3a3
OS
4803 int err;
4804
28ed1345
CM
4805 if (updates) {
4806 trans->delayed_ref_updates = 0;
fd86a3a3
OS
4807 err = btrfs_run_delayed_refs(trans, updates * 2);
4808 if (err)
4809 ret = err;
28ed1345
CM
4810 }
4811 }
fd86a3a3 4812 return ret;
39279cc3
CM
4813}
4814
4815/*
9703fefe 4816 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4817 * @inode - inode that we're zeroing
4818 * @from - the offset to start zeroing
4819 * @len - the length to zero, 0 to zero the entire range respective to the
4820 * offset
4821 * @front - zero up to the offset instead of from the offset on
4822 *
9703fefe 4823 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4824 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4825 */
9703fefe 4826int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4827 int front)
39279cc3 4828{
0b246afa 4829 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4830 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4831 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4832 struct btrfs_ordered_extent *ordered;
2ac55d41 4833 struct extent_state *cached_state = NULL;
364ecf36 4834 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4835 char *kaddr;
0b246afa 4836 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4837 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4838 unsigned offset = from & (blocksize - 1);
39279cc3 4839 struct page *page;
3b16a4e3 4840 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4841 int ret = 0;
9703fefe
CR
4842 u64 block_start;
4843 u64 block_end;
39279cc3 4844
b03ebd99
NB
4845 if (IS_ALIGNED(offset, blocksize) &&
4846 (!len || IS_ALIGNED(len, blocksize)))
39279cc3 4847 goto out;
9703fefe 4848
8b62f87b
JB
4849 block_start = round_down(from, blocksize);
4850 block_end = block_start + blocksize - 1;
4851
364ecf36 4852 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4853 block_start, blocksize);
5d5e103a
JB
4854 if (ret)
4855 goto out;
39279cc3 4856
211c17f5 4857again:
3b16a4e3 4858 page = find_or_create_page(mapping, index, mask);
5d5e103a 4859 if (!page) {
bc42bda2 4860 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
4861 block_start, blocksize, true);
4862 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, true);
ac6a2b36 4863 ret = -ENOMEM;
39279cc3 4864 goto out;
5d5e103a 4865 }
e6dcd2dc 4866
39279cc3 4867 if (!PageUptodate(page)) {
9ebefb18 4868 ret = btrfs_readpage(NULL, page);
39279cc3 4869 lock_page(page);
211c17f5
CM
4870 if (page->mapping != mapping) {
4871 unlock_page(page);
09cbfeaf 4872 put_page(page);
211c17f5
CM
4873 goto again;
4874 }
39279cc3
CM
4875 if (!PageUptodate(page)) {
4876 ret = -EIO;
89642229 4877 goto out_unlock;
39279cc3
CM
4878 }
4879 }
211c17f5 4880 wait_on_page_writeback(page);
e6dcd2dc 4881
9703fefe 4882 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4883 set_page_extent_mapped(page);
4884
9703fefe 4885 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4886 if (ordered) {
9703fefe 4887 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4888 &cached_state);
e6dcd2dc 4889 unlock_page(page);
09cbfeaf 4890 put_page(page);
eb84ae03 4891 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4892 btrfs_put_ordered_extent(ordered);
4893 goto again;
4894 }
4895
9703fefe 4896 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4897 EXTENT_DIRTY | EXTENT_DELALLOC |
4898 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 4899 0, 0, &cached_state);
5d5e103a 4900
e3b8a485 4901 ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
ba8b04c1 4902 &cached_state, 0);
9ed74f2d 4903 if (ret) {
9703fefe 4904 unlock_extent_cached(io_tree, block_start, block_end,
e43bbe5e 4905 &cached_state);
9ed74f2d
JB
4906 goto out_unlock;
4907 }
4908
9703fefe 4909 if (offset != blocksize) {
2aaa6655 4910 if (!len)
9703fefe 4911 len = blocksize - offset;
e6dcd2dc 4912 kaddr = kmap(page);
2aaa6655 4913 if (front)
9703fefe
CR
4914 memset(kaddr + (block_start - page_offset(page)),
4915 0, offset);
2aaa6655 4916 else
9703fefe
CR
4917 memset(kaddr + (block_start - page_offset(page)) + offset,
4918 0, len);
e6dcd2dc
CM
4919 flush_dcache_page(page);
4920 kunmap(page);
4921 }
247e743c 4922 ClearPageChecked(page);
e6dcd2dc 4923 set_page_dirty(page);
e43bbe5e 4924 unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
39279cc3 4925
89642229 4926out_unlock:
5d5e103a 4927 if (ret)
bc42bda2 4928 btrfs_delalloc_release_space(inode, data_reserved, block_start,
43b18595
QW
4929 blocksize, true);
4930 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize, (ret != 0));
39279cc3 4931 unlock_page(page);
09cbfeaf 4932 put_page(page);
39279cc3 4933out:
364ecf36 4934 extent_changeset_free(data_reserved);
39279cc3
CM
4935 return ret;
4936}
4937
16e7549f
JB
4938static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4939 u64 offset, u64 len)
4940{
0b246afa 4941 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4942 struct btrfs_trans_handle *trans;
4943 int ret;
4944
4945 /*
4946 * Still need to make sure the inode looks like it's been updated so
4947 * that any holes get logged if we fsync.
4948 */
0b246afa
JM
4949 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4950 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4951 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4952 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4953 return 0;
4954 }
4955
4956 /*
4957 * 1 - for the one we're dropping
4958 * 1 - for the one we're adding
4959 * 1 - for updating the inode.
4960 */
4961 trans = btrfs_start_transaction(root, 3);
4962 if (IS_ERR(trans))
4963 return PTR_ERR(trans);
4964
4965 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4966 if (ret) {
66642832 4967 btrfs_abort_transaction(trans, ret);
3a45bb20 4968 btrfs_end_transaction(trans);
16e7549f
JB
4969 return ret;
4970 }
4971
f85b7379
DS
4972 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4973 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4974 if (ret)
66642832 4975 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4976 else
4977 btrfs_update_inode(trans, root, inode);
3a45bb20 4978 btrfs_end_transaction(trans);
16e7549f
JB
4979 return ret;
4980}
4981
695a0d0d
JB
4982/*
4983 * This function puts in dummy file extents for the area we're creating a hole
4984 * for. So if we are truncating this file to a larger size we need to insert
4985 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4986 * the range between oldsize and size
4987 */
a41ad394 4988int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4989{
0b246afa 4990 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4991 struct btrfs_root *root = BTRFS_I(inode)->root;
4992 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4993 struct extent_map *em = NULL;
2ac55d41 4994 struct extent_state *cached_state = NULL;
5dc562c5 4995 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4996 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4997 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4998 u64 last_byte;
4999 u64 cur_offset;
5000 u64 hole_size;
9ed74f2d 5001 int err = 0;
39279cc3 5002
a71754fc 5003 /*
9703fefe
CR
5004 * If our size started in the middle of a block we need to zero out the
5005 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
5006 * expose stale data.
5007 */
9703fefe 5008 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
5009 if (err)
5010 return err;
5011
9036c102
YZ
5012 if (size <= hole_start)
5013 return 0;
5014
9036c102
YZ
5015 while (1) {
5016 struct btrfs_ordered_extent *ordered;
fa7c1494 5017
ff13db41 5018 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 5019 &cached_state);
a776c6fa 5020 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 5021 block_end - hole_start);
9036c102
YZ
5022 if (!ordered)
5023 break;
2ac55d41 5024 unlock_extent_cached(io_tree, hole_start, block_end - 1,
e43bbe5e 5025 &cached_state);
fa7c1494 5026 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
5027 btrfs_put_ordered_extent(ordered);
5028 }
39279cc3 5029
9036c102
YZ
5030 cur_offset = hole_start;
5031 while (1) {
fc4f21b1 5032 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 5033 block_end - cur_offset, 0);
79787eaa
JM
5034 if (IS_ERR(em)) {
5035 err = PTR_ERR(em);
f2767956 5036 em = NULL;
79787eaa
JM
5037 break;
5038 }
9036c102 5039 last_byte = min(extent_map_end(em), block_end);
0b246afa 5040 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 5041 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 5042 struct extent_map *hole_em;
9036c102 5043 hole_size = last_byte - cur_offset;
9ed74f2d 5044
16e7549f
JB
5045 err = maybe_insert_hole(root, inode, cur_offset,
5046 hole_size);
5047 if (err)
3893e33b 5048 break;
dcdbc059 5049 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
5050 cur_offset + hole_size - 1, 0);
5051 hole_em = alloc_extent_map();
5052 if (!hole_em) {
5053 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
5054 &BTRFS_I(inode)->runtime_flags);
5055 goto next;
5056 }
5057 hole_em->start = cur_offset;
5058 hole_em->len = hole_size;
5059 hole_em->orig_start = cur_offset;
8082510e 5060
5dc562c5
JB
5061 hole_em->block_start = EXTENT_MAP_HOLE;
5062 hole_em->block_len = 0;
b4939680 5063 hole_em->orig_block_len = 0;
cc95bef6 5064 hole_em->ram_bytes = hole_size;
0b246afa 5065 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 5066 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 5067 hole_em->generation = fs_info->generation;
8082510e 5068
5dc562c5
JB
5069 while (1) {
5070 write_lock(&em_tree->lock);
09a2a8f9 5071 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
5072 write_unlock(&em_tree->lock);
5073 if (err != -EEXIST)
5074 break;
dcdbc059
NB
5075 btrfs_drop_extent_cache(BTRFS_I(inode),
5076 cur_offset,
5dc562c5
JB
5077 cur_offset +
5078 hole_size - 1, 0);
5079 }
5080 free_extent_map(hole_em);
9036c102 5081 }
16e7549f 5082next:
9036c102 5083 free_extent_map(em);
a22285a6 5084 em = NULL;
9036c102 5085 cur_offset = last_byte;
8082510e 5086 if (cur_offset >= block_end)
9036c102
YZ
5087 break;
5088 }
a22285a6 5089 free_extent_map(em);
e43bbe5e 5090 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
9036c102
YZ
5091 return err;
5092}
39279cc3 5093
3972f260 5094static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 5095{
f4a2f4c5
MX
5096 struct btrfs_root *root = BTRFS_I(inode)->root;
5097 struct btrfs_trans_handle *trans;
a41ad394 5098 loff_t oldsize = i_size_read(inode);
3972f260
ES
5099 loff_t newsize = attr->ia_size;
5100 int mask = attr->ia_valid;
8082510e
YZ
5101 int ret;
5102
3972f260
ES
5103 /*
5104 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5105 * special case where we need to update the times despite not having
5106 * these flags set. For all other operations the VFS set these flags
5107 * explicitly if it wants a timestamp update.
5108 */
dff6efc3
CH
5109 if (newsize != oldsize) {
5110 inode_inc_iversion(inode);
5111 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5112 inode->i_ctime = inode->i_mtime =
c2050a45 5113 current_time(inode);
dff6efc3 5114 }
3972f260 5115
a41ad394 5116 if (newsize > oldsize) {
9ea24bbe 5117 /*
ea14b57f 5118 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5119 * This is to ensure the snapshot captures a fully consistent
5120 * state of this file - if the snapshot captures this expanding
5121 * truncation, it must capture all writes that happened before
5122 * this truncation.
5123 */
0bc19f90 5124 btrfs_wait_for_snapshot_creation(root);
a41ad394 5125 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5126 if (ret) {
ea14b57f 5127 btrfs_end_write_no_snapshotting(root);
8082510e 5128 return ret;
9ea24bbe 5129 }
8082510e 5130
f4a2f4c5 5131 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5132 if (IS_ERR(trans)) {
ea14b57f 5133 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5134 return PTR_ERR(trans);
9ea24bbe 5135 }
f4a2f4c5
MX
5136
5137 i_size_write(inode, newsize);
5138 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5139 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5140 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5141 btrfs_end_write_no_snapshotting(root);
3a45bb20 5142 btrfs_end_transaction(trans);
a41ad394 5143 } else {
8082510e 5144
a41ad394
JB
5145 /*
5146 * We're truncating a file that used to have good data down to
5147 * zero. Make sure it gets into the ordered flush list so that
5148 * any new writes get down to disk quickly.
5149 */
5150 if (newsize == 0)
72ac3c0d
JB
5151 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5152 &BTRFS_I(inode)->runtime_flags);
8082510e 5153
a41ad394 5154 truncate_setsize(inode, newsize);
2e60a51e
MX
5155
5156 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5157 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5158 inode_dio_wait(inode);
0b581701 5159 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5160
213e8c55 5161 ret = btrfs_truncate(inode, newsize == oldsize);
7f4f6e0a
JB
5162 if (ret && inode->i_nlink) {
5163 int err;
5164
5165 /*
f7e9e8fc
OS
5166 * Truncate failed, so fix up the in-memory size. We
5167 * adjusted disk_i_size down as we removed extents, so
5168 * wait for disk_i_size to be stable and then update the
5169 * in-memory size to match.
7f4f6e0a 5170 */
f7e9e8fc 5171 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
7f4f6e0a 5172 if (err)
f7e9e8fc
OS
5173 return err;
5174 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
7f4f6e0a 5175 }
8082510e
YZ
5176 }
5177
a41ad394 5178 return ret;
8082510e
YZ
5179}
5180
9036c102
YZ
5181static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5182{
2b0143b5 5183 struct inode *inode = d_inode(dentry);
b83cc969 5184 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5185 int err;
39279cc3 5186
b83cc969
LZ
5187 if (btrfs_root_readonly(root))
5188 return -EROFS;
5189
31051c85 5190 err = setattr_prepare(dentry, attr);
9036c102
YZ
5191 if (err)
5192 return err;
2bf5a725 5193
5a3f23d5 5194 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5195 err = btrfs_setsize(inode, attr);
8082510e
YZ
5196 if (err)
5197 return err;
39279cc3 5198 }
9036c102 5199
1025774c
CH
5200 if (attr->ia_valid) {
5201 setattr_copy(inode, attr);
0c4d2d95 5202 inode_inc_iversion(inode);
22c44fe6 5203 err = btrfs_dirty_inode(inode);
1025774c 5204
22c44fe6 5205 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5206 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5207 }
33268eaf 5208
39279cc3
CM
5209 return err;
5210}
61295eb8 5211
131e404a
FDBM
5212/*
5213 * While truncating the inode pages during eviction, we get the VFS calling
5214 * btrfs_invalidatepage() against each page of the inode. This is slow because
5215 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5216 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5217 * extent_state structures over and over, wasting lots of time.
5218 *
5219 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5220 * those expensive operations on a per page basis and do only the ordered io
5221 * finishing, while we release here the extent_map and extent_state structures,
5222 * without the excessive merging and splitting.
5223 */
5224static void evict_inode_truncate_pages(struct inode *inode)
5225{
5226 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5227 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5228 struct rb_node *node;
5229
5230 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5231 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5232
5233 write_lock(&map_tree->lock);
07e1ce09 5234 while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
131e404a
FDBM
5235 struct extent_map *em;
5236
07e1ce09 5237 node = rb_first_cached(&map_tree->map);
131e404a 5238 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5239 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5240 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5241 remove_extent_mapping(map_tree, em);
5242 free_extent_map(em);
7064dd5c
FM
5243 if (need_resched()) {
5244 write_unlock(&map_tree->lock);
5245 cond_resched();
5246 write_lock(&map_tree->lock);
5247 }
131e404a
FDBM
5248 }
5249 write_unlock(&map_tree->lock);
5250
6ca07097
FM
5251 /*
5252 * Keep looping until we have no more ranges in the io tree.
5253 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5254 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5255 * still in progress (unlocked the pages in the bio but did not yet
5256 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5257 * ranges can still be locked and eviction started because before
5258 * submitting those bios, which are executed by a separate task (work
5259 * queue kthread), inode references (inode->i_count) were not taken
5260 * (which would be dropped in the end io callback of each bio).
5261 * Therefore here we effectively end up waiting for those bios and
5262 * anyone else holding locked ranges without having bumped the inode's
5263 * reference count - if we don't do it, when they access the inode's
5264 * io_tree to unlock a range it may be too late, leading to an
5265 * use-after-free issue.
5266 */
131e404a
FDBM
5267 spin_lock(&io_tree->lock);
5268 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5269 struct extent_state *state;
5270 struct extent_state *cached_state = NULL;
6ca07097
FM
5271 u64 start;
5272 u64 end;
421f0922 5273 unsigned state_flags;
131e404a
FDBM
5274
5275 node = rb_first(&io_tree->state);
5276 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5277 start = state->start;
5278 end = state->end;
421f0922 5279 state_flags = state->state;
131e404a
FDBM
5280 spin_unlock(&io_tree->lock);
5281
ff13db41 5282 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5283
5284 /*
5285 * If still has DELALLOC flag, the extent didn't reach disk,
5286 * and its reserved space won't be freed by delayed_ref.
5287 * So we need to free its reserved space here.
5288 * (Refer to comment in btrfs_invalidatepage, case 2)
5289 *
5290 * Note, end is the bytenr of last byte, so we need + 1 here.
5291 */
421f0922 5292 if (state_flags & EXTENT_DELALLOC)
bc42bda2 5293 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5294
6ca07097 5295 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5296 EXTENT_LOCKED | EXTENT_DIRTY |
5297 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
ae0f1625 5298 EXTENT_DEFRAG, 1, 1, &cached_state);
131e404a 5299
7064dd5c 5300 cond_resched();
131e404a
FDBM
5301 spin_lock(&io_tree->lock);
5302 }
5303 spin_unlock(&io_tree->lock);
5304}
5305
4b9d7b59 5306static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
ad80cf50 5307 struct btrfs_block_rsv *rsv)
4b9d7b59
OS
5308{
5309 struct btrfs_fs_info *fs_info = root->fs_info;
5310 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5311 int failures = 0;
5312
5313 for (;;) {
5314 struct btrfs_trans_handle *trans;
5315 int ret;
5316
ad80cf50 5317 ret = btrfs_block_rsv_refill(root, rsv, rsv->size,
4b9d7b59
OS
5318 BTRFS_RESERVE_FLUSH_LIMIT);
5319
5320 if (ret && ++failures > 2) {
5321 btrfs_warn(fs_info,
5322 "could not allocate space for a delete; will truncate on mount");
5323 return ERR_PTR(-ENOSPC);
5324 }
5325
5326 trans = btrfs_join_transaction(root);
5327 if (IS_ERR(trans) || !ret)
5328 return trans;
5329
5330 /*
5331 * Try to steal from the global reserve if there is space for
5332 * it.
5333 */
af9b8a0e 5334 if (!btrfs_check_space_for_delayed_refs(trans) &&
ad80cf50 5335 !btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, false))
4b9d7b59
OS
5336 return trans;
5337
5338 /* If not, commit and try again. */
5339 ret = btrfs_commit_transaction(trans);
5340 if (ret)
5341 return ERR_PTR(ret);
5342 }
5343}
5344
bd555975 5345void btrfs_evict_inode(struct inode *inode)
39279cc3 5346{
0b246afa 5347 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5348 struct btrfs_trans_handle *trans;
5349 struct btrfs_root *root = BTRFS_I(inode)->root;
4b9d7b59 5350 struct btrfs_block_rsv *rsv;
39279cc3
CM
5351 int ret;
5352
1abe9b8a 5353 trace_btrfs_inode_evict(inode);
5354
3d48d981 5355 if (!root) {
e8f1bc14 5356 clear_inode(inode);
3d48d981
NB
5357 return;
5358 }
5359
131e404a
FDBM
5360 evict_inode_truncate_pages(inode);
5361
69e9c6c6
SB
5362 if (inode->i_nlink &&
5363 ((btrfs_root_refs(&root->root_item) != 0 &&
5364 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5365 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5366 goto no_delete;
5367
27919067 5368 if (is_bad_inode(inode))
39279cc3 5369 goto no_delete;
5f39d397 5370
7ab7956e 5371 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5372
7b40b695 5373 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
c71bf099 5374 goto no_delete;
c71bf099 5375
76dda93c 5376 if (inode->i_nlink > 0) {
69e9c6c6
SB
5377 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5378 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5379 goto no_delete;
5380 }
5381
aa79021f 5382 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
27919067 5383 if (ret)
0e8c36a9 5384 goto no_delete;
0e8c36a9 5385
2ff7e61e 5386 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
27919067 5387 if (!rsv)
4289a667 5388 goto no_delete;
ad80cf50 5389 rsv->size = btrfs_calc_trunc_metadata_size(fs_info, 1);
ca7e70f5 5390 rsv->failfast = 1;
4289a667 5391
6ef06d27 5392 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5393
8082510e 5394 while (1) {
ad80cf50 5395 trans = evict_refill_and_join(root, rsv);
27919067
OS
5396 if (IS_ERR(trans))
5397 goto free_rsv;
7b128766 5398
4289a667
JB
5399 trans->block_rsv = rsv;
5400
d68fc57b 5401 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
27919067
OS
5402 trans->block_rsv = &fs_info->trans_block_rsv;
5403 btrfs_end_transaction(trans);
5404 btrfs_btree_balance_dirty(fs_info);
5405 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5406 goto free_rsv;
5407 else if (!ret)
8082510e 5408 break;
8082510e 5409 }
5f39d397 5410
4ef31a45 5411 /*
27919067
OS
5412 * Errors here aren't a big deal, it just means we leave orphan items in
5413 * the tree. They will be cleaned up on the next mount. If the inode
5414 * number gets reused, cleanup deletes the orphan item without doing
5415 * anything, and unlink reuses the existing orphan item.
5416 *
5417 * If it turns out that we are dropping too many of these, we might want
5418 * to add a mechanism for retrying these after a commit.
4ef31a45 5419 */
ad80cf50 5420 trans = evict_refill_and_join(root, rsv);
27919067
OS
5421 if (!IS_ERR(trans)) {
5422 trans->block_rsv = rsv;
5423 btrfs_orphan_del(trans, BTRFS_I(inode));
5424 trans->block_rsv = &fs_info->trans_block_rsv;
5425 btrfs_end_transaction(trans);
5426 }
54aa1f4d 5427
0b246afa 5428 if (!(root == fs_info->tree_root ||
581bb050 5429 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5430 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5431
27919067
OS
5432free_rsv:
5433 btrfs_free_block_rsv(fs_info, rsv);
39279cc3 5434no_delete:
27919067
OS
5435 /*
5436 * If we didn't successfully delete, the orphan item will still be in
5437 * the tree and we'll retry on the next mount. Again, we might also want
5438 * to retry these periodically in the future.
5439 */
f48d1cf5 5440 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5441 clear_inode(inode);
39279cc3
CM
5442}
5443
5444/*
5445 * this returns the key found in the dir entry in the location pointer.
005d6712
SY
5446 * If no dir entries were found, returns -ENOENT.
5447 * If found a corrupted location in dir entry, returns -EUCLEAN.
39279cc3
CM
5448 */
5449static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5450 struct btrfs_key *location)
5451{
5452 const char *name = dentry->d_name.name;
5453 int namelen = dentry->d_name.len;
5454 struct btrfs_dir_item *di;
5455 struct btrfs_path *path;
5456 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5457 int ret = 0;
39279cc3
CM
5458
5459 path = btrfs_alloc_path();
d8926bb3
MF
5460 if (!path)
5461 return -ENOMEM;
3954401f 5462
f85b7379
DS
5463 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5464 name, namelen, 0);
3cf5068f
LB
5465 if (IS_ERR_OR_NULL(di)) {
5466 ret = di ? PTR_ERR(di) : -ENOENT;
005d6712
SY
5467 goto out;
5468 }
d397712b 5469
5f39d397 5470 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
56a0e706
LB
5471 if (location->type != BTRFS_INODE_ITEM_KEY &&
5472 location->type != BTRFS_ROOT_ITEM_KEY) {
005d6712 5473 ret = -EUCLEAN;
56a0e706
LB
5474 btrfs_warn(root->fs_info,
5475"%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5476 __func__, name, btrfs_ino(BTRFS_I(dir)),
5477 location->objectid, location->type, location->offset);
56a0e706 5478 }
39279cc3 5479out:
39279cc3
CM
5480 btrfs_free_path(path);
5481 return ret;
5482}
5483
5484/*
5485 * when we hit a tree root in a directory, the btrfs part of the inode
5486 * needs to be changed to reflect the root directory of the tree root. This
5487 * is kind of like crossing a mount point.
5488 */
2ff7e61e 5489static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5490 struct inode *dir,
5491 struct dentry *dentry,
5492 struct btrfs_key *location,
5493 struct btrfs_root **sub_root)
39279cc3 5494{
4df27c4d
YZ
5495 struct btrfs_path *path;
5496 struct btrfs_root *new_root;
5497 struct btrfs_root_ref *ref;
5498 struct extent_buffer *leaf;
1d4c08e0 5499 struct btrfs_key key;
4df27c4d
YZ
5500 int ret;
5501 int err = 0;
39279cc3 5502
4df27c4d
YZ
5503 path = btrfs_alloc_path();
5504 if (!path) {
5505 err = -ENOMEM;
5506 goto out;
5507 }
39279cc3 5508
4df27c4d 5509 err = -ENOENT;
1d4c08e0
DS
5510 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5511 key.type = BTRFS_ROOT_REF_KEY;
5512 key.offset = location->objectid;
5513
0b246afa 5514 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5515 if (ret) {
5516 if (ret < 0)
5517 err = ret;
5518 goto out;
5519 }
39279cc3 5520
4df27c4d
YZ
5521 leaf = path->nodes[0];
5522 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5523 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5524 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5525 goto out;
39279cc3 5526
4df27c4d
YZ
5527 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5528 (unsigned long)(ref + 1),
5529 dentry->d_name.len);
5530 if (ret)
5531 goto out;
5532
b3b4aa74 5533 btrfs_release_path(path);
4df27c4d 5534
0b246afa 5535 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5536 if (IS_ERR(new_root)) {
5537 err = PTR_ERR(new_root);
5538 goto out;
5539 }
5540
4df27c4d
YZ
5541 *sub_root = new_root;
5542 location->objectid = btrfs_root_dirid(&new_root->root_item);
5543 location->type = BTRFS_INODE_ITEM_KEY;
5544 location->offset = 0;
5545 err = 0;
5546out:
5547 btrfs_free_path(path);
5548 return err;
39279cc3
CM
5549}
5550
5d4f98a2
YZ
5551static void inode_tree_add(struct inode *inode)
5552{
5553 struct btrfs_root *root = BTRFS_I(inode)->root;
5554 struct btrfs_inode *entry;
03e860bd
FNP
5555 struct rb_node **p;
5556 struct rb_node *parent;
cef21937 5557 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5558 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5559
1d3382cb 5560 if (inode_unhashed(inode))
76dda93c 5561 return;
e1409cef 5562 parent = NULL;
5d4f98a2 5563 spin_lock(&root->inode_lock);
e1409cef 5564 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5565 while (*p) {
5566 parent = *p;
5567 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5568
37508515 5569 if (ino < btrfs_ino(entry))
03e860bd 5570 p = &parent->rb_left;
37508515 5571 else if (ino > btrfs_ino(entry))
03e860bd 5572 p = &parent->rb_right;
5d4f98a2
YZ
5573 else {
5574 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5575 (I_WILL_FREE | I_FREEING)));
cef21937 5576 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5577 RB_CLEAR_NODE(parent);
5578 spin_unlock(&root->inode_lock);
cef21937 5579 return;
5d4f98a2
YZ
5580 }
5581 }
cef21937
FDBM
5582 rb_link_node(new, parent, p);
5583 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5584 spin_unlock(&root->inode_lock);
5585}
5586
5587static void inode_tree_del(struct inode *inode)
5588{
0b246afa 5589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5590 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5591 int empty = 0;
5d4f98a2 5592
03e860bd 5593 spin_lock(&root->inode_lock);
5d4f98a2 5594 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5595 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5596 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5597 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5598 }
03e860bd 5599 spin_unlock(&root->inode_lock);
76dda93c 5600
69e9c6c6 5601 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5602 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5603 spin_lock(&root->inode_lock);
5604 empty = RB_EMPTY_ROOT(&root->inode_tree);
5605 spin_unlock(&root->inode_lock);
5606 if (empty)
5607 btrfs_add_dead_root(root);
5608 }
5609}
5610
5d4f98a2 5611
e02119d5
CM
5612static int btrfs_init_locked_inode(struct inode *inode, void *p)
5613{
5614 struct btrfs_iget_args *args = p;
90d3e592
CM
5615 inode->i_ino = args->location->objectid;
5616 memcpy(&BTRFS_I(inode)->location, args->location,
5617 sizeof(*args->location));
e02119d5 5618 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5619 return 0;
5620}
5621
5622static int btrfs_find_actor(struct inode *inode, void *opaque)
5623{
5624 struct btrfs_iget_args *args = opaque;
90d3e592 5625 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5626 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5627}
5628
5d4f98a2 5629static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5630 struct btrfs_key *location,
5d4f98a2 5631 struct btrfs_root *root)
39279cc3
CM
5632{
5633 struct inode *inode;
5634 struct btrfs_iget_args args;
90d3e592 5635 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5636
90d3e592 5637 args.location = location;
39279cc3
CM
5638 args.root = root;
5639
778ba82b 5640 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5641 btrfs_init_locked_inode,
5642 (void *)&args);
5643 return inode;
5644}
5645
1a54ef8c
BR
5646/* Get an inode object given its location and corresponding root.
5647 * Returns in *is_new if the inode was read from disk
5648 */
4222ea71
FM
5649struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
5650 struct btrfs_root *root, int *new,
5651 struct btrfs_path *path)
1a54ef8c
BR
5652{
5653 struct inode *inode;
5654
90d3e592 5655 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5656 if (!inode)
5d4f98a2 5657 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5658
5659 if (inode->i_state & I_NEW) {
67710892
FM
5660 int ret;
5661
4222ea71 5662 ret = btrfs_read_locked_inode(inode, path);
9bc2ceff 5663 if (!ret) {
1748f843
MF
5664 inode_tree_add(inode);
5665 unlock_new_inode(inode);
5666 if (new)
5667 *new = 1;
5668 } else {
f5b3a417
AV
5669 iget_failed(inode);
5670 /*
5671 * ret > 0 can come from btrfs_search_slot called by
5672 * btrfs_read_locked_inode, this means the inode item
5673 * was not found.
5674 */
5675 if (ret > 0)
5676 ret = -ENOENT;
5677 inode = ERR_PTR(ret);
1748f843
MF
5678 }
5679 }
5680
1a54ef8c
BR
5681 return inode;
5682}
5683
4222ea71
FM
5684struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5685 struct btrfs_root *root, int *new)
5686{
5687 return btrfs_iget_path(s, location, root, new, NULL);
5688}
5689
4df27c4d
YZ
5690static struct inode *new_simple_dir(struct super_block *s,
5691 struct btrfs_key *key,
5692 struct btrfs_root *root)
5693{
5694 struct inode *inode = new_inode(s);
5695
5696 if (!inode)
5697 return ERR_PTR(-ENOMEM);
5698
4df27c4d
YZ
5699 BTRFS_I(inode)->root = root;
5700 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5701 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5702
5703 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5704 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5705 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5706 inode->i_fop = &simple_dir_operations;
5707 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5708 inode->i_mtime = current_time(inode);
9cc97d64 5709 inode->i_atime = inode->i_mtime;
5710 inode->i_ctime = inode->i_mtime;
d3c6be6f 5711 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5712
5713 return inode;
5714}
5715
3de4586c 5716struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5717{
0b246afa 5718 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5719 struct inode *inode;
4df27c4d 5720 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5721 struct btrfs_root *sub_root = root;
5722 struct btrfs_key location;
76dda93c 5723 int index;
b4aff1f8 5724 int ret = 0;
39279cc3
CM
5725
5726 if (dentry->d_name.len > BTRFS_NAME_LEN)
5727 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5728
39e3c955 5729 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5730 if (ret < 0)
5731 return ERR_PTR(ret);
5f39d397 5732
4df27c4d 5733 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5734 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5735 return inode;
5736 }
5737
0b246afa 5738 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5739 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5740 &location, &sub_root);
5741 if (ret < 0) {
5742 if (ret != -ENOENT)
5743 inode = ERR_PTR(ret);
5744 else
5745 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5746 } else {
73f73415 5747 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5748 }
0b246afa 5749 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5750
34d19bad 5751 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5752 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5753 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5754 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5755 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5756 if (ret) {
5757 iput(inode);
66b4ffd1 5758 inode = ERR_PTR(ret);
01cd3367 5759 }
c71bf099
YZ
5760 }
5761
3de4586c
CM
5762 return inode;
5763}
5764
fe15ce44 5765static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5766{
5767 struct btrfs_root *root;
2b0143b5 5768 struct inode *inode = d_inode(dentry);
76dda93c 5769
848cce0d 5770 if (!inode && !IS_ROOT(dentry))
2b0143b5 5771 inode = d_inode(dentry->d_parent);
76dda93c 5772
848cce0d
LZ
5773 if (inode) {
5774 root = BTRFS_I(inode)->root;
efefb143
YZ
5775 if (btrfs_root_refs(&root->root_item) == 0)
5776 return 1;
848cce0d 5777
4a0cc7ca 5778 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5779 return 1;
efefb143 5780 }
76dda93c
YZ
5781 return 0;
5782}
5783
3de4586c 5784static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5785 unsigned int flags)
3de4586c 5786{
3837d208 5787 struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5662344b 5788
3837d208
AV
5789 if (inode == ERR_PTR(-ENOENT))
5790 inode = NULL;
41d28bca 5791 return d_splice_alias(inode, dentry);
39279cc3
CM
5792}
5793
16cdcec7 5794unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5795 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5796};
5797
23b5ec74
JB
5798/*
5799 * All this infrastructure exists because dir_emit can fault, and we are holding
5800 * the tree lock when doing readdir. For now just allocate a buffer and copy
5801 * our information into that, and then dir_emit from the buffer. This is
5802 * similar to what NFS does, only we don't keep the buffer around in pagecache
5803 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5804 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5805 * tree lock.
5806 */
5807static int btrfs_opendir(struct inode *inode, struct file *file)
5808{
5809 struct btrfs_file_private *private;
5810
5811 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5812 if (!private)
5813 return -ENOMEM;
5814 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5815 if (!private->filldir_buf) {
5816 kfree(private);
5817 return -ENOMEM;
5818 }
5819 file->private_data = private;
5820 return 0;
5821}
5822
5823struct dir_entry {
5824 u64 ino;
5825 u64 offset;
5826 unsigned type;
5827 int name_len;
5828};
5829
5830static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5831{
5832 while (entries--) {
5833 struct dir_entry *entry = addr;
5834 char *name = (char *)(entry + 1);
5835
92d32170
DS
5836 ctx->pos = get_unaligned(&entry->offset);
5837 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5838 get_unaligned(&entry->ino),
5839 get_unaligned(&entry->type)))
23b5ec74 5840 return 1;
92d32170
DS
5841 addr += sizeof(struct dir_entry) +
5842 get_unaligned(&entry->name_len);
23b5ec74
JB
5843 ctx->pos++;
5844 }
5845 return 0;
5846}
5847
9cdda8d3 5848static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5849{
9cdda8d3 5850 struct inode *inode = file_inode(file);
39279cc3 5851 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5852 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5853 struct btrfs_dir_item *di;
5854 struct btrfs_key key;
5f39d397 5855 struct btrfs_key found_key;
39279cc3 5856 struct btrfs_path *path;
23b5ec74 5857 void *addr;
16cdcec7
MX
5858 struct list_head ins_list;
5859 struct list_head del_list;
39279cc3 5860 int ret;
5f39d397 5861 struct extent_buffer *leaf;
39279cc3 5862 int slot;
5f39d397
CM
5863 char *name_ptr;
5864 int name_len;
23b5ec74
JB
5865 int entries = 0;
5866 int total_len = 0;
02dbfc99 5867 bool put = false;
c2951f32 5868 struct btrfs_key location;
5f39d397 5869
9cdda8d3
AV
5870 if (!dir_emit_dots(file, ctx))
5871 return 0;
5872
49593bfa 5873 path = btrfs_alloc_path();
16cdcec7
MX
5874 if (!path)
5875 return -ENOMEM;
ff5714cc 5876
23b5ec74 5877 addr = private->filldir_buf;
e4058b54 5878 path->reada = READA_FORWARD;
49593bfa 5879
c2951f32
JM
5880 INIT_LIST_HEAD(&ins_list);
5881 INIT_LIST_HEAD(&del_list);
5882 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5883
23b5ec74 5884again:
c2951f32 5885 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5886 key.offset = ctx->pos;
4a0cc7ca 5887 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5888
39279cc3
CM
5889 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5890 if (ret < 0)
5891 goto err;
49593bfa
DW
5892
5893 while (1) {
23b5ec74
JB
5894 struct dir_entry *entry;
5895
5f39d397 5896 leaf = path->nodes[0];
39279cc3 5897 slot = path->slots[0];
b9e03af0
LZ
5898 if (slot >= btrfs_header_nritems(leaf)) {
5899 ret = btrfs_next_leaf(root, path);
5900 if (ret < 0)
5901 goto err;
5902 else if (ret > 0)
5903 break;
5904 continue;
39279cc3 5905 }
3de4586c 5906
5f39d397
CM
5907 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5908
5909 if (found_key.objectid != key.objectid)
39279cc3 5910 break;
c2951f32 5911 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5912 break;
9cdda8d3 5913 if (found_key.offset < ctx->pos)
b9e03af0 5914 goto next;
c2951f32 5915 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5916 goto next;
39279cc3 5917 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
c2951f32 5918 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5919 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5920 PAGE_SIZE) {
5921 btrfs_release_path(path);
5922 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5923 if (ret)
5924 goto nopos;
5925 addr = private->filldir_buf;
5926 entries = 0;
5927 total_len = 0;
5928 goto again;
c2951f32 5929 }
23b5ec74
JB
5930
5931 entry = addr;
92d32170 5932 put_unaligned(name_len, &entry->name_len);
23b5ec74 5933 name_ptr = (char *)(entry + 1);
c2951f32
JM
5934 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5935 name_len);
92d32170
DS
5936 put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)],
5937 &entry->type);
c2951f32 5938 btrfs_dir_item_key_to_cpu(leaf, di, &location);
92d32170
DS
5939 put_unaligned(location.objectid, &entry->ino);
5940 put_unaligned(found_key.offset, &entry->offset);
23b5ec74
JB
5941 entries++;
5942 addr += sizeof(struct dir_entry) + name_len;
5943 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5944next:
5945 path->slots[0]++;
39279cc3 5946 }
23b5ec74
JB
5947 btrfs_release_path(path);
5948
5949 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5950 if (ret)
5951 goto nopos;
49593bfa 5952
d2fbb2b5 5953 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5954 if (ret)
bc4ef759
DS
5955 goto nopos;
5956
db62efbb
ZB
5957 /*
5958 * Stop new entries from being returned after we return the last
5959 * entry.
5960 *
5961 * New directory entries are assigned a strictly increasing
5962 * offset. This means that new entries created during readdir
5963 * are *guaranteed* to be seen in the future by that readdir.
5964 * This has broken buggy programs which operate on names as
5965 * they're returned by readdir. Until we re-use freed offsets
5966 * we have this hack to stop new entries from being returned
5967 * under the assumption that they'll never reach this huge
5968 * offset.
5969 *
5970 * This is being careful not to overflow 32bit loff_t unless the
5971 * last entry requires it because doing so has broken 32bit apps
5972 * in the past.
5973 */
c2951f32
JM
5974 if (ctx->pos >= INT_MAX)
5975 ctx->pos = LLONG_MAX;
5976 else
5977 ctx->pos = INT_MAX;
39279cc3
CM
5978nopos:
5979 ret = 0;
5980err:
02dbfc99
OS
5981 if (put)
5982 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 5983 btrfs_free_path(path);
39279cc3
CM
5984 return ret;
5985}
5986
39279cc3 5987/*
54aa1f4d 5988 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5989 * inode changes. But, it is most likely to find the inode in cache.
5990 * FIXME, needs more benchmarking...there are no reasons other than performance
5991 * to keep or drop this code.
5992 */
48a3b636 5993static int btrfs_dirty_inode(struct inode *inode)
39279cc3 5994{
2ff7e61e 5995 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5996 struct btrfs_root *root = BTRFS_I(inode)->root;
5997 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5998 int ret;
5999
72ac3c0d 6000 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6001 return 0;
39279cc3 6002
7a7eaa40 6003 trans = btrfs_join_transaction(root);
22c44fe6
JB
6004 if (IS_ERR(trans))
6005 return PTR_ERR(trans);
8929ecfa
YZ
6006
6007 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6008 if (ret && ret == -ENOSPC) {
6009 /* whoops, lets try again with the full transaction */
3a45bb20 6010 btrfs_end_transaction(trans);
94b60442 6011 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6012 if (IS_ERR(trans))
6013 return PTR_ERR(trans);
8929ecfa 6014
94b60442 6015 ret = btrfs_update_inode(trans, root, inode);
94b60442 6016 }
3a45bb20 6017 btrfs_end_transaction(trans);
16cdcec7 6018 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6019 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6020
6021 return ret;
6022}
6023
6024/*
6025 * This is a copy of file_update_time. We need this so we can return error on
6026 * ENOSPC for updating the inode in the case of file write and mmap writes.
6027 */
95582b00 6028static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
e41f941a 6029 int flags)
22c44fe6 6030{
2bc55652 6031 struct btrfs_root *root = BTRFS_I(inode)->root;
3a8c7231 6032 bool dirty = flags & ~S_VERSION;
2bc55652
AB
6033
6034 if (btrfs_root_readonly(root))
6035 return -EROFS;
6036
e41f941a 6037 if (flags & S_VERSION)
3a8c7231 6038 dirty |= inode_maybe_inc_iversion(inode, dirty);
e41f941a
JB
6039 if (flags & S_CTIME)
6040 inode->i_ctime = *now;
6041 if (flags & S_MTIME)
6042 inode->i_mtime = *now;
6043 if (flags & S_ATIME)
6044 inode->i_atime = *now;
3a8c7231 6045 return dirty ? btrfs_dirty_inode(inode) : 0;
39279cc3
CM
6046}
6047
d352ac68
CM
6048/*
6049 * find the highest existing sequence number in a directory
6050 * and then set the in-memory index_cnt variable to reflect
6051 * free sequence numbers
6052 */
4c570655 6053static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6054{
4c570655 6055 struct btrfs_root *root = inode->root;
aec7477b
JB
6056 struct btrfs_key key, found_key;
6057 struct btrfs_path *path;
6058 struct extent_buffer *leaf;
6059 int ret;
6060
4c570655 6061 key.objectid = btrfs_ino(inode);
962a298f 6062 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6063 key.offset = (u64)-1;
6064
6065 path = btrfs_alloc_path();
6066 if (!path)
6067 return -ENOMEM;
6068
6069 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6070 if (ret < 0)
6071 goto out;
6072 /* FIXME: we should be able to handle this */
6073 if (ret == 0)
6074 goto out;
6075 ret = 0;
6076
6077 /*
6078 * MAGIC NUMBER EXPLANATION:
6079 * since we search a directory based on f_pos we have to start at 2
6080 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6081 * else has to start at 2
6082 */
6083 if (path->slots[0] == 0) {
4c570655 6084 inode->index_cnt = 2;
aec7477b
JB
6085 goto out;
6086 }
6087
6088 path->slots[0]--;
6089
6090 leaf = path->nodes[0];
6091 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6092
4c570655 6093 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6094 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6095 inode->index_cnt = 2;
aec7477b
JB
6096 goto out;
6097 }
6098
4c570655 6099 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6100out:
6101 btrfs_free_path(path);
6102 return ret;
6103}
6104
d352ac68
CM
6105/*
6106 * helper to find a free sequence number in a given directory. This current
6107 * code is very simple, later versions will do smarter things in the btree
6108 */
877574e2 6109int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6110{
6111 int ret = 0;
6112
877574e2
NB
6113 if (dir->index_cnt == (u64)-1) {
6114 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6115 if (ret) {
6116 ret = btrfs_set_inode_index_count(dir);
6117 if (ret)
6118 return ret;
6119 }
aec7477b
JB
6120 }
6121
877574e2
NB
6122 *index = dir->index_cnt;
6123 dir->index_cnt++;
aec7477b
JB
6124
6125 return ret;
6126}
6127
b0d5d10f
CM
6128static int btrfs_insert_inode_locked(struct inode *inode)
6129{
6130 struct btrfs_iget_args args;
6131 args.location = &BTRFS_I(inode)->location;
6132 args.root = BTRFS_I(inode)->root;
6133
6134 return insert_inode_locked4(inode,
6135 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6136 btrfs_find_actor, &args);
6137}
6138
19aee8de
AJ
6139/*
6140 * Inherit flags from the parent inode.
6141 *
6142 * Currently only the compression flags and the cow flags are inherited.
6143 */
6144static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6145{
6146 unsigned int flags;
6147
6148 if (!dir)
6149 return;
6150
6151 flags = BTRFS_I(dir)->flags;
6152
6153 if (flags & BTRFS_INODE_NOCOMPRESS) {
6154 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6155 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6156 } else if (flags & BTRFS_INODE_COMPRESS) {
6157 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6158 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6159 }
6160
6161 if (flags & BTRFS_INODE_NODATACOW) {
6162 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6163 if (S_ISREG(inode->i_mode))
6164 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6165 }
6166
7b6a221e 6167 btrfs_sync_inode_flags_to_i_flags(inode);
19aee8de
AJ
6168}
6169
39279cc3
CM
6170static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6171 struct btrfs_root *root,
aec7477b 6172 struct inode *dir,
9c58309d 6173 const char *name, int name_len,
175a4eb7
AV
6174 u64 ref_objectid, u64 objectid,
6175 umode_t mode, u64 *index)
39279cc3 6176{
0b246afa 6177 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6178 struct inode *inode;
5f39d397 6179 struct btrfs_inode_item *inode_item;
39279cc3 6180 struct btrfs_key *location;
5f39d397 6181 struct btrfs_path *path;
9c58309d
CM
6182 struct btrfs_inode_ref *ref;
6183 struct btrfs_key key[2];
6184 u32 sizes[2];
ef3b9af5 6185 int nitems = name ? 2 : 1;
9c58309d 6186 unsigned long ptr;
39279cc3 6187 int ret;
39279cc3 6188
5f39d397 6189 path = btrfs_alloc_path();
d8926bb3
MF
6190 if (!path)
6191 return ERR_PTR(-ENOMEM);
5f39d397 6192
0b246afa 6193 inode = new_inode(fs_info->sb);
8fb27640
YS
6194 if (!inode) {
6195 btrfs_free_path(path);
39279cc3 6196 return ERR_PTR(-ENOMEM);
8fb27640 6197 }
39279cc3 6198
5762b5c9
FM
6199 /*
6200 * O_TMPFILE, set link count to 0, so that after this point,
6201 * we fill in an inode item with the correct link count.
6202 */
6203 if (!name)
6204 set_nlink(inode, 0);
6205
581bb050
LZ
6206 /*
6207 * we have to initialize this early, so we can reclaim the inode
6208 * number if we fail afterwards in this function.
6209 */
6210 inode->i_ino = objectid;
6211
ef3b9af5 6212 if (dir && name) {
1abe9b8a 6213 trace_btrfs_inode_request(dir);
6214
877574e2 6215 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6216 if (ret) {
8fb27640 6217 btrfs_free_path(path);
09771430 6218 iput(inode);
aec7477b 6219 return ERR_PTR(ret);
09771430 6220 }
ef3b9af5
FM
6221 } else if (dir) {
6222 *index = 0;
aec7477b
JB
6223 }
6224 /*
6225 * index_cnt is ignored for everything but a dir,
df6703e1 6226 * btrfs_set_inode_index_count has an explanation for the magic
aec7477b
JB
6227 * number
6228 */
6229 BTRFS_I(inode)->index_cnt = 2;
67de1176 6230 BTRFS_I(inode)->dir_index = *index;
39279cc3 6231 BTRFS_I(inode)->root = root;
e02119d5 6232 BTRFS_I(inode)->generation = trans->transid;
76195853 6233 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6234
5dc562c5
JB
6235 /*
6236 * We could have gotten an inode number from somebody who was fsynced
6237 * and then removed in this same transaction, so let's just set full
6238 * sync since it will be a full sync anyway and this will blow away the
6239 * old info in the log.
6240 */
6241 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6242
9c58309d 6243 key[0].objectid = objectid;
962a298f 6244 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6245 key[0].offset = 0;
6246
9c58309d 6247 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6248
6249 if (name) {
6250 /*
6251 * Start new inodes with an inode_ref. This is slightly more
6252 * efficient for small numbers of hard links since they will
6253 * be packed into one item. Extended refs will kick in if we
6254 * add more hard links than can fit in the ref item.
6255 */
6256 key[1].objectid = objectid;
962a298f 6257 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6258 key[1].offset = ref_objectid;
6259
6260 sizes[1] = name_len + sizeof(*ref);
6261 }
9c58309d 6262
b0d5d10f
CM
6263 location = &BTRFS_I(inode)->location;
6264 location->objectid = objectid;
6265 location->offset = 0;
962a298f 6266 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6267
6268 ret = btrfs_insert_inode_locked(inode);
32955c54
AV
6269 if (ret < 0) {
6270 iput(inode);
b0d5d10f 6271 goto fail;
32955c54 6272 }
b0d5d10f 6273
b9473439 6274 path->leave_spinning = 1;
ef3b9af5 6275 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6276 if (ret != 0)
b0d5d10f 6277 goto fail_unlock;
5f39d397 6278
ecc11fab 6279 inode_init_owner(inode, dir, mode);
a76a3cd4 6280 inode_set_bytes(inode, 0);
9cc97d64 6281
c2050a45 6282 inode->i_mtime = current_time(inode);
9cc97d64 6283 inode->i_atime = inode->i_mtime;
6284 inode->i_ctime = inode->i_mtime;
d3c6be6f 6285 BTRFS_I(inode)->i_otime = inode->i_mtime;
9cc97d64 6286
5f39d397
CM
6287 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6288 struct btrfs_inode_item);
b159fa28 6289 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6290 sizeof(*inode_item));
e02119d5 6291 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6292
ef3b9af5
FM
6293 if (name) {
6294 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6295 struct btrfs_inode_ref);
6296 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6297 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6298 ptr = (unsigned long)(ref + 1);
6299 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6300 }
9c58309d 6301
5f39d397
CM
6302 btrfs_mark_buffer_dirty(path->nodes[0]);
6303 btrfs_free_path(path);
6304
6cbff00f
CH
6305 btrfs_inherit_iflags(inode, dir);
6306
569254b0 6307 if (S_ISREG(mode)) {
0b246afa 6308 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6309 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6310 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6311 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6312 BTRFS_INODE_NODATASUM;
94272164
CM
6313 }
6314
5d4f98a2 6315 inode_tree_add(inode);
1abe9b8a 6316
6317 trace_btrfs_inode_new(inode);
1973f0fa 6318 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6319
8ea05e3a
AB
6320 btrfs_update_root_times(trans, root);
6321
63541927
FDBM
6322 ret = btrfs_inode_inherit_props(trans, inode, dir);
6323 if (ret)
0b246afa 6324 btrfs_err(fs_info,
63541927 6325 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6326 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6327
39279cc3 6328 return inode;
b0d5d10f
CM
6329
6330fail_unlock:
32955c54 6331 discard_new_inode(inode);
5f39d397 6332fail:
ef3b9af5 6333 if (dir && name)
aec7477b 6334 BTRFS_I(dir)->index_cnt--;
5f39d397
CM
6335 btrfs_free_path(path);
6336 return ERR_PTR(ret);
39279cc3
CM
6337}
6338
6339static inline u8 btrfs_inode_type(struct inode *inode)
6340{
6341 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6342}
6343
d352ac68
CM
6344/*
6345 * utility function to add 'inode' into 'parent_inode' with
6346 * a give name and a given sequence number.
6347 * if 'add_backref' is true, also insert a backref from the
6348 * inode to the parent directory.
6349 */
e02119d5 6350int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6351 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6352 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6353{
4df27c4d 6354 int ret = 0;
39279cc3 6355 struct btrfs_key key;
db0a669f
NB
6356 struct btrfs_root *root = parent_inode->root;
6357 u64 ino = btrfs_ino(inode);
6358 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6359
33345d01 6360 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6361 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6362 } else {
33345d01 6363 key.objectid = ino;
962a298f 6364 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6365 key.offset = 0;
6366 }
6367
33345d01 6368 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6025c19f 6369 ret = btrfs_add_root_ref(trans, key.objectid,
0b246afa
JM
6370 root->root_key.objectid, parent_ino,
6371 index, name, name_len);
4df27c4d 6372 } else if (add_backref) {
33345d01
LZ
6373 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6374 parent_ino, index);
4df27c4d 6375 }
39279cc3 6376
79787eaa
JM
6377 /* Nothing to clean up yet */
6378 if (ret)
6379 return ret;
4df27c4d 6380
684572df 6381 ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
db0a669f 6382 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6383 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6384 goto fail_dir_item;
6385 else if (ret) {
66642832 6386 btrfs_abort_transaction(trans, ret);
79787eaa 6387 return ret;
39279cc3 6388 }
79787eaa 6389
db0a669f 6390 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6391 name_len * 2);
db0a669f
NB
6392 inode_inc_iversion(&parent_inode->vfs_inode);
6393 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6394 current_time(&parent_inode->vfs_inode);
6395 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6396 if (ret)
66642832 6397 btrfs_abort_transaction(trans, ret);
39279cc3 6398 return ret;
fe66a05a
CM
6399
6400fail_dir_item:
6401 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6402 u64 local_index;
6403 int err;
3ee1c553 6404 err = btrfs_del_root_ref(trans, key.objectid,
0b246afa
JM
6405 root->root_key.objectid, parent_ino,
6406 &local_index, name, name_len);
fe66a05a
CM
6407
6408 } else if (add_backref) {
6409 u64 local_index;
6410 int err;
6411
6412 err = btrfs_del_inode_ref(trans, root, name, name_len,
6413 ino, parent_ino, &local_index);
6414 }
6415 return ret;
39279cc3
CM
6416}
6417
6418static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6419 struct btrfs_inode *dir, struct dentry *dentry,
6420 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6421{
a1b075d2
JB
6422 int err = btrfs_add_link(trans, dir, inode,
6423 dentry->d_name.name, dentry->d_name.len,
6424 backref, index);
39279cc3
CM
6425 if (err > 0)
6426 err = -EEXIST;
6427 return err;
6428}
6429
618e21d5 6430static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6431 umode_t mode, dev_t rdev)
618e21d5 6432{
2ff7e61e 6433 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6434 struct btrfs_trans_handle *trans;
6435 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6436 struct inode *inode = NULL;
618e21d5 6437 int err;
618e21d5 6438 u64 objectid;
00e4e6b3 6439 u64 index = 0;
618e21d5 6440
9ed74f2d
JB
6441 /*
6442 * 2 for inode item and ref
6443 * 2 for dir items
6444 * 1 for xattr if selinux is on
6445 */
a22285a6
YZ
6446 trans = btrfs_start_transaction(root, 5);
6447 if (IS_ERR(trans))
6448 return PTR_ERR(trans);
1832a6d5 6449
581bb050
LZ
6450 err = btrfs_find_free_ino(root, &objectid);
6451 if (err)
6452 goto out_unlock;
6453
aec7477b 6454 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6455 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6456 mode, &index);
7cf96da3
TI
6457 if (IS_ERR(inode)) {
6458 err = PTR_ERR(inode);
32955c54 6459 inode = NULL;
618e21d5 6460 goto out_unlock;
7cf96da3 6461 }
618e21d5 6462
ad19db71
CS
6463 /*
6464 * If the active LSM wants to access the inode during
6465 * d_instantiate it needs these. Smack checks to see
6466 * if the filesystem supports xattrs by looking at the
6467 * ops vector.
6468 */
ad19db71 6469 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6470 init_special_inode(inode, inode->i_mode, rdev);
6471
6472 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6473 if (err)
32955c54 6474 goto out_unlock;
b0d5d10f 6475
cef415af
NB
6476 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6477 0, index);
32955c54
AV
6478 if (err)
6479 goto out_unlock;
6480
6481 btrfs_update_inode(trans, root, inode);
6482 d_instantiate_new(dentry, inode);
b0d5d10f 6483
618e21d5 6484out_unlock:
3a45bb20 6485 btrfs_end_transaction(trans);
2ff7e61e 6486 btrfs_btree_balance_dirty(fs_info);
32955c54 6487 if (err && inode) {
618e21d5 6488 inode_dec_link_count(inode);
32955c54 6489 discard_new_inode(inode);
618e21d5 6490 }
618e21d5
JB
6491 return err;
6492}
6493
39279cc3 6494static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6495 umode_t mode, bool excl)
39279cc3 6496{
2ff7e61e 6497 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6498 struct btrfs_trans_handle *trans;
6499 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6500 struct inode *inode = NULL;
a22285a6 6501 int err;
39279cc3 6502 u64 objectid;
00e4e6b3 6503 u64 index = 0;
39279cc3 6504
9ed74f2d
JB
6505 /*
6506 * 2 for inode item and ref
6507 * 2 for dir items
6508 * 1 for xattr if selinux is on
6509 */
a22285a6
YZ
6510 trans = btrfs_start_transaction(root, 5);
6511 if (IS_ERR(trans))
6512 return PTR_ERR(trans);
9ed74f2d 6513
581bb050
LZ
6514 err = btrfs_find_free_ino(root, &objectid);
6515 if (err)
6516 goto out_unlock;
6517
aec7477b 6518 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6519 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6520 mode, &index);
7cf96da3
TI
6521 if (IS_ERR(inode)) {
6522 err = PTR_ERR(inode);
32955c54 6523 inode = NULL;
39279cc3 6524 goto out_unlock;
7cf96da3 6525 }
ad19db71
CS
6526 /*
6527 * If the active LSM wants to access the inode during
6528 * d_instantiate it needs these. Smack checks to see
6529 * if the filesystem supports xattrs by looking at the
6530 * ops vector.
6531 */
6532 inode->i_fop = &btrfs_file_operations;
6533 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6534 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6535
6536 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6537 if (err)
32955c54 6538 goto out_unlock;
b0d5d10f
CM
6539
6540 err = btrfs_update_inode(trans, root, inode);
6541 if (err)
32955c54 6542 goto out_unlock;
ad19db71 6543
cef415af
NB
6544 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6545 0, index);
39279cc3 6546 if (err)
32955c54 6547 goto out_unlock;
43baa579 6548
43baa579 6549 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1e2e547a 6550 d_instantiate_new(dentry, inode);
43baa579 6551
39279cc3 6552out_unlock:
3a45bb20 6553 btrfs_end_transaction(trans);
32955c54 6554 if (err && inode) {
39279cc3 6555 inode_dec_link_count(inode);
32955c54 6556 discard_new_inode(inode);
39279cc3 6557 }
2ff7e61e 6558 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6559 return err;
6560}
6561
6562static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6563 struct dentry *dentry)
6564{
271dba45 6565 struct btrfs_trans_handle *trans = NULL;
39279cc3 6566 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6567 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6568 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6569 u64 index;
39279cc3
CM
6570 int err;
6571 int drop_inode = 0;
6572
4a8be425 6573 /* do not allow sys_link's with other subvols of the same device */
4fd786e6 6574 if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
3ab3564f 6575 return -EXDEV;
4a8be425 6576
f186373f 6577 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6578 return -EMLINK;
4a8be425 6579
877574e2 6580 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6581 if (err)
6582 goto fail;
6583
a22285a6 6584 /*
7e6b6465 6585 * 2 items for inode and inode ref
a22285a6 6586 * 2 items for dir items
7e6b6465 6587 * 1 item for parent inode
399b0bbf 6588 * 1 item for orphan item deletion if O_TMPFILE
a22285a6 6589 */
399b0bbf 6590 trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
a22285a6
YZ
6591 if (IS_ERR(trans)) {
6592 err = PTR_ERR(trans);
271dba45 6593 trans = NULL;
a22285a6
YZ
6594 goto fail;
6595 }
5f39d397 6596
67de1176
MX
6597 /* There are several dir indexes for this inode, clear the cache. */
6598 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6599 inc_nlink(inode);
0c4d2d95 6600 inode_inc_iversion(inode);
c2050a45 6601 inode->i_ctime = current_time(inode);
7de9c6ee 6602 ihold(inode);
e9976151 6603 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6604
cef415af
NB
6605 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6606 1, index);
5f39d397 6607
a5719521 6608 if (err) {
54aa1f4d 6609 drop_inode = 1;
a5719521 6610 } else {
10d9f309 6611 struct dentry *parent = dentry->d_parent;
d4682ba0
FM
6612 int ret;
6613
a5719521 6614 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6615 if (err)
6616 goto fail;
ef3b9af5
FM
6617 if (inode->i_nlink == 1) {
6618 /*
6619 * If new hard link count is 1, it's a file created
6620 * with open(2) O_TMPFILE flag.
6621 */
3d6ae7bb 6622 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6623 if (err)
6624 goto fail;
6625 }
41bd6067 6626 BTRFS_I(inode)->last_link_trans = trans->transid;
08c422c2 6627 d_instantiate(dentry, inode);
d4682ba0
FM
6628 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6629 true, NULL);
6630 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6631 err = btrfs_commit_transaction(trans);
6632 trans = NULL;
6633 }
a5719521 6634 }
39279cc3 6635
1832a6d5 6636fail:
271dba45 6637 if (trans)
3a45bb20 6638 btrfs_end_transaction(trans);
39279cc3
CM
6639 if (drop_inode) {
6640 inode_dec_link_count(inode);
6641 iput(inode);
6642 }
2ff7e61e 6643 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6644 return err;
6645}
6646
18bb1db3 6647static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6648{
2ff7e61e 6649 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6650 struct inode *inode = NULL;
39279cc3
CM
6651 struct btrfs_trans_handle *trans;
6652 struct btrfs_root *root = BTRFS_I(dir)->root;
6653 int err = 0;
b9d86667 6654 u64 objectid = 0;
00e4e6b3 6655 u64 index = 0;
39279cc3 6656
9ed74f2d
JB
6657 /*
6658 * 2 items for inode and ref
6659 * 2 items for dir items
6660 * 1 for xattr if selinux is on
6661 */
a22285a6
YZ
6662 trans = btrfs_start_transaction(root, 5);
6663 if (IS_ERR(trans))
6664 return PTR_ERR(trans);
39279cc3 6665
581bb050
LZ
6666 err = btrfs_find_free_ino(root, &objectid);
6667 if (err)
6668 goto out_fail;
6669
aec7477b 6670 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6671 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6672 S_IFDIR | mode, &index);
39279cc3
CM
6673 if (IS_ERR(inode)) {
6674 err = PTR_ERR(inode);
32955c54 6675 inode = NULL;
39279cc3
CM
6676 goto out_fail;
6677 }
5f39d397 6678
b0d5d10f
CM
6679 /* these must be set before we unlock the inode */
6680 inode->i_op = &btrfs_dir_inode_operations;
6681 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6682
2a7dba39 6683 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6684 if (err)
32955c54 6685 goto out_fail;
39279cc3 6686
6ef06d27 6687 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6688 err = btrfs_update_inode(trans, root, inode);
6689 if (err)
32955c54 6690 goto out_fail;
5f39d397 6691
db0a669f
NB
6692 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6693 dentry->d_name.name,
6694 dentry->d_name.len, 0, index);
39279cc3 6695 if (err)
32955c54 6696 goto out_fail;
5f39d397 6697
1e2e547a 6698 d_instantiate_new(dentry, inode);
39279cc3
CM
6699
6700out_fail:
3a45bb20 6701 btrfs_end_transaction(trans);
32955c54 6702 if (err && inode) {
c7cfb8a5 6703 inode_dec_link_count(inode);
32955c54 6704 discard_new_inode(inode);
c7cfb8a5 6705 }
2ff7e61e 6706 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6707 return err;
6708}
6709
c8b97818 6710static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6711 struct page *page,
c8b97818
CM
6712 size_t pg_offset, u64 extent_offset,
6713 struct btrfs_file_extent_item *item)
6714{
6715 int ret;
6716 struct extent_buffer *leaf = path->nodes[0];
6717 char *tmp;
6718 size_t max_size;
6719 unsigned long inline_size;
6720 unsigned long ptr;
261507a0 6721 int compress_type;
c8b97818
CM
6722
6723 WARN_ON(pg_offset != 0);
261507a0 6724 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6725 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6726 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6727 btrfs_item_nr(path->slots[0]));
c8b97818 6728 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6729 if (!tmp)
6730 return -ENOMEM;
c8b97818
CM
6731 ptr = btrfs_file_extent_inline_start(item);
6732
6733 read_extent_buffer(leaf, tmp, ptr, inline_size);
6734
09cbfeaf 6735 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6736 ret = btrfs_decompress(compress_type, tmp, page,
6737 extent_offset, inline_size, max_size);
e1699d2d
ZB
6738
6739 /*
6740 * decompression code contains a memset to fill in any space between the end
6741 * of the uncompressed data and the end of max_size in case the decompressed
6742 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6743 * the end of an inline extent and the beginning of the next block, so we
6744 * cover that region here.
6745 */
6746
6747 if (max_size + pg_offset < PAGE_SIZE) {
6748 char *map = kmap(page);
6749 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6750 kunmap(page);
6751 }
c8b97818 6752 kfree(tmp);
166ae5a4 6753 return ret;
c8b97818
CM
6754}
6755
d352ac68
CM
6756/*
6757 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6758 * the ugly parts come from merging extents from the disk with the in-ram
6759 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6760 * where the in-ram extents might be locked pending data=ordered completion.
6761 *
6762 * This also copies inline extents directly into the page.
6763 */
fc4f21b1 6764struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
de2c6615
LB
6765 struct page *page,
6766 size_t pg_offset, u64 start, u64 len,
6767 int create)
a52d9a80 6768{
3ffbd68c 6769 struct btrfs_fs_info *fs_info = inode->root->fs_info;
a52d9a80
CM
6770 int ret;
6771 int err = 0;
a52d9a80
CM
6772 u64 extent_start = 0;
6773 u64 extent_end = 0;
fc4f21b1 6774 u64 objectid = btrfs_ino(inode);
a52d9a80 6775 u32 found_type;
f421950f 6776 struct btrfs_path *path = NULL;
fc4f21b1 6777 struct btrfs_root *root = inode->root;
a52d9a80 6778 struct btrfs_file_extent_item *item;
5f39d397
CM
6779 struct extent_buffer *leaf;
6780 struct btrfs_key found_key;
a52d9a80 6781 struct extent_map *em = NULL;
fc4f21b1
NB
6782 struct extent_map_tree *em_tree = &inode->extent_tree;
6783 struct extent_io_tree *io_tree = &inode->io_tree;
7ffbb598 6784 const bool new_inline = !page || create;
a52d9a80 6785
890871be 6786 read_lock(&em_tree->lock);
d1310b2e 6787 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6788 if (em)
0b246afa 6789 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6790 read_unlock(&em_tree->lock);
d1310b2e 6791
a52d9a80 6792 if (em) {
e1c4b745
CM
6793 if (em->start > start || em->start + em->len <= start)
6794 free_extent_map(em);
6795 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6796 free_extent_map(em);
6797 else
6798 goto out;
a52d9a80 6799 }
172ddd60 6800 em = alloc_extent_map();
a52d9a80 6801 if (!em) {
d1310b2e
CM
6802 err = -ENOMEM;
6803 goto out;
a52d9a80 6804 }
0b246afa 6805 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6806 em->start = EXTENT_MAP_HOLE;
445a6944 6807 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6808 em->len = (u64)-1;
c8b97818 6809 em->block_len = (u64)-1;
f421950f 6810
bee6ec82 6811 path = btrfs_alloc_path();
f421950f 6812 if (!path) {
bee6ec82
LB
6813 err = -ENOMEM;
6814 goto out;
f421950f
CM
6815 }
6816
bee6ec82
LB
6817 /* Chances are we'll be called again, so go ahead and do readahead */
6818 path->reada = READA_FORWARD;
6819
e49aabd9
LB
6820 /*
6821 * Unless we're going to uncompress the inline extent, no sleep would
6822 * happen.
6823 */
6824 path->leave_spinning = 1;
6825
5c9a702e 6826 ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
a52d9a80
CM
6827 if (ret < 0) {
6828 err = ret;
6829 goto out;
6830 }
6831
6832 if (ret != 0) {
6833 if (path->slots[0] == 0)
6834 goto not_found;
6835 path->slots[0]--;
6836 }
6837
5f39d397
CM
6838 leaf = path->nodes[0];
6839 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6840 struct btrfs_file_extent_item);
a52d9a80 6841 /* are we inside the extent that was found? */
5f39d397 6842 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6843 found_type = found_key.type;
5f39d397 6844 if (found_key.objectid != objectid ||
a52d9a80 6845 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6846 /*
6847 * If we backup past the first extent we want to move forward
6848 * and see if there is an extent in front of us, otherwise we'll
6849 * say there is a hole for our whole search range which can
6850 * cause problems.
6851 */
6852 extent_end = start;
6853 goto next;
a52d9a80
CM
6854 }
6855
5f39d397
CM
6856 found_type = btrfs_file_extent_type(leaf, item);
6857 extent_start = found_key.offset;
d899e052
YZ
6858 if (found_type == BTRFS_FILE_EXTENT_REG ||
6859 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6860 extent_end = extent_start +
db94535d 6861 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
6862
6863 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6864 extent_start);
9036c102
YZ
6865 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6866 size_t size;
e41ca589
QW
6867
6868 size = btrfs_file_extent_ram_bytes(leaf, item);
da17066c 6869 extent_end = ALIGN(extent_start + size,
0b246afa 6870 fs_info->sectorsize);
09ed2f16
LB
6871
6872 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6873 path->slots[0],
6874 extent_start);
9036c102 6875 }
25a50341 6876next:
9036c102
YZ
6877 if (start >= extent_end) {
6878 path->slots[0]++;
6879 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6880 ret = btrfs_next_leaf(root, path);
6881 if (ret < 0) {
6882 err = ret;
6883 goto out;
a52d9a80 6884 }
9036c102
YZ
6885 if (ret > 0)
6886 goto not_found;
6887 leaf = path->nodes[0];
a52d9a80 6888 }
9036c102
YZ
6889 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6890 if (found_key.objectid != objectid ||
6891 found_key.type != BTRFS_EXTENT_DATA_KEY)
6892 goto not_found;
6893 if (start + len <= found_key.offset)
6894 goto not_found;
e2eca69d
WS
6895 if (start > found_key.offset)
6896 goto next;
9036c102 6897 em->start = start;
70c8a91c 6898 em->orig_start = start;
9036c102
YZ
6899 em->len = found_key.offset - start;
6900 goto not_found_em;
6901 }
6902
fc4f21b1 6903 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 6904 new_inline, em);
7ffbb598 6905
d899e052
YZ
6906 if (found_type == BTRFS_FILE_EXTENT_REG ||
6907 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6908 goto insert;
6909 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6910 unsigned long ptr;
a52d9a80 6911 char *map;
3326d1b0
CM
6912 size_t size;
6913 size_t extent_offset;
6914 size_t copy_size;
a52d9a80 6915
7ffbb598 6916 if (new_inline)
689f9346 6917 goto out;
5f39d397 6918
e41ca589 6919 size = btrfs_file_extent_ram_bytes(leaf, item);
9036c102 6920 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
6921 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6922 size - extent_offset);
3326d1b0 6923 em->start = extent_start + extent_offset;
0b246afa 6924 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 6925 em->orig_block_len = em->len;
70c8a91c 6926 em->orig_start = em->start;
689f9346 6927 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
e49aabd9
LB
6928
6929 btrfs_set_path_blocking(path);
bf46f52d 6930 if (!PageUptodate(page)) {
261507a0
LZ
6931 if (btrfs_file_extent_compression(leaf, item) !=
6932 BTRFS_COMPRESS_NONE) {
e40da0e5 6933 ret = uncompress_inline(path, page, pg_offset,
c8b97818 6934 extent_offset, item);
166ae5a4
ZB
6935 if (ret) {
6936 err = ret;
6937 goto out;
6938 }
c8b97818
CM
6939 } else {
6940 map = kmap(page);
6941 read_extent_buffer(leaf, map + pg_offset, ptr,
6942 copy_size);
09cbfeaf 6943 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 6944 memset(map + pg_offset + copy_size, 0,
09cbfeaf 6945 PAGE_SIZE - pg_offset -
93c82d57
CM
6946 copy_size);
6947 }
c8b97818
CM
6948 kunmap(page);
6949 }
179e29e4 6950 flush_dcache_page(page);
a52d9a80 6951 }
d1310b2e 6952 set_extent_uptodate(io_tree, em->start,
507903b8 6953 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6954 goto insert;
a52d9a80
CM
6955 }
6956not_found:
6957 em->start = start;
70c8a91c 6958 em->orig_start = start;
d1310b2e 6959 em->len = len;
a52d9a80 6960not_found_em:
5f39d397 6961 em->block_start = EXTENT_MAP_HOLE;
a52d9a80 6962insert:
b3b4aa74 6963 btrfs_release_path(path);
d1310b2e 6964 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 6965 btrfs_err(fs_info,
5d163e0e
JM
6966 "bad extent! em: [%llu %llu] passed [%llu %llu]",
6967 em->start, em->len, start, len);
a52d9a80
CM
6968 err = -EIO;
6969 goto out;
6970 }
d1310b2e
CM
6971
6972 err = 0;
890871be 6973 write_lock(&em_tree->lock);
f46b24c9 6974 err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
890871be 6975 write_unlock(&em_tree->lock);
a52d9a80 6976out:
c6414280 6977 btrfs_free_path(path);
1abe9b8a 6978
fc4f21b1 6979 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 6980
a52d9a80
CM
6981 if (err) {
6982 free_extent_map(em);
a52d9a80
CM
6983 return ERR_PTR(err);
6984 }
79787eaa 6985 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6986 return em;
6987}
6988
fc4f21b1
NB
6989struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6990 struct page *page,
6991 size_t pg_offset, u64 start, u64 len,
6992 int create)
ec29ed5b
CM
6993{
6994 struct extent_map *em;
6995 struct extent_map *hole_em = NULL;
6996 u64 range_start = start;
6997 u64 end;
6998 u64 found;
6999 u64 found_end;
7000 int err = 0;
7001
7002 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7003 if (IS_ERR(em))
7004 return em;
9986277e
DC
7005 /*
7006 * If our em maps to:
7007 * - a hole or
7008 * - a pre-alloc extent,
7009 * there might actually be delalloc bytes behind it.
7010 */
7011 if (em->block_start != EXTENT_MAP_HOLE &&
7012 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7013 return em;
7014 else
7015 hole_em = em;
ec29ed5b
CM
7016
7017 /* check to see if we've wrapped (len == -1 or similar) */
7018 end = start + len;
7019 if (end < start)
7020 end = (u64)-1;
7021 else
7022 end -= 1;
7023
7024 em = NULL;
7025
7026 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7027 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7028 end, len, EXTENT_DELALLOC, 1);
7029 found_end = range_start + found;
7030 if (found_end < range_start)
7031 found_end = (u64)-1;
7032
7033 /*
7034 * we didn't find anything useful, return
7035 * the original results from get_extent()
7036 */
7037 if (range_start > end || found_end <= start) {
7038 em = hole_em;
7039 hole_em = NULL;
7040 goto out;
7041 }
7042
7043 /* adjust the range_start to make sure it doesn't
7044 * go backwards from the start they passed in
7045 */
67871254 7046 range_start = max(start, range_start);
ec29ed5b
CM
7047 found = found_end - range_start;
7048
7049 if (found > 0) {
7050 u64 hole_start = start;
7051 u64 hole_len = len;
7052
172ddd60 7053 em = alloc_extent_map();
ec29ed5b
CM
7054 if (!em) {
7055 err = -ENOMEM;
7056 goto out;
7057 }
7058 /*
7059 * when btrfs_get_extent can't find anything it
7060 * returns one huge hole
7061 *
7062 * make sure what it found really fits our range, and
7063 * adjust to make sure it is based on the start from
7064 * the caller
7065 */
7066 if (hole_em) {
7067 u64 calc_end = extent_map_end(hole_em);
7068
7069 if (calc_end <= start || (hole_em->start > end)) {
7070 free_extent_map(hole_em);
7071 hole_em = NULL;
7072 } else {
7073 hole_start = max(hole_em->start, start);
7074 hole_len = calc_end - hole_start;
7075 }
7076 }
7077 em->bdev = NULL;
7078 if (hole_em && range_start > hole_start) {
7079 /* our hole starts before our delalloc, so we
7080 * have to return just the parts of the hole
7081 * that go until the delalloc starts
7082 */
7083 em->len = min(hole_len,
7084 range_start - hole_start);
7085 em->start = hole_start;
7086 em->orig_start = hole_start;
7087 /*
7088 * don't adjust block start at all,
7089 * it is fixed at EXTENT_MAP_HOLE
7090 */
7091 em->block_start = hole_em->block_start;
7092 em->block_len = hole_len;
f9e4fb53
LB
7093 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7094 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7095 } else {
7096 em->start = range_start;
7097 em->len = found;
7098 em->orig_start = range_start;
7099 em->block_start = EXTENT_MAP_DELALLOC;
7100 em->block_len = found;
7101 }
bf8d32b9 7102 } else {
ec29ed5b
CM
7103 return hole_em;
7104 }
7105out:
7106
7107 free_extent_map(hole_em);
7108 if (err) {
7109 free_extent_map(em);
7110 return ERR_PTR(err);
7111 }
7112 return em;
7113}
7114
5f9a8a51
FM
7115static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7116 const u64 start,
7117 const u64 len,
7118 const u64 orig_start,
7119 const u64 block_start,
7120 const u64 block_len,
7121 const u64 orig_block_len,
7122 const u64 ram_bytes,
7123 const int type)
7124{
7125 struct extent_map *em = NULL;
7126 int ret;
7127
5f9a8a51 7128 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7129 em = create_io_em(inode, start, len, orig_start,
7130 block_start, block_len, orig_block_len,
7131 ram_bytes,
7132 BTRFS_COMPRESS_NONE, /* compress_type */
7133 type);
5f9a8a51
FM
7134 if (IS_ERR(em))
7135 goto out;
7136 }
7137 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7138 len, block_len, type);
7139 if (ret) {
7140 if (em) {
7141 free_extent_map(em);
dcdbc059 7142 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7143 start + len - 1, 0);
7144 }
7145 em = ERR_PTR(ret);
7146 }
7147 out:
5f9a8a51
FM
7148
7149 return em;
7150}
7151
4b46fce2
JB
7152static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7153 u64 start, u64 len)
7154{
0b246afa 7155 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7156 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7157 struct extent_map *em;
4b46fce2
JB
7158 struct btrfs_key ins;
7159 u64 alloc_hint;
7160 int ret;
4b46fce2 7161
4b46fce2 7162 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7163 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7164 0, alloc_hint, &ins, 1, 1);
00361589
JB
7165 if (ret)
7166 return ERR_PTR(ret);
4b46fce2 7167
5f9a8a51
FM
7168 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7169 ins.objectid, ins.offset, ins.offset,
6288d6ea 7170 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7171 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7172 if (IS_ERR(em))
2ff7e61e
JM
7173 btrfs_free_reserved_extent(fs_info, ins.objectid,
7174 ins.offset, 1);
de0ee0ed 7175
4b46fce2
JB
7176 return em;
7177}
7178
46bfbb5c
CM
7179/*
7180 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7181 * block must be cow'd
7182 */
00361589 7183noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7184 u64 *orig_start, u64 *orig_block_len,
7185 u64 *ram_bytes)
46bfbb5c 7186{
2ff7e61e 7187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7188 struct btrfs_path *path;
7189 int ret;
7190 struct extent_buffer *leaf;
7191 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7192 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7193 struct btrfs_file_extent_item *fi;
7194 struct btrfs_key key;
7195 u64 disk_bytenr;
7196 u64 backref_offset;
7197 u64 extent_end;
7198 u64 num_bytes;
7199 int slot;
7200 int found_type;
7ee9e440 7201 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7202
46bfbb5c
CM
7203 path = btrfs_alloc_path();
7204 if (!path)
7205 return -ENOMEM;
7206
f85b7379
DS
7207 ret = btrfs_lookup_file_extent(NULL, root, path,
7208 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7209 if (ret < 0)
7210 goto out;
7211
7212 slot = path->slots[0];
7213 if (ret == 1) {
7214 if (slot == 0) {
7215 /* can't find the item, must cow */
7216 ret = 0;
7217 goto out;
7218 }
7219 slot--;
7220 }
7221 ret = 0;
7222 leaf = path->nodes[0];
7223 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7224 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7225 key.type != BTRFS_EXTENT_DATA_KEY) {
7226 /* not our file or wrong item type, must cow */
7227 goto out;
7228 }
7229
7230 if (key.offset > offset) {
7231 /* Wrong offset, must cow */
7232 goto out;
7233 }
7234
7235 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7236 found_type = btrfs_file_extent_type(leaf, fi);
7237 if (found_type != BTRFS_FILE_EXTENT_REG &&
7238 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7239 /* not a regular extent, must cow */
7240 goto out;
7241 }
7ee9e440
JB
7242
7243 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7244 goto out;
7245
e77751aa
MX
7246 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7247 if (extent_end <= offset)
7248 goto out;
7249
46bfbb5c 7250 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7251 if (disk_bytenr == 0)
7252 goto out;
7253
7254 if (btrfs_file_extent_compression(leaf, fi) ||
7255 btrfs_file_extent_encryption(leaf, fi) ||
7256 btrfs_file_extent_other_encoding(leaf, fi))
7257 goto out;
7258
78d4295b
EL
7259 /*
7260 * Do the same check as in btrfs_cross_ref_exist but without the
7261 * unnecessary search.
7262 */
7263 if (btrfs_file_extent_generation(leaf, fi) <=
7264 btrfs_root_last_snapshot(&root->root_item))
7265 goto out;
7266
46bfbb5c
CM
7267 backref_offset = btrfs_file_extent_offset(leaf, fi);
7268
7ee9e440
JB
7269 if (orig_start) {
7270 *orig_start = key.offset - backref_offset;
7271 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7272 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7273 }
eb384b55 7274
2ff7e61e 7275 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7276 goto out;
7b2b7085
MX
7277
7278 num_bytes = min(offset + *len, extent_end) - offset;
7279 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7280 u64 range_end;
7281
da17066c
JM
7282 range_end = round_up(offset + num_bytes,
7283 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7284 ret = test_range_bit(io_tree, offset, range_end,
7285 EXTENT_DELALLOC, 0, NULL);
7286 if (ret) {
7287 ret = -EAGAIN;
7288 goto out;
7289 }
7290 }
7291
1bda19eb 7292 btrfs_release_path(path);
46bfbb5c
CM
7293
7294 /*
7295 * look for other files referencing this extent, if we
7296 * find any we must cow
7297 */
00361589 7298
e4c3b2dc 7299 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7300 key.offset - backref_offset, disk_bytenr);
00361589
JB
7301 if (ret) {
7302 ret = 0;
7303 goto out;
7304 }
46bfbb5c
CM
7305
7306 /*
7307 * adjust disk_bytenr and num_bytes to cover just the bytes
7308 * in this extent we are about to write. If there
7309 * are any csums in that range we have to cow in order
7310 * to keep the csums correct
7311 */
7312 disk_bytenr += backref_offset;
7313 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7314 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7315 goto out;
46bfbb5c
CM
7316 /*
7317 * all of the above have passed, it is safe to overwrite this extent
7318 * without cow
7319 */
eb384b55 7320 *len = num_bytes;
46bfbb5c
CM
7321 ret = 1;
7322out:
7323 btrfs_free_path(path);
7324 return ret;
7325}
7326
eb838e73
JB
7327static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7328 struct extent_state **cached_state, int writing)
7329{
7330 struct btrfs_ordered_extent *ordered;
7331 int ret = 0;
7332
7333 while (1) {
7334 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7335 cached_state);
eb838e73
JB
7336 /*
7337 * We're concerned with the entire range that we're going to be
01327610 7338 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7339 * extents in this range.
7340 */
a776c6fa 7341 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7342 lockend - lockstart + 1);
7343
7344 /*
7345 * We need to make sure there are no buffered pages in this
7346 * range either, we could have raced between the invalidate in
7347 * generic_file_direct_write and locking the extent. The
7348 * invalidate needs to happen so that reads after a write do not
7349 * get stale data.
7350 */
fc4adbff 7351 if (!ordered &&
051c98eb
DS
7352 (!writing || !filemap_range_has_page(inode->i_mapping,
7353 lockstart, lockend)))
eb838e73
JB
7354 break;
7355
7356 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 7357 cached_state);
eb838e73
JB
7358
7359 if (ordered) {
ade77029
FM
7360 /*
7361 * If we are doing a DIO read and the ordered extent we
7362 * found is for a buffered write, we can not wait for it
7363 * to complete and retry, because if we do so we can
7364 * deadlock with concurrent buffered writes on page
7365 * locks. This happens only if our DIO read covers more
7366 * than one extent map, if at this point has already
7367 * created an ordered extent for a previous extent map
7368 * and locked its range in the inode's io tree, and a
7369 * concurrent write against that previous extent map's
7370 * range and this range started (we unlock the ranges
7371 * in the io tree only when the bios complete and
7372 * buffered writes always lock pages before attempting
7373 * to lock range in the io tree).
7374 */
7375 if (writing ||
7376 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7377 btrfs_start_ordered_extent(inode, ordered, 1);
7378 else
7379 ret = -ENOTBLK;
eb838e73
JB
7380 btrfs_put_ordered_extent(ordered);
7381 } else {
eb838e73 7382 /*
b850ae14
FM
7383 * We could trigger writeback for this range (and wait
7384 * for it to complete) and then invalidate the pages for
7385 * this range (through invalidate_inode_pages2_range()),
7386 * but that can lead us to a deadlock with a concurrent
7387 * call to readpages() (a buffered read or a defrag call
7388 * triggered a readahead) on a page lock due to an
7389 * ordered dio extent we created before but did not have
7390 * yet a corresponding bio submitted (whence it can not
7391 * complete), which makes readpages() wait for that
7392 * ordered extent to complete while holding a lock on
7393 * that page.
eb838e73 7394 */
b850ae14 7395 ret = -ENOTBLK;
eb838e73
JB
7396 }
7397
ade77029
FM
7398 if (ret)
7399 break;
7400
eb838e73
JB
7401 cond_resched();
7402 }
7403
7404 return ret;
7405}
7406
6f9994db
LB
7407/* The callers of this must take lock_extent() */
7408static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7409 u64 orig_start, u64 block_start,
7410 u64 block_len, u64 orig_block_len,
7411 u64 ram_bytes, int compress_type,
7412 int type)
69ffb543
JB
7413{
7414 struct extent_map_tree *em_tree;
7415 struct extent_map *em;
7416 struct btrfs_root *root = BTRFS_I(inode)->root;
7417 int ret;
7418
6f9994db
LB
7419 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7420 type == BTRFS_ORDERED_COMPRESSED ||
7421 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7422 type == BTRFS_ORDERED_REGULAR);
6f9994db 7423
69ffb543
JB
7424 em_tree = &BTRFS_I(inode)->extent_tree;
7425 em = alloc_extent_map();
7426 if (!em)
7427 return ERR_PTR(-ENOMEM);
7428
7429 em->start = start;
7430 em->orig_start = orig_start;
7431 em->len = len;
7432 em->block_len = block_len;
7433 em->block_start = block_start;
7434 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7435 em->orig_block_len = orig_block_len;
cc95bef6 7436 em->ram_bytes = ram_bytes;
70c8a91c 7437 em->generation = -1;
69ffb543 7438 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7439 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7440 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7441 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7442 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7443 em->compress_type = compress_type;
7444 }
69ffb543
JB
7445
7446 do {
dcdbc059 7447 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7448 em->start + em->len - 1, 0);
7449 write_lock(&em_tree->lock);
09a2a8f9 7450 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7451 write_unlock(&em_tree->lock);
6f9994db
LB
7452 /*
7453 * The caller has taken lock_extent(), who could race with us
7454 * to add em?
7455 */
69ffb543
JB
7456 } while (ret == -EEXIST);
7457
7458 if (ret) {
7459 free_extent_map(em);
7460 return ERR_PTR(ret);
7461 }
7462
6f9994db 7463 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7464 return em;
7465}
7466
1c8d0175
NB
7467
7468static int btrfs_get_blocks_direct_read(struct extent_map *em,
7469 struct buffer_head *bh_result,
7470 struct inode *inode,
7471 u64 start, u64 len)
7472{
7473 if (em->block_start == EXTENT_MAP_HOLE ||
7474 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7475 return -ENOENT;
7476
7477 len = min(len, em->len - (start - em->start));
7478
7479 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7480 inode->i_blkbits;
7481 bh_result->b_size = len;
7482 bh_result->b_bdev = em->bdev;
7483 set_buffer_mapped(bh_result);
7484
7485 return 0;
7486}
7487
c5794e51
NB
7488static int btrfs_get_blocks_direct_write(struct extent_map **map,
7489 struct buffer_head *bh_result,
7490 struct inode *inode,
7491 struct btrfs_dio_data *dio_data,
7492 u64 start, u64 len)
7493{
7494 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7495 struct extent_map *em = *map;
7496 int ret = 0;
7497
7498 /*
7499 * We don't allocate a new extent in the following cases
7500 *
7501 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7502 * existing extent.
7503 * 2) The extent is marked as PREALLOC. We're good to go here and can
7504 * just use the extent.
7505 *
7506 */
7507 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7508 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7509 em->block_start != EXTENT_MAP_HOLE)) {
7510 int type;
7511 u64 block_start, orig_start, orig_block_len, ram_bytes;
7512
7513 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7514 type = BTRFS_ORDERED_PREALLOC;
7515 else
7516 type = BTRFS_ORDERED_NOCOW;
7517 len = min(len, em->len - (start - em->start));
7518 block_start = em->block_start + (start - em->start);
7519
7520 if (can_nocow_extent(inode, start, &len, &orig_start,
7521 &orig_block_len, &ram_bytes) == 1 &&
7522 btrfs_inc_nocow_writers(fs_info, block_start)) {
7523 struct extent_map *em2;
7524
7525 em2 = btrfs_create_dio_extent(inode, start, len,
7526 orig_start, block_start,
7527 len, orig_block_len,
7528 ram_bytes, type);
7529 btrfs_dec_nocow_writers(fs_info, block_start);
7530 if (type == BTRFS_ORDERED_PREALLOC) {
7531 free_extent_map(em);
7532 *map = em = em2;
7533 }
7534
7535 if (em2 && IS_ERR(em2)) {
7536 ret = PTR_ERR(em2);
7537 goto out;
7538 }
7539 /*
7540 * For inode marked NODATACOW or extent marked PREALLOC,
7541 * use the existing or preallocated extent, so does not
7542 * need to adjust btrfs_space_info's bytes_may_use.
7543 */
7544 btrfs_free_reserved_data_space_noquota(inode, start,
7545 len);
7546 goto skip_cow;
7547 }
7548 }
7549
7550 /* this will cow the extent */
7551 len = bh_result->b_size;
7552 free_extent_map(em);
7553 *map = em = btrfs_new_extent_direct(inode, start, len);
7554 if (IS_ERR(em)) {
7555 ret = PTR_ERR(em);
7556 goto out;
7557 }
7558
7559 len = min(len, em->len - (start - em->start));
7560
7561skip_cow:
7562 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7563 inode->i_blkbits;
7564 bh_result->b_size = len;
7565 bh_result->b_bdev = em->bdev;
7566 set_buffer_mapped(bh_result);
7567
7568 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7569 set_buffer_new(bh_result);
7570
7571 /*
7572 * Need to update the i_size under the extent lock so buffered
7573 * readers will get the updated i_size when we unlock.
7574 */
7575 if (!dio_data->overwrite && start + len > i_size_read(inode))
7576 i_size_write(inode, start + len);
7577
7578 WARN_ON(dio_data->reserve < len);
7579 dio_data->reserve -= len;
7580 dio_data->unsubmitted_oe_range_end = start + len;
7581 current->journal_info = dio_data;
7582out:
7583 return ret;
7584}
7585
4b46fce2
JB
7586static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7587 struct buffer_head *bh_result, int create)
7588{
0b246afa 7589 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7590 struct extent_map *em;
eb838e73 7591 struct extent_state *cached_state = NULL;
50745b0a 7592 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7593 u64 start = iblock << inode->i_blkbits;
eb838e73 7594 u64 lockstart, lockend;
4b46fce2 7595 u64 len = bh_result->b_size;
eb838e73 7596 int unlock_bits = EXTENT_LOCKED;
0934856d 7597 int ret = 0;
eb838e73 7598
172a5049 7599 if (create)
3266789f 7600 unlock_bits |= EXTENT_DIRTY;
172a5049 7601 else
0b246afa 7602 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7603
c329861d
JB
7604 lockstart = start;
7605 lockend = start + len - 1;
7606
e1cbbfa5
JB
7607 if (current->journal_info) {
7608 /*
7609 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7610 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7611 * confused.
7612 */
50745b0a 7613 dio_data = current->journal_info;
e1cbbfa5
JB
7614 current->journal_info = NULL;
7615 }
7616
eb838e73
JB
7617 /*
7618 * If this errors out it's because we couldn't invalidate pagecache for
7619 * this range and we need to fallback to buffered.
7620 */
9c9464cc
FM
7621 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7622 create)) {
7623 ret = -ENOTBLK;
7624 goto err;
7625 }
eb838e73 7626
fc4f21b1 7627 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7628 if (IS_ERR(em)) {
7629 ret = PTR_ERR(em);
7630 goto unlock_err;
7631 }
4b46fce2
JB
7632
7633 /*
7634 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7635 * io. INLINE is special, and we could probably kludge it in here, but
7636 * it's still buffered so for safety lets just fall back to the generic
7637 * buffered path.
7638 *
7639 * For COMPRESSED we _have_ to read the entire extent in so we can
7640 * decompress it, so there will be buffering required no matter what we
7641 * do, so go ahead and fallback to buffered.
7642 *
01327610 7643 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7644 * to buffered IO. Don't blame me, this is the price we pay for using
7645 * the generic code.
7646 */
7647 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7648 em->block_start == EXTENT_MAP_INLINE) {
7649 free_extent_map(em);
eb838e73
JB
7650 ret = -ENOTBLK;
7651 goto unlock_err;
4b46fce2
JB
7652 }
7653
c5794e51
NB
7654 if (create) {
7655 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7656 dio_data, start, len);
7657 if (ret < 0)
7658 goto unlock_err;
7659
7660 /* clear and unlock the entire range */
7661 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7662 unlock_bits, 1, 0, &cached_state);
7663 } else {
1c8d0175
NB
7664 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7665 start, len);
7666 /* Can be negative only if we read from a hole */
7667 if (ret < 0) {
7668 ret = 0;
7669 free_extent_map(em);
7670 goto unlock_err;
7671 }
7672 /*
7673 * We need to unlock only the end area that we aren't using.
7674 * The rest is going to be unlocked by the endio routine.
7675 */
7676 lockstart = start + bh_result->b_size;
7677 if (lockstart < lockend) {
7678 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7679 lockend, unlock_bits, 1, 0,
7680 &cached_state);
7681 } else {
7682 free_extent_state(cached_state);
7683 }
4b46fce2
JB
7684 }
7685
4b46fce2
JB
7686 free_extent_map(em);
7687
7688 return 0;
eb838e73
JB
7689
7690unlock_err:
eb838e73 7691 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ae0f1625 7692 unlock_bits, 1, 0, &cached_state);
9c9464cc 7693err:
50745b0a 7694 if (dio_data)
7695 current->journal_info = dio_data;
eb838e73 7696 return ret;
4b46fce2
JB
7697}
7698
58efbc9f
OS
7699static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7700 struct bio *bio,
7701 int mirror_num)
8b110e39 7702{
2ff7e61e 7703 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7704 blk_status_t ret;
8b110e39 7705
37226b21 7706 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39 7707
2ff7e61e 7708 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39 7709 if (ret)
ea057f6d 7710 return ret;
8b110e39 7711
2ff7e61e 7712 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
ea057f6d 7713
8b110e39
MX
7714 return ret;
7715}
7716
7717static int btrfs_check_dio_repairable(struct inode *inode,
7718 struct bio *failed_bio,
7719 struct io_failure_record *failrec,
7720 int failed_mirror)
7721{
ab8d0fc4 7722 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7723 int num_copies;
7724
ab8d0fc4 7725 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7726 if (num_copies == 1) {
7727 /*
7728 * we only have a single copy of the data, so don't bother with
7729 * all the retry and error correction code that follows. no
7730 * matter what the error is, it is very likely to persist.
7731 */
ab8d0fc4
JM
7732 btrfs_debug(fs_info,
7733 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7734 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7735 return 0;
7736 }
7737
7738 failrec->failed_mirror = failed_mirror;
7739 failrec->this_mirror++;
7740 if (failrec->this_mirror == failed_mirror)
7741 failrec->this_mirror++;
7742
7743 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7744 btrfs_debug(fs_info,
7745 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7746 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7747 return 0;
7748 }
7749
7750 return 1;
7751}
7752
58efbc9f
OS
7753static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7754 struct page *page, unsigned int pgoff,
7755 u64 start, u64 end, int failed_mirror,
7756 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7757{
7758 struct io_failure_record *failrec;
7870d082
JB
7759 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7760 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7761 struct bio *bio;
7762 int isector;
f1c77c55 7763 unsigned int read_mode = 0;
17347cec 7764 int segs;
8b110e39 7765 int ret;
58efbc9f 7766 blk_status_t status;
c16a8ac3 7767 struct bio_vec bvec;
8b110e39 7768
37226b21 7769 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
7770
7771 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7772 if (ret)
58efbc9f 7773 return errno_to_blk_status(ret);
8b110e39
MX
7774
7775 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7776 failed_mirror);
7777 if (!ret) {
7870d082 7778 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 7779 return BLK_STS_IOERR;
8b110e39
MX
7780 }
7781
17347cec 7782 segs = bio_segments(failed_bio);
c16a8ac3 7783 bio_get_first_bvec(failed_bio, &bvec);
17347cec 7784 if (segs > 1 ||
c16a8ac3 7785 (bvec.bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 7786 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
7787
7788 isector = start - btrfs_io_bio(failed_bio)->logical;
7789 isector >>= inode->i_sb->s_blocksize_bits;
7790 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 7791 pgoff, isector, repair_endio, repair_arg);
ebcc3263 7792 bio->bi_opf = REQ_OP_READ | read_mode;
8b110e39
MX
7793
7794 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 7795 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
7796 read_mode, failrec->this_mirror, failrec->in_validation);
7797
58efbc9f
OS
7798 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7799 if (status) {
7870d082 7800 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
7801 bio_put(bio);
7802 }
7803
58efbc9f 7804 return status;
8b110e39
MX
7805}
7806
7807struct btrfs_retry_complete {
7808 struct completion done;
7809 struct inode *inode;
7810 u64 start;
7811 int uptodate;
7812};
7813
4246a0b6 7814static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
7815{
7816 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 7817 struct inode *inode = done->inode;
8b110e39 7818 struct bio_vec *bvec;
7870d082 7819 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
7820 int i;
7821
4e4cbee9 7822 if (bio->bi_status)
8b110e39
MX
7823 goto end;
7824
2dabb324 7825 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
7826 io_tree = &BTRFS_I(inode)->io_tree;
7827 failure_tree = &BTRFS_I(inode)->io_failure_tree;
263663cd 7828 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 7829
8b110e39 7830 done->uptodate = 1;
c09abff8 7831 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7832 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
7833 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
7834 io_tree, done->start, bvec->bv_page,
7835 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
7836end:
7837 complete(&done->done);
7838 bio_put(bio);
7839}
7840
58efbc9f
OS
7841static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
7842 struct btrfs_io_bio *io_bio)
4b46fce2 7843{
2dabb324 7844 struct btrfs_fs_info *fs_info;
17347cec
LB
7845 struct bio_vec bvec;
7846 struct bvec_iter iter;
8b110e39 7847 struct btrfs_retry_complete done;
4b46fce2 7848 u64 start;
2dabb324
CR
7849 unsigned int pgoff;
7850 u32 sectorsize;
7851 int nr_sectors;
58efbc9f
OS
7852 blk_status_t ret;
7853 blk_status_t err = BLK_STS_OK;
4b46fce2 7854
2dabb324 7855 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7856 sectorsize = fs_info->sectorsize;
2dabb324 7857
8b110e39
MX
7858 start = io_bio->logical;
7859 done.inode = inode;
17347cec 7860 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7861
17347cec
LB
7862 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7863 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7864 pgoff = bvec.bv_offset;
2dabb324
CR
7865
7866next_block_or_try_again:
8b110e39
MX
7867 done.uptodate = 0;
7868 done.start = start;
7869 init_completion(&done.done);
7870
17347cec 7871 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
7872 pgoff, start, start + sectorsize - 1,
7873 io_bio->mirror_num,
7874 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
7875 if (ret) {
7876 err = ret;
7877 goto next;
7878 }
8b110e39 7879
9c17f6cd 7880 wait_for_completion_io(&done.done);
8b110e39
MX
7881
7882 if (!done.uptodate) {
7883 /* We might have another mirror, so try again */
2dabb324 7884 goto next_block_or_try_again;
8b110e39
MX
7885 }
7886
629ebf4f 7887next:
2dabb324
CR
7888 start += sectorsize;
7889
97bf5a55
LB
7890 nr_sectors--;
7891 if (nr_sectors) {
2dabb324 7892 pgoff += sectorsize;
97bf5a55 7893 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
7894 goto next_block_or_try_again;
7895 }
8b110e39
MX
7896 }
7897
629ebf4f 7898 return err;
8b110e39
MX
7899}
7900
4246a0b6 7901static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
7902{
7903 struct btrfs_retry_complete *done = bio->bi_private;
7904 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
7905 struct extent_io_tree *io_tree, *failure_tree;
7906 struct inode *inode = done->inode;
8b110e39
MX
7907 struct bio_vec *bvec;
7908 int uptodate;
7909 int ret;
7910 int i;
7911
4e4cbee9 7912 if (bio->bi_status)
8b110e39
MX
7913 goto end;
7914
7915 uptodate = 1;
2dabb324 7916
2dabb324 7917 ASSERT(bio->bi_vcnt == 1);
263663cd 7918 ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 7919
7870d082
JB
7920 io_tree = &BTRFS_I(inode)->io_tree;
7921 failure_tree = &BTRFS_I(inode)->io_failure_tree;
7922
c09abff8 7923 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 7924 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
7925 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7926 bvec->bv_offset, done->start,
7927 bvec->bv_len);
8b110e39 7928 if (!ret)
7870d082
JB
7929 clean_io_failure(BTRFS_I(inode)->root->fs_info,
7930 failure_tree, io_tree, done->start,
7931 bvec->bv_page,
7932 btrfs_ino(BTRFS_I(inode)),
7933 bvec->bv_offset);
8b110e39
MX
7934 else
7935 uptodate = 0;
7936 }
7937
7938 done->uptodate = uptodate;
7939end:
7940 complete(&done->done);
7941 bio_put(bio);
7942}
7943
4e4cbee9
CH
7944static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
7945 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 7946{
2dabb324 7947 struct btrfs_fs_info *fs_info;
17347cec
LB
7948 struct bio_vec bvec;
7949 struct bvec_iter iter;
8b110e39
MX
7950 struct btrfs_retry_complete done;
7951 u64 start;
7952 u64 offset = 0;
2dabb324
CR
7953 u32 sectorsize;
7954 int nr_sectors;
7955 unsigned int pgoff;
7956 int csum_pos;
ef7cdac1 7957 bool uptodate = (err == 0);
8b110e39 7958 int ret;
58efbc9f 7959 blk_status_t status;
dc380aea 7960
2dabb324 7961 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 7962 sectorsize = fs_info->sectorsize;
2dabb324 7963
58efbc9f 7964 err = BLK_STS_OK;
c1dc0896 7965 start = io_bio->logical;
8b110e39 7966 done.inode = inode;
17347cec 7967 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 7968
17347cec
LB
7969 bio_for_each_segment(bvec, &io_bio->bio, iter) {
7970 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 7971
17347cec 7972 pgoff = bvec.bv_offset;
2dabb324 7973next_block:
ef7cdac1
LB
7974 if (uptodate) {
7975 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
7976 ret = __readpage_endio_check(inode, io_bio, csum_pos,
7977 bvec.bv_page, pgoff, start, sectorsize);
7978 if (likely(!ret))
7979 goto next;
7980 }
8b110e39
MX
7981try_again:
7982 done.uptodate = 0;
7983 done.start = start;
7984 init_completion(&done.done);
7985
58efbc9f
OS
7986 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
7987 pgoff, start, start + sectorsize - 1,
7988 io_bio->mirror_num, btrfs_retry_endio,
7989 &done);
7990 if (status) {
7991 err = status;
8b110e39
MX
7992 goto next;
7993 }
7994
9c17f6cd 7995 wait_for_completion_io(&done.done);
8b110e39
MX
7996
7997 if (!done.uptodate) {
7998 /* We might have another mirror, so try again */
7999 goto try_again;
8000 }
8001next:
2dabb324
CR
8002 offset += sectorsize;
8003 start += sectorsize;
8004
8005 ASSERT(nr_sectors);
8006
97bf5a55
LB
8007 nr_sectors--;
8008 if (nr_sectors) {
2dabb324 8009 pgoff += sectorsize;
97bf5a55 8010 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8011 goto next_block;
8012 }
2c30c71b 8013 }
c1dc0896
MX
8014
8015 return err;
8016}
8017
4e4cbee9
CH
8018static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8019 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8020{
8021 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8022
8023 if (skip_csum) {
8024 if (unlikely(err))
8025 return __btrfs_correct_data_nocsum(inode, io_bio);
8026 else
58efbc9f 8027 return BLK_STS_OK;
8b110e39
MX
8028 } else {
8029 return __btrfs_subio_endio_read(inode, io_bio, err);
8030 }
8031}
8032
4246a0b6 8033static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8034{
8035 struct btrfs_dio_private *dip = bio->bi_private;
8036 struct inode *inode = dip->inode;
8037 struct bio *dio_bio;
8038 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8039 blk_status_t err = bio->bi_status;
c1dc0896 8040
99c4e3b9 8041 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8042 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8043
4b46fce2 8044 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8045 dip->logical_offset + dip->bytes - 1);
9be3395b 8046 dio_bio = dip->dio_bio;
4b46fce2 8047
4b46fce2 8048 kfree(dip);
c0da7aa1 8049
99c4e3b9 8050 dio_bio->bi_status = err;
4055351c 8051 dio_end_io(dio_bio);
b3a0dd50 8052 btrfs_io_bio_free_csum(io_bio);
9be3395b 8053 bio_put(bio);
4b46fce2
JB
8054}
8055
52427260
QW
8056static void __endio_write_update_ordered(struct inode *inode,
8057 const u64 offset, const u64 bytes,
8058 const bool uptodate)
4b46fce2 8059{
0b246afa 8060 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8061 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8062 struct btrfs_workqueue *wq;
8063 btrfs_work_func_t func;
14543774
FM
8064 u64 ordered_offset = offset;
8065 u64 ordered_bytes = bytes;
67c003f9 8066 u64 last_offset;
4b46fce2 8067
52427260
QW
8068 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8069 wq = fs_info->endio_freespace_worker;
8070 func = btrfs_freespace_write_helper;
8071 } else {
8072 wq = fs_info->endio_write_workers;
8073 func = btrfs_endio_write_helper;
8074 }
8075
b25f0d00
NB
8076 while (ordered_offset < offset + bytes) {
8077 last_offset = ordered_offset;
8078 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
8079 &ordered_offset,
8080 ordered_bytes,
8081 uptodate)) {
8082 btrfs_init_work(&ordered->work, func,
8083 finish_ordered_fn,
8084 NULL, NULL);
8085 btrfs_queue_work(wq, &ordered->work);
8086 }
8087 /*
8088 * If btrfs_dec_test_ordered_pending does not find any ordered
8089 * extent in the range, we can exit.
8090 */
8091 if (ordered_offset == last_offset)
8092 return;
8093 /*
8094 * Our bio might span multiple ordered extents. In this case
8095 * we keep goin until we have accounted the whole dio.
8096 */
8097 if (ordered_offset < offset + bytes) {
8098 ordered_bytes = offset + bytes - ordered_offset;
8099 ordered = NULL;
8100 }
163cf09c 8101 }
14543774
FM
8102}
8103
8104static void btrfs_endio_direct_write(struct bio *bio)
8105{
8106 struct btrfs_dio_private *dip = bio->bi_private;
8107 struct bio *dio_bio = dip->dio_bio;
8108
52427260 8109 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8110 dip->bytes, !bio->bi_status);
4b46fce2 8111
4b46fce2 8112 kfree(dip);
c0da7aa1 8113
4e4cbee9 8114 dio_bio->bi_status = bio->bi_status;
4055351c 8115 dio_end_io(dio_bio);
9be3395b 8116 bio_put(bio);
4b46fce2
JB
8117}
8118
d0ee3934 8119static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
d0779291 8120 struct bio *bio, u64 offset)
eaf25d93 8121{
c6100a4b 8122 struct inode *inode = private_data;
4e4cbee9 8123 blk_status_t ret;
2ff7e61e 8124 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8125 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8126 return 0;
8127}
8128
4246a0b6 8129static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8130{
8131 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8132 blk_status_t err = bio->bi_status;
e65e1535 8133
8b110e39
MX
8134 if (err)
8135 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8136 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8137 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8138 bio->bi_opf,
8b110e39
MX
8139 (unsigned long long)bio->bi_iter.bi_sector,
8140 bio->bi_iter.bi_size, err);
8141
8142 if (dip->subio_endio)
8143 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8144
8145 if (err) {
e65e1535 8146 /*
de224b7c
NB
8147 * We want to perceive the errors flag being set before
8148 * decrementing the reference count. We don't need a barrier
8149 * since atomic operations with a return value are fully
8150 * ordered as per atomic_t.txt
e65e1535 8151 */
de224b7c 8152 dip->errors = 1;
e65e1535
MX
8153 }
8154
8155 /* if there are more bios still pending for this dio, just exit */
8156 if (!atomic_dec_and_test(&dip->pending_bios))
8157 goto out;
8158
9be3395b 8159 if (dip->errors) {
e65e1535 8160 bio_io_error(dip->orig_bio);
9be3395b 8161 } else {
2dbe0c77 8162 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8163 bio_endio(dip->orig_bio);
e65e1535
MX
8164 }
8165out:
8166 bio_put(bio);
8167}
8168
4e4cbee9 8169static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8170 struct btrfs_dio_private *dip,
8171 struct bio *bio,
8172 u64 file_offset)
8173{
8174 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8175 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8176 blk_status_t ret;
c1dc0896
MX
8177
8178 /*
8179 * We load all the csum data we need when we submit
8180 * the first bio to reduce the csum tree search and
8181 * contention.
8182 */
8183 if (dip->logical_offset == file_offset) {
2ff7e61e 8184 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8185 file_offset);
8186 if (ret)
8187 return ret;
8188 }
8189
8190 if (bio == dip->orig_bio)
8191 return 0;
8192
8193 file_offset -= dip->logical_offset;
8194 file_offset >>= inode->i_sb->s_blocksize_bits;
8195 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8196
8197 return 0;
8198}
8199
d0ee3934
DS
8200static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
8201 struct inode *inode, u64 file_offset, int async_submit)
e65e1535 8202{
0b246afa 8203 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8204 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8205 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8206 blk_status_t ret;
e65e1535 8207
4c274bc6 8208 /* Check btrfs_submit_bio_hook() for rules about async submit. */
b812ce28
JB
8209 if (async_submit)
8210 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8211
5fd02043 8212 if (!write) {
0b246afa 8213 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8214 if (ret)
8215 goto err;
8216 }
e65e1535 8217
e6961cac 8218 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8219 goto map;
8220
8221 if (write && async_submit) {
c6100a4b
JB
8222 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8223 file_offset, inode,
e288c080 8224 btrfs_submit_bio_start_direct_io);
e65e1535 8225 goto err;
1ae39938
JB
8226 } else if (write) {
8227 /*
8228 * If we aren't doing async submit, calculate the csum of the
8229 * bio now.
8230 */
2ff7e61e 8231 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8232 if (ret)
8233 goto err;
23ea8e5a 8234 } else {
2ff7e61e 8235 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8236 file_offset);
c2db1073
TI
8237 if (ret)
8238 goto err;
8239 }
1ae39938 8240map:
9b4a9b28 8241 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535 8242err:
e65e1535
MX
8243 return ret;
8244}
8245
e6961cac 8246static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8247{
8248 struct inode *inode = dip->inode;
0b246afa 8249 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8250 struct bio *bio;
8251 struct bio *orig_bio = dip->orig_bio;
4f024f37 8252 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8253 u64 file_offset = dip->logical_offset;
e65e1535 8254 u64 map_length;
1ae39938 8255 int async_submit = 0;
725130ba
LB
8256 u64 submit_len;
8257 int clone_offset = 0;
8258 int clone_len;
5f4dc8fc 8259 int ret;
58efbc9f 8260 blk_status_t status;
e65e1535 8261
4f024f37 8262 map_length = orig_bio->bi_iter.bi_size;
725130ba 8263 submit_len = map_length;
0b246afa
JM
8264 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8265 &map_length, NULL, 0);
7a5c3c9b 8266 if (ret)
e65e1535 8267 return -EIO;
facc8a22 8268
725130ba 8269 if (map_length >= submit_len) {
02f57c7a 8270 bio = orig_bio;
c1dc0896 8271 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8272 goto submit;
8273 }
8274
53b381b3 8275 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8276 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8277 async_submit = 0;
8278 else
8279 async_submit = 1;
8280
725130ba
LB
8281 /* bio split */
8282 ASSERT(map_length <= INT_MAX);
02f57c7a 8283 atomic_inc(&dip->pending_bios);
3c91ee69 8284 do {
725130ba 8285 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8286
725130ba
LB
8287 /*
8288 * This will never fail as it's passing GPF_NOFS and
8289 * the allocation is backed by btrfs_bioset.
8290 */
e477094f 8291 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8292 clone_len);
8293 bio->bi_private = dip;
8294 bio->bi_end_io = btrfs_end_dio_bio;
8295 btrfs_io_bio(bio)->logical = file_offset;
8296
8297 ASSERT(submit_len >= clone_len);
8298 submit_len -= clone_len;
8299 if (submit_len == 0)
8300 break;
e65e1535 8301
725130ba
LB
8302 /*
8303 * Increase the count before we submit the bio so we know
8304 * the end IO handler won't happen before we increase the
8305 * count. Otherwise, the dip might get freed before we're
8306 * done setting it up.
8307 */
8308 atomic_inc(&dip->pending_bios);
e65e1535 8309
d0ee3934 8310 status = btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8311 async_submit);
8312 if (status) {
725130ba
LB
8313 bio_put(bio);
8314 atomic_dec(&dip->pending_bios);
8315 goto out_err;
8316 }
e65e1535 8317
725130ba
LB
8318 clone_offset += clone_len;
8319 start_sector += clone_len >> 9;
8320 file_offset += clone_len;
5f4dc8fc 8321
725130ba
LB
8322 map_length = submit_len;
8323 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8324 start_sector << 9, &map_length, NULL, 0);
8325 if (ret)
8326 goto out_err;
3c91ee69 8327 } while (submit_len > 0);
e65e1535 8328
02f57c7a 8329submit:
d0ee3934 8330 status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8331 if (!status)
e65e1535
MX
8332 return 0;
8333
8334 bio_put(bio);
8335out_err:
8336 dip->errors = 1;
8337 /*
de224b7c
NB
8338 * Before atomic variable goto zero, we must make sure dip->errors is
8339 * perceived to be set. This ordering is ensured by the fact that an
8340 * atomic operations with a return value are fully ordered as per
8341 * atomic_t.txt
e65e1535 8342 */
e65e1535
MX
8343 if (atomic_dec_and_test(&dip->pending_bios))
8344 bio_io_error(dip->orig_bio);
8345
8346 /* bio_end_io() will handle error, so we needn't return it */
8347 return 0;
8348}
8349
8a4c1e42
MC
8350static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8351 loff_t file_offset)
4b46fce2 8352{
61de718f 8353 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8354 struct bio *bio = NULL;
8355 struct btrfs_io_bio *io_bio;
8a4c1e42 8356 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8357 int ret = 0;
8358
8b6c1d56 8359 bio = btrfs_bio_clone(dio_bio);
9be3395b 8360
c1dc0896 8361 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8362 if (!dip) {
8363 ret = -ENOMEM;
61de718f 8364 goto free_ordered;
4b46fce2 8365 }
4b46fce2 8366
9be3395b 8367 dip->private = dio_bio->bi_private;
4b46fce2
JB
8368 dip->inode = inode;
8369 dip->logical_offset = file_offset;
4f024f37
KO
8370 dip->bytes = dio_bio->bi_iter.bi_size;
8371 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8372 bio->bi_private = dip;
8373 dip->orig_bio = bio;
9be3395b 8374 dip->dio_bio = dio_bio;
e65e1535 8375 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8376 io_bio = btrfs_io_bio(bio);
8377 io_bio->logical = file_offset;
4b46fce2 8378
c1dc0896 8379 if (write) {
3892ac90 8380 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8381 } else {
3892ac90 8382 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8383 dip->subio_endio = btrfs_subio_endio_read;
8384 }
4b46fce2 8385
f28a4928
FM
8386 /*
8387 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8388 * even if we fail to submit a bio, because in such case we do the
8389 * corresponding error handling below and it must not be done a second
8390 * time by btrfs_direct_IO().
8391 */
8392 if (write) {
8393 struct btrfs_dio_data *dio_data = current->journal_info;
8394
8395 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8396 dip->bytes;
8397 dio_data->unsubmitted_oe_range_start =
8398 dio_data->unsubmitted_oe_range_end;
8399 }
8400
e6961cac 8401 ret = btrfs_submit_direct_hook(dip);
e65e1535 8402 if (!ret)
eaf25d93 8403 return;
9be3395b 8404
b3a0dd50 8405 btrfs_io_bio_free_csum(io_bio);
9be3395b 8406
4b46fce2
JB
8407free_ordered:
8408 /*
61de718f
FM
8409 * If we arrived here it means either we failed to submit the dip
8410 * or we either failed to clone the dio_bio or failed to allocate the
8411 * dip. If we cloned the dio_bio and allocated the dip, we can just
8412 * call bio_endio against our io_bio so that we get proper resource
8413 * cleanup if we fail to submit the dip, otherwise, we must do the
8414 * same as btrfs_endio_direct_[write|read] because we can't call these
8415 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8416 */
3892ac90 8417 if (bio && dip) {
054ec2f6 8418 bio_io_error(bio);
61de718f 8419 /*
3892ac90 8420 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8421 * and all the cleanup and final put for dio_bio (through
8422 * dio_end_io()).
8423 */
8424 dip = NULL;
3892ac90 8425 bio = NULL;
61de718f 8426 } else {
14543774 8427 if (write)
52427260 8428 __endio_write_update_ordered(inode,
14543774
FM
8429 file_offset,
8430 dio_bio->bi_iter.bi_size,
52427260 8431 false);
14543774 8432 else
61de718f
FM
8433 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8434 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8435
4e4cbee9 8436 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8437 /*
8438 * Releases and cleans up our dio_bio, no need to bio_put()
8439 * nor bio_endio()/bio_io_error() against dio_bio.
8440 */
4055351c 8441 dio_end_io(dio_bio);
4b46fce2 8442 }
3892ac90
LB
8443 if (bio)
8444 bio_put(bio);
61de718f 8445 kfree(dip);
4b46fce2
JB
8446}
8447
2ff7e61e 8448static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8449 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8450{
8451 int seg;
a1b75f7d 8452 int i;
0b246afa 8453 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8454 ssize_t retval = -EINVAL;
5a5f79b5
CM
8455
8456 if (offset & blocksize_mask)
8457 goto out;
8458
28060d5d
AV
8459 if (iov_iter_alignment(iter) & blocksize_mask)
8460 goto out;
a1b75f7d 8461
28060d5d 8462 /* If this is a write we don't need to check anymore */
cd27e455 8463 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8464 return 0;
8465 /*
8466 * Check to make sure we don't have duplicate iov_base's in this
8467 * iovec, if so return EINVAL, otherwise we'll get csum errors
8468 * when reading back.
8469 */
8470 for (seg = 0; seg < iter->nr_segs; seg++) {
8471 for (i = seg + 1; i < iter->nr_segs; i++) {
8472 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8473 goto out;
8474 }
5a5f79b5
CM
8475 }
8476 retval = 0;
8477out:
8478 return retval;
8479}
eb838e73 8480
c8b8e32d 8481static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8482{
4b46fce2
JB
8483 struct file *file = iocb->ki_filp;
8484 struct inode *inode = file->f_mapping->host;
0b246afa 8485 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8486 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8487 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8488 loff_t offset = iocb->ki_pos;
0934856d 8489 size_t count = 0;
2e60a51e 8490 int flags = 0;
38851cc1
MX
8491 bool wakeup = true;
8492 bool relock = false;
0934856d 8493 ssize_t ret;
4b46fce2 8494
8c70c9f8 8495 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8496 return 0;
3f7c579c 8497
fe0f07d0 8498 inode_dio_begin(inode);
38851cc1 8499
0e267c44 8500 /*
41bd9ca4
MX
8501 * The generic stuff only does filemap_write_and_wait_range, which
8502 * isn't enough if we've written compressed pages to this area, so
8503 * we need to flush the dirty pages again to make absolutely sure
8504 * that any outstanding dirty pages are on disk.
0e267c44 8505 */
a6cbcd4a 8506 count = iov_iter_count(iter);
41bd9ca4
MX
8507 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8508 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8509 filemap_fdatawrite_range(inode->i_mapping, offset,
8510 offset + count - 1);
0e267c44 8511
6f673763 8512 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8513 /*
8514 * If the write DIO is beyond the EOF, we need update
8515 * the isize, but it is protected by i_mutex. So we can
8516 * not unlock the i_mutex at this case.
8517 */
8518 if (offset + count <= inode->i_size) {
4aaedfb0 8519 dio_data.overwrite = 1;
5955102c 8520 inode_unlock(inode);
38851cc1 8521 relock = true;
edf064e7
GR
8522 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8523 ret = -EAGAIN;
8524 goto out;
38851cc1 8525 }
364ecf36
QW
8526 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8527 offset, count);
0934856d 8528 if (ret)
38851cc1 8529 goto out;
e1cbbfa5
JB
8530
8531 /*
8532 * We need to know how many extents we reserved so that we can
8533 * do the accounting properly if we go over the number we
8534 * originally calculated. Abuse current->journal_info for this.
8535 */
da17066c 8536 dio_data.reserve = round_up(count,
0b246afa 8537 fs_info->sectorsize);
f28a4928
FM
8538 dio_data.unsubmitted_oe_range_start = (u64)offset;
8539 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8540 current->journal_info = &dio_data;
97dcdea0 8541 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8542 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8543 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8544 inode_dio_end(inode);
38851cc1
MX
8545 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8546 wakeup = false;
0934856d
MX
8547 }
8548
17f8c842 8549 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8550 fs_info->fs_devices->latest_bdev,
c8b8e32d 8551 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8552 btrfs_submit_direct, flags);
6f673763 8553 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8554 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8555 current->journal_info = NULL;
ddba1bfc 8556 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8557 if (dio_data.reserve)
bc42bda2 8558 btrfs_delalloc_release_space(inode, data_reserved,
43b18595 8559 offset, dio_data.reserve, true);
f28a4928
FM
8560 /*
8561 * On error we might have left some ordered extents
8562 * without submitting corresponding bios for them, so
8563 * cleanup them up to avoid other tasks getting them
8564 * and waiting for them to complete forever.
8565 */
8566 if (dio_data.unsubmitted_oe_range_start <
8567 dio_data.unsubmitted_oe_range_end)
52427260 8568 __endio_write_update_ordered(inode,
f28a4928
FM
8569 dio_data.unsubmitted_oe_range_start,
8570 dio_data.unsubmitted_oe_range_end -
8571 dio_data.unsubmitted_oe_range_start,
52427260 8572 false);
ddba1bfc 8573 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2 8574 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8575 offset, count - (size_t)ret, true);
8576 btrfs_delalloc_release_extents(BTRFS_I(inode), count, false);
0934856d 8577 }
38851cc1 8578out:
2e60a51e 8579 if (wakeup)
fe0f07d0 8580 inode_dio_end(inode);
38851cc1 8581 if (relock)
5955102c 8582 inode_lock(inode);
0934856d 8583
364ecf36 8584 extent_changeset_free(data_reserved);
0934856d 8585 return ret;
16432985
CM
8586}
8587
05dadc09
TI
8588#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8589
1506fcc8
YS
8590static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8591 __u64 start, __u64 len)
8592{
05dadc09
TI
8593 int ret;
8594
8595 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8596 if (ret)
8597 return ret;
8598
2135fb9b 8599 return extent_fiemap(inode, fieinfo, start, len);
1506fcc8
YS
8600}
8601
a52d9a80 8602int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8603{
d1310b2e
CM
8604 struct extent_io_tree *tree;
8605 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8606 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8607}
1832a6d5 8608
a52d9a80 8609static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8610{
be7bd730
JB
8611 struct inode *inode = page->mapping->host;
8612 int ret;
b888db2b
CM
8613
8614 if (current->flags & PF_MEMALLOC) {
8615 redirty_page_for_writepage(wbc, page);
8616 unlock_page(page);
8617 return 0;
8618 }
be7bd730
JB
8619
8620 /*
8621 * If we are under memory pressure we will call this directly from the
8622 * VM, we need to make sure we have the inode referenced for the ordered
8623 * extent. If not just return like we didn't do anything.
8624 */
8625 if (!igrab(inode)) {
8626 redirty_page_for_writepage(wbc, page);
8627 return AOP_WRITEPAGE_ACTIVATE;
8628 }
0a9b0e53 8629 ret = extent_write_full_page(page, wbc);
be7bd730
JB
8630 btrfs_add_delayed_iput(inode);
8631 return ret;
9ebefb18
CM
8632}
8633
48a3b636
ES
8634static int btrfs_writepages(struct address_space *mapping,
8635 struct writeback_control *wbc)
b293f02e 8636{
8ae225a8 8637 return extent_writepages(mapping, wbc);
b293f02e
CM
8638}
8639
3ab2fb5a
CM
8640static int
8641btrfs_readpages(struct file *file, struct address_space *mapping,
8642 struct list_head *pages, unsigned nr_pages)
8643{
2a3ff0ad 8644 return extent_readpages(mapping, pages, nr_pages);
3ab2fb5a 8645}
2a3ff0ad 8646
e6dcd2dc 8647static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8648{
477a30ba 8649 int ret = try_release_extent_mapping(page, gfp_flags);
a52d9a80
CM
8650 if (ret == 1) {
8651 ClearPagePrivate(page);
8652 set_page_private(page, 0);
09cbfeaf 8653 put_page(page);
39279cc3 8654 }
a52d9a80 8655 return ret;
39279cc3
CM
8656}
8657
e6dcd2dc
CM
8658static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8659{
98509cfc
CM
8660 if (PageWriteback(page) || PageDirty(page))
8661 return 0;
3ba7ab22 8662 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8663}
8664
d47992f8
LC
8665static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8666 unsigned int length)
39279cc3 8667{
5fd02043 8668 struct inode *inode = page->mapping->host;
d1310b2e 8669 struct extent_io_tree *tree;
e6dcd2dc 8670 struct btrfs_ordered_extent *ordered;
2ac55d41 8671 struct extent_state *cached_state = NULL;
e6dcd2dc 8672 u64 page_start = page_offset(page);
09cbfeaf 8673 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8674 u64 start;
8675 u64 end;
131e404a 8676 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8677
8b62b72b
CM
8678 /*
8679 * we have the page locked, so new writeback can't start,
8680 * and the dirty bit won't be cleared while we are here.
8681 *
8682 * Wait for IO on this page so that we can safely clear
8683 * the PagePrivate2 bit and do ordered accounting
8684 */
e6dcd2dc 8685 wait_on_page_writeback(page);
8b62b72b 8686
5fd02043 8687 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8688 if (offset) {
8689 btrfs_releasepage(page, GFP_NOFS);
8690 return;
8691 }
131e404a
FDBM
8692
8693 if (!inode_evicting)
ff13db41 8694 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8695again:
8696 start = page_start;
a776c6fa 8697 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8698 page_end - start + 1);
e6dcd2dc 8699 if (ordered) {
dbfdb6d1 8700 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8701 /*
8702 * IO on this page will never be started, so we need
8703 * to account for any ordered extents now
8704 */
131e404a 8705 if (!inode_evicting)
dbfdb6d1 8706 clear_extent_bit(tree, start, end,
131e404a 8707 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8708 EXTENT_DELALLOC_NEW |
131e404a 8709 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
ae0f1625 8710 EXTENT_DEFRAG, 1, 0, &cached_state);
8b62b72b
CM
8711 /*
8712 * whoever cleared the private bit is responsible
8713 * for the finish_ordered_io
8714 */
77cef2ec
JB
8715 if (TestClearPagePrivate2(page)) {
8716 struct btrfs_ordered_inode_tree *tree;
8717 u64 new_len;
8718
8719 tree = &BTRFS_I(inode)->ordered_tree;
8720
8721 spin_lock_irq(&tree->lock);
8722 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8723 new_len = start - ordered->file_offset;
77cef2ec
JB
8724 if (new_len < ordered->truncated_len)
8725 ordered->truncated_len = new_len;
8726 spin_unlock_irq(&tree->lock);
8727
8728 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8729 start,
8730 end - start + 1, 1))
77cef2ec 8731 btrfs_finish_ordered_io(ordered);
8b62b72b 8732 }
e6dcd2dc 8733 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8734 if (!inode_evicting) {
8735 cached_state = NULL;
dbfdb6d1 8736 lock_extent_bits(tree, start, end,
131e404a
FDBM
8737 &cached_state);
8738 }
dbfdb6d1
CR
8739
8740 start = end + 1;
8741 if (start < page_end)
8742 goto again;
131e404a
FDBM
8743 }
8744
b9d0b389
QW
8745 /*
8746 * Qgroup reserved space handler
8747 * Page here will be either
8748 * 1) Already written to disk
8749 * In this case, its reserved space is released from data rsv map
8750 * and will be freed by delayed_ref handler finally.
8751 * So even we call qgroup_free_data(), it won't decrease reserved
8752 * space.
8753 * 2) Not written to disk
0b34c261
GR
8754 * This means the reserved space should be freed here. However,
8755 * if a truncate invalidates the page (by clearing PageDirty)
8756 * and the page is accounted for while allocating extent
8757 * in btrfs_check_data_free_space() we let delayed_ref to
8758 * free the entire extent.
b9d0b389 8759 */
0b34c261 8760 if (PageDirty(page))
bc42bda2 8761 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
8762 if (!inode_evicting) {
8763 clear_extent_bit(tree, page_start, page_end,
8764 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
8765 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8766 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
ae0f1625 8767 &cached_state);
131e404a
FDBM
8768
8769 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8770 }
e6dcd2dc 8771
4a096752 8772 ClearPageChecked(page);
9ad6b7bc 8773 if (PagePrivate(page)) {
9ad6b7bc
CM
8774 ClearPagePrivate(page);
8775 set_page_private(page, 0);
09cbfeaf 8776 put_page(page);
9ad6b7bc 8777 }
39279cc3
CM
8778}
8779
9ebefb18
CM
8780/*
8781 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8782 * called from a page fault handler when a page is first dirtied. Hence we must
8783 * be careful to check for EOF conditions here. We set the page up correctly
8784 * for a written page which means we get ENOSPC checking when writing into
8785 * holes and correct delalloc and unwritten extent mapping on filesystems that
8786 * support these features.
8787 *
8788 * We are not allowed to take the i_mutex here so we have to play games to
8789 * protect against truncate races as the page could now be beyond EOF. Because
d1342aad
OS
8790 * truncate_setsize() writes the inode size before removing pages, once we have
8791 * the page lock we can determine safely if the page is beyond EOF. If it is not
9ebefb18
CM
8792 * beyond EOF, then the page is guaranteed safe against truncation until we
8793 * unlock the page.
8794 */
a528a241 8795vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 8796{
c2ec175c 8797 struct page *page = vmf->page;
11bac800 8798 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 8799 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
8800 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8801 struct btrfs_ordered_extent *ordered;
2ac55d41 8802 struct extent_state *cached_state = NULL;
364ecf36 8803 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
8804 char *kaddr;
8805 unsigned long zero_start;
9ebefb18 8806 loff_t size;
a528a241
SJ
8807 vm_fault_t ret;
8808 int ret2;
9998eb70 8809 int reserved = 0;
d0b7da88 8810 u64 reserved_space;
a52d9a80 8811 u64 page_start;
e6dcd2dc 8812 u64 page_end;
d0b7da88
CR
8813 u64 end;
8814
09cbfeaf 8815 reserved_space = PAGE_SIZE;
9ebefb18 8816
b2b5ef5c 8817 sb_start_pagefault(inode->i_sb);
df480633 8818 page_start = page_offset(page);
09cbfeaf 8819 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 8820 end = page_end;
df480633 8821
d0b7da88
CR
8822 /*
8823 * Reserving delalloc space after obtaining the page lock can lead to
8824 * deadlock. For example, if a dirty page is locked by this function
8825 * and the call to btrfs_delalloc_reserve_space() ends up triggering
8826 * dirty page write out, then the btrfs_writepage() function could
8827 * end up waiting indefinitely to get a lock on the page currently
8828 * being processed by btrfs_page_mkwrite() function.
8829 */
a528a241 8830 ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 8831 reserved_space);
a528a241
SJ
8832 if (!ret2) {
8833 ret2 = file_update_time(vmf->vma->vm_file);
9998eb70
CM
8834 reserved = 1;
8835 }
a528a241
SJ
8836 if (ret2) {
8837 ret = vmf_error(ret2);
9998eb70
CM
8838 if (reserved)
8839 goto out;
8840 goto out_noreserve;
56a76f82 8841 }
1832a6d5 8842
56a76f82 8843 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8844again:
9ebefb18 8845 lock_page(page);
9ebefb18 8846 size = i_size_read(inode);
a52d9a80 8847
9ebefb18 8848 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8849 (page_start >= size)) {
9ebefb18
CM
8850 /* page got truncated out from underneath us */
8851 goto out_unlock;
8852 }
e6dcd2dc
CM
8853 wait_on_page_writeback(page);
8854
ff13db41 8855 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
8856 set_page_extent_mapped(page);
8857
eb84ae03
CM
8858 /*
8859 * we can't set the delalloc bits if there are pending ordered
8860 * extents. Drop our locks and wait for them to finish
8861 */
a776c6fa
NB
8862 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8863 PAGE_SIZE);
e6dcd2dc 8864 if (ordered) {
2ac55d41 8865 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8866 &cached_state);
e6dcd2dc 8867 unlock_page(page);
eb84ae03 8868 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8869 btrfs_put_ordered_extent(ordered);
8870 goto again;
8871 }
8872
09cbfeaf 8873 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 8874 reserved_space = round_up(size - page_start,
0b246afa 8875 fs_info->sectorsize);
09cbfeaf 8876 if (reserved_space < PAGE_SIZE) {
d0b7da88 8877 end = page_start + reserved_space - 1;
bc42bda2 8878 btrfs_delalloc_release_space(inode, data_reserved,
43b18595
QW
8879 page_start, PAGE_SIZE - reserved_space,
8880 true);
d0b7da88
CR
8881 }
8882 }
8883
fbf19087 8884 /*
5416034f
LB
8885 * page_mkwrite gets called when the page is firstly dirtied after it's
8886 * faulted in, but write(2) could also dirty a page and set delalloc
8887 * bits, thus in this case for space account reason, we still need to
8888 * clear any delalloc bits within this page range since we have to
8889 * reserve data&meta space before lock_page() (see above comments).
fbf19087 8890 */
d0b7da88 8891 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
8892 EXTENT_DIRTY | EXTENT_DELALLOC |
8893 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 8894 0, 0, &cached_state);
fbf19087 8895
a528a241 8896 ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
ba8b04c1 8897 &cached_state, 0);
a528a241 8898 if (ret2) {
2ac55d41 8899 unlock_extent_cached(io_tree, page_start, page_end,
e43bbe5e 8900 &cached_state);
9ed74f2d
JB
8901 ret = VM_FAULT_SIGBUS;
8902 goto out_unlock;
8903 }
a528a241 8904 ret2 = 0;
9ebefb18
CM
8905
8906 /* page is wholly or partially inside EOF */
09cbfeaf 8907 if (page_start + PAGE_SIZE > size)
7073017a 8908 zero_start = offset_in_page(size);
9ebefb18 8909 else
09cbfeaf 8910 zero_start = PAGE_SIZE;
9ebefb18 8911
09cbfeaf 8912 if (zero_start != PAGE_SIZE) {
e6dcd2dc 8913 kaddr = kmap(page);
09cbfeaf 8914 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
8915 flush_dcache_page(page);
8916 kunmap(page);
8917 }
247e743c 8918 ClearPageChecked(page);
e6dcd2dc 8919 set_page_dirty(page);
50a9b214 8920 SetPageUptodate(page);
5a3f23d5 8921
0b246afa 8922 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 8923 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8924 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8925
e43bbe5e 8926 unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
9ebefb18 8927
a528a241 8928 if (!ret2) {
43b18595 8929 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, true);
b2b5ef5c 8930 sb_end_pagefault(inode->i_sb);
364ecf36 8931 extent_changeset_free(data_reserved);
50a9b214 8932 return VM_FAULT_LOCKED;
b2b5ef5c 8933 }
717beb96
CM
8934
8935out_unlock:
9ebefb18 8936 unlock_page(page);
1832a6d5 8937out:
43b18595 8938 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, (ret != 0));
bc42bda2 8939 btrfs_delalloc_release_space(inode, data_reserved, page_start,
43b18595 8940 reserved_space, (ret != 0));
9998eb70 8941out_noreserve:
b2b5ef5c 8942 sb_end_pagefault(inode->i_sb);
364ecf36 8943 extent_changeset_free(data_reserved);
9ebefb18
CM
8944 return ret;
8945}
8946
213e8c55 8947static int btrfs_truncate(struct inode *inode, bool skip_writeback)
39279cc3 8948{
0b246afa 8949 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 8950 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8951 struct btrfs_block_rsv *rsv;
ad7e1a74 8952 int ret;
39279cc3 8953 struct btrfs_trans_handle *trans;
0b246afa
JM
8954 u64 mask = fs_info->sectorsize - 1;
8955 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 8956
213e8c55
FM
8957 if (!skip_writeback) {
8958 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8959 (u64)-1);
8960 if (ret)
8961 return ret;
8962 }
39279cc3 8963
fcb80c2a 8964 /*
f7e9e8fc
OS
8965 * Yes ladies and gentlemen, this is indeed ugly. We have a couple of
8966 * things going on here:
fcb80c2a 8967 *
f7e9e8fc 8968 * 1) We need to reserve space to update our inode.
fcb80c2a 8969 *
f7e9e8fc 8970 * 2) We need to have something to cache all the space that is going to
fcb80c2a
JB
8971 * be free'd up by the truncate operation, but also have some slack
8972 * space reserved in case it uses space during the truncate (thank you
8973 * very much snapshotting).
8974 *
f7e9e8fc 8975 * And we need these to be separate. The fact is we can use a lot of
fcb80c2a 8976 * space doing the truncate, and we have no earthly idea how much space
01327610 8977 * we will use, so we need the truncate reservation to be separate so it
f7e9e8fc
OS
8978 * doesn't end up using space reserved for updating the inode. We also
8979 * need to be able to stop the transaction and start a new one, which
8980 * means we need to be able to update the inode several times, and we
8981 * have no idea of knowing how many times that will be, so we can't just
8982 * reserve 1 item for the entirety of the operation, so that has to be
8983 * done separately as well.
fcb80c2a
JB
8984 *
8985 * So that leaves us with
8986 *
f7e9e8fc 8987 * 1) rsv - for the truncate reservation, which we will steal from the
fcb80c2a 8988 * transaction reservation.
f7e9e8fc 8989 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
fcb80c2a
JB
8990 * updating the inode.
8991 */
2ff7e61e 8992 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8993 if (!rsv)
8994 return -ENOMEM;
4a338542 8995 rsv->size = min_size;
ca7e70f5 8996 rsv->failfast = 1;
f0cd846e 8997
907cbceb 8998 /*
07127184 8999 * 1 for the truncate slack space
907cbceb
JB
9000 * 1 for updating the inode.
9001 */
f3fe820c 9002 trans = btrfs_start_transaction(root, 2);
fcb80c2a 9003 if (IS_ERR(trans)) {
ad7e1a74 9004 ret = PTR_ERR(trans);
fcb80c2a
JB
9005 goto out;
9006 }
f0cd846e 9007
907cbceb 9008 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9009 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
3a584174 9010 min_size, false);
fcb80c2a 9011 BUG_ON(ret);
f0cd846e 9012
5dc562c5
JB
9013 /*
9014 * So if we truncate and then write and fsync we normally would just
9015 * write the extents that changed, which is a problem if we need to
9016 * first truncate that entire inode. So set this flag so we write out
9017 * all of the extents in the inode to the sync log so we're completely
9018 * safe.
9019 */
9020 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9021 trans->block_rsv = rsv;
907cbceb 9022
8082510e
YZ
9023 while (1) {
9024 ret = btrfs_truncate_inode_items(trans, root, inode,
9025 inode->i_size,
9026 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9027 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74 9028 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 9029 break;
39279cc3 9030
8082510e 9031 ret = btrfs_update_inode(trans, root, inode);
ad7e1a74 9032 if (ret)
3893e33b 9033 break;
ca7e70f5 9034
3a45bb20 9035 btrfs_end_transaction(trans);
2ff7e61e 9036 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9037
9038 trans = btrfs_start_transaction(root, 2);
9039 if (IS_ERR(trans)) {
ad7e1a74 9040 ret = PTR_ERR(trans);
ca7e70f5
JB
9041 trans = NULL;
9042 break;
9043 }
9044
47b5d646 9045 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9046 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
3a584174 9047 rsv, min_size, false);
ca7e70f5
JB
9048 BUG_ON(ret); /* shouldn't happen */
9049 trans->block_rsv = rsv;
8082510e
YZ
9050 }
9051
ddfae63c
JB
9052 /*
9053 * We can't call btrfs_truncate_block inside a trans handle as we could
9054 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9055 * we've truncated everything except the last little bit, and can do
9056 * btrfs_truncate_block and then update the disk_i_size.
9057 */
9058 if (ret == NEED_TRUNCATE_BLOCK) {
9059 btrfs_end_transaction(trans);
9060 btrfs_btree_balance_dirty(fs_info);
9061
9062 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9063 if (ret)
9064 goto out;
9065 trans = btrfs_start_transaction(root, 1);
9066 if (IS_ERR(trans)) {
9067 ret = PTR_ERR(trans);
9068 goto out;
9069 }
9070 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9071 }
9072
917c16b2 9073 if (trans) {
ad7e1a74
OS
9074 int ret2;
9075
0b246afa 9076 trans->block_rsv = &fs_info->trans_block_rsv;
ad7e1a74
OS
9077 ret2 = btrfs_update_inode(trans, root, inode);
9078 if (ret2 && !ret)
9079 ret = ret2;
7b128766 9080
ad7e1a74
OS
9081 ret2 = btrfs_end_transaction(trans);
9082 if (ret2 && !ret)
9083 ret = ret2;
2ff7e61e 9084 btrfs_btree_balance_dirty(fs_info);
917c16b2 9085 }
fcb80c2a 9086out:
2ff7e61e 9087 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9088
ad7e1a74 9089 return ret;
39279cc3
CM
9090}
9091
d352ac68
CM
9092/*
9093 * create a new subvolume directory/inode (helper for the ioctl).
9094 */
d2fb3437 9095int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9096 struct btrfs_root *new_root,
9097 struct btrfs_root *parent_root,
9098 u64 new_dirid)
39279cc3 9099{
39279cc3 9100 struct inode *inode;
76dda93c 9101 int err;
00e4e6b3 9102 u64 index = 0;
39279cc3 9103
12fc9d09
FA
9104 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9105 new_dirid, new_dirid,
9106 S_IFDIR | (~current_umask() & S_IRWXUGO),
9107 &index);
54aa1f4d 9108 if (IS_ERR(inode))
f46b5a66 9109 return PTR_ERR(inode);
39279cc3
CM
9110 inode->i_op = &btrfs_dir_inode_operations;
9111 inode->i_fop = &btrfs_dir_file_operations;
9112
bfe86848 9113 set_nlink(inode, 1);
6ef06d27 9114 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9115 unlock_new_inode(inode);
3b96362c 9116
63541927
FDBM
9117 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9118 if (err)
9119 btrfs_err(new_root->fs_info,
351fd353 9120 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9121 new_root->root_key.objectid, err);
9122
76dda93c 9123 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9124
76dda93c 9125 iput(inode);
ce598979 9126 return err;
39279cc3
CM
9127}
9128
39279cc3
CM
9129struct inode *btrfs_alloc_inode(struct super_block *sb)
9130{
69fe2d75 9131 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9132 struct btrfs_inode *ei;
2ead6ae7 9133 struct inode *inode;
39279cc3 9134
712e36c5 9135 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
39279cc3
CM
9136 if (!ei)
9137 return NULL;
2ead6ae7
YZ
9138
9139 ei->root = NULL;
2ead6ae7 9140 ei->generation = 0;
15ee9bc7 9141 ei->last_trans = 0;
257c62e1 9142 ei->last_sub_trans = 0;
e02119d5 9143 ei->logged_trans = 0;
2ead6ae7 9144 ei->delalloc_bytes = 0;
a7e3b975 9145 ei->new_delalloc_bytes = 0;
47059d93 9146 ei->defrag_bytes = 0;
2ead6ae7
YZ
9147 ei->disk_i_size = 0;
9148 ei->flags = 0;
7709cde3 9149 ei->csum_bytes = 0;
2ead6ae7 9150 ei->index_cnt = (u64)-1;
67de1176 9151 ei->dir_index = 0;
2ead6ae7 9152 ei->last_unlink_trans = 0;
41bd6067 9153 ei->last_link_trans = 0;
46d8bc34 9154 ei->last_log_commit = 0;
2ead6ae7 9155
9e0baf60
JB
9156 spin_lock_init(&ei->lock);
9157 ei->outstanding_extents = 0;
69fe2d75
JB
9158 if (sb->s_magic != BTRFS_TEST_MAGIC)
9159 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9160 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9161 ei->runtime_flags = 0;
b52aa8c9 9162 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9163 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9164
16cdcec7
MX
9165 ei->delayed_node = NULL;
9166
9cc97d64 9167 ei->i_otime.tv_sec = 0;
9168 ei->i_otime.tv_nsec = 0;
9169
2ead6ae7 9170 inode = &ei->vfs_inode;
a8067e02 9171 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9172 extent_io_tree_init(&ei->io_tree, inode);
9173 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9174 ei->io_tree.track_uptodate = 1;
9175 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9176 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9177 mutex_init(&ei->log_mutex);
f248679e 9178 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9179 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9180 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9181 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9182 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9183 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9184
9185 return inode;
39279cc3
CM
9186}
9187
aaedb55b
JB
9188#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9189void btrfs_test_destroy_inode(struct inode *inode)
9190{
dcdbc059 9191 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9192 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9193}
9194#endif
9195
fa0d7e3d
NP
9196static void btrfs_i_callback(struct rcu_head *head)
9197{
9198 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9199 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9200}
9201
39279cc3
CM
9202void btrfs_destroy_inode(struct inode *inode)
9203{
0b246afa 9204 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9205 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9206 struct btrfs_root *root = BTRFS_I(inode)->root;
9207
b3d9b7a3 9208 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9209 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9210 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9211 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9212 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9213 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9214 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9215 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9216 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9217
a6dbd429
JB
9218 /*
9219 * This can happen where we create an inode, but somebody else also
9220 * created the same inode and we need to destroy the one we already
9221 * created.
9222 */
9223 if (!root)
9224 goto free;
9225
d397712b 9226 while (1) {
e6dcd2dc
CM
9227 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9228 if (!ordered)
9229 break;
9230 else {
0b246afa 9231 btrfs_err(fs_info,
5d163e0e
JM
9232 "found ordered extent %llu %llu on inode cleanup",
9233 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9234 btrfs_remove_ordered_extent(inode, ordered);
9235 btrfs_put_ordered_extent(ordered);
9236 btrfs_put_ordered_extent(ordered);
9237 }
9238 }
56fa9d07 9239 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9240 inode_tree_del(inode);
dcdbc059 9241 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9242free:
fa0d7e3d 9243 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9244}
9245
45321ac5 9246int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9247{
9248 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9249
6379ef9f
NA
9250 if (root == NULL)
9251 return 1;
9252
fa6ac876 9253 /* the snap/subvol tree is on deleting */
69e9c6c6 9254 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9255 return 1;
76dda93c 9256 else
45321ac5 9257 return generic_drop_inode(inode);
76dda93c
YZ
9258}
9259
0ee0fda0 9260static void init_once(void *foo)
39279cc3
CM
9261{
9262 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9263
9264 inode_init_once(&ei->vfs_inode);
9265}
9266
e67c718b 9267void __cold btrfs_destroy_cachep(void)
39279cc3 9268{
8c0a8537
KS
9269 /*
9270 * Make sure all delayed rcu free inodes are flushed before we
9271 * destroy cache.
9272 */
9273 rcu_barrier();
5598e900
KM
9274 kmem_cache_destroy(btrfs_inode_cachep);
9275 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9276 kmem_cache_destroy(btrfs_path_cachep);
9277 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9278}
9279
f5c29bd9 9280int __init btrfs_init_cachep(void)
39279cc3 9281{
837e1972 9282 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9283 sizeof(struct btrfs_inode), 0,
5d097056
VD
9284 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9285 init_once);
39279cc3
CM
9286 if (!btrfs_inode_cachep)
9287 goto fail;
9601e3f6 9288
837e1972 9289 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9290 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9291 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9292 if (!btrfs_trans_handle_cachep)
9293 goto fail;
9601e3f6 9294
837e1972 9295 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9296 sizeof(struct btrfs_path), 0,
fba4b697 9297 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9298 if (!btrfs_path_cachep)
9299 goto fail;
9601e3f6 9300
837e1972 9301 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9302 sizeof(struct btrfs_free_space), 0,
fba4b697 9303 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9304 if (!btrfs_free_space_cachep)
9305 goto fail;
9306
39279cc3
CM
9307 return 0;
9308fail:
9309 btrfs_destroy_cachep();
9310 return -ENOMEM;
9311}
9312
a528d35e
DH
9313static int btrfs_getattr(const struct path *path, struct kstat *stat,
9314 u32 request_mask, unsigned int flags)
39279cc3 9315{
df0af1a5 9316 u64 delalloc_bytes;
a528d35e 9317 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9318 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9319 u32 bi_flags = BTRFS_I(inode)->flags;
9320
9321 stat->result_mask |= STATX_BTIME;
9322 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9323 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9324 if (bi_flags & BTRFS_INODE_APPEND)
9325 stat->attributes |= STATX_ATTR_APPEND;
9326 if (bi_flags & BTRFS_INODE_COMPRESS)
9327 stat->attributes |= STATX_ATTR_COMPRESSED;
9328 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9329 stat->attributes |= STATX_ATTR_IMMUTABLE;
9330 if (bi_flags & BTRFS_INODE_NODUMP)
9331 stat->attributes |= STATX_ATTR_NODUMP;
9332
9333 stat->attributes_mask |= (STATX_ATTR_APPEND |
9334 STATX_ATTR_COMPRESSED |
9335 STATX_ATTR_IMMUTABLE |
9336 STATX_ATTR_NODUMP);
fadc0d8b 9337
39279cc3 9338 generic_fillattr(inode, stat);
0ee5dc67 9339 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9340
9341 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9342 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9343 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9344 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9345 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9346 return 0;
9347}
9348
cdd1fedf
DF
9349static int btrfs_rename_exchange(struct inode *old_dir,
9350 struct dentry *old_dentry,
9351 struct inode *new_dir,
9352 struct dentry *new_dentry)
9353{
0b246afa 9354 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9355 struct btrfs_trans_handle *trans;
9356 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9357 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9358 struct inode *new_inode = new_dentry->d_inode;
9359 struct inode *old_inode = old_dentry->d_inode;
95582b00 9360 struct timespec64 ctime = current_time(old_inode);
cdd1fedf 9361 struct dentry *parent;
4a0cc7ca
NB
9362 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9363 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9364 u64 old_idx = 0;
9365 u64 new_idx = 0;
9366 u64 root_objectid;
9367 int ret;
86e8aa0e
FM
9368 bool root_log_pinned = false;
9369 bool dest_log_pinned = false;
d4682ba0
FM
9370 struct btrfs_log_ctx ctx_root;
9371 struct btrfs_log_ctx ctx_dest;
9372 bool sync_log_root = false;
9373 bool sync_log_dest = false;
9374 bool commit_transaction = false;
cdd1fedf
DF
9375
9376 /* we only allow rename subvolume link between subvolumes */
9377 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9378 return -EXDEV;
9379
d4682ba0
FM
9380 btrfs_init_log_ctx(&ctx_root, old_inode);
9381 btrfs_init_log_ctx(&ctx_dest, new_inode);
9382
cdd1fedf
DF
9383 /* close the race window with snapshot create/destroy ioctl */
9384 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9385 down_read(&fs_info->subvol_sem);
cdd1fedf 9386 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9387 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9388
9389 /*
9390 * We want to reserve the absolute worst case amount of items. So if
9391 * both inodes are subvols and we need to unlink them then that would
9392 * require 4 item modifications, but if they are both normal inodes it
9393 * would require 5 item modifications, so we'll assume their normal
9394 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9395 * should cover the worst case number of items we'll modify.
9396 */
9397 trans = btrfs_start_transaction(root, 12);
9398 if (IS_ERR(trans)) {
9399 ret = PTR_ERR(trans);
9400 goto out_notrans;
9401 }
9402
9403 /*
9404 * We need to find a free sequence number both in the source and
9405 * in the destination directory for the exchange.
9406 */
877574e2 9407 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9408 if (ret)
9409 goto out_fail;
877574e2 9410 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9411 if (ret)
9412 goto out_fail;
9413
9414 BTRFS_I(old_inode)->dir_index = 0ULL;
9415 BTRFS_I(new_inode)->dir_index = 0ULL;
9416
9417 /* Reference for the source. */
9418 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9419 /* force full log commit if subvolume involved. */
0b246afa 9420 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9421 } else {
376e5a57
FM
9422 btrfs_pin_log_trans(root);
9423 root_log_pinned = true;
cdd1fedf
DF
9424 ret = btrfs_insert_inode_ref(trans, dest,
9425 new_dentry->d_name.name,
9426 new_dentry->d_name.len,
9427 old_ino,
f85b7379
DS
9428 btrfs_ino(BTRFS_I(new_dir)),
9429 old_idx);
cdd1fedf
DF
9430 if (ret)
9431 goto out_fail;
cdd1fedf
DF
9432 }
9433
9434 /* And now for the dest. */
9435 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9436 /* force full log commit if subvolume involved. */
0b246afa 9437 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9438 } else {
376e5a57
FM
9439 btrfs_pin_log_trans(dest);
9440 dest_log_pinned = true;
cdd1fedf
DF
9441 ret = btrfs_insert_inode_ref(trans, root,
9442 old_dentry->d_name.name,
9443 old_dentry->d_name.len,
9444 new_ino,
f85b7379
DS
9445 btrfs_ino(BTRFS_I(old_dir)),
9446 new_idx);
cdd1fedf
DF
9447 if (ret)
9448 goto out_fail;
cdd1fedf
DF
9449 }
9450
9451 /* Update inode version and ctime/mtime. */
9452 inode_inc_iversion(old_dir);
9453 inode_inc_iversion(new_dir);
9454 inode_inc_iversion(old_inode);
9455 inode_inc_iversion(new_inode);
9456 old_dir->i_ctime = old_dir->i_mtime = ctime;
9457 new_dir->i_ctime = new_dir->i_mtime = ctime;
9458 old_inode->i_ctime = ctime;
9459 new_inode->i_ctime = ctime;
9460
9461 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9462 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9463 BTRFS_I(old_inode), 1);
9464 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9465 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9466 }
9467
9468 /* src is a subvolume */
9469 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9470 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9471 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
cdd1fedf
DF
9472 old_dentry->d_name.name,
9473 old_dentry->d_name.len);
9474 } else { /* src is an inode */
4ec5934e
NB
9475 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9476 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9477 old_dentry->d_name.name,
9478 old_dentry->d_name.len);
9479 if (!ret)
9480 ret = btrfs_update_inode(trans, root, old_inode);
9481 }
9482 if (ret) {
66642832 9483 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9484 goto out_fail;
9485 }
9486
9487 /* dest is a subvolume */
9488 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9489 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
401b3b19 9490 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
cdd1fedf
DF
9491 new_dentry->d_name.name,
9492 new_dentry->d_name.len);
9493 } else { /* dest is an inode */
4ec5934e
NB
9494 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9495 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9496 new_dentry->d_name.name,
9497 new_dentry->d_name.len);
9498 if (!ret)
9499 ret = btrfs_update_inode(trans, dest, new_inode);
9500 }
9501 if (ret) {
66642832 9502 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9503 goto out_fail;
9504 }
9505
db0a669f 9506 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9507 new_dentry->d_name.name,
9508 new_dentry->d_name.len, 0, old_idx);
9509 if (ret) {
66642832 9510 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9511 goto out_fail;
9512 }
9513
db0a669f 9514 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9515 old_dentry->d_name.name,
9516 old_dentry->d_name.len, 0, new_idx);
9517 if (ret) {
66642832 9518 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9519 goto out_fail;
9520 }
9521
9522 if (old_inode->i_nlink == 1)
9523 BTRFS_I(old_inode)->dir_index = old_idx;
9524 if (new_inode->i_nlink == 1)
9525 BTRFS_I(new_inode)->dir_index = new_idx;
9526
86e8aa0e 9527 if (root_log_pinned) {
cdd1fedf 9528 parent = new_dentry->d_parent;
d4682ba0
FM
9529 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9530 BTRFS_I(old_dir), parent,
9531 false, &ctx_root);
9532 if (ret == BTRFS_NEED_LOG_SYNC)
9533 sync_log_root = true;
9534 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9535 commit_transaction = true;
9536 ret = 0;
cdd1fedf 9537 btrfs_end_log_trans(root);
86e8aa0e 9538 root_log_pinned = false;
cdd1fedf 9539 }
86e8aa0e 9540 if (dest_log_pinned) {
d4682ba0
FM
9541 if (!commit_transaction) {
9542 parent = old_dentry->d_parent;
9543 ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
9544 BTRFS_I(new_dir), parent,
9545 false, &ctx_dest);
9546 if (ret == BTRFS_NEED_LOG_SYNC)
9547 sync_log_dest = true;
9548 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9549 commit_transaction = true;
9550 ret = 0;
9551 }
cdd1fedf 9552 btrfs_end_log_trans(dest);
86e8aa0e 9553 dest_log_pinned = false;
cdd1fedf
DF
9554 }
9555out_fail:
86e8aa0e
FM
9556 /*
9557 * If we have pinned a log and an error happened, we unpin tasks
9558 * trying to sync the log and force them to fallback to a transaction
9559 * commit if the log currently contains any of the inodes involved in
9560 * this rename operation (to ensure we do not persist a log with an
9561 * inconsistent state for any of these inodes or leading to any
9562 * inconsistencies when replayed). If the transaction was aborted, the
9563 * abortion reason is propagated to userspace when attempting to commit
9564 * the transaction. If the log does not contain any of these inodes, we
9565 * allow the tasks to sync it.
9566 */
9567 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9568 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9569 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9570 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9571 (new_inode &&
0f8939b8 9572 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9573 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9574
9575 if (root_log_pinned) {
9576 btrfs_end_log_trans(root);
9577 root_log_pinned = false;
9578 }
9579 if (dest_log_pinned) {
9580 btrfs_end_log_trans(dest);
9581 dest_log_pinned = false;
9582 }
9583 }
d4682ba0
FM
9584 if (!ret && sync_log_root && !commit_transaction) {
9585 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
9586 &ctx_root);
9587 if (ret)
9588 commit_transaction = true;
9589 }
9590 if (!ret && sync_log_dest && !commit_transaction) {
9591 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
9592 &ctx_dest);
9593 if (ret)
9594 commit_transaction = true;
9595 }
9596 if (commit_transaction) {
9597 ret = btrfs_commit_transaction(trans);
9598 } else {
9599 int ret2;
9600
9601 ret2 = btrfs_end_transaction(trans);
9602 ret = ret ? ret : ret2;
9603 }
cdd1fedf
DF
9604out_notrans:
9605 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9606 up_read(&fs_info->subvol_sem);
cdd1fedf 9607 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9608 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9609
9610 return ret;
9611}
9612
9613static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9614 struct btrfs_root *root,
9615 struct inode *dir,
9616 struct dentry *dentry)
9617{
9618 int ret;
9619 struct inode *inode;
9620 u64 objectid;
9621 u64 index;
9622
9623 ret = btrfs_find_free_ino(root, &objectid);
9624 if (ret)
9625 return ret;
9626
9627 inode = btrfs_new_inode(trans, root, dir,
9628 dentry->d_name.name,
9629 dentry->d_name.len,
4a0cc7ca 9630 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9631 objectid,
9632 S_IFCHR | WHITEOUT_MODE,
9633 &index);
9634
9635 if (IS_ERR(inode)) {
9636 ret = PTR_ERR(inode);
9637 return ret;
9638 }
9639
9640 inode->i_op = &btrfs_special_inode_operations;
9641 init_special_inode(inode, inode->i_mode,
9642 WHITEOUT_DEV);
9643
9644 ret = btrfs_init_inode_security(trans, inode, dir,
9645 &dentry->d_name);
9646 if (ret)
c9901618 9647 goto out;
cdd1fedf 9648
cef415af
NB
9649 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9650 BTRFS_I(inode), 0, index);
cdd1fedf 9651 if (ret)
c9901618 9652 goto out;
cdd1fedf
DF
9653
9654 ret = btrfs_update_inode(trans, root, inode);
c9901618 9655out:
cdd1fedf 9656 unlock_new_inode(inode);
c9901618
FM
9657 if (ret)
9658 inode_dec_link_count(inode);
cdd1fedf
DF
9659 iput(inode);
9660
c9901618 9661 return ret;
cdd1fedf
DF
9662}
9663
d397712b 9664static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9665 struct inode *new_dir, struct dentry *new_dentry,
9666 unsigned int flags)
39279cc3 9667{
0b246afa 9668 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9669 struct btrfs_trans_handle *trans;
5062af35 9670 unsigned int trans_num_items;
39279cc3 9671 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9672 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9673 struct inode *new_inode = d_inode(new_dentry);
9674 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9675 u64 index = 0;
4df27c4d 9676 u64 root_objectid;
39279cc3 9677 int ret;
4a0cc7ca 9678 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9679 bool log_pinned = false;
d4682ba0
FM
9680 struct btrfs_log_ctx ctx;
9681 bool sync_log = false;
9682 bool commit_transaction = false;
39279cc3 9683
4a0cc7ca 9684 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9685 return -EPERM;
9686
4df27c4d 9687 /* we only allow rename subvolume link between subvolumes */
33345d01 9688 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9689 return -EXDEV;
9690
33345d01 9691 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9692 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9693 return -ENOTEMPTY;
5f39d397 9694
4df27c4d
YZ
9695 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9696 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9697 return -ENOTEMPTY;
9c52057c
CM
9698
9699
9700 /* check for collisions, even if the name isn't there */
4871c158 9701 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9702 new_dentry->d_name.name,
9703 new_dentry->d_name.len);
9704
9705 if (ret) {
9706 if (ret == -EEXIST) {
9707 /* we shouldn't get
9708 * eexist without a new_inode */
fae7f21c 9709 if (WARN_ON(!new_inode)) {
9c52057c
CM
9710 return ret;
9711 }
9712 } else {
9713 /* maybe -EOVERFLOW */
9714 return ret;
9715 }
9716 }
9717 ret = 0;
9718
5a3f23d5 9719 /*
8d875f95
CM
9720 * we're using rename to replace one file with another. Start IO on it
9721 * now so we don't add too much work to the end of the transaction
5a3f23d5 9722 */
8d875f95 9723 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9724 filemap_flush(old_inode->i_mapping);
9725
76dda93c 9726 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9727 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9728 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9729 /*
9730 * We want to reserve the absolute worst case amount of items. So if
9731 * both inodes are subvols and we need to unlink them then that would
9732 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9733 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9734 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9735 * should cover the worst case number of items we'll modify.
5062af35
FM
9736 * If our rename has the whiteout flag, we need more 5 units for the
9737 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9738 * when selinux is enabled).
a22285a6 9739 */
5062af35
FM
9740 trans_num_items = 11;
9741 if (flags & RENAME_WHITEOUT)
9742 trans_num_items += 5;
9743 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9744 if (IS_ERR(trans)) {
cdd1fedf
DF
9745 ret = PTR_ERR(trans);
9746 goto out_notrans;
9747 }
76dda93c 9748
4df27c4d
YZ
9749 if (dest != root)
9750 btrfs_record_root_in_trans(trans, dest);
5f39d397 9751
877574e2 9752 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9753 if (ret)
9754 goto out_fail;
5a3f23d5 9755
67de1176 9756 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9757 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9758 /* force full log commit if subvolume involved. */
0b246afa 9759 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9760 } else {
c4aba954
FM
9761 btrfs_pin_log_trans(root);
9762 log_pinned = true;
a5719521
YZ
9763 ret = btrfs_insert_inode_ref(trans, dest,
9764 new_dentry->d_name.name,
9765 new_dentry->d_name.len,
33345d01 9766 old_ino,
4a0cc7ca 9767 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
9768 if (ret)
9769 goto out_fail;
4df27c4d 9770 }
5a3f23d5 9771
0c4d2d95
JB
9772 inode_inc_iversion(old_dir);
9773 inode_inc_iversion(new_dir);
9774 inode_inc_iversion(old_inode);
04b285f3
DD
9775 old_dir->i_ctime = old_dir->i_mtime =
9776 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 9777 old_inode->i_ctime = current_time(old_dir);
5f39d397 9778
12fcfd22 9779 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
9780 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9781 BTRFS_I(old_inode), 1);
12fcfd22 9782
33345d01 9783 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9784 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
401b3b19 9785 ret = btrfs_unlink_subvol(trans, old_dir, root_objectid,
4df27c4d
YZ
9786 old_dentry->d_name.name,
9787 old_dentry->d_name.len);
9788 } else {
4ec5934e
NB
9789 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9790 BTRFS_I(d_inode(old_dentry)),
92986796
AV
9791 old_dentry->d_name.name,
9792 old_dentry->d_name.len);
9793 if (!ret)
9794 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 9795 }
79787eaa 9796 if (ret) {
66642832 9797 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9798 goto out_fail;
9799 }
39279cc3
CM
9800
9801 if (new_inode) {
0c4d2d95 9802 inode_inc_iversion(new_inode);
c2050a45 9803 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 9804 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
9805 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9806 root_objectid = BTRFS_I(new_inode)->location.objectid;
401b3b19 9807 ret = btrfs_unlink_subvol(trans, new_dir, root_objectid,
4df27c4d
YZ
9808 new_dentry->d_name.name,
9809 new_dentry->d_name.len);
9810 BUG_ON(new_inode->i_nlink == 0);
9811 } else {
4ec5934e
NB
9812 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9813 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
9814 new_dentry->d_name.name,
9815 new_dentry->d_name.len);
9816 }
4ef31a45 9817 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
9818 ret = btrfs_orphan_add(trans,
9819 BTRFS_I(d_inode(new_dentry)));
79787eaa 9820 if (ret) {
66642832 9821 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9822 goto out_fail;
9823 }
39279cc3 9824 }
aec7477b 9825
db0a669f 9826 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 9827 new_dentry->d_name.name,
a5719521 9828 new_dentry->d_name.len, 0, index);
79787eaa 9829 if (ret) {
66642832 9830 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9831 goto out_fail;
9832 }
39279cc3 9833
67de1176
MX
9834 if (old_inode->i_nlink == 1)
9835 BTRFS_I(old_inode)->dir_index = index;
9836
3dc9e8f7 9837 if (log_pinned) {
10d9f309 9838 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 9839
d4682ba0
FM
9840 btrfs_init_log_ctx(&ctx, old_inode);
9841 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9842 BTRFS_I(old_dir), parent,
9843 false, &ctx);
9844 if (ret == BTRFS_NEED_LOG_SYNC)
9845 sync_log = true;
9846 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9847 commit_transaction = true;
9848 ret = 0;
4df27c4d 9849 btrfs_end_log_trans(root);
3dc9e8f7 9850 log_pinned = false;
4df27c4d 9851 }
cdd1fedf
DF
9852
9853 if (flags & RENAME_WHITEOUT) {
9854 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9855 old_dentry);
9856
9857 if (ret) {
66642832 9858 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9859 goto out_fail;
9860 }
4df27c4d 9861 }
39279cc3 9862out_fail:
3dc9e8f7
FM
9863 /*
9864 * If we have pinned the log and an error happened, we unpin tasks
9865 * trying to sync the log and force them to fallback to a transaction
9866 * commit if the log currently contains any of the inodes involved in
9867 * this rename operation (to ensure we do not persist a log with an
9868 * inconsistent state for any of these inodes or leading to any
9869 * inconsistencies when replayed). If the transaction was aborted, the
9870 * abortion reason is propagated to userspace when attempting to commit
9871 * the transaction. If the log does not contain any of these inodes, we
9872 * allow the tasks to sync it.
9873 */
9874 if (ret && log_pinned) {
0f8939b8
NB
9875 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9876 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9877 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 9878 (new_inode &&
0f8939b8 9879 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9880 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
9881
9882 btrfs_end_log_trans(root);
9883 log_pinned = false;
9884 }
d4682ba0
FM
9885 if (!ret && sync_log) {
9886 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9887 if (ret)
9888 commit_transaction = true;
9889 }
9890 if (commit_transaction) {
9891 ret = btrfs_commit_transaction(trans);
9892 } else {
9893 int ret2;
9894
9895 ret2 = btrfs_end_transaction(trans);
9896 ret = ret ? ret : ret2;
9897 }
b44c59a8 9898out_notrans:
33345d01 9899 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9900 up_read(&fs_info->subvol_sem);
9ed74f2d 9901
39279cc3
CM
9902 return ret;
9903}
9904
80ace85c
MS
9905static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9906 struct inode *new_dir, struct dentry *new_dentry,
9907 unsigned int flags)
9908{
cdd1fedf 9909 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
9910 return -EINVAL;
9911
cdd1fedf
DF
9912 if (flags & RENAME_EXCHANGE)
9913 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9914 new_dentry);
9915
9916 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
9917}
9918
3a2f8c07
NB
9919struct btrfs_delalloc_work {
9920 struct inode *inode;
9921 struct completion completion;
9922 struct list_head list;
9923 struct btrfs_work work;
9924};
9925
8ccf6f19
MX
9926static void btrfs_run_delalloc_work(struct btrfs_work *work)
9927{
9928 struct btrfs_delalloc_work *delalloc_work;
9f23e289 9929 struct inode *inode;
8ccf6f19
MX
9930
9931 delalloc_work = container_of(work, struct btrfs_delalloc_work,
9932 work);
9f23e289 9933 inode = delalloc_work->inode;
30424601
DS
9934 filemap_flush(inode->i_mapping);
9935 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9936 &BTRFS_I(inode)->runtime_flags))
9f23e289 9937 filemap_flush(inode->i_mapping);
8ccf6f19 9938
076da91c 9939 iput(inode);
8ccf6f19
MX
9940 complete(&delalloc_work->completion);
9941}
9942
3a2f8c07 9943static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
8ccf6f19
MX
9944{
9945 struct btrfs_delalloc_work *work;
9946
100d5702 9947 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
9948 if (!work)
9949 return NULL;
9950
9951 init_completion(&work->completion);
9952 INIT_LIST_HEAD(&work->list);
9953 work->inode = inode;
9e0af237
LB
9954 WARN_ON_ONCE(!inode);
9955 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9956 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9957
9958 return work;
9959}
9960
d352ac68
CM
9961/*
9962 * some fairly slow code that needs optimization. This walks the list
9963 * of all the inodes with pending delalloc and forces them to disk.
9964 */
3cd24c69 9965static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
ea8c2819 9966{
ea8c2819 9967 struct btrfs_inode *binode;
5b21f2ed 9968 struct inode *inode;
8ccf6f19
MX
9969 struct btrfs_delalloc_work *work, *next;
9970 struct list_head works;
1eafa6c7 9971 struct list_head splice;
8ccf6f19 9972 int ret = 0;
ea8c2819 9973
8ccf6f19 9974 INIT_LIST_HEAD(&works);
1eafa6c7 9975 INIT_LIST_HEAD(&splice);
63607cc8 9976
573bfb72 9977 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9978 spin_lock(&root->delalloc_lock);
9979 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9980 while (!list_empty(&splice)) {
9981 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9982 delalloc_inodes);
1eafa6c7 9983
eb73c1b7
MX
9984 list_move_tail(&binode->delalloc_inodes,
9985 &root->delalloc_inodes);
5b21f2ed 9986 inode = igrab(&binode->vfs_inode);
df0af1a5 9987 if (!inode) {
eb73c1b7 9988 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9989 continue;
df0af1a5 9990 }
eb73c1b7 9991 spin_unlock(&root->delalloc_lock);
1eafa6c7 9992
3cd24c69
EL
9993 if (snapshot)
9994 set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9995 &binode->runtime_flags);
076da91c 9996 work = btrfs_alloc_delalloc_work(inode);
5d99a998 9997 if (!work) {
4fbb5147 9998 iput(inode);
1eafa6c7 9999 ret = -ENOMEM;
a1ecaabb 10000 goto out;
5b21f2ed 10001 }
1eafa6c7 10002 list_add_tail(&work->list, &works);
a44903ab
QW
10003 btrfs_queue_work(root->fs_info->flush_workers,
10004 &work->work);
6c255e67
MX
10005 ret++;
10006 if (nr != -1 && ret >= nr)
a1ecaabb 10007 goto out;
5b21f2ed 10008 cond_resched();
eb73c1b7 10009 spin_lock(&root->delalloc_lock);
ea8c2819 10010 }
eb73c1b7 10011 spin_unlock(&root->delalloc_lock);
8c8bee1d 10012
a1ecaabb 10013out:
eb73c1b7
MX
10014 list_for_each_entry_safe(work, next, &works, list) {
10015 list_del_init(&work->list);
40012f96
NB
10016 wait_for_completion(&work->completion);
10017 kfree(work);
eb73c1b7
MX
10018 }
10019
81f1d390 10020 if (!list_empty(&splice)) {
eb73c1b7
MX
10021 spin_lock(&root->delalloc_lock);
10022 list_splice_tail(&splice, &root->delalloc_inodes);
10023 spin_unlock(&root->delalloc_lock);
10024 }
573bfb72 10025 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10026 return ret;
10027}
1eafa6c7 10028
3cd24c69 10029int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
eb73c1b7 10030{
0b246afa 10031 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10032 int ret;
1eafa6c7 10033
0b246afa 10034 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10035 return -EROFS;
10036
3cd24c69 10037 ret = start_delalloc_inodes(root, -1, true);
6c255e67
MX
10038 if (ret > 0)
10039 ret = 0;
eb73c1b7
MX
10040 return ret;
10041}
10042
82b3e53b 10043int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
eb73c1b7
MX
10044{
10045 struct btrfs_root *root;
10046 struct list_head splice;
10047 int ret;
10048
2c21b4d7 10049 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10050 return -EROFS;
10051
10052 INIT_LIST_HEAD(&splice);
10053
573bfb72 10054 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10055 spin_lock(&fs_info->delalloc_root_lock);
10056 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10057 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10058 root = list_first_entry(&splice, struct btrfs_root,
10059 delalloc_root);
10060 root = btrfs_grab_fs_root(root);
10061 BUG_ON(!root);
10062 list_move_tail(&root->delalloc_root,
10063 &fs_info->delalloc_roots);
10064 spin_unlock(&fs_info->delalloc_root_lock);
10065
3cd24c69 10066 ret = start_delalloc_inodes(root, nr, false);
eb73c1b7 10067 btrfs_put_fs_root(root);
6c255e67 10068 if (ret < 0)
eb73c1b7
MX
10069 goto out;
10070
6c255e67
MX
10071 if (nr != -1) {
10072 nr -= ret;
10073 WARN_ON(nr < 0);
10074 }
eb73c1b7 10075 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10076 }
eb73c1b7 10077 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10078
6c255e67 10079 ret = 0;
eb73c1b7 10080out:
81f1d390 10081 if (!list_empty(&splice)) {
eb73c1b7
MX
10082 spin_lock(&fs_info->delalloc_root_lock);
10083 list_splice_tail(&splice, &fs_info->delalloc_roots);
10084 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10085 }
573bfb72 10086 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10087 return ret;
ea8c2819
CM
10088}
10089
39279cc3
CM
10090static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10091 const char *symname)
10092{
0b246afa 10093 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10094 struct btrfs_trans_handle *trans;
10095 struct btrfs_root *root = BTRFS_I(dir)->root;
10096 struct btrfs_path *path;
10097 struct btrfs_key key;
1832a6d5 10098 struct inode *inode = NULL;
39279cc3 10099 int err;
39279cc3 10100 u64 objectid;
67871254 10101 u64 index = 0;
39279cc3
CM
10102 int name_len;
10103 int datasize;
5f39d397 10104 unsigned long ptr;
39279cc3 10105 struct btrfs_file_extent_item *ei;
5f39d397 10106 struct extent_buffer *leaf;
39279cc3 10107
f06becc4 10108 name_len = strlen(symname);
0b246afa 10109 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10110 return -ENAMETOOLONG;
1832a6d5 10111
9ed74f2d
JB
10112 /*
10113 * 2 items for inode item and ref
10114 * 2 items for dir items
9269d12b
FM
10115 * 1 item for updating parent inode item
10116 * 1 item for the inline extent item
9ed74f2d
JB
10117 * 1 item for xattr if selinux is on
10118 */
9269d12b 10119 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10120 if (IS_ERR(trans))
10121 return PTR_ERR(trans);
1832a6d5 10122
581bb050
LZ
10123 err = btrfs_find_free_ino(root, &objectid);
10124 if (err)
10125 goto out_unlock;
10126
aec7477b 10127 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10128 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10129 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10130 if (IS_ERR(inode)) {
10131 err = PTR_ERR(inode);
32955c54 10132 inode = NULL;
39279cc3 10133 goto out_unlock;
7cf96da3 10134 }
39279cc3 10135
ad19db71
CS
10136 /*
10137 * If the active LSM wants to access the inode during
10138 * d_instantiate it needs these. Smack checks to see
10139 * if the filesystem supports xattrs by looking at the
10140 * ops vector.
10141 */
10142 inode->i_fop = &btrfs_file_operations;
10143 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10144 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10145 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10146
10147 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10148 if (err)
32955c54 10149 goto out_unlock;
ad19db71 10150
39279cc3 10151 path = btrfs_alloc_path();
d8926bb3
MF
10152 if (!path) {
10153 err = -ENOMEM;
32955c54 10154 goto out_unlock;
d8926bb3 10155 }
4a0cc7ca 10156 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10157 key.offset = 0;
962a298f 10158 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10159 datasize = btrfs_file_extent_calc_inline_size(name_len);
10160 err = btrfs_insert_empty_item(trans, root, path, &key,
10161 datasize);
54aa1f4d 10162 if (err) {
b0839166 10163 btrfs_free_path(path);
32955c54 10164 goto out_unlock;
54aa1f4d 10165 }
5f39d397
CM
10166 leaf = path->nodes[0];
10167 ei = btrfs_item_ptr(leaf, path->slots[0],
10168 struct btrfs_file_extent_item);
10169 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10170 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10171 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10172 btrfs_set_file_extent_encryption(leaf, ei, 0);
10173 btrfs_set_file_extent_compression(leaf, ei, 0);
10174 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10175 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10176
39279cc3 10177 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10178 write_extent_buffer(leaf, symname, ptr, name_len);
10179 btrfs_mark_buffer_dirty(leaf);
39279cc3 10180 btrfs_free_path(path);
5f39d397 10181
39279cc3 10182 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10183 inode_nohighmem(inode);
4779cc04 10184 inode->i_mapping->a_ops = &btrfs_aops;
d899e052 10185 inode_set_bytes(inode, name_len);
6ef06d27 10186 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10187 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10188 /*
10189 * Last step, add directory indexes for our symlink inode. This is the
10190 * last step to avoid extra cleanup of these indexes if an error happens
10191 * elsewhere above.
10192 */
10193 if (!err)
cef415af
NB
10194 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10195 BTRFS_I(inode), 0, index);
32955c54
AV
10196 if (err)
10197 goto out_unlock;
b0d5d10f 10198
1e2e547a 10199 d_instantiate_new(dentry, inode);
39279cc3
CM
10200
10201out_unlock:
3a45bb20 10202 btrfs_end_transaction(trans);
32955c54 10203 if (err && inode) {
39279cc3 10204 inode_dec_link_count(inode);
32955c54 10205 discard_new_inode(inode);
39279cc3 10206 }
2ff7e61e 10207 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
10208 return err;
10209}
16432985 10210
0af3d00b
JB
10211static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10212 u64 start, u64 num_bytes, u64 min_size,
10213 loff_t actual_len, u64 *alloc_hint,
10214 struct btrfs_trans_handle *trans)
d899e052 10215{
0b246afa 10216 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10217 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10218 struct extent_map *em;
d899e052
YZ
10219 struct btrfs_root *root = BTRFS_I(inode)->root;
10220 struct btrfs_key ins;
d899e052 10221 u64 cur_offset = start;
55a61d1d 10222 u64 i_size;
154ea289 10223 u64 cur_bytes;
0b670dc4 10224 u64 last_alloc = (u64)-1;
d899e052 10225 int ret = 0;
0af3d00b 10226 bool own_trans = true;
18513091 10227 u64 end = start + num_bytes - 1;
d899e052 10228
0af3d00b
JB
10229 if (trans)
10230 own_trans = false;
d899e052 10231 while (num_bytes > 0) {
0af3d00b
JB
10232 if (own_trans) {
10233 trans = btrfs_start_transaction(root, 3);
10234 if (IS_ERR(trans)) {
10235 ret = PTR_ERR(trans);
10236 break;
10237 }
5a303d5d
YZ
10238 }
10239
ee22184b 10240 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10241 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10242 /*
10243 * If we are severely fragmented we could end up with really
10244 * small allocations, so if the allocator is returning small
10245 * chunks lets make its job easier by only searching for those
10246 * sized chunks.
10247 */
10248 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10249 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10250 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10251 if (ret) {
0af3d00b 10252 if (own_trans)
3a45bb20 10253 btrfs_end_transaction(trans);
a22285a6 10254 break;
d899e052 10255 }
0b246afa 10256 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10257
0b670dc4 10258 last_alloc = ins.offset;
d899e052
YZ
10259 ret = insert_reserved_file_extent(trans, inode,
10260 cur_offset, ins.objectid,
10261 ins.offset, ins.offset,
920bbbfb 10262 ins.offset, 0, 0, 0,
d899e052 10263 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10264 if (ret) {
2ff7e61e 10265 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10266 ins.offset, 0);
66642832 10267 btrfs_abort_transaction(trans, ret);
79787eaa 10268 if (own_trans)
3a45bb20 10269 btrfs_end_transaction(trans);
79787eaa
JM
10270 break;
10271 }
31193213 10272
dcdbc059 10273 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10274 cur_offset + ins.offset -1, 0);
5a303d5d 10275
5dc562c5
JB
10276 em = alloc_extent_map();
10277 if (!em) {
10278 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10279 &BTRFS_I(inode)->runtime_flags);
10280 goto next;
10281 }
10282
10283 em->start = cur_offset;
10284 em->orig_start = cur_offset;
10285 em->len = ins.offset;
10286 em->block_start = ins.objectid;
10287 em->block_len = ins.offset;
b4939680 10288 em->orig_block_len = ins.offset;
cc95bef6 10289 em->ram_bytes = ins.offset;
0b246afa 10290 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10291 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10292 em->generation = trans->transid;
10293
10294 while (1) {
10295 write_lock(&em_tree->lock);
09a2a8f9 10296 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10297 write_unlock(&em_tree->lock);
10298 if (ret != -EEXIST)
10299 break;
dcdbc059 10300 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10301 cur_offset + ins.offset - 1,
10302 0);
10303 }
10304 free_extent_map(em);
10305next:
d899e052
YZ
10306 num_bytes -= ins.offset;
10307 cur_offset += ins.offset;
efa56464 10308 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10309
0c4d2d95 10310 inode_inc_iversion(inode);
c2050a45 10311 inode->i_ctime = current_time(inode);
6cbff00f 10312 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10313 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10314 (actual_len > inode->i_size) &&
10315 (cur_offset > inode->i_size)) {
d1ea6a61 10316 if (cur_offset > actual_len)
55a61d1d 10317 i_size = actual_len;
d1ea6a61 10318 else
55a61d1d
JB
10319 i_size = cur_offset;
10320 i_size_write(inode, i_size);
10321 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10322 }
10323
d899e052 10324 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10325
10326 if (ret) {
66642832 10327 btrfs_abort_transaction(trans, ret);
79787eaa 10328 if (own_trans)
3a45bb20 10329 btrfs_end_transaction(trans);
79787eaa
JM
10330 break;
10331 }
d899e052 10332
0af3d00b 10333 if (own_trans)
3a45bb20 10334 btrfs_end_transaction(trans);
5a303d5d 10335 }
18513091 10336 if (cur_offset < end)
bc42bda2 10337 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10338 end - cur_offset + 1);
d899e052
YZ
10339 return ret;
10340}
10341
0af3d00b
JB
10342int btrfs_prealloc_file_range(struct inode *inode, int mode,
10343 u64 start, u64 num_bytes, u64 min_size,
10344 loff_t actual_len, u64 *alloc_hint)
10345{
10346 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10347 min_size, actual_len, alloc_hint,
10348 NULL);
10349}
10350
10351int btrfs_prealloc_file_range_trans(struct inode *inode,
10352 struct btrfs_trans_handle *trans, int mode,
10353 u64 start, u64 num_bytes, u64 min_size,
10354 loff_t actual_len, u64 *alloc_hint)
10355{
10356 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10357 min_size, actual_len, alloc_hint, trans);
10358}
10359
e6dcd2dc
CM
10360static int btrfs_set_page_dirty(struct page *page)
10361{
e6dcd2dc
CM
10362 return __set_page_dirty_nobuffers(page);
10363}
10364
10556cb2 10365static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10366{
b83cc969 10367 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10368 umode_t mode = inode->i_mode;
b83cc969 10369
cb6db4e5
JM
10370 if (mask & MAY_WRITE &&
10371 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10372 if (btrfs_root_readonly(root))
10373 return -EROFS;
10374 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10375 return -EACCES;
10376 }
2830ba7f 10377 return generic_permission(inode, mask);
fdebe2bd 10378}
39279cc3 10379
ef3b9af5
FM
10380static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10381{
2ff7e61e 10382 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10383 struct btrfs_trans_handle *trans;
10384 struct btrfs_root *root = BTRFS_I(dir)->root;
10385 struct inode *inode = NULL;
10386 u64 objectid;
10387 u64 index;
10388 int ret = 0;
10389
10390 /*
10391 * 5 units required for adding orphan entry
10392 */
10393 trans = btrfs_start_transaction(root, 5);
10394 if (IS_ERR(trans))
10395 return PTR_ERR(trans);
10396
10397 ret = btrfs_find_free_ino(root, &objectid);
10398 if (ret)
10399 goto out;
10400
10401 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10402 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10403 if (IS_ERR(inode)) {
10404 ret = PTR_ERR(inode);
10405 inode = NULL;
10406 goto out;
10407 }
10408
ef3b9af5
FM
10409 inode->i_fop = &btrfs_file_operations;
10410 inode->i_op = &btrfs_file_inode_operations;
10411
10412 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10413 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10414
b0d5d10f
CM
10415 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10416 if (ret)
32955c54 10417 goto out;
b0d5d10f
CM
10418
10419 ret = btrfs_update_inode(trans, root, inode);
10420 if (ret)
32955c54 10421 goto out;
73f2e545 10422 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10423 if (ret)
32955c54 10424 goto out;
ef3b9af5 10425
5762b5c9
FM
10426 /*
10427 * We set number of links to 0 in btrfs_new_inode(), and here we set
10428 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10429 * through:
10430 *
10431 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10432 */
10433 set_nlink(inode, 1);
ef3b9af5 10434 d_tmpfile(dentry, inode);
32955c54 10435 unlock_new_inode(inode);
ef3b9af5 10436 mark_inode_dirty(inode);
ef3b9af5 10437out:
3a45bb20 10438 btrfs_end_transaction(trans);
32955c54
AV
10439 if (ret && inode)
10440 discard_new_inode(inode);
2ff7e61e 10441 btrfs_btree_balance_dirty(fs_info);
ef3b9af5
FM
10442 return ret;
10443}
10444
5cdc84bf 10445void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
c6100a4b 10446{
5cdc84bf 10447 struct inode *inode = tree->private_data;
c6100a4b
JB
10448 unsigned long index = start >> PAGE_SHIFT;
10449 unsigned long end_index = end >> PAGE_SHIFT;
10450 struct page *page;
10451
10452 while (index <= end_index) {
10453 page = find_get_page(inode->i_mapping, index);
10454 ASSERT(page); /* Pages should be in the extent_io_tree */
10455 set_page_writeback(page);
10456 put_page(page);
10457 index++;
10458 }
10459}
10460
ed46ff3d
OS
10461#ifdef CONFIG_SWAP
10462/*
10463 * Add an entry indicating a block group or device which is pinned by a
10464 * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
10465 * negative errno on failure.
10466 */
10467static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
10468 bool is_block_group)
10469{
10470 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10471 struct btrfs_swapfile_pin *sp, *entry;
10472 struct rb_node **p;
10473 struct rb_node *parent = NULL;
10474
10475 sp = kmalloc(sizeof(*sp), GFP_NOFS);
10476 if (!sp)
10477 return -ENOMEM;
10478 sp->ptr = ptr;
10479 sp->inode = inode;
10480 sp->is_block_group = is_block_group;
10481
10482 spin_lock(&fs_info->swapfile_pins_lock);
10483 p = &fs_info->swapfile_pins.rb_node;
10484 while (*p) {
10485 parent = *p;
10486 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
10487 if (sp->ptr < entry->ptr ||
10488 (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
10489 p = &(*p)->rb_left;
10490 } else if (sp->ptr > entry->ptr ||
10491 (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
10492 p = &(*p)->rb_right;
10493 } else {
10494 spin_unlock(&fs_info->swapfile_pins_lock);
10495 kfree(sp);
10496 return 1;
10497 }
10498 }
10499 rb_link_node(&sp->node, parent, p);
10500 rb_insert_color(&sp->node, &fs_info->swapfile_pins);
10501 spin_unlock(&fs_info->swapfile_pins_lock);
10502 return 0;
10503}
10504
10505/* Free all of the entries pinned by this swapfile. */
10506static void btrfs_free_swapfile_pins(struct inode *inode)
10507{
10508 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10509 struct btrfs_swapfile_pin *sp;
10510 struct rb_node *node, *next;
10511
10512 spin_lock(&fs_info->swapfile_pins_lock);
10513 node = rb_first(&fs_info->swapfile_pins);
10514 while (node) {
10515 next = rb_next(node);
10516 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
10517 if (sp->inode == inode) {
10518 rb_erase(&sp->node, &fs_info->swapfile_pins);
10519 if (sp->is_block_group)
10520 btrfs_put_block_group(sp->ptr);
10521 kfree(sp);
10522 }
10523 node = next;
10524 }
10525 spin_unlock(&fs_info->swapfile_pins_lock);
10526}
10527
10528struct btrfs_swap_info {
10529 u64 start;
10530 u64 block_start;
10531 u64 block_len;
10532 u64 lowest_ppage;
10533 u64 highest_ppage;
10534 unsigned long nr_pages;
10535 int nr_extents;
10536};
10537
10538static int btrfs_add_swap_extent(struct swap_info_struct *sis,
10539 struct btrfs_swap_info *bsi)
10540{
10541 unsigned long nr_pages;
10542 u64 first_ppage, first_ppage_reported, next_ppage;
10543 int ret;
10544
10545 first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
10546 next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
10547 PAGE_SIZE) >> PAGE_SHIFT;
10548
10549 if (first_ppage >= next_ppage)
10550 return 0;
10551 nr_pages = next_ppage - first_ppage;
10552
10553 first_ppage_reported = first_ppage;
10554 if (bsi->start == 0)
10555 first_ppage_reported++;
10556 if (bsi->lowest_ppage > first_ppage_reported)
10557 bsi->lowest_ppage = first_ppage_reported;
10558 if (bsi->highest_ppage < (next_ppage - 1))
10559 bsi->highest_ppage = next_ppage - 1;
10560
10561 ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
10562 if (ret < 0)
10563 return ret;
10564 bsi->nr_extents += ret;
10565 bsi->nr_pages += nr_pages;
10566 return 0;
10567}
10568
10569static void btrfs_swap_deactivate(struct file *file)
10570{
10571 struct inode *inode = file_inode(file);
10572
10573 btrfs_free_swapfile_pins(inode);
10574 atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
10575}
10576
10577static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10578 sector_t *span)
10579{
10580 struct inode *inode = file_inode(file);
10581 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
10582 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
10583 struct extent_state *cached_state = NULL;
10584 struct extent_map *em = NULL;
10585 struct btrfs_device *device = NULL;
10586 struct btrfs_swap_info bsi = {
10587 .lowest_ppage = (sector_t)-1ULL,
10588 };
10589 int ret = 0;
10590 u64 isize;
10591 u64 start;
10592
10593 /*
10594 * If the swap file was just created, make sure delalloc is done. If the
10595 * file changes again after this, the user is doing something stupid and
10596 * we don't really care.
10597 */
10598 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
10599 if (ret)
10600 return ret;
10601
10602 /*
10603 * The inode is locked, so these flags won't change after we check them.
10604 */
10605 if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10606 btrfs_warn(fs_info, "swapfile must not be compressed");
10607 return -EINVAL;
10608 }
10609 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10610 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10611 return -EINVAL;
10612 }
10613 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10614 btrfs_warn(fs_info, "swapfile must not be checksummed");
10615 return -EINVAL;
10616 }
10617
10618 /*
10619 * Balance or device remove/replace/resize can move stuff around from
10620 * under us. The EXCL_OP flag makes sure they aren't running/won't run
10621 * concurrently while we are mapping the swap extents, and
10622 * fs_info->swapfile_pins prevents them from running while the swap file
10623 * is active and moving the extents. Note that this also prevents a
10624 * concurrent device add which isn't actually necessary, but it's not
10625 * really worth the trouble to allow it.
10626 */
10627 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10628 btrfs_warn(fs_info,
10629 "cannot activate swapfile while exclusive operation is running");
10630 return -EBUSY;
10631 }
10632 /*
10633 * Snapshots can create extents which require COW even if NODATACOW is
10634 * set. We use this counter to prevent snapshots. We must increment it
10635 * before walking the extents because we don't want a concurrent
10636 * snapshot to run after we've already checked the extents.
10637 */
10638 atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10639
10640 isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10641
10642 lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10643 start = 0;
10644 while (start < isize) {
10645 u64 logical_block_start, physical_block_start;
10646 struct btrfs_block_group_cache *bg;
10647 u64 len = isize - start;
10648
10649 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
10650 if (IS_ERR(em)) {
10651 ret = PTR_ERR(em);
10652 goto out;
10653 }
10654
10655 if (em->block_start == EXTENT_MAP_HOLE) {
10656 btrfs_warn(fs_info, "swapfile must not have holes");
10657 ret = -EINVAL;
10658 goto out;
10659 }
10660 if (em->block_start == EXTENT_MAP_INLINE) {
10661 /*
10662 * It's unlikely we'll ever actually find ourselves
10663 * here, as a file small enough to fit inline won't be
10664 * big enough to store more than the swap header, but in
10665 * case something changes in the future, let's catch it
10666 * here rather than later.
10667 */
10668 btrfs_warn(fs_info, "swapfile must not be inline");
10669 ret = -EINVAL;
10670 goto out;
10671 }
10672 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10673 btrfs_warn(fs_info, "swapfile must not be compressed");
10674 ret = -EINVAL;
10675 goto out;
10676 }
10677
10678 logical_block_start = em->block_start + (start - em->start);
10679 len = min(len, em->len - (start - em->start));
10680 free_extent_map(em);
10681 em = NULL;
10682
10683 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10684 if (ret < 0) {
10685 goto out;
10686 } else if (ret) {
10687 ret = 0;
10688 } else {
10689 btrfs_warn(fs_info,
10690 "swapfile must not be copy-on-write");
10691 ret = -EINVAL;
10692 goto out;
10693 }
10694
10695 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10696 if (IS_ERR(em)) {
10697 ret = PTR_ERR(em);
10698 goto out;
10699 }
10700
10701 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10702 btrfs_warn(fs_info,
10703 "swapfile must have single data profile");
10704 ret = -EINVAL;
10705 goto out;
10706 }
10707
10708 if (device == NULL) {
10709 device = em->map_lookup->stripes[0].dev;
10710 ret = btrfs_add_swapfile_pin(inode, device, false);
10711 if (ret == 1)
10712 ret = 0;
10713 else if (ret)
10714 goto out;
10715 } else if (device != em->map_lookup->stripes[0].dev) {
10716 btrfs_warn(fs_info, "swapfile must be on one device");
10717 ret = -EINVAL;
10718 goto out;
10719 }
10720
10721 physical_block_start = (em->map_lookup->stripes[0].physical +
10722 (logical_block_start - em->start));
10723 len = min(len, em->len - (logical_block_start - em->start));
10724 free_extent_map(em);
10725 em = NULL;
10726
10727 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10728 if (!bg) {
10729 btrfs_warn(fs_info,
10730 "could not find block group containing swapfile");
10731 ret = -EINVAL;
10732 goto out;
10733 }
10734
10735 ret = btrfs_add_swapfile_pin(inode, bg, true);
10736 if (ret) {
10737 btrfs_put_block_group(bg);
10738 if (ret == 1)
10739 ret = 0;
10740 else
10741 goto out;
10742 }
10743
10744 if (bsi.block_len &&
10745 bsi.block_start + bsi.block_len == physical_block_start) {
10746 bsi.block_len += len;
10747 } else {
10748 if (bsi.block_len) {
10749 ret = btrfs_add_swap_extent(sis, &bsi);
10750 if (ret)
10751 goto out;
10752 }
10753 bsi.start = start;
10754 bsi.block_start = physical_block_start;
10755 bsi.block_len = len;
10756 }
10757
10758 start += len;
10759 }
10760
10761 if (bsi.block_len)
10762 ret = btrfs_add_swap_extent(sis, &bsi);
10763
10764out:
10765 if (!IS_ERR_OR_NULL(em))
10766 free_extent_map(em);
10767
10768 unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10769
10770 if (ret)
10771 btrfs_swap_deactivate(file);
10772
10773 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10774
10775 if (ret)
10776 return ret;
10777
10778 if (device)
10779 sis->bdev = device->bdev;
10780 *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10781 sis->max = bsi.nr_pages;
10782 sis->pages = bsi.nr_pages - 1;
10783 sis->highest_bit = bsi.nr_pages - 1;
10784 return bsi.nr_extents;
10785}
10786#else
10787static void btrfs_swap_deactivate(struct file *file)
10788{
10789}
10790
10791static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10792 sector_t *span)
10793{
10794 return -EOPNOTSUPP;
10795}
10796#endif
10797
6e1d5dcc 10798static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10799 .getattr = btrfs_getattr,
39279cc3
CM
10800 .lookup = btrfs_lookup,
10801 .create = btrfs_create,
10802 .unlink = btrfs_unlink,
10803 .link = btrfs_link,
10804 .mkdir = btrfs_mkdir,
10805 .rmdir = btrfs_rmdir,
2773bf00 10806 .rename = btrfs_rename2,
39279cc3
CM
10807 .symlink = btrfs_symlink,
10808 .setattr = btrfs_setattr,
618e21d5 10809 .mknod = btrfs_mknod,
5103e947 10810 .listxattr = btrfs_listxattr,
fdebe2bd 10811 .permission = btrfs_permission,
4e34e719 10812 .get_acl = btrfs_get_acl,
996a710d 10813 .set_acl = btrfs_set_acl,
93fd63c2 10814 .update_time = btrfs_update_time,
ef3b9af5 10815 .tmpfile = btrfs_tmpfile,
39279cc3 10816};
6e1d5dcc 10817static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10818 .lookup = btrfs_lookup,
fdebe2bd 10819 .permission = btrfs_permission,
93fd63c2 10820 .update_time = btrfs_update_time,
39279cc3 10821};
76dda93c 10822
828c0950 10823static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10824 .llseek = generic_file_llseek,
10825 .read = generic_read_dir,
02dbfc99 10826 .iterate_shared = btrfs_real_readdir,
23b5ec74 10827 .open = btrfs_opendir,
34287aa3 10828 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10829#ifdef CONFIG_COMPAT
4c63c245 10830 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10831#endif
6bf13c0c 10832 .release = btrfs_release_file,
e02119d5 10833 .fsync = btrfs_sync_file,
39279cc3
CM
10834};
10835
20e5506b 10836static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10837 /* mandatory callbacks */
065631f6 10838 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac
CM
10839 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10840};
10841
35054394
CM
10842/*
10843 * btrfs doesn't support the bmap operation because swapfiles
10844 * use bmap to make a mapping of extents in the file. They assume
10845 * these extents won't change over the life of the file and they
10846 * use the bmap result to do IO directly to the drive.
10847 *
10848 * the btrfs bmap call would return logical addresses that aren't
10849 * suitable for IO and they also will change frequently as COW
10850 * operations happen. So, swapfile + btrfs == corruption.
10851 *
10852 * For now we're avoiding this by dropping bmap.
10853 */
7f09410b 10854static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10855 .readpage = btrfs_readpage,
10856 .writepage = btrfs_writepage,
b293f02e 10857 .writepages = btrfs_writepages,
3ab2fb5a 10858 .readpages = btrfs_readpages,
16432985 10859 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10860 .invalidatepage = btrfs_invalidatepage,
10861 .releasepage = btrfs_releasepage,
e6dcd2dc 10862 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10863 .error_remove_page = generic_error_remove_page,
ed46ff3d
OS
10864 .swap_activate = btrfs_swap_activate,
10865 .swap_deactivate = btrfs_swap_deactivate,
39279cc3
CM
10866};
10867
6e1d5dcc 10868static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10869 .getattr = btrfs_getattr,
10870 .setattr = btrfs_setattr,
5103e947 10871 .listxattr = btrfs_listxattr,
fdebe2bd 10872 .permission = btrfs_permission,
1506fcc8 10873 .fiemap = btrfs_fiemap,
4e34e719 10874 .get_acl = btrfs_get_acl,
996a710d 10875 .set_acl = btrfs_set_acl,
e41f941a 10876 .update_time = btrfs_update_time,
39279cc3 10877};
6e1d5dcc 10878static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10879 .getattr = btrfs_getattr,
10880 .setattr = btrfs_setattr,
fdebe2bd 10881 .permission = btrfs_permission,
33268eaf 10882 .listxattr = btrfs_listxattr,
4e34e719 10883 .get_acl = btrfs_get_acl,
996a710d 10884 .set_acl = btrfs_set_acl,
e41f941a 10885 .update_time = btrfs_update_time,
618e21d5 10886};
6e1d5dcc 10887static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10888 .get_link = page_get_link,
f209561a 10889 .getattr = btrfs_getattr,
22c44fe6 10890 .setattr = btrfs_setattr,
fdebe2bd 10891 .permission = btrfs_permission,
0279b4cd 10892 .listxattr = btrfs_listxattr,
e41f941a 10893 .update_time = btrfs_update_time,
39279cc3 10894};
76dda93c 10895
82d339d9 10896const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
10897 .d_delete = btrfs_dentry_delete,
10898};