Btrfs: do not check delalloc when updating disk_i_size
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
74struct kmem_cache *btrfs_trans_handle_cachep;
75struct kmem_cache *btrfs_transaction_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
78
79#define S_SHIFT 12
80static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88};
89
a41ad394
JB
90static int btrfs_setsize(struct inode *inode, loff_t newsize);
91static int btrfs_truncate(struct inode *inode);
c8b97818 92static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
93static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
2115133f
CM
97static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
7b128766 99
f34f57a3 100static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
0279b4cd
JO
103{
104 int err;
105
f34f57a3 106 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 107 if (!err)
2a7dba39 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
109 return err;
110}
111
c8b97818
CM
112/*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
d397712b 117static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
fe3f566c 120 int compress_type,
c8b97818
CM
121 struct page **compressed_pages)
122{
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
c8b97818 135
fe3f566c 136 if (compressed_size && compressed_pages)
c8b97818 137 cur_size = compressed_size;
c8b97818 138
d397712b
CM
139 path = btrfs_alloc_path();
140 if (!path)
c8b97818
CM
141 return -ENOMEM;
142
b9473439 143 path->leave_spinning = 1;
c8b97818 144
33345d01 145 key.objectid = btrfs_ino(inode);
c8b97818
CM
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
c8b97818
CM
153 if (ret) {
154 err = ret;
c8b97818
CM
155 goto fail;
156 }
157 leaf = path->nodes[0];
158 ei = btrfs_item_ptr(leaf, path->slots[0],
159 struct btrfs_file_extent_item);
160 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162 btrfs_set_file_extent_encryption(leaf, ei, 0);
163 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165 ptr = btrfs_file_extent_inline_start(ei);
166
261507a0 167 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
168 struct page *cpage;
169 int i = 0;
d397712b 170 while (compressed_size > 0) {
c8b97818 171 cpage = compressed_pages[i];
5b050f04 172 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
173 PAGE_CACHE_SIZE);
174
7ac687d9 175 kaddr = kmap_atomic(cpage);
c8b97818 176 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 177 kunmap_atomic(kaddr);
c8b97818
CM
178
179 i++;
180 ptr += cur_size;
181 compressed_size -= cur_size;
182 }
183 btrfs_set_file_extent_compression(leaf, ei,
261507a0 184 compress_type);
c8b97818
CM
185 } else {
186 page = find_get_page(inode->i_mapping,
187 start >> PAGE_CACHE_SHIFT);
188 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 189 kaddr = kmap_atomic(page);
c8b97818
CM
190 offset = start & (PAGE_CACHE_SIZE - 1);
191 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 192 kunmap_atomic(kaddr);
c8b97818
CM
193 page_cache_release(page);
194 }
195 btrfs_mark_buffer_dirty(leaf);
196 btrfs_free_path(path);
197
c2167754
YZ
198 /*
199 * we're an inline extent, so nobody can
200 * extend the file past i_size without locking
201 * a page we already have locked.
202 *
203 * We must do any isize and inode updates
204 * before we unlock the pages. Otherwise we
205 * could end up racing with unlink.
206 */
c8b97818 207 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 208 ret = btrfs_update_inode(trans, root, inode);
c2167754 209
79787eaa 210 return ret;
c8b97818
CM
211fail:
212 btrfs_free_path(path);
213 return err;
214}
215
216
217/*
218 * conditionally insert an inline extent into the file. This
219 * does the checks required to make sure the data is small enough
220 * to fit as an inline extent.
221 */
7f366cfe 222static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
223 struct btrfs_root *root,
224 struct inode *inode, u64 start, u64 end,
fe3f566c 225 size_t compressed_size, int compress_type,
c8b97818
CM
226 struct page **compressed_pages)
227{
228 u64 isize = i_size_read(inode);
229 u64 actual_end = min(end + 1, isize);
230 u64 inline_len = actual_end - start;
231 u64 aligned_end = (end + root->sectorsize - 1) &
232 ~((u64)root->sectorsize - 1);
233 u64 hint_byte;
234 u64 data_len = inline_len;
235 int ret;
236
237 if (compressed_size)
238 data_len = compressed_size;
239
240 if (start > 0 ||
70b99e69 241 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
242 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243 (!compressed_size &&
244 (actual_end & (root->sectorsize - 1)) == 0) ||
245 end + 1 < isize ||
246 data_len > root->fs_info->max_inline) {
247 return 1;
248 }
249
920bbbfb 250 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 251 &hint_byte, 1);
79787eaa
JM
252 if (ret)
253 return ret;
c8b97818
CM
254
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
fe3f566c 259 compress_type, compressed_pages);
79787eaa
JM
260 if (ret) {
261 btrfs_abort_transaction(trans, root, ret);
262 return ret;
263 }
0ca1f7ce 264 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 265 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
266 return 0;
267}
268
771ed689
CM
269struct async_extent {
270 u64 start;
271 u64 ram_size;
272 u64 compressed_size;
273 struct page **pages;
274 unsigned long nr_pages;
261507a0 275 int compress_type;
771ed689
CM
276 struct list_head list;
277};
278
279struct async_cow {
280 struct inode *inode;
281 struct btrfs_root *root;
282 struct page *locked_page;
283 u64 start;
284 u64 end;
285 struct list_head extents;
286 struct btrfs_work work;
287};
288
289static noinline int add_async_extent(struct async_cow *cow,
290 u64 start, u64 ram_size,
291 u64 compressed_size,
292 struct page **pages,
261507a0
LZ
293 unsigned long nr_pages,
294 int compress_type)
771ed689
CM
295{
296 struct async_extent *async_extent;
297
298 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 299 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
300 async_extent->start = start;
301 async_extent->ram_size = ram_size;
302 async_extent->compressed_size = compressed_size;
303 async_extent->pages = pages;
304 async_extent->nr_pages = nr_pages;
261507a0 305 async_extent->compress_type = compress_type;
771ed689
CM
306 list_add_tail(&async_extent->list, &cow->extents);
307 return 0;
308}
309
d352ac68 310/*
771ed689
CM
311 * we create compressed extents in two phases. The first
312 * phase compresses a range of pages that have already been
313 * locked (both pages and state bits are locked).
c8b97818 314 *
771ed689
CM
315 * This is done inside an ordered work queue, and the compression
316 * is spread across many cpus. The actual IO submission is step
317 * two, and the ordered work queue takes care of making sure that
318 * happens in the same order things were put onto the queue by
319 * writepages and friends.
c8b97818 320 *
771ed689
CM
321 * If this code finds it can't get good compression, it puts an
322 * entry onto the work queue to write the uncompressed bytes. This
323 * makes sure that both compressed inodes and uncompressed inodes
324 * are written in the same order that pdflush sent them down.
d352ac68 325 */
771ed689
CM
326static noinline int compress_file_range(struct inode *inode,
327 struct page *locked_page,
328 u64 start, u64 end,
329 struct async_cow *async_cow,
330 int *num_added)
b888db2b
CM
331{
332 struct btrfs_root *root = BTRFS_I(inode)->root;
333 struct btrfs_trans_handle *trans;
db94535d 334 u64 num_bytes;
db94535d 335 u64 blocksize = root->sectorsize;
c8b97818 336 u64 actual_end;
42dc7bab 337 u64 isize = i_size_read(inode);
e6dcd2dc 338 int ret = 0;
c8b97818
CM
339 struct page **pages = NULL;
340 unsigned long nr_pages;
341 unsigned long nr_pages_ret = 0;
342 unsigned long total_compressed = 0;
343 unsigned long total_in = 0;
344 unsigned long max_compressed = 128 * 1024;
771ed689 345 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
346 int i;
347 int will_compress;
261507a0 348 int compress_type = root->fs_info->compress_type;
b888db2b 349
4cb13e5d
LB
350 /* if this is a small write inside eof, kick off a defrag */
351 if ((end - start + 1) < 16 * 1024 &&
352 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
353 btrfs_add_inode_defrag(NULL, inode);
354
42dc7bab 355 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
356again:
357 will_compress = 0;
358 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
359 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 360
f03d9301
CM
361 /*
362 * we don't want to send crud past the end of i_size through
363 * compression, that's just a waste of CPU time. So, if the
364 * end of the file is before the start of our current
365 * requested range of bytes, we bail out to the uncompressed
366 * cleanup code that can deal with all of this.
367 *
368 * It isn't really the fastest way to fix things, but this is a
369 * very uncommon corner.
370 */
371 if (actual_end <= start)
372 goto cleanup_and_bail_uncompressed;
373
c8b97818
CM
374 total_compressed = actual_end - start;
375
376 /* we want to make sure that amount of ram required to uncompress
377 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
378 * of a compressed extent to 128k. This is a crucial number
379 * because it also controls how easily we can spread reads across
380 * cpus for decompression.
381 *
382 * We also want to make sure the amount of IO required to do
383 * a random read is reasonably small, so we limit the size of
384 * a compressed extent to 128k.
c8b97818
CM
385 */
386 total_compressed = min(total_compressed, max_uncompressed);
db94535d 387 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 388 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
389 total_in = 0;
390 ret = 0;
db94535d 391
771ed689
CM
392 /*
393 * we do compression for mount -o compress and when the
394 * inode has not been flagged as nocompress. This flag can
395 * change at any time if we discover bad compression ratios.
c8b97818 396 */
6cbff00f 397 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 398 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
399 (BTRFS_I(inode)->force_compress) ||
400 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 401 WARN_ON(pages);
cfbc246e 402 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
403 if (!pages) {
404 /* just bail out to the uncompressed code */
405 goto cont;
406 }
c8b97818 407
261507a0
LZ
408 if (BTRFS_I(inode)->force_compress)
409 compress_type = BTRFS_I(inode)->force_compress;
410
411 ret = btrfs_compress_pages(compress_type,
412 inode->i_mapping, start,
413 total_compressed, pages,
414 nr_pages, &nr_pages_ret,
415 &total_in,
416 &total_compressed,
417 max_compressed);
c8b97818
CM
418
419 if (!ret) {
420 unsigned long offset = total_compressed &
421 (PAGE_CACHE_SIZE - 1);
422 struct page *page = pages[nr_pages_ret - 1];
423 char *kaddr;
424
425 /* zero the tail end of the last page, we might be
426 * sending it down to disk
427 */
428 if (offset) {
7ac687d9 429 kaddr = kmap_atomic(page);
c8b97818
CM
430 memset(kaddr + offset, 0,
431 PAGE_CACHE_SIZE - offset);
7ac687d9 432 kunmap_atomic(kaddr);
c8b97818
CM
433 }
434 will_compress = 1;
435 }
436 }
560f7d75 437cont:
c8b97818 438 if (start == 0) {
7a7eaa40 439 trans = btrfs_join_transaction(root);
79787eaa
JM
440 if (IS_ERR(trans)) {
441 ret = PTR_ERR(trans);
442 trans = NULL;
443 goto cleanup_and_out;
444 }
0ca1f7ce 445 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 446
c8b97818 447 /* lets try to make an inline extent */
771ed689 448 if (ret || total_in < (actual_end - start)) {
c8b97818 449 /* we didn't compress the entire range, try
771ed689 450 * to make an uncompressed inline extent.
c8b97818
CM
451 */
452 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 453 start, end, 0, 0, NULL);
c8b97818 454 } else {
771ed689 455 /* try making a compressed inline extent */
c8b97818
CM
456 ret = cow_file_range_inline(trans, root, inode,
457 start, end,
fe3f566c
LZ
458 total_compressed,
459 compress_type, pages);
c8b97818 460 }
79787eaa 461 if (ret <= 0) {
771ed689 462 /*
79787eaa
JM
463 * inline extent creation worked or returned error,
464 * we don't need to create any more async work items.
465 * Unlock and free up our temp pages.
771ed689 466 */
c8b97818 467 extent_clear_unlock_delalloc(inode,
a791e35e
CM
468 &BTRFS_I(inode)->io_tree,
469 start, end, NULL,
470 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 471 EXTENT_CLEAR_DELALLOC |
a791e35e 472 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
473
474 btrfs_end_transaction(trans, root);
c8b97818
CM
475 goto free_pages_out;
476 }
c2167754 477 btrfs_end_transaction(trans, root);
c8b97818
CM
478 }
479
480 if (will_compress) {
481 /*
482 * we aren't doing an inline extent round the compressed size
483 * up to a block size boundary so the allocator does sane
484 * things
485 */
486 total_compressed = (total_compressed + blocksize - 1) &
487 ~(blocksize - 1);
488
489 /*
490 * one last check to make sure the compression is really a
491 * win, compare the page count read with the blocks on disk
492 */
493 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
494 ~(PAGE_CACHE_SIZE - 1);
495 if (total_compressed >= total_in) {
496 will_compress = 0;
497 } else {
c8b97818
CM
498 num_bytes = total_in;
499 }
500 }
501 if (!will_compress && pages) {
502 /*
503 * the compression code ran but failed to make things smaller,
504 * free any pages it allocated and our page pointer array
505 */
506 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 507 WARN_ON(pages[i]->mapping);
c8b97818
CM
508 page_cache_release(pages[i]);
509 }
510 kfree(pages);
511 pages = NULL;
512 total_compressed = 0;
513 nr_pages_ret = 0;
514
515 /* flag the file so we don't compress in the future */
1e701a32
CM
516 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
517 !(BTRFS_I(inode)->force_compress)) {
a555f810 518 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 519 }
c8b97818 520 }
771ed689
CM
521 if (will_compress) {
522 *num_added += 1;
c8b97818 523
771ed689
CM
524 /* the async work queues will take care of doing actual
525 * allocation on disk for these compressed pages,
526 * and will submit them to the elevator.
527 */
528 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
529 total_compressed, pages, nr_pages_ret,
530 compress_type);
179e29e4 531
24ae6365 532 if (start + num_bytes < end) {
771ed689
CM
533 start += num_bytes;
534 pages = NULL;
535 cond_resched();
536 goto again;
537 }
538 } else {
f03d9301 539cleanup_and_bail_uncompressed:
771ed689
CM
540 /*
541 * No compression, but we still need to write the pages in
542 * the file we've been given so far. redirty the locked
543 * page if it corresponds to our extent and set things up
544 * for the async work queue to run cow_file_range to do
545 * the normal delalloc dance
546 */
547 if (page_offset(locked_page) >= start &&
548 page_offset(locked_page) <= end) {
549 __set_page_dirty_nobuffers(locked_page);
550 /* unlocked later on in the async handlers */
551 }
261507a0
LZ
552 add_async_extent(async_cow, start, end - start + 1,
553 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
554 *num_added += 1;
555 }
3b951516 556
771ed689 557out:
79787eaa 558 return ret;
771ed689
CM
559
560free_pages_out:
561 for (i = 0; i < nr_pages_ret; i++) {
562 WARN_ON(pages[i]->mapping);
563 page_cache_release(pages[i]);
564 }
d397712b 565 kfree(pages);
771ed689
CM
566
567 goto out;
79787eaa
JM
568
569cleanup_and_out:
570 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
571 start, end, NULL,
572 EXTENT_CLEAR_UNLOCK_PAGE |
573 EXTENT_CLEAR_DIRTY |
574 EXTENT_CLEAR_DELALLOC |
575 EXTENT_SET_WRITEBACK |
576 EXTENT_END_WRITEBACK);
577 if (!trans || IS_ERR(trans))
578 btrfs_error(root->fs_info, ret, "Failed to join transaction");
579 else
580 btrfs_abort_transaction(trans, root, ret);
581 goto free_pages_out;
771ed689
CM
582}
583
584/*
585 * phase two of compressed writeback. This is the ordered portion
586 * of the code, which only gets called in the order the work was
587 * queued. We walk all the async extents created by compress_file_range
588 * and send them down to the disk.
589 */
590static noinline int submit_compressed_extents(struct inode *inode,
591 struct async_cow *async_cow)
592{
593 struct async_extent *async_extent;
594 u64 alloc_hint = 0;
595 struct btrfs_trans_handle *trans;
596 struct btrfs_key ins;
597 struct extent_map *em;
598 struct btrfs_root *root = BTRFS_I(inode)->root;
599 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
600 struct extent_io_tree *io_tree;
f5a84ee3 601 int ret = 0;
771ed689
CM
602
603 if (list_empty(&async_cow->extents))
604 return 0;
605
771ed689 606
d397712b 607 while (!list_empty(&async_cow->extents)) {
771ed689
CM
608 async_extent = list_entry(async_cow->extents.next,
609 struct async_extent, list);
610 list_del(&async_extent->list);
c8b97818 611
771ed689
CM
612 io_tree = &BTRFS_I(inode)->io_tree;
613
f5a84ee3 614retry:
771ed689
CM
615 /* did the compression code fall back to uncompressed IO? */
616 if (!async_extent->pages) {
617 int page_started = 0;
618 unsigned long nr_written = 0;
619
620 lock_extent(io_tree, async_extent->start,
2ac55d41 621 async_extent->start +
d0082371 622 async_extent->ram_size - 1);
771ed689
CM
623
624 /* allocate blocks */
f5a84ee3
JB
625 ret = cow_file_range(inode, async_cow->locked_page,
626 async_extent->start,
627 async_extent->start +
628 async_extent->ram_size - 1,
629 &page_started, &nr_written, 0);
771ed689 630
79787eaa
JM
631 /* JDM XXX */
632
771ed689
CM
633 /*
634 * if page_started, cow_file_range inserted an
635 * inline extent and took care of all the unlocking
636 * and IO for us. Otherwise, we need to submit
637 * all those pages down to the drive.
638 */
f5a84ee3 639 if (!page_started && !ret)
771ed689
CM
640 extent_write_locked_range(io_tree,
641 inode, async_extent->start,
d397712b 642 async_extent->start +
771ed689
CM
643 async_extent->ram_size - 1,
644 btrfs_get_extent,
645 WB_SYNC_ALL);
646 kfree(async_extent);
647 cond_resched();
648 continue;
649 }
650
651 lock_extent(io_tree, async_extent->start,
d0082371 652 async_extent->start + async_extent->ram_size - 1);
771ed689 653
7a7eaa40 654 trans = btrfs_join_transaction(root);
79787eaa
JM
655 if (IS_ERR(trans)) {
656 ret = PTR_ERR(trans);
657 } else {
658 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
659 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
660 async_extent->compressed_size,
661 async_extent->compressed_size,
81c9ad23 662 0, alloc_hint, &ins, 1);
79787eaa
JM
663 if (ret)
664 btrfs_abort_transaction(trans, root, ret);
665 btrfs_end_transaction(trans, root);
666 }
c2167754 667
f5a84ee3
JB
668 if (ret) {
669 int i;
670 for (i = 0; i < async_extent->nr_pages; i++) {
671 WARN_ON(async_extent->pages[i]->mapping);
672 page_cache_release(async_extent->pages[i]);
673 }
674 kfree(async_extent->pages);
675 async_extent->nr_pages = 0;
676 async_extent->pages = NULL;
677 unlock_extent(io_tree, async_extent->start,
678 async_extent->start +
d0082371 679 async_extent->ram_size - 1);
79787eaa
JM
680 if (ret == -ENOSPC)
681 goto retry;
682 goto out_free; /* JDM: Requeue? */
f5a84ee3
JB
683 }
684
c2167754
YZ
685 /*
686 * here we're doing allocation and writeback of the
687 * compressed pages
688 */
689 btrfs_drop_extent_cache(inode, async_extent->start,
690 async_extent->start +
691 async_extent->ram_size - 1, 0);
692
172ddd60 693 em = alloc_extent_map();
79787eaa 694 BUG_ON(!em); /* -ENOMEM */
771ed689
CM
695 em->start = async_extent->start;
696 em->len = async_extent->ram_size;
445a6944 697 em->orig_start = em->start;
c8b97818 698
771ed689
CM
699 em->block_start = ins.objectid;
700 em->block_len = ins.offset;
701 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 702 em->compress_type = async_extent->compress_type;
771ed689
CM
703 set_bit(EXTENT_FLAG_PINNED, &em->flags);
704 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
705
d397712b 706 while (1) {
890871be 707 write_lock(&em_tree->lock);
771ed689 708 ret = add_extent_mapping(em_tree, em);
890871be 709 write_unlock(&em_tree->lock);
771ed689
CM
710 if (ret != -EEXIST) {
711 free_extent_map(em);
712 break;
713 }
714 btrfs_drop_extent_cache(inode, async_extent->start,
715 async_extent->start +
716 async_extent->ram_size - 1, 0);
717 }
718
261507a0
LZ
719 ret = btrfs_add_ordered_extent_compress(inode,
720 async_extent->start,
721 ins.objectid,
722 async_extent->ram_size,
723 ins.offset,
724 BTRFS_ORDERED_COMPRESSED,
725 async_extent->compress_type);
79787eaa 726 BUG_ON(ret); /* -ENOMEM */
771ed689 727
771ed689
CM
728 /*
729 * clear dirty, set writeback and unlock the pages.
730 */
731 extent_clear_unlock_delalloc(inode,
a791e35e
CM
732 &BTRFS_I(inode)->io_tree,
733 async_extent->start,
734 async_extent->start +
735 async_extent->ram_size - 1,
736 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
737 EXTENT_CLEAR_UNLOCK |
a3429ab7 738 EXTENT_CLEAR_DELALLOC |
a791e35e 739 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
740
741 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
742 async_extent->start,
743 async_extent->ram_size,
744 ins.objectid,
745 ins.offset, async_extent->pages,
746 async_extent->nr_pages);
771ed689 747
79787eaa 748 BUG_ON(ret); /* -ENOMEM */
771ed689
CM
749 alloc_hint = ins.objectid + ins.offset;
750 kfree(async_extent);
751 cond_resched();
752 }
79787eaa
JM
753 ret = 0;
754out:
755 return ret;
756out_free:
757 kfree(async_extent);
758 goto out;
771ed689
CM
759}
760
4b46fce2
JB
761static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
762 u64 num_bytes)
763{
764 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
765 struct extent_map *em;
766 u64 alloc_hint = 0;
767
768 read_lock(&em_tree->lock);
769 em = search_extent_mapping(em_tree, start, num_bytes);
770 if (em) {
771 /*
772 * if block start isn't an actual block number then find the
773 * first block in this inode and use that as a hint. If that
774 * block is also bogus then just don't worry about it.
775 */
776 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
777 free_extent_map(em);
778 em = search_extent_mapping(em_tree, 0, 0);
779 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
780 alloc_hint = em->block_start;
781 if (em)
782 free_extent_map(em);
783 } else {
784 alloc_hint = em->block_start;
785 free_extent_map(em);
786 }
787 }
788 read_unlock(&em_tree->lock);
789
790 return alloc_hint;
791}
792
771ed689
CM
793/*
794 * when extent_io.c finds a delayed allocation range in the file,
795 * the call backs end up in this code. The basic idea is to
796 * allocate extents on disk for the range, and create ordered data structs
797 * in ram to track those extents.
798 *
799 * locked_page is the page that writepage had locked already. We use
800 * it to make sure we don't do extra locks or unlocks.
801 *
802 * *page_started is set to one if we unlock locked_page and do everything
803 * required to start IO on it. It may be clean and already done with
804 * IO when we return.
805 */
806static noinline int cow_file_range(struct inode *inode,
807 struct page *locked_page,
808 u64 start, u64 end, int *page_started,
809 unsigned long *nr_written,
810 int unlock)
811{
812 struct btrfs_root *root = BTRFS_I(inode)->root;
813 struct btrfs_trans_handle *trans;
814 u64 alloc_hint = 0;
815 u64 num_bytes;
816 unsigned long ram_size;
817 u64 disk_num_bytes;
818 u64 cur_alloc_size;
819 u64 blocksize = root->sectorsize;
771ed689
CM
820 struct btrfs_key ins;
821 struct extent_map *em;
822 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
823 int ret = 0;
824
2cf8572d 825 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 826 trans = btrfs_join_transaction(root);
79787eaa
JM
827 if (IS_ERR(trans)) {
828 extent_clear_unlock_delalloc(inode,
829 &BTRFS_I(inode)->io_tree,
830 start, end, NULL,
831 EXTENT_CLEAR_UNLOCK_PAGE |
832 EXTENT_CLEAR_UNLOCK |
833 EXTENT_CLEAR_DELALLOC |
834 EXTENT_CLEAR_DIRTY |
835 EXTENT_SET_WRITEBACK |
836 EXTENT_END_WRITEBACK);
837 return PTR_ERR(trans);
838 }
0ca1f7ce 839 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 840
771ed689
CM
841 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
842 num_bytes = max(blocksize, num_bytes);
843 disk_num_bytes = num_bytes;
844 ret = 0;
845
4cb5300b 846 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
847 if (num_bytes < 64 * 1024 &&
848 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
849 btrfs_add_inode_defrag(trans, inode);
850
771ed689
CM
851 if (start == 0) {
852 /* lets try to make an inline extent */
853 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 854 start, end, 0, 0, NULL);
771ed689
CM
855 if (ret == 0) {
856 extent_clear_unlock_delalloc(inode,
a791e35e
CM
857 &BTRFS_I(inode)->io_tree,
858 start, end, NULL,
859 EXTENT_CLEAR_UNLOCK_PAGE |
860 EXTENT_CLEAR_UNLOCK |
861 EXTENT_CLEAR_DELALLOC |
862 EXTENT_CLEAR_DIRTY |
863 EXTENT_SET_WRITEBACK |
864 EXTENT_END_WRITEBACK);
c2167754 865
771ed689
CM
866 *nr_written = *nr_written +
867 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
868 *page_started = 1;
771ed689 869 goto out;
79787eaa
JM
870 } else if (ret < 0) {
871 btrfs_abort_transaction(trans, root, ret);
872 goto out_unlock;
771ed689
CM
873 }
874 }
875
876 BUG_ON(disk_num_bytes >
6c41761f 877 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 878
4b46fce2 879 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
880 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
881
d397712b 882 while (disk_num_bytes > 0) {
a791e35e
CM
883 unsigned long op;
884
287a0ab9 885 cur_alloc_size = disk_num_bytes;
e6dcd2dc 886 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 887 root->sectorsize, 0, alloc_hint,
81c9ad23 888 &ins, 1);
79787eaa
JM
889 if (ret < 0) {
890 btrfs_abort_transaction(trans, root, ret);
891 goto out_unlock;
892 }
d397712b 893
172ddd60 894 em = alloc_extent_map();
79787eaa 895 BUG_ON(!em); /* -ENOMEM */
e6dcd2dc 896 em->start = start;
445a6944 897 em->orig_start = em->start;
771ed689
CM
898 ram_size = ins.offset;
899 em->len = ins.offset;
c8b97818 900
e6dcd2dc 901 em->block_start = ins.objectid;
c8b97818 902 em->block_len = ins.offset;
e6dcd2dc 903 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 904 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 905
d397712b 906 while (1) {
890871be 907 write_lock(&em_tree->lock);
e6dcd2dc 908 ret = add_extent_mapping(em_tree, em);
890871be 909 write_unlock(&em_tree->lock);
e6dcd2dc
CM
910 if (ret != -EEXIST) {
911 free_extent_map(em);
912 break;
913 }
914 btrfs_drop_extent_cache(inode, start,
c8b97818 915 start + ram_size - 1, 0);
e6dcd2dc
CM
916 }
917
98d20f67 918 cur_alloc_size = ins.offset;
e6dcd2dc 919 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 920 ram_size, cur_alloc_size, 0);
79787eaa 921 BUG_ON(ret); /* -ENOMEM */
c8b97818 922
17d217fe
YZ
923 if (root->root_key.objectid ==
924 BTRFS_DATA_RELOC_TREE_OBJECTID) {
925 ret = btrfs_reloc_clone_csums(inode, start,
926 cur_alloc_size);
79787eaa
JM
927 if (ret) {
928 btrfs_abort_transaction(trans, root, ret);
929 goto out_unlock;
930 }
17d217fe
YZ
931 }
932
d397712b 933 if (disk_num_bytes < cur_alloc_size)
3b951516 934 break;
d397712b 935
c8b97818
CM
936 /* we're not doing compressed IO, don't unlock the first
937 * page (which the caller expects to stay locked), don't
938 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
939 *
940 * Do set the Private2 bit so we know this page was properly
941 * setup for writepage
c8b97818 942 */
a791e35e
CM
943 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
944 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
945 EXTENT_SET_PRIVATE2;
946
c8b97818
CM
947 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
948 start, start + ram_size - 1,
a791e35e 949 locked_page, op);
c8b97818 950 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
951 num_bytes -= cur_alloc_size;
952 alloc_hint = ins.objectid + ins.offset;
953 start += cur_alloc_size;
b888db2b 954 }
771ed689 955 ret = 0;
79787eaa 956out:
b888db2b 957 btrfs_end_transaction(trans, root);
c8b97818 958
be20aa9d 959 return ret;
79787eaa
JM
960out_unlock:
961 extent_clear_unlock_delalloc(inode,
962 &BTRFS_I(inode)->io_tree,
963 start, end, NULL,
964 EXTENT_CLEAR_UNLOCK_PAGE |
965 EXTENT_CLEAR_UNLOCK |
966 EXTENT_CLEAR_DELALLOC |
967 EXTENT_CLEAR_DIRTY |
968 EXTENT_SET_WRITEBACK |
969 EXTENT_END_WRITEBACK);
970
971 goto out;
771ed689 972}
c8b97818 973
771ed689
CM
974/*
975 * work queue call back to started compression on a file and pages
976 */
977static noinline void async_cow_start(struct btrfs_work *work)
978{
979 struct async_cow *async_cow;
980 int num_added = 0;
981 async_cow = container_of(work, struct async_cow, work);
982
983 compress_file_range(async_cow->inode, async_cow->locked_page,
984 async_cow->start, async_cow->end, async_cow,
985 &num_added);
986 if (num_added == 0)
987 async_cow->inode = NULL;
988}
989
990/*
991 * work queue call back to submit previously compressed pages
992 */
993static noinline void async_cow_submit(struct btrfs_work *work)
994{
995 struct async_cow *async_cow;
996 struct btrfs_root *root;
997 unsigned long nr_pages;
998
999 async_cow = container_of(work, struct async_cow, work);
1000
1001 root = async_cow->root;
1002 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1003 PAGE_CACHE_SHIFT;
1004
1005 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
1006
1007 if (atomic_read(&root->fs_info->async_delalloc_pages) <
1008 5 * 1042 * 1024 &&
1009 waitqueue_active(&root->fs_info->async_submit_wait))
1010 wake_up(&root->fs_info->async_submit_wait);
1011
d397712b 1012 if (async_cow->inode)
771ed689 1013 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1014}
c8b97818 1015
771ed689
CM
1016static noinline void async_cow_free(struct btrfs_work *work)
1017{
1018 struct async_cow *async_cow;
1019 async_cow = container_of(work, struct async_cow, work);
1020 kfree(async_cow);
1021}
1022
1023static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1024 u64 start, u64 end, int *page_started,
1025 unsigned long *nr_written)
1026{
1027 struct async_cow *async_cow;
1028 struct btrfs_root *root = BTRFS_I(inode)->root;
1029 unsigned long nr_pages;
1030 u64 cur_end;
1031 int limit = 10 * 1024 * 1042;
1032
a3429ab7
CM
1033 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1034 1, 0, NULL, GFP_NOFS);
d397712b 1035 while (start < end) {
771ed689 1036 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1037 BUG_ON(!async_cow); /* -ENOMEM */
771ed689
CM
1038 async_cow->inode = inode;
1039 async_cow->root = root;
1040 async_cow->locked_page = locked_page;
1041 async_cow->start = start;
1042
6cbff00f 1043 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1044 cur_end = end;
1045 else
1046 cur_end = min(end, start + 512 * 1024 - 1);
1047
1048 async_cow->end = cur_end;
1049 INIT_LIST_HEAD(&async_cow->extents);
1050
1051 async_cow->work.func = async_cow_start;
1052 async_cow->work.ordered_func = async_cow_submit;
1053 async_cow->work.ordered_free = async_cow_free;
1054 async_cow->work.flags = 0;
1055
771ed689
CM
1056 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1057 PAGE_CACHE_SHIFT;
1058 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1059
1060 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1061 &async_cow->work);
1062
1063 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1064 wait_event(root->fs_info->async_submit_wait,
1065 (atomic_read(&root->fs_info->async_delalloc_pages) <
1066 limit));
1067 }
1068
d397712b 1069 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1070 atomic_read(&root->fs_info->async_delalloc_pages)) {
1071 wait_event(root->fs_info->async_submit_wait,
1072 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1073 0));
1074 }
1075
1076 *nr_written += nr_pages;
1077 start = cur_end + 1;
1078 }
1079 *page_started = 1;
1080 return 0;
be20aa9d
CM
1081}
1082
d397712b 1083static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1084 u64 bytenr, u64 num_bytes)
1085{
1086 int ret;
1087 struct btrfs_ordered_sum *sums;
1088 LIST_HEAD(list);
1089
07d400a6 1090 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1091 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1092 if (ret == 0 && list_empty(&list))
1093 return 0;
1094
1095 while (!list_empty(&list)) {
1096 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1097 list_del(&sums->list);
1098 kfree(sums);
1099 }
1100 return 1;
1101}
1102
d352ac68
CM
1103/*
1104 * when nowcow writeback call back. This checks for snapshots or COW copies
1105 * of the extents that exist in the file, and COWs the file as required.
1106 *
1107 * If no cow copies or snapshots exist, we write directly to the existing
1108 * blocks on disk
1109 */
7f366cfe
CM
1110static noinline int run_delalloc_nocow(struct inode *inode,
1111 struct page *locked_page,
771ed689
CM
1112 u64 start, u64 end, int *page_started, int force,
1113 unsigned long *nr_written)
be20aa9d 1114{
be20aa9d 1115 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1116 struct btrfs_trans_handle *trans;
be20aa9d 1117 struct extent_buffer *leaf;
be20aa9d 1118 struct btrfs_path *path;
80ff3856 1119 struct btrfs_file_extent_item *fi;
be20aa9d 1120 struct btrfs_key found_key;
80ff3856
YZ
1121 u64 cow_start;
1122 u64 cur_offset;
1123 u64 extent_end;
5d4f98a2 1124 u64 extent_offset;
80ff3856
YZ
1125 u64 disk_bytenr;
1126 u64 num_bytes;
1127 int extent_type;
79787eaa 1128 int ret, err;
d899e052 1129 int type;
80ff3856
YZ
1130 int nocow;
1131 int check_prev = 1;
82d5902d 1132 bool nolock;
33345d01 1133 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1134
1135 path = btrfs_alloc_path();
d8926bb3
MF
1136 if (!path)
1137 return -ENOMEM;
82d5902d 1138
2cf8572d 1139 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1140
1141 if (nolock)
7a7eaa40 1142 trans = btrfs_join_transaction_nolock(root);
82d5902d 1143 else
7a7eaa40 1144 trans = btrfs_join_transaction(root);
ff5714cc 1145
79787eaa
JM
1146 if (IS_ERR(trans)) {
1147 btrfs_free_path(path);
1148 return PTR_ERR(trans);
1149 }
1150
74b21075 1151 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1152
80ff3856
YZ
1153 cow_start = (u64)-1;
1154 cur_offset = start;
1155 while (1) {
33345d01 1156 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1157 cur_offset, 0);
79787eaa
JM
1158 if (ret < 0) {
1159 btrfs_abort_transaction(trans, root, ret);
1160 goto error;
1161 }
80ff3856
YZ
1162 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1163 leaf = path->nodes[0];
1164 btrfs_item_key_to_cpu(leaf, &found_key,
1165 path->slots[0] - 1);
33345d01 1166 if (found_key.objectid == ino &&
80ff3856
YZ
1167 found_key.type == BTRFS_EXTENT_DATA_KEY)
1168 path->slots[0]--;
1169 }
1170 check_prev = 0;
1171next_slot:
1172 leaf = path->nodes[0];
1173 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1174 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1175 if (ret < 0) {
1176 btrfs_abort_transaction(trans, root, ret);
1177 goto error;
1178 }
80ff3856
YZ
1179 if (ret > 0)
1180 break;
1181 leaf = path->nodes[0];
1182 }
be20aa9d 1183
80ff3856
YZ
1184 nocow = 0;
1185 disk_bytenr = 0;
17d217fe 1186 num_bytes = 0;
80ff3856
YZ
1187 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1188
33345d01 1189 if (found_key.objectid > ino ||
80ff3856
YZ
1190 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1191 found_key.offset > end)
1192 break;
1193
1194 if (found_key.offset > cur_offset) {
1195 extent_end = found_key.offset;
e9061e21 1196 extent_type = 0;
80ff3856
YZ
1197 goto out_check;
1198 }
1199
1200 fi = btrfs_item_ptr(leaf, path->slots[0],
1201 struct btrfs_file_extent_item);
1202 extent_type = btrfs_file_extent_type(leaf, fi);
1203
d899e052
YZ
1204 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1205 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1206 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1207 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1208 extent_end = found_key.offset +
1209 btrfs_file_extent_num_bytes(leaf, fi);
1210 if (extent_end <= start) {
1211 path->slots[0]++;
1212 goto next_slot;
1213 }
17d217fe
YZ
1214 if (disk_bytenr == 0)
1215 goto out_check;
80ff3856
YZ
1216 if (btrfs_file_extent_compression(leaf, fi) ||
1217 btrfs_file_extent_encryption(leaf, fi) ||
1218 btrfs_file_extent_other_encoding(leaf, fi))
1219 goto out_check;
d899e052
YZ
1220 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1221 goto out_check;
d2fb3437 1222 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1223 goto out_check;
33345d01 1224 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1225 found_key.offset -
1226 extent_offset, disk_bytenr))
17d217fe 1227 goto out_check;
5d4f98a2 1228 disk_bytenr += extent_offset;
17d217fe
YZ
1229 disk_bytenr += cur_offset - found_key.offset;
1230 num_bytes = min(end + 1, extent_end) - cur_offset;
1231 /*
1232 * force cow if csum exists in the range.
1233 * this ensure that csum for a given extent are
1234 * either valid or do not exist.
1235 */
1236 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1237 goto out_check;
80ff3856
YZ
1238 nocow = 1;
1239 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1240 extent_end = found_key.offset +
1241 btrfs_file_extent_inline_len(leaf, fi);
1242 extent_end = ALIGN(extent_end, root->sectorsize);
1243 } else {
1244 BUG_ON(1);
1245 }
1246out_check:
1247 if (extent_end <= start) {
1248 path->slots[0]++;
1249 goto next_slot;
1250 }
1251 if (!nocow) {
1252 if (cow_start == (u64)-1)
1253 cow_start = cur_offset;
1254 cur_offset = extent_end;
1255 if (cur_offset > end)
1256 break;
1257 path->slots[0]++;
1258 goto next_slot;
7ea394f1
YZ
1259 }
1260
b3b4aa74 1261 btrfs_release_path(path);
80ff3856
YZ
1262 if (cow_start != (u64)-1) {
1263 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1264 found_key.offset - 1, page_started,
1265 nr_written, 1);
79787eaa
JM
1266 if (ret) {
1267 btrfs_abort_transaction(trans, root, ret);
1268 goto error;
1269 }
80ff3856 1270 cow_start = (u64)-1;
7ea394f1 1271 }
80ff3856 1272
d899e052
YZ
1273 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1274 struct extent_map *em;
1275 struct extent_map_tree *em_tree;
1276 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1277 em = alloc_extent_map();
79787eaa 1278 BUG_ON(!em); /* -ENOMEM */
d899e052 1279 em->start = cur_offset;
445a6944 1280 em->orig_start = em->start;
d899e052
YZ
1281 em->len = num_bytes;
1282 em->block_len = num_bytes;
1283 em->block_start = disk_bytenr;
1284 em->bdev = root->fs_info->fs_devices->latest_bdev;
1285 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1286 while (1) {
890871be 1287 write_lock(&em_tree->lock);
d899e052 1288 ret = add_extent_mapping(em_tree, em);
890871be 1289 write_unlock(&em_tree->lock);
d899e052
YZ
1290 if (ret != -EEXIST) {
1291 free_extent_map(em);
1292 break;
1293 }
1294 btrfs_drop_extent_cache(inode, em->start,
1295 em->start + em->len - 1, 0);
1296 }
1297 type = BTRFS_ORDERED_PREALLOC;
1298 } else {
1299 type = BTRFS_ORDERED_NOCOW;
1300 }
80ff3856
YZ
1301
1302 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1303 num_bytes, num_bytes, type);
79787eaa 1304 BUG_ON(ret); /* -ENOMEM */
771ed689 1305
efa56464
YZ
1306 if (root->root_key.objectid ==
1307 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1308 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1309 num_bytes);
79787eaa
JM
1310 if (ret) {
1311 btrfs_abort_transaction(trans, root, ret);
1312 goto error;
1313 }
efa56464
YZ
1314 }
1315
d899e052 1316 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1317 cur_offset, cur_offset + num_bytes - 1,
1318 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1319 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1320 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1321 cur_offset = extent_end;
1322 if (cur_offset > end)
1323 break;
be20aa9d 1324 }
b3b4aa74 1325 btrfs_release_path(path);
80ff3856
YZ
1326
1327 if (cur_offset <= end && cow_start == (u64)-1)
1328 cow_start = cur_offset;
1329 if (cow_start != (u64)-1) {
1330 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1331 page_started, nr_written, 1);
79787eaa
JM
1332 if (ret) {
1333 btrfs_abort_transaction(trans, root, ret);
1334 goto error;
1335 }
80ff3856
YZ
1336 }
1337
79787eaa 1338error:
0cb59c99 1339 if (nolock) {
79787eaa 1340 err = btrfs_end_transaction_nolock(trans, root);
0cb59c99 1341 } else {
79787eaa 1342 err = btrfs_end_transaction(trans, root);
0cb59c99 1343 }
79787eaa
JM
1344 if (!ret)
1345 ret = err;
1346
7ea394f1 1347 btrfs_free_path(path);
79787eaa 1348 return ret;
be20aa9d
CM
1349}
1350
d352ac68
CM
1351/*
1352 * extent_io.c call back to do delayed allocation processing
1353 */
c8b97818 1354static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1355 u64 start, u64 end, int *page_started,
1356 unsigned long *nr_written)
be20aa9d 1357{
be20aa9d 1358 int ret;
7f366cfe 1359 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1360
6cbff00f 1361 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1362 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1363 page_started, 1, nr_written);
6cbff00f 1364 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1365 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1366 page_started, 0, nr_written);
1e701a32 1367 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1368 !(BTRFS_I(inode)->force_compress) &&
1369 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1370 ret = cow_file_range(inode, locked_page, start, end,
1371 page_started, nr_written, 1);
be20aa9d 1372 else
771ed689 1373 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1374 page_started, nr_written);
b888db2b
CM
1375 return ret;
1376}
1377
1bf85046
JM
1378static void btrfs_split_extent_hook(struct inode *inode,
1379 struct extent_state *orig, u64 split)
9ed74f2d 1380{
0ca1f7ce 1381 /* not delalloc, ignore it */
9ed74f2d 1382 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1383 return;
9ed74f2d 1384
9e0baf60
JB
1385 spin_lock(&BTRFS_I(inode)->lock);
1386 BTRFS_I(inode)->outstanding_extents++;
1387 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1388}
1389
1390/*
1391 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1392 * extents so we can keep track of new extents that are just merged onto old
1393 * extents, such as when we are doing sequential writes, so we can properly
1394 * account for the metadata space we'll need.
1395 */
1bf85046
JM
1396static void btrfs_merge_extent_hook(struct inode *inode,
1397 struct extent_state *new,
1398 struct extent_state *other)
9ed74f2d 1399{
9ed74f2d
JB
1400 /* not delalloc, ignore it */
1401 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1402 return;
9ed74f2d 1403
9e0baf60
JB
1404 spin_lock(&BTRFS_I(inode)->lock);
1405 BTRFS_I(inode)->outstanding_extents--;
1406 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1407}
1408
d352ac68
CM
1409/*
1410 * extent_io.c set_bit_hook, used to track delayed allocation
1411 * bytes in this file, and to maintain the list of inodes that
1412 * have pending delalloc work to be done.
1413 */
1bf85046
JM
1414static void btrfs_set_bit_hook(struct inode *inode,
1415 struct extent_state *state, int *bits)
291d673e 1416{
9ed74f2d 1417
75eff68e
CM
1418 /*
1419 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1420 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1421 * bit, which is only set or cleared with irqs on
1422 */
0ca1f7ce 1423 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1424 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1425 u64 len = state->end + 1 - state->start;
2cf8572d 1426 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1427
9e0baf60 1428 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1429 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1430 } else {
1431 spin_lock(&BTRFS_I(inode)->lock);
1432 BTRFS_I(inode)->outstanding_extents++;
1433 spin_unlock(&BTRFS_I(inode)->lock);
1434 }
287a0ab9 1435
75eff68e 1436 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1437 BTRFS_I(inode)->delalloc_bytes += len;
1438 root->fs_info->delalloc_bytes += len;
0cb59c99 1439 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1440 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1441 &root->fs_info->delalloc_inodes);
1442 }
75eff68e 1443 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1444 }
291d673e
CM
1445}
1446
d352ac68
CM
1447/*
1448 * extent_io.c clear_bit_hook, see set_bit_hook for why
1449 */
1bf85046
JM
1450static void btrfs_clear_bit_hook(struct inode *inode,
1451 struct extent_state *state, int *bits)
291d673e 1452{
75eff68e
CM
1453 /*
1454 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1455 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1456 * bit, which is only set or cleared with irqs on
1457 */
0ca1f7ce 1458 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1459 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1460 u64 len = state->end + 1 - state->start;
2cf8572d 1461 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1462
9e0baf60 1463 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1464 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1465 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1466 spin_lock(&BTRFS_I(inode)->lock);
1467 BTRFS_I(inode)->outstanding_extents--;
1468 spin_unlock(&BTRFS_I(inode)->lock);
1469 }
0ca1f7ce
YZ
1470
1471 if (*bits & EXTENT_DO_ACCOUNTING)
1472 btrfs_delalloc_release_metadata(inode, len);
1473
0cb59c99
JB
1474 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1475 && do_list)
0ca1f7ce 1476 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1477
75eff68e 1478 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1479 root->fs_info->delalloc_bytes -= len;
1480 BTRFS_I(inode)->delalloc_bytes -= len;
1481
0cb59c99 1482 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1483 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1484 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1485 }
75eff68e 1486 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1487 }
291d673e
CM
1488}
1489
d352ac68
CM
1490/*
1491 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1492 * we don't create bios that span stripes or chunks
1493 */
239b14b3 1494int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1495 size_t size, struct bio *bio,
1496 unsigned long bio_flags)
239b14b3
CM
1497{
1498 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1499 struct btrfs_mapping_tree *map_tree;
a62b9401 1500 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1501 u64 length = 0;
1502 u64 map_length;
239b14b3
CM
1503 int ret;
1504
771ed689
CM
1505 if (bio_flags & EXTENT_BIO_COMPRESSED)
1506 return 0;
1507
f2d8d74d 1508 length = bio->bi_size;
239b14b3
CM
1509 map_tree = &root->fs_info->mapping_tree;
1510 map_length = length;
cea9e445 1511 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1512 &map_length, NULL, 0);
3444a972
JM
1513 /* Will always return 0 or 1 with map_multi == NULL */
1514 BUG_ON(ret < 0);
d397712b 1515 if (map_length < length + size)
239b14b3 1516 return 1;
3444a972 1517 return 0;
239b14b3
CM
1518}
1519
d352ac68
CM
1520/*
1521 * in order to insert checksums into the metadata in large chunks,
1522 * we wait until bio submission time. All the pages in the bio are
1523 * checksummed and sums are attached onto the ordered extent record.
1524 *
1525 * At IO completion time the cums attached on the ordered extent record
1526 * are inserted into the btree
1527 */
d397712b
CM
1528static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1529 struct bio *bio, int mirror_num,
eaf25d93
CM
1530 unsigned long bio_flags,
1531 u64 bio_offset)
065631f6 1532{
065631f6 1533 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1534 int ret = 0;
e015640f 1535
d20f7043 1536 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1537 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1538 return 0;
1539}
e015640f 1540
4a69a410
CM
1541/*
1542 * in order to insert checksums into the metadata in large chunks,
1543 * we wait until bio submission time. All the pages in the bio are
1544 * checksummed and sums are attached onto the ordered extent record.
1545 *
1546 * At IO completion time the cums attached on the ordered extent record
1547 * are inserted into the btree
1548 */
b2950863 1549static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1550 int mirror_num, unsigned long bio_flags,
1551 u64 bio_offset)
4a69a410
CM
1552{
1553 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1554 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1555}
1556
d352ac68 1557/*
cad321ad
CM
1558 * extent_io.c submission hook. This does the right thing for csum calculation
1559 * on write, or reading the csums from the tree before a read
d352ac68 1560 */
b2950863 1561static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1562 int mirror_num, unsigned long bio_flags,
1563 u64 bio_offset)
44b8bd7e
CM
1564{
1565 struct btrfs_root *root = BTRFS_I(inode)->root;
1566 int ret = 0;
19b9bdb0 1567 int skip_sum;
0417341e 1568 int metadata = 0;
44b8bd7e 1569
6cbff00f 1570 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1571
2cf8572d 1572 if (btrfs_is_free_space_inode(root, inode))
0417341e
JM
1573 metadata = 2;
1574
1575 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
355808c2
JM
1576 if (ret)
1577 return ret;
065631f6 1578
7b6d91da 1579 if (!(rw & REQ_WRITE)) {
d20f7043 1580 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1581 return btrfs_submit_compressed_read(inode, bio,
1582 mirror_num, bio_flags);
c2db1073
TI
1583 } else if (!skip_sum) {
1584 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1585 if (ret)
1586 return ret;
1587 }
4d1b5fb4 1588 goto mapit;
19b9bdb0 1589 } else if (!skip_sum) {
17d217fe
YZ
1590 /* csum items have already been cloned */
1591 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1592 goto mapit;
19b9bdb0
CM
1593 /* we're doing a write, do the async checksumming */
1594 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1595 inode, rw, bio, mirror_num,
eaf25d93
CM
1596 bio_flags, bio_offset,
1597 __btrfs_submit_bio_start,
4a69a410 1598 __btrfs_submit_bio_done);
19b9bdb0
CM
1599 }
1600
0b86a832 1601mapit:
8b712842 1602 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1603}
6885f308 1604
d352ac68
CM
1605/*
1606 * given a list of ordered sums record them in the inode. This happens
1607 * at IO completion time based on sums calculated at bio submission time.
1608 */
ba1da2f4 1609static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1610 struct inode *inode, u64 file_offset,
1611 struct list_head *list)
1612{
e6dcd2dc
CM
1613 struct btrfs_ordered_sum *sum;
1614
c6e30871 1615 list_for_each_entry(sum, list, list) {
d20f7043
CM
1616 btrfs_csum_file_blocks(trans,
1617 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1618 }
1619 return 0;
1620}
1621
2ac55d41
JB
1622int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1623 struct extent_state **cached_state)
ea8c2819 1624{
d397712b 1625 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1626 WARN_ON(1);
ea8c2819 1627 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1628 cached_state, GFP_NOFS);
ea8c2819
CM
1629}
1630
d352ac68 1631/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1632struct btrfs_writepage_fixup {
1633 struct page *page;
1634 struct btrfs_work work;
1635};
1636
b2950863 1637static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1638{
1639 struct btrfs_writepage_fixup *fixup;
1640 struct btrfs_ordered_extent *ordered;
2ac55d41 1641 struct extent_state *cached_state = NULL;
247e743c
CM
1642 struct page *page;
1643 struct inode *inode;
1644 u64 page_start;
1645 u64 page_end;
87826df0 1646 int ret;
247e743c
CM
1647
1648 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1649 page = fixup->page;
4a096752 1650again:
247e743c
CM
1651 lock_page(page);
1652 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1653 ClearPageChecked(page);
1654 goto out_page;
1655 }
1656
1657 inode = page->mapping->host;
1658 page_start = page_offset(page);
1659 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1660
2ac55d41 1661 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1662 &cached_state);
4a096752
CM
1663
1664 /* already ordered? We're done */
8b62b72b 1665 if (PagePrivate2(page))
247e743c 1666 goto out;
4a096752
CM
1667
1668 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1669 if (ordered) {
2ac55d41
JB
1670 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1671 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1672 unlock_page(page);
1673 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1674 btrfs_put_ordered_extent(ordered);
4a096752
CM
1675 goto again;
1676 }
247e743c 1677
87826df0
JM
1678 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1679 if (ret) {
1680 mapping_set_error(page->mapping, ret);
1681 end_extent_writepage(page, ret, page_start, page_end);
1682 ClearPageChecked(page);
1683 goto out;
1684 }
1685
2ac55d41 1686 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1687 ClearPageChecked(page);
87826df0 1688 set_page_dirty(page);
247e743c 1689out:
2ac55d41
JB
1690 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1691 &cached_state, GFP_NOFS);
247e743c
CM
1692out_page:
1693 unlock_page(page);
1694 page_cache_release(page);
b897abec 1695 kfree(fixup);
247e743c
CM
1696}
1697
1698/*
1699 * There are a few paths in the higher layers of the kernel that directly
1700 * set the page dirty bit without asking the filesystem if it is a
1701 * good idea. This causes problems because we want to make sure COW
1702 * properly happens and the data=ordered rules are followed.
1703 *
c8b97818 1704 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1705 * hasn't been properly setup for IO. We kick off an async process
1706 * to fix it up. The async helper will wait for ordered extents, set
1707 * the delalloc bit and make it safe to write the page.
1708 */
b2950863 1709static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1710{
1711 struct inode *inode = page->mapping->host;
1712 struct btrfs_writepage_fixup *fixup;
1713 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1714
8b62b72b
CM
1715 /* this page is properly in the ordered list */
1716 if (TestClearPagePrivate2(page))
247e743c
CM
1717 return 0;
1718
1719 if (PageChecked(page))
1720 return -EAGAIN;
1721
1722 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1723 if (!fixup)
1724 return -EAGAIN;
f421950f 1725
247e743c
CM
1726 SetPageChecked(page);
1727 page_cache_get(page);
1728 fixup->work.func = btrfs_writepage_fixup_worker;
1729 fixup->page = page;
1730 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1731 return -EBUSY;
247e743c
CM
1732}
1733
d899e052
YZ
1734static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1735 struct inode *inode, u64 file_pos,
1736 u64 disk_bytenr, u64 disk_num_bytes,
1737 u64 num_bytes, u64 ram_bytes,
1738 u8 compression, u8 encryption,
1739 u16 other_encoding, int extent_type)
1740{
1741 struct btrfs_root *root = BTRFS_I(inode)->root;
1742 struct btrfs_file_extent_item *fi;
1743 struct btrfs_path *path;
1744 struct extent_buffer *leaf;
1745 struct btrfs_key ins;
1746 u64 hint;
1747 int ret;
1748
1749 path = btrfs_alloc_path();
d8926bb3
MF
1750 if (!path)
1751 return -ENOMEM;
d899e052 1752
b9473439 1753 path->leave_spinning = 1;
a1ed835e
CM
1754
1755 /*
1756 * we may be replacing one extent in the tree with another.
1757 * The new extent is pinned in the extent map, and we don't want
1758 * to drop it from the cache until it is completely in the btree.
1759 *
1760 * So, tell btrfs_drop_extents to leave this extent in the cache.
1761 * the caller is expected to unpin it and allow it to be merged
1762 * with the others.
1763 */
920bbbfb
YZ
1764 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1765 &hint, 0);
79787eaa
JM
1766 if (ret)
1767 goto out;
d899e052 1768
33345d01 1769 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1770 ins.offset = file_pos;
1771 ins.type = BTRFS_EXTENT_DATA_KEY;
1772 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1773 if (ret)
1774 goto out;
d899e052
YZ
1775 leaf = path->nodes[0];
1776 fi = btrfs_item_ptr(leaf, path->slots[0],
1777 struct btrfs_file_extent_item);
1778 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1779 btrfs_set_file_extent_type(leaf, fi, extent_type);
1780 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1781 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1782 btrfs_set_file_extent_offset(leaf, fi, 0);
1783 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1784 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1785 btrfs_set_file_extent_compression(leaf, fi, compression);
1786 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1787 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1788
1789 btrfs_unlock_up_safe(path, 1);
1790 btrfs_set_lock_blocking(leaf);
1791
d899e052
YZ
1792 btrfs_mark_buffer_dirty(leaf);
1793
1794 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1795
1796 ins.objectid = disk_bytenr;
1797 ins.offset = disk_num_bytes;
1798 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1799 ret = btrfs_alloc_reserved_file_extent(trans, root,
1800 root->root_key.objectid,
33345d01 1801 btrfs_ino(inode), file_pos, &ins);
79787eaa 1802out:
d899e052 1803 btrfs_free_path(path);
b9473439 1804
79787eaa 1805 return ret;
d899e052
YZ
1806}
1807
5d13a98f
CM
1808/*
1809 * helper function for btrfs_finish_ordered_io, this
1810 * just reads in some of the csum leaves to prime them into ram
1811 * before we start the transaction. It limits the amount of btree
1812 * reads required while inside the transaction.
1813 */
d352ac68
CM
1814/* as ordered data IO finishes, this gets called so we can finish
1815 * an ordered extent if the range of bytes in the file it covers are
1816 * fully written.
1817 */
211f90e6 1818static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1819{
e6dcd2dc 1820 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1821 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1822 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1823 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1824 struct extent_state *cached_state = NULL;
261507a0 1825 int compress_type = 0;
e6dcd2dc 1826 int ret;
82d5902d 1827 bool nolock;
e6dcd2dc 1828
5a1a3df1
JB
1829 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1830 end - start + 1);
ba1da2f4 1831 if (!ret)
e6dcd2dc 1832 return 0;
79787eaa 1833 BUG_ON(!ordered_extent); /* Logic error */
efd049fb 1834
2cf8572d 1835 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1836
c2167754 1837 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 1838 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
c2167754
YZ
1839 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1840 if (!ret) {
0cb59c99 1841 if (nolock)
7a7eaa40 1842 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1843 else
7a7eaa40 1844 trans = btrfs_join_transaction(root);
79787eaa
JM
1845 if (IS_ERR(trans))
1846 return PTR_ERR(trans);
0ca1f7ce 1847 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1848 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1849 if (ret) /* -ENOMEM or corruption */
1850 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
1851 }
1852 goto out;
1853 }
e6dcd2dc 1854
2ac55d41
JB
1855 lock_extent_bits(io_tree, ordered_extent->file_offset,
1856 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 1857 0, &cached_state);
e6dcd2dc 1858
0cb59c99 1859 if (nolock)
7a7eaa40 1860 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1861 else
7a7eaa40 1862 trans = btrfs_join_transaction(root);
79787eaa
JM
1863 if (IS_ERR(trans)) {
1864 ret = PTR_ERR(trans);
1865 trans = NULL;
1866 goto out_unlock;
1867 }
0ca1f7ce 1868 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1869
c8b97818 1870 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1871 compress_type = ordered_extent->compress_type;
d899e052 1872 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1873 BUG_ON(compress_type);
920bbbfb 1874 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1875 ordered_extent->file_offset,
1876 ordered_extent->file_offset +
1877 ordered_extent->len);
d899e052 1878 } else {
0af3d00b 1879 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1880 ret = insert_reserved_file_extent(trans, inode,
1881 ordered_extent->file_offset,
1882 ordered_extent->start,
1883 ordered_extent->disk_len,
1884 ordered_extent->len,
1885 ordered_extent->len,
261507a0 1886 compress_type, 0, 0,
d899e052 1887 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1888 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1889 ordered_extent->file_offset,
1890 ordered_extent->len);
d899e052 1891 }
2ac55d41
JB
1892 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1893 ordered_extent->file_offset +
1894 ordered_extent->len - 1, &cached_state, GFP_NOFS);
79787eaa
JM
1895 if (ret < 0) {
1896 btrfs_abort_transaction(trans, root, ret);
1897 goto out;
1898 }
2ac55d41 1899
e6dcd2dc
CM
1900 add_pending_csums(trans, inode, ordered_extent->file_offset,
1901 &ordered_extent->list);
1902
1ef30be1 1903 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1904 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1905 ret = btrfs_update_inode_fallback(trans, root, inode);
79787eaa
JM
1906 if (ret) { /* -ENOMEM or corruption */
1907 btrfs_abort_transaction(trans, root, ret);
1908 goto out;
1909 }
1ef30be1
JB
1910 }
1911 ret = 0;
c2167754 1912out:
5b0e95bf 1913 if (root != root->fs_info->tree_root)
0cb59c99 1914 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
5b0e95bf
JB
1915 if (trans) {
1916 if (nolock)
0cb59c99 1917 btrfs_end_transaction_nolock(trans, root);
5b0e95bf 1918 else
0cb59c99
JB
1919 btrfs_end_transaction(trans, root);
1920 }
1921
e6dcd2dc
CM
1922 /* once for us */
1923 btrfs_put_ordered_extent(ordered_extent);
1924 /* once for the tree */
1925 btrfs_put_ordered_extent(ordered_extent);
1926
e6dcd2dc 1927 return 0;
79787eaa
JM
1928out_unlock:
1929 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1930 ordered_extent->file_offset +
1931 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1932 goto out;
e6dcd2dc
CM
1933}
1934
b2950863 1935static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1936 struct extent_state *state, int uptodate)
1937{
1abe9b8a 1938 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1939
8b62b72b 1940 ClearPagePrivate2(page);
211f90e6
CM
1941 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1942}
1943
d352ac68
CM
1944/*
1945 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
1946 * if there's a match, we allow the bio to finish. If not, the code in
1947 * extent_io.c will try to find good copies for us.
d352ac68 1948 */
b2950863 1949static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 1950 struct extent_state *state, int mirror)
07157aac 1951{
35ebb934 1952 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1953 struct inode *inode = page->mapping->host;
d1310b2e 1954 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1955 char *kaddr;
aadfeb6e 1956 u64 private = ~(u32)0;
07157aac 1957 int ret;
ff79f819
CM
1958 struct btrfs_root *root = BTRFS_I(inode)->root;
1959 u32 csum = ~(u32)0;
d1310b2e 1960
d20f7043
CM
1961 if (PageChecked(page)) {
1962 ClearPageChecked(page);
1963 goto good;
1964 }
6cbff00f
CH
1965
1966 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1967 goto good;
17d217fe
YZ
1968
1969 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1970 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1971 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1972 GFP_NOFS);
b6cda9bc 1973 return 0;
17d217fe 1974 }
d20f7043 1975
c2e639f0 1976 if (state && state->start == start) {
70dec807
CM
1977 private = state->private;
1978 ret = 0;
1979 } else {
1980 ret = get_state_private(io_tree, start, &private);
1981 }
7ac687d9 1982 kaddr = kmap_atomic(page);
d397712b 1983 if (ret)
07157aac 1984 goto zeroit;
d397712b 1985
ff79f819
CM
1986 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1987 btrfs_csum_final(csum, (char *)&csum);
d397712b 1988 if (csum != private)
07157aac 1989 goto zeroit;
d397712b 1990
7ac687d9 1991 kunmap_atomic(kaddr);
d20f7043 1992good:
07157aac
CM
1993 return 0;
1994
1995zeroit:
945d8962 1996 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
1997 "private %llu\n",
1998 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
1999 (unsigned long long)start, csum,
2000 (unsigned long long)private);
db94535d
CM
2001 memset(kaddr + offset, 1, end - start + 1);
2002 flush_dcache_page(page);
7ac687d9 2003 kunmap_atomic(kaddr);
3b951516
CM
2004 if (private == 0)
2005 return 0;
7e38326f 2006 return -EIO;
07157aac 2007}
b888db2b 2008
24bbcf04
YZ
2009struct delayed_iput {
2010 struct list_head list;
2011 struct inode *inode;
2012};
2013
79787eaa
JM
2014/* JDM: If this is fs-wide, why can't we add a pointer to
2015 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2016void btrfs_add_delayed_iput(struct inode *inode)
2017{
2018 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2019 struct delayed_iput *delayed;
2020
2021 if (atomic_add_unless(&inode->i_count, -1, 1))
2022 return;
2023
2024 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2025 delayed->inode = inode;
2026
2027 spin_lock(&fs_info->delayed_iput_lock);
2028 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2029 spin_unlock(&fs_info->delayed_iput_lock);
2030}
2031
2032void btrfs_run_delayed_iputs(struct btrfs_root *root)
2033{
2034 LIST_HEAD(list);
2035 struct btrfs_fs_info *fs_info = root->fs_info;
2036 struct delayed_iput *delayed;
2037 int empty;
2038
2039 spin_lock(&fs_info->delayed_iput_lock);
2040 empty = list_empty(&fs_info->delayed_iputs);
2041 spin_unlock(&fs_info->delayed_iput_lock);
2042 if (empty)
2043 return;
2044
2045 down_read(&root->fs_info->cleanup_work_sem);
2046 spin_lock(&fs_info->delayed_iput_lock);
2047 list_splice_init(&fs_info->delayed_iputs, &list);
2048 spin_unlock(&fs_info->delayed_iput_lock);
2049
2050 while (!list_empty(&list)) {
2051 delayed = list_entry(list.next, struct delayed_iput, list);
2052 list_del(&delayed->list);
2053 iput(delayed->inode);
2054 kfree(delayed);
2055 }
2056 up_read(&root->fs_info->cleanup_work_sem);
2057}
2058
d68fc57b
YZ
2059enum btrfs_orphan_cleanup_state {
2060 ORPHAN_CLEANUP_STARTED = 1,
2061 ORPHAN_CLEANUP_DONE = 2,
2062};
2063
2064/*
42b2aa86 2065 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2066 * files in the subvolume, it removes orphan item and frees block_rsv
2067 * structure.
2068 */
2069void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2070 struct btrfs_root *root)
2071{
90290e19 2072 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2073 int ret;
2074
2075 if (!list_empty(&root->orphan_list) ||
2076 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2077 return;
2078
90290e19
JB
2079 spin_lock(&root->orphan_lock);
2080 if (!list_empty(&root->orphan_list)) {
2081 spin_unlock(&root->orphan_lock);
2082 return;
2083 }
2084
2085 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2086 spin_unlock(&root->orphan_lock);
2087 return;
2088 }
2089
2090 block_rsv = root->orphan_block_rsv;
2091 root->orphan_block_rsv = NULL;
2092 spin_unlock(&root->orphan_lock);
2093
d68fc57b
YZ
2094 if (root->orphan_item_inserted &&
2095 btrfs_root_refs(&root->root_item) > 0) {
2096 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2097 root->root_key.objectid);
2098 BUG_ON(ret);
2099 root->orphan_item_inserted = 0;
2100 }
2101
90290e19
JB
2102 if (block_rsv) {
2103 WARN_ON(block_rsv->size > 0);
2104 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2105 }
2106}
2107
7b128766
JB
2108/*
2109 * This creates an orphan entry for the given inode in case something goes
2110 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2111 *
2112 * NOTE: caller of this function should reserve 5 units of metadata for
2113 * this function.
7b128766
JB
2114 */
2115int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2116{
2117 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2118 struct btrfs_block_rsv *block_rsv = NULL;
2119 int reserve = 0;
2120 int insert = 0;
2121 int ret;
7b128766 2122
d68fc57b
YZ
2123 if (!root->orphan_block_rsv) {
2124 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
2125 if (!block_rsv)
2126 return -ENOMEM;
d68fc57b 2127 }
7b128766 2128
d68fc57b
YZ
2129 spin_lock(&root->orphan_lock);
2130 if (!root->orphan_block_rsv) {
2131 root->orphan_block_rsv = block_rsv;
2132 } else if (block_rsv) {
2133 btrfs_free_block_rsv(root, block_rsv);
2134 block_rsv = NULL;
7b128766 2135 }
7b128766 2136
d68fc57b
YZ
2137 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2138 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2139#if 0
2140 /*
2141 * For proper ENOSPC handling, we should do orphan
2142 * cleanup when mounting. But this introduces backward
2143 * compatibility issue.
2144 */
2145 if (!xchg(&root->orphan_item_inserted, 1))
2146 insert = 2;
2147 else
2148 insert = 1;
2149#endif
2150 insert = 1;
7b128766
JB
2151 }
2152
d68fc57b
YZ
2153 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2154 BTRFS_I(inode)->orphan_meta_reserved = 1;
2155 reserve = 1;
2156 }
2157 spin_unlock(&root->orphan_lock);
7b128766 2158
d68fc57b
YZ
2159 /* grab metadata reservation from transaction handle */
2160 if (reserve) {
2161 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2162 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2163 }
7b128766 2164
d68fc57b
YZ
2165 /* insert an orphan item to track this unlinked/truncated file */
2166 if (insert >= 1) {
33345d01 2167 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa
JM
2168 if (ret && ret != -EEXIST) {
2169 btrfs_abort_transaction(trans, root, ret);
2170 return ret;
2171 }
2172 ret = 0;
d68fc57b
YZ
2173 }
2174
2175 /* insert an orphan item to track subvolume contains orphan files */
2176 if (insert >= 2) {
2177 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2178 root->root_key.objectid);
79787eaa
JM
2179 if (ret && ret != -EEXIST) {
2180 btrfs_abort_transaction(trans, root, ret);
2181 return ret;
2182 }
d68fc57b
YZ
2183 }
2184 return 0;
7b128766
JB
2185}
2186
2187/*
2188 * We have done the truncate/delete so we can go ahead and remove the orphan
2189 * item for this particular inode.
2190 */
2191int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2192{
2193 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2194 int delete_item = 0;
2195 int release_rsv = 0;
7b128766
JB
2196 int ret = 0;
2197
d68fc57b
YZ
2198 spin_lock(&root->orphan_lock);
2199 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2200 list_del_init(&BTRFS_I(inode)->i_orphan);
2201 delete_item = 1;
7b128766
JB
2202 }
2203
d68fc57b
YZ
2204 if (BTRFS_I(inode)->orphan_meta_reserved) {
2205 BTRFS_I(inode)->orphan_meta_reserved = 0;
2206 release_rsv = 1;
7b128766 2207 }
d68fc57b 2208 spin_unlock(&root->orphan_lock);
7b128766 2209
d68fc57b 2210 if (trans && delete_item) {
33345d01 2211 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 2212 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 2213 }
7b128766 2214
d68fc57b
YZ
2215 if (release_rsv)
2216 btrfs_orphan_release_metadata(inode);
7b128766 2217
d68fc57b 2218 return 0;
7b128766
JB
2219}
2220
2221/*
2222 * this cleans up any orphans that may be left on the list from the last use
2223 * of this root.
2224 */
66b4ffd1 2225int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2226{
2227 struct btrfs_path *path;
2228 struct extent_buffer *leaf;
7b128766
JB
2229 struct btrfs_key key, found_key;
2230 struct btrfs_trans_handle *trans;
2231 struct inode *inode;
8f6d7f4f 2232 u64 last_objectid = 0;
7b128766
JB
2233 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2234
d68fc57b 2235 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2236 return 0;
c71bf099
YZ
2237
2238 path = btrfs_alloc_path();
66b4ffd1
JB
2239 if (!path) {
2240 ret = -ENOMEM;
2241 goto out;
2242 }
7b128766
JB
2243 path->reada = -1;
2244
2245 key.objectid = BTRFS_ORPHAN_OBJECTID;
2246 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2247 key.offset = (u64)-1;
2248
7b128766
JB
2249 while (1) {
2250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2251 if (ret < 0)
2252 goto out;
7b128766
JB
2253
2254 /*
2255 * if ret == 0 means we found what we were searching for, which
25985edc 2256 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2257 * find the key and see if we have stuff that matches
2258 */
2259 if (ret > 0) {
66b4ffd1 2260 ret = 0;
7b128766
JB
2261 if (path->slots[0] == 0)
2262 break;
2263 path->slots[0]--;
2264 }
2265
2266 /* pull out the item */
2267 leaf = path->nodes[0];
7b128766
JB
2268 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2269
2270 /* make sure the item matches what we want */
2271 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2272 break;
2273 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2274 break;
2275
2276 /* release the path since we're done with it */
b3b4aa74 2277 btrfs_release_path(path);
7b128766
JB
2278
2279 /*
2280 * this is where we are basically btrfs_lookup, without the
2281 * crossing root thing. we store the inode number in the
2282 * offset of the orphan item.
2283 */
8f6d7f4f
JB
2284
2285 if (found_key.offset == last_objectid) {
2286 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2287 "stopping orphan cleanup\n");
2288 ret = -EINVAL;
2289 goto out;
2290 }
2291
2292 last_objectid = found_key.offset;
2293
5d4f98a2
YZ
2294 found_key.objectid = found_key.offset;
2295 found_key.type = BTRFS_INODE_ITEM_KEY;
2296 found_key.offset = 0;
73f73415 2297 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2298 ret = PTR_RET(inode);
2299 if (ret && ret != -ESTALE)
66b4ffd1 2300 goto out;
7b128766 2301
f8e9e0b0
AJ
2302 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2303 struct btrfs_root *dead_root;
2304 struct btrfs_fs_info *fs_info = root->fs_info;
2305 int is_dead_root = 0;
2306
2307 /*
2308 * this is an orphan in the tree root. Currently these
2309 * could come from 2 sources:
2310 * a) a snapshot deletion in progress
2311 * b) a free space cache inode
2312 * We need to distinguish those two, as the snapshot
2313 * orphan must not get deleted.
2314 * find_dead_roots already ran before us, so if this
2315 * is a snapshot deletion, we should find the root
2316 * in the dead_roots list
2317 */
2318 spin_lock(&fs_info->trans_lock);
2319 list_for_each_entry(dead_root, &fs_info->dead_roots,
2320 root_list) {
2321 if (dead_root->root_key.objectid ==
2322 found_key.objectid) {
2323 is_dead_root = 1;
2324 break;
2325 }
2326 }
2327 spin_unlock(&fs_info->trans_lock);
2328 if (is_dead_root) {
2329 /* prevent this orphan from being found again */
2330 key.offset = found_key.objectid - 1;
2331 continue;
2332 }
2333 }
7b128766 2334 /*
a8c9e576
JB
2335 * Inode is already gone but the orphan item is still there,
2336 * kill the orphan item.
7b128766 2337 */
a8c9e576
JB
2338 if (ret == -ESTALE) {
2339 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2340 if (IS_ERR(trans)) {
2341 ret = PTR_ERR(trans);
2342 goto out;
2343 }
a8c9e576
JB
2344 ret = btrfs_del_orphan_item(trans, root,
2345 found_key.objectid);
79787eaa 2346 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 2347 btrfs_end_transaction(trans, root);
7b128766
JB
2348 continue;
2349 }
2350
a8c9e576
JB
2351 /*
2352 * add this inode to the orphan list so btrfs_orphan_del does
2353 * the proper thing when we hit it
2354 */
2355 spin_lock(&root->orphan_lock);
2356 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2357 spin_unlock(&root->orphan_lock);
2358
7b128766
JB
2359 /* if we have links, this was a truncate, lets do that */
2360 if (inode->i_nlink) {
a41ad394
JB
2361 if (!S_ISREG(inode->i_mode)) {
2362 WARN_ON(1);
2363 iput(inode);
2364 continue;
2365 }
7b128766 2366 nr_truncate++;
66b4ffd1 2367 ret = btrfs_truncate(inode);
7b128766
JB
2368 } else {
2369 nr_unlink++;
2370 }
2371
2372 /* this will do delete_inode and everything for us */
2373 iput(inode);
66b4ffd1
JB
2374 if (ret)
2375 goto out;
7b128766 2376 }
3254c876
MX
2377 /* release the path since we're done with it */
2378 btrfs_release_path(path);
2379
d68fc57b
YZ
2380 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2381
2382 if (root->orphan_block_rsv)
2383 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2384 (u64)-1);
2385
2386 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2387 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2388 if (!IS_ERR(trans))
2389 btrfs_end_transaction(trans, root);
d68fc57b 2390 }
7b128766
JB
2391
2392 if (nr_unlink)
2393 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2394 if (nr_truncate)
2395 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2396
2397out:
2398 if (ret)
2399 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2400 btrfs_free_path(path);
2401 return ret;
7b128766
JB
2402}
2403
46a53cca
CM
2404/*
2405 * very simple check to peek ahead in the leaf looking for xattrs. If we
2406 * don't find any xattrs, we know there can't be any acls.
2407 *
2408 * slot is the slot the inode is in, objectid is the objectid of the inode
2409 */
2410static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2411 int slot, u64 objectid)
2412{
2413 u32 nritems = btrfs_header_nritems(leaf);
2414 struct btrfs_key found_key;
2415 int scanned = 0;
2416
2417 slot++;
2418 while (slot < nritems) {
2419 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2420
2421 /* we found a different objectid, there must not be acls */
2422 if (found_key.objectid != objectid)
2423 return 0;
2424
2425 /* we found an xattr, assume we've got an acl */
2426 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2427 return 1;
2428
2429 /*
2430 * we found a key greater than an xattr key, there can't
2431 * be any acls later on
2432 */
2433 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2434 return 0;
2435
2436 slot++;
2437 scanned++;
2438
2439 /*
2440 * it goes inode, inode backrefs, xattrs, extents,
2441 * so if there are a ton of hard links to an inode there can
2442 * be a lot of backrefs. Don't waste time searching too hard,
2443 * this is just an optimization
2444 */
2445 if (scanned >= 8)
2446 break;
2447 }
2448 /* we hit the end of the leaf before we found an xattr or
2449 * something larger than an xattr. We have to assume the inode
2450 * has acls
2451 */
2452 return 1;
2453}
2454
d352ac68
CM
2455/*
2456 * read an inode from the btree into the in-memory inode
2457 */
5d4f98a2 2458static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2459{
2460 struct btrfs_path *path;
5f39d397 2461 struct extent_buffer *leaf;
39279cc3 2462 struct btrfs_inode_item *inode_item;
0b86a832 2463 struct btrfs_timespec *tspec;
39279cc3
CM
2464 struct btrfs_root *root = BTRFS_I(inode)->root;
2465 struct btrfs_key location;
46a53cca 2466 int maybe_acls;
618e21d5 2467 u32 rdev;
39279cc3 2468 int ret;
2f7e33d4
MX
2469 bool filled = false;
2470
2471 ret = btrfs_fill_inode(inode, &rdev);
2472 if (!ret)
2473 filled = true;
39279cc3
CM
2474
2475 path = btrfs_alloc_path();
1748f843
MF
2476 if (!path)
2477 goto make_bad;
2478
d90c7321 2479 path->leave_spinning = 1;
39279cc3 2480 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2481
39279cc3 2482 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2483 if (ret)
39279cc3 2484 goto make_bad;
39279cc3 2485
5f39d397 2486 leaf = path->nodes[0];
2f7e33d4
MX
2487
2488 if (filled)
2489 goto cache_acl;
2490
5f39d397
CM
2491 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2492 struct btrfs_inode_item);
5f39d397 2493 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2494 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
5f39d397
CM
2495 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2496 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2497 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2498
2499 tspec = btrfs_inode_atime(inode_item);
2500 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2501 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2502
2503 tspec = btrfs_inode_mtime(inode_item);
2504 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2505 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2506
2507 tspec = btrfs_inode_ctime(inode_item);
2508 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2509 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2510
a76a3cd4 2511 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2512 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
0c4d2d95 2513 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2514 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2515 inode->i_rdev = 0;
5f39d397
CM
2516 rdev = btrfs_inode_rdev(leaf, inode_item);
2517
aec7477b 2518 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2519 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2520cache_acl:
46a53cca
CM
2521 /*
2522 * try to precache a NULL acl entry for files that don't have
2523 * any xattrs or acls
2524 */
33345d01
LZ
2525 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2526 btrfs_ino(inode));
72c04902
AV
2527 if (!maybe_acls)
2528 cache_no_acl(inode);
46a53cca 2529
39279cc3 2530 btrfs_free_path(path);
39279cc3 2531
39279cc3 2532 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2533 case S_IFREG:
2534 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2535 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2536 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2537 inode->i_fop = &btrfs_file_operations;
2538 inode->i_op = &btrfs_file_inode_operations;
2539 break;
2540 case S_IFDIR:
2541 inode->i_fop = &btrfs_dir_file_operations;
2542 if (root == root->fs_info->tree_root)
2543 inode->i_op = &btrfs_dir_ro_inode_operations;
2544 else
2545 inode->i_op = &btrfs_dir_inode_operations;
2546 break;
2547 case S_IFLNK:
2548 inode->i_op = &btrfs_symlink_inode_operations;
2549 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2550 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2551 break;
618e21d5 2552 default:
0279b4cd 2553 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2554 init_special_inode(inode, inode->i_mode, rdev);
2555 break;
39279cc3 2556 }
6cbff00f
CH
2557
2558 btrfs_update_iflags(inode);
39279cc3
CM
2559 return;
2560
2561make_bad:
39279cc3 2562 btrfs_free_path(path);
39279cc3
CM
2563 make_bad_inode(inode);
2564}
2565
d352ac68
CM
2566/*
2567 * given a leaf and an inode, copy the inode fields into the leaf
2568 */
e02119d5
CM
2569static void fill_inode_item(struct btrfs_trans_handle *trans,
2570 struct extent_buffer *leaf,
5f39d397 2571 struct btrfs_inode_item *item,
39279cc3
CM
2572 struct inode *inode)
2573{
5f39d397
CM
2574 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2575 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2576 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2577 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2578 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2579
2580 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2581 inode->i_atime.tv_sec);
2582 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2583 inode->i_atime.tv_nsec);
2584
2585 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2586 inode->i_mtime.tv_sec);
2587 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2588 inode->i_mtime.tv_nsec);
2589
2590 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2591 inode->i_ctime.tv_sec);
2592 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2593 inode->i_ctime.tv_nsec);
2594
a76a3cd4 2595 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2596 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
0c4d2d95 2597 btrfs_set_inode_sequence(leaf, item, inode->i_version);
e02119d5 2598 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2599 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2600 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2601 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2602}
2603
d352ac68
CM
2604/*
2605 * copy everything in the in-memory inode into the btree.
2606 */
2115133f 2607static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2608 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2609{
2610 struct btrfs_inode_item *inode_item;
2611 struct btrfs_path *path;
5f39d397 2612 struct extent_buffer *leaf;
39279cc3
CM
2613 int ret;
2614
2615 path = btrfs_alloc_path();
16cdcec7
MX
2616 if (!path)
2617 return -ENOMEM;
2618
b9473439 2619 path->leave_spinning = 1;
16cdcec7
MX
2620 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2621 1);
39279cc3
CM
2622 if (ret) {
2623 if (ret > 0)
2624 ret = -ENOENT;
2625 goto failed;
2626 }
2627
b4ce94de 2628 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2629 leaf = path->nodes[0];
2630 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2631 struct btrfs_inode_item);
39279cc3 2632
e02119d5 2633 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2634 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2635 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2636 ret = 0;
2637failed:
39279cc3
CM
2638 btrfs_free_path(path);
2639 return ret;
2640}
2641
2115133f
CM
2642/*
2643 * copy everything in the in-memory inode into the btree.
2644 */
2645noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2646 struct btrfs_root *root, struct inode *inode)
2647{
2648 int ret;
2649
2650 /*
2651 * If the inode is a free space inode, we can deadlock during commit
2652 * if we put it into the delayed code.
2653 *
2654 * The data relocation inode should also be directly updated
2655 * without delay
2656 */
2657 if (!btrfs_is_free_space_inode(root, inode)
2658 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2659 ret = btrfs_delayed_update_inode(trans, root, inode);
2660 if (!ret)
2661 btrfs_set_inode_last_trans(trans, inode);
2662 return ret;
2663 }
2664
2665 return btrfs_update_inode_item(trans, root, inode);
2666}
2667
2668static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2669 struct btrfs_root *root, struct inode *inode)
2670{
2671 int ret;
2672
2673 ret = btrfs_update_inode(trans, root, inode);
2674 if (ret == -ENOSPC)
2675 return btrfs_update_inode_item(trans, root, inode);
2676 return ret;
2677}
2678
d352ac68
CM
2679/*
2680 * unlink helper that gets used here in inode.c and in the tree logging
2681 * recovery code. It remove a link in a directory with a given name, and
2682 * also drops the back refs in the inode to the directory
2683 */
92986796
AV
2684static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2685 struct btrfs_root *root,
2686 struct inode *dir, struct inode *inode,
2687 const char *name, int name_len)
39279cc3
CM
2688{
2689 struct btrfs_path *path;
39279cc3 2690 int ret = 0;
5f39d397 2691 struct extent_buffer *leaf;
39279cc3 2692 struct btrfs_dir_item *di;
5f39d397 2693 struct btrfs_key key;
aec7477b 2694 u64 index;
33345d01
LZ
2695 u64 ino = btrfs_ino(inode);
2696 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2697
2698 path = btrfs_alloc_path();
54aa1f4d
CM
2699 if (!path) {
2700 ret = -ENOMEM;
554233a6 2701 goto out;
54aa1f4d
CM
2702 }
2703
b9473439 2704 path->leave_spinning = 1;
33345d01 2705 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2706 name, name_len, -1);
2707 if (IS_ERR(di)) {
2708 ret = PTR_ERR(di);
2709 goto err;
2710 }
2711 if (!di) {
2712 ret = -ENOENT;
2713 goto err;
2714 }
5f39d397
CM
2715 leaf = path->nodes[0];
2716 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2717 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2718 if (ret)
2719 goto err;
b3b4aa74 2720 btrfs_release_path(path);
39279cc3 2721
33345d01
LZ
2722 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2723 dir_ino, &index);
aec7477b 2724 if (ret) {
d397712b 2725 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2726 "inode %llu parent %llu\n", name_len, name,
2727 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 2728 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
2729 goto err;
2730 }
2731
16cdcec7 2732 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
2733 if (ret) {
2734 btrfs_abort_transaction(trans, root, ret);
39279cc3 2735 goto err;
79787eaa 2736 }
39279cc3 2737
e02119d5 2738 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2739 inode, dir_ino);
79787eaa
JM
2740 if (ret != 0 && ret != -ENOENT) {
2741 btrfs_abort_transaction(trans, root, ret);
2742 goto err;
2743 }
e02119d5
CM
2744
2745 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2746 dir, index);
6418c961
CM
2747 if (ret == -ENOENT)
2748 ret = 0;
39279cc3
CM
2749err:
2750 btrfs_free_path(path);
e02119d5
CM
2751 if (ret)
2752 goto out;
2753
2754 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
2755 inode_inc_iversion(inode);
2756 inode_inc_iversion(dir);
e02119d5
CM
2757 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2758 btrfs_update_inode(trans, root, dir);
e02119d5 2759out:
39279cc3
CM
2760 return ret;
2761}
2762
92986796
AV
2763int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2764 struct btrfs_root *root,
2765 struct inode *dir, struct inode *inode,
2766 const char *name, int name_len)
2767{
2768 int ret;
2769 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2770 if (!ret) {
2771 btrfs_drop_nlink(inode);
2772 ret = btrfs_update_inode(trans, root, inode);
2773 }
2774 return ret;
2775}
2776
2777
a22285a6
YZ
2778/* helper to check if there is any shared block in the path */
2779static int check_path_shared(struct btrfs_root *root,
2780 struct btrfs_path *path)
39279cc3 2781{
a22285a6
YZ
2782 struct extent_buffer *eb;
2783 int level;
0e4dcbef 2784 u64 refs = 1;
5df6a9f6 2785
a22285a6 2786 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2787 int ret;
2788
a22285a6
YZ
2789 if (!path->nodes[level])
2790 break;
2791 eb = path->nodes[level];
2792 if (!btrfs_block_can_be_shared(root, eb))
2793 continue;
2794 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2795 &refs, NULL);
2796 if (refs > 1)
2797 return 1;
5df6a9f6 2798 }
dedefd72 2799 return 0;
39279cc3
CM
2800}
2801
a22285a6
YZ
2802/*
2803 * helper to start transaction for unlink and rmdir.
2804 *
2805 * unlink and rmdir are special in btrfs, they do not always free space.
2806 * so in enospc case, we should make sure they will free space before
2807 * allowing them to use the global metadata reservation.
2808 */
2809static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2810 struct dentry *dentry)
4df27c4d 2811{
39279cc3 2812 struct btrfs_trans_handle *trans;
a22285a6 2813 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2814 struct btrfs_path *path;
a22285a6 2815 struct btrfs_inode_ref *ref;
4df27c4d 2816 struct btrfs_dir_item *di;
7b128766 2817 struct inode *inode = dentry->d_inode;
4df27c4d 2818 u64 index;
a22285a6
YZ
2819 int check_link = 1;
2820 int err = -ENOSPC;
4df27c4d 2821 int ret;
33345d01
LZ
2822 u64 ino = btrfs_ino(inode);
2823 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2824
e70bea5f
JB
2825 /*
2826 * 1 for the possible orphan item
2827 * 1 for the dir item
2828 * 1 for the dir index
2829 * 1 for the inode ref
2830 * 1 for the inode ref in the tree log
2831 * 2 for the dir entries in the log
2832 * 1 for the inode
2833 */
2834 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2835 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2836 return trans;
4df27c4d 2837
33345d01 2838 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2839 return ERR_PTR(-ENOSPC);
4df27c4d 2840
a22285a6
YZ
2841 /* check if there is someone else holds reference */
2842 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2843 return ERR_PTR(-ENOSPC);
4df27c4d 2844
a22285a6
YZ
2845 if (atomic_read(&inode->i_count) > 2)
2846 return ERR_PTR(-ENOSPC);
4df27c4d 2847
a22285a6
YZ
2848 if (xchg(&root->fs_info->enospc_unlink, 1))
2849 return ERR_PTR(-ENOSPC);
2850
2851 path = btrfs_alloc_path();
2852 if (!path) {
2853 root->fs_info->enospc_unlink = 0;
2854 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2855 }
2856
3880a1b4
JB
2857 /* 1 for the orphan item */
2858 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2859 if (IS_ERR(trans)) {
a22285a6
YZ
2860 btrfs_free_path(path);
2861 root->fs_info->enospc_unlink = 0;
2862 return trans;
2863 }
4df27c4d 2864
a22285a6
YZ
2865 path->skip_locking = 1;
2866 path->search_commit_root = 1;
4df27c4d 2867
a22285a6
YZ
2868 ret = btrfs_lookup_inode(trans, root, path,
2869 &BTRFS_I(dir)->location, 0);
2870 if (ret < 0) {
2871 err = ret;
2872 goto out;
2873 }
2874 if (ret == 0) {
2875 if (check_path_shared(root, path))
2876 goto out;
2877 } else {
2878 check_link = 0;
5df6a9f6 2879 }
b3b4aa74 2880 btrfs_release_path(path);
a22285a6
YZ
2881
2882 ret = btrfs_lookup_inode(trans, root, path,
2883 &BTRFS_I(inode)->location, 0);
2884 if (ret < 0) {
2885 err = ret;
2886 goto out;
2887 }
2888 if (ret == 0) {
2889 if (check_path_shared(root, path))
2890 goto out;
2891 } else {
2892 check_link = 0;
2893 }
b3b4aa74 2894 btrfs_release_path(path);
a22285a6
YZ
2895
2896 if (ret == 0 && S_ISREG(inode->i_mode)) {
2897 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2898 ino, (u64)-1, 0);
a22285a6
YZ
2899 if (ret < 0) {
2900 err = ret;
2901 goto out;
2902 }
79787eaa 2903 BUG_ON(ret == 0); /* Corruption */
a22285a6
YZ
2904 if (check_path_shared(root, path))
2905 goto out;
b3b4aa74 2906 btrfs_release_path(path);
a22285a6
YZ
2907 }
2908
2909 if (!check_link) {
2910 err = 0;
2911 goto out;
2912 }
2913
33345d01 2914 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2915 dentry->d_name.name, dentry->d_name.len, 0);
2916 if (IS_ERR(di)) {
2917 err = PTR_ERR(di);
2918 goto out;
2919 }
2920 if (di) {
2921 if (check_path_shared(root, path))
2922 goto out;
2923 } else {
2924 err = 0;
2925 goto out;
2926 }
b3b4aa74 2927 btrfs_release_path(path);
a22285a6
YZ
2928
2929 ref = btrfs_lookup_inode_ref(trans, root, path,
2930 dentry->d_name.name, dentry->d_name.len,
33345d01 2931 ino, dir_ino, 0);
a22285a6
YZ
2932 if (IS_ERR(ref)) {
2933 err = PTR_ERR(ref);
2934 goto out;
2935 }
79787eaa 2936 BUG_ON(!ref); /* Logic error */
a22285a6
YZ
2937 if (check_path_shared(root, path))
2938 goto out;
2939 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2940 btrfs_release_path(path);
a22285a6 2941
16cdcec7
MX
2942 /*
2943 * This is a commit root search, if we can lookup inode item and other
2944 * relative items in the commit root, it means the transaction of
2945 * dir/file creation has been committed, and the dir index item that we
2946 * delay to insert has also been inserted into the commit root. So
2947 * we needn't worry about the delayed insertion of the dir index item
2948 * here.
2949 */
33345d01 2950 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2951 dentry->d_name.name, dentry->d_name.len, 0);
2952 if (IS_ERR(di)) {
2953 err = PTR_ERR(di);
2954 goto out;
2955 }
2956 BUG_ON(ret == -ENOENT);
2957 if (check_path_shared(root, path))
2958 goto out;
2959
2960 err = 0;
2961out:
2962 btrfs_free_path(path);
3880a1b4
JB
2963 /* Migrate the orphan reservation over */
2964 if (!err)
2965 err = btrfs_block_rsv_migrate(trans->block_rsv,
2966 &root->fs_info->global_block_rsv,
5a77d76c 2967 trans->bytes_reserved);
3880a1b4 2968
a22285a6
YZ
2969 if (err) {
2970 btrfs_end_transaction(trans, root);
2971 root->fs_info->enospc_unlink = 0;
2972 return ERR_PTR(err);
2973 }
2974
2975 trans->block_rsv = &root->fs_info->global_block_rsv;
2976 return trans;
2977}
2978
2979static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2980 struct btrfs_root *root)
2981{
2982 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
5a77d76c
JB
2983 btrfs_block_rsv_release(root, trans->block_rsv,
2984 trans->bytes_reserved);
2985 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
2986 BUG_ON(!root->fs_info->enospc_unlink);
2987 root->fs_info->enospc_unlink = 0;
2988 }
7ad85bb7 2989 btrfs_end_transaction(trans, root);
a22285a6
YZ
2990}
2991
2992static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2993{
2994 struct btrfs_root *root = BTRFS_I(dir)->root;
2995 struct btrfs_trans_handle *trans;
2996 struct inode *inode = dentry->d_inode;
2997 int ret;
2998 unsigned long nr = 0;
2999
3000 trans = __unlink_start_trans(dir, dentry);
3001 if (IS_ERR(trans))
3002 return PTR_ERR(trans);
5f39d397 3003
12fcfd22
CM
3004 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3005
e02119d5
CM
3006 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3007 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3008 if (ret)
3009 goto out;
7b128766 3010
a22285a6 3011 if (inode->i_nlink == 0) {
7b128766 3012 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3013 if (ret)
3014 goto out;
a22285a6 3015 }
7b128766 3016
b532402e 3017out:
d3c2fdcf 3018 nr = trans->blocks_used;
a22285a6 3019 __unlink_end_trans(trans, root);
d3c2fdcf 3020 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3021 return ret;
3022}
3023
4df27c4d
YZ
3024int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3025 struct btrfs_root *root,
3026 struct inode *dir, u64 objectid,
3027 const char *name, int name_len)
3028{
3029 struct btrfs_path *path;
3030 struct extent_buffer *leaf;
3031 struct btrfs_dir_item *di;
3032 struct btrfs_key key;
3033 u64 index;
3034 int ret;
33345d01 3035 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3036
3037 path = btrfs_alloc_path();
3038 if (!path)
3039 return -ENOMEM;
3040
33345d01 3041 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3042 name, name_len, -1);
79787eaa
JM
3043 if (IS_ERR_OR_NULL(di)) {
3044 if (!di)
3045 ret = -ENOENT;
3046 else
3047 ret = PTR_ERR(di);
3048 goto out;
3049 }
4df27c4d
YZ
3050
3051 leaf = path->nodes[0];
3052 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3053 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3054 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3055 if (ret) {
3056 btrfs_abort_transaction(trans, root, ret);
3057 goto out;
3058 }
b3b4aa74 3059 btrfs_release_path(path);
4df27c4d
YZ
3060
3061 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3062 objectid, root->root_key.objectid,
33345d01 3063 dir_ino, &index, name, name_len);
4df27c4d 3064 if (ret < 0) {
79787eaa
JM
3065 if (ret != -ENOENT) {
3066 btrfs_abort_transaction(trans, root, ret);
3067 goto out;
3068 }
33345d01 3069 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3070 name, name_len);
79787eaa
JM
3071 if (IS_ERR_OR_NULL(di)) {
3072 if (!di)
3073 ret = -ENOENT;
3074 else
3075 ret = PTR_ERR(di);
3076 btrfs_abort_transaction(trans, root, ret);
3077 goto out;
3078 }
4df27c4d
YZ
3079
3080 leaf = path->nodes[0];
3081 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3082 btrfs_release_path(path);
4df27c4d
YZ
3083 index = key.offset;
3084 }
945d8962 3085 btrfs_release_path(path);
4df27c4d 3086
16cdcec7 3087 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3088 if (ret) {
3089 btrfs_abort_transaction(trans, root, ret);
3090 goto out;
3091 }
4df27c4d
YZ
3092
3093 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3094 inode_inc_iversion(dir);
4df27c4d
YZ
3095 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3096 ret = btrfs_update_inode(trans, root, dir);
79787eaa
JM
3097 if (ret)
3098 btrfs_abort_transaction(trans, root, ret);
3099out:
71d7aed0 3100 btrfs_free_path(path);
79787eaa 3101 return ret;
4df27c4d
YZ
3102}
3103
39279cc3
CM
3104static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3105{
3106 struct inode *inode = dentry->d_inode;
1832a6d5 3107 int err = 0;
39279cc3 3108 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3109 struct btrfs_trans_handle *trans;
1832a6d5 3110 unsigned long nr = 0;
39279cc3 3111
3394e160 3112 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 3113 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3114 return -ENOTEMPTY;
3115
a22285a6
YZ
3116 trans = __unlink_start_trans(dir, dentry);
3117 if (IS_ERR(trans))
5df6a9f6 3118 return PTR_ERR(trans);
5df6a9f6 3119
33345d01 3120 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3121 err = btrfs_unlink_subvol(trans, root, dir,
3122 BTRFS_I(inode)->location.objectid,
3123 dentry->d_name.name,
3124 dentry->d_name.len);
3125 goto out;
3126 }
3127
7b128766
JB
3128 err = btrfs_orphan_add(trans, inode);
3129 if (err)
4df27c4d 3130 goto out;
7b128766 3131
39279cc3 3132 /* now the directory is empty */
e02119d5
CM
3133 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3134 dentry->d_name.name, dentry->d_name.len);
d397712b 3135 if (!err)
dbe674a9 3136 btrfs_i_size_write(inode, 0);
4df27c4d 3137out:
d3c2fdcf 3138 nr = trans->blocks_used;
a22285a6 3139 __unlink_end_trans(trans, root);
d3c2fdcf 3140 btrfs_btree_balance_dirty(root, nr);
3954401f 3141
39279cc3
CM
3142 return err;
3143}
3144
39279cc3
CM
3145/*
3146 * this can truncate away extent items, csum items and directory items.
3147 * It starts at a high offset and removes keys until it can't find
d352ac68 3148 * any higher than new_size
39279cc3
CM
3149 *
3150 * csum items that cross the new i_size are truncated to the new size
3151 * as well.
7b128766
JB
3152 *
3153 * min_type is the minimum key type to truncate down to. If set to 0, this
3154 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3155 */
8082510e
YZ
3156int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3157 struct btrfs_root *root,
3158 struct inode *inode,
3159 u64 new_size, u32 min_type)
39279cc3 3160{
39279cc3 3161 struct btrfs_path *path;
5f39d397 3162 struct extent_buffer *leaf;
39279cc3 3163 struct btrfs_file_extent_item *fi;
8082510e
YZ
3164 struct btrfs_key key;
3165 struct btrfs_key found_key;
39279cc3 3166 u64 extent_start = 0;
db94535d 3167 u64 extent_num_bytes = 0;
5d4f98a2 3168 u64 extent_offset = 0;
39279cc3 3169 u64 item_end = 0;
8082510e
YZ
3170 u64 mask = root->sectorsize - 1;
3171 u32 found_type = (u8)-1;
39279cc3
CM
3172 int found_extent;
3173 int del_item;
85e21bac
CM
3174 int pending_del_nr = 0;
3175 int pending_del_slot = 0;
179e29e4 3176 int extent_type = -1;
8082510e
YZ
3177 int ret;
3178 int err = 0;
33345d01 3179 u64 ino = btrfs_ino(inode);
8082510e
YZ
3180
3181 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3182
0eb0e19c
MF
3183 path = btrfs_alloc_path();
3184 if (!path)
3185 return -ENOMEM;
3186 path->reada = -1;
3187
0af3d00b 3188 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3189 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3190
16cdcec7
MX
3191 /*
3192 * This function is also used to drop the items in the log tree before
3193 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3194 * it is used to drop the loged items. So we shouldn't kill the delayed
3195 * items.
3196 */
3197 if (min_type == 0 && root == BTRFS_I(inode)->root)
3198 btrfs_kill_delayed_inode_items(inode);
3199
33345d01 3200 key.objectid = ino;
39279cc3 3201 key.offset = (u64)-1;
5f39d397
CM
3202 key.type = (u8)-1;
3203
85e21bac 3204search_again:
b9473439 3205 path->leave_spinning = 1;
85e21bac 3206 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3207 if (ret < 0) {
3208 err = ret;
3209 goto out;
3210 }
d397712b 3211
85e21bac 3212 if (ret > 0) {
e02119d5
CM
3213 /* there are no items in the tree for us to truncate, we're
3214 * done
3215 */
8082510e
YZ
3216 if (path->slots[0] == 0)
3217 goto out;
85e21bac
CM
3218 path->slots[0]--;
3219 }
3220
d397712b 3221 while (1) {
39279cc3 3222 fi = NULL;
5f39d397
CM
3223 leaf = path->nodes[0];
3224 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3225 found_type = btrfs_key_type(&found_key);
39279cc3 3226
33345d01 3227 if (found_key.objectid != ino)
39279cc3 3228 break;
5f39d397 3229
85e21bac 3230 if (found_type < min_type)
39279cc3
CM
3231 break;
3232
5f39d397 3233 item_end = found_key.offset;
39279cc3 3234 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3235 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3236 struct btrfs_file_extent_item);
179e29e4
CM
3237 extent_type = btrfs_file_extent_type(leaf, fi);
3238 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3239 item_end +=
db94535d 3240 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3241 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3242 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3243 fi);
39279cc3 3244 }
008630c1 3245 item_end--;
39279cc3 3246 }
8082510e
YZ
3247 if (found_type > min_type) {
3248 del_item = 1;
3249 } else {
3250 if (item_end < new_size)
b888db2b 3251 break;
8082510e
YZ
3252 if (found_key.offset >= new_size)
3253 del_item = 1;
3254 else
3255 del_item = 0;
39279cc3 3256 }
39279cc3 3257 found_extent = 0;
39279cc3 3258 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3259 if (found_type != BTRFS_EXTENT_DATA_KEY)
3260 goto delete;
3261
3262 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3263 u64 num_dec;
db94535d 3264 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3265 if (!del_item) {
db94535d
CM
3266 u64 orig_num_bytes =
3267 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3268 extent_num_bytes = new_size -
5f39d397 3269 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3270 extent_num_bytes = extent_num_bytes &
3271 ~((u64)root->sectorsize - 1);
db94535d
CM
3272 btrfs_set_file_extent_num_bytes(leaf, fi,
3273 extent_num_bytes);
3274 num_dec = (orig_num_bytes -
9069218d 3275 extent_num_bytes);
e02119d5 3276 if (root->ref_cows && extent_start != 0)
a76a3cd4 3277 inode_sub_bytes(inode, num_dec);
5f39d397 3278 btrfs_mark_buffer_dirty(leaf);
39279cc3 3279 } else {
db94535d
CM
3280 extent_num_bytes =
3281 btrfs_file_extent_disk_num_bytes(leaf,
3282 fi);
5d4f98a2
YZ
3283 extent_offset = found_key.offset -
3284 btrfs_file_extent_offset(leaf, fi);
3285
39279cc3 3286 /* FIXME blocksize != 4096 */
9069218d 3287 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3288 if (extent_start != 0) {
3289 found_extent = 1;
e02119d5 3290 if (root->ref_cows)
a76a3cd4 3291 inode_sub_bytes(inode, num_dec);
e02119d5 3292 }
39279cc3 3293 }
9069218d 3294 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3295 /*
3296 * we can't truncate inline items that have had
3297 * special encodings
3298 */
3299 if (!del_item &&
3300 btrfs_file_extent_compression(leaf, fi) == 0 &&
3301 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3302 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3303 u32 size = new_size - found_key.offset;
3304
3305 if (root->ref_cows) {
a76a3cd4
YZ
3306 inode_sub_bytes(inode, item_end + 1 -
3307 new_size);
e02119d5
CM
3308 }
3309 size =
3310 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3311 btrfs_truncate_item(trans, root, path,
3312 size, 1);
e02119d5 3313 } else if (root->ref_cows) {
a76a3cd4
YZ
3314 inode_sub_bytes(inode, item_end + 1 -
3315 found_key.offset);
9069218d 3316 }
39279cc3 3317 }
179e29e4 3318delete:
39279cc3 3319 if (del_item) {
85e21bac
CM
3320 if (!pending_del_nr) {
3321 /* no pending yet, add ourselves */
3322 pending_del_slot = path->slots[0];
3323 pending_del_nr = 1;
3324 } else if (pending_del_nr &&
3325 path->slots[0] + 1 == pending_del_slot) {
3326 /* hop on the pending chunk */
3327 pending_del_nr++;
3328 pending_del_slot = path->slots[0];
3329 } else {
d397712b 3330 BUG();
85e21bac 3331 }
39279cc3
CM
3332 } else {
3333 break;
3334 }
0af3d00b
JB
3335 if (found_extent && (root->ref_cows ||
3336 root == root->fs_info->tree_root)) {
b9473439 3337 btrfs_set_path_blocking(path);
39279cc3 3338 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3339 extent_num_bytes, 0,
3340 btrfs_header_owner(leaf),
66d7e7f0 3341 ino, extent_offset, 0);
39279cc3
CM
3342 BUG_ON(ret);
3343 }
85e21bac 3344
8082510e
YZ
3345 if (found_type == BTRFS_INODE_ITEM_KEY)
3346 break;
3347
3348 if (path->slots[0] == 0 ||
3349 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3350 if (root->ref_cows &&
3351 BTRFS_I(inode)->location.objectid !=
3352 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3353 err = -EAGAIN;
3354 goto out;
3355 }
3356 if (pending_del_nr) {
3357 ret = btrfs_del_items(trans, root, path,
3358 pending_del_slot,
3359 pending_del_nr);
79787eaa
JM
3360 if (ret) {
3361 btrfs_abort_transaction(trans,
3362 root, ret);
3363 goto error;
3364 }
8082510e
YZ
3365 pending_del_nr = 0;
3366 }
b3b4aa74 3367 btrfs_release_path(path);
85e21bac 3368 goto search_again;
8082510e
YZ
3369 } else {
3370 path->slots[0]--;
85e21bac 3371 }
39279cc3 3372 }
8082510e 3373out:
85e21bac
CM
3374 if (pending_del_nr) {
3375 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3376 pending_del_nr);
79787eaa
JM
3377 if (ret)
3378 btrfs_abort_transaction(trans, root, ret);
85e21bac 3379 }
79787eaa 3380error:
39279cc3 3381 btrfs_free_path(path);
8082510e 3382 return err;
39279cc3
CM
3383}
3384
3385/*
3386 * taken from block_truncate_page, but does cow as it zeros out
3387 * any bytes left in the last page in the file.
3388 */
3389static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3390{
3391 struct inode *inode = mapping->host;
db94535d 3392 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3393 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3394 struct btrfs_ordered_extent *ordered;
2ac55d41 3395 struct extent_state *cached_state = NULL;
e6dcd2dc 3396 char *kaddr;
db94535d 3397 u32 blocksize = root->sectorsize;
39279cc3
CM
3398 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3399 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3400 struct page *page;
3b16a4e3 3401 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3402 int ret = 0;
a52d9a80 3403 u64 page_start;
e6dcd2dc 3404 u64 page_end;
39279cc3
CM
3405
3406 if ((offset & (blocksize - 1)) == 0)
3407 goto out;
0ca1f7ce 3408 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3409 if (ret)
3410 goto out;
39279cc3
CM
3411
3412 ret = -ENOMEM;
211c17f5 3413again:
3b16a4e3 3414 page = find_or_create_page(mapping, index, mask);
5d5e103a 3415 if (!page) {
0ca1f7ce 3416 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3417 goto out;
5d5e103a 3418 }
e6dcd2dc
CM
3419
3420 page_start = page_offset(page);
3421 page_end = page_start + PAGE_CACHE_SIZE - 1;
3422
39279cc3 3423 if (!PageUptodate(page)) {
9ebefb18 3424 ret = btrfs_readpage(NULL, page);
39279cc3 3425 lock_page(page);
211c17f5
CM
3426 if (page->mapping != mapping) {
3427 unlock_page(page);
3428 page_cache_release(page);
3429 goto again;
3430 }
39279cc3
CM
3431 if (!PageUptodate(page)) {
3432 ret = -EIO;
89642229 3433 goto out_unlock;
39279cc3
CM
3434 }
3435 }
211c17f5 3436 wait_on_page_writeback(page);
e6dcd2dc 3437
d0082371 3438 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
3439 set_page_extent_mapped(page);
3440
3441 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3442 if (ordered) {
2ac55d41
JB
3443 unlock_extent_cached(io_tree, page_start, page_end,
3444 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3445 unlock_page(page);
3446 page_cache_release(page);
eb84ae03 3447 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3448 btrfs_put_ordered_extent(ordered);
3449 goto again;
3450 }
3451
2ac55d41 3452 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3453 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3454 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3455
2ac55d41
JB
3456 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3457 &cached_state);
9ed74f2d 3458 if (ret) {
2ac55d41
JB
3459 unlock_extent_cached(io_tree, page_start, page_end,
3460 &cached_state, GFP_NOFS);
9ed74f2d
JB
3461 goto out_unlock;
3462 }
3463
e6dcd2dc
CM
3464 ret = 0;
3465 if (offset != PAGE_CACHE_SIZE) {
3466 kaddr = kmap(page);
3467 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3468 flush_dcache_page(page);
3469 kunmap(page);
3470 }
247e743c 3471 ClearPageChecked(page);
e6dcd2dc 3472 set_page_dirty(page);
2ac55d41
JB
3473 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3474 GFP_NOFS);
39279cc3 3475
89642229 3476out_unlock:
5d5e103a 3477 if (ret)
0ca1f7ce 3478 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3479 unlock_page(page);
3480 page_cache_release(page);
3481out:
3482 return ret;
3483}
3484
695a0d0d
JB
3485/*
3486 * This function puts in dummy file extents for the area we're creating a hole
3487 * for. So if we are truncating this file to a larger size we need to insert
3488 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3489 * the range between oldsize and size
3490 */
a41ad394 3491int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3492{
9036c102
YZ
3493 struct btrfs_trans_handle *trans;
3494 struct btrfs_root *root = BTRFS_I(inode)->root;
3495 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3496 struct extent_map *em = NULL;
2ac55d41 3497 struct extent_state *cached_state = NULL;
9036c102 3498 u64 mask = root->sectorsize - 1;
a41ad394 3499 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3500 u64 block_end = (size + mask) & ~mask;
3501 u64 last_byte;
3502 u64 cur_offset;
3503 u64 hole_size;
9ed74f2d 3504 int err = 0;
39279cc3 3505
9036c102
YZ
3506 if (size <= hole_start)
3507 return 0;
3508
9036c102
YZ
3509 while (1) {
3510 struct btrfs_ordered_extent *ordered;
3511 btrfs_wait_ordered_range(inode, hole_start,
3512 block_end - hole_start);
2ac55d41 3513 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 3514 &cached_state);
9036c102
YZ
3515 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3516 if (!ordered)
3517 break;
2ac55d41
JB
3518 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3519 &cached_state, GFP_NOFS);
9036c102
YZ
3520 btrfs_put_ordered_extent(ordered);
3521 }
39279cc3 3522
9036c102
YZ
3523 cur_offset = hole_start;
3524 while (1) {
3525 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3526 block_end - cur_offset, 0);
79787eaa
JM
3527 if (IS_ERR(em)) {
3528 err = PTR_ERR(em);
3529 break;
3530 }
9036c102
YZ
3531 last_byte = min(extent_map_end(em), block_end);
3532 last_byte = (last_byte + mask) & ~mask;
8082510e 3533 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3534 u64 hint_byte = 0;
9036c102 3535 hole_size = last_byte - cur_offset;
9ed74f2d 3536
3642320e 3537 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3538 if (IS_ERR(trans)) {
3539 err = PTR_ERR(trans);
9ed74f2d 3540 break;
a22285a6 3541 }
8082510e
YZ
3542
3543 err = btrfs_drop_extents(trans, inode, cur_offset,
3544 cur_offset + hole_size,
3545 &hint_byte, 1);
5b397377 3546 if (err) {
79787eaa 3547 btrfs_abort_transaction(trans, root, err);
5b397377 3548 btrfs_end_transaction(trans, root);
3893e33b 3549 break;
5b397377 3550 }
8082510e 3551
9036c102 3552 err = btrfs_insert_file_extent(trans, root,
33345d01 3553 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3554 0, hole_size, 0, hole_size,
3555 0, 0, 0);
5b397377 3556 if (err) {
79787eaa 3557 btrfs_abort_transaction(trans, root, err);
5b397377 3558 btrfs_end_transaction(trans, root);
3893e33b 3559 break;
5b397377 3560 }
8082510e 3561
9036c102
YZ
3562 btrfs_drop_extent_cache(inode, hole_start,
3563 last_byte - 1, 0);
8082510e 3564
3642320e 3565 btrfs_update_inode(trans, root, inode);
8082510e 3566 btrfs_end_transaction(trans, root);
9036c102
YZ
3567 }
3568 free_extent_map(em);
a22285a6 3569 em = NULL;
9036c102 3570 cur_offset = last_byte;
8082510e 3571 if (cur_offset >= block_end)
9036c102
YZ
3572 break;
3573 }
1832a6d5 3574
a22285a6 3575 free_extent_map(em);
2ac55d41
JB
3576 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3577 GFP_NOFS);
9036c102
YZ
3578 return err;
3579}
39279cc3 3580
a41ad394 3581static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3582{
f4a2f4c5
MX
3583 struct btrfs_root *root = BTRFS_I(inode)->root;
3584 struct btrfs_trans_handle *trans;
a41ad394 3585 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3586 int ret;
3587
a41ad394 3588 if (newsize == oldsize)
8082510e
YZ
3589 return 0;
3590
a41ad394 3591 if (newsize > oldsize) {
a41ad394
JB
3592 truncate_pagecache(inode, oldsize, newsize);
3593 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3594 if (ret)
8082510e 3595 return ret;
8082510e 3596
f4a2f4c5
MX
3597 trans = btrfs_start_transaction(root, 1);
3598 if (IS_ERR(trans))
3599 return PTR_ERR(trans);
3600
3601 i_size_write(inode, newsize);
3602 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3603 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3604 btrfs_end_transaction(trans, root);
a41ad394 3605 } else {
8082510e 3606
a41ad394
JB
3607 /*
3608 * We're truncating a file that used to have good data down to
3609 * zero. Make sure it gets into the ordered flush list so that
3610 * any new writes get down to disk quickly.
3611 */
3612 if (newsize == 0)
3613 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3614
a41ad394
JB
3615 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3616 truncate_setsize(inode, newsize);
3617 ret = btrfs_truncate(inode);
8082510e
YZ
3618 }
3619
a41ad394 3620 return ret;
8082510e
YZ
3621}
3622
9036c102
YZ
3623static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3624{
3625 struct inode *inode = dentry->d_inode;
b83cc969 3626 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3627 int err;
39279cc3 3628
b83cc969
LZ
3629 if (btrfs_root_readonly(root))
3630 return -EROFS;
3631
9036c102
YZ
3632 err = inode_change_ok(inode, attr);
3633 if (err)
3634 return err;
2bf5a725 3635
5a3f23d5 3636 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3637 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3638 if (err)
3639 return err;
39279cc3 3640 }
9036c102 3641
1025774c
CH
3642 if (attr->ia_valid) {
3643 setattr_copy(inode, attr);
0c4d2d95 3644 inode_inc_iversion(inode);
22c44fe6 3645 err = btrfs_dirty_inode(inode);
1025774c 3646
22c44fe6 3647 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3648 err = btrfs_acl_chmod(inode);
3649 }
33268eaf 3650
39279cc3
CM
3651 return err;
3652}
61295eb8 3653
bd555975 3654void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3655{
3656 struct btrfs_trans_handle *trans;
3657 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3658 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3659 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
d3c2fdcf 3660 unsigned long nr;
39279cc3
CM
3661 int ret;
3662
1abe9b8a 3663 trace_btrfs_inode_evict(inode);
3664
39279cc3 3665 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3666 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3667 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3668 goto no_delete;
3669
39279cc3 3670 if (is_bad_inode(inode)) {
7b128766 3671 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3672 goto no_delete;
3673 }
bd555975 3674 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3675 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3676
c71bf099
YZ
3677 if (root->fs_info->log_root_recovering) {
3678 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3679 goto no_delete;
3680 }
3681
76dda93c
YZ
3682 if (inode->i_nlink > 0) {
3683 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3684 goto no_delete;
3685 }
3686
4289a667
JB
3687 rsv = btrfs_alloc_block_rsv(root);
3688 if (!rsv) {
3689 btrfs_orphan_del(NULL, inode);
3690 goto no_delete;
3691 }
4a338542 3692 rsv->size = min_size;
726c35fa 3693 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3694
dbe674a9 3695 btrfs_i_size_write(inode, 0);
5f39d397 3696
4289a667
JB
3697 /*
3698 * This is a bit simpler than btrfs_truncate since
3699 *
3700 * 1) We've already reserved our space for our orphan item in the
3701 * unlink.
3702 * 2) We're going to delete the inode item, so we don't need to update
3703 * it at all.
3704 *
3705 * So we just need to reserve some slack space in case we add bytes when
3706 * doing the truncate.
3707 */
8082510e 3708 while (1) {
aa38a711 3709 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
726c35fa
JB
3710
3711 /*
3712 * Try and steal from the global reserve since we will
3713 * likely not use this space anyway, we want to try as
3714 * hard as possible to get this to work.
3715 */
3716 if (ret)
3717 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3718
d68fc57b 3719 if (ret) {
4289a667 3720 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3721 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3722 btrfs_orphan_del(NULL, inode);
3723 btrfs_free_block_rsv(root, rsv);
3724 goto no_delete;
d68fc57b 3725 }
7b128766 3726
4289a667
JB
3727 trans = btrfs_start_transaction(root, 0);
3728 if (IS_ERR(trans)) {
3729 btrfs_orphan_del(NULL, inode);
3730 btrfs_free_block_rsv(root, rsv);
3731 goto no_delete;
d68fc57b 3732 }
7b128766 3733
4289a667
JB
3734 trans->block_rsv = rsv;
3735
d68fc57b 3736 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3737 if (ret != -EAGAIN)
3738 break;
85e21bac 3739
8082510e
YZ
3740 nr = trans->blocks_used;
3741 btrfs_end_transaction(trans, root);
3742 trans = NULL;
3743 btrfs_btree_balance_dirty(root, nr);
3744 }
5f39d397 3745
4289a667
JB
3746 btrfs_free_block_rsv(root, rsv);
3747
8082510e 3748 if (ret == 0) {
4289a667 3749 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3750 ret = btrfs_orphan_del(trans, inode);
3751 BUG_ON(ret);
3752 }
54aa1f4d 3753
4289a667 3754 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3755 if (!(root == root->fs_info->tree_root ||
3756 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3757 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3758
d3c2fdcf 3759 nr = trans->blocks_used;
54aa1f4d 3760 btrfs_end_transaction(trans, root);
d3c2fdcf 3761 btrfs_btree_balance_dirty(root, nr);
39279cc3 3762no_delete:
bd555975 3763 end_writeback(inode);
8082510e 3764 return;
39279cc3
CM
3765}
3766
3767/*
3768 * this returns the key found in the dir entry in the location pointer.
3769 * If no dir entries were found, location->objectid is 0.
3770 */
3771static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3772 struct btrfs_key *location)
3773{
3774 const char *name = dentry->d_name.name;
3775 int namelen = dentry->d_name.len;
3776 struct btrfs_dir_item *di;
3777 struct btrfs_path *path;
3778 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3779 int ret = 0;
39279cc3
CM
3780
3781 path = btrfs_alloc_path();
d8926bb3
MF
3782 if (!path)
3783 return -ENOMEM;
3954401f 3784
33345d01 3785 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3786 namelen, 0);
0d9f7f3e
Y
3787 if (IS_ERR(di))
3788 ret = PTR_ERR(di);
d397712b 3789
c704005d 3790 if (IS_ERR_OR_NULL(di))
3954401f 3791 goto out_err;
d397712b 3792
5f39d397 3793 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3794out:
39279cc3
CM
3795 btrfs_free_path(path);
3796 return ret;
3954401f
CM
3797out_err:
3798 location->objectid = 0;
3799 goto out;
39279cc3
CM
3800}
3801
3802/*
3803 * when we hit a tree root in a directory, the btrfs part of the inode
3804 * needs to be changed to reflect the root directory of the tree root. This
3805 * is kind of like crossing a mount point.
3806 */
3807static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3808 struct inode *dir,
3809 struct dentry *dentry,
3810 struct btrfs_key *location,
3811 struct btrfs_root **sub_root)
39279cc3 3812{
4df27c4d
YZ
3813 struct btrfs_path *path;
3814 struct btrfs_root *new_root;
3815 struct btrfs_root_ref *ref;
3816 struct extent_buffer *leaf;
3817 int ret;
3818 int err = 0;
39279cc3 3819
4df27c4d
YZ
3820 path = btrfs_alloc_path();
3821 if (!path) {
3822 err = -ENOMEM;
3823 goto out;
3824 }
39279cc3 3825
4df27c4d
YZ
3826 err = -ENOENT;
3827 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3828 BTRFS_I(dir)->root->root_key.objectid,
3829 location->objectid);
3830 if (ret) {
3831 if (ret < 0)
3832 err = ret;
3833 goto out;
3834 }
39279cc3 3835
4df27c4d
YZ
3836 leaf = path->nodes[0];
3837 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3838 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3839 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3840 goto out;
39279cc3 3841
4df27c4d
YZ
3842 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3843 (unsigned long)(ref + 1),
3844 dentry->d_name.len);
3845 if (ret)
3846 goto out;
3847
b3b4aa74 3848 btrfs_release_path(path);
4df27c4d
YZ
3849
3850 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3851 if (IS_ERR(new_root)) {
3852 err = PTR_ERR(new_root);
3853 goto out;
3854 }
3855
3856 if (btrfs_root_refs(&new_root->root_item) == 0) {
3857 err = -ENOENT;
3858 goto out;
3859 }
3860
3861 *sub_root = new_root;
3862 location->objectid = btrfs_root_dirid(&new_root->root_item);
3863 location->type = BTRFS_INODE_ITEM_KEY;
3864 location->offset = 0;
3865 err = 0;
3866out:
3867 btrfs_free_path(path);
3868 return err;
39279cc3
CM
3869}
3870
5d4f98a2
YZ
3871static void inode_tree_add(struct inode *inode)
3872{
3873 struct btrfs_root *root = BTRFS_I(inode)->root;
3874 struct btrfs_inode *entry;
03e860bd
FNP
3875 struct rb_node **p;
3876 struct rb_node *parent;
33345d01 3877 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3878again:
3879 p = &root->inode_tree.rb_node;
3880 parent = NULL;
5d4f98a2 3881
1d3382cb 3882 if (inode_unhashed(inode))
76dda93c
YZ
3883 return;
3884
5d4f98a2
YZ
3885 spin_lock(&root->inode_lock);
3886 while (*p) {
3887 parent = *p;
3888 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3889
33345d01 3890 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3891 p = &parent->rb_left;
33345d01 3892 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3893 p = &parent->rb_right;
5d4f98a2
YZ
3894 else {
3895 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3896 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3897 rb_erase(parent, &root->inode_tree);
3898 RB_CLEAR_NODE(parent);
3899 spin_unlock(&root->inode_lock);
3900 goto again;
5d4f98a2
YZ
3901 }
3902 }
3903 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3904 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3905 spin_unlock(&root->inode_lock);
3906}
3907
3908static void inode_tree_del(struct inode *inode)
3909{
3910 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3911 int empty = 0;
5d4f98a2 3912
03e860bd 3913 spin_lock(&root->inode_lock);
5d4f98a2 3914 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3915 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3916 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3917 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3918 }
03e860bd 3919 spin_unlock(&root->inode_lock);
76dda93c 3920
0af3d00b
JB
3921 /*
3922 * Free space cache has inodes in the tree root, but the tree root has a
3923 * root_refs of 0, so this could end up dropping the tree root as a
3924 * snapshot, so we need the extra !root->fs_info->tree_root check to
3925 * make sure we don't drop it.
3926 */
3927 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3928 root != root->fs_info->tree_root) {
76dda93c
YZ
3929 synchronize_srcu(&root->fs_info->subvol_srcu);
3930 spin_lock(&root->inode_lock);
3931 empty = RB_EMPTY_ROOT(&root->inode_tree);
3932 spin_unlock(&root->inode_lock);
3933 if (empty)
3934 btrfs_add_dead_root(root);
3935 }
3936}
3937
143bede5 3938void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
3939{
3940 struct rb_node *node;
3941 struct rb_node *prev;
3942 struct btrfs_inode *entry;
3943 struct inode *inode;
3944 u64 objectid = 0;
3945
3946 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3947
3948 spin_lock(&root->inode_lock);
3949again:
3950 node = root->inode_tree.rb_node;
3951 prev = NULL;
3952 while (node) {
3953 prev = node;
3954 entry = rb_entry(node, struct btrfs_inode, rb_node);
3955
33345d01 3956 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3957 node = node->rb_left;
33345d01 3958 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3959 node = node->rb_right;
3960 else
3961 break;
3962 }
3963 if (!node) {
3964 while (prev) {
3965 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3966 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3967 node = prev;
3968 break;
3969 }
3970 prev = rb_next(prev);
3971 }
3972 }
3973 while (node) {
3974 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3975 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3976 inode = igrab(&entry->vfs_inode);
3977 if (inode) {
3978 spin_unlock(&root->inode_lock);
3979 if (atomic_read(&inode->i_count) > 1)
3980 d_prune_aliases(inode);
3981 /*
45321ac5 3982 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3983 * the inode cache when its usage count
3984 * hits zero.
3985 */
3986 iput(inode);
3987 cond_resched();
3988 spin_lock(&root->inode_lock);
3989 goto again;
3990 }
3991
3992 if (cond_resched_lock(&root->inode_lock))
3993 goto again;
3994
3995 node = rb_next(node);
3996 }
3997 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
3998}
3999
e02119d5
CM
4000static int btrfs_init_locked_inode(struct inode *inode, void *p)
4001{
4002 struct btrfs_iget_args *args = p;
4003 inode->i_ino = args->ino;
e02119d5 4004 BTRFS_I(inode)->root = args->root;
6a63209f 4005 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4006 return 0;
4007}
4008
4009static int btrfs_find_actor(struct inode *inode, void *opaque)
4010{
4011 struct btrfs_iget_args *args = opaque;
33345d01 4012 return args->ino == btrfs_ino(inode) &&
d397712b 4013 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4014}
4015
5d4f98a2
YZ
4016static struct inode *btrfs_iget_locked(struct super_block *s,
4017 u64 objectid,
4018 struct btrfs_root *root)
39279cc3
CM
4019{
4020 struct inode *inode;
4021 struct btrfs_iget_args args;
4022 args.ino = objectid;
4023 args.root = root;
4024
4025 inode = iget5_locked(s, objectid, btrfs_find_actor,
4026 btrfs_init_locked_inode,
4027 (void *)&args);
4028 return inode;
4029}
4030
1a54ef8c
BR
4031/* Get an inode object given its location and corresponding root.
4032 * Returns in *is_new if the inode was read from disk
4033 */
4034struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4035 struct btrfs_root *root, int *new)
1a54ef8c
BR
4036{
4037 struct inode *inode;
4038
4039 inode = btrfs_iget_locked(s, location->objectid, root);
4040 if (!inode)
5d4f98a2 4041 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4042
4043 if (inode->i_state & I_NEW) {
4044 BTRFS_I(inode)->root = root;
4045 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4046 btrfs_read_locked_inode(inode);
1748f843
MF
4047 if (!is_bad_inode(inode)) {
4048 inode_tree_add(inode);
4049 unlock_new_inode(inode);
4050 if (new)
4051 *new = 1;
4052 } else {
e0b6d65b
ST
4053 unlock_new_inode(inode);
4054 iput(inode);
4055 inode = ERR_PTR(-ESTALE);
1748f843
MF
4056 }
4057 }
4058
1a54ef8c
BR
4059 return inode;
4060}
4061
4df27c4d
YZ
4062static struct inode *new_simple_dir(struct super_block *s,
4063 struct btrfs_key *key,
4064 struct btrfs_root *root)
4065{
4066 struct inode *inode = new_inode(s);
4067
4068 if (!inode)
4069 return ERR_PTR(-ENOMEM);
4070
4df27c4d
YZ
4071 BTRFS_I(inode)->root = root;
4072 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4073 BTRFS_I(inode)->dummy_inode = 1;
4074
4075 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4076 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4077 inode->i_fop = &simple_dir_operations;
4078 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4079 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4080
4081 return inode;
4082}
4083
3de4586c 4084struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4085{
d397712b 4086 struct inode *inode;
4df27c4d 4087 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4088 struct btrfs_root *sub_root = root;
4089 struct btrfs_key location;
76dda93c 4090 int index;
b4aff1f8 4091 int ret = 0;
39279cc3
CM
4092
4093 if (dentry->d_name.len > BTRFS_NAME_LEN)
4094 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4095
b4aff1f8
JB
4096 if (unlikely(d_need_lookup(dentry))) {
4097 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4098 kfree(dentry->d_fsdata);
4099 dentry->d_fsdata = NULL;
a66e7cc6
JB
4100 /* This thing is hashed, drop it for now */
4101 d_drop(dentry);
b4aff1f8
JB
4102 } else {
4103 ret = btrfs_inode_by_name(dir, dentry, &location);
4104 }
5f39d397 4105
39279cc3
CM
4106 if (ret < 0)
4107 return ERR_PTR(ret);
5f39d397 4108
4df27c4d
YZ
4109 if (location.objectid == 0)
4110 return NULL;
4111
4112 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4113 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4114 return inode;
4115 }
4116
4117 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4118
76dda93c 4119 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4120 ret = fixup_tree_root_location(root, dir, dentry,
4121 &location, &sub_root);
4122 if (ret < 0) {
4123 if (ret != -ENOENT)
4124 inode = ERR_PTR(ret);
4125 else
4126 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4127 } else {
73f73415 4128 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4129 }
76dda93c
YZ
4130 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4131
34d19bad 4132 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4133 down_read(&root->fs_info->cleanup_work_sem);
4134 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4135 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4136 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4137 if (ret)
4138 inode = ERR_PTR(ret);
c71bf099
YZ
4139 }
4140
3de4586c
CM
4141 return inode;
4142}
4143
fe15ce44 4144static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4145{
4146 struct btrfs_root *root;
848cce0d 4147 struct inode *inode = dentry->d_inode;
76dda93c 4148
848cce0d
LZ
4149 if (!inode && !IS_ROOT(dentry))
4150 inode = dentry->d_parent->d_inode;
76dda93c 4151
848cce0d
LZ
4152 if (inode) {
4153 root = BTRFS_I(inode)->root;
efefb143
YZ
4154 if (btrfs_root_refs(&root->root_item) == 0)
4155 return 1;
848cce0d
LZ
4156
4157 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4158 return 1;
efefb143 4159 }
76dda93c
YZ
4160 return 0;
4161}
4162
b4aff1f8
JB
4163static void btrfs_dentry_release(struct dentry *dentry)
4164{
4165 if (dentry->d_fsdata)
4166 kfree(dentry->d_fsdata);
4167}
4168
3de4586c
CM
4169static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4170 struct nameidata *nd)
4171{
a66e7cc6
JB
4172 struct dentry *ret;
4173
4174 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4175 if (unlikely(d_need_lookup(dentry))) {
4176 spin_lock(&dentry->d_lock);
4177 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4178 spin_unlock(&dentry->d_lock);
4179 }
4180 return ret;
39279cc3
CM
4181}
4182
16cdcec7 4183unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4184 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4185};
4186
cbdf5a24
DW
4187static int btrfs_real_readdir(struct file *filp, void *dirent,
4188 filldir_t filldir)
39279cc3 4189{
6da6abae 4190 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4191 struct btrfs_root *root = BTRFS_I(inode)->root;
4192 struct btrfs_item *item;
4193 struct btrfs_dir_item *di;
4194 struct btrfs_key key;
5f39d397 4195 struct btrfs_key found_key;
39279cc3 4196 struct btrfs_path *path;
16cdcec7
MX
4197 struct list_head ins_list;
4198 struct list_head del_list;
39279cc3 4199 int ret;
5f39d397 4200 struct extent_buffer *leaf;
39279cc3 4201 int slot;
39279cc3
CM
4202 unsigned char d_type;
4203 int over = 0;
4204 u32 di_cur;
4205 u32 di_total;
4206 u32 di_len;
4207 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4208 char tmp_name[32];
4209 char *name_ptr;
4210 int name_len;
16cdcec7 4211 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4212
4213 /* FIXME, use a real flag for deciding about the key type */
4214 if (root->fs_info->tree_root == root)
4215 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4216
3954401f
CM
4217 /* special case for "." */
4218 if (filp->f_pos == 0) {
3765fefa
HS
4219 over = filldir(dirent, ".", 1,
4220 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4221 if (over)
4222 return 0;
4223 filp->f_pos = 1;
4224 }
3954401f
CM
4225 /* special case for .., just use the back ref */
4226 if (filp->f_pos == 1) {
5ecc7e5d 4227 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4228 over = filldir(dirent, "..", 2,
3765fefa 4229 filp->f_pos, pino, DT_DIR);
3954401f 4230 if (over)
49593bfa 4231 return 0;
3954401f
CM
4232 filp->f_pos = 2;
4233 }
49593bfa 4234 path = btrfs_alloc_path();
16cdcec7
MX
4235 if (!path)
4236 return -ENOMEM;
ff5714cc 4237
026fd317 4238 path->reada = 1;
49593bfa 4239
16cdcec7
MX
4240 if (key_type == BTRFS_DIR_INDEX_KEY) {
4241 INIT_LIST_HEAD(&ins_list);
4242 INIT_LIST_HEAD(&del_list);
4243 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4244 }
4245
39279cc3
CM
4246 btrfs_set_key_type(&key, key_type);
4247 key.offset = filp->f_pos;
33345d01 4248 key.objectid = btrfs_ino(inode);
5f39d397 4249
39279cc3
CM
4250 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4251 if (ret < 0)
4252 goto err;
49593bfa
DW
4253
4254 while (1) {
5f39d397 4255 leaf = path->nodes[0];
39279cc3 4256 slot = path->slots[0];
b9e03af0
LZ
4257 if (slot >= btrfs_header_nritems(leaf)) {
4258 ret = btrfs_next_leaf(root, path);
4259 if (ret < 0)
4260 goto err;
4261 else if (ret > 0)
4262 break;
4263 continue;
39279cc3 4264 }
3de4586c 4265
5f39d397
CM
4266 item = btrfs_item_nr(leaf, slot);
4267 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4268
4269 if (found_key.objectid != key.objectid)
39279cc3 4270 break;
5f39d397 4271 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4272 break;
5f39d397 4273 if (found_key.offset < filp->f_pos)
b9e03af0 4274 goto next;
16cdcec7
MX
4275 if (key_type == BTRFS_DIR_INDEX_KEY &&
4276 btrfs_should_delete_dir_index(&del_list,
4277 found_key.offset))
4278 goto next;
5f39d397
CM
4279
4280 filp->f_pos = found_key.offset;
16cdcec7 4281 is_curr = 1;
49593bfa 4282
39279cc3
CM
4283 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4284 di_cur = 0;
5f39d397 4285 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4286
4287 while (di_cur < di_total) {
5f39d397
CM
4288 struct btrfs_key location;
4289
22a94d44
JB
4290 if (verify_dir_item(root, leaf, di))
4291 break;
4292
5f39d397 4293 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4294 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4295 name_ptr = tmp_name;
4296 } else {
4297 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4298 if (!name_ptr) {
4299 ret = -ENOMEM;
4300 goto err;
4301 }
5f39d397
CM
4302 }
4303 read_extent_buffer(leaf, name_ptr,
4304 (unsigned long)(di + 1), name_len);
4305
4306 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4307 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4308
fede766f 4309
3de4586c 4310 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
4311 * skip it.
4312 *
4313 * In contrast to old kernels, we insert the snapshot's
4314 * dir item and dir index after it has been created, so
4315 * we won't find a reference to our own snapshot. We
4316 * still keep the following code for backward
4317 * compatibility.
3de4586c
CM
4318 */
4319 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4320 location.objectid == root->root_key.objectid) {
4321 over = 0;
4322 goto skip;
4323 }
5f39d397 4324 over = filldir(dirent, name_ptr, name_len,
49593bfa 4325 found_key.offset, location.objectid,
39279cc3 4326 d_type);
5f39d397 4327
3de4586c 4328skip:
5f39d397
CM
4329 if (name_ptr != tmp_name)
4330 kfree(name_ptr);
4331
39279cc3
CM
4332 if (over)
4333 goto nopos;
5103e947 4334 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4335 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4336 di_cur += di_len;
4337 di = (struct btrfs_dir_item *)((char *)di + di_len);
4338 }
b9e03af0
LZ
4339next:
4340 path->slots[0]++;
39279cc3 4341 }
49593bfa 4342
16cdcec7
MX
4343 if (key_type == BTRFS_DIR_INDEX_KEY) {
4344 if (is_curr)
4345 filp->f_pos++;
4346 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4347 &ins_list);
4348 if (ret)
4349 goto nopos;
4350 }
4351
49593bfa 4352 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4353 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4354 /*
4355 * 32-bit glibc will use getdents64, but then strtol -
4356 * so the last number we can serve is this.
4357 */
4358 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4359 else
4360 filp->f_pos++;
39279cc3
CM
4361nopos:
4362 ret = 0;
4363err:
16cdcec7
MX
4364 if (key_type == BTRFS_DIR_INDEX_KEY)
4365 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4366 btrfs_free_path(path);
39279cc3
CM
4367 return ret;
4368}
4369
a9185b41 4370int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4371{
4372 struct btrfs_root *root = BTRFS_I(inode)->root;
4373 struct btrfs_trans_handle *trans;
4374 int ret = 0;
0af3d00b 4375 bool nolock = false;
39279cc3 4376
8929ecfa 4377 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4378 return 0;
4379
2cf8572d 4380 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4381 nolock = true;
0af3d00b 4382
a9185b41 4383 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4384 if (nolock)
7a7eaa40 4385 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4386 else
7a7eaa40 4387 trans = btrfs_join_transaction(root);
3612b495
TI
4388 if (IS_ERR(trans))
4389 return PTR_ERR(trans);
0af3d00b
JB
4390 if (nolock)
4391 ret = btrfs_end_transaction_nolock(trans, root);
4392 else
4393 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4394 }
4395 return ret;
4396}
4397
4398/*
54aa1f4d 4399 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4400 * inode changes. But, it is most likely to find the inode in cache.
4401 * FIXME, needs more benchmarking...there are no reasons other than performance
4402 * to keep or drop this code.
4403 */
22c44fe6 4404int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4405{
4406 struct btrfs_root *root = BTRFS_I(inode)->root;
4407 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4408 int ret;
4409
4410 if (BTRFS_I(inode)->dummy_inode)
22c44fe6 4411 return 0;
39279cc3 4412
7a7eaa40 4413 trans = btrfs_join_transaction(root);
22c44fe6
JB
4414 if (IS_ERR(trans))
4415 return PTR_ERR(trans);
8929ecfa
YZ
4416
4417 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4418 if (ret && ret == -ENOSPC) {
4419 /* whoops, lets try again with the full transaction */
4420 btrfs_end_transaction(trans, root);
4421 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4422 if (IS_ERR(trans))
4423 return PTR_ERR(trans);
8929ecfa 4424
94b60442 4425 ret = btrfs_update_inode(trans, root, inode);
94b60442 4426 }
39279cc3 4427 btrfs_end_transaction(trans, root);
16cdcec7
MX
4428 if (BTRFS_I(inode)->delayed_node)
4429 btrfs_balance_delayed_items(root);
22c44fe6
JB
4430
4431 return ret;
4432}
4433
4434/*
4435 * This is a copy of file_update_time. We need this so we can return error on
4436 * ENOSPC for updating the inode in the case of file write and mmap writes.
4437 */
4438int btrfs_update_time(struct file *file)
4439{
4440 struct inode *inode = file->f_path.dentry->d_inode;
4441 struct timespec now;
4442 int ret;
4443 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4444
4445 /* First try to exhaust all avenues to not sync */
4446 if (IS_NOCMTIME(inode))
4447 return 0;
4448
4449 now = current_fs_time(inode->i_sb);
4450 if (!timespec_equal(&inode->i_mtime, &now))
4451 sync_it = S_MTIME;
4452
4453 if (!timespec_equal(&inode->i_ctime, &now))
4454 sync_it |= S_CTIME;
4455
4456 if (IS_I_VERSION(inode))
4457 sync_it |= S_VERSION;
4458
4459 if (!sync_it)
4460 return 0;
4461
4462 /* Finally allowed to write? Takes lock. */
4463 if (mnt_want_write_file(file))
4464 return 0;
4465
4466 /* Only change inode inside the lock region */
4467 if (sync_it & S_VERSION)
4468 inode_inc_iversion(inode);
4469 if (sync_it & S_CTIME)
4470 inode->i_ctime = now;
4471 if (sync_it & S_MTIME)
4472 inode->i_mtime = now;
4473 ret = btrfs_dirty_inode(inode);
4474 if (!ret)
4475 mark_inode_dirty_sync(inode);
4476 mnt_drop_write(file->f_path.mnt);
4477 return ret;
39279cc3
CM
4478}
4479
d352ac68
CM
4480/*
4481 * find the highest existing sequence number in a directory
4482 * and then set the in-memory index_cnt variable to reflect
4483 * free sequence numbers
4484 */
aec7477b
JB
4485static int btrfs_set_inode_index_count(struct inode *inode)
4486{
4487 struct btrfs_root *root = BTRFS_I(inode)->root;
4488 struct btrfs_key key, found_key;
4489 struct btrfs_path *path;
4490 struct extent_buffer *leaf;
4491 int ret;
4492
33345d01 4493 key.objectid = btrfs_ino(inode);
aec7477b
JB
4494 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4495 key.offset = (u64)-1;
4496
4497 path = btrfs_alloc_path();
4498 if (!path)
4499 return -ENOMEM;
4500
4501 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4502 if (ret < 0)
4503 goto out;
4504 /* FIXME: we should be able to handle this */
4505 if (ret == 0)
4506 goto out;
4507 ret = 0;
4508
4509 /*
4510 * MAGIC NUMBER EXPLANATION:
4511 * since we search a directory based on f_pos we have to start at 2
4512 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4513 * else has to start at 2
4514 */
4515 if (path->slots[0] == 0) {
4516 BTRFS_I(inode)->index_cnt = 2;
4517 goto out;
4518 }
4519
4520 path->slots[0]--;
4521
4522 leaf = path->nodes[0];
4523 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4524
33345d01 4525 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4526 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4527 BTRFS_I(inode)->index_cnt = 2;
4528 goto out;
4529 }
4530
4531 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4532out:
4533 btrfs_free_path(path);
4534 return ret;
4535}
4536
d352ac68
CM
4537/*
4538 * helper to find a free sequence number in a given directory. This current
4539 * code is very simple, later versions will do smarter things in the btree
4540 */
3de4586c 4541int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4542{
4543 int ret = 0;
4544
4545 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4546 ret = btrfs_inode_delayed_dir_index_count(dir);
4547 if (ret) {
4548 ret = btrfs_set_inode_index_count(dir);
4549 if (ret)
4550 return ret;
4551 }
aec7477b
JB
4552 }
4553
00e4e6b3 4554 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4555 BTRFS_I(dir)->index_cnt++;
4556
4557 return ret;
4558}
4559
39279cc3
CM
4560static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4561 struct btrfs_root *root,
aec7477b 4562 struct inode *dir,
9c58309d 4563 const char *name, int name_len,
175a4eb7
AV
4564 u64 ref_objectid, u64 objectid,
4565 umode_t mode, u64 *index)
39279cc3
CM
4566{
4567 struct inode *inode;
5f39d397 4568 struct btrfs_inode_item *inode_item;
39279cc3 4569 struct btrfs_key *location;
5f39d397 4570 struct btrfs_path *path;
9c58309d
CM
4571 struct btrfs_inode_ref *ref;
4572 struct btrfs_key key[2];
4573 u32 sizes[2];
4574 unsigned long ptr;
39279cc3
CM
4575 int ret;
4576 int owner;
4577
5f39d397 4578 path = btrfs_alloc_path();
d8926bb3
MF
4579 if (!path)
4580 return ERR_PTR(-ENOMEM);
5f39d397 4581
39279cc3 4582 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4583 if (!inode) {
4584 btrfs_free_path(path);
39279cc3 4585 return ERR_PTR(-ENOMEM);
8fb27640 4586 }
39279cc3 4587
581bb050
LZ
4588 /*
4589 * we have to initialize this early, so we can reclaim the inode
4590 * number if we fail afterwards in this function.
4591 */
4592 inode->i_ino = objectid;
4593
aec7477b 4594 if (dir) {
1abe9b8a 4595 trace_btrfs_inode_request(dir);
4596
3de4586c 4597 ret = btrfs_set_inode_index(dir, index);
09771430 4598 if (ret) {
8fb27640 4599 btrfs_free_path(path);
09771430 4600 iput(inode);
aec7477b 4601 return ERR_PTR(ret);
09771430 4602 }
aec7477b
JB
4603 }
4604 /*
4605 * index_cnt is ignored for everything but a dir,
4606 * btrfs_get_inode_index_count has an explanation for the magic
4607 * number
4608 */
4609 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4610 BTRFS_I(inode)->root = root;
e02119d5 4611 BTRFS_I(inode)->generation = trans->transid;
76195853 4612 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4613 btrfs_set_inode_space_info(root, inode);
b888db2b 4614
569254b0 4615 if (S_ISDIR(mode))
39279cc3
CM
4616 owner = 0;
4617 else
4618 owner = 1;
9c58309d
CM
4619
4620 key[0].objectid = objectid;
4621 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4622 key[0].offset = 0;
4623
4624 key[1].objectid = objectid;
4625 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4626 key[1].offset = ref_objectid;
4627
4628 sizes[0] = sizeof(struct btrfs_inode_item);
4629 sizes[1] = name_len + sizeof(*ref);
4630
b9473439 4631 path->leave_spinning = 1;
9c58309d
CM
4632 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4633 if (ret != 0)
5f39d397
CM
4634 goto fail;
4635
ecc11fab 4636 inode_init_owner(inode, dir, mode);
a76a3cd4 4637 inode_set_bytes(inode, 0);
39279cc3 4638 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4639 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4640 struct btrfs_inode_item);
e02119d5 4641 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4642
4643 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4644 struct btrfs_inode_ref);
4645 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4646 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4647 ptr = (unsigned long)(ref + 1);
4648 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4649
5f39d397
CM
4650 btrfs_mark_buffer_dirty(path->nodes[0]);
4651 btrfs_free_path(path);
4652
39279cc3
CM
4653 location = &BTRFS_I(inode)->location;
4654 location->objectid = objectid;
39279cc3
CM
4655 location->offset = 0;
4656 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4657
6cbff00f
CH
4658 btrfs_inherit_iflags(inode, dir);
4659
569254b0 4660 if (S_ISREG(mode)) {
94272164
CM
4661 if (btrfs_test_opt(root, NODATASUM))
4662 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4663 if (btrfs_test_opt(root, NODATACOW) ||
4664 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4665 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4666 }
4667
39279cc3 4668 insert_inode_hash(inode);
5d4f98a2 4669 inode_tree_add(inode);
1abe9b8a 4670
4671 trace_btrfs_inode_new(inode);
1973f0fa 4672 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4673
39279cc3 4674 return inode;
5f39d397 4675fail:
aec7477b
JB
4676 if (dir)
4677 BTRFS_I(dir)->index_cnt--;
5f39d397 4678 btrfs_free_path(path);
09771430 4679 iput(inode);
5f39d397 4680 return ERR_PTR(ret);
39279cc3
CM
4681}
4682
4683static inline u8 btrfs_inode_type(struct inode *inode)
4684{
4685 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4686}
4687
d352ac68
CM
4688/*
4689 * utility function to add 'inode' into 'parent_inode' with
4690 * a give name and a given sequence number.
4691 * if 'add_backref' is true, also insert a backref from the
4692 * inode to the parent directory.
4693 */
e02119d5
CM
4694int btrfs_add_link(struct btrfs_trans_handle *trans,
4695 struct inode *parent_inode, struct inode *inode,
4696 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4697{
4df27c4d 4698 int ret = 0;
39279cc3 4699 struct btrfs_key key;
e02119d5 4700 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4701 u64 ino = btrfs_ino(inode);
4702 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4703
33345d01 4704 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4705 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4706 } else {
33345d01 4707 key.objectid = ino;
4df27c4d
YZ
4708 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4709 key.offset = 0;
4710 }
4711
33345d01 4712 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4713 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4714 key.objectid, root->root_key.objectid,
33345d01 4715 parent_ino, index, name, name_len);
4df27c4d 4716 } else if (add_backref) {
33345d01
LZ
4717 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4718 parent_ino, index);
4df27c4d 4719 }
39279cc3 4720
79787eaa
JM
4721 /* Nothing to clean up yet */
4722 if (ret)
4723 return ret;
4df27c4d 4724
79787eaa
JM
4725 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4726 parent_inode, &key,
4727 btrfs_inode_type(inode), index);
4728 if (ret == -EEXIST)
4729 goto fail_dir_item;
4730 else if (ret) {
4731 btrfs_abort_transaction(trans, root, ret);
4732 return ret;
39279cc3 4733 }
79787eaa
JM
4734
4735 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4736 name_len * 2);
0c4d2d95 4737 inode_inc_iversion(parent_inode);
79787eaa
JM
4738 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4739 ret = btrfs_update_inode(trans, root, parent_inode);
4740 if (ret)
4741 btrfs_abort_transaction(trans, root, ret);
39279cc3 4742 return ret;
fe66a05a
CM
4743
4744fail_dir_item:
4745 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4746 u64 local_index;
4747 int err;
4748 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4749 key.objectid, root->root_key.objectid,
4750 parent_ino, &local_index, name, name_len);
4751
4752 } else if (add_backref) {
4753 u64 local_index;
4754 int err;
4755
4756 err = btrfs_del_inode_ref(trans, root, name, name_len,
4757 ino, parent_ino, &local_index);
4758 }
4759 return ret;
39279cc3
CM
4760}
4761
4762static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4763 struct inode *dir, struct dentry *dentry,
4764 struct inode *inode, int backref, u64 index)
39279cc3 4765{
a1b075d2
JB
4766 int err = btrfs_add_link(trans, dir, inode,
4767 dentry->d_name.name, dentry->d_name.len,
4768 backref, index);
39279cc3
CM
4769 if (err > 0)
4770 err = -EEXIST;
4771 return err;
4772}
4773
618e21d5 4774static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4775 umode_t mode, dev_t rdev)
618e21d5
JB
4776{
4777 struct btrfs_trans_handle *trans;
4778 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4779 struct inode *inode = NULL;
618e21d5
JB
4780 int err;
4781 int drop_inode = 0;
4782 u64 objectid;
1832a6d5 4783 unsigned long nr = 0;
00e4e6b3 4784 u64 index = 0;
618e21d5
JB
4785
4786 if (!new_valid_dev(rdev))
4787 return -EINVAL;
4788
9ed74f2d
JB
4789 /*
4790 * 2 for inode item and ref
4791 * 2 for dir items
4792 * 1 for xattr if selinux is on
4793 */
a22285a6
YZ
4794 trans = btrfs_start_transaction(root, 5);
4795 if (IS_ERR(trans))
4796 return PTR_ERR(trans);
1832a6d5 4797
581bb050
LZ
4798 err = btrfs_find_free_ino(root, &objectid);
4799 if (err)
4800 goto out_unlock;
4801
aec7477b 4802 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4803 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4804 mode, &index);
7cf96da3
TI
4805 if (IS_ERR(inode)) {
4806 err = PTR_ERR(inode);
618e21d5 4807 goto out_unlock;
7cf96da3 4808 }
618e21d5 4809
2a7dba39 4810 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4811 if (err) {
4812 drop_inode = 1;
4813 goto out_unlock;
4814 }
4815
ad19db71
CS
4816 /*
4817 * If the active LSM wants to access the inode during
4818 * d_instantiate it needs these. Smack checks to see
4819 * if the filesystem supports xattrs by looking at the
4820 * ops vector.
4821 */
4822
4823 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4824 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4825 if (err)
4826 drop_inode = 1;
4827 else {
618e21d5 4828 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4829 btrfs_update_inode(trans, root, inode);
08c422c2 4830 d_instantiate(dentry, inode);
618e21d5 4831 }
618e21d5 4832out_unlock:
d3c2fdcf 4833 nr = trans->blocks_used;
7ad85bb7 4834 btrfs_end_transaction(trans, root);
a22285a6 4835 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4836 if (drop_inode) {
4837 inode_dec_link_count(inode);
4838 iput(inode);
4839 }
618e21d5
JB
4840 return err;
4841}
4842
39279cc3 4843static int btrfs_create(struct inode *dir, struct dentry *dentry,
4acdaf27 4844 umode_t mode, struct nameidata *nd)
39279cc3
CM
4845{
4846 struct btrfs_trans_handle *trans;
4847 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4848 struct inode *inode = NULL;
39279cc3 4849 int drop_inode = 0;
a22285a6 4850 int err;
1832a6d5 4851 unsigned long nr = 0;
39279cc3 4852 u64 objectid;
00e4e6b3 4853 u64 index = 0;
39279cc3 4854
9ed74f2d
JB
4855 /*
4856 * 2 for inode item and ref
4857 * 2 for dir items
4858 * 1 for xattr if selinux is on
4859 */
a22285a6
YZ
4860 trans = btrfs_start_transaction(root, 5);
4861 if (IS_ERR(trans))
4862 return PTR_ERR(trans);
9ed74f2d 4863
581bb050
LZ
4864 err = btrfs_find_free_ino(root, &objectid);
4865 if (err)
4866 goto out_unlock;
4867
aec7477b 4868 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4869 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4870 mode, &index);
7cf96da3
TI
4871 if (IS_ERR(inode)) {
4872 err = PTR_ERR(inode);
39279cc3 4873 goto out_unlock;
7cf96da3 4874 }
39279cc3 4875
2a7dba39 4876 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4877 if (err) {
4878 drop_inode = 1;
4879 goto out_unlock;
4880 }
4881
ad19db71
CS
4882 /*
4883 * If the active LSM wants to access the inode during
4884 * d_instantiate it needs these. Smack checks to see
4885 * if the filesystem supports xattrs by looking at the
4886 * ops vector.
4887 */
4888 inode->i_fop = &btrfs_file_operations;
4889 inode->i_op = &btrfs_file_inode_operations;
4890
a1b075d2 4891 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4892 if (err)
4893 drop_inode = 1;
4894 else {
4895 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4896 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 4897 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
08c422c2 4898 d_instantiate(dentry, inode);
39279cc3 4899 }
39279cc3 4900out_unlock:
d3c2fdcf 4901 nr = trans->blocks_used;
7ad85bb7 4902 btrfs_end_transaction(trans, root);
39279cc3
CM
4903 if (drop_inode) {
4904 inode_dec_link_count(inode);
4905 iput(inode);
4906 }
d3c2fdcf 4907 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4908 return err;
4909}
4910
4911static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4912 struct dentry *dentry)
4913{
4914 struct btrfs_trans_handle *trans;
4915 struct btrfs_root *root = BTRFS_I(dir)->root;
4916 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4917 u64 index;
1832a6d5 4918 unsigned long nr = 0;
39279cc3
CM
4919 int err;
4920 int drop_inode = 0;
4921
4a8be425
TH
4922 /* do not allow sys_link's with other subvols of the same device */
4923 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4924 return -EXDEV;
4a8be425 4925
c055e99e
AV
4926 if (inode->i_nlink == ~0U)
4927 return -EMLINK;
4a8be425 4928
3de4586c 4929 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4930 if (err)
4931 goto fail;
4932
a22285a6 4933 /*
7e6b6465 4934 * 2 items for inode and inode ref
a22285a6 4935 * 2 items for dir items
7e6b6465 4936 * 1 item for parent inode
a22285a6 4937 */
7e6b6465 4938 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4939 if (IS_ERR(trans)) {
4940 err = PTR_ERR(trans);
4941 goto fail;
4942 }
5f39d397 4943
3153495d 4944 btrfs_inc_nlink(inode);
0c4d2d95 4945 inode_inc_iversion(inode);
3153495d 4946 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4947 ihold(inode);
aec7477b 4948
a1b075d2 4949 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4950
a5719521 4951 if (err) {
54aa1f4d 4952 drop_inode = 1;
a5719521 4953 } else {
10d9f309 4954 struct dentry *parent = dentry->d_parent;
a5719521 4955 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
4956 if (err)
4957 goto fail;
08c422c2 4958 d_instantiate(dentry, inode);
6a912213 4959 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 4960 }
39279cc3 4961
d3c2fdcf 4962 nr = trans->blocks_used;
7ad85bb7 4963 btrfs_end_transaction(trans, root);
1832a6d5 4964fail:
39279cc3
CM
4965 if (drop_inode) {
4966 inode_dec_link_count(inode);
4967 iput(inode);
4968 }
d3c2fdcf 4969 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4970 return err;
4971}
4972
18bb1db3 4973static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 4974{
b9d86667 4975 struct inode *inode = NULL;
39279cc3
CM
4976 struct btrfs_trans_handle *trans;
4977 struct btrfs_root *root = BTRFS_I(dir)->root;
4978 int err = 0;
4979 int drop_on_err = 0;
b9d86667 4980 u64 objectid = 0;
00e4e6b3 4981 u64 index = 0;
d3c2fdcf 4982 unsigned long nr = 1;
39279cc3 4983
9ed74f2d
JB
4984 /*
4985 * 2 items for inode and ref
4986 * 2 items for dir items
4987 * 1 for xattr if selinux is on
4988 */
a22285a6
YZ
4989 trans = btrfs_start_transaction(root, 5);
4990 if (IS_ERR(trans))
4991 return PTR_ERR(trans);
39279cc3 4992
581bb050
LZ
4993 err = btrfs_find_free_ino(root, &objectid);
4994 if (err)
4995 goto out_fail;
4996
aec7477b 4997 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4998 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4999 S_IFDIR | mode, &index);
39279cc3
CM
5000 if (IS_ERR(inode)) {
5001 err = PTR_ERR(inode);
5002 goto out_fail;
5003 }
5f39d397 5004
39279cc3 5005 drop_on_err = 1;
33268eaf 5006
2a7dba39 5007 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5008 if (err)
5009 goto out_fail;
5010
39279cc3
CM
5011 inode->i_op = &btrfs_dir_inode_operations;
5012 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5013
dbe674a9 5014 btrfs_i_size_write(inode, 0);
39279cc3
CM
5015 err = btrfs_update_inode(trans, root, inode);
5016 if (err)
5017 goto out_fail;
5f39d397 5018
a1b075d2
JB
5019 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5020 dentry->d_name.len, 0, index);
39279cc3
CM
5021 if (err)
5022 goto out_fail;
5f39d397 5023
39279cc3
CM
5024 d_instantiate(dentry, inode);
5025 drop_on_err = 0;
39279cc3
CM
5026
5027out_fail:
d3c2fdcf 5028 nr = trans->blocks_used;
7ad85bb7 5029 btrfs_end_transaction(trans, root);
39279cc3
CM
5030 if (drop_on_err)
5031 iput(inode);
d3c2fdcf 5032 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5033 return err;
5034}
5035
d352ac68
CM
5036/* helper for btfs_get_extent. Given an existing extent in the tree,
5037 * and an extent that you want to insert, deal with overlap and insert
5038 * the new extent into the tree.
5039 */
3b951516
CM
5040static int merge_extent_mapping(struct extent_map_tree *em_tree,
5041 struct extent_map *existing,
e6dcd2dc
CM
5042 struct extent_map *em,
5043 u64 map_start, u64 map_len)
3b951516
CM
5044{
5045 u64 start_diff;
3b951516 5046
e6dcd2dc
CM
5047 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5048 start_diff = map_start - em->start;
5049 em->start = map_start;
5050 em->len = map_len;
c8b97818
CM
5051 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5052 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5053 em->block_start += start_diff;
c8b97818
CM
5054 em->block_len -= start_diff;
5055 }
e6dcd2dc 5056 return add_extent_mapping(em_tree, em);
3b951516
CM
5057}
5058
c8b97818
CM
5059static noinline int uncompress_inline(struct btrfs_path *path,
5060 struct inode *inode, struct page *page,
5061 size_t pg_offset, u64 extent_offset,
5062 struct btrfs_file_extent_item *item)
5063{
5064 int ret;
5065 struct extent_buffer *leaf = path->nodes[0];
5066 char *tmp;
5067 size_t max_size;
5068 unsigned long inline_size;
5069 unsigned long ptr;
261507a0 5070 int compress_type;
c8b97818
CM
5071
5072 WARN_ON(pg_offset != 0);
261507a0 5073 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5074 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5075 inline_size = btrfs_file_extent_inline_item_len(leaf,
5076 btrfs_item_nr(leaf, path->slots[0]));
5077 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5078 if (!tmp)
5079 return -ENOMEM;
c8b97818
CM
5080 ptr = btrfs_file_extent_inline_start(item);
5081
5082 read_extent_buffer(leaf, tmp, ptr, inline_size);
5083
5b050f04 5084 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5085 ret = btrfs_decompress(compress_type, tmp, page,
5086 extent_offset, inline_size, max_size);
c8b97818 5087 if (ret) {
7ac687d9 5088 char *kaddr = kmap_atomic(page);
c8b97818
CM
5089 unsigned long copy_size = min_t(u64,
5090 PAGE_CACHE_SIZE - pg_offset,
5091 max_size - extent_offset);
5092 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5093 kunmap_atomic(kaddr);
c8b97818
CM
5094 }
5095 kfree(tmp);
5096 return 0;
5097}
5098
d352ac68
CM
5099/*
5100 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5101 * the ugly parts come from merging extents from the disk with the in-ram
5102 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5103 * where the in-ram extents might be locked pending data=ordered completion.
5104 *
5105 * This also copies inline extents directly into the page.
5106 */
d397712b 5107
a52d9a80 5108struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5109 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5110 int create)
5111{
5112 int ret;
5113 int err = 0;
db94535d 5114 u64 bytenr;
a52d9a80
CM
5115 u64 extent_start = 0;
5116 u64 extent_end = 0;
33345d01 5117 u64 objectid = btrfs_ino(inode);
a52d9a80 5118 u32 found_type;
f421950f 5119 struct btrfs_path *path = NULL;
a52d9a80
CM
5120 struct btrfs_root *root = BTRFS_I(inode)->root;
5121 struct btrfs_file_extent_item *item;
5f39d397
CM
5122 struct extent_buffer *leaf;
5123 struct btrfs_key found_key;
a52d9a80
CM
5124 struct extent_map *em = NULL;
5125 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5126 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5127 struct btrfs_trans_handle *trans = NULL;
261507a0 5128 int compress_type;
a52d9a80 5129
a52d9a80 5130again:
890871be 5131 read_lock(&em_tree->lock);
d1310b2e 5132 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5133 if (em)
5134 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5135 read_unlock(&em_tree->lock);
d1310b2e 5136
a52d9a80 5137 if (em) {
e1c4b745
CM
5138 if (em->start > start || em->start + em->len <= start)
5139 free_extent_map(em);
5140 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5141 free_extent_map(em);
5142 else
5143 goto out;
a52d9a80 5144 }
172ddd60 5145 em = alloc_extent_map();
a52d9a80 5146 if (!em) {
d1310b2e
CM
5147 err = -ENOMEM;
5148 goto out;
a52d9a80 5149 }
e6dcd2dc 5150 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5151 em->start = EXTENT_MAP_HOLE;
445a6944 5152 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5153 em->len = (u64)-1;
c8b97818 5154 em->block_len = (u64)-1;
f421950f
CM
5155
5156 if (!path) {
5157 path = btrfs_alloc_path();
026fd317
JB
5158 if (!path) {
5159 err = -ENOMEM;
5160 goto out;
5161 }
5162 /*
5163 * Chances are we'll be called again, so go ahead and do
5164 * readahead
5165 */
5166 path->reada = 1;
f421950f
CM
5167 }
5168
179e29e4
CM
5169 ret = btrfs_lookup_file_extent(trans, root, path,
5170 objectid, start, trans != NULL);
a52d9a80
CM
5171 if (ret < 0) {
5172 err = ret;
5173 goto out;
5174 }
5175
5176 if (ret != 0) {
5177 if (path->slots[0] == 0)
5178 goto not_found;
5179 path->slots[0]--;
5180 }
5181
5f39d397
CM
5182 leaf = path->nodes[0];
5183 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5184 struct btrfs_file_extent_item);
a52d9a80 5185 /* are we inside the extent that was found? */
5f39d397
CM
5186 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5187 found_type = btrfs_key_type(&found_key);
5188 if (found_key.objectid != objectid ||
a52d9a80
CM
5189 found_type != BTRFS_EXTENT_DATA_KEY) {
5190 goto not_found;
5191 }
5192
5f39d397
CM
5193 found_type = btrfs_file_extent_type(leaf, item);
5194 extent_start = found_key.offset;
261507a0 5195 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5196 if (found_type == BTRFS_FILE_EXTENT_REG ||
5197 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5198 extent_end = extent_start +
db94535d 5199 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5200 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5201 size_t size;
5202 size = btrfs_file_extent_inline_len(leaf, item);
5203 extent_end = (extent_start + size + root->sectorsize - 1) &
5204 ~((u64)root->sectorsize - 1);
5205 }
5206
5207 if (start >= extent_end) {
5208 path->slots[0]++;
5209 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5210 ret = btrfs_next_leaf(root, path);
5211 if (ret < 0) {
5212 err = ret;
5213 goto out;
a52d9a80 5214 }
9036c102
YZ
5215 if (ret > 0)
5216 goto not_found;
5217 leaf = path->nodes[0];
a52d9a80 5218 }
9036c102
YZ
5219 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5220 if (found_key.objectid != objectid ||
5221 found_key.type != BTRFS_EXTENT_DATA_KEY)
5222 goto not_found;
5223 if (start + len <= found_key.offset)
5224 goto not_found;
5225 em->start = start;
5226 em->len = found_key.offset - start;
5227 goto not_found_em;
5228 }
5229
d899e052
YZ
5230 if (found_type == BTRFS_FILE_EXTENT_REG ||
5231 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5232 em->start = extent_start;
5233 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5234 em->orig_start = extent_start -
5235 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5236 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5237 if (bytenr == 0) {
5f39d397 5238 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5239 goto insert;
5240 }
261507a0 5241 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5242 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5243 em->compress_type = compress_type;
c8b97818
CM
5244 em->block_start = bytenr;
5245 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5246 item);
5247 } else {
5248 bytenr += btrfs_file_extent_offset(leaf, item);
5249 em->block_start = bytenr;
5250 em->block_len = em->len;
d899e052
YZ
5251 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5252 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5253 }
a52d9a80
CM
5254 goto insert;
5255 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5256 unsigned long ptr;
a52d9a80 5257 char *map;
3326d1b0
CM
5258 size_t size;
5259 size_t extent_offset;
5260 size_t copy_size;
a52d9a80 5261
689f9346 5262 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5263 if (!page || create) {
689f9346 5264 em->start = extent_start;
9036c102 5265 em->len = extent_end - extent_start;
689f9346
Y
5266 goto out;
5267 }
5f39d397 5268
9036c102
YZ
5269 size = btrfs_file_extent_inline_len(leaf, item);
5270 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5271 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5272 size - extent_offset);
3326d1b0 5273 em->start = extent_start + extent_offset;
70dec807
CM
5274 em->len = (copy_size + root->sectorsize - 1) &
5275 ~((u64)root->sectorsize - 1);
ff5b7ee3 5276 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5277 if (compress_type) {
c8b97818 5278 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5279 em->compress_type = compress_type;
5280 }
689f9346 5281 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5282 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5283 if (btrfs_file_extent_compression(leaf, item) !=
5284 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5285 ret = uncompress_inline(path, inode, page,
5286 pg_offset,
5287 extent_offset, item);
79787eaa 5288 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
5289 } else {
5290 map = kmap(page);
5291 read_extent_buffer(leaf, map + pg_offset, ptr,
5292 copy_size);
93c82d57
CM
5293 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5294 memset(map + pg_offset + copy_size, 0,
5295 PAGE_CACHE_SIZE - pg_offset -
5296 copy_size);
5297 }
c8b97818
CM
5298 kunmap(page);
5299 }
179e29e4
CM
5300 flush_dcache_page(page);
5301 } else if (create && PageUptodate(page)) {
6bf7e080 5302 BUG();
179e29e4
CM
5303 if (!trans) {
5304 kunmap(page);
5305 free_extent_map(em);
5306 em = NULL;
ff5714cc 5307
b3b4aa74 5308 btrfs_release_path(path);
7a7eaa40 5309 trans = btrfs_join_transaction(root);
ff5714cc 5310
3612b495
TI
5311 if (IS_ERR(trans))
5312 return ERR_CAST(trans);
179e29e4
CM
5313 goto again;
5314 }
c8b97818 5315 map = kmap(page);
70dec807 5316 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5317 copy_size);
c8b97818 5318 kunmap(page);
179e29e4 5319 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5320 }
d1310b2e 5321 set_extent_uptodate(io_tree, em->start,
507903b8 5322 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5323 goto insert;
5324 } else {
d397712b 5325 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5326 WARN_ON(1);
5327 }
5328not_found:
5329 em->start = start;
d1310b2e 5330 em->len = len;
a52d9a80 5331not_found_em:
5f39d397 5332 em->block_start = EXTENT_MAP_HOLE;
9036c102 5333 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5334insert:
b3b4aa74 5335 btrfs_release_path(path);
d1310b2e 5336 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5337 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5338 "[%llu %llu]\n", (unsigned long long)em->start,
5339 (unsigned long long)em->len,
5340 (unsigned long long)start,
5341 (unsigned long long)len);
a52d9a80
CM
5342 err = -EIO;
5343 goto out;
5344 }
d1310b2e
CM
5345
5346 err = 0;
890871be 5347 write_lock(&em_tree->lock);
a52d9a80 5348 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5349 /* it is possible that someone inserted the extent into the tree
5350 * while we had the lock dropped. It is also possible that
5351 * an overlapping map exists in the tree
5352 */
a52d9a80 5353 if (ret == -EEXIST) {
3b951516 5354 struct extent_map *existing;
e6dcd2dc
CM
5355
5356 ret = 0;
5357
3b951516 5358 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5359 if (existing && (existing->start > start ||
5360 existing->start + existing->len <= start)) {
5361 free_extent_map(existing);
5362 existing = NULL;
5363 }
3b951516
CM
5364 if (!existing) {
5365 existing = lookup_extent_mapping(em_tree, em->start,
5366 em->len);
5367 if (existing) {
5368 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5369 em, start,
5370 root->sectorsize);
3b951516
CM
5371 free_extent_map(existing);
5372 if (err) {
5373 free_extent_map(em);
5374 em = NULL;
5375 }
5376 } else {
5377 err = -EIO;
3b951516
CM
5378 free_extent_map(em);
5379 em = NULL;
5380 }
5381 } else {
5382 free_extent_map(em);
5383 em = existing;
e6dcd2dc 5384 err = 0;
a52d9a80 5385 }
a52d9a80 5386 }
890871be 5387 write_unlock(&em_tree->lock);
a52d9a80 5388out:
1abe9b8a 5389
5390 trace_btrfs_get_extent(root, em);
5391
f421950f
CM
5392 if (path)
5393 btrfs_free_path(path);
a52d9a80
CM
5394 if (trans) {
5395 ret = btrfs_end_transaction(trans, root);
d397712b 5396 if (!err)
a52d9a80
CM
5397 err = ret;
5398 }
a52d9a80
CM
5399 if (err) {
5400 free_extent_map(em);
a52d9a80
CM
5401 return ERR_PTR(err);
5402 }
79787eaa 5403 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
5404 return em;
5405}
5406
ec29ed5b
CM
5407struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5408 size_t pg_offset, u64 start, u64 len,
5409 int create)
5410{
5411 struct extent_map *em;
5412 struct extent_map *hole_em = NULL;
5413 u64 range_start = start;
5414 u64 end;
5415 u64 found;
5416 u64 found_end;
5417 int err = 0;
5418
5419 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5420 if (IS_ERR(em))
5421 return em;
5422 if (em) {
5423 /*
5424 * if our em maps to a hole, there might
5425 * actually be delalloc bytes behind it
5426 */
5427 if (em->block_start != EXTENT_MAP_HOLE)
5428 return em;
5429 else
5430 hole_em = em;
5431 }
5432
5433 /* check to see if we've wrapped (len == -1 or similar) */
5434 end = start + len;
5435 if (end < start)
5436 end = (u64)-1;
5437 else
5438 end -= 1;
5439
5440 em = NULL;
5441
5442 /* ok, we didn't find anything, lets look for delalloc */
5443 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5444 end, len, EXTENT_DELALLOC, 1);
5445 found_end = range_start + found;
5446 if (found_end < range_start)
5447 found_end = (u64)-1;
5448
5449 /*
5450 * we didn't find anything useful, return
5451 * the original results from get_extent()
5452 */
5453 if (range_start > end || found_end <= start) {
5454 em = hole_em;
5455 hole_em = NULL;
5456 goto out;
5457 }
5458
5459 /* adjust the range_start to make sure it doesn't
5460 * go backwards from the start they passed in
5461 */
5462 range_start = max(start,range_start);
5463 found = found_end - range_start;
5464
5465 if (found > 0) {
5466 u64 hole_start = start;
5467 u64 hole_len = len;
5468
172ddd60 5469 em = alloc_extent_map();
ec29ed5b
CM
5470 if (!em) {
5471 err = -ENOMEM;
5472 goto out;
5473 }
5474 /*
5475 * when btrfs_get_extent can't find anything it
5476 * returns one huge hole
5477 *
5478 * make sure what it found really fits our range, and
5479 * adjust to make sure it is based on the start from
5480 * the caller
5481 */
5482 if (hole_em) {
5483 u64 calc_end = extent_map_end(hole_em);
5484
5485 if (calc_end <= start || (hole_em->start > end)) {
5486 free_extent_map(hole_em);
5487 hole_em = NULL;
5488 } else {
5489 hole_start = max(hole_em->start, start);
5490 hole_len = calc_end - hole_start;
5491 }
5492 }
5493 em->bdev = NULL;
5494 if (hole_em && range_start > hole_start) {
5495 /* our hole starts before our delalloc, so we
5496 * have to return just the parts of the hole
5497 * that go until the delalloc starts
5498 */
5499 em->len = min(hole_len,
5500 range_start - hole_start);
5501 em->start = hole_start;
5502 em->orig_start = hole_start;
5503 /*
5504 * don't adjust block start at all,
5505 * it is fixed at EXTENT_MAP_HOLE
5506 */
5507 em->block_start = hole_em->block_start;
5508 em->block_len = hole_len;
5509 } else {
5510 em->start = range_start;
5511 em->len = found;
5512 em->orig_start = range_start;
5513 em->block_start = EXTENT_MAP_DELALLOC;
5514 em->block_len = found;
5515 }
5516 } else if (hole_em) {
5517 return hole_em;
5518 }
5519out:
5520
5521 free_extent_map(hole_em);
5522 if (err) {
5523 free_extent_map(em);
5524 return ERR_PTR(err);
5525 }
5526 return em;
5527}
5528
4b46fce2 5529static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5530 struct extent_map *em,
4b46fce2
JB
5531 u64 start, u64 len)
5532{
5533 struct btrfs_root *root = BTRFS_I(inode)->root;
5534 struct btrfs_trans_handle *trans;
4b46fce2
JB
5535 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5536 struct btrfs_key ins;
5537 u64 alloc_hint;
5538 int ret;
16d299ac 5539 bool insert = false;
4b46fce2 5540
16d299ac
JB
5541 /*
5542 * Ok if the extent map we looked up is a hole and is for the exact
5543 * range we want, there is no reason to allocate a new one, however if
5544 * it is not right then we need to free this one and drop the cache for
5545 * our range.
5546 */
5547 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5548 em->len != len) {
5549 free_extent_map(em);
5550 em = NULL;
5551 insert = true;
5552 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5553 }
4b46fce2 5554
7a7eaa40 5555 trans = btrfs_join_transaction(root);
3612b495
TI
5556 if (IS_ERR(trans))
5557 return ERR_CAST(trans);
4b46fce2 5558
4cb5300b
CM
5559 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5560 btrfs_add_inode_defrag(trans, inode);
5561
4b46fce2
JB
5562 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5563
5564 alloc_hint = get_extent_allocation_hint(inode, start, len);
5565 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 5566 alloc_hint, &ins, 1);
4b46fce2
JB
5567 if (ret) {
5568 em = ERR_PTR(ret);
5569 goto out;
5570 }
5571
4b46fce2 5572 if (!em) {
172ddd60 5573 em = alloc_extent_map();
16d299ac
JB
5574 if (!em) {
5575 em = ERR_PTR(-ENOMEM);
5576 goto out;
5577 }
4b46fce2
JB
5578 }
5579
5580 em->start = start;
5581 em->orig_start = em->start;
5582 em->len = ins.offset;
5583
5584 em->block_start = ins.objectid;
5585 em->block_len = ins.offset;
5586 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5587
5588 /*
5589 * We need to do this because if we're using the original em we searched
5590 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5591 */
5592 em->flags = 0;
4b46fce2
JB
5593 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5594
16d299ac 5595 while (insert) {
4b46fce2
JB
5596 write_lock(&em_tree->lock);
5597 ret = add_extent_mapping(em_tree, em);
5598 write_unlock(&em_tree->lock);
5599 if (ret != -EEXIST)
5600 break;
5601 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5602 }
5603
5604 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5605 ins.offset, ins.offset, 0);
5606 if (ret) {
5607 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5608 em = ERR_PTR(ret);
5609 }
5610out:
5611 btrfs_end_transaction(trans, root);
5612 return em;
5613}
5614
46bfbb5c
CM
5615/*
5616 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5617 * block must be cow'd
5618 */
5619static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5620 struct inode *inode, u64 offset, u64 len)
5621{
5622 struct btrfs_path *path;
5623 int ret;
5624 struct extent_buffer *leaf;
5625 struct btrfs_root *root = BTRFS_I(inode)->root;
5626 struct btrfs_file_extent_item *fi;
5627 struct btrfs_key key;
5628 u64 disk_bytenr;
5629 u64 backref_offset;
5630 u64 extent_end;
5631 u64 num_bytes;
5632 int slot;
5633 int found_type;
5634
5635 path = btrfs_alloc_path();
5636 if (!path)
5637 return -ENOMEM;
5638
33345d01 5639 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5640 offset, 0);
5641 if (ret < 0)
5642 goto out;
5643
5644 slot = path->slots[0];
5645 if (ret == 1) {
5646 if (slot == 0) {
5647 /* can't find the item, must cow */
5648 ret = 0;
5649 goto out;
5650 }
5651 slot--;
5652 }
5653 ret = 0;
5654 leaf = path->nodes[0];
5655 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5656 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5657 key.type != BTRFS_EXTENT_DATA_KEY) {
5658 /* not our file or wrong item type, must cow */
5659 goto out;
5660 }
5661
5662 if (key.offset > offset) {
5663 /* Wrong offset, must cow */
5664 goto out;
5665 }
5666
5667 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5668 found_type = btrfs_file_extent_type(leaf, fi);
5669 if (found_type != BTRFS_FILE_EXTENT_REG &&
5670 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5671 /* not a regular extent, must cow */
5672 goto out;
5673 }
5674 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5675 backref_offset = btrfs_file_extent_offset(leaf, fi);
5676
5677 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5678 if (extent_end < offset + len) {
5679 /* extent doesn't include our full range, must cow */
5680 goto out;
5681 }
5682
5683 if (btrfs_extent_readonly(root, disk_bytenr))
5684 goto out;
5685
5686 /*
5687 * look for other files referencing this extent, if we
5688 * find any we must cow
5689 */
33345d01 5690 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5691 key.offset - backref_offset, disk_bytenr))
5692 goto out;
5693
5694 /*
5695 * adjust disk_bytenr and num_bytes to cover just the bytes
5696 * in this extent we are about to write. If there
5697 * are any csums in that range we have to cow in order
5698 * to keep the csums correct
5699 */
5700 disk_bytenr += backref_offset;
5701 disk_bytenr += offset - key.offset;
5702 num_bytes = min(offset + len, extent_end) - offset;
5703 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5704 goto out;
5705 /*
5706 * all of the above have passed, it is safe to overwrite this extent
5707 * without cow
5708 */
5709 ret = 1;
5710out:
5711 btrfs_free_path(path);
5712 return ret;
5713}
5714
4b46fce2
JB
5715static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5716 struct buffer_head *bh_result, int create)
5717{
5718 struct extent_map *em;
5719 struct btrfs_root *root = BTRFS_I(inode)->root;
5720 u64 start = iblock << inode->i_blkbits;
5721 u64 len = bh_result->b_size;
46bfbb5c 5722 struct btrfs_trans_handle *trans;
4b46fce2
JB
5723
5724 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5725 if (IS_ERR(em))
5726 return PTR_ERR(em);
5727
5728 /*
5729 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5730 * io. INLINE is special, and we could probably kludge it in here, but
5731 * it's still buffered so for safety lets just fall back to the generic
5732 * buffered path.
5733 *
5734 * For COMPRESSED we _have_ to read the entire extent in so we can
5735 * decompress it, so there will be buffering required no matter what we
5736 * do, so go ahead and fallback to buffered.
5737 *
5738 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5739 * to buffered IO. Don't blame me, this is the price we pay for using
5740 * the generic code.
5741 */
5742 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5743 em->block_start == EXTENT_MAP_INLINE) {
5744 free_extent_map(em);
5745 return -ENOTBLK;
5746 }
5747
5748 /* Just a good old fashioned hole, return */
5749 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5750 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5751 free_extent_map(em);
5752 /* DIO will do one hole at a time, so just unlock a sector */
5753 unlock_extent(&BTRFS_I(inode)->io_tree, start,
d0082371 5754 start + root->sectorsize - 1);
4b46fce2
JB
5755 return 0;
5756 }
5757
5758 /*
5759 * We don't allocate a new extent in the following cases
5760 *
5761 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5762 * existing extent.
5763 * 2) The extent is marked as PREALLOC. We're good to go here and can
5764 * just use the extent.
5765 *
5766 */
46bfbb5c
CM
5767 if (!create) {
5768 len = em->len - (start - em->start);
4b46fce2 5769 goto map;
46bfbb5c 5770 }
4b46fce2
JB
5771
5772 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5773 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5774 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5775 int type;
5776 int ret;
46bfbb5c 5777 u64 block_start;
4b46fce2
JB
5778
5779 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5780 type = BTRFS_ORDERED_PREALLOC;
5781 else
5782 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5783 len = min(len, em->len - (start - em->start));
4b46fce2 5784 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5785
5786 /*
5787 * we're not going to log anything, but we do need
5788 * to make sure the current transaction stays open
5789 * while we look for nocow cross refs
5790 */
7a7eaa40 5791 trans = btrfs_join_transaction(root);
3612b495 5792 if (IS_ERR(trans))
46bfbb5c
CM
5793 goto must_cow;
5794
5795 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5796 ret = btrfs_add_ordered_extent_dio(inode, start,
5797 block_start, len, len, type);
5798 btrfs_end_transaction(trans, root);
5799 if (ret) {
5800 free_extent_map(em);
5801 return ret;
5802 }
5803 goto unlock;
4b46fce2 5804 }
46bfbb5c 5805 btrfs_end_transaction(trans, root);
4b46fce2 5806 }
46bfbb5c
CM
5807must_cow:
5808 /*
5809 * this will cow the extent, reset the len in case we changed
5810 * it above
5811 */
5812 len = bh_result->b_size;
16d299ac 5813 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5814 if (IS_ERR(em))
5815 return PTR_ERR(em);
5816 len = min(len, em->len - (start - em->start));
5817unlock:
4845e44f
CM
5818 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5819 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5820 0, NULL, GFP_NOFS);
4b46fce2
JB
5821map:
5822 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5823 inode->i_blkbits;
46bfbb5c 5824 bh_result->b_size = len;
4b46fce2
JB
5825 bh_result->b_bdev = em->bdev;
5826 set_buffer_mapped(bh_result);
5827 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5828 set_buffer_new(bh_result);
5829
5830 free_extent_map(em);
5831
5832 return 0;
5833}
5834
5835struct btrfs_dio_private {
5836 struct inode *inode;
5837 u64 logical_offset;
5838 u64 disk_bytenr;
5839 u64 bytes;
5840 u32 *csums;
5841 void *private;
e65e1535
MX
5842
5843 /* number of bios pending for this dio */
5844 atomic_t pending_bios;
5845
5846 /* IO errors */
5847 int errors;
5848
5849 struct bio *orig_bio;
4b46fce2
JB
5850};
5851
5852static void btrfs_endio_direct_read(struct bio *bio, int err)
5853{
e65e1535 5854 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5855 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5856 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5857 struct inode *inode = dip->inode;
5858 struct btrfs_root *root = BTRFS_I(inode)->root;
5859 u64 start;
5860 u32 *private = dip->csums;
5861
5862 start = dip->logical_offset;
5863 do {
5864 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5865 struct page *page = bvec->bv_page;
5866 char *kaddr;
5867 u32 csum = ~(u32)0;
5868 unsigned long flags;
5869
5870 local_irq_save(flags);
7ac687d9 5871 kaddr = kmap_atomic(page);
4b46fce2
JB
5872 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5873 csum, bvec->bv_len);
5874 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 5875 kunmap_atomic(kaddr);
4b46fce2
JB
5876 local_irq_restore(flags);
5877
5878 flush_dcache_page(bvec->bv_page);
5879 if (csum != *private) {
33345d01 5880 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5881 " %llu csum %u private %u\n",
33345d01
LZ
5882 (unsigned long long)btrfs_ino(inode),
5883 (unsigned long long)start,
4b46fce2
JB
5884 csum, *private);
5885 err = -EIO;
5886 }
5887 }
5888
5889 start += bvec->bv_len;
5890 private++;
5891 bvec++;
5892 } while (bvec <= bvec_end);
5893
5894 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 5895 dip->logical_offset + dip->bytes - 1);
4b46fce2
JB
5896 bio->bi_private = dip->private;
5897
5898 kfree(dip->csums);
5899 kfree(dip);
c0da7aa1
JB
5900
5901 /* If we had a csum failure make sure to clear the uptodate flag */
5902 if (err)
5903 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5904 dio_end_io(bio, err);
5905}
5906
5907static void btrfs_endio_direct_write(struct bio *bio, int err)
5908{
5909 struct btrfs_dio_private *dip = bio->bi_private;
5910 struct inode *inode = dip->inode;
5911 struct btrfs_root *root = BTRFS_I(inode)->root;
5912 struct btrfs_trans_handle *trans;
5913 struct btrfs_ordered_extent *ordered = NULL;
5914 struct extent_state *cached_state = NULL;
163cf09c
CM
5915 u64 ordered_offset = dip->logical_offset;
5916 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5917 int ret;
5918
5919 if (err)
5920 goto out_done;
163cf09c
CM
5921again:
5922 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5923 &ordered_offset,
5924 ordered_bytes);
4b46fce2 5925 if (!ret)
163cf09c 5926 goto out_test;
4b46fce2
JB
5927
5928 BUG_ON(!ordered);
5929
7a7eaa40 5930 trans = btrfs_join_transaction(root);
3612b495 5931 if (IS_ERR(trans)) {
4b46fce2
JB
5932 err = -ENOMEM;
5933 goto out;
5934 }
5935 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5936
5937 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5938 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5939 if (!ret)
2115133f 5940 err = btrfs_update_inode_fallback(trans, root, inode);
4b46fce2
JB
5941 goto out;
5942 }
5943
5944 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5945 ordered->file_offset + ordered->len - 1, 0,
d0082371 5946 &cached_state);
4b46fce2
JB
5947
5948 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5949 ret = btrfs_mark_extent_written(trans, inode,
5950 ordered->file_offset,
5951 ordered->file_offset +
5952 ordered->len);
5953 if (ret) {
5954 err = ret;
5955 goto out_unlock;
5956 }
5957 } else {
5958 ret = insert_reserved_file_extent(trans, inode,
5959 ordered->file_offset,
5960 ordered->start,
5961 ordered->disk_len,
5962 ordered->len,
5963 ordered->len,
5964 0, 0, 0,
5965 BTRFS_FILE_EXTENT_REG);
5966 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5967 ordered->file_offset, ordered->len);
5968 if (ret) {
5969 err = ret;
5970 WARN_ON(1);
5971 goto out_unlock;
5972 }
5973 }
5974
5975 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1 5976 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
a39f7521 5977 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
2115133f 5978 btrfs_update_inode_fallback(trans, root, inode);
1ef30be1 5979 ret = 0;
4b46fce2
JB
5980out_unlock:
5981 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5982 ordered->file_offset + ordered->len - 1,
5983 &cached_state, GFP_NOFS);
5984out:
5985 btrfs_delalloc_release_metadata(inode, ordered->len);
5986 btrfs_end_transaction(trans, root);
163cf09c 5987 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5988 btrfs_put_ordered_extent(ordered);
5989 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5990
5991out_test:
5992 /*
5993 * our bio might span multiple ordered extents. If we haven't
5994 * completed the accounting for the whole dio, go back and try again
5995 */
5996 if (ordered_offset < dip->logical_offset + dip->bytes) {
5997 ordered_bytes = dip->logical_offset + dip->bytes -
5998 ordered_offset;
5999 goto again;
6000 }
4b46fce2
JB
6001out_done:
6002 bio->bi_private = dip->private;
6003
6004 kfree(dip->csums);
6005 kfree(dip);
c0da7aa1
JB
6006
6007 /* If we had an error make sure to clear the uptodate flag */
6008 if (err)
6009 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
6010 dio_end_io(bio, err);
6011}
6012
eaf25d93
CM
6013static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6014 struct bio *bio, int mirror_num,
6015 unsigned long bio_flags, u64 offset)
6016{
6017 int ret;
6018 struct btrfs_root *root = BTRFS_I(inode)->root;
6019 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6020 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6021 return 0;
6022}
6023
e65e1535
MX
6024static void btrfs_end_dio_bio(struct bio *bio, int err)
6025{
6026 struct btrfs_dio_private *dip = bio->bi_private;
6027
6028 if (err) {
33345d01 6029 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6030 "sector %#Lx len %u err no %d\n",
33345d01 6031 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6032 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6033 dip->errors = 1;
6034
6035 /*
6036 * before atomic variable goto zero, we must make sure
6037 * dip->errors is perceived to be set.
6038 */
6039 smp_mb__before_atomic_dec();
6040 }
6041
6042 /* if there are more bios still pending for this dio, just exit */
6043 if (!atomic_dec_and_test(&dip->pending_bios))
6044 goto out;
6045
6046 if (dip->errors)
6047 bio_io_error(dip->orig_bio);
6048 else {
6049 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6050 bio_endio(dip->orig_bio, 0);
6051 }
6052out:
6053 bio_put(bio);
6054}
6055
6056static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6057 u64 first_sector, gfp_t gfp_flags)
6058{
6059 int nr_vecs = bio_get_nr_vecs(bdev);
6060 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6061}
6062
6063static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6064 int rw, u64 file_offset, int skip_sum,
1ae39938 6065 u32 *csums, int async_submit)
e65e1535
MX
6066{
6067 int write = rw & REQ_WRITE;
6068 struct btrfs_root *root = BTRFS_I(inode)->root;
6069 int ret;
6070
6071 bio_get(bio);
6072 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6073 if (ret)
6074 goto err;
6075
1ae39938
JB
6076 if (skip_sum)
6077 goto map;
6078
6079 if (write && async_submit) {
e65e1535
MX
6080 ret = btrfs_wq_submit_bio(root->fs_info,
6081 inode, rw, bio, 0, 0,
6082 file_offset,
6083 __btrfs_submit_bio_start_direct_io,
6084 __btrfs_submit_bio_done);
6085 goto err;
1ae39938
JB
6086 } else if (write) {
6087 /*
6088 * If we aren't doing async submit, calculate the csum of the
6089 * bio now.
6090 */
6091 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6092 if (ret)
6093 goto err;
c2db1073
TI
6094 } else if (!skip_sum) {
6095 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 6096 file_offset, csums);
c2db1073
TI
6097 if (ret)
6098 goto err;
6099 }
e65e1535 6100
1ae39938
JB
6101map:
6102 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6103err:
6104 bio_put(bio);
6105 return ret;
6106}
6107
6108static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6109 int skip_sum)
6110{
6111 struct inode *inode = dip->inode;
6112 struct btrfs_root *root = BTRFS_I(inode)->root;
6113 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6114 struct bio *bio;
6115 struct bio *orig_bio = dip->orig_bio;
6116 struct bio_vec *bvec = orig_bio->bi_io_vec;
6117 u64 start_sector = orig_bio->bi_sector;
6118 u64 file_offset = dip->logical_offset;
6119 u64 submit_len = 0;
6120 u64 map_length;
6121 int nr_pages = 0;
6122 u32 *csums = dip->csums;
6123 int ret = 0;
1ae39938 6124 int async_submit = 0;
98bc3149 6125 int write = rw & REQ_WRITE;
e65e1535 6126
e65e1535
MX
6127 map_length = orig_bio->bi_size;
6128 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6129 &map_length, NULL, 0);
6130 if (ret) {
64728bbb 6131 bio_put(orig_bio);
e65e1535
MX
6132 return -EIO;
6133 }
6134
02f57c7a
JB
6135 if (map_length >= orig_bio->bi_size) {
6136 bio = orig_bio;
6137 goto submit;
6138 }
6139
1ae39938 6140 async_submit = 1;
02f57c7a
JB
6141 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6142 if (!bio)
6143 return -ENOMEM;
6144 bio->bi_private = dip;
6145 bio->bi_end_io = btrfs_end_dio_bio;
6146 atomic_inc(&dip->pending_bios);
6147
e65e1535
MX
6148 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6149 if (unlikely(map_length < submit_len + bvec->bv_len ||
6150 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6151 bvec->bv_offset) < bvec->bv_len)) {
6152 /*
6153 * inc the count before we submit the bio so
6154 * we know the end IO handler won't happen before
6155 * we inc the count. Otherwise, the dip might get freed
6156 * before we're done setting it up
6157 */
6158 atomic_inc(&dip->pending_bios);
6159 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6160 file_offset, skip_sum,
1ae39938 6161 csums, async_submit);
e65e1535
MX
6162 if (ret) {
6163 bio_put(bio);
6164 atomic_dec(&dip->pending_bios);
6165 goto out_err;
6166 }
6167
98bc3149
JB
6168 /* Write's use the ordered csums */
6169 if (!write && !skip_sum)
e65e1535
MX
6170 csums = csums + nr_pages;
6171 start_sector += submit_len >> 9;
6172 file_offset += submit_len;
6173
6174 submit_len = 0;
6175 nr_pages = 0;
6176
6177 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6178 start_sector, GFP_NOFS);
6179 if (!bio)
6180 goto out_err;
6181 bio->bi_private = dip;
6182 bio->bi_end_io = btrfs_end_dio_bio;
6183
6184 map_length = orig_bio->bi_size;
6185 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6186 &map_length, NULL, 0);
6187 if (ret) {
6188 bio_put(bio);
6189 goto out_err;
6190 }
6191 } else {
6192 submit_len += bvec->bv_len;
6193 nr_pages ++;
6194 bvec++;
6195 }
6196 }
6197
02f57c7a 6198submit:
e65e1535 6199 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6200 csums, async_submit);
e65e1535
MX
6201 if (!ret)
6202 return 0;
6203
6204 bio_put(bio);
6205out_err:
6206 dip->errors = 1;
6207 /*
6208 * before atomic variable goto zero, we must
6209 * make sure dip->errors is perceived to be set.
6210 */
6211 smp_mb__before_atomic_dec();
6212 if (atomic_dec_and_test(&dip->pending_bios))
6213 bio_io_error(dip->orig_bio);
6214
6215 /* bio_end_io() will handle error, so we needn't return it */
6216 return 0;
6217}
6218
4b46fce2
JB
6219static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6220 loff_t file_offset)
6221{
6222 struct btrfs_root *root = BTRFS_I(inode)->root;
6223 struct btrfs_dio_private *dip;
6224 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6225 int skip_sum;
7b6d91da 6226 int write = rw & REQ_WRITE;
4b46fce2
JB
6227 int ret = 0;
6228
6229 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6230
6231 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6232 if (!dip) {
6233 ret = -ENOMEM;
6234 goto free_ordered;
6235 }
6236 dip->csums = NULL;
6237
98bc3149
JB
6238 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6239 if (!write && !skip_sum) {
4b46fce2
JB
6240 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6241 if (!dip->csums) {
b4966b77 6242 kfree(dip);
4b46fce2
JB
6243 ret = -ENOMEM;
6244 goto free_ordered;
6245 }
6246 }
6247
6248 dip->private = bio->bi_private;
6249 dip->inode = inode;
6250 dip->logical_offset = file_offset;
6251
4b46fce2
JB
6252 dip->bytes = 0;
6253 do {
6254 dip->bytes += bvec->bv_len;
6255 bvec++;
6256 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6257
46bfbb5c 6258 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6259 bio->bi_private = dip;
e65e1535
MX
6260 dip->errors = 0;
6261 dip->orig_bio = bio;
6262 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6263
6264 if (write)
6265 bio->bi_end_io = btrfs_endio_direct_write;
6266 else
6267 bio->bi_end_io = btrfs_endio_direct_read;
6268
e65e1535
MX
6269 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6270 if (!ret)
eaf25d93 6271 return;
4b46fce2
JB
6272free_ordered:
6273 /*
6274 * If this is a write, we need to clean up the reserved space and kill
6275 * the ordered extent.
6276 */
6277 if (write) {
6278 struct btrfs_ordered_extent *ordered;
955256f2 6279 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6280 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6281 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6282 btrfs_free_reserved_extent(root, ordered->start,
6283 ordered->disk_len);
6284 btrfs_put_ordered_extent(ordered);
6285 btrfs_put_ordered_extent(ordered);
6286 }
6287 bio_endio(bio, ret);
6288}
6289
5a5f79b5
CM
6290static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6291 const struct iovec *iov, loff_t offset,
6292 unsigned long nr_segs)
6293{
6294 int seg;
a1b75f7d 6295 int i;
5a5f79b5
CM
6296 size_t size;
6297 unsigned long addr;
6298 unsigned blocksize_mask = root->sectorsize - 1;
6299 ssize_t retval = -EINVAL;
6300 loff_t end = offset;
6301
6302 if (offset & blocksize_mask)
6303 goto out;
6304
6305 /* Check the memory alignment. Blocks cannot straddle pages */
6306 for (seg = 0; seg < nr_segs; seg++) {
6307 addr = (unsigned long)iov[seg].iov_base;
6308 size = iov[seg].iov_len;
6309 end += size;
a1b75f7d 6310 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6311 goto out;
a1b75f7d
JB
6312
6313 /* If this is a write we don't need to check anymore */
6314 if (rw & WRITE)
6315 continue;
6316
6317 /*
6318 * Check to make sure we don't have duplicate iov_base's in this
6319 * iovec, if so return EINVAL, otherwise we'll get csum errors
6320 * when reading back.
6321 */
6322 for (i = seg + 1; i < nr_segs; i++) {
6323 if (iov[seg].iov_base == iov[i].iov_base)
6324 goto out;
6325 }
5a5f79b5
CM
6326 }
6327 retval = 0;
6328out:
6329 return retval;
6330}
16432985
CM
6331static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6332 const struct iovec *iov, loff_t offset,
6333 unsigned long nr_segs)
6334{
4b46fce2
JB
6335 struct file *file = iocb->ki_filp;
6336 struct inode *inode = file->f_mapping->host;
6337 struct btrfs_ordered_extent *ordered;
4845e44f 6338 struct extent_state *cached_state = NULL;
4b46fce2
JB
6339 u64 lockstart, lockend;
6340 ssize_t ret;
4845e44f
CM
6341 int writing = rw & WRITE;
6342 int write_bits = 0;
3f7c579c 6343 size_t count = iov_length(iov, nr_segs);
4b46fce2 6344
5a5f79b5
CM
6345 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6346 offset, nr_segs)) {
6347 return 0;
6348 }
6349
4b46fce2 6350 lockstart = offset;
3f7c579c
CM
6351 lockend = offset + count - 1;
6352
6353 if (writing) {
6354 ret = btrfs_delalloc_reserve_space(inode, count);
6355 if (ret)
6356 goto out;
6357 }
4845e44f 6358
4b46fce2 6359 while (1) {
4845e44f 6360 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 6361 0, &cached_state);
4b46fce2
JB
6362 /*
6363 * We're concerned with the entire range that we're going to be
6364 * doing DIO to, so we need to make sure theres no ordered
6365 * extents in this range.
6366 */
6367 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6368 lockend - lockstart + 1);
6369 if (!ordered)
6370 break;
4845e44f
CM
6371 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6372 &cached_state, GFP_NOFS);
4b46fce2
JB
6373 btrfs_start_ordered_extent(inode, ordered, 1);
6374 btrfs_put_ordered_extent(ordered);
6375 cond_resched();
6376 }
6377
4845e44f
CM
6378 /*
6379 * we don't use btrfs_set_extent_delalloc because we don't want
6380 * the dirty or uptodate bits
6381 */
6382 if (writing) {
6383 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6384 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3fbe5c02 6385 EXTENT_DELALLOC, NULL, &cached_state,
4845e44f
CM
6386 GFP_NOFS);
6387 if (ret) {
6388 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6389 lockend, EXTENT_LOCKED | write_bits,
6390 1, 0, &cached_state, GFP_NOFS);
6391 goto out;
6392 }
6393 }
6394
6395 free_extent_state(cached_state);
6396 cached_state = NULL;
6397
5a5f79b5
CM
6398 ret = __blockdev_direct_IO(rw, iocb, inode,
6399 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6400 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6401 btrfs_submit_direct, 0);
4b46fce2
JB
6402
6403 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6404 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6405 offset + iov_length(iov, nr_segs) - 1,
6406 EXTENT_LOCKED | write_bits, 1, 0,
6407 &cached_state, GFP_NOFS);
4b46fce2
JB
6408 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6409 /*
6410 * We're falling back to buffered, unlock the section we didn't
6411 * do IO on.
6412 */
4845e44f
CM
6413 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6414 offset + iov_length(iov, nr_segs) - 1,
6415 EXTENT_LOCKED | write_bits, 1, 0,
6416 &cached_state, GFP_NOFS);
4b46fce2 6417 }
4845e44f
CM
6418out:
6419 free_extent_state(cached_state);
4b46fce2 6420 return ret;
16432985
CM
6421}
6422
1506fcc8
YS
6423static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6424 __u64 start, __u64 len)
6425{
ec29ed5b 6426 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6427}
6428
a52d9a80 6429int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6430{
d1310b2e
CM
6431 struct extent_io_tree *tree;
6432 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6433 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6434}
1832a6d5 6435
a52d9a80 6436static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6437{
d1310b2e 6438 struct extent_io_tree *tree;
b888db2b
CM
6439
6440
6441 if (current->flags & PF_MEMALLOC) {
6442 redirty_page_for_writepage(wbc, page);
6443 unlock_page(page);
6444 return 0;
6445 }
d1310b2e 6446 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6447 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6448}
6449
f421950f
CM
6450int btrfs_writepages(struct address_space *mapping,
6451 struct writeback_control *wbc)
b293f02e 6452{
d1310b2e 6453 struct extent_io_tree *tree;
771ed689 6454
d1310b2e 6455 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6456 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6457}
6458
3ab2fb5a
CM
6459static int
6460btrfs_readpages(struct file *file, struct address_space *mapping,
6461 struct list_head *pages, unsigned nr_pages)
6462{
d1310b2e
CM
6463 struct extent_io_tree *tree;
6464 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6465 return extent_readpages(tree, mapping, pages, nr_pages,
6466 btrfs_get_extent);
6467}
e6dcd2dc 6468static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6469{
d1310b2e
CM
6470 struct extent_io_tree *tree;
6471 struct extent_map_tree *map;
a52d9a80 6472 int ret;
8c2383c3 6473
d1310b2e
CM
6474 tree = &BTRFS_I(page->mapping->host)->io_tree;
6475 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6476 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6477 if (ret == 1) {
6478 ClearPagePrivate(page);
6479 set_page_private(page, 0);
6480 page_cache_release(page);
39279cc3 6481 }
a52d9a80 6482 return ret;
39279cc3
CM
6483}
6484
e6dcd2dc
CM
6485static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6486{
98509cfc
CM
6487 if (PageWriteback(page) || PageDirty(page))
6488 return 0;
b335b003 6489 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6490}
6491
a52d9a80 6492static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6493{
d1310b2e 6494 struct extent_io_tree *tree;
e6dcd2dc 6495 struct btrfs_ordered_extent *ordered;
2ac55d41 6496 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6497 u64 page_start = page_offset(page);
6498 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6499
8b62b72b
CM
6500
6501 /*
6502 * we have the page locked, so new writeback can't start,
6503 * and the dirty bit won't be cleared while we are here.
6504 *
6505 * Wait for IO on this page so that we can safely clear
6506 * the PagePrivate2 bit and do ordered accounting
6507 */
e6dcd2dc 6508 wait_on_page_writeback(page);
8b62b72b 6509
d1310b2e 6510 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6511 if (offset) {
6512 btrfs_releasepage(page, GFP_NOFS);
6513 return;
6514 }
d0082371 6515 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6516 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6517 page_offset(page));
6518 if (ordered) {
eb84ae03
CM
6519 /*
6520 * IO on this page will never be started, so we need
6521 * to account for any ordered extents now
6522 */
e6dcd2dc
CM
6523 clear_extent_bit(tree, page_start, page_end,
6524 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6525 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6526 &cached_state, GFP_NOFS);
8b62b72b
CM
6527 /*
6528 * whoever cleared the private bit is responsible
6529 * for the finish_ordered_io
6530 */
6531 if (TestClearPagePrivate2(page)) {
6532 btrfs_finish_ordered_io(page->mapping->host,
6533 page_start, page_end);
6534 }
e6dcd2dc 6535 btrfs_put_ordered_extent(ordered);
2ac55d41 6536 cached_state = NULL;
d0082371 6537 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6538 }
6539 clear_extent_bit(tree, page_start, page_end,
32c00aff 6540 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6541 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6542 __btrfs_releasepage(page, GFP_NOFS);
6543
4a096752 6544 ClearPageChecked(page);
9ad6b7bc 6545 if (PagePrivate(page)) {
9ad6b7bc
CM
6546 ClearPagePrivate(page);
6547 set_page_private(page, 0);
6548 page_cache_release(page);
6549 }
39279cc3
CM
6550}
6551
9ebefb18
CM
6552/*
6553 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6554 * called from a page fault handler when a page is first dirtied. Hence we must
6555 * be careful to check for EOF conditions here. We set the page up correctly
6556 * for a written page which means we get ENOSPC checking when writing into
6557 * holes and correct delalloc and unwritten extent mapping on filesystems that
6558 * support these features.
6559 *
6560 * We are not allowed to take the i_mutex here so we have to play games to
6561 * protect against truncate races as the page could now be beyond EOF. Because
6562 * vmtruncate() writes the inode size before removing pages, once we have the
6563 * page lock we can determine safely if the page is beyond EOF. If it is not
6564 * beyond EOF, then the page is guaranteed safe against truncation until we
6565 * unlock the page.
6566 */
c2ec175c 6567int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6568{
c2ec175c 6569 struct page *page = vmf->page;
6da6abae 6570 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6571 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6572 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6573 struct btrfs_ordered_extent *ordered;
2ac55d41 6574 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6575 char *kaddr;
6576 unsigned long zero_start;
9ebefb18 6577 loff_t size;
1832a6d5 6578 int ret;
9998eb70 6579 int reserved = 0;
a52d9a80 6580 u64 page_start;
e6dcd2dc 6581 u64 page_end;
9ebefb18 6582
0ca1f7ce 6583 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6584 if (!ret) {
22c44fe6 6585 ret = btrfs_update_time(vma->vm_file);
9998eb70
CM
6586 reserved = 1;
6587 }
56a76f82
NP
6588 if (ret) {
6589 if (ret == -ENOMEM)
6590 ret = VM_FAULT_OOM;
6591 else /* -ENOSPC, -EIO, etc */
6592 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6593 if (reserved)
6594 goto out;
6595 goto out_noreserve;
56a76f82 6596 }
1832a6d5 6597
56a76f82 6598 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6599again:
9ebefb18 6600 lock_page(page);
9ebefb18 6601 size = i_size_read(inode);
e6dcd2dc
CM
6602 page_start = page_offset(page);
6603 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6604
9ebefb18 6605 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6606 (page_start >= size)) {
9ebefb18
CM
6607 /* page got truncated out from underneath us */
6608 goto out_unlock;
6609 }
e6dcd2dc
CM
6610 wait_on_page_writeback(page);
6611
d0082371 6612 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
6613 set_page_extent_mapped(page);
6614
eb84ae03
CM
6615 /*
6616 * we can't set the delalloc bits if there are pending ordered
6617 * extents. Drop our locks and wait for them to finish
6618 */
e6dcd2dc
CM
6619 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6620 if (ordered) {
2ac55d41
JB
6621 unlock_extent_cached(io_tree, page_start, page_end,
6622 &cached_state, GFP_NOFS);
e6dcd2dc 6623 unlock_page(page);
eb84ae03 6624 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6625 btrfs_put_ordered_extent(ordered);
6626 goto again;
6627 }
6628
fbf19087
JB
6629 /*
6630 * XXX - page_mkwrite gets called every time the page is dirtied, even
6631 * if it was already dirty, so for space accounting reasons we need to
6632 * clear any delalloc bits for the range we are fixing to save. There
6633 * is probably a better way to do this, but for now keep consistent with
6634 * prepare_pages in the normal write path.
6635 */
2ac55d41 6636 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6637 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6638 0, 0, &cached_state, GFP_NOFS);
fbf19087 6639
2ac55d41
JB
6640 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6641 &cached_state);
9ed74f2d 6642 if (ret) {
2ac55d41
JB
6643 unlock_extent_cached(io_tree, page_start, page_end,
6644 &cached_state, GFP_NOFS);
9ed74f2d
JB
6645 ret = VM_FAULT_SIGBUS;
6646 goto out_unlock;
6647 }
e6dcd2dc 6648 ret = 0;
9ebefb18
CM
6649
6650 /* page is wholly or partially inside EOF */
a52d9a80 6651 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6652 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6653 else
e6dcd2dc 6654 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6655
e6dcd2dc
CM
6656 if (zero_start != PAGE_CACHE_SIZE) {
6657 kaddr = kmap(page);
6658 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6659 flush_dcache_page(page);
6660 kunmap(page);
6661 }
247e743c 6662 ClearPageChecked(page);
e6dcd2dc 6663 set_page_dirty(page);
50a9b214 6664 SetPageUptodate(page);
5a3f23d5 6665
257c62e1
CM
6666 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6667 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6668
2ac55d41 6669 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6670
6671out_unlock:
50a9b214
CM
6672 if (!ret)
6673 return VM_FAULT_LOCKED;
9ebefb18 6674 unlock_page(page);
1832a6d5 6675out:
ec39e180 6676 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6677out_noreserve:
9ebefb18
CM
6678 return ret;
6679}
6680
a41ad394 6681static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6682{
6683 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6684 struct btrfs_block_rsv *rsv;
39279cc3 6685 int ret;
3893e33b 6686 int err = 0;
39279cc3 6687 struct btrfs_trans_handle *trans;
d3c2fdcf 6688 unsigned long nr;
dbe674a9 6689 u64 mask = root->sectorsize - 1;
07127184 6690 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6691
5d5e103a
JB
6692 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6693 if (ret)
a41ad394 6694 return ret;
8082510e 6695
4a096752 6696 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6697 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6698
fcb80c2a
JB
6699 /*
6700 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6701 * 3 things going on here
6702 *
6703 * 1) We need to reserve space for our orphan item and the space to
6704 * delete our orphan item. Lord knows we don't want to have a dangling
6705 * orphan item because we didn't reserve space to remove it.
6706 *
6707 * 2) We need to reserve space to update our inode.
6708 *
6709 * 3) We need to have something to cache all the space that is going to
6710 * be free'd up by the truncate operation, but also have some slack
6711 * space reserved in case it uses space during the truncate (thank you
6712 * very much snapshotting).
6713 *
6714 * And we need these to all be seperate. The fact is we can use alot of
6715 * space doing the truncate, and we have no earthly idea how much space
6716 * we will use, so we need the truncate reservation to be seperate so it
6717 * doesn't end up using space reserved for updating the inode or
6718 * removing the orphan item. We also need to be able to stop the
6719 * transaction and start a new one, which means we need to be able to
6720 * update the inode several times, and we have no idea of knowing how
6721 * many times that will be, so we can't just reserve 1 item for the
6722 * entirety of the opration, so that has to be done seperately as well.
6723 * Then there is the orphan item, which does indeed need to be held on
6724 * to for the whole operation, and we need nobody to touch this reserved
6725 * space except the orphan code.
6726 *
6727 * So that leaves us with
6728 *
6729 * 1) root->orphan_block_rsv - for the orphan deletion.
6730 * 2) rsv - for the truncate reservation, which we will steal from the
6731 * transaction reservation.
6732 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6733 * updating the inode.
6734 */
6735 rsv = btrfs_alloc_block_rsv(root);
6736 if (!rsv)
6737 return -ENOMEM;
4a338542 6738 rsv->size = min_size;
f0cd846e 6739
907cbceb 6740 /*
07127184 6741 * 1 for the truncate slack space
907cbceb
JB
6742 * 1 for the orphan item we're going to add
6743 * 1 for the orphan item deletion
6744 * 1 for updating the inode.
6745 */
fcb80c2a
JB
6746 trans = btrfs_start_transaction(root, 4);
6747 if (IS_ERR(trans)) {
6748 err = PTR_ERR(trans);
6749 goto out;
6750 }
f0cd846e 6751
907cbceb
JB
6752 /* Migrate the slack space for the truncate to our reserve */
6753 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6754 min_size);
fcb80c2a 6755 BUG_ON(ret);
f0cd846e
JB
6756
6757 ret = btrfs_orphan_add(trans, inode);
6758 if (ret) {
6759 btrfs_end_transaction(trans, root);
fcb80c2a 6760 goto out;
f0cd846e
JB
6761 }
6762
5a3f23d5
CM
6763 /*
6764 * setattr is responsible for setting the ordered_data_close flag,
6765 * but that is only tested during the last file release. That
6766 * could happen well after the next commit, leaving a great big
6767 * window where new writes may get lost if someone chooses to write
6768 * to this file after truncating to zero
6769 *
6770 * The inode doesn't have any dirty data here, and so if we commit
6771 * this is a noop. If someone immediately starts writing to the inode
6772 * it is very likely we'll catch some of their writes in this
6773 * transaction, and the commit will find this file on the ordered
6774 * data list with good things to send down.
6775 *
6776 * This is a best effort solution, there is still a window where
6777 * using truncate to replace the contents of the file will
6778 * end up with a zero length file after a crash.
6779 */
6780 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6781 btrfs_add_ordered_operation(trans, root, inode);
6782
8082510e 6783 while (1) {
36ba022a 6784 ret = btrfs_block_rsv_refill(root, rsv, min_size);
907cbceb
JB
6785 if (ret) {
6786 /*
6787 * This can only happen with the original transaction we
6788 * started above, every other time we shouldn't have a
6789 * transaction started yet.
6790 */
6791 if (ret == -EAGAIN)
6792 goto end_trans;
6793 err = ret;
6794 break;
6795 }
6796
d68fc57b 6797 if (!trans) {
907cbceb
JB
6798 /* Just need the 1 for updating the inode */
6799 trans = btrfs_start_transaction(root, 1);
fcb80c2a 6800 if (IS_ERR(trans)) {
7041ee97
JB
6801 ret = err = PTR_ERR(trans);
6802 trans = NULL;
6803 break;
fcb80c2a 6804 }
d68fc57b
YZ
6805 }
6806
907cbceb
JB
6807 trans->block_rsv = rsv;
6808
8082510e
YZ
6809 ret = btrfs_truncate_inode_items(trans, root, inode,
6810 inode->i_size,
6811 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6812 if (ret != -EAGAIN) {
6813 err = ret;
8082510e 6814 break;
3893e33b 6815 }
39279cc3 6816
fcb80c2a 6817 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6818 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6819 if (ret) {
6820 err = ret;
6821 break;
6822 }
907cbceb 6823end_trans:
8082510e
YZ
6824 nr = trans->blocks_used;
6825 btrfs_end_transaction(trans, root);
d68fc57b 6826 trans = NULL;
8082510e 6827 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6828 }
6829
6830 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6831 trans->block_rsv = root->orphan_block_rsv;
8082510e 6832 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6833 if (ret)
6834 err = ret;
ded5db9d
JB
6835 } else if (ret && inode->i_nlink > 0) {
6836 /*
6837 * Failed to do the truncate, remove us from the in memory
6838 * orphan list.
6839 */
6840 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6841 }
6842
917c16b2
CM
6843 if (trans) {
6844 trans->block_rsv = &root->fs_info->trans_block_rsv;
6845 ret = btrfs_update_inode(trans, root, inode);
6846 if (ret && !err)
6847 err = ret;
7b128766 6848
917c16b2 6849 nr = trans->blocks_used;
7ad85bb7 6850 ret = btrfs_end_transaction(trans, root);
917c16b2
CM
6851 btrfs_btree_balance_dirty(root, nr);
6852 }
fcb80c2a
JB
6853
6854out:
6855 btrfs_free_block_rsv(root, rsv);
6856
3893e33b
JB
6857 if (ret && !err)
6858 err = ret;
a41ad394 6859
3893e33b 6860 return err;
39279cc3
CM
6861}
6862
d352ac68
CM
6863/*
6864 * create a new subvolume directory/inode (helper for the ioctl).
6865 */
d2fb3437 6866int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6867 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6868{
39279cc3 6869 struct inode *inode;
76dda93c 6870 int err;
00e4e6b3 6871 u64 index = 0;
39279cc3 6872
12fc9d09
FA
6873 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6874 new_dirid, new_dirid,
6875 S_IFDIR | (~current_umask() & S_IRWXUGO),
6876 &index);
54aa1f4d 6877 if (IS_ERR(inode))
f46b5a66 6878 return PTR_ERR(inode);
39279cc3
CM
6879 inode->i_op = &btrfs_dir_inode_operations;
6880 inode->i_fop = &btrfs_dir_file_operations;
6881
bfe86848 6882 set_nlink(inode, 1);
dbe674a9 6883 btrfs_i_size_write(inode, 0);
3b96362c 6884
76dda93c 6885 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 6886
76dda93c 6887 iput(inode);
ce598979 6888 return err;
39279cc3
CM
6889}
6890
39279cc3
CM
6891struct inode *btrfs_alloc_inode(struct super_block *sb)
6892{
6893 struct btrfs_inode *ei;
2ead6ae7 6894 struct inode *inode;
39279cc3
CM
6895
6896 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6897 if (!ei)
6898 return NULL;
2ead6ae7
YZ
6899
6900 ei->root = NULL;
6901 ei->space_info = NULL;
6902 ei->generation = 0;
15ee9bc7 6903 ei->last_trans = 0;
257c62e1 6904 ei->last_sub_trans = 0;
e02119d5 6905 ei->logged_trans = 0;
2ead6ae7 6906 ei->delalloc_bytes = 0;
2ead6ae7
YZ
6907 ei->disk_i_size = 0;
6908 ei->flags = 0;
7709cde3 6909 ei->csum_bytes = 0;
2ead6ae7
YZ
6910 ei->index_cnt = (u64)-1;
6911 ei->last_unlink_trans = 0;
6912
9e0baf60
JB
6913 spin_lock_init(&ei->lock);
6914 ei->outstanding_extents = 0;
6915 ei->reserved_extents = 0;
2ead6ae7
YZ
6916
6917 ei->ordered_data_close = 0;
d68fc57b 6918 ei->orphan_meta_reserved = 0;
2ead6ae7 6919 ei->dummy_inode = 0;
4cb5300b 6920 ei->in_defrag = 0;
7fd2ae21 6921 ei->delalloc_meta_reserved = 0;
261507a0 6922 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6923
16cdcec7
MX
6924 ei->delayed_node = NULL;
6925
2ead6ae7 6926 inode = &ei->vfs_inode;
a8067e02 6927 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6928 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6929 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
6930 ei->io_tree.track_uptodate = 1;
6931 ei->io_failure_tree.track_uptodate = 1;
2ead6ae7 6932 mutex_init(&ei->log_mutex);
f248679e 6933 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 6934 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6935 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6936 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6937 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6938 RB_CLEAR_NODE(&ei->rb_node);
6939
6940 return inode;
39279cc3
CM
6941}
6942
fa0d7e3d
NP
6943static void btrfs_i_callback(struct rcu_head *head)
6944{
6945 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
6946 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6947}
6948
39279cc3
CM
6949void btrfs_destroy_inode(struct inode *inode)
6950{
e6dcd2dc 6951 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6952 struct btrfs_root *root = BTRFS_I(inode)->root;
6953
39279cc3
CM
6954 WARN_ON(!list_empty(&inode->i_dentry));
6955 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6956 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6957 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
6958 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6959 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 6960
a6dbd429
JB
6961 /*
6962 * This can happen where we create an inode, but somebody else also
6963 * created the same inode and we need to destroy the one we already
6964 * created.
6965 */
6966 if (!root)
6967 goto free;
6968
5a3f23d5
CM
6969 /*
6970 * Make sure we're properly removed from the ordered operation
6971 * lists.
6972 */
6973 smp_mb();
6974 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6975 spin_lock(&root->fs_info->ordered_extent_lock);
6976 list_del_init(&BTRFS_I(inode)->ordered_operations);
6977 spin_unlock(&root->fs_info->ordered_extent_lock);
6978 }
6979
d68fc57b 6980 spin_lock(&root->orphan_lock);
7b128766 6981 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6982 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6983 (unsigned long long)btrfs_ino(inode));
8082510e 6984 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6985 }
d68fc57b 6986 spin_unlock(&root->orphan_lock);
7b128766 6987
d397712b 6988 while (1) {
e6dcd2dc
CM
6989 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6990 if (!ordered)
6991 break;
6992 else {
d397712b
CM
6993 printk(KERN_ERR "btrfs found ordered "
6994 "extent %llu %llu on inode cleanup\n",
6995 (unsigned long long)ordered->file_offset,
6996 (unsigned long long)ordered->len);
e6dcd2dc
CM
6997 btrfs_remove_ordered_extent(inode, ordered);
6998 btrfs_put_ordered_extent(ordered);
6999 btrfs_put_ordered_extent(ordered);
7000 }
7001 }
5d4f98a2 7002 inode_tree_del(inode);
5b21f2ed 7003 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7004free:
16cdcec7 7005 btrfs_remove_delayed_node(inode);
fa0d7e3d 7006 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7007}
7008
45321ac5 7009int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7010{
7011 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7012
0af3d00b 7013 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 7014 !btrfs_is_free_space_inode(root, inode))
45321ac5 7015 return 1;
76dda93c 7016 else
45321ac5 7017 return generic_drop_inode(inode);
76dda93c
YZ
7018}
7019
0ee0fda0 7020static void init_once(void *foo)
39279cc3
CM
7021{
7022 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7023
7024 inode_init_once(&ei->vfs_inode);
7025}
7026
7027void btrfs_destroy_cachep(void)
7028{
7029 if (btrfs_inode_cachep)
7030 kmem_cache_destroy(btrfs_inode_cachep);
7031 if (btrfs_trans_handle_cachep)
7032 kmem_cache_destroy(btrfs_trans_handle_cachep);
7033 if (btrfs_transaction_cachep)
7034 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7035 if (btrfs_path_cachep)
7036 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7037 if (btrfs_free_space_cachep)
7038 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
7039}
7040
7041int btrfs_init_cachep(void)
7042{
9601e3f6
CH
7043 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7044 sizeof(struct btrfs_inode), 0,
7045 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7046 if (!btrfs_inode_cachep)
7047 goto fail;
9601e3f6
CH
7048
7049 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7050 sizeof(struct btrfs_trans_handle), 0,
7051 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7052 if (!btrfs_trans_handle_cachep)
7053 goto fail;
9601e3f6
CH
7054
7055 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7056 sizeof(struct btrfs_transaction), 0,
7057 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7058 if (!btrfs_transaction_cachep)
7059 goto fail;
9601e3f6
CH
7060
7061 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7062 sizeof(struct btrfs_path), 0,
7063 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7064 if (!btrfs_path_cachep)
7065 goto fail;
9601e3f6 7066
dc89e982
JB
7067 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7068 sizeof(struct btrfs_free_space), 0,
7069 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7070 if (!btrfs_free_space_cachep)
7071 goto fail;
7072
39279cc3
CM
7073 return 0;
7074fail:
7075 btrfs_destroy_cachep();
7076 return -ENOMEM;
7077}
7078
7079static int btrfs_getattr(struct vfsmount *mnt,
7080 struct dentry *dentry, struct kstat *stat)
7081{
7082 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7083 u32 blocksize = inode->i_sb->s_blocksize;
7084
39279cc3 7085 generic_fillattr(inode, stat);
0ee5dc67 7086 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7087 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
7088 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7089 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7090 return 0;
7091}
7092
75e7cb7f
LB
7093/*
7094 * If a file is moved, it will inherit the cow and compression flags of the new
7095 * directory.
7096 */
7097static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7098{
7099 struct btrfs_inode *b_dir = BTRFS_I(dir);
7100 struct btrfs_inode *b_inode = BTRFS_I(inode);
7101
7102 if (b_dir->flags & BTRFS_INODE_NODATACOW)
7103 b_inode->flags |= BTRFS_INODE_NODATACOW;
7104 else
7105 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7106
7107 if (b_dir->flags & BTRFS_INODE_COMPRESS)
7108 b_inode->flags |= BTRFS_INODE_COMPRESS;
7109 else
7110 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
7111}
7112
d397712b
CM
7113static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7114 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7115{
7116 struct btrfs_trans_handle *trans;
7117 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7118 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7119 struct inode *new_inode = new_dentry->d_inode;
7120 struct inode *old_inode = old_dentry->d_inode;
7121 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7122 u64 index = 0;
4df27c4d 7123 u64 root_objectid;
39279cc3 7124 int ret;
33345d01 7125 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7126
33345d01 7127 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7128 return -EPERM;
7129
4df27c4d 7130 /* we only allow rename subvolume link between subvolumes */
33345d01 7131 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7132 return -EXDEV;
7133
33345d01
LZ
7134 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7135 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7136 return -ENOTEMPTY;
5f39d397 7137
4df27c4d
YZ
7138 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7139 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7140 return -ENOTEMPTY;
5a3f23d5
CM
7141 /*
7142 * we're using rename to replace one file with another.
7143 * and the replacement file is large. Start IO on it now so
7144 * we don't add too much work to the end of the transaction
7145 */
4baf8c92 7146 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7147 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7148 filemap_flush(old_inode->i_mapping);
7149
76dda93c 7150 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7151 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7152 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7153 /*
7154 * We want to reserve the absolute worst case amount of items. So if
7155 * both inodes are subvols and we need to unlink them then that would
7156 * require 4 item modifications, but if they are both normal inodes it
7157 * would require 5 item modifications, so we'll assume their normal
7158 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7159 * should cover the worst case number of items we'll modify.
7160 */
7161 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7162 if (IS_ERR(trans)) {
7163 ret = PTR_ERR(trans);
7164 goto out_notrans;
7165 }
76dda93c 7166
4df27c4d
YZ
7167 if (dest != root)
7168 btrfs_record_root_in_trans(trans, dest);
5f39d397 7169
a5719521
YZ
7170 ret = btrfs_set_inode_index(new_dir, &index);
7171 if (ret)
7172 goto out_fail;
5a3f23d5 7173
33345d01 7174 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7175 /* force full log commit if subvolume involved. */
7176 root->fs_info->last_trans_log_full_commit = trans->transid;
7177 } else {
a5719521
YZ
7178 ret = btrfs_insert_inode_ref(trans, dest,
7179 new_dentry->d_name.name,
7180 new_dentry->d_name.len,
33345d01
LZ
7181 old_ino,
7182 btrfs_ino(new_dir), index);
a5719521
YZ
7183 if (ret)
7184 goto out_fail;
4df27c4d
YZ
7185 /*
7186 * this is an ugly little race, but the rename is required
7187 * to make sure that if we crash, the inode is either at the
7188 * old name or the new one. pinning the log transaction lets
7189 * us make sure we don't allow a log commit to come in after
7190 * we unlink the name but before we add the new name back in.
7191 */
7192 btrfs_pin_log_trans(root);
7193 }
5a3f23d5
CM
7194 /*
7195 * make sure the inode gets flushed if it is replacing
7196 * something.
7197 */
33345d01 7198 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7199 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7200
0c4d2d95
JB
7201 inode_inc_iversion(old_dir);
7202 inode_inc_iversion(new_dir);
7203 inode_inc_iversion(old_inode);
39279cc3
CM
7204 old_dir->i_ctime = old_dir->i_mtime = ctime;
7205 new_dir->i_ctime = new_dir->i_mtime = ctime;
7206 old_inode->i_ctime = ctime;
5f39d397 7207
12fcfd22
CM
7208 if (old_dentry->d_parent != new_dentry->d_parent)
7209 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7210
33345d01 7211 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7212 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7213 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7214 old_dentry->d_name.name,
7215 old_dentry->d_name.len);
7216 } else {
92986796
AV
7217 ret = __btrfs_unlink_inode(trans, root, old_dir,
7218 old_dentry->d_inode,
7219 old_dentry->d_name.name,
7220 old_dentry->d_name.len);
7221 if (!ret)
7222 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 7223 }
79787eaa
JM
7224 if (ret) {
7225 btrfs_abort_transaction(trans, root, ret);
7226 goto out_fail;
7227 }
39279cc3
CM
7228
7229 if (new_inode) {
0c4d2d95 7230 inode_inc_iversion(new_inode);
39279cc3 7231 new_inode->i_ctime = CURRENT_TIME;
33345d01 7232 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7233 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7234 root_objectid = BTRFS_I(new_inode)->location.objectid;
7235 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7236 root_objectid,
7237 new_dentry->d_name.name,
7238 new_dentry->d_name.len);
7239 BUG_ON(new_inode->i_nlink == 0);
7240 } else {
7241 ret = btrfs_unlink_inode(trans, dest, new_dir,
7242 new_dentry->d_inode,
7243 new_dentry->d_name.name,
7244 new_dentry->d_name.len);
7245 }
79787eaa 7246 if (!ret && new_inode->i_nlink == 0) {
e02119d5 7247 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7248 BUG_ON(ret);
7b128766 7249 }
79787eaa
JM
7250 if (ret) {
7251 btrfs_abort_transaction(trans, root, ret);
7252 goto out_fail;
7253 }
39279cc3 7254 }
aec7477b 7255
75e7cb7f
LB
7256 fixup_inode_flags(new_dir, old_inode);
7257
4df27c4d
YZ
7258 ret = btrfs_add_link(trans, new_dir, old_inode,
7259 new_dentry->d_name.name,
a5719521 7260 new_dentry->d_name.len, 0, index);
79787eaa
JM
7261 if (ret) {
7262 btrfs_abort_transaction(trans, root, ret);
7263 goto out_fail;
7264 }
39279cc3 7265
33345d01 7266 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7267 struct dentry *parent = new_dentry->d_parent;
6a912213 7268 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7269 btrfs_end_log_trans(root);
7270 }
39279cc3 7271out_fail:
7ad85bb7 7272 btrfs_end_transaction(trans, root);
b44c59a8 7273out_notrans:
33345d01 7274 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7275 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7276
39279cc3
CM
7277 return ret;
7278}
7279
d352ac68
CM
7280/*
7281 * some fairly slow code that needs optimization. This walks the list
7282 * of all the inodes with pending delalloc and forces them to disk.
7283 */
24bbcf04 7284int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7285{
7286 struct list_head *head = &root->fs_info->delalloc_inodes;
7287 struct btrfs_inode *binode;
5b21f2ed 7288 struct inode *inode;
ea8c2819 7289
c146afad
YZ
7290 if (root->fs_info->sb->s_flags & MS_RDONLY)
7291 return -EROFS;
7292
75eff68e 7293 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7294 while (!list_empty(head)) {
ea8c2819
CM
7295 binode = list_entry(head->next, struct btrfs_inode,
7296 delalloc_inodes);
5b21f2ed
ZY
7297 inode = igrab(&binode->vfs_inode);
7298 if (!inode)
7299 list_del_init(&binode->delalloc_inodes);
75eff68e 7300 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7301 if (inode) {
8c8bee1d 7302 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7303 if (delay_iput)
7304 btrfs_add_delayed_iput(inode);
7305 else
7306 iput(inode);
5b21f2ed
ZY
7307 }
7308 cond_resched();
75eff68e 7309 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7310 }
75eff68e 7311 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7312
7313 /* the filemap_flush will queue IO into the worker threads, but
7314 * we have to make sure the IO is actually started and that
7315 * ordered extents get created before we return
7316 */
7317 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7318 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7319 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7320 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7321 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7322 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7323 }
7324 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7325 return 0;
7326}
7327
39279cc3
CM
7328static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7329 const char *symname)
7330{
7331 struct btrfs_trans_handle *trans;
7332 struct btrfs_root *root = BTRFS_I(dir)->root;
7333 struct btrfs_path *path;
7334 struct btrfs_key key;
1832a6d5 7335 struct inode *inode = NULL;
39279cc3
CM
7336 int err;
7337 int drop_inode = 0;
7338 u64 objectid;
00e4e6b3 7339 u64 index = 0 ;
39279cc3
CM
7340 int name_len;
7341 int datasize;
5f39d397 7342 unsigned long ptr;
39279cc3 7343 struct btrfs_file_extent_item *ei;
5f39d397 7344 struct extent_buffer *leaf;
1832a6d5 7345 unsigned long nr = 0;
39279cc3
CM
7346
7347 name_len = strlen(symname) + 1;
7348 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7349 return -ENAMETOOLONG;
1832a6d5 7350
9ed74f2d
JB
7351 /*
7352 * 2 items for inode item and ref
7353 * 2 items for dir items
7354 * 1 item for xattr if selinux is on
7355 */
a22285a6
YZ
7356 trans = btrfs_start_transaction(root, 5);
7357 if (IS_ERR(trans))
7358 return PTR_ERR(trans);
1832a6d5 7359
581bb050
LZ
7360 err = btrfs_find_free_ino(root, &objectid);
7361 if (err)
7362 goto out_unlock;
7363
aec7477b 7364 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7365 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7366 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7367 if (IS_ERR(inode)) {
7368 err = PTR_ERR(inode);
39279cc3 7369 goto out_unlock;
7cf96da3 7370 }
39279cc3 7371
2a7dba39 7372 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7373 if (err) {
7374 drop_inode = 1;
7375 goto out_unlock;
7376 }
7377
ad19db71
CS
7378 /*
7379 * If the active LSM wants to access the inode during
7380 * d_instantiate it needs these. Smack checks to see
7381 * if the filesystem supports xattrs by looking at the
7382 * ops vector.
7383 */
7384 inode->i_fop = &btrfs_file_operations;
7385 inode->i_op = &btrfs_file_inode_operations;
7386
a1b075d2 7387 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7388 if (err)
7389 drop_inode = 1;
7390 else {
7391 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7392 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7393 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7394 }
39279cc3
CM
7395 if (drop_inode)
7396 goto out_unlock;
7397
7398 path = btrfs_alloc_path();
d8926bb3
MF
7399 if (!path) {
7400 err = -ENOMEM;
7401 drop_inode = 1;
7402 goto out_unlock;
7403 }
33345d01 7404 key.objectid = btrfs_ino(inode);
39279cc3 7405 key.offset = 0;
39279cc3
CM
7406 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7407 datasize = btrfs_file_extent_calc_inline_size(name_len);
7408 err = btrfs_insert_empty_item(trans, root, path, &key,
7409 datasize);
54aa1f4d
CM
7410 if (err) {
7411 drop_inode = 1;
b0839166 7412 btrfs_free_path(path);
54aa1f4d
CM
7413 goto out_unlock;
7414 }
5f39d397
CM
7415 leaf = path->nodes[0];
7416 ei = btrfs_item_ptr(leaf, path->slots[0],
7417 struct btrfs_file_extent_item);
7418 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7419 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7420 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7421 btrfs_set_file_extent_encryption(leaf, ei, 0);
7422 btrfs_set_file_extent_compression(leaf, ei, 0);
7423 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7424 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7425
39279cc3 7426 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7427 write_extent_buffer(leaf, symname, ptr, name_len);
7428 btrfs_mark_buffer_dirty(leaf);
39279cc3 7429 btrfs_free_path(path);
5f39d397 7430
39279cc3
CM
7431 inode->i_op = &btrfs_symlink_inode_operations;
7432 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7433 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7434 inode_set_bytes(inode, name_len);
dbe674a9 7435 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7436 err = btrfs_update_inode(trans, root, inode);
7437 if (err)
7438 drop_inode = 1;
39279cc3
CM
7439
7440out_unlock:
08c422c2
AV
7441 if (!err)
7442 d_instantiate(dentry, inode);
d3c2fdcf 7443 nr = trans->blocks_used;
7ad85bb7 7444 btrfs_end_transaction(trans, root);
39279cc3
CM
7445 if (drop_inode) {
7446 inode_dec_link_count(inode);
7447 iput(inode);
7448 }
d3c2fdcf 7449 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7450 return err;
7451}
16432985 7452
0af3d00b
JB
7453static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7454 u64 start, u64 num_bytes, u64 min_size,
7455 loff_t actual_len, u64 *alloc_hint,
7456 struct btrfs_trans_handle *trans)
d899e052 7457{
d899e052
YZ
7458 struct btrfs_root *root = BTRFS_I(inode)->root;
7459 struct btrfs_key ins;
d899e052 7460 u64 cur_offset = start;
55a61d1d 7461 u64 i_size;
d899e052 7462 int ret = 0;
0af3d00b 7463 bool own_trans = true;
d899e052 7464
0af3d00b
JB
7465 if (trans)
7466 own_trans = false;
d899e052 7467 while (num_bytes > 0) {
0af3d00b
JB
7468 if (own_trans) {
7469 trans = btrfs_start_transaction(root, 3);
7470 if (IS_ERR(trans)) {
7471 ret = PTR_ERR(trans);
7472 break;
7473 }
5a303d5d
YZ
7474 }
7475
efa56464 7476 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
81c9ad23 7477 0, *alloc_hint, &ins, 1);
5a303d5d 7478 if (ret) {
0af3d00b
JB
7479 if (own_trans)
7480 btrfs_end_transaction(trans, root);
a22285a6 7481 break;
d899e052 7482 }
5a303d5d 7483
d899e052
YZ
7484 ret = insert_reserved_file_extent(trans, inode,
7485 cur_offset, ins.objectid,
7486 ins.offset, ins.offset,
920bbbfb 7487 ins.offset, 0, 0, 0,
d899e052 7488 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
7489 if (ret) {
7490 btrfs_abort_transaction(trans, root, ret);
7491 if (own_trans)
7492 btrfs_end_transaction(trans, root);
7493 break;
7494 }
a1ed835e
CM
7495 btrfs_drop_extent_cache(inode, cur_offset,
7496 cur_offset + ins.offset -1, 0);
5a303d5d 7497
d899e052
YZ
7498 num_bytes -= ins.offset;
7499 cur_offset += ins.offset;
efa56464 7500 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7501
0c4d2d95 7502 inode_inc_iversion(inode);
d899e052 7503 inode->i_ctime = CURRENT_TIME;
6cbff00f 7504 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7505 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7506 (actual_len > inode->i_size) &&
7507 (cur_offset > inode->i_size)) {
d1ea6a61 7508 if (cur_offset > actual_len)
55a61d1d 7509 i_size = actual_len;
d1ea6a61 7510 else
55a61d1d
JB
7511 i_size = cur_offset;
7512 i_size_write(inode, i_size);
7513 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7514 }
7515
d899e052 7516 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
7517
7518 if (ret) {
7519 btrfs_abort_transaction(trans, root, ret);
7520 if (own_trans)
7521 btrfs_end_transaction(trans, root);
7522 break;
7523 }
d899e052 7524
0af3d00b
JB
7525 if (own_trans)
7526 btrfs_end_transaction(trans, root);
5a303d5d 7527 }
d899e052
YZ
7528 return ret;
7529}
7530
0af3d00b
JB
7531int btrfs_prealloc_file_range(struct inode *inode, int mode,
7532 u64 start, u64 num_bytes, u64 min_size,
7533 loff_t actual_len, u64 *alloc_hint)
7534{
7535 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7536 min_size, actual_len, alloc_hint,
7537 NULL);
7538}
7539
7540int btrfs_prealloc_file_range_trans(struct inode *inode,
7541 struct btrfs_trans_handle *trans, int mode,
7542 u64 start, u64 num_bytes, u64 min_size,
7543 loff_t actual_len, u64 *alloc_hint)
7544{
7545 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7546 min_size, actual_len, alloc_hint, trans);
7547}
7548
e6dcd2dc
CM
7549static int btrfs_set_page_dirty(struct page *page)
7550{
e6dcd2dc
CM
7551 return __set_page_dirty_nobuffers(page);
7552}
7553
10556cb2 7554static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7555{
b83cc969 7556 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7557 umode_t mode = inode->i_mode;
b83cc969 7558
cb6db4e5
JM
7559 if (mask & MAY_WRITE &&
7560 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7561 if (btrfs_root_readonly(root))
7562 return -EROFS;
7563 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7564 return -EACCES;
7565 }
2830ba7f 7566 return generic_permission(inode, mask);
fdebe2bd 7567}
39279cc3 7568
6e1d5dcc 7569static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7570 .getattr = btrfs_getattr,
39279cc3
CM
7571 .lookup = btrfs_lookup,
7572 .create = btrfs_create,
7573 .unlink = btrfs_unlink,
7574 .link = btrfs_link,
7575 .mkdir = btrfs_mkdir,
7576 .rmdir = btrfs_rmdir,
7577 .rename = btrfs_rename,
7578 .symlink = btrfs_symlink,
7579 .setattr = btrfs_setattr,
618e21d5 7580 .mknod = btrfs_mknod,
95819c05
CH
7581 .setxattr = btrfs_setxattr,
7582 .getxattr = btrfs_getxattr,
5103e947 7583 .listxattr = btrfs_listxattr,
95819c05 7584 .removexattr = btrfs_removexattr,
fdebe2bd 7585 .permission = btrfs_permission,
4e34e719 7586 .get_acl = btrfs_get_acl,
39279cc3 7587};
6e1d5dcc 7588static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7589 .lookup = btrfs_lookup,
fdebe2bd 7590 .permission = btrfs_permission,
4e34e719 7591 .get_acl = btrfs_get_acl,
39279cc3 7592};
76dda93c 7593
828c0950 7594static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7595 .llseek = generic_file_llseek,
7596 .read = generic_read_dir,
cbdf5a24 7597 .readdir = btrfs_real_readdir,
34287aa3 7598 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7599#ifdef CONFIG_COMPAT
34287aa3 7600 .compat_ioctl = btrfs_ioctl,
39279cc3 7601#endif
6bf13c0c 7602 .release = btrfs_release_file,
e02119d5 7603 .fsync = btrfs_sync_file,
39279cc3
CM
7604};
7605
d1310b2e 7606static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7607 .fill_delalloc = run_delalloc_range,
065631f6 7608 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7609 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7610 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7611 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7612 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7613 .set_bit_hook = btrfs_set_bit_hook,
7614 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7615 .merge_extent_hook = btrfs_merge_extent_hook,
7616 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7617};
7618
35054394
CM
7619/*
7620 * btrfs doesn't support the bmap operation because swapfiles
7621 * use bmap to make a mapping of extents in the file. They assume
7622 * these extents won't change over the life of the file and they
7623 * use the bmap result to do IO directly to the drive.
7624 *
7625 * the btrfs bmap call would return logical addresses that aren't
7626 * suitable for IO and they also will change frequently as COW
7627 * operations happen. So, swapfile + btrfs == corruption.
7628 *
7629 * For now we're avoiding this by dropping bmap.
7630 */
7f09410b 7631static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7632 .readpage = btrfs_readpage,
7633 .writepage = btrfs_writepage,
b293f02e 7634 .writepages = btrfs_writepages,
3ab2fb5a 7635 .readpages = btrfs_readpages,
16432985 7636 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7637 .invalidatepage = btrfs_invalidatepage,
7638 .releasepage = btrfs_releasepage,
e6dcd2dc 7639 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7640 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7641};
7642
7f09410b 7643static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7644 .readpage = btrfs_readpage,
7645 .writepage = btrfs_writepage,
2bf5a725
CM
7646 .invalidatepage = btrfs_invalidatepage,
7647 .releasepage = btrfs_releasepage,
39279cc3
CM
7648};
7649
6e1d5dcc 7650static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7651 .getattr = btrfs_getattr,
7652 .setattr = btrfs_setattr,
95819c05
CH
7653 .setxattr = btrfs_setxattr,
7654 .getxattr = btrfs_getxattr,
5103e947 7655 .listxattr = btrfs_listxattr,
95819c05 7656 .removexattr = btrfs_removexattr,
fdebe2bd 7657 .permission = btrfs_permission,
1506fcc8 7658 .fiemap = btrfs_fiemap,
4e34e719 7659 .get_acl = btrfs_get_acl,
39279cc3 7660};
6e1d5dcc 7661static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7662 .getattr = btrfs_getattr,
7663 .setattr = btrfs_setattr,
fdebe2bd 7664 .permission = btrfs_permission,
95819c05
CH
7665 .setxattr = btrfs_setxattr,
7666 .getxattr = btrfs_getxattr,
33268eaf 7667 .listxattr = btrfs_listxattr,
95819c05 7668 .removexattr = btrfs_removexattr,
4e34e719 7669 .get_acl = btrfs_get_acl,
618e21d5 7670};
6e1d5dcc 7671static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7672 .readlink = generic_readlink,
7673 .follow_link = page_follow_link_light,
7674 .put_link = page_put_link,
f209561a 7675 .getattr = btrfs_getattr,
22c44fe6 7676 .setattr = btrfs_setattr,
fdebe2bd 7677 .permission = btrfs_permission,
0279b4cd
JO
7678 .setxattr = btrfs_setxattr,
7679 .getxattr = btrfs_getxattr,
7680 .listxattr = btrfs_listxattr,
7681 .removexattr = btrfs_removexattr,
4e34e719 7682 .get_acl = btrfs_get_acl,
39279cc3 7683};
76dda93c 7684
82d339d9 7685const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7686 .d_delete = btrfs_dentry_delete,
b4aff1f8 7687 .d_release = btrfs_dentry_release,
76dda93c 7688};